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SUMMARY

A system of high reliability, such as an internal reactor structure of high redundancy
which is in a corrosive environment, may contain some failed componénts. This leads to
uncertainties in the integrity of such a structure when subjected to fault loading condi-
tions. Since the steels from which in-reactor structures are fabricated are defined by their
mechanical properties, the failure probability of components with the same nominal spec-
ification and under the same conditions can vary appreciably. Also corrosion rates can be
very sensitive to small differences in temperature which may not be known precisely.
Therefore unless all the components of a structure are inspected some uncertainty in the
component failure probability will exist. It is likely however that a thorough inspection
procedure is hindered by the inaccessibility of components and also the large number of
components involved. A general method for determining the overall failure probability of
such a structure, when limited test data is available, will be presented.

Many factors affect the failure probability of a multi-component structure which con-
tains some failed components. Initially the stresses which arise in a structure under fault
loading conditions must be determined. The magnitude of these stresses will indicate the
degree of redundancy in the system and thereby its likely ability to withstand the loading.
A consideration which could have some influence is whether the structure is subject to
continuous loading or the sudden application of a load. Typically the core restraint struc-
ture of a gas cooled graphite moderated reactor contains a few thousand bolts. It is likely
that any sample population will be a large fraction of the total bolt population. Therefore
any predicted bolt failure probability distribution must take into account the finite size of
the bolt population. Using the theorem of Inverse Probability the overall failure probability
for such a structure will be determined, where all the above factors are taken into account.

Data may be available on the failure probability of bolts of the same specification
which have experienced similar corrosion conditions. This information could be obtained
either from experiment or in-reactor inspection. It will be shown that this information can
be combined with information from a test result, thereby reducing the size of the test sam-
ple required to demonstrate the desired degree of structural integrity.

The preceding theory will be applied to a typical example which could arise in esti-
mating the integrity of the core restraint structure of a gas cooled reactor.
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1. Introduction

Reactor Systems are often required to have high reliability and this can be achieved
by designing the system with adequate redundancy. Such a system in a corrosive environment
could contain some failed components, but as it has high redundancy certain numbers and
configurations of failures would be permissible before the system as a whole could be said
to have failed. Information regarding the reliability of the system can be obtained by a
process of examination and testing, but it may be that a test result is only available for
some of the constituent components, possibly due to the large numbers involved, or even
the inaccessibility of some components. Information may also be available from other
sources, such as test data derived from similar components, although difficulties can
often arise in the interpretation of the data. This report will describe a method for
determining the overall failure probability of a high reliability system by the application
of sampling theory to a limited amount of test data obtained directly from the structure.
A method for including additional data from similar components in other structures

will alsc be given.

2 Estimation of Failure Prohahilitv from Direct Inspection

The two factors which determine the overall failure probability of a system are,
firstly the chance of a particular number of failed components occurring, and secondly
the chance that such a number of failed components can result in failure of the whole
system. Direct inspection of some of the components of a system gives information about
the chance of a particular number of failed components occurring. Consider a total
population of N components, of which r may be failed, from which a sample &, containing m
failed and n unfailed components, is selected. It is straightforward to show that the
likelihood of there being r failures in the total population, assuming the sample is random,

can be expressed in terms of binomial coefficients by the hypergeometric distribution, when
it is assumed that all arrangements are equally likely, so that

()20

The failure probability of a system with a particular number of failed components
will depend on the manner in which failed components can be arranged to produce failure of
the system. Xnowledge concerning the specific location of failed and unfailed components
derived from a test result will have some influence on the overall failure probability.
Every system will in general have a different function describing its failure probability

but initially a typical problem will be considered.

For example if a structure consists of N individual components which are grouped into
g assemblies, each with b components, the failure of this system could be defined such
that when all b components of a single assembly fail, the structure as a whole would Tail.
Consider the case of r randomly distributed failed components. The structure cannot fail
if r<b and will certainly fail if r> (b-1l)g. The r failed components can be arranged
amongst the N locations in N!/(r! (N-r)!) ways. If one of the g assemblies fails the number

of different ways of arranging the remaining components is (N-b)!/((r-b)! (N-r)!).
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N-b
g (r_b> (2)

Interpretation of this expression in terms of arrangements involves counting multiple

can occur 1s

failures more than once. Including correction terms and dividing by the total number of

arrangements, the fraction of arrangements for which failure of the system occurs is

<r/b
tsx/ i-1

Z (-1) g! (N-ib)!
i} (g-i)! (r-1ib) ! (3)
i=1

This expression would be applicable to a system which may fail under the sudden application
of a load. For any system as more fallures occur the likelihood of failure of the system
as a whole increases. But for a system which undergoes continuous loading certain
arrangements are precluded from producing failure because the system would have failed
previously. In the present example failure under continuous loading could only occur
through the failure of one assembly. It can be deduced that the fraction of arrangements

in which only one assembly fails is
isr/b

x! Z nilgr (-
s N! (I-1)1(g-1)! (x-ibJ!

i=1

(4)

where the number of multiple faillure arrangements have not been subtracted from the total

number of possible arrangements since there are so few.
If a system is now considered for which failure can occur when the number of failed
components in an assembly is c¢ (<b) then it can be shown that

b

E b! (N-b)! (N-r)! (5)
x! (b=x)!(r-x)! (N-xr-b+x)!

X=C

R
[fe]
2K

This equation only includes the leading terms because for a system of high reliability
the terms arising from multiple failure are likely to be small.

In general, for a system of high reliability, the fraction of possible arrangements

of failures, which could cause failure of the system can be written as
2 : N-j-k N
f =
x Cjk(N) ( r-j )/(r) (6)
jlk

j and k are the number of failed and unfailed components respectively for a particular

mode of failure and Cjk (N) is the number of ways the mode of failure can occur noting that
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double counting must be avoided.

Equation (1) gives the likelihood of r fallures occurring amongst the total
population N, assuming f components are sampled of which m are falled and n unfailed.
Consequently r can take values from m to N-n, and fr gives the chance of failure of the
system should r failures occur. Therefore, using Bayes Theorem of Inverse Probability

the overall failure probability for the structure is

N-n

p=§ £, L, N

r=m

where f; is the fraction of arrangements in the uninspected sample for which failure of
the system can occur and can be obtained from equation ( §) by changing r + r-m, N>N-2%
and Cjk(N) accordingly. For a system of high reliability where r/N is expected to be small
only the early terms in the summations of eq.{7) will be significant, so any assumed prior

distribution is taken to be slowly varying in this region. Making use of the equation
N-n
r N- _ [N+l
2 () (7)- ()
r=m

the proof of which is given in ref. [l] equation (7) can be expressed as

mn
P = E Cyp M) Ty (9
jlk
where the matrix
o (mintl): . (m+d)! . (n+k): , and C, (N,L) is the number
ik {m+n+j +k+1) ! m! nt ik

of ways in which the mode of failure, containing j failed and k unfailed components, can
occur giving due regard to the location of components in the test result and avoiding

double counting.

3. Estimation of Failure Probability from Similar Test Data

If no direct test data is available for a particular structure it may be possible to
make use of information based on similar data from other sources. For a particular
structure whose material properties and environmental conditions are known accurately it
is stralghtforward to use other data derived from a structure with exactly the same
conditions., If for example data 1s available for identical components, which have
experienced identical conditions, of which a are failed and b unfailed the failure
probability of the original structure is given by equation(g)where a=m, b =n,

and N-~ N + a + b.

It is not necessarily the case that inspection data from similar structures can be
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used in the way just described for a large complex structure. For a structure where
fallures are due to the effects of corrosion, the fallure probability of components
fabricated from materials of the same nominal specification, and under nominally the same
environmental conditions, can vary appreciably. This is because within a particular
material specification there will be large variations of the relevant mechanical properties
Also corrosion rates can be sensitive to small changes in envirommental conditions, which
may not be known precisely. Therefore care must be taken in assessing the usefulness

of similar test data. A method of using test data will now be described.

The material properties and the environmental conditions for the components of a
particular structure will be known within certain limits. Obviously test data derived
from the components of a similar structure, which experience conditions outside these
limits, will be less useful than data from similar structures within these bounds. There
can be many different groups of tested components which are within the limits of the known
material specification and environmental conditions of the components in question and each
group may have a different fraction of failed components. If the relevant test data
contains a representative sample of the different groups of components which can occur,
then a failure probability distribution for the components of the structures of interest

can be obtained.

A failure probabillity distribution Gr,N will be defined as the probability of
selecting components from groups such that out of N components r have failed. The
probability of a structure failing if r components are falled can be obtained from
equation (6), and the overall failure probability of the structure, assuming a probability
distribution Gr,N, is then given by

Po= Zfr G N (10}

A convenient way of evaluating the above expression will now be described Consider the

equation

r+a N+b-r N+a+b+l
G N 2: Papy (a)( b )<a+b+l) (b

a,b

where Dab =1
a,b

It is straightforward to show that any function can be expressed by the RHS of this
equation. Substituting equations (6) and (11) into (10) and using the summation given by
equation (B) it can be shown that
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(atb+l)!  (a+3)! (bik)!
P z : z : Cix ™ Pay (atbjrsl) ! al b (12)
jrk a,b

where it should be noted that a and b do not need to be positive integers

The distribution described by equation (11) can be interpreted in the following
manner. Consider t groups of components where the number of failed and unfailed components
is al,bl;a2,b2; ------ .o at'bt for each group. If the relative proportion of a group a,

b occurring is D then the probability of there being r fallures out of a total

b’
population N is given by equation (11).

To simplify the application of equation (12) an approximation will now be introduced.
If the ith term in equation (11) has a separate average value ﬁi and a variance Ui, then
it is straightforward to show that the average value and variance of the total distribution

is given by
- _ 1 - c2 _ 1 2 —2} -2
Pr = % p;, end % = % {Z GO Ry B (13

where it is assumed, in the absence of other evidence, that all groups are equally

representative and therefore all Da = 1/t. BA hypergeometric distribution can be defined

b
by parameters a and b such tha

r+a N+b-r N+a+b+1
Gn = <5) ( b ) <5+5+1) (14)

It can be shown that such a distribution can be described, which has a mean fraction of

failed components ﬁT with variance oi, where a and b are obtained from the equations

a (l—pT) Q-1 and b = pTQ -1
. p. (1-p ) N -1
with 0 T ) T 1 (15)
[
T

Therefore the overall failure probability is given by

b - Z ¢ (a+b+l) ! (a+))! (b+k)! (16)
T J (a+b+i+k+1) !  a! b!

There are two reasons for justifying the approximation given by equation {14). Firstly it

has the correct functional form and will represent a distribution with any mean value and
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variance. Secondly it is not generally necessary to determine overall failure probabillities
to great accuracy since they are only used to indicate a level of integrity, and a

distribution defined by only a mean and variance is usually adequate.

If information is also available from the direct inspection of the components of a

system the overall failure probability will be given by
v
D I I DLW
ik r r

Making use of the approximation given by equation (14) and summing over r using equation (8)

leads to
m+§,n+ﬁ
= E 17
P Cjk (N,R) Tj Jk (17)
k
m+a,n+b (m+n+a+b+1) ! (m+a+3) ! (n+b+k) !
where T . " _
dr (m+n+a+b+j+k+1)! (m+a) ! (n+b)

and Cjk(N,Q) is the number of ways in which the mode of fallure containing j failed and k
unfailed components can occur giving due regard to the location of components from direct

testing and avoiding double counting.

4, Potential Application of the Theory

In gas cooled Magnox reactors the components of the core restraint structure are
bolted together to produce designs with a high level of redundency and hence, high
reliability. However, the use of carbon dioxide as coolant gives rise to corrosian of
mild steel components, and in bolted assemblies the growth of oxide at interfaces can strain
the bolts and could ultimately lead to their failure [2,3]. It is important in safety
studies to assess the effects of oxidation and possible failure of bolts and to relate this
to the observed incidence of failure so that the continued integrity of the structure can

bé demonstrated with the requisite level of confidences

The theory presented here can be applied to such a problem where only a small
proportion of the total number of bolts is amenable or accessible to inspectionto determine

their status. The principlés are illustrated in the following example:

Assume a core restraint structure is constructed from sub-assemblies bolted together

by, say, grours of eight bolts as indicated diagramatically below. Furthermore assume that

X X X X X X X X

X X X X X X X X X - bolt position

stress analysis of this highly redundant structure under a meximum fault loading condition
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shows that at least 10 bolts out of 16 in 2 adjacent groups need to fail before the integrity
of the structure woudd be imperilied . Since 10 failed bolts can be distributed amongst
the 16 locations in several thousand ways (some configuration probably would not lead to
failure) and there are likely to be a few hundred 8 bolt groupings in the reactor, there
will typically be about lO6 ways in which the most likely mode of failure could occur. For
a system which is expected to have a small fraction of failures other modes of system

failure i.e. modes involving more than 10 bolt failures are significantly less likely,

therefore the overall failure probability of the system, given by equation (17) is

6 m+a,n+b
p Y1 '
° Tio,6

where it is assumed that the inspected bolt population is only a small fraction of the
total bolt population. m and n are the failed and unfailed bolts from direct inspection

and a and b are determined by indirect test data.

If only direct test data is available a = b = O and plot 1 Fig.l shows the sample size,
with a given number of failures, required to demonstrate the integrity of the structure
to a probability of less than 10_5. For example, assume that it is required to demonstrate
the integrity of the system to 10—5. Then plot 1 Fig.l shows that the minimum number of
bolts to be tested is 45 and providing no failures are found amongst the sample this
would be a sufficient test programme., However if one failure is found it would be
necessary to test an additional 14 bolts without finding further failures in order to prove
the system to the required level of integrity. If further failures were found the size

of the total bolt sample which would be required can be obtained from Figure 1.

The size of the sample required from direct inspection can be reduced by the use of
indirect test data as indicated in Section 3. Indirect test data based on bolts which
have experienced similar conditions to the bolts of the structure in question may be
employed. This indirect data may predict low mean failurc probabilities but the variance
about the mean may be large and account must be taken of this. For example, if the mean
ET = 0.04 and the standard deviation U = 0.05 a and b can be determined from equations (15}
where N = 2000. It is found that b = 12.8 and a = -0.43 which leads to an overall failure

probability for the structure.

6 Tm—0.43, n + 12.8
10,6

In Fig.l, plot 1 indicates the sample size required to justify the integrity of the
structure to a failure probability of 10_5 where information from direct inspection only is
used, and plot 2 shows the sample size when a prior distribution with pT = 0.04 and UT =
0.05 is assumed as given by equation (14). It can be seen that the prior information

reduces the sample size from direct inspection by about 20 bolts for sample sizes up to 100.
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If it were assumed that Py = 0.04 and OT = 0.04 the prior distribution would be equivalent
to a direct inspection of about 24 bolts. Similarly 1f GT = 0.06 the direct inspection
equivalent is 17 bolts. No direct inspection is needed for pT = 0.04 if OT = 0.25 or less.

5. Conclusions

The integrity of a multi-component system, designed to have high reliability but which
may now contain a number of failed components, can be assessed by combining information from
the direct inspection of a small component sample, and the results of indirect inspection
data, using the theory presented here provided that the failed components are distributed

in a random uncorrelated manner,
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Fig. 1 Bolt sample size required to ensure structural integrity to a failure
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