Proceedings of the 1995 Winter Simulation Conference
ed. (. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

PARALLEL SIMULATION OF THE IBM SP2 INTERCONNECTION NETWORK

(‘aroline Benveniste

Department of Elcetrical Engineering
Columbia University
New York, NY 10027, U.S.A.

ABSTRACT

Simulations of large multistage interconnection net-
works used in parallel processing systems are compu-
tationally expensive. This paper describes the paral-
lel simulation of a realistic and highly detailed model
of the IBM SP2 interconnection network. The chal-
lenges involved in efficiently parallelizing such a com-
plex simulation are discussed.

1 INTRODUCTION

Interconnection networks have been identified as suit-
able candidates for parallel simulation, e.g., see Goli
et al. (1989), Konas and Yew (1994), Miguel et al.
(1995), Nicol (1988), Yu, Towsley and Heidelberger
(1989) and the references therein. Previous papers on
this subject have typically modeled the networks at
an abstract level, or modeled very simple networks.
In this paper, we consider parallel simulation of an
accurate and highly detailed model of a real multi-
stage interconnection network used in an actual par-
allel computer, the IBM SP2. The starting point of
this work was an existing sequential simulator of the
network developed by one of the authors (Caroline
Benveniste). The serial simulator has been used in a
number of architectural studies e.g., Benveniste and
Hsu (1994), Baylor, Benveniste and Hsu (1994,1995).
However, it proved to be quite slow when confronted
with simulations of large machines. For ¢xample, it
could take up to 1 day (on a workstation) to simu-
late the network interconnecting 128 processors for 1
second of simulation time. This provided motivation
for our effort to parallelize the simulator. This effort
has resulted in a parallel simulator that runs on the
SP2 and produces useful speedups for simulations of
a large and complex systemn.

The rest of the paper is organized as follows. A
brief description of the SP2 interconnection network
1s given in Section 2; a detailed description may be
found in Stunkel et al. (1995). Section 2 also describes
our general approach in designing the parallel simu-
lator. A detailed description of our synchronization

584

Philip Heidelberger

IBM T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, U.S.A.

algorithm and several optimizations are given in Sec-
tion 3. We report on the performance of the parallel
simulator in Section 4 and give conclusions in Section
.
5.

2 MODEL AND GENERAL APPROACH

The SP2 interconnection network consists of inter-
connected racks. Each rack is a 16 x16 bidirectional
switch board. A switch board contains 8 switching
elements arranged in 2 stages with 4 elements in each
stage. The structure of a switching element is shown
in Figure 1.

INPUT PORT DESERIALIZER

CENTRAL
QUEUE

-
CROSSBAR |

INPUT PORT

’ JUTPUT PORT

FIFO ’ SERIALIZER OUTPUT

DESERIALIZER

Figure 1: The SP2 High Performance Switch

A message on the SP system is broken up into
self-routing packets. Packets can be up to 255 flow-
control digits (or flits, 1 flit = 1 byte in this case) in
length. When a packet enters a switch the first flit of
the packet is stored in the input buffer. In the next
cycle the first flit will move to the deserializing buffer.
When the second flit, which contains the routing in-
formation, has entered the deserializing buffer, the
switch determines to which output the packet will be
transferred. The logic will then decide whether the

Parallel Simulation 585

packet can use the crossbar and thus take a fast path
through the switch, or whether it must be stored in
the central queue. The packet will be stored in the
central queue if another packet is already using the
desired output.

The data width in and out of the central qucue
is 8 flits, or one chunk. The switch was designed in
this way so that the bandwidth in and out of the
central queue would equal the bandwidth elsewhere
in the switch. Since there are 8 inputs and 8 outputs
in each switch, each input or output will be able to
transfer one chunk in/out of the central queue every
8 cycles. The arbitration at the input and output of
the central queue is LRU.

The flow of each flit through the network is sim-
ulated. The simulator keeps track of where flits are
located and moves, or tries to move them on each cy-
cle. Time periods without any network activity are
skipped over; the simulator advances the global time
to the first time at which network activity resumes.

Our simulator is trace-driven, i.e., the simulator
reads message arrival times, message lengths, and
source-destination pairs from an input file. This in-
put file can be recorded by observing, or tracing, an
actual SP2 system, although the results in this pa-
per report on synthetically generated traces. Because
the serial simulator was so detailed, we decided not
to start from scratch but rather to add parallelism
to the existing simulator. This affected a number of
design decisions, including the choice of synchroniza-
tion algorithm and the way in which the model was
partitioned onto the parallel processor.

For example, adding the code to support rollbacks
asrequired by an optimistic parallel simulation imple-
mentation would have been extremely difficult (and
probably computationally expensive), given the ex-
isting data structures and algorithms. Thus we chose
a conservative synchronization algorithm. Because of
the high interconnectivity of the SP2 network, pro-
tocols based on pair-wise appointments or null mes-
sages seemed to offer little advantage over simpler
window-based protocols. Thus we chose the YAWNS
windowing protocol (see Nicol, Micheal and Inouye
1989 and Nicol 1993) as the basis of our synchroniza-
tion algorithm. In a windowing algorithm, the time of
the next window represents the earliest time at which
some processor’s state may be affected by an event on
another processor. The window length is constructed
so that messages sent during one window do not affect
the state of another processor until the next window.
At the end of the window, all messages are received
and the next window length is computed.

Since the building block of the SP-machines is the
rack, a natural partition is to assign one rack to one
physical processor. This fits in nicely with the exist-
ing simulator’s data structures. It results in a reason-
able computation to communication ratio and pro-
vides for a useful amount of potential parallelism; a

(4 node system has 4 racks while a 128 node system
has 12 racks. While different partitioning policies are
possible, in this paper we assume that the simulator
has been configured in this way. With this partition-
ing, packets that are generated on one rack, and have
their destination on the same rack can be completely
simulated by one processor. However, packets cross-
ing rack boundaries require interprocessor communi-
cation. Because routes are statically determined, it
is possible to tell exactly which racks a packet flows
through at the time the packet is read from the trace
file.

Given this type of partitioning, processors need to
communicate when flits leave, or try to leave the out-
put buffer on one rack to enter an input buffer on
another rack. If the input buffer is full, then the flit
is blocked from leaving the output buffer. It would
have been costly to implement a handshaking proto-
col on each flit transfer to request a slot in the input
buffer. In addition, since input buffers are reasonably
large (31 flits), most flits are successfully transferred.
We avoided the necessity for such a protocol by mak-
ing shadow copies of the output buffers (on different
racks) that feed the input buffers of a processor’s rack.
The states of the shadow buffers are kept consistent
by messages that are received at window boundaries.
To avoid the handshaking protocol, the window is
constructed so that all flit transfer requests within
the window will be satisfied (provided no buffers are
already full). The window calculation thus includes
an estimate of the earliest time at which some buffer
may become full.

Once a chunk header enters an output buffer, all
flits in that chunk will be transferred in consecutive
cycles (provided the input buffer is not full). Thus
our initial algorithm kept track of chunk headers and
computed a window when each chunk header might
leave the rack. Messages reflected information about
when the first flit of a chunk exits the rack. However,
this led to small windows, and excessive message pass-
ing. Furthermore, once the header of a packet leaves
an input buffer, the subsequent flits of the packet
typically follow at regularly spaced intervals. Thus
only the packet headers need be accounted for in the
window algorithm, plus exceptions to the assumption
that flits are regularly spaced. These exceptions only
occur in certain circumstances associated with full
buffers. Further details and optimizations of the win-
dow algorithm are given in Section 3.

Our simulator was implemented using the MPI
(message passing interface) standard communications
library and runs on the SP2 parallel processor.

3 SYNCHRONIZATION DETAILS

We first describe our basic synchronization algorithm,
and then an optimized algorithm that led to improved
simulator performance.

586 Benveniste and Heidelberger

3.1 Basic Algorithm

The first algorithm we implemented was based on the
location of chunk headers. The window calculation
took the minimum of three numbers to predict the
first time at which a communication hetween racks
will be necessary. 'The first number is the minimum
time at which the head of a chunk may leave a rack.
To calculate this quantity, the simulator keeps track
of where the chunk headers are in the switches. The
switch has a number of internal registers: an input
FIFO, a deserializing buffer, a central queue, a se-
rializing buffer, and an output buffer. In addition,
the racks contain two stages of switching elements.
Therefore, depending on which internal register and
which stage the chunk header is in, there is an associ-
ated minimum time at which the chunk header may
cross a rack boundary. Rather than check each buffer
at the window calculation to see which chunks may
cross a rack boundary first, an array is kept of how
many chunk headers are at each location. In the win-
dow calculation, the location with the smallest delay
and a non-zero number of chunks associated with it
will contribute to the window calculation.

The second number used in the window calculation
is the time at which the next packet that has not yet
entered the network can leave the rack. This is nec-
essary because initially there are no packets in the
network so this number will be used to calculate the
first window. Also, during the run the new packets
that are being injected into the network may eventu-
ally leave the source rack and, if there are no other
packets in the nctwork that cross rack boundaries,
this number may be the minimum window time.

The final component in the window calculation is
the full buffer time. This is the minimum time at
which some input buffer in a switch may become full.
This quantity enables us to avoid communication on
each flit transfer. To compute this quantity, we note
the number of flits in each shadow buffer (say x; for
buffer 7) and if this quantity is positive then we com-
parc that with the number of free slots in the cor-
responding input buffer (say y,). If »; < y;, then
there is no possibility that buffer 7 will fill during the
next window. However, if #; > g, then buffer ¢ could
fill in y, cycles. The full buffer time is then simply
the minimum of all y,'s such that @, > y;. If one of
the buffers i1s full at a window calculation, informa-
tion 1s exchanged identifying which buffers are full,
thereby keeping the states of the shadow buffers on a
receiving rack consistent with the states of the output
buffers on a sending rack. During such a full buffer
exchange, for each pair of communicating processors
7 and j, processor ¢ sends (in one message) the iden-
tities of all full input buffers fcd by processor j. The
window length is then set to be one cycle, since the
time that the input buffer will become unblocked is
not known. In addition, during that window, no flits

are transfered to a full input buffer. This basic algo-
rithm achieved a speedup of 1.9 on 4 processors when
simulating a 64 node system with 200 flit messages
and an expected utilization of 0.2 per port.

3.2 Optimized Algorithm

To improve the performance of the basic algorithm,
we implemented a number of optimizations. In the
basic algorithm, each window calculation involved
two global reductions. The first reduction counts the
number of messages sent to each processor. Proces-
sors then poll for messages until they have received
all messages sent to them. These messages are pro-
cessed, and then a second reduction calculates the
next window time. The first optimization used only
one reduction per window, computing both the mes-
sage counts and the next window time in a single re-
duction. With this implementation, processors have
less information available to them at the time the
reduction is started (since they haven’t necessarily
picked up all their messages yet). For example, a
processor may receive a message about a particular
chunk after the window calculation. The processor
may eventually have to send this chunk to still an-
other processor. The possibility of that chunk caus-
ing the next window must be accounted for. We did
so by placing the burden on the sending processor;
if, during a window, processor i sent a chunk to pro-
cessor j that eventually must be sent to processor k,
processor ¢ must ensure that the next window length
is no larger than the minimum time for the chunk to
flow through processor j. In addition, the full buffer
time calculation had to be modified since a newly ar-
riving, but unprocessed, chunk to an empty shadow
buffer could cause a full buffer if there are fewer than
3 slots available in the destination input buffer. (The
basic algorithm only computes full buffer times for
non-empty shadow buffers.) Similarly, a newly arnv-
ing, but unprocessed, chunk to an input buffer with
only one available slot causes that buffer to be full at
the start of the next cycle. With this optimization,
the speedup increased from 1.9 to 2.3.

We next optimized the code to have communication
occur between racks only at the beginning of packets,
rather than at the beginning of chunks. This was
possible since, typically, once a packet starts trans-
mitting it transmits 1 flit each cycle without inter-
ruption as long as the receiving input buffer does not
fill. Therefore, during normal operation, each chunk
does not need to be sent, and only the heads of pack-
cls are explicitly sent.

However, one situation may arise that invalidates
the assumption that once a packet begins transmis-
sion out of a rack, it will be transmitted without inter-
ruption. This can occur because of the least-recently-
used (LRU) algorithm used for arbitration out of the
central queue. Usually, a packet will transmit 8 flits

Parallel Simulation 587

every 8 cycles. However if one packet is transmitting
out of an output every 8 cycles, and one of the other
outputs of that switch becomes blocked because an
input buffer 1s full, the blocked output will move to
the front of the LRU queue. If it should happen that
the time at which it becomes unblocked corresponds
to the time that the first output was ready to trans-
mit, the second (formerly blocked) output will get
priority and the first output will transmit one cycle
late. This information must be communicated to the
receiving node, otherwise there will be an inconsis-
tency in the system. In the worst case all 7 outputs
will be blocked and unblocked within 7 cycles start-
ing at the cycle in which the only unblocked output
was scheduled to transmit. Since the other 7 outputs
were blocked they will have priority over non-blocked
output, and the non-blocked output may be delayed
for 7 cycles. To handle this situation we 1dentify this
period, which, in the worst case will be 7 cycles. Dur-
ing this period we cause a window to occur every cy-
cle. In addition, during this period, we notify the
recelving processor each time a chunk is sent, rather
than just when the head of the packet is sent. By
doing this we guarantee that the parallel nodes will
have consistent states. This subtle situation was not
identified and corrected until we noticed a slight dis-
crepancy between the results of the serial and parallel
simulators.

As a final optimization, we took certain queuing
delays into account to further increase the window
length. Specifically, we added a fourth number to the
reduction in order to prevent windows from occurring
when a packet is blocked in the central queue. Con-
sider the following situation: a packet is in the process
of transmitting out of the central queue for a partic-
ular output, and another packet is blocked behind it.
Thus, the second packet would cause a window to oc-
cur every z cycles where z is the time for the head of
the packet blocked in the central queue to leave the
rack. However, since the output is being used we do
not want to cause a window in z cycles, but rather in
z + the minimum time for the previous message to
finish transmitting out of the central queue. We have
implemented this optimization in the following man-
ner: each time a packet is added to the central queue,
we check to see if another packet is blocking it. (This
packet may be using the same output of the central
queue, or it may be using the crossbar.) If there 1s,
we then take the minimum time remaining to trans-
mit this packet, add to it the delay for the current
packet to leave the rack after it becomes unblocked,
and place this number on a heap. At each window cal-
culation, the number at the top of the heap is used in
the window calculation since this is also a time when
the head of a packet may cross rack boundaries. A
packet is removed from the heap when it becomes
unblocked and begins transmitting out of the central
queue. It is possible that the previous packet has be-

come delayed, and does not complete transmission at
the predicted time. Therefore, at cach window calcu-
lation any packets on the heap whose time is greater
than or equal to the current simulation time will be
removed from the heap and re-inserted on the heap
with a new estimated time.

With these optimizations, the speedup increased
from 2.3 to 2.6.

4 SIMULATOR PERFORMANCE

We used synthetically generated traces to drive the
parallel and serial simulators. The communication
pattern had a uniform random distribution. The
(time) separation between messages at each node was
exponentially distributed with a mean that varied
with the applied load and message length. We ran
simulations of 64 and 128 processor SP2 systems, and
compared the results of the parallel simulator to that
of the serial simulator for both system sizes. All par-
allel simulations of the 64-processor system were run
on 4 SP2 nodes, and all simulations of the 128-way
processor system were run on 12 SP2 nodes. The in-
put traces have messages generated during 1 million
cycles.

Message Size (flits) 200 1K 2K 8K
Speedup 2.62 | 2.06 | 1.70 1.75
Average Window Size | 7.56 | 2.02 | 1.12 | 1.01
FBE Window Fraction 0 0.75 | 0.95 | 0.996

Table 1: Results for Simulations of a 64-Processor
SP2 with an Applied Load of 0.2

In Table 1 we present the results for the 64 way
system with an applied load, 1.e., average port uti-
lization, of 0.2 but with different message sizes. The
first row shows the speedup of the parallel simulator
over the serial simulator for the different messages
sizes. The second row shows the average window size
(in cycles) in the parallel simulator, and the third row
shows the fraction of windows that were caused by a
full buffer exchange. The greatest speedup was ob-
tained for the simulation run with 200 flit messages.
In this simulation the window size was over 7 cycles,
and no full buffer exchanges took place. With the
larger message sizes the network was more stressed
because the traffic is burstier, and this causes the
switch buffers to fill. In the three runs with larger
message sizes the windows are smaller and the frac-
tion of windows caused by a full buffer exchange also
increases so that for 81X messages almost all windows
are caused by a full buffer exchange. However, the
speedup of the simulator when run with 8K messages
1s slightly better than the speedup with 2K messages.
This can be understood by considering that with the
8K messages more activity is occurring on the net-
work at certain times, and this activity is now divided

288 Benveniste and Heidelberger

"~ Message Size (flits) 200 1K 2K 3K
Speedup 531 | 4.04 | 3.56 378

Average Window Size | 3.825 | 1.27 | 1.002 1.01

FBE Window Fraction 0 0.86 | 0.999 | 0.998

Table 2: Results for Simulations of a 128-Processor
SP2 with an Applied Load of 0.2

among 4 processors on the parallel simulator. There
is not much difference in window size between the 2K
run and the 8K run, but in the 8K run there 1s more
activity (more flits moving) within cach window. The
speedup of the run with 1K messages is slightly bet-
ter than the 2K and 8K runs because the window size
1s larger and a smaller percentage of the windows are
caused by full buffer exchanges.

In Table 2 we present results for the simulation of
a 128-way SP2 with different message sizes and an
applied load of 0.2. These results are similar to
the ones presented for the 64-way SP2. However, the
average window size is smaller for 200 flit messages
than it was for the corresponding simulation of the
64-processor system. This 1s caused by the fact that
when there are no full buffers in the system, the win-
dows are determined by the next time that the head
of a packet leaves a rack. Since there are more racks
and more packets in the 128-way system than in the
64-way system, there will be more instances when the
head of a packet is about to leave a rack. Still, the
speedup of the simulator with 200 flit messages is al-
most 5.5.

In Table 3 we present the results of a simulation run
of the 64-processor system with 200 flit messages, and

an applied load varying from 0.2 to 0.5. The best
Applied Load 0.2 0.3 0.5
Speedup 262 | 2.83 | 2.75

Average Window Size | 7.56 | 5.39 | 2.03
FBE Window Fraction 0 0.02 | 0.54

Table 3: Results for Simulations of a 64-Processor
SP2 with 200 Flit Messages

speedup 1s obtained for an applied load of 0.3. With
that applied load the network is moderately loaded,
but still able to transfer packets with few full buffers
occurring. The speedup 1s better with a load of 0.3
than with a load of 0.2 because there is more net-
work activity which can be successfully parallelized.
The window sizes for the two runs are similar, but
more work is being done during each window in the
experiment with the higher load. When the load is
increased to 0.5, the number of full buffers increases
rapidly, which in turn causes a much smaller average
window size, and the speedup declines.

In Table 4 we present results for simulations of a
128-way system with 200 flit messages and varying
applied loads. The results are similar to those pre-

Applied Load 0.2 0.3 0.5
Speedup 5.34 | 6.17 | 5.71
Average Window Size | 3.83 | 2.79 | 1.53
FBE Window Fraction 0 0 0.38

Table 4: Results for Simulations of a 128-Processor
SP2 with 200 Flit Messages

sented for the 64-way simulations. In this case the
best speedup is obtained with an input load of 0.3.
For this simulation, a speedup of over 6 was obtained.

Speedup | Average Window | FBE Window
Size Fraction

0% 2.62 7.56 0

2% 2.62 7.56 0

4% 2.65 7.49 0.01
6% 2.59 6.98 0.08
7% 2.47 4.86 0.37
8% 1.87 1.006 0.999

Table 5: Results for Simulations of a 64-Processor
SP2 with a Skewed Load

In Table 5 we show the results of simulations of a
64-processor SP2 system with a skewed input load.
The skews are given as the percent of the total load
that is going to simulated processor 0. This creates
a workload imbalance for the parallel simulator and,
for a given overall input load, causes a greater frac-
tion of full buffers due to the “hot-spot” effect (see
Pfister and Norton 1985). These simulations were
run with 200 flit messages, and a total input load of
0.2. With skews of 6% and less there is little effect on
the speedup of the parallel simulator, and the average
window size with a skew of 6% is still relatively high
at 6.98 cycles. However, starting with the skew of 7%
the window size drops, and the percentage of windows
caused by a full buffer exchange rises steeply. With
a skew of 8% the window size has dropped to just
over 1 cycle, and almost all the windows are caused
by a full buffer exchange. The speedup of this last
simulation has dropped to 1.87.

5 CONCLUSIONS

This paper describes a parallelization of a realistic
and highly detailed model of the SP2 interconnection
network. The model runs on the SP2, producing use-
ful speedups of up to just over 6 on 12 processors.
Speedups are affected by the overall level of network
activity as well as the frequency of full buffer blocking
events that span processor boundaries.

Given that we started with an existing sequential
simulator, we had anticipated that it would be rather
straightforward to add the necessary synchronization
algorithms and message passing code. However, our
initial implementation was slow due to excessive syn-
chronization and message passing. Improving perfor-

Parallel Simulation 589

mance required rather more sophisticated techniques,
as well as a deeper understanding and exploitation of
the structure of the network. In addition, certain sit-
uations caused slight divergences between the results
of the serial and parallel simulators that were diffi-
cult to track down (the flits not coming out at reg-
ular intervals under some blocking conditions). One
of the advantages of simulation is the flexibility to
model a variety of complex situations. While we
have succeeded in developing a parallel simulator of
a particular, highly complex “real world” system, the
parallelization relies heavily on the structure of the
network. Thus adapting the parallel simulator to
model alternative network designs is not necessarily
straightforward. We are, however, interested in using
the parallel simulator in production runs for specific
modeling studies.

ACKNOWLEDGMENTS

We are grateful to David Nicol for letting us use
his heap manipulation routines. We would also like
to thank Craig Stunkel for answering all our net-
work questions. The work of Caroline Benvensite was
funded under a work/study program with the IBM
T.J. Watson Research Center.

REFERENCES

Baylor, S., C. Benveniste, and Y. Hsu. 1994. Perfor-
mance evaluation of a massively parallel I/O sub-
system. In Proceedings of the 8th International
Parallel Processing Symposium, Workshop on In-
put/Output in Parallel Computer Systems, 1-15,
IEEE TCPP and ACM SIGARCH.

Baylor, S., C. Benveniste, and Y. Hsu. 1995. per-
formance evaluation of a parallel I/O architecture.
In Proceedings of the International Conference on
Supercomputing, 404-413, ACM SIGARCH.

Benveniste, (. and Y. Hsu. 1994. Performance
evaluation of central queue arbitration policies for
the Vulcan parallel system. In Proceedings of the
1994 Summer Computer Simulation Conference,
The Society for Computer Simulation.

Goli, P., P. Heidelberger, D. Towsley, and Q. Yu.
1990. Processor assignment and synchronization
in parallel simulation of multistage interconnection
networks. In Distributed Simulation, 181-187, The
Society for Computer Simulation International.

Konas, P. and P-C Yew. 1994. Improved parallel
architectural simulations on shared-memory multi-
processors. In Proceedings of the 8th Workshop on
Parallel and Distributed Simulation (PADS), 32-38,
IEEE Computer Society Press.

Miguel, J., A. Arruabarrena and R. Beivide. 1995.
Conservative parallel simulation of a message-
passing network: a performance study. In Pro-
ceedings of the 1995 Summer Computer Simula-

tion Conference, 825-830, The Society for Com-
puter Simulation.

Nicol, D.M. 1988. Parallel discrete-event simulation
of FCFS stochastic queuing networks. In Proceed-
ings ACM/SIGPLAN PPEALS 1988: Ezperiences
with Applications, Languages and Systems, 124-
137, ACM Press.

Nicol, D.M. 1993. The cost of conservative syn-
chronization in parallel discrete-event simulations.
Journal of the ACM, 40: 304-333.

Nicol, D.M., C. Micheal, and P. Inouye. 1989. Effi-
cient aggregation of multiple LP’s in distributed
memory parallel simulations. In Proceedings of
the 1989 Winter Simulation Conference, 680-685,
IEEE Computer Society Press.

Pfister, G.F. and A.N. Norton. 1985. “Hot-Spot”
contention and combining in multistage intercon-
nection networks. I[EEE Transactions on Comput-
ers 34: 943-948.

Stunkel, C.B., D.G. Shea, B. Abali, M.G. Atkins,
C.A. Bender, D.G. Grice, P. Hochschild, D.J.
Joseph, B.J. Nathanson, R.A. Swetz, R.F. Stucke,
M. Tsao, and P.R. Varker. 1995. The SP2 high-
performance switch. [BM Systems Journal 34:
185-204.

Yu, Q., D. Towsley, and P. Heidelberger. 1989. Time-
driven parallel simulation of multistage intercon-
nection networks. In Distributed Simulation, 1989,
191-196, The Society for Computer Simulation In-
ternational.

AUTHOR BIOGRAPHIES

CAROLINE BENVENISTE received an A.B.
in physics from Harvard University in 1983. She is
currently a Ph.D. candidate in Electrical Engineer-
ing at Columbia University. She received an IBM
graduate fellowship award and has also worked part
time at the IBM T.J. Watson Research Center under
a work/study program while pursuing her degree.

PHILIP HEIDELBERGER received a B.A. In
mathematics from Oberlin College in 1974 and a
Ph.D. in Operations Research from Stanford Univer-
sity in 1978. He has been a Research Staff Member
at the IBM T.J. Watson Research Center since 1978.
While on sabbatical in 1994-1995, he was a visit-
ing scientist at Cambridge University and at ICASE,
NASA Langley Research Center. He is an Area Ed-
itor of ACM TOMACS, was program chairman of
the 1989 Winter Simulation Conference, and program
co-chairman of the ACM Sigmetrics/Performance 92
Conference. He is a Fellow of the IEEE.

