
Abstract

ABDEL-KHALIK, HANY SAMY. Inverse Method Applied to Adaptive

Core Simulation. (Under the direction of Paul J. Turinsky). 

The work presented in this thesis is a part of an ongoing research project

conducted to gain insight into the applicability of inverse methods to developing adaptive

simulation capabilities for core physics problems. Adaptive simulation is a simulation that

utilizes past and current reactor measurements of reactor observables (e.g. core reactivity

and incore instrumentation readings) to adapt the simulation in a meaningful way to

improve agreement with reactor observables. To perform such adaption, we utilize a

group of mathematical techniques which address the problem of given a current core

simulator model and the associated input data (e.g. cross-sections, thermal-hydraulic

parameters), how should the values of selected input data be adjusted to improve

agreement with observables without changing the core simulator model, (i.e. how can we

obtain the best agreement utilizing our current modeling capability). This is usually

referred to as an inverse problem, which is difficult to solve due to its ill-posedness nature.

Major advances have been made by mathematicians to overcome the ill-posedness nature

of such problems. The proposed project is of an exploratory nature serving to develop

expertise in this area, to which the nuclear power community has not participated to any

great extent over the last two decades since their earlier contribution during the design,

research and developments stages of a proto-typical fast breeder reactor. Exploratory

research projects, such as this one, serve to develop insight, form general ideas about areas



where little expertise is available, and to provide a basis on whether there is potential for

the proposed techniques to be useful and successful.

The current work addresses BWR core simulators since their prediction accuracy

is inferior to PWRs’, providing marginally acceptable agreement between measured and

predicted core attributes. This implies that BWRs could benefit from utilizing an adaptive

simulation tool. In the work done so far, a virtual approach has been utilized in which two

versions of a core simulator (i.e. FORMOSA-B) are utilized. The first one represents

actual plant data, and is referred to as the ‘virtual core’. In that version, the LPRM

readings and their associated instrumental noise have been simulated. The second one is

an altered version of the same core simulator, in which modeling and input data errors are

introduced to give rise to disagreement between the two versions of the core simulator,

and is referred to as the ‘design basis core simulator’. That disagreement is made to be of

the same magnitude as the actual disagreement which exists between plant data and

current core simulators in regard to LPRM readings and core criticality. The virtual core

observables at nominal conditions, including the noise component of the LPRM readings,

are then utilized to adapt the design basis core simulator. A larger set of virtual core

observables including those at nominal and various off-nominal core conditions, with and

without the noise signal, is then contrasted to those predicted by the ‘adapted design basis

core simulator’. Results indicate that the disagreement between the adapted design basis

core simulator and the virtual core can be decreased by an order of magnitude, indicating

the high fidelity and robustness of the adaptive techniques and that adaption can be

utilized as an effective noise filter. These favorable results encourage further development



of this project. If successful in improving prediction fidelity when utilizing actual plant

data as the basis for adaption, this could lead to an increase in design margins and relaxing

of technical specifications, which will have a beneficial impact on reactor operation and

economy.
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 CHAPTER 1: ADAPTIVE CORE SIMULATION 1
 1. Adaptive Core Simulation

 1.1. Importance to Advanced and Current Reactors

The accurate prediction of core behaviour is a fundamental requirement to the design

and operation of any nuclear reactor system. That is achieved through the utilization of high

fidelity core simulators. Core simulators can be utilized in either an on-line or off-line mode.

In the online mode, they provide support for the successful control and protection of the

reactor. Control systems are required to determine the optimum trajectory in moving the

reactor from the current state to a final desired state with all operational and safety limits

satisfied. Protection systems are required to be capable of determining current and near-term

reactor states for a range of reactor conditions to advise reactor operators, or to automatically

activate safety systems to help take the appropriate actions to avoid and/or mitigate any

accident scenarios. Off-line core simulators are also as important during the design as well as

operational phases of the plant to determine the optimum operating core conditions (i.e. fuel

loading pattern, control rod programming, etc.). They are also utilized to interpret

experimental results.

The quality of core simulators’ predictions will impact the reactor economy through

the introduction of design margins on the core design to ensure an operation, in which the

safety and operational limits are satisfied[1]. How tight or relaxed these margins are depends

on how accurate the predictions of core behaviour are. The uncertainties of core simulators’

calculations are thus very crucial to the determination of these margins. Large uncertainties

will result in diminishing core design freedom and hence adversely impact economics. On the

other hand, any reduction in these uncertainties will beneficially impact different aspects of
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reactor economy such as reducing fuel and/or operating cost or even initial capital investment

for a new plant. By way of a few examples[2]: 1) By accurately calculating thermal limits, one

can reduce thermal margins, and be able to operate the reactor at higher power densities which

is economically more favorable (operating cost reduction). That translates into smaller sized

cores for new reactors (reduction in capital investment). 2) With more accurate calculations of

core reactivity for various states, one may be able to reduce the number of control rods

(reduction in capital investment), or reduce the U235 enrichment margin required in the fresh

fuel for the core to reach the desired cycle life at the desired rated power (reduction in fuel

cost).

High fidelity core simulators are hence essential components for any reactor system

during the design and/or the operational phases. To achieve, in the near term, this high level of

fidelity, dictated by economic, operational and safety considerations, will require high fidelity

and robust adaptive techniques[3]. Adaptive simulation techniques utilize past and current

reactor measurements of reactor observables to adapt the simulation in a meaningful way to

improve agreement with observable values. Fidelity denotes the ability of an adapted

simulator to accurately predict the measured observables. Robustness denotes the ability of

the adapted simulator to accurately predict measured core attributes which are not directly

observed, for example, the measured observables recorded at future times; and the observables

for core conditions that differ from those at which adaption is completed. Adaptive simulation

can also be useful in establishing a basis for deciding where future experimental efforts should

be focused to decrease core attributes’ uncertainties. That can be achieved by contrasting the

core parameters’ adjusted values versus their current known values, along with knowledge of
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the impact their adjusted values will have on different core attributes, the costs associated with

uncertainties on these core attributes, and the costs of experiments to reduce core attributes’

uncertainties. The need for adaptive simulation is viewed to be greater for Generation IV

versus Generation II and III reactors, since limited applicable experience will be available for

Generation IV reactors. Adaptive simulation can also be used to effectively interpret

experimental results done in the course of developing Generation IV reactors, help determine

the major causes of discrepancies between predicted and measured values, and hence help

direct how the experimental program should be designed to reduce the uncertainties in the

evaluation of the important parameters.

 1.2. Description of Core Simulators

The behaviour of a nuclear reactor core is governed by the neutron flux distribution in

space, energy and time. One of the central problems of core simulation models is to accurately

predict this distribution. The core simulator model consists of models for both reactor physics

and thermal-hydraulics, which is necessary to account for the non-linear feedback

mechanisms through cross-sections. Typically, reactor physics behavior is modeled

employing few-group neutron diffusion theory, hydraulics behaviour is modeled employing

some 1-D approximate form of the Navier-Stokes equations (e.g. drift flux model), and the

thermal behavior is modeled using some approximate thermal model (e.g. functionalizing fuel

temperature as a function of linear power density). 

Input data to the core simulator are enormous and determined by the needs of the

models employed within. Note that we include in input data, the coefficients that appear in

various correlations, including the thermal-hydraulic correlations. This follows since core
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thermal-hydraulic simulations require user input of core geometry as well as many empirical

parameters, such as local form loss coefficients and heat transfer coefficients. The input data

to the core simulator, in many cases, are determined using computer codes that model aspects

of the core physics in more detail than the core simulator models do, such as with the

determination of few-group homogenized cross-sections using lattice physics codes. So, in

general, the input data include any data directly passed to the core simulator or indirectly

through any preprocessor code.

Core observables include the readings of incore detectors (e.g. LPRMs and TIPs),

which are usually positioned throughout the core in between flow channels which do not have

control rods. Since core simulators are usually based on a steady state model and measured

observables are normally taken at steady state conditions, core reactivity could also serve as a

basis for adaption (e.g.  at all times). 

 1.3. Sources of Simulation Errors

Core simulators introduce errors in the predicted core attributes, including core

observables, due to input data and computational (e.g. modeling) errors. Input data (e.g. cross-

sections and thermal-hydraulic parameters), whether they are experimentally measured or

theoretically calculated, contain uncertainties associated with their evaluation which are

described by standard deviation values reported as part of the data evaluation process.

Modeling errors occur due to different reasons: 1) The common practice in modeling is to

avoid sophistication by introducing approximations in the mathematical description to

simplify the treatment, that results in the introduction of errors in the calculations (i.e.

keff 1=
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diffusion versus transport theory calculations for the whole core). 2) Inadequacies in the

mathematical model utilized for simulating the core (e.g. failure to present all aspects of the

physics governing the core behaviour). 3) Numerical solution techniques’ approximations (i.e.

spatial domain discretization). 

The pre-processing codes also introduce errors into the core simulator’s input data,

hence into the core simulator’s predictions of core attributes. This follows since, just like the

core simulator, errors exist in the input data to the pre-processor codes, in the mathematical

models of the physics, and in the numerical solution techniques employed in these codes.

Computational methods and input data uncertainties have always been the sources of

the limitation of nuclear calculations. In some instances, the computational uncertainties

dominate the sources of discrepancies, however, over the last few decades computational

methods have reached a stage of maturity in their sophistication and applicability.

Computational power has also increased considerably enabling the solution of bigger

problems in relatively shorter computer execution times. With the current status of models’

sophistication and huge experience obtained from power plants’ operations, we believe that

more attention should be directed towards input data errors and show how these data can be

adjusted using measured plant data to effectively reduce the disagreement between the

measured (e.g. core observables) and predicted core attributes.

 1.4. Adaptive Simulation Approach (Main Assumptions)

Adaptive simulation is a mathematical algorithm which deals with given a

mathematical model of certain physical phenomena and the associated input (model

parameters) and output (measured observables) data of the model, how can one adjust the
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input data, without adjusting the model, to reduce the disagreement between the measured and

predicted observables. The sources for the disagreement are either due to noise in the

measured output or simulation errors which, as described before, consist of modeling and

input data errors. Accordingly, it will be assumed that the dominant sources of errors in

predicted core attributes, including the core observables, originate due to errors in the input

data to the pre-processor codes and pre-processor codes’ independent input data to the core

simulator. That implies that input data will be adapted (e.g. adjusted) to improve the

agreement between predicted and measured observables, even though components of the

sources of disagreement are due to both input data and modeling errors. This assumption is

likely valid and also necessary in order to avoid the issue of simultaneous adaptation of the

core simulator’s models, since the combined adaptation problem of core simulator’s input data

and models is beyond current and foreseeable capabilities. However, a justification for that

assumption has to be investigated in this study by checking the fidelity and robustness of the

adaption.

 1.5. Previous Development and Motivation for Adaptive Techniques

The art of data adjustment had been used extensively during the 1970s for fast

reactors’ experimentation. The data selected for adjustment were the cross-sections obtained

from differential experiments. The uncertainty level of the differential experiments’ evaluated

cross-sections did not meet the requirement for an accurate description of certain integral core

parameters, (i.e. breeding ratio[4] or keff eigenvalue). Uncertainty in the basic cross-section

data affects the uncertainty of the core integral parameters, which necessitate the introduction

of more uncertainty allowances in the design of different components of the reactor. These
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allowances result in cost increases and reduction from optimum core performance. Integral

experiments’ results were used in conjunction with differential experiments to adjust cross-

sections, in a hope that this will reduce the important core parameters’ uncertainties[5] .

Integral experiments are typically critical assemblies operating at zero power, in which a

small-scale mock-up of the large-scale core is built to mimic the reactor core behaviour as

much as possible in regards to composition and geometry.

The idea for the proposed work of adaptive core simulation stems from these past

experiences[6]-[11]; but, with two major differences: The first is that instead of using small

scale experiments to simulate the operation of the real reactor, one can use the full-scale

experiment, (e.g. real core), as one’s integral experiment. This is advantageous when

considering the huge amount of core follow data from our operating experience with current

power plants. However, the interpretation of these data is much more complex than the

“clean” integral experiments, since the quality of the data in uneven. For integral experiments,

the quality of the data is considered to be the same, since there are no depletion effects and no

thermal-hydraulic feed-back effects. However for a power plant, these effects are present,

transient phenomena might be occurring at anytime yet a steady state core model is employed,

and instrumentation may not be properly calibrated or failed. Those are examples of such

difficulties one might encounter when interpreting plant data. 

The second difference is in the mathematical formulation of the problem. The problem

at hand can be treated as an “inverse problem”, which is an extremely difficult problem.

However, over the last four decades, since the early papers by Tikhonov in 1963[12]-[13],

inverse methods have been extensively developed on a solid mathematical basis and have

been applied to many engineering areas, specifically, the image enhancement community has
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advanced considerably using powerful inverse methods[14]. The nuclear power community

however has not participated to any great extent in these activities, in spite of their earlier

significant participation in the data adjustment area.

There are different issues and concerns that need to be analyzed when adjusting input

data. Reliability of the adjusted data denotes how well they will perform at different core

conditions and how consistent they are with the unadjusted data[15]. Uniqueness of the

adjustments denotes, would one obtain the same results if one starts from two different data

sets utilizing the same measured observables to adapt the core simulator? This type of analysis

can also help answer some other questions such as: 1) How well do the existing cross-section

or thermal-hydraulic data predict the core attributes of interest with the current modeling

capabilities? 2) How sensitive are certain core attributes to changes in the data, (i.e. use of an

alternative cross-section data set)? 3) How does one identify the sources/causes of

discrepancies between the core simulator’s predicted and measured core attributes?

Answering question (3) will provide direction to those areas of uncertainty where more

detailed experimental programs are required.

As a preable to the following discussion, note that the adaption approach we are

proposing to develop is for off-line application utilizing the observable data from many

different sources, including different reload cycles for the same nuclear power plant, different

nuclear power plants of the same type, and ultimately different types of nuclear power plants. 

 1.6. Current Practice

Very limited or no adaption is employed in current on-line core simulators, completed

in a way which is conceptually different from what is proposed in this study. The differences
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between measurements and predictions are usually fitted using surface response

methodologies and are used to predict the discrepancy between future predictions and

measurements. Similar versions of this approach were utilized during the course of fast

reactors experiments, and are referred to as “bias factor methods”[16]. The “bias operator

method” is another mathematically elegant tool that has also been proposed in the past as a

method for adaption[17]-[20]. Neither of these methods will be utilized in our work, since we

believe they do not have a physical justification. In the proposed work, however, the

adjustments are done to the input data in a mathematically consistent way in which the physics

of the problem is satisfied. That is achieved by first limiting the input data adjustments by the

uncertainty information, sometimes propagated through the pre-processors’ codes to the core

simulator to preserve the proper pre-processor codes’ core physics behaviour. In doing so, the

proposed adjustments will be consistent with their known uncertainties. Second, the input data

adjustments will be propagated through the core model satisfying the physics described by the

core simulator. Physical justification is required when adapting core input data, since if the

physics of the core are not satisfied, one would not be able to predict core behaviour at

different operating conditions than those adapted to, defeating the whole purpose of the

adaption. Third, the uncertainties in the core observables will be accounted for during the

adaption, assuming that the input data adjustments are consistent with the quality of the

experimental core observables being adjusted to.
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 1.7. Inverse Problem

 1.7.1 Definition and Areas of Application

From a mathematical point of view, the definitions of a direct problem and an inverse

problem are always ambiguous. This can be well illustrated by a frequently quoted statement

of J. B. Keller[22]: “We call two problems inverses of one another if the formulation of each

involves all or part of the solution of the other. Often, for historical reasons, one of the two

problems has been studied extensively for some time, while the other has never been studied

and is not so well understood. In such cases, the former is called the direct problem, while the

latter is the inverse problem.” So one of the two problems has been studied well, and the

physical model used to describe it is well understood and has been justified by experiments,

and usually is considered to be more fundamental than the other problem. 

The notion of direct and inverse problems in engineering however can be described in

a more straightforward way[14],[21]. A forward problem can be defined to be the process in

which data are the output of some physical model, whose input are some physical parameters.

However, an inverse problem is one in which we are interested in estimating those parameters

on which the model depends, based on a prior knowledge of the data (the output of the

forward problem). From an experimental point of view, usually data are collected from any

system, to gain more information about the behaviour of that system, and if these data can be

described by a certain model we can predict the behaviour of that system under different

conditions. However, what we are interested in knowing is usually different from what we

measure, so, if we can use our mathematical model to extract information about what we want

from the data we have, we call that an inverse problem. The model’s parameters (the
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unknowns) are the quantities that one is trying to estimate. The matter of how to choose these

parameters is usually problem dependent and quite often somewhat arbitrary. The inverse

problem is however less suited to provide the fundamental mathematics or physics of the

model itself. The main role of the theory is to infer numerical information about unknown

parameters of the model and not the type of the model itself; so a good idea of the applicable

forward model must be available in order to take advantage of the inverse theory. For

example, inverse theory can not suggest a new void-quality equation form to calculate the

amount of voiding in a BWR core; however it can determine the best values for the parameters

associated with a given void-quality evaluation form. Possible goals of an inverse analysis

might include 1) estimates of a set of model parameters, 2) estimates of the bounds on the

range or acceptable model parameters, 3) estimates of the formal uncertainties in the model

parameters, 4) sensitivity of the solution to noise (or small change) in the data, 5)

determination of the best set of data suited to estimate a certain set of model parameters, 6) the

adequacy of the fit between the predicted and observed data, and 7) directions to decide

whether a more sophisticated model will be significantly better than a more simple one or not.

All these goals emphasize that inverse theory is not just used to determine the optimum values

for model parameters but also provides different criteria by which the quality of those

estimated parameters can be judged. It is to be noted, however, that a solution to an inverse

problem might contain not a “single” answer like a forward problem, so one of the parts of the

inverse analysis is the ability to determine which answer is reasonable, valid, and acceptable.

Inverse theory has found many applications in many different branches of physical

sciences, such as: (a) image enhancement, (b) geophysical applications, like earth structure
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and earthquake location determination, (c) satellite navigation, (d) molecular structure by x-

ray diffraction, and (e) medical tomography. 

 1.7.2 Mathematical Description

Inverse theory has been developed over the past four decades by scientists and

mathematicians having various backgrounds. This has resulted in presenting the theory in

many different ways[21], tending to superficially look very different in spite of the strong and

fundamental similarities that exist between them. Inverse theory can be derived from (1) pure

statistical concepts, (i.e. Bayesian decision analysis, and information content concepts), or

from more (2) deterministic ways which avoids mentioning terms like probability distribution

and prefer terms like inverse transformation, (i.e. minimum variance approaches). Inverse

theory can also be classified according to the type of both the model parameters and the

observed data by whether they are continuous functions or discrete values. The problem we

are interested in is a discrete-discrete problem, which means that both the data and the

parameter space are discrete or finite dimensional spaces. This will make our mathematical

analysis much easier than the general inverse theory. The reasons behind the finite

dimensionality of our problem is that our observables are instrument readings, and the

parameters we are looking for are ones associated with the thermal-hydraulic and reactor

physics model, (e.g. thermal property constants and cross-sections).

A discrete inverse problem is much simpler than the continuous one, since the

mathematical vehicle needed for the discrete case is linear algebra, and ideas like vector

spaces and matrix representation of linear transformations are sufficient to fully describe the

problem. In fact, discrete inverse theory can be fully described in terms of optimization
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techniques by vector space methods[23],[24]. For the continuous case, the problem gets much

more complicated and more abstract elements from the theory of functional analysis are

needed to describe the problem. Functional analysis abstracts our intuition about geometry of

ordinary vector spaces by merging linear algebra and analysis. The functional analysis

approach reveals itself to be tremendously more powerful and elegant than the linear algebra

approach. That leads some readers to hope that these elegant tools might help solve much

more complicated problems beyond the reach of the simple mathematical analysis provided by

linear algebra. Unfortunately, realization of such hopes is rarely encountered in practice. The

primary role of functional analysis is to unify and abstract our simple ideas about vector

spaces in a more mathematical and rigorous fashion.

In general, inverse theory can be described in a continuous form and then the special

discretization for the specific problem of interest can subsequently be introduced[25],[26].

However, since the problem of interest is a discrete one, the fully mathematical rigorous

treatment of the continuous inverse problem will be considered to be beyond the scope of this

work, and only the discrete inverse problem will be presented.

Inverse problems can be either under or over-determined. For the core simulator[3],

the problem is under-determined in that there are many more input data items that can be

adjusted than there are observables. Parametrization of the system is one way to recast the

problem from an under to over-determined one. Parametrization, within the context of our

application, is the process of characterizing core simulator data in terms of a minimal set of

parameters, which we shall refer to as core parameters. Care is required in the selection of

those parameters since improper choices made will be reflected in poorer fidelity and/or

robustness of the adaptive simulator. One can then think of utilizing a weighted least squares
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approach to determine the unknown core parameters, so as to minimize the differences in the

predicted and measured values of the observables. The weights can be selected to reflect the

uncertainties in both the observables and input data. This least squares problem will likely be

ill-posed or at least ill-conditioned. 

 1.7.3 Ill-Posed Problems

A problem is said to be ill-posed if it is not well-posed. According to the french

mathematician Jacques Hadamard[27], for a problem to be well-posed, the following three

conditions, within the context of the current application, must exist: 1) There is a solution for

the core parameters. 2) The solution for the core parameters is unique. 3) The values of core

parameters change smoothly with smooth changes in the values of the observables. Item (1) or

Item (2) if not satisfied is obviously troublesome in that either no or a non-unique solution for

the core parameters exists. Item (3) if not satisfied is troublesome since it implies that the

values of core parameters are highly sensitive to the values of observables. Given that

observables contain experimental errors, one cannot tolerate the high sensitivity associated

with Item (3). This item also has implications with regard to robustness of adaptation. The

mathematical distinction between a well- and an ill-posed problem is very clear. However, in

practice, when considering the discretization of the problem and the associated errors (noise)

in the measured observables, that distinction reveals itself to be less apparent. In some cases,

one cannot obtain an accurate, unique solution for a well-posed problem due to the finite

precision of the computations, forcing us to treat such problems as ill-posed. Further details

about such issues will be introduced in the next chapter.
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 1.7.4 Regularization of Ill-Posed Problems

In Hadamard’s opinion, an ill-posed problem does not have a physical meaning.

However, it turns out that an ill-posed problem can be extended to a well-posed one. That

extension is usually obtained by recognizing that the information supplied by the observables

about model parameters is not sufficient to give rise to a well-posed problem. Regularization

refers to the mathematical methods utilized to incorporate extra information about model

parameters necessary to recast an ill-posed problem into a well-posed one. An ill-posed

problem is regularized by either altering the mathematical model of the physical processes or

by restricting the space of the solutions allowed. The first technique of altering the

mathematical model will not be addressed in this study, since the intention is to enhance the

current models’ prediction accuracies without changing these models. Functionalization is one

manner of restricting the space of the solutions allowed to address ill-posedness, but many

times, is not adequate. Therefore, additional constraints may need to be applied to restrict the

solution space. There are many manners of performing regularization, ranging from those

based upon “energy” minimization approaches to those based upon Bayesian decision

analysis. A solid mathematical basis has been developed for unifying various regularization

approaches and understanding under what conditions regularization is effective[25]-[29].

Effective regularization methods factor in uncertainties in observables (measurements), a

priori and a posteriori knowledge of uncertainties in parameters to be adjusted, and robustness

of adaptation. The a priori and a posteriori information are the best available information

about model parameters before and after adaption is completed. 
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 1.8. Scope of Work

Our target is to reduce the disagreement between actual plant data and core simulators’

predictions of core attributes, however, at the current stage of project development, a virtual

approach is utilized to develop insight into the proposed adaptive techniques. Chapter 2

discusses this approach in details and briefly discusses the core simulator we employed in the

study (e.g. FORMOSA-B1). The selected core simulator’s parameterization is also presented.

Chapter 3 is devoted to introducing the discretized version of the inverse theory which has

been employed in our work. In chapter 4, some selected test cases associated with the virtual

approach are investigated to assess the adaptive techniques. Chapter 5 presents our

recommendations for further development in the area of adaptive core simulation.

1. Fuel Optimization for Reloads-Multiple Objectives by Simulated Annealing - BWR.
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 2. Virtual Approach

 2.1. Description of the Virtual Approach

As mentioned in the introductory chapter, this thesis presents elementary work

undertaken as a part of an exploratory project to develop adaptive simulation techniques

which will enhance the agreement between measured and predicted core attributes, including

core observables. Therefore, the main target in this work is to contrast the predictions of the

adapted core simulator to actual plant data, in an effort to assess and validate the proposed

techniques. However, since the project is still in its exploratory stages, a virtual approach will

be adopted for assessing the fidelity and robustness of the techniques. In this approach, the

actual plant data will be produced by an existing version of a core simulator, that will be

referred to as a virtual core, denoted by VC. Since the plant data consists of the readings of

incore detectors (i.e. LPRMs and TIPs signals), the virtual core will be used to simulate those

detectors’ responses, and in doing so the noise on those responses will also be simulated by

perturbing their signals from their simulated values by sampling them from a Gaussian

distribution of standard deviation of 0.04 of the average relative detectors’ response which is a

representative value of the actual instruments’ noise signals. Since adaptive techniques are

supposed to address and adjust for the different sources of prediction errors, an altered version

of the same core simulator will be used after deliberately introducing two major sources of

errors, specifically, in its modeling and in its input data. This version of the core simulator will

be referred to as the design basis core simulator, denoted by DC. The size of the introduced

errors in the DC will be chosen so as to create discrepancies between the predictions of the VC

and DC for core reactivity and LPRM detectors’ signals RMS errors of the same magnitude as
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the actual discrepancies found between real plant data and existing core simulators’

predictions. A representative value for the core reactivity prediction error is around

 pcm, and the RMS error for relative detectors’ signals is about 6%. The

FORMOSA-B core simulator[30]-[32] was utilized to both generate the values of the

experimental observables and as the core simulator to be adapted.

 2.2. Advantages of Virtual Approach Utilization

In contrast to utilizing operating power plant observables, the virtual core approach

has several attractive properties in regard to developing an adaptive core simulator

methodology, such as the following: 1) Knowing exactly the sources of errors in the method,

input data and observables. 2) Providing a basis to study the effects of the parametrization of

core simulator model on the fidelity and/or robustness of the adaptive simulator. 3) Having not

to contend with the complexities of core simulator and pre-processor introduced methods’

errors. 4) Being able to evaluate the prediction accuracies of non-observables (i.e. thermal

margins) obtained from pre- and post-adaptation.

 2.3. Core Parameterization

This section presents a brief description of the core models and input data which were

perturbed and/or adapted in the virtual approach. In practice, as mentioned in the introductory

chapter, the input data to be adapted will be first functionalized in terms of core parameters to

render an over-determined problem. A detailed discussion of the parameterization selected in

current work will be presented in this section as well. 

2σ 1000=
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 2.3.1 Thermal-Hydraulics Core Parameterization (Simulation of Modeling Errors)

The first major source of prediction errors included in the virtual approach is the one

due to modeling errors. The modeling of voids in a BWR core has a large impact on the

prediction of different core attributes. Predictions of power distribution and reactivity are

known to be very sensitive to the moderator void (density) distribution. That necessitates the

utilization of a reasonably high fidelity void-quality correlation in order to predict core

attributes to a reasonable degree. Based on that fact, the void-quality correlation was elected

to be perturbed in the DC. The void-quality1 relationship is given by the form first identified

by Zuber-Findlay[33],

,  (2-1) 

where

.  (2-2) 

The DC utilized the Zuber-Findlay void-quality correlation in which two variables, the

concentration parameter (C0) and terminal velocity parameter (k3), were assumed spatially

independent throughout the core and given by their best known values, 

 (2-3) 

Both variables were elected as input data to be adapted according to the relationship:

 (2-4) 
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where the factors  represent the selected thermal-hydraulics core parameters

which are to be determined by the adaptive techniques, and  are the adapted void-

quality constants utilized in the adapted design basis core simulator, denoted by AC, to

calculate the void fraction. The virtual core utilized the Lellouche-Zolotar EPRI

methodology[34] to determine C0 and k3, which can be thought of as using spatially

dependent C0 and k3. The purpose of this difference in functionalizing the void-quality

relationship between the VC and the DC is to investigate how well the adaptive technique will

perform when the functionalization of the data is not consistent with reality, and how an

adaptive technique can account separately for the combined sources of errors due to

inconsistent modeling and input data errors.

 2.3.2 Reactor Physics Core Parameterization

The second major source of errors included in the virtual approach is the one due to

input data errors (e.g. thermal-hydraulics and reactor physics input data). The thermal-

hydraulics data in the current study consists of only the C0 and k3, coefficients of the Zuber-

Findlay void-quality correlation. The reactor physics input data consists of all types of few-

group homogenized fast and thermal microscopic cross-sections of all nuclides, included

explicitly or implicitly in the microscopic depletion model of the utilized core simulator (e.g.

FORMOSA-B). Table 2.1 presents the set ( ) of all the fuel, burnable poison and pseudo

isotopes considered in the core simulator model, and Table 2.2 presents the corresponding

microscopic cross-section set ( ) selected for adjustment according to each nuclide’s

f
c0 and f

k3

C̃0 and k̃3

ζ

ℵ
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classification. The cross-section representation developed in FORMOSA-B[35] requires that a

number of ‘cases’ be generated at the lattice physics level. Base micro and/or macroscopic

cross-sections are obtained from a lattice physics unit assembly depletion at the nominal hot

full power (HFP) average core conditions at different vapor void fractions. From these base

depletions, branch cases are performed to capture the instantaneous effects of perturbing

(#) Nuclide Classification

(X) Denotes a cross-section type that is adjusted.

Table 2.1: Isotopics treated in the core simulator model.

Treatment 
in Depletion 

Model Element Element-Isotope (Classification)

Explicit
Actinides

U-234(1), U-235(4), U-236(4), Np-239(1), U-238(3)

Pu-239(4), Pu-240(4), Pu-241(4), Pu-242(4), Am-243(4)

Burnable 
poisons Gd-154(2), Gd-155(2), Gd-156(2), Gd-157(2), Gd-158(2)

Implicit
Pseudo 
isotope

Represents background macroscopic cross-section(5) for ele-
ments not directly included in the depletion model.

Table 2.2: Selected set of adjusted microscopic cross-sections.

(#) Nuclide 
Classification

(1) Transparent

(2) Absorber X X

(3) Fertile X X X X

(4) Fissile X X X X X X X

(5) Pseudo X X X X X X

σa1 σa2 σf1 σf2 vσf1 vσf2 κ
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different core conditions like fuel temperature, coolant void, and control rod insertion. This

requires that different branch case calculations be made at various exposures within the set of

the reference depletion exposures like fuel temperature decrease or increase, instantaneous

void fraction correction, and control rod insertion at HFP. The data read from these branch

cases along with the base depletions are used to model the local thermal-hydraulic feedback

and transient fission product feedback effects. The cross-section is constructed as the

summation of a reference and a set of correction terms given by:

,  (2-5) 

where the reference term is the first term on the R.H.S. and is a function of fuel exposure, and

instantaneous and history void fractions. The rest of the terms can be considered as correction

terms, the first one is a function of control rod history, second one represents fuel temperature

Doppler broadening effect, third one is due to fission products poisoning, and the last one

represents the instantaneous control rod insertion effect. The reference and the correction

terms are constructed using piece-wise cubic splines and quadratic fitting polynomials. A

reference or correction term k of a cross-section type j for a nuclide n in a fuel color c is given

by:

,  (2-6) 

where  is a state variable describing the dependence of the specific cross-section reference or

correction term on different core conditions (i.e. fuel temperature, void fraction, etc.),

{ } are the polynomial coefficients calculated based on the lattice physics data, and are
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functionalized in terms of the fuel exposure, Bu, and { } are polynomial functions. The base

or correction terms are adapted according to the relation:

 (2-7) 

where the  factors are functionalized in terms of fuel exposure according to the

following relation: 

 (2-8) 

with the factors  representing the reactor physics core parameters which

are to be determined by the adaptive techniques, and  is a scaling factor with exposure

units. 

 2.4. Simulation of Input Data Errors

The direct approach to simulate input data errors would be one in which each input

data from the set studied (e.g.  and the lattice physics few-group homogenized cross-

sections library) is randomly selected from a normalized Gaussian distribution whose standard

deviation corresponds to the relative uncertainty for that specific input data. One can then

assume that the perturbed values are our current best knowledge of these data. 

The uncertainty information is not directly available though, and to obtain it, one

would need to propagate the uncertainty information starting from an energy point-wise or

resonance parameters presentation like ENDF/B to a few group, spatially homogenized
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presentation provided by most lattice physics codes. This is not a trivial task to do and requires

substantial calculational efforts. For that reason and for the sake of an exploratory

investigation, a cruder approach will be utilized. In this approach, the input data are

considered to be fully characterized by the selected core parameters1 (e.g. , and

{ }). To simulate input data errors in this cruder approach, each of the core

parameters will be randomly selected from a normalized Gaussian distribution whose standard

deviation is assumed now to be the same for all core parameters. A constant standard

deviation (1%) is selected, so as to give rise to discrepancies between the predictions (LPRMs

readings and core reactivity) of the VC and DC which are representative of the actual

magnitude of such discrepancies found between real plant data and existing core simulators.

After perturbing the core parameters in this fashion, the original input data can be represented

by:

 (2-9) 

where now the perturbed core parameters (e.g. , and { }) will be

assumed to constitute our best knowledge (e.g. the a priori information) about the input data to

simulate input data errors in the virtual approach.

Note that each of the reference and corrections terms are functionalized in terms of the

void fraction (through ), so when one is adapting the void-quality parameters and the

polynomial coefficients as well, one is explicitly correcting separately for the void-quality

1. Note that the unperturbed values for the selected core parameters are all equal to 1.0.
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modeling error and the input data errors (to a first-order approximation). Consider a small

perturbation in all the core parameters, the resulting perturbation in the cross-section is given

by,

where to a first order approximation,  is given by,

,

and hence,

.

However, if one is not adapting the void-quality correlation, the adjusted reactor physics core

parameters { } will be accounting both for input data and modeling errors as well, but

only for those specific core conditions at which the adaption was completed (e.g. certain core

average void fraction). That could lead to a less robust adaption when trying to predict core

behaviour at different core conditions. This issue will be investigated in the study to show how

powerful the adaption can be utilized to separately adjust for the different sources of

prediction errors and give insight to situations when adaption is performed on the wrong input

parameters.

Σn j k c, , , ∆Σn j k c, , ,+ fi
n j k c, , , ∆fi

n j k c, , ,+( )di
n j k c, , ,

yi x( ) ∆yi x( )+( )
i 1=

I

∑=

∆yi x( )

∆yi x( )
f
c0∂

∂ yi x( )∆f
c0

f
k3∂

∂ yi x( )∆f
k3+=

∆Σn j k c, , , fi
n j k c, , , di

n j k c, , ,

f
c0∂

∂ yi x( )∆f
c0=

fi
n j k c, , , di

n j k c, , ,

f
k3∂

∂ yi x( )∆f
k3+

yi x( )di
n j k c, , , ∆fi

n j k c, , ,

i 1=

I

∑+

fi
n j k c, , ,



 CHAPTER 2: VIRTUAL APPROACH 26
To simplify the adaption, dependencies of the reactor physics core parameters

{ } will be restricted to nuclides (n) and reactions types (j) with dependencies on

correction terms (k), fuel colors (c) and fitting polynomials (i) dropped. In reality, correction

terms are expected to be dependent upon branch cases and fuel color, since the unit lattice flux

energy and spatial shapes are dependent upon these attributes. Hence, the few-group

homogenized cross-sections errors are also dependent on different branch cases and fuel

colors. As this project moves forward, more sophistication will be introduced. Even with this

simplification, a total of 108 core parameters were free to adapt.

fi
n j k c, , ,
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 3. Discrete Inverse Theory

 3.1. Objective

The applications of the inverse theory are diverse and include many areas of science;

however, the emphasis in this work will mainly be on core physics problems. Most of the

introduced nomenclature, notations and examples are selected specifically to serve our

application. Minor modifications are required to generalize the methods and discussion to

other areas of interest. The subject of the generalized inverse theory is very mathematical in

nature and most of the ideas need extensive rigor and mathematical abstraction to be

comprehensively and concisely presented. The mathematical tools necessary for our work will

be presented; however, the discussion will not be highly mathematical and is not intended to

be neither comprehensive nor complete. The intent is to present the more intuitive ideas

behind the utilization of these tools rather than the more abstract mathematical rigor. We

choose to do this for three reasons: 1) The more extensive and rigorous treatment of the

subject is already well established in the literature and stands on a very firm basis[25]-[26], so

it would be redundant to reproduce these mathematical results in this work even in part. 2) We

believe in a more realistic illustration of the abstract mathematical ideas, and that heavy

abstraction serves to generalize rather than to develop our understanding about certain

phenomena. Hopes for solving more complicated problems by utilizing the abstract and more

complicated version of the theory are rarely encountered in practice. 3) Our work is intended

primarily for engineers rather than for mathematicians. For these reasons, the concepts are

emphasized more than the technicalities in order to avoid confusion. Narrative discussions and

simplified examples are stressed rather than the more rigorous treatment of the subject.
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However, to avoid a speculatory type discussion, an extensive bibliography will be referenced

to support the discussion whenever necessary. 

The discussion will be confined to the discrete linear inverse theory. This implies that,

in order to apply the theory, we will need to linearize the core simulator model and employ an

iterative strategy to search for the optimum core parameters’ values. Almost every problem in

discrete inverse theory can be recast into an optimization problem, where a function must be

minimized subject to various constraints. Optimization techniques for discrete problems can

best be described by vector space methods since the whole theory can then be derived from a

few simple, intuitive and geometric relations. A large number of problems can be analyzed

utilizing those simple relations. The texts by Luenberger[30] and Dorny[24] present

comprehensive and insightful approaches to optimization methods using vector space

methods.

 3.2. Definitions

In this section an informal survey of some of the essential definitions, within the

context of our application, is introduced[21],[36].

 3.2.1 Parameter Space

The parameter space is defined as the vector space whose elements represent the set of

core parameters we are trying to estimate. Let n be the number of such parameters, and  a

vector of dimension n which lies in the parameters space  ( ) and denotes the core

parameters.

∆p

Rn ∆p Rn∈
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 3.2.2 Data (Observables) Space

The data space is defined as the vector space whose elements are the values of the core

observables. Let m be the number of such observables, and let  be vectors of

dimension m which lie in the data space  ( ) and denote the measured and

predicted (calculated) observables, respectively1.

 3.2.3 Linear Transformation

A function  that associates with every point  in the parameters’ space a

point  in the data space is said to be linear if it satisfies the following condition,

 (3-10) 

where . The action of a linear function is referred to as a linear transformation

which can be characterized by a matrix operator . One can visualize the operation of such a

transformation from different view points. Meyer[37] presents one such rigorous and

insightful discussion of the subject. Linear transformation is the process in which each point

 in the parameters space is mapped to a unique point  in the observables

space, this unique correspondence determined by the matrix , where  and can be

described by,

1. The  notations are enforced here to avoid introducing extra notations later in the discussion since

the linearization of the core simulator model will require the utilization of these notations.  nota-
tion denotes the difference between the variable of interest (e.g. core parameters or observables) and
some reference value.

∆dm and ∆dc
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.  (3-11) 

 3.2.4 SVD Decomposition

To gain more insight into the anatomy of such a transformation, the SVD

decomposition of the matrix  is introduced[38]-[40]. Any matrix  has an

orthogonal decomposition such that, 

,  (3-12) 

where  and  are orthogonal matrices (their columns constitute orthonormal bases for the

spaces  and , respectively). The columns of  and  are called the left and right

singular vectors of the matrix .  is a diagonal matrix containing the singular values of the

matrix . These matrices are given by,

,

,
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,

,
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and  is the Kronecker delta function. The right and left singular vectors satisfy the

following relations:

  for  ,

  for  ,

and

 for ,

 for .

Now denote the two basis defined by the columns of  and  by   and , respectively1.

One can re-write Eq. (3-11) as,

.  (3-13) 

Note the following:

1. Summation extends from  to , since only the first r singular values are non-

zero, where r is equal to the rank of matrix .

2.  is the component of  along the direction of the right singular vector .

1. Note that the different orthogonal directions defined by the bases  and  are not unique in gen-

eral. For a general  matrix, the { } and { } vectors associated with any subset of singular

values which are distinct are necessarily unique. If however, some of the singular values are equal,

then the associated right and left singular vectors can be chosen arbitrarily, since the components of

either the parameters or the observables along these directions are amplified by the same amount.
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3.  is the component of  along the direction of the left singular vector .

 3.2.5 Anatomy of Linear Transformation

The action of transformation can be interpreted in the following way:

1. The vector  (given initially with respect to the standard basis in ) is resolved along 

each of the right singular vectors  of the basis .

2. Each of the components  in the new basis is multiplied by the corresponding singular 

value .

3. The result is the component of the mapped vector  along the direction of each of the 

left singular vectors  of the basis .

4. The mapped vector  is presented back in terms of the standard basis in .

Note: If  then:

1. For a given , the last  components of  with respect to  will not be mapped 

to  (e.g. lost due to the transformation, and are not reflected in the vector ). In a 

loose sense, the vector  does not have any information about the last  compo-

nents of the vector .

2. For a given , the last  components with respect to  cannot be produced by the 

mapping  and have to be equal to zero for the system of equations given by Eq. (3-11) to 
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be consistent. However, if these  components are not zero for the given  (e.g. mea-

sured observables), they cannot be explained by the linear transformation  and must 

have originated from other sources (i.e. noise in the measured data or modeling errors) . 

 3.2.6 Reverse Transformation

If we take the transpose of , denoted , and operate on a vector  which belongs

to the data space, we obtain using the SVD

,  (3-14) 

which can be interpreted in the reverse manner then noted above, corresponding to mapping

from  to . 

Figure 3.1 illustrates the action of the operator  and , showing how information is

either mapped or lost due to transformation between the parameters and data spaces. One can

observe the range,  and the null space,  of the operator  and . It is also evident that,

   and   ,  (3-15) 

since  and  are orthogonal matrices (columns of each matrix are orthogonal to one

another). Those four subspaces introduced in Eq. (3-15) are referred to as the four

fundamental subspaces associated with the matrix .
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Figure 3.1: Mapping Information between Parameters and Data Spaces.
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 3.2.7 Inverse Transformation

One is also interested in the inverse transformation, that being how can one calculate

 in the parameters space for a given  that lies in the data space. Referring to Eq. (3-13),

one can reverse the action of the transformation by simply dividing the components of 

along the directions of the left singular vectors { } by the corresponding singular values

. In doing so, one would not be able to map back those components of   which lie in

 since they are not produced by the forward transformation . In the least-squares

solution, one ignores those components and only maps back to the parameters space those

components which lie in the range of the operator, . One also would not be able to

calculate the components of  which lie in  since they are lost in the forward

transformation and no information is reflected about them in the observables. The solution 

can then be written as

,  (3-16) 

where  are selected arbitrarily and { } are the components of  along

the directions of the left singular vectors { }. In practice, one does not need to calculate the

matrices  and  to obtain the least-squares solution; however, one utilizes the normal

equations formulation[41] which can be shown to be equivalent to the approach suggested in
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(7). If  has a full column rank  and , this situation is referred to as an

overdetermined problem whose least-squares solution is given by

.  (3-17) 

The SVD decomposition of the matrix  is given by

,

where                                              .

If , the solution is not unique and the matrix  is singular, (e.g. has 

zero singular values).

 3.2.8 Ill-posedness and Ill-conditioning

An inverse problem based on least-squares criterion has to satisfy Hadamard’s three

conditions to be well-posed. These conditions can abstractly be described as follows: For

every  such as , there exists a  such as . This

implies that the solution  exists for every , is unique, and small perturbations in the

measured observables result in small perturbations in the solution. If the least-squares problem

does not satisfy these conditions, it is referred to as an ill-posed problem. The ill-conditioning

of a problem, however, is related to the relative magnitudes of  and . In a qualitative sense,
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if  the problem is said to be ill-conditioned. For the overdetermined least-squares

problem in Eq. (3-17), ill-conditioning can quantitatively be measured by a condition number,

which is given by,

,  (3-18) 

where  is the condition number of the associated least-squares matrix, .

According to this, a least-squares problem is well-posed whenever all singular values

are strictly greater than zero (the matrix  is non-singular and its rank is equal to n).

Mathematically, the distinction between ill-posedness and ill-conditioning is very clear. An

ill-conditioned least-squares problem, with a very large condition number K, can still be

considered well-posed as long as it satisfies Hadamard’s continuity conditions. However,

from a computational point of view the distinction is not as clear-cut. A matrix which is

mathematically non-singular, can be numerically near singular due to the finite number of

significant digits used in a computer (the inverse of the matrix  cannot be calculated to an

acceptable degree of precision). So a numerically near singular matrix corresponding to an ill-

conditioned, well-posed problem is indistinguishable from a mathematically singular one

corresponding to an ill-posed problem.

Some of the factors which result in a near singular matrix include the relative

magnitudes of the singular values, and the magnitude of the noise in the measured

observables. Refer to Eq. (3-16) and consider the components { } of the measured

observables with respect to . In some situations some of these components are very small
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compared to the noise level, or the singular values associated with these components are too

small, leading to an unreliable and a random (dominated and mainly determined by the

random noise) estimate of . That leads to an effective reduction of the rank r of the matrix

 (e.g. a near-singular matrix).

In these situations, the distinction between the four fundamental subspaces associated

with the matrix becomes less clear. The terms “near” null space and “effective” range of a

matrix will be utilized in the discussion to denote such situations1[24]. As an example,

consider the near null-space of a matrix, that will consist of all the right singular vectors

whose corresponding singular values are very small. The effective range of a matrix will

include all the left singular vectors whose corresponding singular values are considerably

large.

In a loose sense, the rank of a matrix presents how much ‘content’ or ‘pieces of

information’ a matrix can send (map) between two spaces[37] (i.e. in R3, a plane has more

content in it than a line). Therefore, the linear transformations represented by the matrix 

and  can send uniquely r pieces of information (e.g. components) back and forth between

the parameters and data space. An overdetermined, ill-conditioned least-squares problem can

effectively map less ‘content’ or ‘pieces of information’ than does a well-conditioned

problem. Note that each piece of information sent from the parameters space is an amplified

(due to the singular values) linear combination of all the parameters, and this piece of

information appears in the data space as a linear combination of all the observables. 

1. That distinction is merely for illustration purposes and will not explicitly be utilized in the work.

∆p
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 3.2.9 Forward Problem

In the forward problem, one is seeking information about core observables. They are

directly obtained by mapping information about the core parameters from the parameters to

data space. In this case, the nonlinear core model is employed.

 3.2.10 Inverse Problem

In the inverse problem, one is seeking information about model parameters. Direct

mapping of information from the data to parameters space usually poses a problem and results

in an unreliable estimate of core parameters, which will be described in detail later. One of the

goals of inverse theory is to determine how this information about model parameters can be

inferred from the data without destroying the quality of the estimated parameters. In this case,

we employ an iterative inversion of the linearized core model.

 3.2.11 Measure of Distance

It is important to have a certain measure of the “difference” between two points (e.g. a

quantitative measure of how far two points are from each other) in the parameters or data

space. That difference will define our notion of distance and will generally be based on a

certain criterion we select. For example, the crow flight distance represents the common

intuition about the distance between two points in 3-D geometry[37]. It is referred to as the

Euclidean measure of the distance and can be extended to higher dimensional spaces where it

is given by: 

,  (3-19) Euclidean distance between ∆dm and ∆dc in Rm ∆dj
m ∆dj

c
–( )2

j 1=

m

∑
1 2/

=
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where the j index runs over the different components of the vectors  and . However,

this is not necessarily the only way to measure the distance. For example, measuring distance

on a grid of city blocks on one-way streets, one would rather measure the distance in this case

on the directed grid rather than the crow flight distance. Another example, one can think of a

more generalized sum of the type given by Eq. (3-19), in which different weights are assigned

to different components to reflect different degrees of uncertainties in the measurements or the

calculations. The criterion we choose to define the distance will alter our qualitative and/or

quantitative measure of the distance between two points in the vector space of interest (i.e. far,

close, etc.) 

Norms represent the mathematical abstraction utilized to measure the distance between

any two points in the vector space. Norms satisfy certain relationships, which are in

accordance with our intuition about the notion of Euclidean distance; however, the concept of

distance is generalized in a more rigorous fashion. A vector norm is a function  which

maps a vector space of dimension m,  into  (the real line), and satisfies the following

relations[37]:

 (3-20) 

where .

An important family of norms is referred to as the p-Norms. A general member of this

family is given by,

∆dm ∆dc

*

Rm R1

∆d 0     and      ∆d≥ 0       ∆d⇔ 0= =

α∆d α ∆d        for all scalars α=

∆d1 ∆d2+ ∆d1 ∆d2 .+≤

∆d ∆d1 ∆d2 Rm∈, ,



 CHAPTER 3: DISCRETE INVERSE THEORY 41
.  (3-21) 

The three most important members of this family are given by,

Inner products are another way of producing norms. It can be proved mathematically

that every general inner product  in an inner product space1 defines a vector norm 

on that space according to the relation[30],[37],

.

The definition of inner product will be deferred till the notion of best approximation is

introduced.

 3.2.12 Best Approximation

As mentioned in a previous section, when the rank r of the matrix  is less than the

dimension m of the data space, the observables  can have components only along the

range of the operator . That is necessary for the system of equations  to be

consistent. However, these observables are usually measured quantities and are utilized in

practice to infer information about core parameters. One then needs a method to remove this

1. Any finite dimensional space is an inner product space, see [30].
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extra unexplained information (components) from the observables. The notion of best

approximation denotes one such method. Refer to Figure 3.2, assume that the point 

is a measured quantity, and the subspace  represents our theory (our best possible

interpretation of the relationship between the core observables and model parameters). In

practice, the measurements do not match the theory. An important problem that arises is to

find the closest point to the measurements that is consistent with the model. That point will

denote the best prediction of core observables that can be obtained utilizing our theory. The

solution to that problem will depend on our definition of closeness (e.g. the norm utilized to

measure the distance), and generally different norms will result in different points on the

model. Figure 3.2 shows the neighbourhood of the point   described by a circle  of

Increasing Radius

∆dc
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Figure 3.2: Notion of Best Approximation.
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radius  ( ). Different norms give rise to different

shaped circles. To get the closest point, consistent with the model, to the observables, the

radius  of the circle  is increased gradually till it intersects the model, . The first

point at which intersection occurs will represent the closest point to the measurements that

satisfies the model. The difference  represents the prediction errors made by the

theory and can quantitaively be measured by any general norm. Note that the solution (e.g.

location of the closest point) is not unique in general, and to obtain it using a general norm (i.e.

1-Norm) is not an easy problem, since it does not involve a simple functional form to be

minimized by ordinary calculus. To overcome these difficulties, the inner product-based

norms are introduced.

 3.2.13 Inner Product and Orthogonality

Let , the standard inner product on  is defined by:

,  (3-22) 

where { } and { } are the components of  and  with respect to the standard

basis in . For the sake of our purposes, let us define the following specific form of inner

product:

,  (3-23) 
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where  is a symmetric positive definite matrix.  can be made diagonal by an orthogonal

transformation[37] which can be written as,

,  (3-24) 

where  and  are orthogonal and diagonal matrices respectively. One can re-write the inner

product in Eq. (3-23) as,

 (3-25) 

where now,  and  are the components of  and  with respect to the basis

described by the columns of , and the product of each respective component is weighed by

the jth diagonal element  of the matrix . Two vectors  and  are said to be

orthogonal if they satisfy the following criterion,

.  (3-26) 

Note that according to this definition, the notion of orthogonality will depend on the form of

the inner product selected in the application.

One can now define an inner product-based norm in the following fashion,

.  (3-27) 

The subscript on the norm denotes that it is produced from an inner product norm utilizing a

symmetric positive definite matrix . One can show that this norm satisfies the norm

C C

C WΛWT
=

W Λ

∆d1 ∆d2,〈 〉
C

∆d1
TC∆d2 ∆d1

TWΛWT∆d2= =

WT∆d1( )TΛ WT∆d2( ) Λj∆d
·
1j∆d

·
2j

j 1=

m

∑= =

∆d
·
1j ∆d

·
2j ∆d1 ∆d2

W

Λj Λ ∆d1 ∆d2

∆d1 ∆d2,〈 〉
C

0=

∆d
C

∆d ∆d,〈 〉
C

=

C



 CHAPTER 3: DISCRETE INVERSE THEORY 45
requirements defined in Eq. (3-20). In addition, this norm has two important properties. First,

it provides a mathematical criterion that can be utilized effectively to find the “closest point”

on the model to our observables (i.e. elements from ordinary calculus can be utilized to find

the solution). Second, the mathematical criterion results in a unique solution and is of the

form,

.  (3-28) 

Eq. (3-28) may be described as follows: Find the point  on the range of the operator 

such that the residual vector  (e.g. components of the observables that cannot be

explained by the model) is orthogonal, in the sense of the selected inner product, to the range

of the operator . The uniqueness of the solution is not coincidental. It is due to the fact that

the spaces  and  are complementary. The data space  represents the direct sum

of these two spaces (a vector  has a unique representation as the direct sum of

 and ). 

In our work, the observables will be projected on the linearized core model according

to the criterion introduced in Eq. (3-28). Note that if the weights  in Eq. (3-25) are all

equal to a certain value , (i.e.  is the identity matrix), one would be

calculating a version of the Euclidean length scaled by . Distinct weights will give rise to

oblique projection (‘oblique’ in the sense of our 3-D visualization of orthogonality). The

weights are usually determined by the uncertainty information (covariance data), or any
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special weights assigned to the measured observables. Figure 3.3 illustrates how the measured

observables  are projected on the model  according to different weights { } and

how that results in different “closest matches”  to the measured observables .

 3.3. Adapting the Core Simulator Model

After this short tour of definitions, let us formulate the linearized version of the

discrete inverse problem of given certain measured core attributes and our corresponding best

knowledge about core parameters, how can we adapt that best knowledge of those parameters

to get the best match between the predicted and measured core attributes[3]. The notion of

“best”, within the context of our application, refers to the required high fidelity and robustness

of the adaption.

∆dc

Λ γI≠

∆dc

Λ γI=

∆dm

R A( )

Unequal Weights
Equal Weights

Figure 3.3: Projection of the Measured Observables onto the Linearized Core Model 

(Different  Matrices).Λ
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 3.3.1 Model Linearization

Let  and  be vectors of dimension m whose components refer to the measured

and predicted core observables, respectively,  and  refers to the data

(observables) space. Let  and  be two vectors of dimension l whose components are the

measured and calculated steady state core reactivity (e.g. ) at selected burnup points

during cycle life (note that  for actual plant data at all times during the cycle,

assuming measurements were completed at steady state power conditions). These discrete

burnup points are referred to as “time steps”. Let  be the total number of LPRM readings in

the core and assume that , (e.g.  measured observables are recorded at each time

step). Let the core design basis simulator model be represented by the two vector nonlinear

equations, 

,  (3-29) 

,  (3-30) 

where  is a vector of dimension n whose components represents the model parameters,

 and  refers to the parameters space.

Within the context of our application, the core parameters and their a priori

information are given by,

, and , respectively.  (3-31) 
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The measured and predicted core observables are given by,

.  (3-32) 

Eq. (3-29) and Eq. (3-30) can be linearized around a reference point  where

 and , to give:

,  (3-33) 

and 

,  (3-34) 

where the Jacobian matrices  and  are defined by

,  (3-35) 

with , and i and j refer to the ith predicted observable and jth model

parameter, respectively, at the reference conditions. 

 3.3.2 Least-Squares Approach

After linearizing the core simulator model, the model parameters are adapted to reduce

the disagreement between the measured and predicted observables. That adaption is

accomplished by utilizing a least-squares approach in which  is selected

iteratively,[36],[42],
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to minimize a quadratic form, for an iterate1 , that is given by,

,  (3-36) 

subject to:                                 , 

where                             and     .

This can be re-written as,

,  (3-37) 

subject to:                                              ,

where  is a weighting matrix for observables, and  and

 both measure the difference between the observables and a certain

reference point in the data space. However, for convenience,  and   or  and  

will both refer to the observables and will be used interchangeably without confusion. 

To find , one utilizes the least-squares normal equations formulation which is

given by:

1. Jacobian matrices do not have k dependence. In current work, the sensitivity coefficients are calcu-
lated by brute force (i.e. numerical differentiation). However, since the number of the adjusted
parameters is too large, that results in a huge computational burden to determine the sensitivity coef-
ficients and re-evaluate them at each iteration of the search. 40 minutes are required on a 700 MHZ
PC, to burn the core we utilized in our work (a BWR/6 core with 724 fuel assemblies) using core fol-
low data. For the sake of simplicity and for exploratory purposes, we decided to use a Quasi-Newton
search, evaluating sensitivity coefficients at only the initial reference conditions and not updating
them as the iterative search progress. This decreases the likelihood of convergence and if conver-
gence occurs, the rate of convergence could be considerably slower depending on the nonlinearity of
the core simulator model. However, the main focus of this work is not whether the search will or will
not converge, but how accurate, regularized and robust the results are. Fortunately, it was found that
the Quasi-Newton search always lead to convergence, perhaps because the sizes of the perturbations
introduced into the design basis core simulator are sufficiently small.
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,  (3-38) 

if the problem is over-determined and  has a full column rank, or

,  (3-39) 

if the problem is under-determined and  has a full column rank, where  is a weighting

matrix for the parameters. The more general situation, which is the case in our problem, when

 or  does not have a full rank will be discussed in the next section in a more qualitative

way for simplicity.

 3.3.3 Geometrical Interpretation of Least-Squares Solution and Its Deficiencies

In light of the discussion presented in the previous section, the geometrical

interpretation of the least-squares solution for an iterate  can be described as follows: Find

the core parameters’ adjustment  which maps into the data space to a point  on 

that is closest in the sense of  to measured observables . That can be considered, as

mentioned before, as an oblique projection of  on  whose angle is determined by

. According to that projection,  (e.g.  is orthogonal

to  in the sense of ). To perform this least squares adaption, the vector of observables

is projected on the range of the operator  (in the sense of ). That projection is mapped

back from the data space to the parameters space such as an additional criterion on model

parameters that must be satisfied. For example, require that the solution vector  be
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orthogonal to the null space of the operator  (minimum norm solution). The angles of

projection in the data and the parameter spaces are determined according to the matrices 

and , respectively. Note that the different components of the data and parameters vectors

are amplified by different multipliers determined by the matrix  (e.g. singular values) when

mapped back and forth between the data and parameters space. The first projection is

necessary, since it removes that part (component) of the observables which is orthogonal (in

the sense of ) to the range of the mathematical operator  (e.g. that part which cannot be

explained by the mathematical model used to represent our physical phenomena of interest).

That component of the observables is either due to some noise on measured observables, or

due to some unexplained aspects of our physical phenomena. The second projection (in the

sense of ) is however arbitrary from a mathematical point of view, since any information

about the parameters (components) in the null space of  will not be mapped to the data

space, (e.g. vanished [multiplied by zero] and will not be reflected in the data). However, from

a physical point of view, the observables we are collecting might not contain information

about that part (component) of the parameters which is not mapped to the data space. That

does not necessarily mean that if one analyzed another set of observables, that component of

the parameters will not be mapped to the new data space under the new mapping. Including

these unmapped information about model parameters is then very crucial to the robustness of

the adaptive techniques. 
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 3.3.4 Sources and Consequences of Ill-Conditioning

In the current work, the main sources of the ill-conditioning were attributed to two

factors: 1) Sensitivity coefficients of the adjusted parameters differed by orders of magnitude

(reflected in the singular values of the matrix ), so the information about these parameters

with low sensitivities is not effectively mapped to the data space (e.g. reducing the

information content of the data signal1), specially when the noise level becomes large enough

compared to this information. 2) Some of the adjusted parameters have similar sensitivity

profiles. These two factors result in reducing the effective rank of the matrix . In our

application, the least-squares problem is overdetermined; however it is ill-conditioned. In this

case, the adjusted parameters will be very sensitive to the noise, since those effectively

vanishing or unmapped components of the parameters will be estimated based on the noise

level in the data space, which leads to a totally unphysical, unrobust and random (i.e.

nonunique) adaption. Figure 3.4 illustrates that situation, where the observables with the noise

associated with them are mapped back to the parameters space[42]. For illustration purposes,

the near null spaces and effective ranges of the operator and its transpose are referenced. Since

the near null space of  is not empty, that leads to an effectively nonunique solution.

 3.3.5 Regularized Least Squares Problem

To solve the previously mentioned problem, one defines a new transformation which

maps those effectively unmapped information about model parameters to a new expanded data

space, where now the observables would contain information about model parameters

1. Refer to Appendix A for a qualitative discussion of the definition of “Data information content”.
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sufficient to cast the problem into a well-conditioned one, (i.e. the data components carrying

information about model parameters are not masked by the presence of noise). Regularization

is a set of mathematical techniques which is utilized in defining a new transformation to cast

an ill-posed problem into a well-posed one. One way to do this is by supplying a priori

information about model parameters. That can take several forms like1:

,  (3-40) 

.  (3-41) 

Eq. (3-40) may define historical best known values for the model parameters. Eq. (3-41)

defines certain relationships the parameters should satisfy (i.e. criticality constraints in our

case). This additional information can be added to those given by Eq. (3-33) in two different

ways. In the first way, one can incorporate all the information in a single least-squares

minimization problem and different weights can be assigned to different pieces of information

about model parameters. That leads to a problem of the form, written in a least-squares sense:

,  (3-42) 

where  are scalar weights. This is equivalent to a minimization problem of a

quadratic form given by, for an iterate k,

,  (3-43) 

subject to the linearized core model given by:

1. These special forms are used to directly serve the discussion.
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.

In the second way, some of the additional information is utilized as constraints, which

have to be exactly satisfied versus in a least-squares sense. In our problem, this information

represents the criticality constraint defined by Eq. (3-41). In this case, the search can be

formulated to be a minimization problem of the quadratic form1,

,  (3-44) 

subject to the linearized and constrained core model given by:

    and    ,

where  is a scalar weight. Figure 3.5 is a two dimension plot of the observables and

parameters space. The task of the adaption (least-squares minimization problems of Eq. (3-43)

or Eq. (3-44)) is to iteratively find the closest point on the model ( ) to the point which

represents our best available information about observables (measured quantities) and model

parameters .

1. In general, one would minimize a quadratic function of the form[43]-[44], 

.

However, within the context of our application the matrices  and its transpose  will be
assumed to be zero. That is equivalent to assuming that the a prior knowledge of the input parameters
doesn’t depend on how the experimental evaluation of the observables are made, which is a sound
assumption [36].
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 3.3.6 Determination of the Regularization Parameters and Weighting Matrices

The scalar weights  are referred to as regularization parameters, and the

associated regularization technique is called Tikhonov Regularization. It represents one of the

most common and utilized regularization techniques. Different approaches offer different

ways to determine the optimum values for these parameters based upon different criteria. For

the current work, we determined their optimum values experimentally, by “trial and error”1. In

1. Refer to Appendix B fore more details.
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any of these regularized forms of either Eq. (3-43) or Eq. (3-44), the term  is

referred to as the misfit term, and the term  or  is

referred to as the regularized term. The minimized quadratic form is a weighted sum of these

two different kinds of terms. If the selected regularization parameter approaches zero, the

problem reduces to the previous least squares case and the parameters’ adjustment are mainly

determined by the observables; whereas, if the regularization parameter approaches infinity,

the first term (data misfit) is negligible with respect to the second term (regularized), and the

parameters are mainly determined by the a priori information and the constraints, if any.

The weight matrices utilized in this study are given by:

,

,

where  and  are the identity matrices, and  are weights given

to the observables recorded at different burnup steps and are given by,

,  (3-45) 
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where  are the accumulated burnup after i time steps and the total cycle

accumulated burnup, respectively. Note that the prediction errors are expected to be functions

of cycle burnup. The weight for a certain time step is selected to be proportional to the relative

amount of burnup increment for that time step, which if the plant were at full power, is the

relative time the error exists. It is also more important to accurately predict core behaviour

(i.e. core criticality) at EOL than at BOL. To do that, a simple linear proportionality was

assumed with cycle burnup. 

The covariance information about model parameters are not included in the current

study. The search for the optimum model parameters  was completed[45] using the approach

suggested by Eq. (3-43). The variables  and  refer to the a priori and a posteriori

information about model parameters (e.g. before and after the adaption), respectively, where

.  (3-46) 

 3.3.7 Tuning of Adaptive Techniques

The oblique projection of the a priori knowledge about model parameters and

measured observables on the core model is determined by three factors: 1) Regularization

parameters, 2) covariance information of the estimated model parameters and measured

observables, in addition to 3) any specialized form of weights imposed on the search to serve

certain technical interests (i.e. burnup weights). These three factors should be tuned

simultaneously to obtain the most acceptable robust estimate of model parameters which will

result in a better agreement between measured and predicted core attributes, while still

constraining model parameters’ adjusted values to a range about their best known (a priori)

Bui and BuEOL

p̃

p∞ p̃

p̃ f̃
c3 f̃

k3 f̃1
n j,

f̃2
n j,

,{ }
T

=



 CHAPTER 3: DISCRETE INVERSE THEORY 59
values defined by their uncertainties (i.e. statistically consistent with their a priori

information).
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 4. Cases Studied, Results and Conclusions

A demonstration of different test cases will be  provided in this chapter. The test cases

were selected such as to serve various purposes. First, to give insight into the machinery of the

proposed adaptive techniques and show that regularization results in a physical adaption of the

core simulator which is consistent with core physics. Second, to explore the potential of

adaptive techniques to accurately predict core observables recorded at future times, based on

an ‘adapted design basis core simulator’, denoted by AC, which utilizes current and past

measurements. As emphasized before, the main issue that needs to be assessed in any

proposed adaptive technique is checking the robustness and fidelity of the adapted models.

For that purpose, different approaches and/or criteria will be utilized to measure, in a

qualitative and/or quantitative sense, the robustness and fidelity of each of the adapted test

cases. The study has been conducted for a BWR/6 reload core containing 724 fuel bundles.

The cycle burnup for the selected core is 8579.20 MWD/STU. Figure 4.2 shows the control

rod pattern during cycle life. The experimental observables consisted of the readings of 44

LPRM detector strings positioned throughout the core in channels which do not contain

control rods, where each string consists of 4 axial detectors as shown in Figure 4.11.  

At this early stage of project development, the virtual approach will be employed

where two different versions of the core simulators are utilized, one to represent the actual

plant data and the other a core simulator that would be used by analysists. The version of the

core simulator, referred to as the ‘virtual core’, denoted by VC, is used to represent actual

1. Not to scale.
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plant data. That version corresponds to the current version of a selected core simulator (e.g.

FORMOSA-B). The virtual core is utilized to simulate detectors’ signals (observables) which

are used to adapt another version of the same core simulator. The version of the core simulator

used by analysists is a modified version of the virtual core, where now errors are deliberately

introduced in its modeling. That version is referred to as the ‘design basis core simulator’, and

is denoted by DC. The errors introduced give rise to discrepancies between the VC and the

DC’s predictions of different core attributes. The errors were selected such as these

discrepancies are representative of the actual discrepancies which exist between actual plant

data and existing core simulators. Two types of errors were simulated in the virtual core

Detectors

Control Rod

Detectors’ String

Fuel Bundle

Top View

Side View

Reflector Node

Fuel Node

Figure 4.1: Detectors’ Layout.
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approach, modeling and input data errors. Modeling errors were introduced by utilizing the

Lellouche-Zolotar EPRI methodology for the VC versus the Zuber-Findlay void-quality

correlation for DC. Two different approaches for adapting the core have been studied. In the

first approach, denoted by AC1, thermal-hydraulics and cross-sections input data were both

adapted to enhance the agreement between the DC and VC. In the second approach, denoted

by AC2, only cross-sections input data were adapted. Input data errors were introduced by

randomly selecting all the core parameters, whether they are adapted or not (e.g. all f factors)

from normalized Gaussian distribution with a 1% standard deviation. The perturbed values

(e.g. , and { }) are assumed to represent our best knowledge about the core

parameters. Adaption was always completed at the rated conditions of power and flow rates,

and the search is constrained by incorporating the criticality constraints in a least-squares

sense in the quadratic function to be minimized, see Eq. (3-43). 

Different approaches have been taken to see how well the adaption can identify and

explicitly adjust for different sources of errors, and to show its potential for those cases when

adaption is performed on the wrong parameters. To differentiate initially (e.g. before adapting

the core), in a qualitative sense, between the two simulated types of error sources and their

respective magnitudes, a comparison is made of the VC to the DC response when input data

errors were and were not present. Also compared are the AC to the VC response with and

without LPRM signal noise, with the VC associated data used in the adaption always

containing noise. That step was taken to see how well adaptive techniques can be used to filter

out instrument noise.
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Figure 4.3 compares the LPRM RMS and core reactivity errors of the DC before and

after adaption using the two approaches, AC1 and AC2, for three different cases. For case

AC1-F, the recorded detectors’ signals and criticality constraints at all burnup steps (e.g. l

time steps) are included in the adaption, hence denoted ‘F’ for full. For case AC1-H only the

observables recorded at half of the total number of time steps (e.g. l/2), selected at random, are

utilized to adapt the core, hence denoted ‘H’ for half. Approach AC2 has been utilized only

for case AC2-F. Each of the figures showing the LPRM RMS errors consists of four sets of

graphs as now explained: Graph (a) presents the RMS error between the VC, which includes

* See text for more details on how these subsets of observables’ signals are selected

Table 4.3: Figures’ nomenclature.

Symbol Interpretation

AC1 AC utilizing approach 1, in which the thermal-hydraulics and reactor 
physics data are adapted.

AC2 AC utilizing approach 2, in which the reactor physics data are 
adapted.

-F All observables’ signals are utilized in adaption.

-H* Half of the observables’ signals are utilized in adaption.

-1T* One third of the observables’ signals are utilized in adaption.

-2T* Two third of the observables’ signals are utilized in adaption.

<I> Calculated errors accounts for input data errors.

<M> Calculated errors accounts for modeling errors.

RV Rated Void Fractions, (i.e. rated conditions).

HV High Void Fractions, (i.e. decreased flow rates)

LV Low Void Fractions (i.e. increased flow rates and decreased power)

Acc. Burnup Accumulated Burnup
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the instrument noise, and the DC’s predictions before adaption, where the errors are calculated

based on the simulation of both modeling (M) and input data (I) errors. Graph (b) calculates

RMS errors in the same fashion as Graph (a), except now only modeling errors (Zuber-

Findlay void-quality correlation) were introduced in the DC. Graph (c) presents the RMS error

between the VC and the DC after the adaption has been completed. Graph (d) determines the

RMS errors in the same fashion as Graph (c), except now noise is not incorporated in the VC

responses. Qualitatively, Graph (a) and Graph (b) show that the initial individual contribution

of each source of error, modeling errors and input data errors, are approximately of the same

magnitude. Graph (c) shows that the differences in LPRM signals between the AC and the VC

are of the order of the noise level. The RMS errors in Graph (d) are presented without the

noise, showing that the AC and the VC LPRM signals agree well, (adaption can be potentially

utilized as a powerful noise filter). Core reactivity errors are also presented to show how

powerful the adaption is in accurately reducing the prediction uncertainties in the keff values to

about one order of magnitude less than their original values before adaption. By comparing

case AC1-F and case AC1-H, one finds that the order of prediction errors for all the detectors’

signals and the criticality constraints are the same whether they are or are not included in the

adaption, which confirms the physical nature of the adaption. 

Case AC2-F also shows as good agreement as with either case AC1-F or AC1-H.

That’s to be expected, since as mentioned before, the adapted core parameters will account for

both the input data errors and the modeling errors at which the adaption was completed.

However, one would think that by using approach AC2, the agreement between the VC and

DC will be degraded when trying to predict core behaviour at different flow conditions (i.e.
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different void fractions). With the availability of a VC, one can compute the response of the

core at different operating conditions other than the rated conditions. As mentioned above,

one can think of the case when the Zuber-Findlay void-quality parameters are adapted, as

providing the adaption with the freedom to adjust to not only input data errors but also

modeling errors separately. So if the core is operating at higher or lower void fraction, the

prediction errors of approach AC1 would be expected to be less than those of approach AC2.

To attain higher void fractions, denoted by HV, in the core, the flow rates were uniformly

reduced throughout the cycle life to 80%, and to attain lower void fractions, denoted by LV,

the flow rates and power were uniformly changed to 110% and 90%, respectively, of their

rated values, denoted by RV. Figure 4.4 shows the power to flow ratio during cycle life for the

three studied cases, (e.g. RV, HV, and LV). Figure 4.5 and Figure 4.6 compare the LPRM

signals’ prediction errors for the HV and LV cases, respectively, for two different adaptive

approaches: AC1-F and AC2-F. The results show that the LPRM RMS errors obtained using

approach AC2-F are at least two times larger than those errors obtained when using approach

AC1-F. That confirms that approach AC1-F corrects more explicitly for modeling errors and

input data errors than approach AC2-F, giving rise to a more robust adaption. 

To further confirm this, we utilize a more quantitative comparison test in which

different criteria are used to calculate the LPRMs RMS and core reactivity errors. This was

accomplished by re-calculating the initial and final errors (e.g. before and after adaption) but

now utilizing the Lellouche-Zolotar EPRI methodology for the DC. Note that when

calculating the LPRMs RMS errors, noise was not included in the VC signal. In this manner,

the effect of cross-section input data errors could be isolated. In Figure 4.7, Graph (a) presents

the re-calculated initial errors of the DC, and Graph (b) and Graph (c) present the re-calculated
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errors of the AC utilizing approaches AC1-F and AC2-F, respectively. Sets of sub-figures

present the three previously mentioned cases of core conditions (i.e. RV, HV, and LV),

respectively. Graph (a) and Graph (c) show that the adaption generally reduces the DC errors

due to initial input data errors, even though the adaption is based on the Zuber-Findlay void-

quality correlation, and the comparison is based on the Lellouche-Zolotar EPRI methodology.

Hence, we can conclude that the adaption is mainly reducing the prediction errors due to input

data errors separately from those due to modeling errors. However, when one analyzes Graph

(c) where the void-quality parameters are not adapted (e.g. Approach AC2), one observes that

the errors of the AC2 now are even larger than the initial errors, which indicates that the

adaption is highly affected by the magnitude and type of the modeling errors at which the

adaption was completed. One should also notice that when using DC to predict core behaviour

at LV, that leads to a reduction in the predictions errors since there is less voiding in the core,

and consequently the size of the prediction errors due to modeling errors will be reduced (see

Graph (a) and Graph (b), AC2-F in Figure 4.5 and Figure 4.6). Comparing the size of the

initial prediction errors for the LV case (see Graph (b), LV in Figure 4.7), it is observed that

the prediction errors are of the same magnitude as when using the AC1 to predict core

behaviour at LV (see Graph (d), AC1-F in Figure 4.6), with the latter of somewhat smaller

size, since adaption reduced input data errors. So, whether one uses the Lellouche-Zolotar

EPRI methodology or the Zuber-Findlay void-quality correlation for the AC to predict core

conditions at LV, one obtains the same magnitude of LPRMs RMS and reactivity errors. This

confirms also that the adaption only corrects for input data errors, and is not affected by how

much voiding is present when the core is adapted at rated conditions. 
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In realistic situations, one would be interested in adapting the DC based on the current

core observables and utilizing the AC to predict future core attributes, including core

observables. To demonstrate that situation, two other test cases have been conducted, where

now core observables recorded at only one third, denoted by AC1-1T, and two thirds, denoted

by AC1-2T, of core cycle have been used in the adaption. The AC is then utilized to predict

core behaviour over the entire cycle. Figure 4.8 compares the predictions of the core

observables and the core reactivity of the VC and the AC for both cases AC1-1T and AC1-2T,

in a similar fashion to the results demonstrated before. It is observed that for both cases, the

adaptive techniques are still capable of adjusting for errors in modeling and accurately

predicting core behaviour over the entire cycle. It is important to mention here, that when less

information is utilized to adapt the DC, the problem becomes more ill-conditioned and the

effective rank of the least-squares associated matrix reduces accordingly with the amount of

information employed in adaption. However, the relatively small prediction errors indicate

that the regularized adaptive techniques are capable of limiting the adaption to physical

situations1. When one carefully compares those two case with case AC1-F of Figure 4.3, one

notices that the LPRM RMS errors for both cases AC1-1T and AC1-2T are monotonically

increasing with burnup (i.e. following a certain pattern) for the portion of the cycle whose

observables’ were not included in the adaption. For case AC1-1T, core reactivity is predicted

over the entire cycle to a better degree of accuracy than AC2-2T. For case AC2-2T, core

reactivity errors are higher at EOC and BOC than at the middle of the cycle. Several

observations can be made accordingly. First, it is apparent that some aspects of the core

1. In general, different regularization parameters are utilized depending on the ill-conditioning of the 
problem.
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behaviour start building up later in the cycle, and consequently no information about these

phenomena appears in the observables signals utilized to adapt the DC. Hence, no adaption is

made to adjust for these phenomena since, in this case of lack of information, adaption

confines the adjusted parameters to the a priori information about these parameters. Second,

by recalling that the adaption favors (gives more weight) to observables recorded at higher

burnups than those at lower burnups, see Eq. (3-45), the poorer behaviour of case AC2-2T in

predicting core reactivity, suggests that the burnup functionalization utilized is not adequate

enough to adjust for these errors and hence more sophistication is necessary. By analyzing the

core reactivity errors, we are able to make a more educated guess on how to functionalize core

parameters in terms of cycle burnup. 

Figure 4.9 shows the a priori and a posteriori information about model parameters (e.g.

the f factors, the components of  and , respectively) for three different levels of

regularization. The second case corresponds to the highest fidelity and robustness adaption.

Recall that the a priori values of core parameters (e.g. the f factors) were determined by

randomly perturbing their true values using a normal Gaussian distribution whose standard

deviation equals 1% (e.g. the uncertainty of the a priori information is 1% for all core

parameters). It is observed that the a posteriori information about core parameters is

statistically consistent with the a priori information for case (b) and case (c). For strong

regularization, case (c), the a posteriori information approaches the a priori information and

effectively no adaption is performed. For weaker regularization, case (a), the a posteriori

information, for an ill-conditioned problem, has larger uncertainty in general, since the

adaption is affected more by the noise level in the observables’ signals. Note that, if the

p∞ p̃
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problem is well-conditioned, the a posteriori uncertainty information about core parameters is

expected to be less than the a priori uncertainty information, if the measured observables

uncertainty (due to noise) is less than the predictions uncertainty (due to input data errors,

assuming exact modeling). For an intermediate level of regularization, case (b), a compromise

is achieved where now, the pieces information about model parameters which are mapped

effectively between the data (observables) and the parameter space (i.e. that information

associated with large singular values), their uncertainty level is mainly determined by the

observables uncertainty. However, for those pieces of information which are effectively

vanished (due to the small singular values), their a posteriori uncertainty information is mainly

determined by the a priori information about model parameters. Note also that the thermal-

hydraulic parameter (C0) has an adjusted value that deviates 6% from its true value of 1.0.

This is to be expected since the functionalization of the void is not consistent with reality (i.e.

using the observables produced by the Zuber-Findlay void-quality spatially independent

parameters to attempt to match the Lellouche-Zolotar void-quality spatially dependent

parameters). The thermal-hydraulic parameter (C0) has a strong sensitivity profile (i.e. its

sensitivity profile is large in magnitude and different from other model parameters’ sensitivity

profiles), and hence its adjustment is mainly determined by the observables for different levels

of regularization; however, the second thermal-hydraulic parameter (k3) has a very weak

sensitivity profile, and its adjusted value is mainly determined by the a priori information. 

The same regularization parameters are used to restrict the search for all model

parameters to their a priori values. The choice of the magnitudes of the regularization

parameters affects how far the a posteriori information about core parameters is from the a
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priori information, since it affects the trade-off between the regularized term and the data

misfit term of the quadratic function to be minimized. That trade-off should depend on how

much information about core parameters is contained in the observables’ signals. The

information content of the observables’ signals depend on the conditioning1 of the linearized

core model, represented by the matrix operator . Appendix B discusses the L-curve which

we utilized to determine the optimum regularization parameters and hence degree of

conditioning. Using the same regularization parameters to limit the adjustments for all core

parameters can be considered as a first logical assumption2 since the a priori uncertainty

information about core parameters is assumed to be of the same magnitude (i.e. 1%). In

general, the compromise between the data misfit term and the regularized term of the least-

squares quadratic function should depend on the particular core parameter with respect to

strength of its sensitivity profile and the level of uncertainty of its a priori information. Hence

parameter specific regularization parameters are required to reflect the difference between the

core parameters and how much information is contained about them in the observables’

signals. This issue will be facilitated by the introduction of the full a priori covariance

information about core parameters, which will be part of the future development of this

project as further discussed in the next chapter.                            

1. Refer to Section 3.3.4 for the discussion on the reasons for the ill-conditioning of the operator .
2. Note that the uncertainty information for all core parameters is identical; that merely results in scal-

ing the regularization parameter in Eq. (3-43) or Eq. (3-44), however for a more realistic situation,
the uncertainty information is not identical, in general, for different core parameters, and that would
result in an oblique projection of the type depicted in Figure 3.3. 

A

A
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� Exposure:� 0000.00� MWD/STU
� � 20� 48� 28� 48� 12� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 36� 48� 20� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 173.80� MWD/STU
� � 20� 48� 28� 48� 12� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 36� 48� 20� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 173.80� MWD/STU
� � 20� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 10� 48� 36� 48� 20� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 350.90� MWD/STU
� � 20� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 10� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 490.60� MWD/STU
� � 20� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 6� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 671.00� MWD/STU
� � 20� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 6� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 786.40� MWD/STU
� � 16� 48� 28� 48� � 4� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 0� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 4� 48� 36� 48� 14� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� � 858.50� MWD/STU
� � 18� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 8� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1018.60� MWD/STU
� � 18� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 8� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1018.60� MWD/STU
� � 18� 48� 28� 48� 12� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� � 0� 48
� � 28� 48� 12� � 0� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 36� 48� 24� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1201.80� MWD/STU
� � 18� 48� 28� 48� 12� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� � 0� 48
� � 28� 48� 12� � 0� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 36� 48� 24� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48

� Exposure:� 1267.90� MWD/STU
� � 20� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 10� 48� 36� 48� 24� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1420.60� MWD/STU
� � 20� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� 10� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 10� 48� 36� 48� 20� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1590.50� MWD/STU
� � 20� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 8� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1816.20� MWD/STU
� � 20� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 8� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 1931.40� MWD/STU
� � 20� 48� 28� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 28� 48� � 8� 48� 36� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 36� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2026.50� MWD/STU
� � 20� 48� 36� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 36� 48� � 6� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 16� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2110.10� MWD/STU
� � 20� 48� 36� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 36� 48� � 6� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 16� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2110.10� MWD/STU
� � 18� 48� 36� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 36� 48� � 6� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 8� 48� 48� 48� 18� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2430.90� MWD/STU
� � 18� 48� 36� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 36� 48� � 6� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 16� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 48� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2578.60� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 4� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2818.60� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 4� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48

� Exposure:� 2818.60� MWD/STU
� � 40� 48� 12� 48� 48� 48� � 0� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 28� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 0� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 2986.60� MWD/STU
� � 40� 48� 14� 48� 48� 48� 10� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 8� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3235.00� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 6� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3345.70� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 6� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3489.30� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 6� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3560.30� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 6� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3671.40� MWD/STU
� � 40� 48� 14� 48� 48� 48� � 4� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 4� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 3902.00� MWD/STU
� � 40� 48� 14� 48� 48� 48� 10� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 14� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 48� 48� 10� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 8� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 4163.80� MWD/STU
� � 40� 48� 12� 48� 40� 48� 10� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 20� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 40� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 8� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 4551.10� MWD/STU
� � 40� 48� 12� 48� 40� 48� � 8� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 20� 48� � 8� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 40� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 8� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 4745.40� MWD/STU
� � 40� 48� 12� 48� 40� 48� � 6� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 40� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 48
� � 48� 48� 48

� Exposure:� 4836.80� MWD/STU
� � 40� 48� 12� 48� 40� 48� � 8� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 40� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 5151.70� MWD/STU
� � 40� 48� 12� 48� 40� 48� � 8� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 12� 48� 20� 48� 10� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � 40� 48� � 8� 48� 48� 48� 48
� � 48� 48� 48� 48� 48� 48
� � � 6� 48� 48� 48� 48
� � 48� 48� 48
� Exposure:� 5151.70� MWD/STU
� � � 8� 48� 36� 48� � 8� 48� 40� 48
� � 48� 48� 48� 48� 48� 48� 48� 48
� � 36� 48� � 4� 48� 30� 48� 48� 48
� � 48� 48� 48� 48� 48� 48� 48
� � � 6� 48� 30� 48� � 0� 48� 48
� � 48� 48� 48� 48� 48� 48
� � 40� 48� 48� 48� 48
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Figure 4.2: Control Rod Pattern For Core Follow Data.
“(0/48)=Control Rod Fully Inserted/Withdrawn”



 CHAPTER 4: CASES STUDIED, RESULTS AND CONCLUSIONS 72
0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

Accumulated Cycle Burnup (GWD/STU)

LP
R

M
 R

M
S

 E
rr

or
 (

%
)

a) DC<I,M>
b) DC<  M>  
c) AC<I,M>
d) AC<I,M>

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

10
3

10
4

Accumulated Cycle Burnup (GWD/STU)

C
or

e 
R

ea
ct

iv
ity

 E
rr

or
 (

pc
m

)

a) DC<I,M>
b) DC<  M>   
c) AC<I,M>

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

Accumulated Cycle Burnup (GWD/STU)

LP
R

M
 R

M
S

 E
rr

or
 (

%
)

a) DC<I,M>
b) DC<  M>  
c) AC<I,M>
d) AC<I,M>

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

10
3

10
4

Accumulated Cycle Burnup (GWD/STU)

C
or

e 
R

ea
ct

iv
ity

 E
rr

or
 (

pc
m

)

a) DC<I,M>
b) DC<  M>   
c) AC<I,M>

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

Accumulated Cycle Burnup (GWD/STU)

LP
R

M
 R

M
S

 E
rr

or
 (

%
)

a) DC<I,M>
b) DC<  M>  
c) AC<I,M>
d) AC<I,M>

0 1 2 3 4 5 6 7 8 9
10

−1

10
0

10
1

10
2

10
3

10
4

Accumulated Cycle Burnup (GWD/STU)

C
or

e 
R

ea
ct

iv
ity

 E
rr

or
 (

pc
m

)

a) DC<I,M>
b) DC<  M>   
c) AC<I,M>

Figure 4.3: Detectors’ Signals Mismatch & Core Reactivity Error (Rated Conditions).
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Figure 4.7: Detectors’ Signals Mismatch & Core Reactivity Errors (Different Criteria).
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 5. Future Work and Recommendations

This study has served as a vehicle to gain insight into how effectively regularization

techniques can be utilized to adapt the DC, giving rise to a meaningful adaption which is

reflected in the high fidelity and robustness of the adaptive techniques employed. In these

techniques, the different model parameters are adapted according to how much information

about them are contained in the observables’ signals. If the observables do not contain

sufficient information about certain model parameters, their estimates will be confined to our

best knowledge of these parameters. It was demonstrated with our choice of core parameters,

we are able to separate and identify different sources of modeling or input data errors and

suggest more educated guesses of error functionalization. 

The observables’ information content is mainly determined by sensitivity profiles of

and uncertainty information on the adjusted core parameters. In the current study, sensitivity

profiles were the only contributor towards the ill-conditioning nature of the adaption. Some

parameters had very similar sensitivity profiles and others differed by orders of magnitude,

resulting in reducing the effective rank of the least-squares associated matrix (e.g. the

information the observables contain about the model parameters). Regularization has been

performed utilizing the same regularization parameters for all adjusted core parameters. The

statistical consistence between the a posteriori and a priori information about core parameters

has been confirmed for a range of regularization parameters. The a posteriori uncertainty

information about core parameters is determined by three factors: the a priori uncertainty

about core parameters, the a priori uncertainty about core observables, and the regularization

parameters (see Appendix B for more details). For this exploratory study, the uncertainty
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information included in the adaption was simply modeled by diagonal covariance matrices,

such that all core observables and core parameters have the same a priori uncertainty,

specifically, % and %, respectively. In reality, the full reactor physics

uncertainty information has to be propagated starting from a point-wise cross-section or

resonance parameters representation as available from ENDF/B and then processed through

all the pre-processor codes to the core simulator. These pre-processor codes include multi-

group library generation codes and lattice physics codes. To propagate the uncertainty

information of the reactor physics data (e.g. cross-sections) from a multi-group to a few-group

representation, we need the sensitivity profiles of the homogenized few-group cross-sections

with respect to the multi-group cross-sections. These profiles cannot practically be obtained

by a brute force technique since the number of multi-group cross-sections is huge, eliminating

any chance for an effective utilization of such a simple technique. A generalized perturbation

theory approach is suggested to be utilized to calculate the sensitivity profiles for both the

few-group cross-sections with respect to the multi-group cross-sections and the reactor

observables with respect to core parameters. This is not a trivial task to do, since the currently

available lattice physics codes do not have such capability and we will have to implement it

for further development of this project. The road map for the proposed project is depicted in

Figure 5.1 where two paths are specifically identified. Path A propagates the uncertainty

information of the reactor physics data to a few-group presentation. This path will need to be

performed once for each fuel color utilized in the core under study. Path B incorporates the

uncertainty information from path A with the sensitivity profiles calculated from the DC to

σ 4= σ 1=
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adapt the core model. This path will be taken repeatedly as additional core observable data

becomes available.

More work will be conducted utilizing the virtual approach to better understand the

capabilities of the proposed adapted techniques. For example, the virtual approach will be

utilized to introduce different sources for modeling errors, specifically in thermal-hydraulics,

to investigate how well the adaption can account for different and combined sources of

modeling errors in the design basis core simulator. In the current work, errors are introduced

in a priori information about the reactor physics core parameters utilizing a linear burnup

functionalization, and the adaption is based on the same functionalization. In more realistic

situations, different functionalization can be utilized in the VC and DC to gain more insight in

to how well adaptive techniques will perform when error functionalization is not consistent

with reality.

When the developed adaptive techniques and methodologies prove efficient and

successful using the VC, actual plant data will be utilized directly to adapt existing core

simulators. For this situation, the quality of the core observables (i.e. detector drift and failure,

and deviations from steady-state, equilibrium core conditions) will need to be addressed. 
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 APPENDIX A: DATA INFORMATION CONTENT 89
 A. Data Information Content

A forward problem can be viewed as one in which information content about the

model parameters is reduced due to transformation from the parameters space to the data

space. Consider the following example to demonstrate a qualitative explanation of the concept

of data information content[14]. For a transient one dimensional heat conduction problem, the

forward problem can be formulated as follows

 (A-1) 

where  is the temperature, α is the thermal diffusivity, and the initial and boundary

conditions are given as follows:

 (A-2) 

The problem can be solved by Fourier expansion,

 (A-3) 

and the solution is

 (A-4) 

where  is determined to satisfy the initial conditions, i.e.

 (A-5) 

Assume that the input data  are known within a certain degree of accuracy . It follows

that only the first  terms which satisfy  are to be considered. Since each component
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in , (e.g. ), is the same as the corresponding component in , (e.g. ), but damped by an

exponential factor, this means that the number of terms  for which   will be much

less than , (i.e. ); in other words the information content of the data space is less

than that of the parameters space. Another issue to be noted here, if we were to predict 

at earlier times from information at , this will simply result in magnifying the Fourier

coefficients { } by the exponential term. This means, if there is any higher order noise

imposed on the data, it will be magnified dramatically, giving rise to an unphysical behaviour

prediction.

T Tn θ θn

NT Tn ε>

Nθ NT Nθ<

T x t,( )

t t0>
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90
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 B. Tikhonov Regularization

Tikhonov regularization[12]-[13] is the most common regularization technique,

sometimes called Tikhonov-Phillips[28] regularization. A brief demonstrative discussion of

this regularization technique for the discrete inverse problem is presented in this appendix.

Refer to Eq. (3-42) and consider a general case where the a priori information are represented

by the vector nonlinear equation, 

,  (0-1) 

where . That formula can be linearized around a reference point according to,

,  (0-2) 

where the Jacobian matrix  is defined by,  

,  (0-3) 

with . Let  be the current iterate value. The search for the new iterate 

can be found by minimizing the quadratic form1, 

 (0-4) 

subject to:

 (0-5) 

1. Discussion is limited to the unconstrained minimization problem.
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where  and  denote the measured and predicted observables, respectively. Eq. (0-5) can

be re-written as, 

,  (0-6) 

where  and the other “ “ terms meanings are obvious. The first term

on the R.H.S. is referred to as the data misfit term, and the second term is the regularized term.

Eq. (0-6) is equivalent to requiring that 

 (0-7) 

be satisfied, in a least-squares sense.

Assuming that  has a full column rank, the least-squares solution is obtained by

projecting the R.H.S. on the range of the matrix operator . This is achieved by

multiplying both sides by the transpose of this matrix operator1.

,

 (0-8) 

1. Refer to Eq. (3-14) for justification.
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where  is a regularization parameter. As a first crude approach, assume that  is the

identity matrix (i.e. ); it is easy to show that1,

,  (0-9) 

where { } are given by,

,  (0-10) 

where { } denote the singular values of . Regularization can be visualized as a filter. It is

easy to show that the condition number of the matrix  is given by:

.  (0-11) 

Figure B.2 plots on a logarithmic scale the condition number of the matrix  against

different regularization parameters. 

For those pieces of information  that have small singular values associated with

them (i.e. ), the a priori information is utilized instead of the observables ( ) to

estimate the corresponding components of the model parameters ( ). If , then

; the problem reduces to a regular least-squares problem (see Eq. (3-

1. Refer to Eq. (3-16) for comparison.
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16)); whereas, if , then ; the data misfit term is negligible with

respect to the regularized term, and the solution is mainly determined by the a priori

information. 

The relation between the a priori and a posteriori information about model parameters

and the corresponding core observables is described by the L-curve.  Figure B.1 shows that for

a very small regularization parameter, the best fit is obtained (i.e. the best agreement between

the measured and predicted observables); however, the estimates for the model parameters are

very far (in terms of the norm ) from our best knowledge (a priori information). For

large regularization parameters, the worst agreement is obtained, that corresponds to the initial

discrepancies which exist between the actual plant data and the predictions of an existing core

µ2 ∞→ ∆p·[ ]i p∞ pk 1––[ ]i→

dk
m A∆pk–

Φ ∆pk( ) ∆Φ∞k–

Difference between measured and 
predicted core observables

Difference between 
a priori 

and 
a posteriori 

core parameters.

Figure B.1: L-Curve, ‘A Posteriori Information about Model Parameters and Core 
Observables’.

Knee

Increasing µ2

pk p∞–
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simulator (i.e. between the virtual and design basis core simulators for our virtual approach).

The L-curve suggests that when one increases the regularization parameters gradually, there is

a region where the quality of the data misfit stays the same; while the agreement between the a

posteriori and a priori information about model parameters increases considerably. A knee-

type behaviour is depicted in the figure, where in this region, the agreement between the

adapted design core and the actual plant data starts to degrade without any significant change

in the model parameters. That behaviour suggests that one should select a regularization

parameters at the knee region of the L-curve. In this region, one would obtain the best

agreement between the predicted and measured observables and at the same time, the adaption

is restricted to the best a priori information about model parameters; hence giving rise to a

physical adaption. The L-curve has been reproduced in Figure B.3, for illustration purposes,

for an iterate k during an unconstrained search for model parameters. The knee-type behaviour

is easily identified in the curve. In our work, more than one regularization parameters has been

utilized, and their optimum values were obtained by trial and error.       .

Referring to Eq. (0-10), one can see how the a priori uncertainty about core parameters

and observables propagate through the adaptive techniques and appear in the a posteriori

uncertainty information about core parameters. It is easy to show that,

,  (3-12) 

where  is the uncertainty component associated with x. Note that when the regularization

parameters approaches zero, the uncertainty in the a posteriori information is given by,
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·
k
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.

This is an undesirable situation since for the particular component , when the

associated singular value  is very small, that results in magnifying the error component of

the observables, . On the other hand, when the regularization parameter approaches

infinity, 

(i.e. the a posteriori uncertainty information approaches the a priori uncertainty). For those

components  whose associated singular values are relatively large, the a posteriori

uncertainty can be made to be less than the a priori uncertainty. Hence, it is undesirable to

have a large regularization parameter since that will increase the a posteriori uncertainty about

those components of core parameters. This shows that it would be beneficial to include

regularization parameters which are component-wise dependent. In the current work, the a

priori uncertainty about model parameters is identical for all core parameters (i.e. 1% standard

deviation). It is easy to show that this is equivalent to scaling the regularization parameters1

(i.e. the same regularization parameters are utilized for all estimated components in Eq. (3-

12)). In a realistic situation, inclusion of the a priori uncertainty, represented by a covariance

matrix, will effectively give rise to regularization which is component-wise dependent. 

1. Refer to section 3.2.13.
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