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SUMMARY

The paper describes the numerical analysis of creep deformations of shells of revolution un-
der unsymmetrical loads with application to a cylindrical shell.

As a creep problem of shells of revolution is closely related to the analysis and the design
of pressure vessels and pressure vessel components used in high temperature, there are many
investigations on the creep of cylindrical shells, conical shells, spherical shells and so on. As
to arbitrary shells of revolution, Penny presented the outline of a creep analysis of them and
Takezono reported the numerical method of transient creep problems with applications to pres-
sure vessel heads and to expansion bellows. These investigations, however, are almost all con-
cerned with the case subjected to axisymmetrical loads, and few studies of the unsymmetrical
problems are reported, in spite of importance of them in engineering.

n this paper the analytical formulation on the creep of axisymmetric shells undergoing
unsymmetrlcal deformatlons is developed for two hardening laws: the time hardenmg law and
the strain hardening law. The method is based on the creep power law, and on the assumption
of p plane stress condition and the Euler-Bernoulli hypothesis used in th he-

_ory. The basic differential equations derived for incremental values are
numerically solved by a finite difference method and the solutions at any time are obtained
by integration of the incremental values. In conclusion the computer programs are developed
which can be used to predict the creep deformations of arbitrary axisymmetrical shells.

As anumerical example the creep deformation of cylindrical shell of importance in practical
use is treated, and the variations of displacements and internal forces with the lapse of time
are discussed. The validity of the elastic solution from this method is confirmed by comparing
with the solution by Budiansky and Radkowsky. The analysis of shells in steady creep becomes
a subcase of the more general transient creep process described here.
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1. Introduction

Since a creep problem of shells of revolution 1is closely related to the analysis and
the design of pressure vessels and pressure vessel components used in high temperature ,
there are many investigations on the creep of spherical shells by Penny[1], conical shells
by Cozzarelli[2], cylindrical shells by Cozzarellil[3], Penny[L], Byrne[5] and Murakami[6],
and arbitrary shells of revolution by Penny[7],[8] and Takezono[9]-[12]. These investiga-
tions, however, are almost all concerned with the case subjected to axisymmetrical loads,
and few studies of the unsymmetrical problems are reported except for Stern's[13], in spite
of importance of them in engineering.

On the other hand the elastic analysis of unsymmetrical bending of shells of revolu-
tion has often been made as seen in the numerical method by Budiansky[1lL), by Kalnins[15],
and so on. Although the creep behaviour is nonlinear with respect to time, the relations
between the increments on each calculating stage may be regarded as linear. Therefore the
fundamental relations between the increments can be solved by applying the method of elastic
analysis.

In the present paper the numerical method of elastic analysis by Budiansky[14] is ex-
tended to deal with the creep problems. The method is based on the creep power law, and on
the assumption of plane stress condition and the Kirchhoff-Love hypothesis used in the ordi-
nary thin shell theory

As a numerical example the creep deformation of cylindrical shell subjectéd to asymme-
trical end moments is analyzed, and the variations of displacements and internal forces with

time are shown.

2. Analytical Formulations
2.1 Fundamental equations If the middle surface of axisymmetrical shells is given by
r=r(s) , where r is the distance from the axis and s is the meridional distance measured

from a boundary along the middle surface, as shown in Fig.l, the relations among the nondi-

mensional carvatures we(=a/Ry), we(=a/Ry) and the nondimensional radius p(=r/a) become as
follows.
wr=—(1"+7%)/ w0 14
o' =T(we—wp), P (1)
r=0'/p, £=s/a,

where ¢ is the reference length.
Eliminating the transverse shear forces @ and @ in the equilibrium equations in the

Sanders theory[l6] and differentiating with the time ¢ the following equations are obtained.

a {fg(ﬂl\.’e)+%(ﬁea)—l"1\7,: +
[0 Xy 4= o L
a8 (No)+ P (PNt} +P'Neo 0 (2)
Sty ey et =0
where
Meo=(Meo+Me)/2 | Neo=(N o+ Nog)/2 + ((1/Re)—(1/Re)} (Mz0—Mos) 4 (3)

and the notations are shown in Fig. 2.
The membrane strains of the middle surface are given by

118 g v 7. o171 @
PRYET U +1Uerwil: , 5”"2.11,,: 36

o éon= W+ U100, (k)



—3—

M 3/7
where. éon is half the usual engineeripg shear strain. Also the bending distortions are
follows

¢ _lM oo L1130 v L [100: 30y lalh 304
=" 2 Ko= (p Y] +r¢;) #eo=5 {p 20 + —7% +—<(we—m)(p %0 —TU,)} (5)
where rotations 0; and ¢, are
1 laUe.
Be=—| ( 3¢ +mgl7) Bo= ( +a),(7,) (6)

Under the Kirchhoff-Love hypothesis and the neglect of terms of order (/R and /R, relative
to unity, the strains at the distance ¢ from the middle surface, Tet & 5 &9 , ATE
Ee=eent ke, Go=dom+Chs, Seo=étam+Chito (1)
respectively.
In the theory of creep it is assumed that in a given increment of time the total strain
increments are composed of an elastic part and a part due to creep. Since the elastic
strain rates are directly proportional to the stress rates by Hooke's law, the total strain

rates may be expressed as follows.

1., . . 1ty .
é;=71;-(tie—vd.)+én, Co=p(Go—vde)+ée = Ceo="p drotéen (8)

vwhere ¢&. , ¢&. and & are the creep strain rates, and E and » are Young's modulus and
Poisson's ratio, respectively.

Now, if it is assumed that in the transient creep the creep strain in uni-axial state

for constent stress may be given by
&e=Ac"t™ (9)
and eq.(9) is extended to the plane stress state assumed in the ordinary shell theory under
the assumptions that the solid is isotropic, that the material obeys.the Von Mises flow rule
and that the creep strains are incompressible, then the components of creep strain rate,
€. , 4. and ‘g, » may be written as follows for the time hardening and the strian hard-

ening theories[17].

= ety 1 = et gme 1 s = (3 ety
&re=(mA)o," 't ‘(q;-?a,)’ Ec=(mA)o, " ‘(a;—?ae) | G (?MA)U. "oz (10)
= n Sy = /™ (n=m)/m m—l)/m 1 3 - 3 /- n-m)/m -—l)/m
&e.=(mA , Ege=(MA"™) g, &4 (M1 (0,,——?175)' su,—(?m/l‘ G R-0mg e (11)
where
t 4*_— -
0, =V o+ 0 —0i00+ 301" 5:e=fo‘ J?(E‘é:ﬂ"'éﬂe=+éegék+éélez)d’ (12)
and 4 , » and m are obtained from a fit of uniaxial test data.

Substituting eqs.{(7) into eqs.(8) and solving them about stresses, the stresses are

. E . . E
de=T",7 {€ent ot {(Ret+vko)) —dree | ”D=ﬁ(éﬂ-+yéém+c(k#+vké)]_dﬁz ,  Geo=—- (Eeum+cltea)—ﬂsh (13)
where

E¢oo (14)

Oe= 17 (Ceotwéon), Goe= 1" (ot vée)),  dro=—— Tiv

From eqs.(lB“) the membrane forces and che resultant moments are as foliows.

. Enh ) . . Eh ) . & Eh .
Ne=q707 (entvéom)—Nee, No=T" 7 Gomtvésa)=No,  Ney=—77con— Neoe
(15)
Keo—Meoe

D) (Ro+viee)—Mo.,  Meo= 12(1+ Y

M= 12(1——1")("6‘”)‘6) M., Mo—m
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vhere

hz iz, . /
Ne= ﬁma;,dc, No= f_h;dode, Nege= f:;dmﬂ
(16)
. LN B hiz | N LU
M= [ dekdt, Mo 7 aldl, Seo= [ dunlat

A complete set of field equations for the 29 independent variables: Ne No Nip Me, Mo, Mea
Ue, Us, Uc, écm, Eomp S20m, &t Ko, K20, Be, B0, Gt G0,G20, dee, Goe, Gtoes Nioy Noey NepouMee, Moe, Meoc NOW is  given by the 29
equations, (2), (4)-(6) and (13)-(16)
2.2 Nondimensional equations The 29 independent variables now will be expanded into
Fourier series. Let o¢ be a reference stress level, and solutions of the field equations

will be obtained in the following forms.

Ne=ooh I Ae™coand, Nio=aoh f}o»eg"" cosnd, No=aoh Enrig""coanﬁ
n=0 L ne=
Noe=aoh f}om,“"cosna, Neo=ooh T Aice™sinnd, Nepe=0oh Z‘ﬁu:“"sin ng
L] nwl n=
L) 3 =
Me=—ﬂh— 3 g™ eosng, Me,=ﬂh— ¥ e eosnf (17)
4 ne=p a u=p
Ve § s =
Mo= oo T 1itg™ cosnf, Ma,=-qi 2 g™ cosnd
2 n=0 a n=p
N ) om . e
Meo= L T thget™ sin ng, Mm=M 3 eecsin ng
e a1 a i
o= 800 7 = 800 S mygs = 890 S
U ) ");"u; cosnd, U, 5 ﬂz_}lw sinng, U: = nz_loug cosng

4 = I0 . m fyo= 0 S g m gm0 ST g (m g
Etm E,.)Eod“ copnfl, €sm E.Eué”‘ cosnf, € E"Z_,‘léu sin ng

- - = 18)
o 0 ™ com IO o) trgm 20 g (
#e="p "Z_:uk, cosnd, ko= o "Z_:olz,, cosng, K= o n};]k;, sin ng
0e="2 T pemeosng, Bo="2 T §™sinng
E ncp E noy
de=a0 inse"”wsnﬂ, dee=00 ins“‘"’cosnﬂ, de=00 Zus'g""cos nd (19)
n= = =
dee=0a0 Enh.""wsnﬁ, deoe=ao Eliu""sin nf, dee=0ce ’Elim"" sin nd
= I =
Also expanding the loads into Fourier series,
D g
Pe= T 3 pvcosng, Bo= 0 T peveinng, Pe= "L T e cosng (20)
g nw0 a nel 2 n=0

Substituting eqs.(17)-(20) into above 29 equations and eliminating appropriately  the
variables, the resultant set for u™, u™, u™ and m: then can be obtained as follows

adiy’ +amiy’ e+ ains =C

Gk’ Fantietaiig’ Hantis’ +auttstantc’ +astic’ +antict iy =Cs

(21)

otte’ +avotie+azidiy’’ + oot + aatiot asitic’ + anstic’ +arattc+ a4 axtite’+ arrhe =Cs
asoltg’ +amug+antig+ aastic’ +apatte’ +austic’ +asethy =Cy

where the superscript (a) on Fourier coefficients will be omitted for convenience, ai~auw

are constents determined from the shell form and the materials[1L4], and c©~C. are

2
Cr=—p¢+se +7(Rec~r0c) + —:—ﬂn.—l’Tme(»‘m—vmn)+ % (3we— wo)riee.

2.
Ca=—po-tnes’ +2Trieo— %m,+ "Xp“”

+—;r (Bws—we) Amsge. + %1' {(r(Bwo+ we)— wi'}riteo. (22)

(vifige—1itee) -

2
Cay=—Pe—wihee— wphoo+ A (a);w,— %) (mpc—vritge)

3 1
— PR —vihed!) + z%m“.,'er 2’;‘1

Meoe,  Ci=tiee,  A=hja
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Next, substituting egs.(L) and (15) into eqs.(13), eqs.(13) may be expressed with the

solutions g sis 4c and m¢ in egs.(21) as follows.

N . . . ’ _— 1
s.r=blus'+v7us+%vua+(we+vwa)u:+ Cd i+ acd Hage |~ S

: T (1— - —v?
=t = STOZED <M}ue+l{1+who

. 4 a

(1—~v?)nzc Lo
+{wa+uw;+‘a’ﬂ faet d et -2 Mec]—éu (23)
{1+ < Gar—or) }Ma O n Cn d<’+ =1 n{ 1+ (@ws—3we){ }lie
P 2a
-y {lwy—3
+ 7{ 1+ E2a ws) } —(1—v) 'ITC uc|—sm

where =1/(1—v?), d=1/12(1—?)
The rates of internal forces and stresses related to creep in egs.(22) and (23) become
the following by the use of eqs.(14), (16), (17) and (19).

X set véar) =)dtl

a=Q
0 3 vdl, o &

2 (24)
23X C(éoty 0.dl,

n=Q

= E_ . = " g E

ao Z] $ec™cosnf = E T (Eretrése), von);nm""cosnﬂ = T (Coetrése), ”ﬂnZ_]l Seo:sinng = Thp St (25)

The creep strain rates in right hand sides can be.related to stresses by eqs.(10) or (11).
2.3 Boundary conditions and junction conditions When the values of the solutions in egs.
(21) are not given at boundaries of shells, i.e. e fes, de & (Fig.1) are prescribed, they
must be rewrite by the solutions as follows[12].

Re=bite’ +botic +basto+butic+4,

Aeg=busie+ bathg” + ity +batic’ +botic+d, (26)

Ge=brotic+butte’ +biatig+buaie’ +biattc+bisrits’ +biathte +ds

Pe=—itie’ +wette
where 4~b, are the constants determined from the shell geometries and the materials, and

di~ds are

2 3 5 202%
di=—"¢, dz=—ﬂeae—x7(3wa—mé)mso:, d:=T12’"oe-‘1'TVm$r_*’Tme (27)

The differential equations (21) are not valid at pdints in the shell where disconti-
nuities in geometry and / or mechanical property of the material exist. Accordingly, at
such points equations of junction will be required which relate solution and its derivative
on either side of a discontinuity. With plus and minus superscripts denoting values Just
beyond and ahead of a discontinuity, respectively, the conditions of geometrical compatibi-
lity are ,

P R T X Pe = (28)

and equilibrium requires that
At =hen, et =Aee Get=den, thet=nine (29)
The differential equations (21), the boundary conditions (26) and the junction condi-

tions (28), (29) will be cast into a unified set of appropriate finite difference equations.
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3. Numerical method

Suppose that » discontinuity locations swses occur in the range (0,8 of the shell
as shown in Fig.l, let the regions (0,s), (sns). - (sn$) be subdivided into A—1, Ne—L,« Npu—1 eaual
segments, respectively, and give the endpoints of the segments two indices, rumnning fram 1
at s=0" to N(=:‘§M) at s=§ , then the increments in the nondimensional variable ¢ are
di=s/a(NM—1)
L= (s1—=5.)/a(Ne—1) (30)
Drn=(5—53)/a(Nps1—1)

in the successive regions bounded by discontinuities.

The differential equations (21) are written in finite difference form at all stations
except the discontinuity stations and the boundaries ( j=1, N ) on the basis of the usual

central difference formulas:

Z."/:ZMZ_AZ.H' 2= Z';*.—ZAZ';+Z}_| .
where ZT= (i, to, tic, )
For the boundary points ( =L ¥ ) and discontinity points (e.g. j=m , m+l )
Z.‘,Zfsz.;r;lzz—z}' Z.':SZ"_42Z:1:‘+Z“;2
PRIl Ve A R (32)
24~ ' 24
are employed. Where 4 and 4* are the intervals ahead and beyond the station j=m
respectively.

Applying above difference formulas for the fundamental equations, the boundary ones
and the junction ones, the following simultaneous equations with N unknowns respect to 2;

may be obtained.

AsZj+BiZi+CiZ i =D; (33)
(AM)aZ a2+ (BM)aZ aci+(CM).Z e +(DM)apiZar  (EManZnse +(FM)anZnis=0 (34)
(CM)aZm-rt HM)aZoor+(UIMnZ e +UM)nriZmst  KMDmoZae: +(LM)m 1 Zss=(SM)a—(SM)m ..

:(A])Z'.-l-('Bl)Zz%—{Cl)Zn:(Dl.) } (35)
(AN)Zn2t (BN)Zo1+(CN)Za=(DN)

Now, the above numerical method is concerned with the handling of the spatial aspect
of the problem. However, in transient creep the temporal aspect also must be considered.
The latter is usually handled with an incremental procedure. Thus, the numerical solu-
tion in a transient creep of shells of revolution proceeds as follows.

Step 1 : Determine the elastic solution in the shell by removing the dots and droving
the terms of creep in egs.(33)-(35).

Step 2 : Assume that the stresses obtained in Step 1 remain constant over a very small
initial increment of time At and calculate the increments of creep strains thet occur inthe
inctemental time. At by the use of the time hardening law, egs.(10). Next by substitution

of the increments of creep strains into the right hand side of eqs.(24) and expansion of

them into Fourier series, obtain the values of #e™~ms , and calculate the incremental
values during this incremental time 4t by the use of eas.(33)-(35). By adding these 1in-
cremental values to the elastic solutions obtain the stresses and the displacements at (=it
for the time hardening law. Equations (24) are inteprated numerically by dividing the

thickness & of the shell into ten and employing Simpson's 1/3 rule. The number of terms
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in Fourier series and 4 value are chosen from consideration of the convergency of the so-
lutions. In the initial routine egs.(10) are employed for both the calculations based on
the time hardening law and the strain hardening law.

Step 3 : Choose a suitable increment of time 4 . The time increment 4 is controll-
ed as in each calculating step the increments of the internal force which varies remarkably
with time become 1/3 of initial elastic value at the point where the elastic value is
maximum. The values of g in calculation may be decided from consideration of the conver-
gency of the solutions.

Step I : Calculate the increments of stresses and displacements for 4t by introduc-
ing the stress values obtained in Step 2 into eas.(10) or (11). By adding the increments of
the stresses and the displacements for 4 to the results in Step 2 determine the stresses
and the displacements at the end of the interval 4. In this step the same numerical method
as in Step 2 is employed.

Step 5 : Repeat Steps 3 and L, Continue in this manner until a desired time interval

has been achieved or until a steady state has been reached whichever occurs first.

4. Numerical example

As a numerical example of creep deformations of axisymmetrical shells under unsymme-
trical loading the cylindrical shell subjected to asymmetrical end moments as shown in Fig.3
is treated.

The geometrical parameters of this shell are as follows.

A== P=1, p'=0, r=0, wo=1, wr=w=0 (36)

Boundary conditions at the point A ( 7=1.) and B ( j=~ ) are respectively
120 1 Ue=Ud =M =Np=0, 150 : Uyl = i1y = Km0 (37)
and’
£=0: My=rncos2, Ui=Uy=Uc=0, t>0: M;=0, U=Us=U;=0 (38)
They are rewritten in the following nondimensional forms, where =1
1200 W= =t =0, gt = byt 4 batte! ™+ byt ™ 4 de=0 (39)

(The dots are dropped when ¢= 0 ),

and
(=0:mP=aRIGH, =0 (n%2), M =pp™=uM=0, 10 1 i =D =4 = 1M =0 (h0)
The material constants employed in calculations are
(E=17000kg/mm?, »=0.3, A=3.13x10"%(kg/mm?)-"h"5 n=4.17, m=0.166~ (k1)
The values of constants correspond to 0.19 % carbon steel at 450°C, Figure 4 shows the

creep curve of the material.

It is found from the calculations for various values of N that the difference between
the elastic solutions for N=26 and 51 is about 1 %, and the difference between ones for N=51
and N=151 is about 0.3 %. Therefore N=51 is employed in the further creep analysis consi-
dering the capacity of the computer and the computing time.

It is seen from examination of the convergency of solutions with the number of terms
of Fourier series [=(#+ 1)/2] that the solutions are unstable when #= 5-9, but when
#n z 11 become stable and the difference between the solutions for » = 19 and 23 is less

than 0.1 %. Accordingly in the further numerical calculations the authors employ 'sm= 19
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from the above-mentioned reason.

The other parameters related to the convergency of the solutions are determined as
B =60 and db = 10",

Some of the essential features of the creep solutions from the time hardening law are
shown in Figs.5-10. The solutions based on the strain hardening law scarcely differ from
them.

5. Conclusions
In the paper the authors described the numerical analysis on creep deformations of
shells of revolution under arbitrary loads with application to a cylindrical shell. The

increments of all pertinent variables were expanded into Fourier series in the circumferen-

tial di ion and decoupled sets of ordinary differential equations were solved by usual
finite difference forms. The solutions at any time were obtained by integration of the

incremental values.

In conclusion the computer programs were developed which could be wused to predict the
creep deformations of axisymmetrical shells under arbitrary loads.

As a numerical example the creep deformation of cylindrical shell of importance in
practical use was discussed. The analysis of shell in steady creep becomes a subcase of

the more general transient creep process described here.
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