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1 INTRODUCTION

The nonlinear response of structures during strong motion earthquakes is 
one of the major problems to be carefully addressed in structural 
engineering. Especially for important structures such as nuclear power 
plant buildings, it is essential to estimate the inelastic behavior 
accurately as much as possible. However, the inelastic analyses and 
associated sensitivity studies require a large amount of computational 
effort. Hence, the nonlinear behavior is often estimated on the basis 
of some approximate relationship between the nonlinear response and 
linear response. For example, in the current Probabilistic Risk 
Assessment (PRA) procedure [1,2], the effect of the elasto-plastic 
response is considered using an energy absorption factor which is 
constructed from the relationship between the ductility factor and the 
maximum linear response. However, the validity of this procedure is 
limited, since the energy absorption factor originally developed for 
single-degree-of-freedom systems [3,4] is also used for estimating the 
elasto-plastic response of multi-degree-of-freedom (multi-DOF) systems, 
which may have so-called damage concentration due to the imbalance of 
the mass and stiffness distributions.

In this paper, a Monte Carlo simulation study is carried out in order 
to address to this question. The relationship between the elasto- 
plastic and linear response for multi-DOF systems is developed based on 
the results of the simulation study. Several 6-story shear wall 
structures are considered as structural models which represent typical 
nuclear power plant buildings. A bilinear force-displacement 
relationship is assumed for each story. A number of artificial 
earthquakes based on the Kanai-Tajimi power spectrum and a trapezoidal 
envelope function are used as the input ground motion. The least square 
method is introduced for the purpose of evaluating the median 
relationship between the ductility factor and linear response from the 
simulated data and also evaluating the deviation from this median 
relationship. This relationship derived for the 6-story buildings is 
compared with the currently used energy absorption factor, V2u-1, and 
the simulation results for Zion auxiliary building model.

2 METHOD OF ANALYSIS
2.1 Inelastic response analysis

The bilinear force-displacement relationship shown in Fig.1 is assumed
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Figure 1. Bilinear force vs
displacement relationship

Figure 2. Sample bilinear 
hysteresis by simulation

as an inelastic behavior of each story. The shear beam model is 
composed of these bilinear shear springs and lumped masses. The
equation of motion for this system is written as

MX + CX + Q = — Mrz ......................  (1)

in which M is the diagonal mass matrix, C is the Rayleigh damping 
matrix calculated from the first two natural frequencies of the linear 
system, Q is the restoring force vector, r is a vector whose components 
are all unity and z is the base ground acceleration. The central 
difference method [5] is used for the time integration of Eq.1. When the 
overshooting of the yield restoring force occurs, X is modified such 
that the dynamic equilibrium by Eq.1 is satisfied. A sample bilinear 
relationship obtained by the response analysis is depicted in Fig.2.

2.2 Ground motion

The ground acceleration, z(t), is generated as the product of a Gaussian 
process, g(t), and a deterministic envelope function, f(t), as follows:

2(f) =g(i) •/■(«) .................. (2)
The envelope function is assumed to have a trapezoidal shape with the 
total duration 15 sec including the rise time 2.5 sec and decay time 2.5 
sec. The well-known Kanai-Tajimi spectrum is assumed as the power 
spectrum of g(t) as

1+ 423 (lc )2 
S()= So------------------95—r—p ................<3)

[i-(®/® rr + 43 («/^r

where a is the characteristic ground frequency and (, and S. are 
constants related to the shape and intensity of the spectrum. The time 
series, g(t), is generated by the following form:

N
g(t) = \^2 VG(,)Ac cos(wkt+^>k) .................. (4)

k=1
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with a G(a )=2S( \to synthesize and 317) N = the number of equally spaced frequencies 
between 0 and 2n. The S s random phase angles uniformly distributed 
different sets of the different time series are generated by selecting 

in this study, the Fandom phase angles.
ground condition are us “lowing values representing a typical hard rock 
6.25 f/sec"; 0, 8n rad/ d to generate the ground motion: So5 1.0, 2.5,

2.3 Relationship between ductility factor and linear response factor

The ductility factor is derined by
.......  (5)p=UU, .................................  (in which U, is the maximum story displacement obtained by »e bilinear 

response analysis and U is the story displacement at the »--- • 
The linear response factor is also defined by

„ ................  (6)m = UeIUy

where Ut is the maximum str displacement which is obtained by the 
linear response analysis being carried out under the same condition 
that for the corresponding bilinear response analysis.

In order to estimate the median relationship between the ductility 
factor p and the linear Pesonse factor m, the following equation 
assumed. H

J 1 ................  (7)m=(PM-P+1)
where m is the median of 1 linear response factor for each M value 
and P and r are coefficienEhto “e^ete^lned from the simulated date. 
Taking the logarithm of Ea.7 and linearizing using Taylor serie 
expansion, one obtains 1

tn (p-Po)f,©Po,ro+(-ro)f,Po»"d (8)

in which f(PP)=af,
r=r0. The estimated P and fr<P0,r0)= df(p,r)/dr evaluated at P=p, and 
minimize the following es of the coefficients, p and r, are chosen to

6 PPession:

D == 5 J •— (in m^ - bi m ) (9)

median

in which n is the number o= data Points (the sample size of Monte Carlo 
obtained bi’ .From the assumed initial values pa and r„ p and rare 
step U iterated un«lSH;;® method. Replacing P andro P and r

Assuming m to be log-n—PiV distributed for each value of u, an 
empirical relationship for- The square of the deviation from the above 

relationship, Ad, is also introduced as

In the 
t, are 
w=1/u..

(Ad*= {In ”a . - In *2= s(-1) (10)

same manner as for —estimated by the 1 he median relationship, the parameters,S and
—= ast square method with a weighting function

It is noted that in the above equation, the deviation of m from its 
median p-m relationship can also be expressed as a function of H as 
as this median relationship.
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Table 1. Model structures

Mass

(k-s2/ft)

•
#1

Elastic Shear Stiffness
*ttl

Strain 
Hardening

Ratio

Yeild 
Story 
Disp. 

(ft)
#2 o#3

( 100.

X
#4 

000 kj

+
#5

/ft)

X
#6

111.8
2.293 2.133 2.920 3.680 2.958 3.158 2.646 0.04 0.054

111.8
5.967 4.728 5.444 3.055 5.397 6.743 4.850 0.04 0.054

111.8
5.852 8.058 6.591 6.251 7.193 6.571 6.614 0.04 0.054

111.8
8.669 7.041 5.847 9.303 8.804 5.306 7.937 0.04 0.054

111.8
9.252 7.916 9.632 9.627 5.722 11.74 8.819 0.04 0.054

111.8
8.898 9.614 8.037 10.07 12.88 12.90 9.260 0.04 0.054

Natural Period (s) 0.315 0.321 0.327 0.316 0.317 0.306 0.316

Damping Ratio 0.05

3 NUMERICAL EXAMPLE AND DISCUSSION

3.1 Model structures and Monte Carlo simulation

Six-story shear wall building models are used for constructing the 
relationship between the bilinear and linear responses. Seven buildings 
with different shear stiffness distributions are modeled into lumped 
mass and shear spring systems as shown in Table 1.

The relationship between the bilinear response and linear response is 
constructed with the aid of the Monte Carlo simulation technique. The 
phase angles in the input motion are considered as the randon 
parameters. 45 artificial earthquakes (each of three sets of 15 
earthquakes have the same So value as: 1.0, 2.5 and 6.25 f^/sec3) are 
applied to each structural model in order to evaluate the effect of 
randomness in the wave shape on the bilinear response. All th 
parameters of the structural models are assumed to be deterministic a 
this time.

The Zion auxiliary building (7-story) model [6] is also analyzed as 
typical existing structure. In this case, a similar analysis is carrie 
out by generating 75 artificial earthquakes.

3.2 u-m relationship for system

The distribution of story ductility factors obtained by the biline: 
response analysis for the model structures #1, #4 and #7 are shown : 
Fig.3. A strong damage concentration is observed at the fifth-story < 
the model #4. The same tendency is also seen in the diagrams for tl 
models #5 and #6, although they are not shown here. The model #7 is 
well-balanced structure, thus its damage concentration is not so larg 
The models #1, #2 and #3 are in between these two kinds of the ductili
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Figure 3. Distribution of story ductility factors

distribution. Anyhow, each model exhibits the damage concentration to 
some extent.

It is obviously difficult to construct the general p-m relationship 
valid for all the stories. However, the largest ductility factor among 
all the story ductilities may be most significant when evaluating the 
safety of structures. Therefore, in this study, this largest story 
ductility factor is defined as the system ductility factor. The system 
linear response factor is also determined as the corresponding story’s 
m and it is, in most cases (more than 99? in our examples), the largest 
linear response factor among all the stories. This fact implies that 
the distribution of the story linear response factor give us very useful 
information about the damage concentration.

The system p-m relationships for all these seven model structures are 
summarized in Fig.4. No clear difference is observed among the data 
points of these different structures although the degree of the damage 
concentration are quite different as shown in Fig.3. Thus, the system 
p-m relationship may be used as a unique tool for the safety evaluation 
of a certain class of structures.

3.3 Statistical modeling of p-m relationship

The system p-m relationship is constructed with the aid of the least 
square method using the simulated data points of the ductility factor 
between 1 and 10. The assumed form of the median relationship, m=(pp- 
P+^Yt appears quite reasonable as shown by the solid line in Fig.4. 
The assumption that m can be represented by the log-normal distribution 
for each value of p also looks appropriate. It is confirmed that the 
range of the deviation Ad from the median relationship should be 
treated as a function of p.

The results of Monte Carlo simulation for the Zion auxiliary building 
model are plotted in Fig.5 along with the currently used conversion 
factor m=V2u-1 in the dashed line and the median relationship for the 
above 6-DOF models in the straight line.__________ This median relationship fits 
the Zion model's results better than V2u- 1. Thus, V2u-1 is found to 
be not always a conservative estimation when evaluating the acceleration 
capacity of structures. Monte Carlo technique appear to provide more 
reasonable approximation for the relationship. The values of p, r, s 
and t are indicated in Fig.4.
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Figure 4. System ductility factor 
for 6-DOF models
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4 CONCLUSION AND ACKNOWLEDGMENT

A Monte Carlo simulation study is carried out for 6-DOF shear wall 
structures as typical examples of multi-DOF systems in order to furnish 
the data base for constructing a relationship between the elasto-plastic 
and linear responses. The results are summarized as follows:

1) The maximum story displacements of elasto-plastic shear building 
systems may be estimated on the basis of the linear responses and 
ductility factors. Also, their variations can be taken into 
consideration properly.

2) The unique relationship between the system ductility factor and 
linear response is derived for seven different shear building models 
when the wave shape of the input motion is a random parameter.

3) The above relationship fits the simulated results of another shear 
wall type model better than the energy absorption factor, V2p-1, 
currently used in the PRA procedure. However, further study is 
suggested for more general conclusions.

This work was partially supported by NSF Grant No. ECE-85-15249.
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