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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

No doubt the starting point of all genetical thought was the
common observation of resemblance between relatives. Yet the degree
of this resemblance depends remarkably on the trait observed. Thus a
child may resemble a parent with respect to one trait but more strikingly
resemble a more distant relative with respect to some other trait. The
genetic basis of the covariation of different traits is naturally of
general biological interest. However we shall concern ourselves here
with our own species.

In human genetics this interest arises quite naturally when the
traits under study relate to a disease such as hypertension; the genetic
basis of covariation of the many symptoms and predisposing factors may
fruitfully be investigated.

There are two basic questions that can be asked in such an
analysis.

1. 1Is there a single disorder or several? e.g., does one gene

control obesity, another subcutaneous fat thickness, etc.,
or is there a single major fundamental genetic defect that
causes the whole spectrum of characteristics?

2. What may be used as a measure of the "innate" trait? Such

an index can be used for further genetic analysis (e.g. to

determine the position of the underlying genes relative to



some known genes), and also to identify individuals at risk. .

Our aim in this dissertation is to develop statistical procedures
based on the genetic components of covariance, for answering these
questions. We are motivated by the following considerations:

Denote by X the measurement of a p~variate trait on an individual,
and suppose that in the population the.covariance matrix of x may be

partitioned into genetic and environmental components as follows

V=V +V + Vv
ng Pg e

where Vmg + Vpg = Vg is the contribution to the covariance matrix by
genetic factors, broken down into Vmg representing the contribution of

a major gene to the genetic covariance, and Vpg representing the

contribution of many separately indistinguishable genes. Now consider

the linear index
I(x) = a'x ;
its variance may be partitioned as follows

a'Va = a'Va+a'Vas= a'Vm a+a'V. a+ a'va.

I(x) may be used as a measure of the innate trait if it has a high
genetic variance relative to its total variance. If there is a single
genetic defect the major gene component of the genetic variance will be
relatively large. Thus the two basic questions may be simply answered
by examining the eigen structures of V_leg and V—lvmg'

The problem is that Vmg’ Vpg and Ve are not known. Hence we shall
consider first the statistical estimation of the genetic components of
covariance. It is also of interest to know whether or not all of these

components are statistically important. We shall describe maximum

likelihood methods for estimation and hypothesis testing.



We are dealing here with the human species. Experimentation is
therefore generally precluded. The data will typically comprise
observations on related individuals--families and extended families,
i.e., pedigrees. Because of heterogeneity a single large pedigree is
better than a large number of nuclear families analyzed together
(Elston and Rao, 1978). The rich correlational architecture of pedi-
grees unfortunately creates problems in modeling and analysis. Lack of
independence between observations removes pedigree analysis from the
main stream of statistical inference methodology. It also creates
computational problems.

Lange, Boehnke and Spence (1981) have described a model for arbi-
trary pedigree structure with multivariate traits, but it only allows
for polygenic inheritance and is thus not general. In particular it
cannot be used for the single gene analysis required to answer the
questions raised above. Elston and Stewart (1971) presented a general
model that allows a wide variety of genetic mechanisms to be specified.
However ,pedigrees of afbitrary structure can only be analyzed on the
assumption of single or few genetic loci. There are also computational
problems for some genetic mechanisms even for simple pedigrees; the
accurate calculation of the likelihood under the mode of inheritance
involving both major and polygenic loci, the mixed model, is not
feasible even with our present day computing facilities. Moreover, the
model is essentially meant for univariate traits, although multivariate
generalizations for some genetic models are trivial and are implied in
Elston and Stewart's (1971) paper and used explicitly by Beaty (1978)
and Simpson (1981).

We shall develop a model for multivariate traits that has all the



features of the Elston and Stewart model, and includes the essentials
of the Lange, Boehnke and Spence model.‘kThe computational problem is
studied analytically in considerable depth, yielding recurrence formu-
las for the exact calculation of the likelihood for even the mixed
model, and for arbitrary pedigree structure.

The rest of this chapter is devoted to a review of the literature.
The objective is to present a simplified expository description of the
basic statistical models in genetics, the main emphasis being on those
notions which are essential to a proper understanding of the theory and
methodology developed later. In particular we shall fix the definitions
and explain concisely the origin and use of the genetic components of
covariance that enter into our model for quantitative traits. Secondly,
we shall describe the Lange, Boehnke and Spence, and Elston and Stewart
models, and briefly review the methods for testing common genetic con-
trol (pleitropy) in multivariate traits.

1.2 The Simple Mendelian Model and
Fisher's Decomposition

Genetic traits are due ultimately to extremely small 'particles'
or genes, which are present in every nucleate cell of the body. The
scientific understanding of the transmission of genetic traits began
with the two laws of Gregor Mendel. The law of segregation is the
first. It states that traits are controlled by pairs of genes which
segregate or separate during the formation of the reproductive cells,
thus passing into different gametes. The pairs are restored when
fertilization occurs, and this leads to the production of different
types of offspring in certain definite proportions. The term

Mendelian inheritance is used to refer to this phenomenon. Segregation
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analysis is the set of procedures that enable Mendelian inheritance to
be inferred.

The thrust of Mendel's First Law lies in its use to make statis-
tical predictions of the consequences of different kinds of mating.
Consider a gene with two alternative forms (alleles): A and a. Since
an individual receives either A or a from each parent, his genotype
is AA, Aa, or aa. With respect to this gene then, there are six mating
types in the population: AA x AA, AA x Aa, AA X aa, Aa x Aa, Aa x aa,
aa x aa. For example, if both parents are heterzygotes (Aa), then the
mating type is Aa x Aa and an offspring will be AA, Aa or aa with
probabilities %, %, % respectively. Now suppose we have a large
population with q of A and 1-q of a. If the proportions of the three
genotypes AA, Aa and aa are q2, 2q(l-q) and (1-q)* respectively, then
if the population is large enough so that probabilities correspond to
frequencies,we can easily verify, using the elementary probability laws
and taking account of the six mating types, ﬁhat on random mating the
genetic structure of the population remains unchanged, i.e., the off-
spring distribution is also q?, 2q(l-q) and (1-q)? for the three geno-
types. This is the Hardy-Weinberg Law.

The genotype of an individual is distributed over the population
as a random variable. Denote it by the letter t, and the population
distribution by wt. For a quantitative p-vector trait z, let the

Then for the

contribution of the genotype t to its variablity be M-

simple two-allele case above, the genetic contribution to the mean of

z is

=5 y
Bg t lj,tl:,lt

2 - - 2
q “AA + 2q(1 q)e a + (1-q) Eaa’ (1.1)



and the covariance matrix is

=Z L 1
Vg = I Ut gy
- 42 ' - v 4 (1-g)2 ! 1.2
4 EAAE AA + 290 q)BAaE Aa (1-9) Eaag aa ( )
- o',
~8&~ 8

It should be noted that in this formulation the random variable t is
the underlying factor for the p-vector effect Et’ so the genetic
covariance between two components of the vector trait z is the popu~
lation mean of the cross-products of effects due to the same genotypes,
corrected for the product of the means.

For quantitative traits it is helpful to think in terms of the
effects of the genes (alleles) that constitute the genotype. Denote
the paternal allele of an individual by v and the maternal allele w.

Then we can write

u =a 4+a +6 (1.3)
VW v W W

where o and o respectively denote the paternal and maternal gene

effects, and 6vw represents the interaction effect between v and w.

For a quantitative trait, the genotype of an individual is generally

unknown so the usual 'linear model' definitions of uv, aw and § can-—
vw

not be used. We choose av and aw to minimize

<va % ?w)'(ng % T OLw) (1.4)

summed over the whole population, and set

8 u - o - 0
VW VW v W

l

which implies L qua 0, L qao =20,
v V.V N W.W N

assuming without loss of eralit Lz =
g gen ity that ol quwva Oy



where q, and qw denote the frequencies of v and w, so that

o = & o = 7
Vg T % v YWHow

and (1.5)

évw Pow T é Yo ~ 5 Whow -
This is the multivariate generalization of Fisher's (1918) decomposi~
tion for a single genetic locus (Lange et al., 1981). Thus Fisher
defined the additive effect of a gene as '"equal to the mean of the
values of the genotypes which contain the gene, weighted by the fre-

' When there is no

quencies of the other genes in those genotypes.'
dominance the additive effects are independent of gene frequencies.

We note that Fisher's decomposition is arbitrary. It is based
on the assumption that the dominance effects can be defined such that
the sum of squares of their values is minimized. The values a, are
clearly not related simply to the physiological effects of the genes,
since they depend on the frequencies of other genes. The a, can
therefore be different in different populations, if the populations
have different gene frequencies even if the genotypic values How are
the same. However Fisher's decomposition has the advantage of defining

additive and dominance effects which have zero covariance so that the

genetic component of the variance of z may be partitioned into

Vg = Va + Vd

where

= Z |

am B oaS Fe)g ey
i (1.7)
= '
2 Lqoaly

and



= 242 '
Vd 42 99, ?vw? vw (1.8)
vow
where
= - L
?vw How 2(Evv + Eww)' (1-9)

This simple exposition does not take into account differential
survival of the genotypes, or viabilities of the gametes, which lead to
the phenomenon of selection. We have also assumed that there is no
mutation, i.e., genes do not change their forms, and that for qualita-
tive traits individuals are classified without error according to
genotypes. The modifications needed when these assumptions do not
hold form the bulk of Mathematical Population Genetics, which we shall
not go into.

If the trait is controlled by two or more loci epistatic inter-
actions (interactions of genes at different loci) must also be con-

sidered. The basic model (1.3) becomes
u=a+ 38+ vy (1.10)

where a, § and vy denote respectively the additive, dominance and epista-
tic interaction effects. The genetic component of variance may there-
fore be partitioned accordingly into
V =V +V
g a

4 + VY + 2 cov(a,8) + 2 cov(d,y) + 2 cov(a,y) (1.11D)

where, by suitable definition of a, & and v the covariances are made
zero. Cockerham (1954), using a system of orthogonal coordinates,
further partitioned the epistatic variance into four components. As
far as the author is aware Cockerham's decomposition of epistatic

variance has not been used for the analysis of human data, and so will

not be described here.



1.3 Identity and Kinship Coefficients

Fisher (1918) used his decomposition of genetic variance for a
quantitative trait to calculate the genetic correlation between rela-
tives. It is remarkable that the genetic covariances between relatives
turn out to be linear functions of the components of genetic variance.
Ceneral formulas for the genetic covariance of any two individuals are
available in terms of one of the following measures of relatedness:
kinship coefficient (coefficient de parenté, Malécot 1948), coeffi-
cients of identity by descent (Gillois 1964), or the condensed coeffi-
cients of identity (Jacquard 1974). We shall now briefly discuss these
measures and show how they have been used to partition the genetic
covariance between relatives.

However complex the relationship between two individuals i and
j, the genetic implication of this relationship is simply that there
is a positive probability that a gene in one and a corresponding gene
in the other may both be copies of a given gene in one of their common
ancestors. These measures of relatedness therefore depend on the
notion of identity of genes at the same locus. Two genes 81 and 85
are identical by descent (IBD) if one is a physical copy of the other
or they are both physical copies of the same ancestral gene. The kin-
ship coefficient Qij of two individuals i and j is the probability that
a gene selected randomly from i and a gene selected randomly from the
same locus of j are IBD. If i and j are the same person, we are more
interested in the inbreeding coefficient fi’ defined as the probability
that the two genes he possesses at a given locus are IBD. The inbreed-
ing coefficient of an individual is equal to the kinship coefficient of

his parents, i.e., fi = E where k and % are the parents of i. If the

e



10
parents are not related fi = 0. 1If fi > 0, 1 is said to be inbred.
The kinship coefficient of the individual i and his inbreeding coeffi-
cient are related: Qii = L(1 + fi)'

At a given autosomal locus, the two individuals i and j have a
total of four genes. Suppose ug is the gene transmitted to i by his
father, and A that by his mother. Correspondingly for j we have uj
and v,. Depending on the pedigrees of i1 and j, these genes can be
identical with ome another or not. The relation of identity is transi-
tive: two genes which are each identical to a third gene are identical
to each other. Taking this identity dinto account Gillois (1964) has
enumerated 15 possible cases ('identity modes') with respect to the
identity of the four genes of i and j. By analysis of the pedigree
which contains i and j, we can attach probabilities 61, 62, eees 615 to
these states. These probabilities are called "coefficients of identity
by descent" of i and j. They contain all the information about the
relationship of i and j that we require for genetic purposes.

Thinking in terms of the genotypes of individuals without regard
to which genes came from which of his parents, Jacquard (1974) reduced

the fifteen states to nine: Zl’ 22, ...y 2, and called the associated

9
probabilities Al, Az, cens Ag "condensed coefficients of identity."
Writing "ui v vj" for "ui and vj are IBD," and "iff" for "if and only

if," the condensed states are:

z iff u, vv, vu, vv,

1 i i i i
22 iff uy gy vi and uj ~ vj
)X iff u, Yv, vu, or u, vv, vy,
3 i i 3 i i 3
by iff u, vv,
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z iff u, vu, vy, or v, vu, Vvv,
. 5 i J ] i h 3
z iff u, vv,
6 3 3
z iff u, Yvu, and v, vv,,or u, vv, and v, Vv u,
7 i i i i i j i 3
. z iff u, Yu, or u, VvV, or v, vu, or v, v v,
8 i ] i i i 3 i |
29 iff none of the 4 genes are i.b.d.

"It follows that

= L L )
@ij Alij + 2(A3ij + ASij + A7ij) + “A8ij’ (1.12)
= A A A s .1
R PRI TR P PR g (1.13)
= A A + A + A s 1.14
57 Pag T hagy Y hsiy T By (1.14)
and if neither i nor j is inbred,
=L L
®ij 2A7ij + “ASij . (1.15)
. Lange et al. (1976) discuss algorithms for computing the symmetric
) matrices ¢ = (@ij) and A7 = (A7ij). Lange et al. (1981) have derived

the genetic covariance of a trait Xi measured on the individual i and

a trait Yj measured on the individual j. We shall briefly present
their result. Suppose Xi and Xj are determined by the same autosomal
locus whose ;—th allele has frequency q.- Denote the decomposition

of Xi into additive and dominance components by a + o + 6rs and that
of Yj by Bt + Bu + Btu' Then assuming E(Xi) = E(Yi) = 0 the genetic

component of covariance is

. = +
COVG(Xi’Yj) A713 ;i(ar % + 6rs)(8r + Bs + Yrs)qrqs
A z ) (
) * gy L (a + o  + 8B, + B+ 8 ) 4,.9,9,

+ A9,, L (o + al + 6rs)(6t + Bu + étu)qrqsqtqu
rstu
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2¢ij(2 z arqur) + A I 8§ v q.4q

713 rs rs'r's
r rs
= + A 1.16
2035%xy ¥ %715 %axy (1.16)
= { = 0 XY . . h
where % axy cova(k Y) and % dxy c Vd( ,Y) (Lange et al., 1981). The

partition of genetic covariance in (1.16) is valid only if neither 1
nor j is inbred. If either i or j is inbred but there is no dominance,

i.e., © = 0, then

dxy

COVG(Xi’Yj) = 20 (1.17)

ijgaxy
is still correct, for the following reason. Gene frequencies in the
offspring population differ from that of the parent population when
there is inbreeding, but in the absence of dominance, the additive
genetic effects, and consequently the additive genetic variance, do
not depend on gene frequency.

One important use of the kinship coefficient is in the derivation
of the distribution of the genetic effects on quantitative traits, of
a large number of loci which are separately indistinguishable--the so
called polygenic loci--over biologically related individuals. The
work we shall now describe was originated by Fisher (1918), but has
received more formal treatment only recently by Lange (1978), who has
presented central limit theorems for polygenic traits over pedigrees
of arbitrary structure. Here we shall state only one special case of
Lange's result, for later use. Let &r be the effect of the r-th locus
on a univariate quantitative trait, with corresponding additive and
and o

dominance variances o respectively. Assume E(Er) =0

2 2
a(r) d(r)
and further that the locus effects are additive. Now let

n n
S = I g and s? = I
no (r) n r=1

and let Sn and s be Nxl vectors of quantities,Sn and s, for each of N

2
(ca(r) + Gﬁ(r)) (1.18)

individuals in a pedigree.
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Then we may state the following special case of Lange's theorem.

Theorem 1.1 (Lange 1978)

2 2
NN(9,2®Oa + Aod) (1.19)

where ¢ = (¢ij), A= (Aij), i,j are individuals in the pedigree,provided

(1) the sequence i(l), 5(2), .+.y is m—-dependent, m finite;

(ii) for some M and § > O,

246
E{la(r)l } < M,
(iii) Both
1 n n
lim = I oz(r) and lim = I 0(21() (1.20)
no 0=l 2 nreo D or=l r

exist and at least one of them is positive.

It is important to note that the limits here refer to the number
of genetic loci, not the number of individuals in the pedigree. Thus
the result holds for single individuals as well. The three sufficient
conditions for asymptotic normality are all plausible for any group of

individuals. The first is the requirement that the sequence

£ £ . be m-dependent, i.e., & and &l are independent whenever

1’ °2 k
ik—lf > m. This condition prevents clustering of loci, and is auto-
matically satisfied if loci k and % are on different chromosomes. The
second requirement is the boundedness condition, which is always
satisfied since the effect of any locus on the trait is necessarily
finite. The last condition is merely a requirement that the variances
stabilize as the number of loci increases. Extensions of the results
to multivariate traits are given by Lange et al. (1981l). Necessary

conditions for asymptotic normality are as yet unknown. The rate of

convergence is also not known in general terms, although Elston (1980)
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has given a demonstration that approximate normality could hold for .

as few as three equal and additive loci.

1.4 Modeling a Quantitative Phenotype

Quantitative traits like height and weight show continuous
variation in the total range of the phenotype. The theory we have
outlined above for the genetic basis of such traits is based "on the
supposition of Mendelian inheritance,” Fisher (1918), i.e., that the
genes governing the traits are transmitted in Mendelian fashion. But
on to their effects must be superimposed effects of the environment.

To a particular genotype, therefore, there corresponds not a single

measure, but a set of measures of the trait. The genotype therefore

defines a frequency distribution of phenotype values, and consequently

the quantitative trait may be regarded as a random variable in a . ’
statistical sense, dependent on the genotype and environment. The

decomposition of observed statistics (in particular variances and

covariances) into meaningful genetic and environmental components is

basic to the study of these traits. A linear additive model is commonly

assumed. The usual p-variate model is

z=g+c+e (1.21)
where z is the vector phenotypic value,
g is the vector genotypic value,
¢ is the common or family environmental effect, -
and e is the random environmental effect,
with var(z) = V, var(g) = Vg’ var(c) =V ,
~ 2 ~ c
var(e) = V = l'l'
(N) o’ cov(g,s) Vgc’ and
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cov(g,e) = cov(c,e) = O.

~ o~ ~

Thus, the total phenotypic covariance matrix is given by
V=V +V +2V 4+ V. (1.22)
g c gc e

The terms in (1.22) are the commonly estimated components of covariance,
when interest centres mainly on resolving the phenotypic covariance into
genetic and envirommental components. The more interesting case occurs
when the investigation includes the actual genetic mechanism. Then g,
and consequently Vg’ must be partitioned into genetically meaningful
components. The "additive'" and "dominance" components we defined in
1.3 are the simplest and most commonly used genetic components. Elston
and Rao (1978) listed the following assumptions for the application of
this model (1.21) to family data, although they considered only the
univariate case:
(i) a linear model exists for the quantitative trait which
assumes no genotype-environment interactions;
(ii) genotype-environment covariance matrix is in equilibrium;
(iii) if twins occur in the data, their phenotypic similarity
due to common prenatal and postnatal environment,
irrespective of zygosity, is the same as for ordinary
siblings;
(iv) adoptions, if they occur in the data, are random with
regard to genetic or environmental variables, and true
parents are assumed to exert no influence on the children

either prior to or after the adoption.
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1.5 Estimation of the Genetic
Components of Covariance

Theoretically, the statistical problem of estimating the genetic
components of covariance falls into the general category of covariance
components estimation for random or mixed designs with unbalanced data.
Searle (1971) presents a comprehensive review of the huge literature
on the statistical estimation of components of variance, with obvious
extensions to components of covariance. Here we shall give only a
brief summary of the general methods. In the next section we shall
review the methods for the particular case of pedigree data--the type
of data structure to be studied in this dissertation.

The estimation procedures may be classified into three basic
categories: Analysis of Variance (ANOVA) estimators, Symmetric Sums
of Products (SSP) estimators and Maximum Likelihood (ML) estimators.
When the design is balanced these methods lead essentially to the same
estimator. In human genetics the ANOVA estimators were until recently
the best known. Henderson (1953) presented the following methods for
obtaining ANOVA estimators of components of variance or covariance:

Method 1: Equate simple sums of producté to their expectations

under the assumption of a random effects model.

Method 2: For mixed models, adjust the data for the fixed effects

by the method of least squares, then apply Method 1 to
the adjusted data.

Method 3: Use some conventional method to compute mean products

for the non-orthogonal data, and then equate these
mean squares to their expectations and solve for the

estimates.
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We often have more equations than parameters, in which case weighted
least squares methods are used to solve the equations. Henderson
indicated that Method 1 leads to biased estimates if the assumptions
of a mixed model are appropriate or if certain elements of the model
are correlated. Method 2 adjusts for the mixed model, but the estimates
are still biased if there is interaction between fixed and random
effects. Method 3 gives unbiased estimates,but may require a great deal
of computation. Rohde and Tallis (1969) have derived the exact first-
and second-order moments of estimates of components of covariance, under
normality assumptions.

The SSP approach was developed principally by Koch (1967,1968) for
random effects models, and extended to mixed models by Forthofer and
Koch (1974). The method uses the fact that expected values of products
of observations are linear functions of the variance components. Sums
of these products, and hence means of them, therefore provide unbiased
estimators of the components.

In connection with the ANOVA and SSP estimators Searle (1971)
notes the following problenms.

(1) There are infinitely many quadratic forms that can be used,
but the procedures give no criteria for selecting the
quadratic forms to be used.

(ii) The only known property of the estimators is that they are
unbiased for random models and, with the SSP and Henderson
Method 3, unbiased for mixed models as well. Searle
doubts the usefulness of the unbiasedness property for
unbalanced designs.

(iii) Variances of estimators are somewhat tractable only if
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normality is assumed. Even then, the variances are
functions of the unknown components.

(iv) The ANOVA methods can yield negative components of
variance.

(v) These methods only estimate components of covariance.
They give no guidance on the problem of estimating
the fixed effects of the model, which are usually also
unknown.

Maximum Likelihood methods overcome most of these problems.
However ML equations for estimating components of covariance from
unbalanced data cannot be solved explicitly. Even if solutions could
be found, the problem of using these to derive non-negative estimates
of variances must be considered. Thompson (1962) suggests a restricted
maximum likelihood procedure, confined to just that portion of the set
of sufficient statistics which is location invariant. But Searle in
his review reaches the conclusion that "Explicit maximum likelihood
estimators must be despaired of." Hartley and Rao (1967) have
developed a general set of equations from which specific estimates may
be obtained by iteration. They showed further that these estimators
were consistent and asymptotically efficient. However, to our know-
ledge their method has not been specifically extended to include com-
ponents of covariance, so we shall not describe them here. Maximum
likelihood methods have been developed specifically for pedigree data.

We shall describe these in the next section.
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1.6 Maximum Likelihood Methods for Estimating the
Genetic Components of Covariance from Pedigrees

For detailed analyses of the mode of inheritance of the trait,
we must use family data or, preferably, their extended form: pedigree
data. As Elston and Rao (1978) pointed out, genetic hetérogeneity
from family to family may obscure the mode of inheritance, but a large
single pedigree is more likely to be homogeneous. We shall generally
consider pedigrees.

The term 'pedigree' has been given a technical definition in
graph-theoretic terms by Lange and Elston (1975). 1In ordinary language
it refers simply to a family tree including spouses. Lange and Elston
(1975) define a pedigree as "simple" if there are no consanguineous
marriages, and, except for the original parents, the members of each
mating pair in the pedigree is as follows: one is related to someone
in the previous generation, the other is an unrelated person 'marrying

' Otherwise it is said to be a "complex' pedigree.

into the pedigree.'

Two methods have been developed to handle simultaneously the lack
of balance and the biological dependencies in pedigree data. We shall
describe these in turn.

The method of Lange et al. (1976) extended to multivariate traits
by Lange et al. (1981) assumes the phenotypes of an arbitrary pedigree
follow a multivariate normal distribution, whose covariance matrix is
expressed as a function of additive genetic covariance, a dominance
covariance and an environmental covariance. Estimates are then derived
by the scoring algorithm (Rao, 1973).

For a pedigree of n members, arrange the p-variate data as

Y = (x ooy X Xpl’ e xpn)'

11’ In> *7°°
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Then using the decomposition of genetic covariance given by formula

(1.16), the phenotypic covariance matrix of w may be partitioned as

var(w) =

Lo Q =8 (1.23)
v k

k 'k

where o, are scalars and Qk are np x np symmetric matrices. The log

likelihood function is then, apart from a constant

= <k gnla] Bw - A Q7L (v - Aw) (1.24)
where Au = E(w). The score vector is
34
3
s u
§ = 32 = s (1.25)
tle) ~
ag' -1
where T A'Q T(w - An)
k ]Jk ~ ~
and
—Ed)_i— = ~12tr(§z'lszk) + L(w - Au)'Q—leQ—l(w - Au).
K . - - -
The information matrix is
2
Bukauz u -
1 = 324 | = ~ (1.26)
- 0 (-E ) [
- 90, 90 0 I
k%% J - N
where
v\2 -
1 = (EZEy -agla
y dULOUg
5 (1.27)
N - 348 - (L -1 -1
I,=( 35 35 (str(Q a8 QQ))
- k™2
and
2
- %—ﬁao = 0.
Mk
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If there are m independent pedigrees and Qr is the log likelihood for
r-th pedigree, then the scoring algorithm updates p and o by adding

the increments

m ] m
Ay = (L 1 ) I s
- r=1 'r r=1 NHr
(1.28)
m .1 M
Ao = (2 1 ) I s
- r=1 r r=1 "_r

Lange et al. (1981) noted the major disadvantage of the method:
the matrix inversion Q_l and matrix multiplication Q—le must be done
for each pedigree at each iteration. Their method implicitly assumes
a polygenic model, and is therefore not general,

The second method is due is Elston and Stewart (1971) whose
algorithm may be used to compute the unconditional likelihood of a
simple pedigree under any genetic model. Before we describe their
algorithm let us explain their notation. The measurement on an
individual who is related to a member of the pedigree in a previous
generation is denoted by x; the measurement on his spouse 1s denoted y.
For the original parents, the measurement on one is arbitrarily labeled
X, and the other y. The measurement is then subscripted hierarchically
to reflect the individual's pedigree (we may have more than one pedi-
gree), generation within his pedigree and birth order within his
generation. Thus the original parents (generation zero) have one sub-
script iO to denote pedigree number. Their children (generation 1) have

two subscripts i - io is the same as their parents' and i. indexes

01 1
their birth order. Grandchildren (generation 2) have three subscripts

iOili° - ioil are the same as their parents' and iz their birth order

within family, and so on (see Figure 1.1). 1In general the measurement
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on an individual in the j-th generation of the pedigree, counting the

original parents as generation 0, will be of the form X,

oirfpeeedy’
]
this being for the ij—th child of the ij_l-th child .... of the 1j—th

child of the io—th original parents. The measurement on his spouse is

Ve = .
101112 e lj.

We shall first construct the likelihood for a random pedigree

for an oligogenic model.

3 Y3

%3 %3 X33 34 Y34

Y341 X341 %342

%3411

Fig. 1.1 1Illustration of the notation for the phenotypes
of the members of a pedigree: this is the third pedigree (iO = 3) in
a set of pedigrees.
Let the number of possible genotypes be k, assumed arranged in order
and indexed u = 1, 2, ..., k. Let gu(x) denote the conditional
probability distribution of the phenotype x given the u-th genotype,
and Pery the probability that an individual has genotype u given his

parents have genotypes s and t {(s,t, = 1, 2, ..., k). Then for a

sibship of size r the likelihood is
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r k

L= .H z pstugu(xi) (1.29)
i=1l u=1

Let wv be the probability that a person selected randomly from the
population has genotype v, then the likelihood of observing a particu-
lar phenotype on an original parent or someone who marries into the

pedigree is

k
L= & wvgv(y)- (1.30)
v=1

Therefore the likelihood of the phenotypes observed on a sibship and
the spouses of the sibship, given the parents' genotypes, is, under

random mating,

I o=

pstugu(xi)

. . wvgv(yi) . (1.31)

1

This is a function of the parental genotypes s and t; but s and t of
this generation are the u and v of the previous generation. Thus the
likelihood of the j-th generation (including spouses), given the

parents' parents' genotypes Sj— and tj— can be written as

1 1
k k

f(ro= Ty g (x.) v g (v.)
PO 5215 % 11 to o g
¢ 0 0
\
E ; :

r, =1 Zop. g (s, . i,y v g (y. . c)s

Doty sm1 %15-1% 0% toh €71 53 55 totnttyT Az

(1.32)
By starting at the most recent generation and successively moving up
the pedigree, we can write the unconditional likelihood of observing

the entire pedigree as

L = FO(Fl(Fz(F3 cee))) (1.33)

in which I' is regarded as an operator, not a mathematical function.
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Under different models only Pory (the transition probabilities)
and gu(x) (the conditional phenotypic probabilities given the genotype)
will vary.

In the polygenic model the pStu are normal densities, and the
summations are replaced by integrals. The rationale they gave was
this: the number of loci in a genotype that is heterozygous tends to
a constant value; hence the variance of the population of gametes

transmitted by any genotype also tends to a constant value, say 02,

equal to half the additive genetic variance, i.e., 0?2 = %03. Under

random mating uniting gametes are uncorrelated and so the variance of
genotypes within a sibship is always the same. If the parents' geno-
types are s and t, the gametic distributions are NC%,OZ) and N(%,OZ).

The genotype distribution within the sibship is thus N(E%E,OZ). Setting

m = %(s+t) the analogue of the transmission probability is

u-m
-0

¢ (u-m,0?) = (1.34)

L.
oV2x
i.e., the ordinate at (0 of the distribution N(u-m,0?), gu(x) is
replaced by the conditional density of x given u, g(x[u) 0% N(u+u,oi)
where p is the mean over all genotypes. The genotypic variance is
equal to the additive genetic variance under this model and is there-
fore ci = 202, Thus wv, the genotype distribution in the population
is replaced by ¢(v,0§). With these changes the conditional likelihood

for the j~th generation is

=i
I

= 2 - 2 2 - 2
0 fso¢(s0,oa> d(sytu=x, ,02) fto¢<t0,oa> ¢ (tgru-y, »02)

0
,02) (1.35)
e

0

I [ ¢(s,-%(s, +t, ),402) ¢(s,+u-x
. s, j i-1 §-17" i i v e
i SJ j j j-1 a j 10 1 i

b
2 — 2y . s
ft,¢(tj’0a) ¢(tj+u Vi g (0925 321

rﬂmmm~ e
3
]

3 Ol...lj
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where fs denotes integration with respect to s & (~w,»),
For the mixed model, in which the genotype is made up of a few
major loci and a polygenic loci, the likelihood is obtained simply by

combining (1.32) and (1.35) as follows

,
TO g Vs fa ¢(a0,ca) ¢(aO+us 1 ’Oe)
s 00 0 0
0
Z $(b_,02) ¢(b +u_ -y, ,02)
tO tO Ibo O a O tO 10 e
(1.36)
4
TRIEEI [ ola,ha, i+, Dkohetatu_ x o)
Iy s, Sj—ltj-l ; aj ] j-1 "j-1 i sy igl---ipse
J ]
Lo [ 6(b.,02) ¢(btu_ -y, C .08 e § > 1,
! tj 1:j bj j a j tj 1011...1j e’ s

The integrals that appear in (1.35) and (1.36) are easily
expressed as functions of normal densities. Thus, the Elston and
Stewart algorithm, indicated by Elston and Stewart (1971) for (1.35)
and considered in detail later in this dissertation for (1.363 is a
highly efficient means of computing the likelihood of a pedigree.

For the purpose of estimating variance components it is used in
conjunction with algorithms that maximize functions without taking
derivatives, i.e., by searching the likelihood surface. ML estimators
have the advantage that their asymptotic variances are easily derived,
even though the estimators themselves cannot be written down explicitly.
In fact they are found simply by inverting the information matrix
given in (1.26).

For oligogenic models Lange and Elston (1975) have extended the
algorithm to complex pedigrees. Cannings et al. (1976,1978) used a
graph theoretic approach to generalize this procedure so that the

complete likelihood can be calculated from any arbitrary subset of the
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original pedigree. Their methods allow for going down from the original .

parents when calculating the likelihood.
Elston (1973) extended the model to allow for variable age of
onset. -
For the special case of nuclear families Morton and MacLean (1974)
developed conditional likelihoods. Elston and Rao (1978) have noted
that the conditional likelihoods may be obtained by dividing the
unconditional likelihoods by the corresponding likelihoods of the two
parents. Go et al. (1978) have demonstrated in a simulation study
that the unconditional likelihood is appreciably more efficient for
parameter estimation than the conditional. However, for detection of
major genes, their relative efficiencies depended on the precise

hypotheses tested (MacLean et al.,1975, Go et al.,1978). On the other

hand Elston and Rao (1978) have remarked that for pedigrees, there is
nothing comparable to the likelihood conditional on the parental pheno- .
types since a large pedigree can contain individuals who are at the
same time parents and offspring of other individuals in the pedigree.

Further developments have included the calculation of the likeli-
hood for the case of linked traits (0tt,1974) and the approximation of
the likelihood under a mixed model by a mixture of normal distributions
(Graepel, 1981).

The Elston and Stewart algorithm has not been extended to multi-
variate traits and so cannot be used to compute genetic components of
covariance, and hence to test associated hypotheses. This is a major

goal of the present study.
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1.7 Testing the Simplest Genetic
Hypothesis of Covariation

We now return to the question of the genetic basis for the
covariation of two or more traits: is it due to the same gene(s) or to
different genes for each trait? Two main approaches have been suggested
in the literature for answering this question. One method, Eaves and
Gale (1973), rescales the additive effects to a common value employing
a minimum chi-square criterion to estimate the scales. They do not say,
but since they assume a purely polygenic model, the hypothesis they are
really testing is common polygenic control, and that may not be very
helpful.

The second method, Elston et al. (1975), essentially reduces the
problem to a univariate one by determining a linear function of the
traits that best fits the phenotypic distribution assumed to be a
mixture of two or three normal distributions. Segregation and linkage
analyses are then performed on the linear function. A variation of the
method, Goldin et al. (1980), determines the linear function that best
fits the phenotypic distribution under an assumed genetic model. The
method, together with the slight variation noted,has been applied with
some success to study the segregation and linkage to known markers of
the hyperlipoproteinemias (Elston et al., 1975), genetic covariation
of cholesterol and triglycerides (Namboodiri et al., 1975), hypertri-
glyceridemias (Namboodiri et al., 1977), and von Willebrand's disease
(Goldin et al., 1980). However the procedure does not provide a test
of the hypothesis of genetic covariation, and it is not known whether
or not the linear index so determined is optimal in terms of having the

maximum realizable heritability, or major gene component of genetic
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variance. If the index is not optimum in one or both senses, then it is
not the best measure of the "innate" trait underlying the multivariate
phenotype, although it could provide valuable insight into the phenome-
non under study if the index so determined is interpretable. Besides,
the genetic components of covariance are also important as descriptive
statistics in the analysis of the genetic basis of covariation, and
hence estimates should be obtained if at all possible.

1.8 Objectives and Outline of
Remaining Chapters

Our aim in this dissertation is to develop maximum likelihood
methods for analyzing the genetic basis of covariation. To this end
we shall develop a model for multivariate traits that has all the
features of the Elston and Stewart model, and includes the essentials
of Lange's model. This will allow us to study polygenic inheritance
and combined major gene and polygenic inheritance in pedigrees with
arbitrary structure; this cannot be done accurately even for univariate
traits at present.

The components of the model are specified in Chapter II. 1In
Chapter ITI we discuss the calculation of the likelihood of a simple
pedigree under oligogenic and polygenic models of inheritance. Formulas
for the mixed model are presented in Chapter IV. Since the feasibility
of computations is by far the greatest drawback to the use of the
complete Elston-Stewart model, even for univariate traits, we study
the problem analytically in depth yielding recurrence formulas that
overcome the computational problems.

The formulas derived in Chapters III and IV are extended to com-

plex pedigrees in Chapter V. Estimation and hypothesis testing are




considered in Chapter VI. 1In Chapter VII we discuss our conclusions

and mention problems for further research.
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CHAPTER 11

COMPONENTS OF THE MATHEMATICAL MODEL

2.1 Introduction

Genetic analysis has as its basic aim the determination of the
mode of inheritance of a particular trait, especially with a view to
establishing single-gene effects. Statistical models that provide
the framework for genetic analysis abound and have had a long history.
However they have been developed mainly for univariate traits as out-
lined in the previous chapter. We define in this chapter a setting in
which genetically meaningful statistical analyses may be done on
multivariate data gathered on human families and pedigrees. We do this
by developing a model that has all the features of the general model
presented by Elston and Stewart (1971) but includes the essentials of
the model presented by Lange et al., (1981) for polygenic traits.

In general the mathematical model has four major components. The
first component specifies the joint distribution of mating individuals
in the population, the second describes the relationship between pheno-
type and genotype, the third describes how genetic variability is passed
on from one generation to the next, while the last component deals with
sampling from the population. Elston and Stewart (1971) and Elston and
Yelverton (1975) have described these components in detail for uni-

variate traits.




2.2 Joint Genotypic Distribution
of Mating Individuals

We shall assume mating is random with respect to the loci under
consideration. Then the joint genotypic distribution of mating types
is simply the product of the population genotypic frequencies or
densities of the genotypic value. Following Elston (1980) we shall
write wt for the population frequency or density of the value of geno-
type t. The distribution of the mating type s x t is therefore ws <Y

To generalize the specification to include inbreeding we can
write the equilibrium distribution for say the single autosomal locus,
two allele case, as
Genotype AA Aa aa

Frequency wAA = ¢?+fq(1-q) wAa = 2q(1l-q) (1-f) waa = (1-q)%+fq(1-q)
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e

where f is the inbreeding coefficient--the correlation between uniting

gametes. Since f is related to the parental genetic correlation, the
specification above can also be used for assortative mating if mates
are selected according to genotype. When f is used as a measure of
inbreeding, it may be defined as the kinship coefficient of his

parents, which can be calculated from the pedigree structure.

If we consider a polygenotype G, the population density of geno-

typic value of an individual i is given by Lange's result (our

Theorem 1.1) as wG = ¢(g,2®ing), where we have assumed no dominance

so that Vg is equal to the additive covariance matrix. The density of

the mating type G x H (of individuals i and } respectively) is then

given by

Vg * ¥y = ¢(§,2®ing)'¢(§,2¢ijg)-



For a mixed genotype, containing oligogenic and polygenic com-

ponents, the distribution of the mating type sG x tH is
Vaghen T Vs#(8:204,V ) ¢ v 6,20,V ).

2.3 Genotype-Phenotype Relationship

Denote the distribution of vector phenotype z given the oligo-
genotype u by gu(?), given the polygenotype H by gh(%), and given the
mixed genotype uH by guh(%). These may generally ge referred to as
g~functions, or penetra;ces.

2.3.1 Qualitative phenotype

When all components of the vector trait are qualitative we need
to specify penetrances for all combinations of the vector values. As
an example, suppose in a family study of breast cancer there is some
interest in whether left (Zl)’ right (22) or both breasts are affected
(1), or not (0). 'Then for two alleles at an autosomal locus we need
to specify the penetrances given in Table 2.1. Each genotype involves
four g-functions. However only three of them need to be specified;
the fourth is then automatically given by the condition that the row
probabilities in the table must sum to unity. Dominance will reduce
the table to only two rows.

The risk function approach to specifying the phenotypic distribu-
?ion (Falconer (1965), Curnow (1972) and others) may also be easily
generalized for multivariate traits. The simplest case occurs with a
dichotomy where the condition is expressed if z > 0 (meaning
2, >90,,1=1,2,...,p), where 6 is a p-vector of threshold constants.

i- i

There is no problem letting some components of z reverse their

inequalities. This approach effectively makes the phenotypic
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TABLE 2.1

PENETRANCE FOR AN AUTOSOMAL MONOGENIC TWO-ALLELE
INHERITANCE WITH QUALITATIVE BIVARIATE PHENOTYPE

Genotype Penetrances Total
AA 8pn (0,0 g, (1,00 g, ,00,1) g, (1,1) 1
Aa 8yq (0,00 g, (1,0) g, (0,1) g, (1,1) 1
aa 8,,(0,00 g (1,00 g (0,1) g (1,1) 1

distribution discrete, and without loss of generality we may let

x =0 1if z < 6, and x = 1 if z > 6. Then assuming the density of z

conditional on t 1is ¢(ut—z,Vg),

g, (1) = fz>e¢(ft—?’vg)

and

gt(O) 1- gt(l).

The extension to a polychotomy is obvious.
2.3.2 Quantitative phenotype

When each component of the phenotypic vector is quantitative it
may be reasonable to assume z is multinormal. We can then set

gt(f) = ¢(Et_f’ve) for oligogenic models where Mo is the vector mean

of the oligogenotype t, Ve is the environmental covariance matrix
assumed equal for all oligogenotypes, and ¢(8t—?,Ve) is the ordinate at
Et of the multinormal distribution N(%,Ve). It should be noted though
that whereas a continuous univariate distribution can virtually always

be transformed to a normal distribution, this is not true of a multi-

variate distribution.
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The situation where some components of z are qualitative and

others are quantitative would seem difficult to deal with in general
terms. Where it is reasonable to 'group' each quantitative component
into a few categories the likelihood can be computed as if each com-
ponent of z was qualitative (section 2.3.1). In general however it

would seem reasonable to specify the penetrances of the quantitative
components conditional on particular combinations of the qualitative

components.

2.4 The Mode of Inheritance

The third component of the model is the mode of inheritance, i.e.,
the genotypic distribution of the offspring conditional on the two
parental genotypes. For oligogenic inheritance, the Pory’ the proba-
bility that an individual has genotype u given that his parents'
genotypes are s and t, is exactly the same as for univariate traits.

Some modifications are however necessary for polygenic inheri-
tance. We shall use Lange's (1978) result described in section 1.3 to
derive the desired Pory which is a probability density function in
this case. This leads to a formulation that includes the Elston and
Stewart (1971) formulation as a special case. This more general formu-~
lation allows for consanguineous matings in the pedigree.

Let F, G, H berthe respective polygenotypes of two parents P

1

and PZ and their child C. Denote the corresponding p-variate values

of the polygenotypes by s , s and s . Assume E(s ) = E(s ) =
“Pp Py -¢ Py Py

E(Sc) = 0. Then we can state the following result.

Theorem 2.1

In a population that has been undergoing random mating but in

which chance consanguineous matings occur, assuming no dominance, the



distribution of offspring genotypic value s conditional on parental
~C

genotypic values s and s is given by:

~Py Py
= - + v
Prcu ¢(§c [alfpl 0L2§pz]’ 3 g)
where
¢ C@ - & C@
P1C PoPy  Prt P4Py
1 o ) Y ’
PPy PyPy  PiPy
o) C@ - C@
2 ) 3 - 97 i
PPy PoPy  P4Py
o 92 R p? Q- 20 o 0
YRS L U PaP2 Py P1Py P1° Po%,
3 cc 3 @ Y ?
PPy PoPy  PiPy
and
®AB is the kinship coefficient between A and B.
Proof:
Let x = a's y=a's , 2z = a'sC and Oi = a'Vga. Then we only

~ ~Py» ~ ~Py
need to show that for all a # 0, the density of z given x and y is
normal with mean alx + uzy and variance a3a'VQa. It follows from
-~ 8-

Lange's theorem presented in Theorem 1.1 that

(x,y,2)" N3(9,2®0§)

where
e
PPy PP, | PyC
i
¢ —
PgPp  PoPy 1 Py
________ 1L - -
o T
cpy cp, | cc

is the matrix of kinship coefficients, partitioned in an obvious
manner. The density of z given x and y is then clearly normal (see

for example Anderson, 1958, p. 28) with mean

35
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o ® Loy
, PiPy P3Py
v OA[q)p c ®p c] Yy
1 2 A
) o) y
PoPyp PPy
= alx + azy,
and variance
o o -1 o .
, , r P1Py P;P, Py
0% = 20 ® - {9 ] ]
cc P1C P,C $ @p b U c
PoPy 2P2 Py
- 2
QBOA .

after simplification. That concludes the proof.

Corollary 2.1

If all parents are unrelated, then under random mating the

distribution of offspring genotypic value S, conditional on parental

genotypic values s and s is given by

-P1 -Pa
= I <+ 1
Preu = (5, z[gpl pr], ng)
Proof:
If all parents are unrelated
o =e =0 =4,
plpl PZPZ cc
$ =0, ¢ =9 =4,
P1Py P1 Py
giving

,o, and o, ''relatedness coefficients"

We shall call the quantities « 9 3

1
They describe how the relationship between mates affects the offspring

genotypic value. When all parents are unrelated the three coefficients

are all equal to % (corollary 2.1) which is what Elston and Stewart used
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for univariate traits. By using the relatedness coefficients in the
definition of PrcH Ve therefore achieve an integration of the Lange,
Boehnke and Spence and the Elston and Stewart models. 1In Chapter V

"generalized status

the relatedness coefficients are used to define
indices" which summarize in numerical codes, the relevant
information on every individual in the pedigree. This device will be
shown to be the key to the computational problem in maximum likelihood
analysis of pedigree data.

The relevant conditional ''probabilities" for mixed inheritance
where each genotype contains both oligogenic and polygenic components

is simply the product of the two corresponding conditional "'probabil-

ities," i.e.,

Psrecun ~ Pstu ~ Prgm

The assumption here is that major genes and polygenes are transmitted

independently.

2.5 Sampling Considerations

The three components described above enable us to write down the
likelihood of a pedigree provided the pedigree can be regarded as
randomly selected from the population under study. The likelihood
function clearly has the same form as for the univariate case
(section 1.6). However, in human genetics many traits studied are
rare diseases for which random sampling is inefficient; most pedigrees
in such a situation will contain only unaffected individuals, yielding
no information at all about the kind of genetic segregation that under-
lies the disease. To avoid this, pedigrees are selected for study or

ascertained, via probands--affected individuals who bring their
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pedigrees to the notice of the investigator. Thus every pedigree in the
sample contains at least one proband, implying that only a subset of the
population is included in the sampling frame, and so the likelihood
needs modification.

For a pedigree of size n and phenotypes %1’ %2, ey %n’ let
L(gl, caay %n) be the likelihood assuming random sampling, and ﬁ(%i)
the probability that an affected individual brings his pedigree into
the (possibly conceptual) sampling frame from which a random sample of
pedigrees is drawn for study. Then assuming that individuals are
independently ascertained the likelihood conditional on the sampling
procedure is

. P{(at least one proband]gl, cons gn) . L(gl, ceey gn)

s P(at least one proband)

1 - I f1- 7‘(zgi)]

i .
= l—Z “ o e z L(Z "zn){]-[[l_x(Zi)]} . L(%]—,---,Zn)
z ~ i ~

; Zysee
1 .n

(ascertainment correction) x L(zl,...,zn);

summations change to integrals for continuous z's, and A(z) is generally
unknown.

Once K(fi) is specified we can calculate the likelihood of a
ﬁedigree with the necessary correction for ascertainment. The formula-
tion above is the multivariate generalization of the Elston and
Yelverton (1975) approach. They discussed various choices for A(z)
and the computational problems that arise. Elston and Sobel (1979)
generalized the formulation to allow for the fact that some relatives

may be outside the proband sampling frame. In this dissertation we
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shall concentrate on problems relating to the specification and compu-

tation of L(z ,zn), the unconditional likelihood, leaving aside

1
ascertainment corrections for multivariate traits (see Dawson, 1981).
Elston (1980) has pointed out that the family or pedigree is effectively
random if the probands can be regarded as random and the type and number
of relatives included are independent of a proband's phenotype. When

ﬁe assume random sampling as indicated, there are two possible sources
of bias. The existence of certain types of relatives in the population
may depend on the random proband's phenotype. Then also the willing-
ness of individuals to be sampled, whether probands or relatives, may
depend on their phenotypes (Elston (1980)). These potential sources of

bias should therefore be borne in mind when interpreting the results

of the kind of analyses proposed in this dissertation.



CHAPTER III

OLIGOGENIC AND POLYGENIC INHERITANCE

IN SIMPLE PEDIGREES

3.1 Introduction

We have discussed in Chapter II the mathematical specification
of the various components of the likelihood function for a multivariate
trait. We now turn to the actual calculation of the likelihood of a
pedigree when the components of the mathematical model have been

specified. 1In this chapter we shall confine our attention to oligogenic

and polygenic modes of inheritance. Oligogenic inheritance involves a
few and separately distinguishable genetic loci, whereas polygenic
inheritance involves an indefinitely large number of separately indis-
tinguishable genetic loci acting cumulatively on the trait of interest.
The mode of inheritance which involves both oligogenic and polygenic
inheritance will be considered in the next chapter.

In our development we first present the results in terms of the
operators introduced by Elston and Stewart (1971). We then dispense
with them as Ott (1974) did, and think in terms of the total configura-
tion of the pedigree. This leads, in the case of polygenic inheritance
with multinormal phenotypes, to a simple recurrence formula which is
the multivariate generalization of an algorithm developed and programmed

in 1972 by Dr. Philip Green, III (unpublished).

To facilitate the description of the likelihood function we start

with our own definition and classification of pedigrees.
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3.2 Definition and Classification of Pedigrees

Graph theoretic definitions and classification of pedigrees were
first given by Lange and Elston (1975). A different classification
system, also formulated in graph theoretic terms has been provided by
Cannings, Thompson and Skolnick (1976,1978). The graph theoretic
approach confers sophistication and some semblance of mathematical
rigor to the developments presented by the authors, but it throws the
subject into obscurity for the intended users, and, in my view, has not
as yet led to really new insights which are otherwise difficult to see.
We shall present simple definitions which are virtually equivalent to
those of Lange and Elston (1975).

Definition 3.1

A pedigree 1s a pictorial representation of a set of related
individuals in which lines of descent are indicated; either both
parents or no parent must be indicated for each member of the pedigree.

Definition 3.2

A spouse-pair is the set of two individuals who have had a
biological union resulting in offspring.

Definition 3.3

Two spouse-pairs are connected if they have one member in common,
i.e., there are only three distinct individuals involved. If a spouse-

pair is not connected to any other spouse-pair it is isolated.

Definition 3.4

A spouse-~connected set is the set of all individuals in spouse-

pairs that can be arranged so that adjacent spouse-pairs are connected.
Let us note that however complex the pedigree structure, there

are only two types of individuals in a pedigree: those whose parental
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lines are indicated and those whose parental lines are not indicated. .
We shall use this fact to classify pedigrees.

Definition 3.5

A pedigree is simple if the parental lines are indicated for only
one or no member of every isolated spouse-pair and spouse-connected set.

If for some spouse-pairs and spouse-connected sets parental lines
are indicated for more than one member the pedigree is complex.

Under this definition a nuclear family with at least one child
(Fig. 3.l1a) is the simplest pedigree.

We can distinguish between two types of complex pedigrees:
those in which the lines of descent form loops as in Fig. 3.3 and those
in which they do not (Fig. 3.2). Loops may be due to consanguineous
matings (Fig. 3.3a), or not (Fig. 3.3b).

®
Only simple pedigrees will be considered in this chapter. Complex

pedigrees will be dealt with in Chapter V.

3.3 Oligogenic Inheritance in Simple Pedigrees

Consider a p-variate trait z. The likelihood of a pedigree having
the observed values of z depends on the genetic mechanism. We start
with oligogenic inheritance, the case with only a few major loci. Let
k be the number of genotypes underlying the observable or phenotypic
variation in z, arranged in some specified order so that it is meaning-
ful to talk of the u-th genotype, u = 1,2,...,k, and gu(%) be the
conditional probability, given the u-th genotype, of observing z.
Similarly we may let Pstu be the probability that an individual has

genotype u, given that his parents' genotypes are s and t

(s,t,u = 1,2,...,k). 1In this setting the likelihood of observing a ‘

1
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sibship and their spouses in the j-th generation, conditional on the

sibs' parents being of genotypes Sj—l’ tj—l respectively follows in an

obvious manner from the univariate case (1.32), i.e.,

r'= v g (x.) Z v g (y.)
O sy1 % %0 “Toc -1 o o ~To
{ (3.1)
{ k k
T, =1 Zp g (x, | ) Ty g (v, c )
I s =1 %5-15-1%5 8y cto e tye a1 by Ry Rip tp e
NI J
izl
where X, 5 is the phenotype value of z of the j-th sib in the
Ag g ey -
i-th generation and y, ., 1s the corresponding phenotype of the

-1, 1 ...,1j
spouse, and wt denotes the population frequency of the tj—th genotype.
J
Consequently the likelihood of observing the entire pedigree is, from

(1.33),

- LO = TO(Fl(Tz(F3 ce))) (3.2)

where LO is the likelihood under oligogenic inheritance. As for the
case of univariate traits, we assume implicitly that mating is random
with respect to the k genotypes, and pedigrees are random. We further
assume that all p variates are measured on every available member of
the pedigree. For missing values (unavailable individuals) the cor-
responding gu(%) may be simply set to 1 wherever they occur, as for
the univariate case;

If only one locus is involved, Pory will take on one of the values
of 0, %, %, or 1; if w independent loci are involved it must be the
product of w factors each of which is 0, %, %, or 1. We should note

that the Pory 2TC identical to those for univariate traits and so the

genetic transmission matrices presented by Elston and Stewart (1971)
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for the cases of one autosomal locus, one X-linked locus, multiple
unlinked loci and two linked autosomal loci, may be used.

The obvious advantage of the Elston and Stewart representation
((3.1) and (3.2)) is that the likelihood of an individual can be
computed first and the result attached as a factor to the appropriate
term in the summation for his parents. The individual is then no
longer needed in further computations. This process of elimination
is repeated for each individual. Thus the highest order of the matrices
that enter into the calculations is p x p, for a p-variate trait,
regardless of the size of the pedigree.

However in terms of the T operators the nature of the likelihood
function is obscure. As Ott (1974) did, we can write down the expanded
form of (3.2) without the operators. Assume the n individuals in the
pedigree (assumed simple) are ordered so that children have higher
numbers than their parents. Let I denote the set of individuals in the
pedigree whose parental lines are indicated, M the set of those whose
parental lines are not indicated, and T the total set of individuals
indicated in the pedigree, i.e., T = I + M. Note that we are using
the letter I for individuals 'in' the pedigree and M for 'marry ins'.
These are the terms used originally by Elston and Stewart (1971). With

these conventions, the likelihood function (3.2) of the entire pedigree

is simply
n k
Lo = 0 I op(u) g, (zp) G-3)
i=1 u,=1 i :
where *
st if iel
P&(ui) = (3.4)
wu if ieM
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An alternative form for (3.3) is easily seen to be

n
L. = z I p,.(u)g (z,).
O .11 n-tuples =1 * 1 uj -i
(ul,uz,...,un)

(3.5)

Since for every i, u, can take k different values, there are K"
different n-tuples, i.e., the summation in (3.8) is over kn expressions,
each of which is the product of n factors. This n-dimensional sum-
mation can also be written

n

py (uy) _ﬁ gu.(%i)’ (3.6)

L.=1 Z... 1L
u 1 i=1 "1

0 u u
1 2 n

[[J==T =]

i

a representation that we shall refer to in the sequel.

3.4 Polygenic Inheritance in Simple Pedigrees

3.4.1 The Elston~Stewart formulation

Consider now that each component of z is under polygenic control,

i.e., z is under the control of an infinite number of genetic loci

which are separately indistinguishable, but additive, and in Hardy-

Weinberg equilibrium. We have shown in section 2.2 that wt , the
]
population distribution becomes ¢(tj,Vg); the distribution of an off-

spring conditional on his parents' genotypes, D becomes the

s-1,t-1,s.’
J

density q)(sj - The relatedness factors

a, .S, + a,.t, s ,.V ).
13.3-1 23~J'1] 3] g)

o o and a,, are each equal to % while we are dealing with simple

137 723 33
pedigrees with no consanguineous matings. Substituting in (3.1) and

changing all summations to integrals we obtain

(T, = fs (s Ve, (x)) fto"’(Eo’Vg)gt (y; )

°0 ~ 20 “%o -0 "o
= =l 1 .
Ty =0 elsysls, e, (1) ~ 8, Gy g ) (3.7)
1j sj -] 01 3
- iz
X ft’¢(fj,Vg)gt (yi i)

23 j 7701 h]
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where gs'(xi i ... i_) and gt'(yi i i,) are the phenotypic
=] 071 h <] 071 3
distributions conditional on the genotypic vectors sj and t,

respectively. In the case of multinormal‘phenotypes,

g, (x, . . ) =9(s, +u-x_ . 5V ) (3.8)
?j ~10 1l RPN 1j ~J . ~10 1l .o 1j e
and
g, (v, . ;) = ot +u -y, .,V ) (3.9)
Ej -1, 1l N 1j -3 ~ ~1O.il . 1j e
For multinormal phenotypes (3.7) therefore becomes
r = -— +1—-
[ To = g plegV) wloghion; 0 f, o(so,u) oteghy, v)
{ (3.10)
Uro=m [ st -uls, 4t 1,5 ) oG tux, . . ,v)
3 i ?j -] ~3-1 23-1 g ~J - -1, i ...1j e
J .
< [ e(e, V) ot umy, (oY), 321
Ej -i’'g o S B 1j e

The likelihood involves integrals of products of multinormal densities.
These can be evaluated analytically. Before deriving the necessary
formula let us first state the following result which is really a
multivariate generalization of the method of ‘completing the squares.'
The result must be well know. For example, it seems implicit in results
on quadratic forms (e.g., Searle, 1971, pp. 68 following). We state
it here because we use it repeatedly in what follows.
Lemma 3.1

For p-vectors x, y, a pxp symmetric, nonsingular matrix Q, and a
scalar c,

§’9§ + 2§'¥ + c = (§+%)' Q(x+z) + ¢ - z'Q? (3.11)

where -1
z=Q y. (3.12)
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Proof

By multiplying out we see that

(x+2)' Q(x+z) = x'Qx + 2x'Qz + 2'Qz (3.13)

~ o~ ~ e~ ~ o~ ~ o~ ~ A~

and the result immediately follows if we set
Qz = y. (3.14)

We shall now state the main result.
Theorem 3.1
Let Ai(i =1,2,...,m) be pxp matrices not all zero, Ci PXp

\ . . -1 . .
symmetric, nonsingular matrices such that Z Ci is nonsingular, and

:
bi be p-vectors. Then
m
js T g(sHA tb ,C.) = ad(thv,H) (3.15)
- i=1
_ veml, -1, y,e m1-1 -1 -1
where H = [? Aici Ai (? Ci Ai) (% Ci ) (; Ci Ai)] . (3.16)
1 1 1 1
~ S T -1 ., -1.-1 -1
v o= H[L AJC,b, = (2 €A (2 CT) (2 Cib (3.17)
1 1 1
and o
(l - —2—)p _L -1 =y 1
a = (27%) nlcii Iz eyt |nl® (3.18)
i i
-1 1 _l _ '—l 1 3 "l _1 -l _ v "'l
x ¢ AID'CTD - (2 C b )T CT) T C by - vIH vl
1 1 1 1
Proof
-%d
T ¢(st+A t4d,,Cp) = ae
i
- -~
where a= (2m) /2 g |7 (3.19)

. 1
1

and
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[a 9
]

T(s+A. t+b )" cfl(s+A,t+b.)
i~ 1. .1 1 ~ i. .1

-1 -1 -1
] L L
s (; Ci )f + 2§ ; Ci (Ait+bi) + ;(Ait+bi) Ci (Ait+bi)

1 1 1
, -1 , -1
= (stg)' (X C.7)  (stg) +h - g'(Z C )
- i - ~ ~
by Lemma 3.1, where
Co=1.-1 -1
g = (% C, ) ; C, (Ai§+§i)
1 1
-1.-1 -1 -1
= @) T I C AN+ T,
1 1 1
and
-1
—_ ]
ho= (A t4b )" C 7(A t4b )
1
' '_l Vs vl s AL
= t"(Z AIC,7A )t + 2t'(Z A!C.b,) + Z b'C. b..
~ i i1 1 . - i i1 .1 i L1 1 .1

We therefore have

' -1 _ ' -1
facs L g T EG O8N G C (s
s s
“5ih-g' (§ ¢ Dg) P
= ae ~ 1 ~ . (ZK)p ]Z Ci ' ,
i

using Aiken's integral (e.g., Searle, 1971, p. 24).

Now
. -1, _ -1 -1 ., -1.-1 -1 -1
g' (2 CiMg = [(Zca)e + ZCThy 1N ) I cA + Zc;b,]
1 1 1 1 1 1
o =1, Vi am1y-1 -1
=R CADTE T (e A
1 1 1
v —l 1 —l _l "l
T2 CIAN TR CT) T CyThy)
1 1 1

S NS RO S |
TECTEYNECT) Ty,
1 1 1
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so that

[ T B T T . |
h-g' (2 C; g = £'[2 AjC7A; = (2 CPA) (2 C7) T(Z CTA) ]
i i i i i
A 1, =l-1,. -1
+2tT[2 AC b, - (2 C A N(E €T (R €D )]
1 1 1 1
vl N P S |
T IhChy (2 CTh)T(ECT) (R CyThy)
1 1 1 1

=g e+ 20t N +ow

where H and v are defined by (3.16) and (3.17) respectively, and

— 1 ~l - _l ’ ¥ "l —1 . "'l
w=IbiCiby - (2 Cb)ECT) T CThy)
1 1 1 1
h-g' (2 C;l)g = (t+v)'H'l(c+v) +w - v'H'lv,

1

by Lemma 3.1.

Thus
-1
-5{h-g'(Z C,7)g}
-k -1, -k 210-g Lo g
[ae 9 . 3(27‘)p/2|Z C.l] ‘e ~ i o=
i b i p
J2 1, TElwVTH VY (eR0) TH ()
= a(20)P' 7|z C.7l e - e o~ < -
i
= a ¢(t+v,H)
where .
-5 -L{w-v'H v} :
- 2 2 1L
o = a(Zx)p/Z’z Cil[ e 2 . (ZK)P/Z’Haz
i
_— /2 ‘1/2 /2 1 -1/2 "l/z{w—\)'H—l\)} /2 1/2
= @™ ley] - @ SR e L
i - i

= (zx)(]'"I“/Z)pnicil_l/2 | c;li"l/2 IHII/2
i i

1.-1,. -1 -1
) (2 CiThy) = V'H vl

L bich, - G ch'e
A . g | M 1 i ~

C,
x e 1~ i ~ it

That concludes the proof.
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The formula (3.15) can be used recursively to evaluate the I''s
in (3.10) and hence the likelihood (3.2) of polygenic inheritance in a
simple pedigree.

It is evident from the form of H in (3.16) that complicated
matrix expressions can result from the use of Theorem 3.1. In certain
important cases we can simplify H using the following result.
Lemma 3,2

For symmetric nonsingular matrices A and B such that A—l + B_l

is also nonsingular,

A+ = At Ty 7l ey gt
(3.22)
Proof
a1y (- ey I 1y
= {1-(z+aB H) 717 1a
= ((z+aB"tory (rean~hy TH 1

(I+AB'1)BA—1A

= A+B.
The second part follows by symmetry.
To illuatrate the use of these formulas, let us first calculate
the likelihood of an individual picked at random from the population.
This is of course the same as the population distribution of a poly-

genic trait z, which is given by

LR = fs¢(§,Vg) ¢(s+u—z,Ve). (3.23)
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In Theorem 3.1 set

t = - 2
A; =0, 4, =1,
by =5, =0,

Then

1 1 1

=
[

.- _ -1 ., -1.-1 -1 -
[; AiCi A, (; o Ai) (; c, ) (; c; Ai)]
1 1 1 1

-1 —lV—l -1

-1 -1, -1
[Ve - Ve (Vg +Ve ) o ]

1]

V. + V_ by Lemma 3.2.
g e

1

<
]

-1 -1 ~1.-1,. -1
v - ' =
HIZ A7C;7b; = (2 CAD (2 €7y (2 C7b )]
1 1 1 1
- =L L - -1,-% L L.
= (@ny T2DP g ey Ty LT ) 0 L
' g € g €

O

Q

|

[
—

-1 =L -
since ]V l 6|Ve[ 2lV

L -
for |v l 2IV |
e

Substituing in Theorem 3.1 we obtain

Ly = Jg 008,V o(stum2,V ) = 9(u-2,V +V ), (3.24)

i.e., the distribution of a polygenic trait in the population is

multinormal with mean p and covariance matrix Vg + Ve.
As another important application we shall compute the likelihood

of a sib given the parental genotypic effects are sp and Sp . This is
"1 2
also the distribution among sibs conditional on the parents' genotypes.

It is given by

Lolp = Jg #(smmaV ) ¢ (stu-2,v) (3.25)

s|p

where m = ‘/z[sp +sp ]. The likelihood can easily be evaluated if we note
- F1L TR2
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that the integral can be rewritten as

fs_m ¢(S~m,%Vg) ¢(s-m+m+u—z,ve). (3.26)

Substituting in Theorem 3.1,

1 2
by =By =0
= L =
C1 2Vg’ C2 Ve’
we obtain
- -1 l -1.-1
H = [ve (2Vg ) V)
=%V + V by Lemma 3.2,
g e
v =20, and o = 1.
Thus
L, = ¢(s[s U=z, BV V) (3.27)
spp = ¢liley vey 1+ .

So our model implies that the distribution of the trait among sibs
given the parents' genotypes is multinormal with mean H + 6[? l+§p ]
and covariance matrix %Vg + Ve' Without loss of generality H may ie
set to 0. The results in (3.24) and (3.27) then reduce to the mathe-

matical model for polygenic inheritance according to our formulation

in section 2.4.

3.4.2 Multivariate generalization of
Green's Recurrence formula

We have indicated above that Theorem 3.1 can be used recursively
to compute the likelihood of the entire pedigree. The essence of the
procedure is to integrate out the polygenic effect in the integral for
each individual and attach the result as a factor to the remaining

integrals. It is then possible by a slightly different representation
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of the likelihood function to develop a simple recurrence relation that
defines the factors that result from such an elimination process, and
enables us to write down an explicit expression for the likelihood of
the entire pedigree. We first define a set of status indices that
gives the relevant information on an individual in a simple pedigree.

Definition 3.6: Status indices

The status indices of the i~th individual (each set of monozy-
gotic (MZ) sibs being considered a single individual for this purpose)
in a simple pedigree are the following scalar quantities.

0 if i is not observed
a, = 1 if 1 1s an observed singleton

v if 1 is a set of v observed MZ sibs

1 if 1 e M

bi =
2 if i eI
c; = % x {number of children of i observed},
Cij = Y% x {number of children i and j have in common
that are observed},
and
1 if i,j are a parent-offspring pair, i.e.,
; i i-= pl(J) or p2(3), or j = pl(l) or p2(1).
ij

0 otherwise
We can now state the main result.
Theorem 3.2
Under polygenic inheritance the likelihood of a simple pedigree

with n individuals, ‘each one observed, is

(0)
5.0

n L _ _ n . L _.1/2
L= 2 T TPy T2y T2 (),
P g e i=1 1,1
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where n, = the number of individuals in I, and the D's satisfy the

recurrence relations

(m—l) ng) (m) D(m)_l D(m? (3.29)
i,j i,] m i m,m m;]
(m=1,2,...,n; i, = 0,1,2,...,0)
with ipitial conditions defined by
™ Ca vl s b we vt (3.30)
1 i ie i 1i''¢g
{n) -1 o
D, = (c,,~d, )V 7, i 3.31
iy = (egymdg OV # (3.31)
(n) I § 3.32)
1’0 = Ve <§i—Ei)’ a pxl vector (3.32)
() _ &
DAL= I (z, Ay ) V (z U ), a scaler. (3.33)
0,0 . - L1
i=1
Proof
The polygenic version of the representation (3.6) is
L = f ...f 1 ¢\s 2[s I, ) I ¢(s,,V)
Pom81 "Shger - B ~p2( D778 <17 e
x I ¢(s, *U -z ,V ) (3.34)
ieT -
12 (m)
=f e, 0 ®
21 wn
where Lp is the likelihood under polygenic irheritance,
_lp -‘/2 —l/p ~Ls *3p =1
o= T (27 | I (2r) v | % 1 (28)” € [v |2
icl © ieM ieT
n
P -n/2 -n/2
=2 TR TR T T (3.35)
and
(n)
8 =2 % (s, —4{5 DN V (S 2fS D
iel - (i) ~pz(l) o1 P (1) N (1)
7 -1 " - - - - P
+ siVo s. + I (z, TSy ) V (fi My ?i) (3.36)

. - ~1 -
ieM © ieT
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Expanding and rearranging so that quadratic terms in s, come first,

followed by cross-product terms, linear terms and constants, we obtain

B(n) = 3 s'V—ls, + 212 Siv_lsi + I siVlei
ieT ~ ~ iel”t & ~1 qem~t 8 -
l -1
5 L, s s 2 s' .V s .
N (1) g o (1) -p, (1) g Tpa(i)
1€I 1 i I°F2 2 (3.37)
-2:s' “4 ) vig ;-2 s (i)v“lsi + I s’ ,)V;ls (1)
ie I“pl ie1°P2 & ~ 181“p‘ & ~Py
=23 (2w Vs T (2o ) VI (zy o)
I R 1 -~ 1 L1
ieT ieT
o -1 -1 1
= %L g!lfaV 4+ b,V +e,V ]s
. LitTie i'g i'g °71
i=1
n i-1 -1
+7 I z sf{—di.V + ey v ]" (2.38)
n l n
T2 L (zmu) Vs D(zmu )" (fi’ﬂi)
i=1 i=1
n i-1 n Ry
= z s D(“) +235 = sinin?s, +2 = Dﬁug s, + Dé“%
i T T eI i =1 BY - >
(3.39)
The D's are obtained by the following argument. First consider Dini

appearing in the quadratic forms in S If individual i is observed

we have one quadratic form involving V;l (from the first summation

in (3.37)). Eence the term aiv;l. This individual belongs to either
the set I or M, never both. 1If he belongs to I we have, from the
second summation in (3,37),.one quadratic form in 5 involving 2V_

On the other hand, if he belongs to the set M we have one term from
the third term in (3.37) involving V;l. Hence the second term in
D(n) . -1 . (n)

is b,V 7, The third term in D,

. -1 .
I . is ¢,V ~. This comes from
i,i ig i,i i'g

the fact that if the individual i is a parent, the fourth and fifth
summations in (3.37) imply every child of i contributes to the

. , . . -1
quadratic form in s, a term involving %Vg.
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The derivation of Df“? follows similarly by inspection of the

>

cross-products (bilinear forms) in sy and s,. Also the origin of Diné
~ ~ bl
(n) |
and DO,O is clear.
We start the elimination process with the n-th individual in
(n)

the pedigree, so first pick out the term in s_ from B , and group

(n) )

together as vy all terms in Sn—l’ Sn—2’ etc. Then (3.39) becomes
() () »h () (n) (n)
B =s'D s + 2[ L D s.-+ D, "I's_+ ¥y (3.40)
n,n. 3=1 5] ~ i,0° Tn
n-1 n-1 i-1
where y(n) = I le(nisl-+ 2z L s D(n)s + 2 L Fn) s, + Déné.
i=1 -+ tete i=2 jo1 ~T B3-3 0 gy 1,0 ’
Applying Lemma (3.1) we can rewrite (3.40) as
g™ (g ey pm) b ™y L@ () (3.41)
~no. n,n .0 -
@ _ @ @ o)
where T =D {t D, 4D ]
- n,n . n,]
j=1
]
and MOV T(n)D(n)T(n).
~ n,n.
Integrating out sn we obtain
_1.B(m) -5(s +T(n)) (n)( +T( ))
of [ e =af e T~ -1
°1 ?n *n
, sty ™ s (M)
x| ...fs e
51 "Sn-1
1/2 (n-l)
- 2 -
- a(2r)?/ [D(n)l [ oo f e (3.42)
s s
~1 ~n-1
where B(n—l) = y(n) - 6(n). (3.43)
Repeat the process, i.e., define matrices Dint ) and integrate out
s . But note that
~n—1
n-1 n-1 i-1
GO s'ininisi +231 % s D(n>s o+ 23 D(“) s, + 0™ (3.44)
i=1" > i=2 j= l~1 1,3-3 i=1 1,0 .1 0,0
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and
s (% n(“)'s 2 1p® IS COAM O
=1 n,j ~j AL} n,j -j n,0
S CO N O € IR ¢ M .5 LS
1=l~1 n,i n,n n i i 1=2 j=l~1 n,1 n,n ,J~J
2 (n) (n) (n) ' p(®’ (n) (n)
+ 1§l[Dn i n,n 1's i n,GC n,n n o’
so that

glo-1) _ (@) _ s(0)

-1
N N YRR (O R L
'=l“i i, i n,i n n n i i
n-1 i-1
+2 =z T g [D(n) (n) (n) (n) ']
i=2 j:l Ni i’j n l n’n ’J "‘j
(3.46)
(n)_(m)? (n) =1,(8) 1 NCIUNCON (n) p(
+'ZlZ [Dl o n i n n n 0] 5+ “0,0 n 0 n n n,
n-1 n-1 i-1 -1 v
= 2™ Vs +2yr penn®D g 4 Z gn—l) s, + p™ D)
4=1~1 i,i i 1=2 j=l~1 i,] | i=1 1,0 i 0,0
' (3.47)
where
p(a-) _ ) 'y (n)~ ( (5.48)
i,j 1 j n i n n n,J Y
(i,i = 0,1,2,...,n-1)
Hence the integral with respect to s 1 in (3.42) is of the same form
as the integral with respect to S s 80 that bty using the recurrence
relation (3.48) repeatedly we find
(0)
_1/8(13) - 'I/ZD
[ g e L2y ln(l’l 0,0 (3.49)
] ]
L1 s i=1

Substitution of a in (3.35) concludes the proof.
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With regard to the use of the above result, it should be noted
that the n p-vector integrations can be carried out in any order.
However it is computationally advantageous to choose the order so that
at each step as many as possible of the Di,j are zero. The best order
for a simple pedigree seems to be: unmarried individuals first, fol-
lowed by spouse-pairs, within each spouse-pair eliminating the marry-
in first. This ordgr implies Di,' = 9 unless i,j refer to parent-

child, or spouses, or i = j, or 1 or j = 0. The computations may then

be simplified as follows. Each ummarried individual has the same

p{m

’

given by

(n) _ vl
1 i 2Vg e (3.50)

and since the elimination of such an individual does not affect Di i
b

for any other ummarried, all such individuals together contribute to

the likelihood the factor
(3.51)

where ny is the number of observed unmarrieds in the pedigree. Elimina-

tion of unmarrieds results in the followings

D(n)—§<—>v<-)
0,0 2Ty 2y Bi
i=1

p=1) _ ) _ @)’ (n) p(™
O,G O 0 n,0 n n n 0

_ n{n) _ oy iy gty

- D0,0 (gn En) Ve (ng +Ve ) Ve (%n fn)
p(®=2) _ (1) _ (=)' (-1 (a-1)
0,0 0 0 n-1,0 "n-1,n~-1"n-1,0

= Dé?g - (z -H ) V (2vg1+v l)'lV;l(gn—gn)

-1, -1.-1 -1
- (?n—l ~n ) V (2V +V ) Ve (%n—lngn—l)
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Thus, if there are nO unmarrieds,

(n-n.) n _ _ 11—
Dy o 0" Dé“é - z (z.-u.)'Vel(ZV 1+Vel) lvel(zi—ui)
’ ’ i=n-n . +1 T~ & Sl (3.52)
n 0 n
= I (2 )V Nz ) - X (z.—u.)'V—1(2V_1+V'1)'lv_l(z,—u,) )
. S . § e .1 .1 . ~i i e g e e o1 i
i=1 1—n—n0+l
Within a given spouse-pair let the individual whose parental line .

is indicated be i and the marry-in be j = i+l. Then to eliminate j we

note that

. . . R
ptd) o pUGHD _ G G+ T (D)
353 353 3.3+ T3+, 3+173,541

_ oG G G T ) | GHD ' G T (G

Js3 Js3+2 T3i+2,3+273,3+2 jo 3+l T3+L,34+173,5+1
n_j . 1 . —l s
- p™ _ p{3+r) T (G+r) 7 (§+r)
353 jyjtr “jtr,ijt+r j,j+r

r=1

1 ™ Gt G T G
- D)7, D, ., Do
=1 Jejtr jHr,jtr j,itr

-1 -
a.Vv + (14c.,)V
J e ( J) g

From the definition of the D's we see that D;J;ii = 0 unless j+r is a
child of j. Thus
3) -1 -1 1t
D.,°, =aV ~ + (I+c,)JV - - LV D A (3.53)
i3 e I'g 4, 8 4t g

where the summation is over all children of i and j including those
eliminated in the first step, i.e., among the unmarrieds.

Similarly, .

p@) g " G G T G

3,0 3,0 r=1 jsj+r Tjtr,j+rj4r,0
-1
R _ -1, () ()
Ve (%, Ej) T ( Vg )DR,Q 91’0 (3.54)

2
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After elimination of j = i+l, the marry-in, we now consider the
e 0t

elimination of i, the one "in'" the pedigree. The relevant D's are

computed as follows:

S | pU) D(i+1)'D(i+1)'l (1+1)
1 i 1,1 i,i41 Ti+l,i+1741,i+1

(J) (J)' (3)~ (J)

", (since j = i+1)
1:1 i,j J,J ls
- - - _ %
cavld qre vt -z Myt - pld) p{) (J)
ie i"'g . 8 %i'g i,j JaJ i,]
(3.55)
using (3.53).
Similarly,
{1) ()" ( ) (J)' Gy~ (J) .
D, =-V - - L (~V D D - 3.56
1,0 Ny > g)ﬁ’% e.0 Pii P Pie ©O0Y
and
(1) (i) (J)' )~ ( )
®5,0 = P0,0 ~ 5,0 ’55 P30 (3.57)
After elimination of i we have
JGmD @) @ @ T
0,0 0,0 1 0 1 i 1 0
-1
D(j) (J)' (1) (J) (1)’D(1) (1)
0,0 J,O J,J J,O i,0 i Di 0 (3.58)

It therefore follows that for each spouse—pair we only need to keep

track of £ V lD(Q) V and £ (-V_ )D(g) D(Q)
. 8 L, g y g 8,8 2,0

over all the children

2 of 1 and j.

The univariate version of the remarkable results derived in this
section were first worked out in 1972 in slightly different form by
Dr. Philip Green, III (unpublished), who used them to develop the

computer program PLYGEN for calculating the likelihood of a simple
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pedigree under polygenic inheritance. However, the explanation given

here for the Dén; is my own. It is regrettable that he did not

]

publish the results. In recognition of his original work I have

chosen to call formula (3.29) Green's recurrence relation.



CHAPTER IV

COMBINED OLIGOGENIC AND POLYGENIC INHERITANCE

IN SIMPLE PEDIGREES

4.1 Introduction

The model for combined oligogenic and polygenic inheritance
incorporates a few major (distinguishable) loci and an infinite number
of separately indistinguishable loci. For this reason this mode of
inheritance is often called the mixed model. Conceptually we are
regarding the entire genome as contributing to the variabilitynin the
trait under study although only the effects of a few loci may be dis-
tinguishable. This makes better sense biologically than either the
oligogenic model or the purely polygenic model, both of which are
easily seen to be special limiting cases of the mixed model.

The mixed model was originally proposed by Elston and Stewart
(1971). For nuclear families, Morton and Maclean (1974) described a
version that included a common within sibship environmental effect.
They calculated the likelihood conditional on the parent's phenotypes.
Ott (1979) extended their formulation to pedigrees, but used an uncon-
aitional likelihood. Boyle and Elston (1979) have indicated how allow-
ance could be made for other random effects including other environmental
effects and effects due to assortative mating.

In spite of the superiority of the model and the extensions
mentioned above, its use is seriously limited by an unwieldy computa-

tional problem. Present computing facilities can only handle 10 or



66

fewer individuals and even that at a cost of $300 (Ott, 1979). For
this reason approximations to the likelihood function have been con-
sidered by Lalouel et al. (1981) and Graepel (1981). These are very.
recent and how well they approximate the likelihood has not been fully
demonstrated. Furthermore we wish to deal with the multivariate version.

The computational problem is not insurmountable. We shall show
that the 'problem' is largely the result of the particular representation
of the likelihood function used. We shall then use the results on poly~-
genic inheritance, presented in the last chapter, to derive recurrence
formulas for calculating the exact likelihood. This circumvents the
'peculiar’' computational problem, and altogether obviates the use of

approximations to the likelihood function.

4.2 The Likelihood Function

To write down the likelihood of multivariate data on a simple
pedigree we first recall the specification of the components of the
mixed model defined in Chapter II. On the assumption that the major
genotype and polygenotype components of the mixed genotype are independ-
ent in the population and are transmitted independently, the population

distribution of the mixed genotype is
R RICAS (4.1)

and the distribution of offspring mixed genotype given that of the

parents is

- %[s +s ],‘/ng) (4.2)

Purvewt = PuvwPrel - Puvw? 5y 5F g

assuming no consanguineous mating.
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It then follows from (3.1) and (3.7) that

=3 w [ e(s,Vg o G DT [ e(e, Vg L ()
0wy oS0 -07 8 g% ~To v o o -07 8" votg ~ig
(4.3)
¢ T, =10 Tp [ o(s,-bls, o+t 1M )g (x5 )
i . u, v, .u,”’s, . “i-1 -49-1 u,s, i i....1,
J iy j-1V5-1" % ) J & %5 Tonn N
xsy [ oee,V)e (. 4 )s 321
v,”t, . v.t, i1 ...1, —
k vy 3] S 2 T O R TR
where g (x, . . ) is the probability distribution or the density
u,s, ~i i, ...1,
j-3 701 3
function of Xy i conditional on uj—th oligogenotype and the value
“igiyeeiy

Sj of the random variable representing the polygenotype. The likelihood

of the entire pedigree is then

Ly = FO(Fl(FZ...)) (4.4)

as before.

When it is reasonable to assume multinormal phenotype we can set

guj?j(g) = ¢(§j+guj—§,ve) (4.5)
where Bu, is the vector mean of uj-th oligogenotype.
J
The distribution of the trait in the population is then found from

(3.24) to be

I Jgt(s,V ) ostu 2.V ) = Iy 00~V ) (4.6)
u ~ u

which is a mixture of multinormals where the covariance matrix within

each distribution is Vg + Ve'

4,3 The 'Peculiar' Computational Problem

We now discuss the problem of computing the likelihood function

for multinormal phenotypes. If we assume individuals in the simple
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pedigree are numbered so that children have higher numbers than their

parents, then as in (3.3)

n
I oplu) [ £(s) ¢(situi-z V) (4.7)
i=1 u,; i S T

Ly

where

p(uy)

il
D
-

and
(¢(si,Vg), if i e M

i¢(S.—1/z[s

Sq ~pl(i)+§p2(i)]’ %Vg)a

£(s)

if i eI

n
) Tp) [ ...f 1 f(s)é(s.4n -z ,V )
all n-tuples i=1 * 51'%; "8y 4-7 1 1.y ivee
(U, 43U, yeeeyu )

1772 n 4.8)

Since for all i, ui =1,2,...,k, there are kn different n-tuples. The
n-tuples here correspond to Ott's (1979) genotype vectors. The integrals
appearing in (4.8) represent the likelihood Lp under a polygenic model
(3.34) except that the mean Hy is now replaced by Ky the mean of the
oligogenotype u, . Hence (4.8) can be rewritten as ’
n
LM - 2 1 p(ui)Lp(<Eu Ma 2oy ),V

all n-tuples i=1 1% n
(ul,uz,...un)

V) (4.9)

Ott (1979) used the Lange (1978) formulation for a polygenic model and
so avoided the integrals in (4.8). But the result was an Lp involving
the inverse of an nxn matrix 2. For a p-variate trait the dimension of
2 is np x np! Of course, Ott did not consider multivariate traits, but

in his algorithm all the k" possible quantities to be summed in (4.9)
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are stored in computer memory. For a single major locus with two alleles,
there are three major genotypes, i.e., k = 3, and we need to compute and
store the 3n terms, each involving the inverse of an np x np matrix.
Tuples or genotype vectors with zero probabilities of course need not be
considered, but even for nuclear families the elimination of these
leaves 4 + 2" + 3n—2 tuples with positive probability. This can still
be too many for large families. We note however that the preblem of
having to compute a sum of k" terms is not peculiar to the mixed model.
The oligogeﬁic models share the same problem. The likelihood of say a
multinormal trait under an oligogenic model, from (3.6) is clearly

n
L, = b} 1 p,(ui) ¢(Eu.-fi,ve). (4.10)

0 all n~tuples i=1
(ul,uz,...,un)

This can be computed easily and quickly,even fof multivariate traits,

in large pedigrees by the program GENPED (Kaplan, Unpublished), which
uses the Elston and Stewart (1971) recursive formulation or equivalently
(3.3), i.e.,

k

z p(ui) ¢(Bu,—fi’ve) . (4.11)
1 ui=1 i

=
i
=g

i
Hence the problem is not really with the number of terms to be sﬁmmed
per se, but the fact that the k" possible n;tuples each involving the
ipverse of a large matrix are stored in computer memory, and we soon

exceed our storage capabilities.

4.4 An Exact Recursive Algorithm

We now derive formulas that can be used to calculate the exact
likelihood recursively. The essence of the method is to use the formula

for the polygenic model, Theorem 3.2, to evaluate analytically the
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integrals occurring in (4.8), and then to rewrite the resulting function

in the form of (4.11). The result is summarized in the following

theorem.

Theorem 4.1 .
The likelihood of a simple pedigree under the mixed model with

multinormal phenotype is

n 1
— - 2 -
LM(ul""’“k’Vg’Ve)‘= 2 I(zx) znpivg! n/ Ive' n/2
‘ o - K —%w(ui) (4.12)
x I {|p;77]"% I p(u,)e }
i,i i
i=1 ? ui=l
where
= @@ @)
_ _ o _ _ i i)y (i
w(ui) (fi Eu.) Ve (?i Eu.) Di,ODi,i Di,o ’ (4.13)

p(ui) are defined by (4.7) and the D's are defined by Theorem 3.2 with
Bu. replacing Ei'

i
Proof

Using Theorem 3.2, (4.8) becomes

. ¢(§i—%[?pl(i)+§p2(i

LM = b § p(ui)fs fs ...f

)],%Vg)

all n-tuples i=1 ~1 .2 ?n iel
(ul,uzs---,un)
x T ¢(s,,V ) I ¢(s.+u =-z,,V ) (4.14)
ieM b B gep b vy -bE
n n -np/2 -n/2 -n/2 n N1 aplo)
= % T op(u,)-2 Lem v | 1ve[ I ]D,(l)i] 2,7%0,0 .
all n-tuples i=1 & i=1
(U sUps 60,0 )
1’72
) i . (4.15)
(provided My replaces W, in the Di,O's and DO,O's)

i
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. (0)
n -np/2 _ -n/2 n (i) L n -%D
= 2 T(27) lv_| n/zlvel mip;  17F . I pluyde 20
& i=1 *** a1l n-tuples i=1
(uysupseeesu) (4.16)
Note that the recurrence relations (3.29) imply
NONINCRINCPENCORNG
0,0 0,0 1,0 "1,1 “1,0
-1
_ (2 (2T (2)-1.(2) _ (L)' (1) (1
= D507 0,0%,2 P07 P1,001,1 P10
—— (4.17)
m Y (@ (@)
=D 5 D, DY) D
0,0 . i,0 i,i i,0
i=1
: ' RN CORN ORI €
= 2z ) Vo (zgmh, ) - 2D Dy Dy
i=1 i i i=1
n
= I w(u,),
i=1
so that (4.16) becomes
n -np/2 -n/2 -n/2 n (i) -% n —%w(ui)
2 “(2n) v | ive[ I |p, .| £ I p(ue
& i=1 ' a1l o-tuples 1i=1
(ul,uz,...,un) (4.18)
n ~np/2 -n/2 -n/2 n .y o m k “bw(u,)
=2tem vl vl n T rppe !
& i=1 o i=1 u =1

and the proof is complete.

4.5 Some Remarks

In the formula presented in Theorem 4.1 the form of w(ui) is
interesting. The first term is obviously related to the oligogenic
component. The second term is therefore the difference that the poly-
genic component of the genotype makes to the likelihood of an individual.

It is also easy to see, by comparing (4.12) and (4.11), that to compute
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the likelihood of the mixed model, we only need to replace the g~function

for individual i, in the oligogenic model, by

- -Lw(u
5 3w ( i)

| e (4.19)

and use

-n/2 -n/2

vl v ] (4.20)

as a scaling factor to the whole likelihood. Furthermore, by assuming
the order of integration in (4.14) follows the 'best' order for .
polygenic models (see page 16 and following), we can use (3.50),

(3.53), (3.54), (3.55) and (3.57) to calculate the D's.




CHAPTER V

COMPLEX PEDIGREES

5.1 Introduction

Lange and Elston (1975) have presented algorithms for calculating
the likeliﬁood of a set of univariate data over pedigrees of arbitrary
structure. The underlying genetic models were, however, restricted to
oligogenic inheritance, i.e., a finite set of loci. 1In this chapter we
shall geﬁeralize their algorithms to polygenic and mixed models of
inheritance. By analytically evaluating the integrals, we obtain simple
recurrence formulas. Our results are presented for a general p-variate

trait z.

5.2 Complex Pedigree With No Loops

According to our classification of pedigrees in section 3.2, com-
plex pedigrees have at least one spouse-palr or spouse-connected set
for which two or more parental lines are indicated. There.may or may
not be loops in the lines of descent in a complex pedigree. -And loops,
when they occur, may be the result of consanguineous matings or not.

We shall first consider complex pedigrees with no loops (Fig. 3.2).

The method of Lange and Elston (1975) involves breaking up the
complex pedigree into simple ones. This means splitting one member of
every spouse-pair or spouse-connected set for which two or more parental
lines are indicated, i.e., in place of one member of every such spouse-

pair or spouse-connected set, create two separate but phenotypically
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and genotypically identical individuals. Designate one of the resulting |

simple pedigrees as the "root'" pedigree. Then if n is the size of the
root pedigree, the likelihood of the root pedigree and the adjacent
"bits'" of pedigree, under oligogenic inheritance, is given by Lange and

Elston (1975), using our notation, by

n L.(Ui)
Ly = ,? {z p(ui)gu'(zi) g EJ—E——YEZS& s (5.1)
i=1 uy i J Tugtu ot

where’L:(ui) is the likelihood of j-th broken bit of pedigree given all
J
individuals identical to 1 have genotype ugs and
pStu if iel
p (u)) =

W if ieM

If we compare (5.1) with the likelihood of a simple pedigree (from

(3.3)),
n
L, = 'H z p(ui)gu.(zi)
i=1 ui 1
L.(ui)
we see immediately that the process is one of calculating I v e (2)
J Tu,%u
i i

and attaching the result as a factor to the term for the individual i
in the root pedigree.

For concreteness, let us consider the pedigree in Fig. 5.1. The
pedigree may be broken at A or B. Let us break it at B, i.e., in place
of B create two separate but genotypically and phenotypically identical
individuals. We can take pedigree 1 as the root, and calculate the
likelihood of pedigree 2 given B has a particular genotype u. We thus
obtain Lz(u), which we attach to the term for B in the root pedigree.

Note here that for this case (5.1) is equivalent to
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L. (WL, (w
L =1 2 2

o wugu(X)

(5.2)

where x is the phenotype of B. We extend this to a multivariate poly-
genic model simply by writing

L (§)'L2(§)
Lp B fg ¢(§,Vg)gs(§) (5.3)

where s is the vector effect of the polygenotype of B and x is the cor-
responding vector phenotype. We shall now evaluate (5.3) for the case
where it is reasonable to assume multinormal phenotype, i.e.,

gs(§)=¢(§+8 _f’ve)' We first calculate Ll(f) and Lz(f) by the elimina-
tion procedure outlined for polygenic inheritance over simple pedigrees

in section 3.4.2. This is easily done if we "eliminate" all individuals

except B, separately for each of the two simple pedigrees. Then

"' '12_1] - %l nl—1 (i) _1/2 —%Bil) (S)
L@ =x vl Dl 2 oa o pd)
- 1''g e i=1 1,i,1
(5.4)
R T G
L,(s) = K,|V_| v _| i ID,"2 .| e -
~ 4 e i=1 2,1,i

where the first subscript (1 or 2) denotes simple pedigree 1 or 2, Kl

and K, are constants independent of parameters,

2
(1) oD (n' (D
By "(8) = 8'Dy 7 1S+ 2Dy oS+ Dy G0
(5.5)
1) (D (' (v
By "(s) = 8'Dy5 48+ 275 oS+ Dy 40
Substituting in (5.3) we obtain
1 Loy 1yl o Byl L
Co kT B T p® T e T
p ellVg g Vel .0, M1, 1o P2,5,

-%{Bfl)(§)+B§l)(§)—§'V;l§—(s+u—x)'V;l(s+u-x)}

<] e S s
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The exponent in the integrand equals

1) (1) -1 -1 (1) (1) -1 '
- ot - - -
L h= 8Dy 195 9,17V Ve I8+ 20D ] o#D,7 ) o#V (x=1)] s
(1) S
D 6.0 P 0,0 WV TG
(1) 1’ (1)
— 1
8'D s 2Dy 8+ Dy oe sy

(5.6)

where K is a constant independent of parameters,

N = ny + n, - 1 is the total size of complex pedigree;
S _ () (1 -1 -1
P = P11, 0110 7Yy Y
(1 _ (W (1) -1
P1,0 7 P1,1,0 ¥ P2,3,0 ¥ Ve (1)
(5.7)
L @ W gl
20,0 = P1,0,0 ¥ D2,0,0 = W)V (x-1)
-1
0y _ (1) _ (1) (1) " (D)
0,0 = P0,0 7 P1,0 01,1 P10
As a first step toward generalization, suppose B had m_ spouses

B

whose parental lines were indicated, then breaking the pedigree at B
results in my simple pedigrees each containing B as a marry-in and one
simple pedigree in which B is an offspring. Each pedigree containing B
as a marry-in contributes to the likelihood a factor similar to that of
pedigree 1 above. 1In each pedigree 'eliminate' all individuals except

the one identical to B.
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Then analogous to the case above

W _ . (D ml-l
Dl,l ? Dj,l,l mB(Vg +Ve )

(1) _ (1) -1, _
D10 § D10t mpVe (W) (5.8)

(L) (1)
0,0 § D 0,0

)
it

-1
-— - ' -
my (o) TV, (e
where the summation £ is over all simple pedigrees containing B.
b

Generalization of the above procedure to more complex pedigrees
without loops is not difficult. Break up the pedigree as above, select
one of the resulting simple pedigrees as root. For an individual in
the root pedigree which was broken compute the likelihood given the
polygenotype of this individual as above and attach the likelihood as

a factor, the procedure being repeated until only the root pedigree

remains. The equivalent of (5.1) for polygenic models is then

m,
n i Lj(si) .
= H = .
L, iil{ffif(fi)gfi(fi)n=1 ORATS enL (5.9)
i
¢(s,,V ) if 1 e M
i g
where f(si) =
=1 1 . .
¢(§i z{§p1(1>+§p2(i)],zvg) if i el

The root pedigree is simple, so the likelihood of the whole complex
pedigree can be computed from the recurrence formulas in Theorem 3.2

provided the D's are redefined as follows
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(n) -1

D™ v s e vt ¢ D)L m, (v vy
i,i ie i i''g r,1,1 i''g e
rt—:Bi
®) o (e, —a, v
1,] 13 1] g
D™ vty + ot 0 4 m v ) (5.10)
i,0 e Ui i r,i,0 ie i i
rsBi
0 =z 2wVl ) + 5 DD
0,0 . I T § e i i r,0,0
ieT reB,

1

ST om (2 )V Nz )
. i .1 .1 e ~1 .1
ieB

where Bi denotes simple pedigrees, other than the root, that result from
breaking the complex pedigree at individual i in the root pedigree, m,

denotes the number of such pedigrees, and B denotes all individuals

broken in the root pedigree. The modifications to the D's are obvious

extensions of {(5.8). ©Note the Dgn)

i,] remains the same as in Theorem (3.2)
2

since it is the matrix of the bilinear form in s and s,, and i and j

refer only to individuals in the root pedigree. With these modifications,

we find that the likelihood becomes

bl
2

Lo=k[v | v |
g e

-1 -t LD

N 2 ,Q, 2 2: 0 0 .
(|D£1§1 T 0 [Dﬁ i 2! Ye ’ (5.11)
1 ? reBi [} »e

N
2

p

=24

i

where N is the number of all individuals in the complex pedigree, and

N2

) results from the elimination of the %2-th individual in the r-th
9 b

simple pedigree connected to the individual i in the root pedigree.
Formulas (5.1) and (5.9) are strictly speaking meant for the case

where a complex pedigree without loops can be broken as indicated into

a simple "root" pedigree and simple "adjacent'" pedigrees. However they

can be used for the case where some of the adjacent pedigrees are complex

pedigrees without loops; we only need to calculate the Lj(ui) and Lj(fi)

for such adjacent pedigrees as for complex pedigrees.
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5.3 Combined Oligogenic and Polygenic
Inheritance in Complex Pedigrees With

No Loops
By combining (5.1) and (5.9), the likelihood of a complex pedigree

with no loops, under multifactorial inheritance is easily seen to be

My L, (u,,s,)
i .1

Il
L= I{ZpQ.,)f £(s)g (z,) 1 }oo(5.12)
M T Y121 -t =1 wuiq)(?i’vg)guisi(%i)

where Lj(ui,si) is the likelihood of the j-th broken bit of
pedigree given all individuals identical to i have major

genotype u; and polygenotype value S.»

pStu ifie1,
p(ui) =

Uy if 1 ¢ M,

u,

i
~i L i
¢(§i 2[§p (i)+§p (i)],zvg), iel,
1 2

f(si) =

¢(§i,Vg), ieM,

and 8s (%i) = ¢(s,+uu —zi,Ve) for multinormal phenotypes. As expected,

the integrals have the same form as for the polygenic model (5.9) and

can therefore be evaluated by (5.11), with uu replacing ui. After
~ug ~

evaluating the integrals, the likelihood function reduces to the form

for oligogenic inheritance (5.1), with the recurrence relations already

developed. Thus (5.12) becomes

N 1 L
-5 o Lk %
Ly = K(!VgHVe[) 2. 7 {lnil)il I n]nizi |
i=1 ’ reB. 4 >
i
k —%w(ui) iL (ul)
x L oplu,)e n ——=} (5.13)
_ i . Y
u.=1 j=1 Tu,
i i -1
_ _ - (1)' (1) (1) .
where w(ui) = (? o )'Ve (g _8 )y - Dl90 Di,i Di,O’ and in the
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calculation of Lj(ui)’ the g-functions are replaced by the corresponding

1
W
e “

5.4 Non-Consanguineous Loops

When there are loops in the pedigree, Lange and Elston (1975)
suggest breaking them as above, i.e., replacing one member of every
spouse pair with both parental Ilines observed by two separate but
phenotypically and genotypically identical individuals. Breaking all
loops this way results in either a simple pedigree or a complex pedi-
gree without loops. Suppose there are b breaks and at the j-th break
nj identical individuals are created, and let L(Vl’VZ""’Vb) be the
likelihood of the pedigree without loops when all nj identical individ-
uals resulting from the j~th break have their genotypes fixed at
vj (= 1,2,...,b). Then Lange and Elston calculate the likelihood under
oligogenic inheritance by

L(vl,vz,...,vb)

07 11 b euptes =1’ 1
S g (2)) )
. v, v,

J 3

3
(vl’VZ"'7vb)
in our notation. We can extend this to polygenic inheritance and for

multivariate traits with multinormal phenotypes simply by writing

L(SO,SO,G,,,SO)
L= S of oo =172 b
P SO SO 0 n -1
2122 % TieCs,,V) ¢(s,4u.-z ,v )] 3
. ~] 8 ~J ~] ~] e

J
(5.15)

where L(sg,sg,...,sg) is the likelihood of the broken pedigree given

that the genotypic values of the b individuals broken are fixed at

SO SO SO
21072277

is equal to the likelihood function without loops (5.11). We can most

The likelihood function (5.15) looks complicated, but it



82
easily explain this if we consider the case where breaking a looped
pedigree of size n results in a simple pedigree of size
n' (=n+1I nj - b). From section 3.4.2 and in particular (3.36),

J
(5.15) becomes

b p/2. . a0l g™
L = o I [(2%) |V jz[V [2] J [ A v A / . e
P =1 & € so so so Sl S2 st
J ®1 %2 °p "t - n
b v g omcl b n,~1
- I [s; V' s 13 - I[(z,-u,- ) v, Yo =917
j=l ~J g "'J j=l ~J "'J J ~J "‘J
(5.16)
where n'' is the number of those not fixed (n''+b=n),
0 O
{51’82 LT .} excludes {fl S5 ..,sb}
(n") -1
B =2 I (s, —z[s A1V T (s, -Y]s 1)
iel - ( ) (1) g -i ~pl(l) ~pz(l)
(5.17)
1oL o1
+ I sV 's, 4+ I (x,-u.-s.)'V (x.-U.,-s.)
, o1 Si . Siti il e M4 oDi i
ieM ieT
and
_na'
a = constant X (lVgI[Ve|) 2 . (5.18)

Now note that when we break the complex pedigree at the j~th position
resulting in nj identical individual% nj—l of these are artificially
created marry~ins. These contribute nj—l terms to the second summation
in (5.17) and nj—l terms to the third summation. But the terms contri-
buted by the artificially created marry-ins are subtracted from B(n')
in the exponent term of (5.16). Hence the exponent in (5.16) equals

(n)

B as originally defined in (3.36). We also note that

p/2 Y L n,-1 -n/2

b
o El{(ZK) [Vgl [Vel ] 3 = constant x (lVg[iVel) (5.19)
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There is no trouble changing the order of integrations in (5.16) to
correspond to ?1’?2""’§n° We find therefore that the likelihood of
the complex pedigree is the same as the likelihood of the simple pedi-
gree resulting from breaking the loops, without the artificially created
marry-ins. Thus we need not break up the loops at all, conceptually.
We can start from any computationally convenient individual and "elimi-~
nate' until we have covered all individuals in the pedigree, using the
recursive formula given in Theorem 3.2.

The observation we have made above is true for the more general
case where breaking all loops results in a complex pedigree without
loops. Thus formula (5.11) can be used for complex pedigrees with loops
as well.

Let us now briefly consider the combined oligogenic and polygenic
inheritance in complex pedigrees with non-consanguineous loops. By

combining (5.14) and (5.15), we can write down the desired likelihood

as
L(sO sov sOv
Ly = 5 N | ®1V1°%172° 9 %p'p
0’ 0 0
all b~tuples 81 8, Sy 0 0 n,-1
-1~ v )¢ - 3
(Vv 5V,5eeesV) I}[wv.¢(§j,vg)¢(§j+gv‘ gj,Ve)]
J J J
(5.20)
Using (5.11) to evaluate the integrals, we have
-N/2 n =5 -y
L, = KOV [V D m (o) njpt*) L)
g''e =1 B pep g G2
LAV, 3 Vg ee,V, )
1’2 b
x z — (5.21)
all b-tuples 3
(V,3V,oseeoV. ) H(wv )
1, 2’ b . j
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where in the calculation of L(vl,vz,...vb) the g-function for individual
—%W(ui)
i is replaced by e as in (5.13).

5.5 Consanguineous Loops

The complication introduced by consanguineous matings is that the
relatedness factors @150, and o, defined for polygenic models in sec—
tion Z.4 are no longer all equal to %. These are the only quantities
that change, which means that in our formulas cnly the D's need to be
modified; the form of the likelihood functions remains the same as for
non-consanguineous pedigrees.

Recalling from section 2.4 that for polygenic inheritance the

transmission density for individual i is

blsy - [ali?pl(i) + O‘21?;:2(1)]’ %3550

the B( ) that enters into the derivations in section 3.4.2 (specific~-

ally expression (3.36) and following) becomes *
(n) L1 -1
B = 2 — (s,~[a,.s  ta s D'V (s,~[o..s . ta,.s .
fe1 %31 -1 ll”pl(l) 21~p2(1) g .i [ ll~pl(l) 21~p2(1)])
(5.22)

+ 2 sWls 4 3 (z,~u.~5.) "V (2.~ -s.)
Lo oig Di SiZi i) e Y0iTi 4
ieM ieT

Expanding and rearranging so that quadratic terms in s,, come first,
followed by bilinear forms in s, and s,, linear terms in s. and

constants, we have




(n)

8 - zs'vls

ieT"i e -1

2
at,
+ z ;li

iel 31

Q
-2
ieT %31

+ 2z 3
iel “3i

+ I (z,-up
ieT -~

By comparing (5.23)

(definition 3.6) must be

0 if
a, = 1 if
i
v if
{ 1 if
b =
i -1 .
a3i if
2 =1
c = fall 3i
1 iag a-i x
21731
c = a_.a,..0."
ij 11724 34

in common

®i1%34

di; =% %42%31

L0

1i

%14
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+ Z L s!V~ls, + I s;V—ls,

g -1

1e1 %3i~* B -1 ey -

2
1 %24

s (i) + I P
P iel 931

s'! v ls .
~ g ~pz(l)

' -
. v
pl(l) 2 g

pz(i)

]

fpl(i)vg

%24 1

?pz(i)

-2z (z,—ua)'V—ls
Si i

s' v
- & ieT e -1

pl(i)

-1
' —
'V (20 (5.23)
with (3.37), we see that the status indices
generalized as follows.
i is not observed

i is observed

i represents v monozygotic sibs
ieM

iel

X the number of children of i if 1 is male

the number of children of i if i is female

X the number of children i and j have

if j is the father of i

if j is the mother of i

(5.24)

otherwise
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The D's then have the same definition as in Theorem 3.2. With these ‘
changes the formulas for non-consanguineous loops can be used for

consanguineous loops as well.




CHAPTER VI

MAXIMUM LIKELIHOOD ESTIMATION AND HYPOTHESIS TESTING

6.1 Introduction

For univariate traits it has been said that the single most
important question concerning inheritance is whether or not a single
locus can account for most of the genetic variation (Elston and Stewart,
1971; Elston and Rao, 1978). With regard to multivariate traits, the
most important question is possibly this: Are the component traits
under common genetic control? A positive answer would mean the plei-
tropic expression of at least one locus.

Our initial motivation for considering the problem of estimating
the covariance component matrices was that, by examining their eigen
structures, we could answer the above question. The eigen structures
also provide a linear index that could be used as a measure of the
innate trait and for identifying individuals at risk. But since we
have advocated the use of the maximum likelihood method of estimation
we also have a natural statistic, namely the likelihood ratio criterion,
for answering the question. We shall discuss both methods in this
chapter.

The estimation and tests proposed will be based largely on the
multivariate mixed model developed in Chapter IV. The other modes of
inheritance are special cases of this, and furthermore tests related to

them are trivial extensions of univariate tests, so for brevity we shall

not discuss them here.
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6.2 Estimation of Genetic
Components of Covariance

Theoretically the statistical problem of estimating the genetic
components of covariance, from pedigree data, falls into the general
category of covariance components estimation for random or mixed designs
with unbalanced data. The desirability of, and problems associated with,
maximum likelihood estimation in this general setting have already been
discussed. Closed form solutions to the likelihood equations cannot be
found in general, Lange et al. (1981). In fact for the models we have
described, it does not as yet appear feasible to derive likelihood
equations which could be solved iteratively, though Ott (1979) made
a start in this direction. We therefore resort to direct search
methods, and it is for this reason that the formulas we have developed
in Chapters III, IV and V are useful. We can use them in conjunction
with computer routines, such as MAXLIK (Kaplan and Elston, 1972) to
determine maximum likelihood estimates of the genetic components of
covariance by searching the likelihood surface. MAXLIK also uses
numerical methods to determine the sample information matrix, which is
inverted to obtain the covariance matrix of the estimates.

As for univariate traits the likelihood surface may have several
local maxima, and there is no general way of knowing how many such
maxima exist. The advice of Elston (1980) is to search for more than
one local maximum whenever a particular set of parameters are estimated.

6.3 The Likelihood Ratio Test for
the Major Gene Hypothesis

The test developed here is a multivariate generalization of one
of the tests for major gene proposed by Elston and Stewart (1971).

Consider a mixed model with one two-allele locus, plus a polygenic
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component. The three genotypes may be denoted AA, Aa and aa. For the
univariate trait z, we may assume the conditional phenotypic distribu-
tion

gt(Z) = ¢'(Ut = Zaoé)s t = AA, Aa, aa,

and also that the genotype frequencies wAA’ wAa and waa depend on a
single parameter q, the gene frequency. The model then depends on
Seven parameters

02, G2

q-» UAA) UAa, paa: g e’
The test for major gene effect is then equivalent to testing the

hypothesis

For a p-variate trait z, the p's become pxl vectors and the 0?'s become

p*p matrices. The parameters of the mixed model are

qs E s EAa’ Hoa’ Vg, Ve

so that the null hypothesis for major gene becomes

= U = u . (6.1)

Hyt 4 =0, v Aa aa

¢] AA
Using the likelihood under the mixed model discussed in Chapter IV, we

may compute the likelihood ratio as

max Iy, (0,2 |Hy)

T max LM(B,z) (6.2)

5 ~ -

where max LM(G,ZIHO) is the ML computed with the restrictions imposed

by HO {(6.1), and max LM(e,z) is the unrestricted maximum likelihood.

Usually the statistic -2 logel has asumptotic x? distribution with
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2p+]1 degrees of freedom. It should however be noted that under HO, q is
indeterminate when BAA = BAa = Eaa and the latter are not (distinctly)
determinate when q=0. These boundaries can cause problems. Wolfe
(1971) suggests from a simulation study of the sampling distribution of
the likelihood ratio for independent multinormal mixtures, that for
hypotheses involving boundary values of parameters, doubling the degrees
of freedom gives a bétter fit to the sampling distribution. With the
dependencies in pedigree data, Wolfe's suggestion needs verifying here--
an area of future research.

Other hypotheses can also be tested. TFor example, the hypothesis
of Hardy-Weinberg equilibrium proportions for the major genotype can
easily be tested, by noting that the genotypic distribution is given

by ¥ 2,9, = 2q(1-q) and waa = (1-q)2 corresponds to the restric-

) _ Yy C .
tion wAa = Z(LpAA waa) . This is of course one of the tests for uni

variate traits that carry over to the multivariate situation. Another
is the test of the presence of simple Mendelian segregating proportions
via transmission probabilities (Elston and Stewart, 1971). Other tests

are the hypotheses of dominance: Y or u

“aa T Maa B Eaa’ and  the

Aa

absence of polygenic inheritance which corresponds to the restriction

Vg = 0. The degrees of freedom for -2 logek in each of these tests

equals the number of restrictions imposed by the null hypothesis.

6.4 The Ratio of Generalized
Genetic Variances

The generalized variance, defined as the determinant of the
covariance matrix is accepted as an overall measure of variation in
multivariate populations or samples. From the mixed model we can obtain

estimates for Vmg and Vpg’ the covariance matrices for the major gene
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locus and polygenic locl respectively. The proportion of genetic

variation in the multivariate trait due to the major gene is then

v |
R A (6.3)
mg Pg
with sample estimate
. v |
A= —-De_ (6.4)
v +v_ | ~
mg P8

A formally resembles the Wilk's A statistic whose distribution is well

~

known (See for example Anderson, 1958). However Wilk's A requires Vmg
and %pg to have independent Wishart distributions, but in our case

their functional relationships with z cannot be determined explicitly.
We cannot therefore demonstrate that Gmg and Gpg are Wishart matrices.
We shall use the Taylor series method to derive a consistent estimate

of the sampling variance from which standard errors can be computed.

Now let

v = (o ) and V = (o ).
mg. . Pg .
J 1]
Since these are covariance matrices
o =0 and o =0

g, mg, 4 P8, pgji'

Let wmg be the %p(p+l) x 1 vector of the distinct elements in Vmg and
W the corresponding vector for distinct elements in V_ ; w is formed
~Pg pg  .mg

simply by rolling out by rows (or columns) the lower half of Vmg’ i.e.,

W, = [Om »O 50 5O yesesO P , 0 yeoesO ]!
-8 811 M8y; M8y M3y m833 Tey1 MBp B850
Similarly

w = [o , O »C ,O yeees0 yoees0 4,0 ) 1!
-Pg P81;  P8y; P8yy PBgg P833 Pg,1’ PEy; P,
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W
~mg

Now let w = w . Then w is the p(p+l) % 1 vector of all distinct
~ e -

major gene and polygenic components of variances and covariances.

Denote the p(p+l) X 1 vector of partial derivatives of A with respect

to the elements of w by d. Let w be the sample estimate of w, with

estimated covariance matrix V = (cov(wi,wj)),and d(w) the values of the
derivatives evaluated at the sample values w, then the Taylor series

-

approximation to the variance of A is given by
var(A) = d'"(w) V d(w) (6.5)

See for example Rao (1973) .
To use the formula we need to calculate the derivatives d, or

equivalently

A A . .
py andg 9 i<ji=1,2,...,p.
It is more convenient to evaluate the matrices

ah BA ah 3A
== = and o = |5

avm aom V. 3o :
g I Pg pgij

We need two results on derivatives of determinants. The first is
standard (see for example Rao (1973, p. 72). For a symmetric nonsingu-

lar matrix X
3 o1 . -1
5§WX1 = |X]{2X " - diag(X )}

The second result is an easy extension of this. Let X and Y be

symmetric matrices such that X+Y is symmetric and non-singular. Then
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d

9
= 5?§;§7 iX+Y‘ . gi(X+Y)

3
aX]X+Y|

IX+Y!{2(X+Y)_1 - diag(x+Y) 11-1

|x+¥ | (2(x+1) 7T - diag (X+Y) 13,
Using these two results we find

3

3
={|v 4+ | = |v | -|v |- v +v_ |¥/|v_+v |2
avmg mg pg BVmg mg mg BVmg mg pg mg pg
Vg -1 -1 -1 -1
= ——E— (2 -diag V) - @O+ )7 - dtagv v )h
v +v mg mg mg pg mg  pg
mg pg
= n2v tdiag v - 2w v )7V D diagv wv )71y (6.6)
mg mg mg pg mg pg
Similarly,
aA IVm l ]
WS T T, e (Ut
vV +v |2
pg | g pgl pg
= - M2(V_ +V )—l - diag(V_ +V )_1} . (6.7)
mg pg mg pg

The vector d is formed by rolling out §%~ and %%’ as for w above.
- o ~

g Pg
The standard error of A is approximately estimated by

se(x) = Vvar(x) . (6.8)

It follows that the statistic

N
~

t = A . _A (6.9)

se(A) VQar(A)

is asymptotically N(0,1). The estimate of the standard error determined

above is very approximate, since the derivatives d(w) are evaluated at

-~

the sample values [V_ ,V ]. The true values [V._,V_ 1 are unknown and
mg  pg mg  pg

the sample estimates are likely to be biased.
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6.5 1Index Procedures

We now consider problems related to the genetic analysis of a
linear function of the components of z. We shall refer to this function

as an index and denote it by
I(z) = a'z (6.10)

Two issues of particular interest are:
(1) the choice of a to maximize the heritability of I(z), and
(ii) the statistical significance of the major gene component
to the additive genetic variance of I(%).
It is hoped that the index I(z) would be a better measure of the "innate"

trait than each component of z separately.

The heritability of the index is

a'v a
2 = > = 6.11
hI a'(V +V )a ( )
~ g e’ .
with sample estimate
R a'V a
hZ = —h (6.12)

a'(V +V da

- g e’.

where Vg and Ve are ML estimates. The problem of maximizing h% is
the familiar problem of maximizing the ratio of two quadratic forms.

The solution is given by the largest root (Al) of the determinental

equation

(6.13)

]
o

- A
lvg (vg+ve)[

with sample equivalent

[V - A(v +v )] = 03 (6.14)
g g e
a is the characteristic vector corresponding to Al.

-~

The statistical

significance of hI may be determined from the distribution of Roy's
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largest root criterion. However, this test will not be exact since Gg
and Qe are correlated and may not be Wishart matrices.

We next ask whether an index so determined has a significant major
gene component in its genetic variance. This can be done using univari-

ate methods. Notice however that the genetic variance of the index may

be partitioned into major gene and polygenic components as follows.

Var [I(z)] = a'Va=2a'V a+ a'V a 7 6.15
g[ (~)] a'v,a 3 Vg v, ( )

The sample estimate of the proportion of genetic variance due to
the major gene is

R a'v
- o mgT

v N ~ (6.16)

a'(v 4V )a

~ mg pg

We shall obtain approximate large sample estimates of the standard
error of v below.
A different question that may be asked in the spirit of the one

above is whether we can find a linear function that has maximum major

gene variance relative to the total genetic variance. This proportion

is
?'VmgP
T = max 5TV 4V b (6.17)
b . “mg pg -
with sample estimate
: bV b

T = max ‘,‘NA_‘m‘g—:—_“
b b(V +V )b
~ ~ mg pg

= )\1’

A ~ ~

the largest characteristic root of V. (V. +V )_1’ and b is the
mg  mg pg ~max

associated characteristic vector.
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We shall now derive approximate large sample variances for the

~

statistics h%, v and t. Consider the ratio

a'Vla
- 17272
At the sample values we have
" IO a'Vla
f = f(Vl,Vz) = (6.19)
]
a'(Vy#v,)a
of (a'(V,+V_)a « aa' - a'V,a + aa')/[a'(V,+V_ )a]?
BVl - 1 7270 - ~ 1. - - 172772
Evaluatingkat the sample values, we have
a'v.a
%%—l = = AZNA 2' aa' (6.20)
~ ~ [ ~ o~ e
U vy [81pvyal
1’72
Similarly,
a'Vla
of = = > aa' (6.21)
aVv A at(V,+V, )a] ‘
2 (Vl,vz) [~ l 2 ~

~

Now let V be the estimate of the covariance matrix of parameter
estimates, and d(w) be the p(p+l) x 1 vector formed from the distinct

elements of

of

’ 5“72
(Vl,VZ)

of

avl

, as in section §.4.

(V,5V,)

Then the large sample Taylor series approximation to the variance of f

is obtained by substituting V and d(w) in (6.5).

6.6 Some Remarks

We have discussed maximum likelihood methods for estimating

parameters of the multivariate versions of the genetic models, and
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derived large sample tests for the single gene hypothesis. The methods
presented would be adequate for segregation analysis of multivariate

traits with human pedigree data.



CHAPTER VII
SUMMARY AND CONCLUSIONS

We have concerned ourselves in this thesis with the problem of
analyzing the genetic basis of covariation of multivariate traits in
families and extended families, or pedigrees, using maximum likelihood
methods. Specifically we have developed a model that is general with
regard to the genetic mechanism of transmission as well as pedigree
structure and consanguinity. The problem of computing the resulting
likelihood function has been studied analytically in some depth, yield-
ing recursive formulas that bring the calculations envisaged within the
capabilities of present computing facilities, thus removing what could
be the most serious objection to using the model.

It has been possible to bring the many facets of the problem of
genetic analysis,as well as the complexities of pedigree structure,
into one computational scheme by integrating the Elston and Stewart
(1971) model and the Lange, Boehnke and Spence (1981) model. Ours is
the second attempt at some kind of integration of the two models; Ott's
(1979) was the first. What is new in our approach is that we start
with the Elston and Stewart basic formulation, but replace their con-
ditional density function, Prey’ for the polygenic component by a more
general one derived from the model by Lange et al. The new Prcu depends
a, and o, which we call relatedness coefficients; the

1’ 72 3

original Elston and Stewart model is the special case:

on quantities o

‘ .
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@y =@y = 0y = 5. This formulation allows us to handle consanguinity in

pedigrees when the traits have multinormal phenotypes. The o's are
determined by the pedigree structure and are assumed known. It is

, , . 1
interesting to note that if we multiply oy and %, by IIE and a3 by

I+p, where ¢ is the correlation between polygenotypes of mates, we allow

0, and o, are assumed to be

2 3

arbitrary parameters to be estimated, we allow for cultural inheritance

for assortative mating. Furthermore if o
that is completely confounded with polygenic inheritance, Rice et al.
(1978), as quoted in Boyle and Elston (1979).

The oligogenic component of our model is exactly the same as in
the original Elston and Stewart model. It therefore follows that
reparametrization in terms of transmission probabilities can be done for
linkage studies and tests of mode of transmission.

The ideas used by Lange and Elston (1975) to calculate the likeli-
hood of oligogenic inheritance in complex pedigrees have been extended
to polygenic inheritance and combined oligogenic and polygenic inheri-
tance: the mixed model. However complex the pedigree structure,it
can be broken (at least conceptually) into simple pedigrees and every
individual described by his status indices, together with pointers or
other indices that indicate who the individual's spouse and children
are.

An important feature of our model and computational methods is
that the highest order of matrices that enter into our calculations is
pxp for a p-variate trait, instead of npxnp (where n is the size of the
pedigree) as in Lange et al. This, as noted in Chapter IV,is one
reason it is not feasible to compute the likelihood as Ott formulated

it. The other reason is that in Ott's model it is necessary to store
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all possible K" genotype combinations--a problem completely circumvented

by the use of our recurrence formulas.

From the definition of terms in the recurrence formula (3.29), it
is evident that the key to the calculation of the likelihood function,
and hence the development of an efficient computer software for pedigree
analysis,is the status indices which are functions of the relatedness .
coefficients.

Our analyses have further shown that the exact calculation of the
likelihood under the mixed model of inheritance, involving both oligo-
genic and polygenic components, is possible. In their review of
statistical methods for genetic analysis of quantitative univariate
traits in families and pedigrees, Boyle and Elston (1979) stated the

need for a computing algorithm for the likelihood under the mixed model

of inheritance. Now we have found it. The algorithm only requires
modification of the g-functions in the corresponding oligogenic model

by the recurrence formulas we have developed, a fact that will obviously
facilitate the development of general computing software for pedigree
analysis.

The actual estimation and hypothesis testing procedures are dis-
cussed in Chapter VI. Estimates are found by direct search of the
iikelihood surface; hence the need for fast and accurate algorithms
for calculating the likelihood. Tests are based on the likelihood ratio
criterion and an examination of the eigen structure of the genetic com-
ponents of covariances. Standard errors of estimates are derived by
the Taylor series approximation method. With the dependencies in pedi-
gree data, and the fact that most of the tests involve boundary values

of some of the parameters, the statistical procedures outlined are
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crude at best. Numerical studies could lead to refinements as in
Wolfe (1971).

The work we have presented here is probably the first attempt at
developing a general model and computing algorithm for the genetic
analysis of multivariate traits. We have no doubt concentrated on the
barest essentials. As with the original Elston and Stewart model, it
is easy to foresee a whole generation of modelists springing up and
embellishing the model with such additions as ascertainment corrections,
age of onset functions, common family or sibship environments, general
environmental covariates, and the like. However these would be at the
cost of increasing the number of parameters to be estimated, which is
already formidable even for a small number of traits. Yet given the
realities of the non-experimental data we have to work with, such
efforts are desiderata, and in theory at least, easy to do. It is
also possible that closer scrutiny, practical considerations in soft-
ware development and numerical studies would suggest modifications and
refinements to the formulas and algorithms we have derived.

In conclusion we remark that the genetic basis of covariation is
of such practical importance that any new advances in analytic and

computing tools will be welcome.
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ABSTRACT

GEORGE EBOW BONNEY. Maximum Likelihood Methods for Genetic Analysis

of Multivariate Pedigree Data. (Under the direction of

Robert C. Elston.)

The problem of analyzing the genetic basis of covariation of
multivariate traits in families and extended families, or pedigrees,
is studied using maximum likelihood methods. A general model is pre-
sented that includes all the features of the Elston and Stewart (1971)
model and the essentials of the Lange, Boehnke and Spence (1981) model.
The integration of the two models, achieved through the introduction of
quantities we call "relatedness coefficients," makes it possible to
bring the many facets of the problem of genetic analysis as well as the
complexities of pedigree structure into one computational scheme.

Simple definitions and classifications of pedigrees are intro-
duced and a device first used by Dr. Philip Green, III, is extended
and used to define "status indices" that summarize in numerical codes
the relevant information on every individual in the pedigree. The status
indices turn out to be simple functions of the relatedness coefficients,
and they enable us to formulate likelihood functions for continuous
tfaits in complex pedigrees.

The computational problem is studied analytically in depth yielding
recurrence formulas for the exact calculation of the likelihood function
even for the case of combined oligogenic and polygenic inheritance in
simple as well as complex pedigrees, thus removing what has been by far

the most serious objection to the use of such models.
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