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Abstract

We briefly discuss various performance issues that arise in ATM networks and provide a
bibliography for further reading.

1. ATM networks

The Asynchronous Transfer Mode (ATM) is the target transfer mode solution for broadband
ISDN. It is currently being considered by CCfIT. ATM is capable of efficiently multiplexing
a large number of highly bursty sources, such as voice, bulk file transfer, and video, with
throughputs of the order of several Gbitls. These bursty sources may have a peak rate from a
few Kb/s to hundreds of Mb/s and an average rate varying in bandwidth from near zero to the
peak rate. The unit of transport in ATM is a cell consisting of an information field of 48 bytes
and a header of 5 bytes. ATM is a connection-oriented technique that can be used for
supporting both connection-oriented and connectionless services.

lSupported by NATO under' grant n" eRG 900580
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The performance evaluation of an ATM network is not a trivial task. There are many
performance issues that remain unanswered. In this paper, we briefly discuss various
performance issues that arise in ATM networks and provide a bibliography for further
reading.

2. Models of a bursty arrival process

An ATM network will be capable of handling a large number of bursty sources. In modelling
such a network the obvious question that arises is how can one characterize the arrival
process to a switch. That is, what is the distribution of the inter-arrival time of cells arriving
at an input port of an ATM switch, given that these cells originate from bursty sources and
have to go through a number of gateways and/or multiplexors before they reach the ATM
switch. So far, several different models have been suggested Unfortunately, for the time
being, there are no comprehensive measurements (except for voice, see Heffes and Lucantoni
[1]) which will permit us to verify which of these models is the most realistic.

Typically, a bursty source has been modelled by an Interrupted Poisson Process (IPP). That
is Poisson arrivals occur during an exponentially distributed period of time (known as the
active or busy period). This period is followed by another exponentially distributed period of
time (known as the silence or inactive period) during which no arrivals occur. These two
exponential periods have, in general, different means and they alternate continuously. This
simple model captures the basic idea that a bursty source may be either active or inactive.
During the time it is active, it produces cells in a Poisson fashion. This model implies that
there is no correlation between the successive inter-arrival times. More complex models, such
as the Markov Modulated Poisson Process (MMPP), allow the introduction of correlation. In
an MMPP, there is an exponential period of time during which arrivals occur in a Poisson
fashion at a specific rate. This period is followed by another exponentially distributed period
during which arrivals also occur in a Poisson fashion but at a different rate. These two
exponential periods have different means and they continuously alternate. In an MMPP we
have Poisson arrivals, whose rate depends on the state of a two-state Markov chain.
Obviously, more complex structures can be constructed by allowing this Markov chain to
have more than two states (see Neuts [2]).

Due to the nature of ATM, the arrival process to an input port of an ATM switch will be
discrete. That is, the incoming link into an input port is slotted. Each slot will be long enough
to contain one cell. An arriving slot may or may not contain a cell. In view of this, it makes
sense to consider a discrete version of the above continuous models of bursty arrivals. For
instance, the discrete equivalent of an IFP is the Interrupted Bernoulli Process (IBP). In an
IBP, we have a geometrically distributed period during which no arrivals occur, followed by
a geometrically distributed period during which arrivals occur in a Bernoulli fashion.
Likewise, in discrete time, a two-state MMPP can be described as a two state Markov
Modulated Bernoulli Process (MMBP). As in the continuous case, more complex structures
can be constructed by using more states. The next section is devoted to the discrete-time
queueing approach.
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3. Discrete-time queueing systems

Quite frequently, the performance analysis of an ATM switch comes down to the analysis of
a discrete-time single queue. This is a very interesting topic that has received a lot of
attention. Let us assume that the time axis is segmented into contiguous sequence of time

intervals of duration ~ which correspond to the elementary unit of time in the system;
generally the time to send one cell. To define the queueing system we need to determine the
instants of arrivals and departure and the number of customers arriving simultaneously. We
assume that interarrival times form a sequence of independent and identically distributed (iid)
positive integer-valued random variable.

Let ai be the probability to have i arrivals in a slot. Let diU) be the probability to have i
departures in a slot given there are j customers in the queue. Specialcases may be defined:

1) a1 = 1 and ai =0 if i :1: 1. This defines a process where there is one arrival in each slot.

2) ao = 1 - A, a1= A, ai =0 if i > 1 with A<l. This defines a Bernoulli arrival. The time
between two arrivals is geometrically distributed

3) ai =A.i (1 - A) with 0 < A < 1. The arrival becomes batch and the batch size is

geometrically distributed with parameter A. The time between two arrivals is

geometrically distributed of parameter 1- A.
4) The arrival process is assumed to be batch and the size of the batch is Poisson distributed

when
i -A

Ae
a·=--·1 .,

1.

This case may be interpreted in a different way: the arrival process is continuous in time
and the customers arriving during a slot have to wait to be served in batch.

5) ai are given values with ai =pI and
00

In an ATM network as soon as a customer is in service we have that d1 = 1. A more complex

process may be chosen.

6) For j > 0, dl(j) = 1 and diU) = 0 ifi ¢ 1. .
7) doG) =1- Jl(j), dl (j) =Jl(j) and diG) =0 if i > 1wi~ .IlG) < 1 for all J. . .
8) diG) =cG) JlG) ••.JlG - i + 1) where cG) is a normalizing constant. If Jl(I) =Jl for all is we

have:

This gives a truncated geometric distribution for the batch size.
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9) diU) is as follows:

c(j)Jl(j) ... Jl(j-i+ 1).,
1.

where ctj) is the normalizing constant If Jl(i) = J.1 for all i, we have:
1

IJ.,
1.

j .

1 +~ + +~l! ... j!

We have to define the order in which arrivals and service completions occur. We may
consider several different arrangements depending upon the order of the events (see Hunter
[3]). The first case, which we may call "early arrivals" supposes that the departures take
place after the arrivals. We may assume, as in Hunter, that we have three important epoches

at the end of the slot k: tIc= ka, tk+ and tIL- The processes we are going to evaluate are

defined on these three points. In the early arrivals case, it is possible to assume that arrivals

take place between tk and lk+ and the departure between 1k+1_and lk+1·

The second case we consider is the "late arrivals", where departures occur at the beginning of
the slot, i.e. between tk and lk+, and arrivals occur at the end of the slot, i.e. between tk+l­

and tk+1. Also we can defme the case of "late arrival with delayed access", where the
arriving customer is blocked from entering an empty service facility until the servicing
interval terminates. Hunter [3] determines the relationship between these three case. Let X(t)

denote the number of customers in the system at time t and let Xn = X(n-), Yn = X(n) Zn =
X(n+). Now let Xn, Yn. Zn be the processes for early arrival, Xn(i), Yn(i), z». and Xn(d),

y n(d), z,,(d) theprocesses for the late arrival and late arrival with delayed access, respectively.

It is shown that {Xn} and {Yn} are different processes but that {Zn}={Xn+l } ,
{Xn(i)}={yn}, {Yn(i)}={Xn+l}, {Zn(i)}=(Yn+l}, {Xn(d)}={Xn}, {z,,(d)}={Xn+l}.

We now proceed to examine known results when at most one customer may enter the queue
(or the queueing system) and at most one may leave per slot In this simple situation we may
assume that the arrival process is dependant on the number of customers in the queue: ao(j)=1
- AU) and a1(j) = AU) with AU) <1. Let n be the number of customers in the queue. When

. A(O)A( 1)...A(n-I)
limsuPn-+oo < I,

J.1( 1)J.l(2)...IJ(n)

we obtain (see Claude [4], Pujolle, Claude, and Seret [5]) the following results:
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1) Earlyarrivals:

P(o) = P(O) 1.(0).1.(1)..... 1.(0-1)(1+1.(0» (1+~(0» .

(1+A(O» fJ(I).Jl(2) ..... fJ(n)(1 +Jl(n-1»)

P(O) is obtained by normalization.

2 Late arrivals:

P(o) = P(O) 1.(0).1.(1)..... 1.(0-1)(1+1.(0» (1+~(0» .

(1+A(O» Jl(1).Jl(2).. . . .Jl(n)

P(O) is obtained by normalization.

For the state-independent queue, we have 'ij ~ 0, AU) = A and flO) = 1.1. In this case, the

ergodicity condition becomes A < u, and we obtain the classical Geo/GeoJl queue that has
been extensively studied (see Meisling [6], Hsu and Burke [7], Kobayashi and Konheim [8],
Kobayashi [9], Bharath-Kumar [10]). The steady-state distribution is:

1) Early arrivals:

P(n) =(~r(1 - ~) ·

The average number of customers in the system NA is given by:

p . A
N A =-- With P =-

I-p Il

2) Late arrivals:

P(o) =P(O) .(~r(1+~)

I-p
P(O) =-.

l+A

This implies that the solution is:

n ( )
A A 1+J.1

Pen) =(-) . 1 - - .-
IJ IJ l+A

The average number ofcustomers in the system NB is given by:
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A
---- with p = -

Jl

(1 +1J)p
N s =

(1 +1\) (1 p)

Let us assume now that the arrival process is described as in case 5, i.e, ai = pi, i=1,2,...,
and Po= (l-2p)/(1p). The service process is defined as in case ~, i.e. do = 1. - u, d} = Jl and
d, = 0 if i > 1 with Jl< 1. Then, the solution is as follows (see Pujolle and Fdida [ 11]):

1) Late arrivals:

P(O) = 1 - P "
(l-p)-Il

n n-1 [ ]P(n) = p (l-PJl) . 1 - P"
(1_2p)nJ.!n (l-p)~11

The ergodicity condition is:

p(l-pJ.!) < 1
(1-2p)1J

2) Early arrivals:

P(n) =fp(l-PJl)lfi r1 - p(l-pJ,l)l
(l-2p)J.1 (1-2p)J.1

In the ATM network we may assume that Jl = 1: one cell is served per slot.

Hunter [3] gives an analysis of the GIIGeo/l and Goo/GIll queues. It can also be shown that
the GIIGeo/llK queue can be analyzed using a duality with the Geo/GIIIIK queue. The dual
of the GIIGeo/llK queue is obtained by looking at the flow of holes through the queue. The
GI distribution becomes the arrival process for the holes and the Goo distribution becomes
their service process. The queue-length distribution of the GIIGeo/llK queue is equal to the
distribution of the holes obtained by analyzing the GeoIGI/l/K queue. The latter queue-length
distribution is obtained by truncating the queue-length distribution of the GeoIGl/l queue.
For further references see also Neuts [12], Klimko and Neuts [13], Neuts and Klimko [14],
Heyman and Neuts [15]. Discrete single server queues with uncorrelated input which have
been motivated by ATM systems have been analyzed by Louvion, Boyer, and Gravey [16],
and Tran-Gia and Ahmadi [17]. These models do not account for the fact that the arrival
process may be correlated. Discrete queues with correlated input have been considered by
Viterbi [18], Bruneel [19], Gopinath and Morrison [20], Fraser, Gopinath, and Morrison
[21], Massey and Morrison [22], Ahmadi and Guerin [23].

The Geo/Geo/1 queue has similar properties as the MIMIl queue. The output process is
independent of the state of the queue and is geometrically distributed. This implies that the
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joint queue-length distribution of queueing systems without feedback has a product form (see
Kobayashi [8], Bharath-Kumar [10]). This result may be extended to state-dependent
services (see Pujolle, Claude, and Seret [5]).

Now, let us examine a general discrete-time queueing system with early arrivals assuming
batch arrivals and batch departures. Let 0 = (01, ... ,nK) be the state of the system in steady
state at a time slot, where nk is the number of customers in queue k, k = 1,...,K. The routing
probabilities qk.k' ,k = O,l, ... .K, k'= 1,...,K+l, are independent of the state of the system.
In a general queueing network, the "early arrival" assumption implies that at a time slot,
customers who completed their service are process of moving to their destination nodes.
They are not counted in the state of the queues. It turns out that the process n at slot time is
not a Markov chain, since the future arrivals depend on the past departures. To obtain a
Markov chain it is necessary to define a new state process taking into account the customers
en route. Alternatively, we may assume that at the beginning of a slot we have external
arrivals. These arrivals imply departures from the subsequent queues and so on until they
depart out of the system at the end of the slot In this case, it is necessary to assume that there
is no feedback. The network is a tree or is a more complicated network with several sources
but without feedbacks. With this assumption a customer can go through the network in one
slot.

Let f(n,n') be the transition probability of going from state n to state n'. One of the difficulty
in studying such a system is that the number of transitions may be very large. In the early
arrivals case, we may provide an intermediate state defined by the customers in the queue at
the beginning of a slot plus the arriving customers, say m =(rnj 000' mg). This state is 1=(I
1, ... , IK) with I k =fik + mj, In the same slot we have departures, say m' = (rn'j, ... , m'K)·

The new state n' = (nj, ... , OK) is obtained by setting n'k =Ok + mk - m'k.

The detailed balance equation is:

P(n) f(n,n') = P(n') fm'n).

This equation is quite difficult to write because the number of possibl~ intermediate sta~s is
infinite. We may introduce as in Pujolle [24] the following sub-detailed balance equations
corresponding to a unique intermediate state 1:

P(n) f(n, I, 0') = P(n') f(n', I, n),

It is clear that if the sub-detailed balance equations hold, the detailed balance equations hold

and the balance equations hold:

tp(n) f(n, l,n ') = tp(n') f(n', I, n)

If we assume that the arrival and departure bulks are defined as in cases 3 and 8 respectively,

i.e.
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then we can obtain the following product form solution (see Pujolle [24]):

K K Ole. Aek
P(n) = IIPk(nJ =II(I- PIJ Pk WIth Pk=--

k=l k=l Jlk

where ek is the mean number of passage through station k.

For the general case where di 0) = cO) J.1(j) .•. Jl(j - i + 1), we have:

Another interesting case has been studied by Walrand [25] [26]. A product form solution
holds when the assumptions 4 and 9 are chosen. Discrete-time queueing systems may be
replaced by continuous time queueing system but with constant service processes: see Chu
[27], Pack [28], Hsu [29], Avi Itzhak and Heyman [30], Labetoulle and Pujolle [31].
Related results may also be found in Boxma and Groenendjijk [32], Heyman and Neuts [33],
Kobayashi [34], Neuts [35].

In Daduna and Schassberger [36] product form results are derived for open discrete-time
Jackson networks with batch services. In Daduna and Schassberger [37] a product form
solution is obtained for a closed queueing model of a computer system both with the so called
doubly stochastic disciplines under the condition that in any station no more than one job can
either arrive or leave all the same time. In these generally distributed services are allowed. In
Boucherie and Van Dijk [38] a generalization of the product form solutions is provided using
the Markov chain defined by the transition function. Blocking possibilities are discussed.
Hashida, Takahashi, and Shimogawa [39] propose a switch batch Bernoulli Process (SBBP)
for modelling bursty and correlated input processes. The SBBP is defined as a doubly
stochastic batch Bernoulli process with batch size generated by a two state Markov chain.
Thus, the SBBP can be viewed as the discrete-time version of the a switched batch Poisson
process in continuous time. The authors present an analysis of a SBBP/G/I queue. In Li [40]
a discrete-time queue with multiple deterministic servers and with an arrival process modeled
by a number of independent Markov chains is studied.

4. The superposition of arrival processes

In an ATM environment, a transmission link will have to serve a large number of bursty
sources. In order to model such a link, one has the option to model each bursty source
separately. This, of course, may lead to an intractable model due to the large number of
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variables. Altemativ~ly, one may superpose all the sources into a single source, or a few
sources, thus reducing the dimensionality of the model. In general, it is difficult to
characterize the superposition process due to the fact that the successive inter-arrival times of
the superposition process are correlated.

The problem of superposing renewal processes also arises in the analysis of non-product
form queueing networks. These networks are typically analyzed using the notion of
decom~sition.That is, the queueing network is broken up into individual queues and each
queue IS then analyzed separately. In order to study each queue in isolation (see Labetoulle
and Pujolle [41]), one needs to calculate the superposition of all the arrival processes to the
queue, which are basically the departure processes from its upstream queues and the arrival
process from outside the network.

The superposition of N independent renewal processes is a renewal process (i.e. the
successive inter-arrival intervals are not correlated) if and only if each independent renewal
process is a Poisson process. Furthermore, if the superposition is composed of many
independent and relatively sparse component processes then it converges to a Poisson
process as the number of component processes tends to infinity (se Cinlar [42] ). In general,
if at least one of the component processes is not Poisson then the intervals between renewals
are not independent.

There are a number of approximations reported in the literature that canbe used to obtain the
superposition of N renewal arrival processes (cf. Kuehn [43], Gelenbe and Pujolle [44],
Whitt [45,46], and Albin [47]). In these approximations, the inter-arrival time of the
superposition process is characterized by its exact mean and an estimate of its coefficient of
variation.More recently, Srirarn and Whitt [48] studied the aggregate arrival process resulting
from superposing separate voice streams. Each voice stream is characterized by a bursty
process. Heffes [49] approximated the superposition of a number of heterogeneous MMPPs
by a two-state MMPP. Heffes and Lucantoni [1] proposed an alternative method for
approximating the superposition of identical voice streams by a two-state MMPPA A
discussion of this process can be found in Rossiter [50]. Arvidsson [51] proposed a method
for fitting MMPPs using short term and long term characteristics of the superposition
process. Perms and Onvural [52] obtained the exact pdf of a single interval of the
superposition of Interrupted Poisson processes. Finally, a characterization of video codecs as
an autoregressive moving average process was given by Griinenfelder, Cosmas, Manthrope,
and Odinma-Okafor [53].

As was mentioned earlier, an alternative way of analyzing a single queue with N different
arrivals is to attempt to analyze the entire system. One method for analyzing this system is
through the use of fluid-flow approximations (see Tucker [54], and Anick, Mitra, and
Sondhi [55]). This appears to be a promising method and it has a good accuracy (see
Nagarajan, Kurose, and Towsley [56]). For further results on this type of approximation see
Maglaris, Anastassiou, Sen, Karlsson, and Robbins [57], and Norros, Roberts, Simmonian,
and Virtamo [58]. Various models for analyzing a single queue with N voice arrivals were
investigated by Daigle and Langford [59]. Structural results pertaining to a discrete-time
queueing model for a time division multiplexing with voice and data as input are given in
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Chang, Chao, and Pinedo [60]. An alternative way of analyzing a single queue with N arri~al

processes, each being an IPP or an IBP, was proposed by Hong, Perros, and Yamashita

[61]. Also, see Sengupta [62].

A lot of progress has been done towards the characterization of the superposition of N bursty
arrivals. However, there is still need for further research in this area. In particular, it would
be of interest to obtain simple approximate expressions which have a good accuracy and
which can be easily incorporated in larger approximate models.

5. Modelling ATM switch architectures

In recent years, several types of ATM switch architectures have been proposed. One class of
architectures that has attracted a lot of attention is based on multi-stage interconnection
networks. The switching elements in a multi-stage interconnection network mayor may not
be buffered. In the unbuffered case, there may be buffers at the input ports or at the output
ports of the switch. These types of a switch falls within the category of space-division
switch. Examples of this type of architectures can be found in Turner [63], Narasimha [64],
Huang and Knauer [65], Giacopelli, Littlewood, and Sincoskie [66], and Tobagi and Kwok
[67]. Other space division architectures have been proposed with sufficient hardware so that
to provide full connectivity under all circumstances between the input and output ports.
Examples of these architectures are the bus-matrix switching architecture (see Nojima et al
[68]), the knockout switch (see Yeh, Hluchyj, and Acampora [69]), and the integrated switch
fabric (see Ahmadi et al. [70]). Other architectures have also been proposed based on the
concept of memory sharing and medium sharing. The shared memory architecture consists of
a single memory shared by all input and output ports. All incoming and outgoing cells are
kept in the same memory. There is a single controller that is capable of processing
sequentially incoming and outgoing cells. The size of the shared memory is fixed so that to
correspond to a specific cell loss. An example of this type of architecture is the Prelude
architecture (see Devault, Cochennec, and Servel [71]). Also, see Kuwahara, Endo, Ogino,
Kozaki [72] and Lee, Kook, Rim, Jun, Lim [73]. In the shared medium type of
architectures, all arriving cells at the switch are synchronously multiplexed onto a parallel
bus. The cells are de-multiplexed into individual streams, one for each output port. There is a
buffer in front of each output port, where the cells can wait until they are transmitted by the
output port. An example of this architecture is the ATOM (see Suzuki et al [74]). For a good
review of these architectures the reader is referred to Tobagi [75].

When evaluating the performance of an ATM switch one is primarily interested in calculating
the cell loss probability, which should normally be very small, i.e. of the order of 10-1°.
Other familiar measures such as response time and utilization are also of interest In general,
the performance evaluation of an ATM switch is not an easy task. This is mainly due to the
fact that a switch consists of a large number of queues which interact with each other in a
fairly complicated fashion. The fact that the arrival process to each input port is bursty
complicates things even more. In view of the complexity of these systems, simulation may
not be an efficient modelling technique. In addition, one has to simulate for a very long time
in order to correctly estimate very low cell loss probabilities. Work in the area of rare event
simulation (see Larue and Frost [76]) may eventually result in efficient simulation techniques
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for A!M networks. ~e alternative way to modelling ATM systems, is to use approximation
techniques for analyzing large complex queueing models. In general such techniques are
based on th~ not~on. ~f decomposition. That is, the queueing network under study is
?ec.o~posed into individual sub-systems, and each sub-system is analyzed separately. The
individual results are combined together through an iterating method.

There have been many approximate analytic studies of ATM switches (see Karol, Hluchyj,
and Morgan [77], Hluchyj and Karol [78], Iliadis [79], Patel [80], Y000, Lee, and Liu [81],
Morris and Perros [82], Yamashita, Perros, and Hong [63], Nilsson, Lai, and Perros [84]).
Some of these analytic models have been developed under the assumption that the arrival
process to each input port is Bernoulli. As it was mentioned above, due to lack of real
measurements, the distribution of this arrival process is not known exactly.We note that the
Bernoulli assumption may lead to erroneous conclusions if in fact the real-life arrival process
is bursty. At this point, it is probably worth the effort to analyze an ATM switch assuming
that the arrival process to a port is bursty. Quite often, in addition to assuming that the arrival
process to an input port is Bernoulli, it is also assumed that each output port has the same
probability of been requested. This type of traffic pattern is frequently referred to as the
independent uniform traffic pattern. This is probably the simplest traffic pattern, and it is
mainly used for modelling convenience. We note that in a computer communications
environment this assumption is hardly justified. Another assumption that has been made is
that the input or output queues of an ATM switch have an infinite capacity. The rational
behind this assumption is based on the fact that an ATM switch will be dimensioned so that
the cell loss probability is of the order of 10-1°.Therefore, for all practical matters, each fmite
queue behaves as an infinite queue. This is a clever way of by-passing the cumbersome
problem of finite capacity queues. However, its applicability is rather limited. For instance, it
is not possible to accurately answer the typical question of "for a given buffer size, how
much traffic can be carried so that the packet loss probability is about 10-10 T". Finally, we
note that in a bufferless banyan multi-stage interconnection network, the probability of
successfully transmitting a cell through the switch fabric is calculated using the independent
uniform traffic pattern as follows (see Patel [80]). Let us consider a nxn crossbar switch.
Assume that at each time slot a cell arrives at each input port with probability r (i.e. Bernoulli
arrivals). Each output port has the same probability of being selected. Then, the probability
that all n input ports do not select a specific output port is (1- (r/n) )n. The probability that a
particular output port is requested by any of the input ports is 1 - (1- (r/n»n. Thus, the
expected number of busy output ports is 0[1 - (1- (r/n»n], and the expected number of busy
input ports is Dr. Thus, the probability that an input port will be connected to the desired
output port is equal to the expected number of busy output ports divided by the expected
number of busy input ports, i.e. [1 - (1- (r/n»n]/r. This simple calculation can be extended to
the case of multiple stages under the assumption of non-symmetric traffic. In general, this
approach is not very accurate when the arrival process to each input port is bursty (see
Nilsson, Lai, Perros [84]). It would be of interest to obtain a more accurate way of
calculating the probability of successful transmission through the switch fabric, though this
may not be a trivial exercise.

The quality of service that will be provided by an ATM network is affected by a) the ~lllo.ss

probability and b) the end-to-end delay. It is anticipated that different classes of service Will
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require different quality of service. In particular, voice and video are tolerant to cell loss but
not to time delays. On the other hand, the transfer of bulk files is tolerant to time delays but
not to cell loss. In view of this, it has been proposed to introduce priorities among cells. In
an ATM network, the delay due to buffering in a switch is expected to be rather small
compared to the propagation delay. Therefore, introducing service priorities in a buffer may
not be worth while. On the other hand, introducing cell loss priorities in a buffer may be an
effective way of providing different quality of service. These priorities are known as space
priorities, as they deal with priorities regarding the utilization of the space in a buffer. In
order to enable the implementation of a space priority scheme, CCfIT [85] proposed to use
one bit in the header of the ATM cell to indicate the priority, thus allowing the use of two
priorities. Several such mechanisms are currently being studied. Hebuteme and Gravey [86]
and Nilsson.. Lai, and Perros [87] analyzed the case where an arriving high priority cell can
take the place of a low priority cell already in the buffer if it finds the buffer full. If there are
no low priority cells in the buffer, the arriving cell is lost A low priority cell is always lost if
it arrives at the buffer at a time when the buffer is full. Garcia and Casals [88] analyzed an
alternative cell loss priority scheme known as partial buffer sharing. In this scheme, both
high and low priority cells share the buffer up to a threshold After that only high priority
cells are admitted. The partial buffer sharing scheme is easier to implement, though it has a
lower performance than the space priority scheme presented above (see Komer [89]). The
issue of priority on ATM networks is an important one, and it merits further research.

6. Congestion control in an ATM network

Congestion control is required to ensure that for each connection the grade of service
(expressed in terms of cell loss and delay) is met, and that the network's bandwith is
allocated in a fair way. There are two types of control: reactive and preventive (see Woodruff
and Kositpaiboon [90]). In a preventive control scheme, there is an admission control
mechanism which is responsible for accepting a new connection based on its traffic
characteristics. A new connection is accepted if the requested quality of gradecan be met and
the quality of grade of the existing connections is not violated. Due to the bursty nature of a
source, it is possible that at times the negotiated traffic parameters of a connection may be
exceeded. In view of this, an additional function known as the policing function is required
in order to protect the network against congestion due to violation of the negotiated
parameters. This policing function is enforced on each connection at the access points of the
ATM network. It uses knowledge of the extrinsic parameters associated with the connection
and controls the source by forcing it to conform to these parameters. Such policing schemes
are referred to as input rate regulation scheme.

The most popular policing function is the leaky bucket (see Turner [91]). This mechanism
consists of a counter which is incremented by one each time a cell arrives and it is
decremented at fixed intervals. When the momentary cell arrival rate exceeds the rate at which
the counter is decremented, the counter value starts to increase. At that moment the source
has exceeded the admissible parameter range. If the counter reaches a pre-defmed limit, cells
are discarded until the counter has fallen below its limit An alternative to discarding violating
cells, is to mark them and let them enter the network. Marked cells, however, are treated
differently within the network if congestion arises. The buffered leaky bucket is a variation of
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the original scheme in which cells are forced to wait in an input queue before they enter the
network The rate at which they are released from the queue into the network is equal to a
predefined constant which has been agreed upon at call set-up time. In an alternative scheme,
the cells are released from the input queue into the network using a system of tokens. In
particular, there is a token pool associated with each input queue. Each cell in the input queue
requires one token before it is allowed to enter the network. Tokens are added to the token
pool periodically at a fixed rate. The token pool is finite, which puts a ceiling on the
maximum burst size of cells allowed into the network. The parameters of the token pool are
determined at the call set-up time. For further discussion and performance evaluation models
of the leaky bucket and its variations see Eckberg, Luan, and Lucantoni [92], Sidi, Liu,
Cidon, and Gopal [93], Gounod [94], Ahmadi, Guerin, and Sohraby [95], Bala, Cidon, and
Sohraby [96], Heyman [97], and Akhtar [98]. Other policing mechanisms such as the
jumping window, and the moving window have also been proposed. For a comparison of
some of these policing functions see Rathgeb [99].

The leaky bucket mechanism has an intuitive appeal. However, tuning its parameters so that
a) it is transparent when the source is conforming, and b) it drops (or marks) the additional
traffic when the source is exceeding its contract, is not an easy problem (see for instance
Gounod [94]). In view of this, it has been suggested that a source be policed by two leaky
buckets, each policing a different traffic characteristic.

Reactive control schemes do not require source policing. In these scheme, bandwidth
allocation still takes place, but the transmission rate of a source is determined based on
feedback the source receives regarding traffic levels within the network. For instance, if the
occupancy level within a critical buffer exceeds a pre-specified threshold, a message is sent
back to the source requesting to either stop or lower the transmission rate to a nominal rate.
Various feedback mechanisms have been proposed. Makrucki [100] investigated the
performance of explicit forward congestion notification, Williamson and Cheriton [101]
investigated the use of loss-load curves, Haas and Winters [102] discussed a feedback
mechanism involving sending time-stamped packets in order to estimate the delay through the
network, and Wang and Sengupta [103] investigated the impact of propagation delay on a
threshold type of feedback policy.

Congestion control mechanisms for A1M networks are veryimportant and further research is
needed.

7. Adaptation layer and transport protocols

A1M will be used on top of a transmission layer such as SONET. Above the A1M layer is an
adaptation layer. The adaptation layer supports connections between A1M and non-A1M
interfaces. At the transmitting end, information units are segmented or collected into ATM
cells, and at the receiving end, the protocol data units are reassembled or read-out from A1M
cells. Services will run above the adaptation layer. Services are of two types, user and
control. The user services provide the end-to-end user information transfer, and the control
services provide network functions such as signaling (see TISI [104]). The ATM protocol
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stack is shown diagrammatically in the following Figure. Several key performance issues
remain to be resolved related to the issue of fragmentation and error control.

The issue of selecting an appropriate transport protocol for ATM networks has not as yet
been fully addressed. There are several transport protocols that have been specifically
designed for high speed networks.. such as XTP (Sanders and Weaver [105]), VMTP
(Cheriton and Williamson [106]), NETBLT (Clark, Lambert, and Zhang [107]), the
transport protocol by Sabnani and Netravali [108], and the Universal Receiver Protocol (see
Fraser [109]). Existing protocols such as TCPIIP and TP4 were not designed for high speed
networks (see Clark, Jacobson, Romkey, Salwen [110], and Heatley and Stokesberry
[111]). However, it has been suggested that they could be possibly modified for high speed
networks through clever tuning. The interested reader is referred to Rudin and Williamson
[112], where this issue is considered through a number of papers.

A1MLayer

Physical Layer

Management plane

Higher Layers

Control plane

Higher Layers

A1M Adaptation Layer

Figure: The A1M protocol stack
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