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1 IntroductionThis paper addresses the development of a model-based nonlinear optimal control method formagnetostrictive actuators in structural applications. Such actuators utilize the `giant' mag-netostrictive e�ects provided by certain rare-earth compounds to produce signi�cant strainsin response to applied magnetic �elds. As discussed in [7, 11], one core material which hasproven very e�ective under a variety of operating conditions is Terfenol-D. Actuators utiliz-ing this material can generate mechanical strains on the order of 500 �strain in the linearrange and up to 1000 �strain in the nonlinear range. The materials are capable of generatingforces in excess of 125 lbf with speci�c values highly dependent upon transducer design. Fur-thermore, the material provides a broadband response ranging from DC up to 20 KHz [17].In combination, these qualities provide Terfenol-D transducers with signi�cant capabilitiesas controllers and vibration absorbers in industrial and heavy structural applications. Suchtransducers have also been employed as sonar transducers and precision micropositioners.The full utilization of magnetostrictive transducers in all such applications requires quan-ti�cation of the transducer dynamics in response to various inputs. Magnetostrictive materialssuch as Terfenol exhibit inherent magnetic hysteresis which is signi�cant at moderate to highdrive levels. Furthermore, numerous investigations have demonstrated the stress and temper-ature sensitivity of the materials along with the nonlinear behavior of elastic properties suchas the Young's modulus [8, 28, 37]. Finally, the magnetomechanical relation between inputcurrents and output strains is nonlinear and displays signi�cant hysteresis at high drive levels.All such hysteresis and nonlinear e�ects must be incorporated in both the transducer modelsand control laws to utilize the full capabilities of the actuators at high drive levels.The magnetization model we employ is based upon an extension of the ferromagneticmean �eld model of Jiles and Atherton [23, 24, 25, 33] while magnetostriction and hencestrains are incorporated through a quadratic domain rotation model [23]. As demonstratedthrough validation experiments in [9], this combined model quanti�es transducer dynamicsfor a large variety of prestresses and drive levels. The model also quanti�es asymmetric minorloops which makes it appropriate for control design in structural applications which involvemultiple frequencies and transient dynamics.We concentrate here on linear structural models which incorporate this nonlinear actuatormodel. Such linear models are common in applications characterized by large forces but smalldisplacements and provide a natural regime for initial development of a nonlinear controlmethod which incorporates the actuator hysteresis and nonlinearities. A nonlinear open loopcontrol is constructed �rst through the application of �nite dimensional optimal control theory.This control adequately incorporates the hysteresis and nonlinearities inherent to the actuatorbut is not robust with regard to perturbations in operating conditions. Such robustnessis provided by an additional feedback control constructed through linearization about theunperturbed optimal open loop control. The hybrid control containing the nonlinear open loopand linear perturbation closed loop components is highly robust, e�cient to implement, andutilizes the exibility and accuracy of the nonlinear actuator model to provide the capabilityfor attenuating transient and broadband dynamics.To place this control method in perspective, we briey summarize existing control tech-niques for magnetostrictive actuators. For low drive level control applications, linear modelsand control methods have proven suitable for both bulk magnetostrictive actuators [5, 7, 31, 32]1



and magnetostrictive particle actuators [29]. In a similar vein, the e�ects of hysteresis werealso neglected and a linear law employed in [38] when designing a high precision magne-tostrictive micropositioner. Such methods break down at moderate to high drive levels dueto inherent hysteresis and nonlinearities [13]. For example, hysteresis provides a phase lage�ect which will destabilize a system if unaccommodated. One technique for extending thelinear range of transducer dynamics is based on the assumption that the underlying system islinear with nonlinear output harmonics acting as a disturbance. As demonstrated by Hall andFlatau [17] and Hodges and Sewell [19], feedback techniques can then be employed to reducedisturbances and improve linearity for certain operating regimes. Various nonlinear controltechniques have also been employed for high drive level applications. Jenner et al [22] de-veloped an active vibration controller for predescribed wave forms by considering a nonlinearcontrol technique implemented through switching between positive and negative gains to theactuator. A similar objective was attained via neural network controllers by Bryant et al [4].Control laws based upon Preisach models have also been employed for a variety of smartmaterials including magnetostrictives [14]. Such models are based upon polynomial or piece-wise constant approximations to the nonlinearities and hysteresis loop, and are advantageouswhen the underlying physics is not well understood or quanti�ed. Such characterizationsprovide a control input operator which is easily inverted (or has an inverse which is easily ap-proximated) which facilitates control design based upon output linearization [36]. Feedforwardcontrol methods based upon Preisach models followed by linearization have been employedfor piezoceramics [15] and are applicable for magnetostrictives in certain regimes.The generality of Preisach models, which provides their advantage when the physics isnot well understood, also leads to inherent limitations in many control applications. Becausesuch models are not physics-based, they typically do not provide the capability for adaptingto changes in operating conditions (e.g., drive levels, prestresses, minor loops) through themonitoring of system inputs. The transducer dynamics must be known a priori and incor-porated directly in Preisach models whereas physics-based models of the type employed herecan adapt to changing dynamic levels solely through the measurement or designation of inputcurrents. This limits Preisach-based control laws to prede�ned trajectories (e.g., periodic)and does not provide the capability for directly attenuating unmodeled disturbances or in-puts. Moreover, for unanticipated initial conditions, such methods also lack the capabilityfor controlling transient dynamics. Finally, Preisach models typically require a large numberof nonphysical parameters which limits their exibility and increases implementation time inmany applications.The development of the physics-based control method is presented as follows. Section 2contains a brief description of a typical magnetostrictive transducer along with an outline ofthe energy-based model employed in [9]. The modeling and approximation of transducer inputsto a thin beam are presented in Section 3. This provides the prototypical control system withnonlinear actuator inputs. The control problem is discussed in Section 4. Following an outlineof nonlinear optimal control theory for �nite dimensional systems, a linear optimal controlmethod is considered. Numerical results demonstrate the success of the method at low drivelevels and its failure at high drive levels due to unincorporated phase lag e�ects. An openloop nonlinear control method which fully incorporates material nonlinearities and hysteresisis then developed. Numerical examples are used to show that this method provides excellentattenuation when the system is known exactly but is not robust with respect to system2



uncertainties. The �nal subsection of Section 4 illustrates the development and performanceof a perturbation feedback control method obtained through linearization about the optimalcontrol system. This feedback method provides excellent attenuation of structural dynamics,is highly robust with respect to operating uncertainties and is feasible for implementation.Finally, the method is e�ective for systems exhibiting broadband responses and both periodicand transient dynamics.2 Magnetostrictive Actuator ModelThe issues which must be addressed when developing a nonlinear modeling and controlmethodology are illustrated through consideration of the transducer depicted in Figure 1.This construction is typical for actuators currently employed in structural applications (see[16]), and its dynamics exhibit the full range of nonlinearities and hysteresis which must becharacterized and incorporated in control design.The primary components of the transducer consist of a magnetostrictive Terfenol-D rod,a surrounding wound wire solenoid, a surrounding permanent magnet, and a prestress mech-anism consisting of spring washers and/or compression bolts. The input to the actuatorconsists of a time-dependent current I(t) to the solenoid. This generates a magnetic �eldH and corresponding magnetic ux B and magnetization M within the Terfenol rod. Therod is constructed so as to contain a large number of regions in which moments are alignedperpendicular to the longitudinal rod axis (the orientation of regions, termed domains, is fur-ther aligned by the prestress mechanism). The application of the magnetic �eld causes therotation of these moments which in turn generates strains and forces within the material. Thisprovides the mechanism for actuation. We note that the magnetostrictive materials can alsobe used for sensing through measurement of the magnetic �elds generated by stress-induceddomain rotations.As illustrated in Figure 2, the relationship between the applied �eld H and the inducedmagnetization M displays signi�cant hysteresis and saturation e�ects at high drive levels.This implies that the permeability �, which relates the two, is a nonlinear, multivalued map.The magnetomechanical e�ects are also nonlinear as illustrated in Figure 3. At moderate drivelevels, the relationship between the magnetizationM and strain e is approximately quadratic,
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CompressionFigure 1. Cross section of a typical Terfenol-D magnetostrictive transducer.3
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Figure 2. Relationship between the magnetic �eld strength H and the magnetization M .
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 e(a) (b)Figure 3. (a) Input/output relationships; (a) magnetizationM and strain e and (b) Magnetic�eld H and strain e.as depicted in Figure 3a, which yields the `buttery' relationship shown in Figure 3b (theasymmetry is due to the use of experimental �eld input data when computing the modeledstrain). As illustrated in [9], the magnetization/strain relation also exhibits hysteresis at highdrive levels which must be incorporated in the magnetomechanical model.The model described in [9] is used to characterize the transducer dynamics. The mag-netization component of the model is based upon the Jiles-Atherton mean �eld theory forferromagnetic materials [23, 24, 25, 33]. This theory is based on the quanti�cation of energylosses due to domain wall intersections with inclusions or pinning sites within the material (thetransition regions between domains are termed domain walls). For a material which is freefrom inclusions, the domain wall movement is reversible which leads to anhysteretic (hystere-sis free) behavior. However, materials such as Terfenol contain second phase materials which4



impede domain wall movement. At low �eld levels, domain wall movement about pinningsites is reversible and yields a reversible magnetization Mrev. At higher drive levels, domainwalls intersect remote pinning sites which provides an irreversible component Mirr. It is thislatter component which incorporates the energy loss and hysteresis in the model.To characterize the total magnetization M , we consider �rst the e�ective �eld within thematerial. For rods subjected to a constant prestress �0, the e�ective �eld is given byHeff (t) = H(t) + �M(t)where H(t) = nI(t)denotes the magnetic �eld generated by a solenoid having n turns per unit length with aninput current I(t). The parameter � quanti�es magnetic and stress interactions. Throughthermodynamic considerations, the anhysteretic magnetization is then de�ned in terms of theLangevin function Man(t) =Ms "coth Heff (t)a !�  aHeff (t)!# : (1)Here Ms denotes the saturation magnetization of the material and a is a parameter whichcharacterizes the shape of the anhysteretic curve. Energy balancing (see [24]) is then used toquantify the irreversible and reversible magnetizations through the expressionsdMirrdt = ndIdt � Man(t)�Mirr(t)k� � �[Man(t)�Mirr(t)] (2)and Mrev(t) = c[Man(t)�Mirr(t)] (3)(� = �1 while the constants c and k are estimated from the experimental hysteresis curves).Finally, the total magnetization is given byM(t) =Mrev(t) +Mirr(t) : (4)To �rst approximation, the strains generated by the material are given by the bulk mag-netostriction �(t) = 32 �sM2s M2(t) (5)where �s denotes the saturation magnetostriction (see [23] for details). In combination, (1)-(5)characterize the relationship between the input current I and the strains generated by thetransducer. Details regarding the well-posedness of the model are given in [35].3 Structural ModelA structural system which has been experimentally employed to ascertain capabilities andproperties of magnetostrictive transducers (see [10]) is illustrated in Figure 4. This systemconsisted of a cantilever beam with end-mounted actuators. Diametrically out-of-phase cur-rents to the actuators generated bending moments which were used to attenuate transverse5



beam vibrations. We will employ a model for this experimental setup as a prototype toillustrate the optimal control method proposed here.
Figure 4. Cantilever beam with magnetostrictive actuators. Uniform force inputs are de-picted above the beam while the measurement point is indicated by the lower arrow.3.1 Thin Beam Model with Nonlinear ActuatorsFor modeling purposes, the beam is assumed to have length `, width b, and thickness h. Thedensity, Young's modulus, Kelvin-Voigt damping coe�cient and air damping coe�cient for thebeam are denoted by �b; Eb; cDb and , respectively. The cross-sectional area of the Terfenolrod is denoted by Amag while the Young's modulus and damping coe�cient for the Terfenolrod are denoted by EH and cHD. The length and width of the connecting bar are denotedby `r and br, respectively, while the bar density is given by �r. Finally, the transverse beamdisplacement is given by w while g(t; x) denotes an exogenous surface force to the beam.Moment and force balancing yields the strong form of the Euler-Bernoulli equations�(x)@2w@t2 (t; x) +  @w@t (t; x) + @2Mint@x2 (t; x) = g(t; x) + @2Mmag@x2 (t; x) ; 0 < x < `t > 0w(t; 0) = @w@x (t; 0) = 0Mint(t; `) = @Mint@x (t; `) = 0 9>>>=>>>; ; t > 0 ;along with appropriate initial conditions, as a model for characterizing the transverse beamdynamics. As detailed in [34], the composite density and internal bending moment are givenby �(x) = �bhb+ 2�rbr`r�rod(x)Mint(t; x) = EI(x)@2w@x2 (t; x) + cDI @3w@x2@t(t; x)where the characteristic function �rod delineates the location of the rods andEI(x) = Ebh3b12 + 2AmagEH (h=2 + `r)2 �rod(x)cDI(x) = cDbh3b12 + 2AmagcHD (h=2 + `r)2 �rod(x) :6



For the case when the Terfenol rods are driven diametrically out-of-phase, the external momentis derived from (5) and is given byMmag(t; x) = KM [M2(t) + 2M(t)Ms]�rod(x)where KM = (3�s=M2s )AmagEH (h=2 + `r)2. The inclusion of the weighted magnetization2M(t)Ms provides the bias necessary to attain bidirectional strains.To obtain a weak form of the model, we take the state to be the displacement w in thestate space X = L2(0; `) with the inner producth�; iX = Z `0 �� dx :The space of test functions is taken to be V = H2L(0; `) � f� 2 H2(0; `) j�(0) = �0(0) = 0gwith the inner product h�; iV = Z `0 EI�00 00 dx :It should be noted that with these choices, V is continuously and densely embedded in H.Hence one has the Gelfand triple V ,! X ' X� ,! V �with the pivot space X.A weak form of the model is then given byZ `0 � �w dx+ Z `0  _w dx+ Z `0 Mint 00 dx = Z `0 Mmag 00 dx+ Z `0 g dx (6)for all  2 V . It is in this form that we develop the approximation method and formulate thecontrol problem.3.2 Approximation MethodA necessary step for constructing an implementable control law is the approximation of thein�nite dimensional system (6). We employ a Galerkin approximation in the spatial vari-able to obtain a semidiscrete ODE system in time which is amenable to control formulation.Speci�cally, the spatial basis is taken to be f�jgm+1j=1 where �j(x) denotes the jth cubic B-splinemodi�ed to satisfy the �xed left boundary condition. Approximate solutionswm(t; x) = m+1Xj=1 wj(t)�j(x) (7)are then considered in the subpace V m = spanf�jg. To obtain a vector ODE system, thein�nite dimensional system (6) is restricted to V m and posed in �rst-order form to yield_y(t) = Ay(t) + [B(u)](t) +G(t)y(0) = y0 : (8)7



The component system matrices have the formA = 24 0 IeQ�1K eQ�1C 35[B(u)](t) = hM2(u) + 2M(u)Msi (t)24 0eQ�1 eB 35G(t) = 24 0eQ�1~g(t) 35where y(t) = [w1(t); � � � ; wm+1(t); _w1(t); � � � ; _wm+1(t)] and[ eQ]ij = Z `0 ��i�j dx [ eB]i = KM Zmag �00i dx[K]ij = Z `0 EI�00i�00j dx [~g(t)]i = Z `0 g(t; x)�i dx[C]ij = Z `0 cDI�00i �00j dx : (9)Note that u(t) = I(t) denotes the control input to the system. For future development, it isuseful to let ~b denote the 2(m + 1) vector ~b = [0 ; eQ�1 eB]T so that the control input can bewritten as [B(u)](t) = hM2(u) + 2M(u)Msi(t) ~b : (10)The system (8) provides the constraints employed in the control problem.3.3 System ParametersFor the examples which follow, the choice m = 12 was su�cient for resolving beam dynamicsin the frequency range considered and all reported results were obtained with m = 16. Thedimension of the state vector y was then 34� 1 due to the inclusion of both displacement andvelocity components.The speci�c physical parameters employed in the examples are summarized in Table 1. Itshould be noted that the beam parameters are consistent with typical values for aluminumlaboratory beams while the Terfenol parameters are within the range obtained for model �tsto an experimental transducer [9]. For this choice of beam parameters, the �rst two naturalfrequencies for the system occur at 6:1 Hz and 38:3 Hz. To account for the e�ects of parameterdiscontinuities due the actuators and damping in the system, it was necessary to obtain thesevalues through a fast Fourier transform (FFT) of time domain data resulting from a simulatedimpact to the beam (it is not possible to obtain analytic expressions through separation ofvariables). The driving frequency in the numerical examples will be chosen close to but notexactly concurrent with these natural frequencies.8



Beam Actuator TerfenolEb = 7:0861 � 1010 N=m2 EH = 7:0 � 1010 N=m2 a = 7105 A=m�b = 2863 kg=m3 �r = 8524 kg=m3 k = 7002 A=mcDb = 9:3663 � 105 Ns=m2 `r = :0254 m � = :007781 = :013 Ns=m2 br = :002 m c = 0:3931Amag = :0064 m2 Ms = 1:3236 � 105 A=m�s = 9:96 � 10�4Table 1. Parameters for the beam and Terfenol transducer.4 Control ProblemThe general form of the �nite dimensional control system under consideration is_y(t) = f(y(t); u(t); t)y(t0) = y0 (11)with states y(t) 2 lR2(m+1) and controls u(t) 2 lRp where p = 1 for the case of a single actuatorpair. As detailed in [6, 26, 27, 30], an appropriate performance index for minimization overthe time interval [t0; tf ] isJ(u) =  (y(tf); tf) + Z tft0 L(y(t); u(t); t) dt (12)where the Lagrangian is given byL(y(t); u(t); t) = 12 hyT (t)Qy(t) + uT (t)Ru(t)i : (13)The nonnegative de�nite matrix Q and positive matrix R weight the state and control inputwhile the function  (y(tf); tf) penalizes large terminal values of the state. Energy consider-ations can be used to specify both Q and  . As detailed in [2], an appropriate choice of Q,which arises from the minimization of the kinetic and potential energies, is a multiple of themass matrix. Similarly, the choice (y(tf); tf ) = 12yT (tf)�fy(tf) (14)minimizes the �nal energy when �f is speci�ed as a positive matrix. In the examples whichfollow, Q and �f were chosen asQ = " d1 d2 # " K eQ # ; �f = " d3 d4 # " K eQ # (15)where K and eQ are given in (9) and d1; � � � ; d4 are integer weights.9



The Hamiltonian associated with this system isH(y; �; u; t) = L(y; u; t) + �Tf(y; u; t) (16)where �(t) 2 lR2(m+1) is the adjoint variable or Lagrange multiplier. It should be noted thatthe state equation (11) satis�es _y = @H@�where @H@� denotes the gradient of H with respect to �.The minimization of (12) is constrained by the system (11). To pose this as an uncon-strained optimization problem, we incorporate the constraints via the Lagrange multiplier andconsider the modi�ed performance indexJ(u) = 12yT (tf)�fy(tf) + Z tft0 hL(y; u; t) + �T (t)[f(y; u; t)� _y]i dt= 12yT (tf)�fy(tf) + Z tft0 hH(y; u; t)� �T (t) _yi dt : (17)The minimum of the constrained functional J occurs at the minimum of the unconstrainedfunctional J which in turn occurs when dJ = 0 (see [6, 26, 27]). Enforcement of this conditionyields the necessary adjoint condition _� = �@H@y�(tf ) = �fy(tf) (18)and the stationary condition @H@u = 0 : (19)Note that the terminal condition on the adjoint variable is chosen to satisfy the transversalityconstraint for the system. This provides the framework employed in the �nite dimensionallinear, nonlinear and perturbation control methods discussed next.State Tracking ProblemThe goal in many applications entails the control of system dynamics to a speci�c trajectorys(t) given observations yob(t) = Cy(t); (20)in lR`, of the state dynamics. An appropriate performance index for this case isJ(u) =  (Cy(tf)� s(tf); tf) + Z tft0 L(y(t)� s(t); u(t); t) dtwhere L and  are given by (13) and (14), respectively. The �nal time boundary conditionfor this choice is then �(tf ) = CT�f [Cy(tf)� s(tf)] :10



4.1 Linear Optimal ControlAt low drive levels with magnetic biases, experimental data has indicated a nearly linearrelation between input currents to the solenoid and strains output by the transducer. Thisis reected in the model response and can be employed when designing a control method forsuch regimes. For low drive level applications, reasonable approximate models and controlmethods can be attained through linearization about an appropriate input u0. One choice isthe coercivity value u0 = uc at which M(uc) = 0. In this case, the approximate linear controloperator B is Bu(t) = 2Ms @M@u (uc)u(t)~bwhere @M@u = n(1 � c) Man �Mirrk� � �[Man �Mirr] + ncMs "1acsch2 �Heffa �+ aH2eff # :Under this approximation, the corresponding �rst-order system is_y(t) = Ay(t) +Bu(t) +G(t)y(0) = y0 : (21)The stationary condition (19) then yields the optimal controlu�(t) = �R�1BT�(t)while the state constraint (21) and adjoint condition (18) yields the optimality system�24 y(t)�(t) 35= 24 A �BR�1BTQ �AT 3524 y(t)�(t) 35+ 24 G(t)0 35y(t0) = y0�(tf ) = �fy(tf) : (22)The construction of the optimal control requires the solution of the two-point boundary valueproblem (22). Due to the linearity of the system, however, a fundamental solution matrix canbe employed to formulate the optimal control asu�(t) = �R�1BT [�(t)y(t)� r(t)] (23)where �(t) solves the di�erential Riccati equation� _� = AT�+�A��BR�1BT�+Q�(tf) = �f : (24)The perturbation variable r(t) 2 lR2(m+1) is obtained through integration of the �nal timesystem _r(t) = � hA�BR�1BT�iT r(t) + �G(t)r(tf ) = 0 : 11



In this manner, the solution of a system with split conditions at the initial and �nal times isreplaced by solution of systems with only �nal time conditions.Two special cases are su�ciently common in applications to warrant further discussion.The �rst concerns the in�nite time problem while the second characterizes Riccati solutionsand optimal controls when input forces are periodic. It is important to note that in thesecases as well as the general �nite time formulation, the control (23) acts in a feedback manneron current states of the system. This will not be the case with the nonlinear control method.4.1.1 In�nite Time ProblemsFor the strongly dissipative systems under consideration, it is reasonable to assume that(A;B) is stabilizable and (A;C) is detectable (see (20) for discussion of the observation op-erator C). In this case, as t ! 1, y and u approach 0 at a su�cient rate to guarantee theexistence of the performance indexJ(u) = 12 Z 1t0 hyT (t)Qy(t) + uT (t)Ru(t)i dt : (25)The Riccati matrix used to characterize the feedback control (23) is the solution to the steadystate algebraic Riccati equationAT�+�A��BR�1BT�+Q = 0 (26)and is now constant. Similarly, the decay of solutions implies that the perturbation componentis given by r(t) � 0. Hence implementation of the method requires only the o�ine solutionof a Riccati solution followed by online feedback on observed states.4.1.2 Periodic ProblemsA second case which commonly arises in applications is that in which the exogenous forceG(t) models periodic or oscillatory inputs to the system. If � denotes the fundamental periodfor all frequencies present, an appropriate performance index isJ(u) = 12 Z �0 hyT (t)Qy(t) + uT (t)Ru(t)i dt :Under the hypotheses of stabilizability and detectability, it is shown in [3, 12] that the optimalcontrol (23) can be formulated in terms of the solution to the algebraic Riccati equation (26)and the solution to the periodic perturbation system_r(t) = � hA�BR�1BT�iT r(t) + �G(t)r(0) = r(� ) : (27)This yields a feedback algorithm which is e�cient to implement in many applications.12



4.1.3 Numerical Example { No Exogenous ForceTo illustrate the performance and limitations of the linear control method, we consider theuse of the linear control law in the nonlinear system_y(t) = Ay(t) + [B(u)](t)y(t0) = y0 (28)for various magnitudes of the initial value y0. To obtain these values, the uniform forceg(t; x) = g0 sin(10�t) was applied to the uncontrolled beam for t0 = 0:45 seconds and thenterminated. The initial value y0 was taken to be the state at the time t0 when control was ini-tiated. Control inputs were computed through minimization of the in�nite time performanceindex (25) with R = 5� 102 and d1 = d2 = 5� 108 in the de�nition (15) for Q.The implementation of the method in this manner provides a numerical illustration of ef-fects which may be observed when control currents computing using a linear model and controllaw are fed back into the true physical system having nonlinear actuators. While we are notproviding here the full convergence analysis and model �ts to a physical apparatus, numerousexperiments have demonstrated the validity of the model [9] and the trends illustrated bythese numerical results.The uncontrolled and controlled beam displacements at the point �x = 3`=5 (see Figure4) with g0 = 1 are plotted in Figure 5b while the displacements generated with g0 = 100are plotted in Figure 5d. The relationship between the input magnetic �eld H = nI = nuand magnetization M for the two cases are given in Figures 5a and 5d. It is noted thatat the low drive level, the relationship between H and M is approximately linear and thefeedback of the linear control u into the nonlinear system (28) is very e�ective. At the higherdrive levels, however, the relationship between H and M displays signi�cant hysteresis whichleads to energy loss and time delays in the input. In this case, the linear control law (23)does not provide the capacity for accurately quantifying and incorporating the hysteresis andsubsequent delays which in turn produces the loss in control authority observed in Figure 5d.This illustrates that while the linear control method can be e�ective at low drive levels, itdoes not provide the accuracy necessary for moderate to high drive level applications. Forsuch regimes, control methods which incorporate the actuator nonlinearities are required.4.1.4 Numerical Example { Periodic Exogenous ForceA second regime common in structural applications is that in which exogenous disturbancesare periodic (e.g., oscillating mechanical components). In this case, a semidiscretization inthe spatial variable yields a system of the form (21) where G(t) is periodic. To illustrate,the spatial uniform exogenous force g(t; x) = g0 sin(10�t) was applied throughout the timeinterval [0; 2:5]. The uncontrolled trajectories at �x = 3`=5 with g0 = 1; 100 are plotted inFigure 6b and Figure 6d, respectively. Both cases exhibit a beat phenomenon due to the closeproximity of the 5 Hz driving frequency with the 6:1 Hz natural frequency for the beam (seeSection 2.3).Controlling current were computed via (23) with intermediate perturbation solutions ob-tained through integration of the system (27). Inputs for the low and high drive level casesare illustrated in Figures 6a and 6c. As in the previous example, the linear control method is13



highly e�ective at low drive levels where the linear model is accurate. At the high drive levelin which the actuators are advantageous, however, the input exhibits signi�cant hysteresiswhich acts as a phase delay to the system. The result is a loss in control authority to the ex-tent that controlled beam trajectories actually have larger magnitudes than the uncontrolledbeam. This further motivates consideration of a nonlinear control method.
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(c) (d)Figure 5. Feedback of linear law (23) into the nonlinear system (28). Relationship betweenmagnetic �eld H and magnetizationM ; (a) g0 = 1 and (c) g0 = 100. Uncontrolled ( ) andcontrolled ( ) beam trajectories at the point �x = 3`=5; (b) g0 = 1 and (d) g0 = 100.14
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t(c) (d)Figure 6. Feedback of linear law (23) into the nonlinear system (28). Relationship betweenmagnetic �eld H and magnetizationM ; (a) g0 = 1 and (c) g0 = 100. Uncontrolled ( ) andcontrolled ( ) beam trajectories at the point �x = 3`=5; (b) g0 = 1 and (d) g0 = 100.
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4.2 Nonlinear Optimal ControlWe consider here the problem of constructing a nonlinear control for the system_y(t) = Ay(t) + [B(u)](t) +G(t)y(t0) = y0 : (29)In this case, minimization of the of the performance index (12) or (17) yields the optimalitysystem �24 y(t)�(t) 35= 24 Ay(t) + [B(u)](t) +G(t)�AT�(t) +Qy(t) 35y(t0) = y0�(tf ) = �fy(tf) (30)where the optimal control satis�esu�(t) = �R�1[BTu (u�)](t)�(t):Due to the nonlinear nature of the input operator B(u), decomposition of the system matricesin terms of a fundamental matrix solution is not possible which prohibits e�cient solution interms of a Riccati matrix. To this end, we consider the approximation of the full two-pointboundary value problem (30) or the equivalent �rst-order system_z(t) = F (t; z)E0z(t0) = [y0; 0]TEfz(tf) = [0;�fy(tf)]T (31)where z = [y; �]T and F (t; z) = 24 Ay(t) + [B(u)](t) +G(t)�AT�(t) +Qy(t) 35E0 = " I 00 0 # ; Ef = " 0 00 I # : (32)Here I denotes a 2(m + 1) � 2(m + 1) identity matrix where m + 1 denotes the number ofbasis functions employed in the spatial approximation (7) of the state variables.The solutions to the system (31) can be approximated through a variety of methods in-cluding �nite di�erences and nonlinear multiple shooting. To illustrate a �nite di�erenceapproach, we consider a discretization of the time interval [t0; tf ] with a uniform mesh havingstepsize �t and points t0; t1; � � � ; tN = tf . The approximate values of z at these times aredenoted by z0; � � � ; zN . A central di�erence approximation of the temporal derivative then16



yields the system 1�t [zj+1 � zj] = 12 [F (tj; zj) + F (tj+1; zj+1)]E0z0 = [y0; 0]TEfzN = [0;�fy(tf)]T (33)for j = 0; � � � ; N � 1.The determination of a solution vector zh = [z0; � � � ; zN ] to (33) can then be expressed asthe problem of �nding zh which solves F(zh) = 0 : (34)For the di�erence method and boundary conditions considered here, F(zh) 2 lR4(N+1)(m+1)has the formF(zh) = 26666666666664 F0F1...Fj...FN�1b(z0; zN) 37777777777775 ; Fj � 1�t [zj+1 � zj]� 12 [F (tj; zj) + F (tj+1; zj+1)]b(z0; zN) = E0z0 + EfzN � " y00 # � " 0�fy(tf) # :A quasi-Newton iteration of the form zk+1h = zkh + �kh; where �kh solvesF 0(zkh)�kh = �F(zkh); (35)is then used to approximate the solution to the nonlinear system (34). The 4(N +1)(m+1)�4(N + 1)(m+ 1) Jacobian F 0(zkh) has the formF 0(zh) = 26666666664 S0 R0S1 R1. . . . . . SN�1 RN�1E0 Ef 37777777775where Si = � 1�tI � 12A(ti)Ri = 1�tI � 12A(ti+1) :The matrix A(ti) is the linearization A(ti) = @F@z (ti; zi)17



which yields the representationSi = � 1�t " I 00 I #� 12 " A @@�B[u�i ]Q �AT #for Si. The representation for Ri is similar.For this application, direct solution of (35) is infeasible due to the large number of variablesrequired to resolve the solution over a reasonable time interval. The structure of the Jacobiancan be employed, however, to reduce both memory and computational requirements to thelevel of solving 4(m + 1) � 4(m + 1) systems. To this end, we express the Jacobian in theanalytic LU decomposition F 0(zkh) = LUwhereL = 26666666666666664 S0 S1 . . . SN�1 0E0 �E0(S�10 R0) � � � E0 N�2Yi=1 (�1)i(S�1i Ri) Ef + E0 N�1Yi=1 (�1)i(S�1i Ri) 37777777777777775U = 2666666666664 I S�10 R0I S�11 R1. . . . . .I S�1N�1RN�1I 3777777777775 :The solution of the system (35) is then obtained through direct solution of the system lowertriangular system L�kh = �F(zkh) followed by direct solution of the upper triangular systemU�kh = �kh .Remark 1: The conditioning of the matrices Si and Ri is partially governed by the choice ofstate weights d1; d2 in Q (see (15)). The conditioning is improved through the choice of valueson the order of 103 or less. To maintain control authority, this dictates the choice of controlweights R to be on the order of 10�3 or less. For these choices, the component matrices in thelower and upper diagonal systems are well conditioned.Remark 2: The spatial approximation of the beam model was fully resolved with m = 12basis functions and the results reported here were obtained with m = 16. This yields a totalof 4(m + 1)(N + 1) = 13940 coe�cients to be obtained when using a stepsize of �t = :0118



on the time interval [0:45; 2:5]. To test the e�ciency and memory requirements necessary forextending the method to problems in two space dimensions, we also ran the problem withm = 144 basis functions. This would correspond to a discretization with 12 basis functions ineach spatial dimension and yields a total of 118,900 unknowns to be obtained. The methodis su�ciently e�cient so that even in this range, computations could be performed on aworkstation in Matlab.Remark 3: The matrix products arising in the lower triangular system L can be formedrecursively. Moreover the component matrices have signi�cant structure which can be utilizedwhen forming the matrix products. The utilization of inherent recursions and structure isnecessary when considering systems in two space dimensions which can have in excess of 500states.4.2.1 Numerical Example { No Exogenous ForceThe use of the nonlinear control method is illustrated in the context of the cantileverbeam driven for 0:45 seconds by the uniform force g(t; x) = 100 sin(10�t) at which pointthe force was terminated and control initiated. The control inputs were computed usingthe approximation method (33) for the two point boundary value problem (31) on the timeinterval [t0; tf ] = [0:45; 2:45]. The control weights were taken to be d1 = d3 = 5 � 102 andR = 5 � 10�4. This yielded an optimal current which was then applied as an open loopcontrol to the system. The resulting controlled trajectory at the point �x = 3`=5 is comparedwith the uncontrolled trajectory in Figure 7. The corresponding relationship between theinput magnetic �eld and output magnetization is plotted in Figure 8. It is noted that themodel-based nonlinear control law very adequately incorporates the inherent hysteresis inthe transducer and provides complete attenuation within 0:5 seconds of being invoked. Thisillustrates the performance of the nonlinear control law and capabilities of the magnetostrictivetransducers under ideal operating conditions.One di�culty with an open loop control law of this type is its lack of robustness withrespect to uncertainties in operating conditions. Such uncertainties can be due to unmodeleddynamics, changing operating conditions, or slight delays or phase shifts due to �lters, etc.,and are present to some extent in all experimental systems.To illustrate the e�ect of uncertainties on the performance of the open loop control, weconsider the same system with the control applied 0:03 seconds late. This is a very reasonablescenario in experiments and must ultimately be accommodated by the control law. Theuncontrolled and controlled trajectories for this case are depicted in Figure 9. The slight delayin the initiation of the control input results in a complete degradation of control authority(compare with the attenuation in Figure 7 with no delay). This illustrates the necessityof feeding back some form of state information and motivates consideration of perturbationcontrol methods. 19
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Figure 7. Uncontrolled and controlled beam trajectories at the point �x = 3`=5; (uncon-trolled), (controlled).
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Figure 8. Input magnetic �eld H = nI and output magnetization M .20
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Figure 9. Uncontrolled and controlled beam trajectories at the point �x = 3`=5 with controlinitiated 0.03 seconds late; (uncontrolled), (controlled).4.2.2 Numerical Example { Periodic Exogenous ForceThe techniques for computing the open loop nonlinear control for systems with exogenousforces are identical to those employed in Section 4.2.1; one simply modi�es F in (31) by theappropriate exogenous force. To illustrate, the force g(t; x) = sin(10�t) was applied for the fulltime interval [0:2:5] with the optimal control computed for the interval [t0; tf = [0:45; 2:5]. Theresulting beam trajectory and inputs are plotted in Figure 10 and Figure 11. A comparisonof Figures 10 and 6 indicates that reductions on the order of those obtained in the low drivelevel linear case can be obtained with the nonlinear law. Figure 11 illustrates that followingan initial transient phase, the input relation settles into a hysteretic periodic cycle with thefrequency matching that of the driving input.In this case, the system is subject to uncertainties in the measured exogenous force inaddition to the operating uncertainties discussed in Section 4.2.1. This can include perturba-tions in frequency or phase which can destabilize a feedback method and degrade open loopattenuation if unincorporated. In Figure 12, we illustrate the trajectories of a beam subjectedto the force g(t; x) = ( 100 sin(10�t) ; t � :45100 sin(14�t� 1:8�) ; :45 < t � 2:5with the factor of 1:8� included to ensure the continuity of g. The e�ect of the frequencychange can be noted in that 12 oscillations are now present in the control interval [:45; 2:5]compared with the 10 oscillations noted in Figure 10. The open loop control was computedfor the assumed force g(t; x) = 100 sin(10�t) and was applied 0:03 seconds late. It is notedthat the control attenuation is completely degraded by these uncertainties and that furtherrobustness must be incorporated in the method.Remark 4: The persistence of beam vibrations in spite of the control input indicates aphysical limitation of the actuator setup rather than a de�ciency in the control formulation.21



To attain greater attenuation, one must investigate controllability issues related to physicalcriteria such as actuator number and placement. The degree to which such physical issuesplay a role depends upon the application and in many cases, attenuation on the order of thatobserved in Figure 10 is su�cient.
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Figure 10. Uncontrolled and controlled beam trajectories at the point �x = 3`=5;(uncontrolled), (controlled).
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Figure 11. Input magnetic �eld H = nI and output magnetization M .22
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Figure 12. Uncontrolled and controlled beam trajectories at the point �x = 3`=5 with con-trol initiated 0.03 seconds late and a 2 Hz frequency perturbation; (uncontrolled),(controlled).4.3 Perturbation ControlAs illustrated in the last example, a purely open loop control law su�ers from lack of robustnesswith regard to system uncertainties. For various classes of uncertainties, robustness can besigni�cantly enhanced through consideration of perturbation control techniques [6, 27]. Inthese methods, the system is linearized about the optimal control pair (u�(t); y�(t)) obtainedthrough solution of the two-point boundary value problem (30) or (31). A feedback control�u�(t) is then designed to attenuate perturbations in the system due to uncertainties in theexogenous force or uncertainties in initial conditions as depicted in Figure 13. Both arecommon in applications with perturbed initial conditions often due to uncertainties in thestarting time for the open loop control. Because LQR theory can be invoked to construct theperturbation control �u�(t), the implementation of the method is very e�cient once the openloop control pair has been determined.The perturbation control system can be obtained by expanding the augmented cost func-tional and constraint equations through higher-order terms and employing the simpli�cationsprovided by the fact that u�(t) and y�(t) minimize the �rst-order optimality system. SincedJ = 0 for the optimal pair (u�(t); y�(t)), expansion of the augmented cost criterion (17)through second-order terms and constraints to �rst-order yields�2J = 12 Z tft0 h�yT �uT i " Hyy HyuHuy Huu # " �y�u # dt (36)23



and � _y(t) = A�y(t) +B�u(t) + �G(t)�y(0) = ŷ0 (37)where �u and �y are �rst-order variations about u� and y�. The optimal perturbation control�u� is that which minimizes (36) subject to (37).For the Hamiltonian (16), the second variation �2J is given by�2J = 12 Z tft0 fhQ�y; �yi+ hR�u; �uig dt (38)so that the LQR theory outlined in Section 4.1 can be directly employed to obtain �u�(t) and�y�(t). The overall control for the system is then taken to be u�(t)+ �u�t(t) with the optimalstate given by y�(t)+�y�(t). For implementation purposes, it should be noted that the optimalopen loop control u�(t) can be computed o�ine leaving only �u�(t) to be computed online.
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Figure 13. Optimal open loop controlled state and neighboring state due to perturbed initialcondition.4.3.1 Numerical Example { No Exogenous ForceThe performance of the method is �rst illustrated in the context of Example 4.2.1 in whicha perturbed initial value is introduced through application of the optimal control u�(t) to thesystem 0:03 seconds late. As noted in Figure 9, this perturbation is su�cient to destroy theauthority of the open loop control.To accommodate these perturbations, we employ the control law�u�(t) = �R�1BT��y(t)where � satis�es the algebraic Riccati equation (26). The resulting control trajectory isillustrated in Figure 14. It is noted that through the use of the feedback perturbation control,attenuation comparable to that for the unperturbed system (see Figure 7) is obtained. Thisprovides a signi�cant enhancement of the method with respect to perturbations in initialconditions. 24
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Figure 14. Uncontrolled and controlled beam trajectories at the point �x = 3`=5 with controlinitiated 0.03 seconds late; (uncontrolled), (controlled).4.3.2 Numerical Example { Periodic Exogenous ForceSystems driven by an exogenous force are subject to force perturbations in addition toinitial uncertainties or delays in control implementation. As illustrated in Example 4.2.2,perturbations from the expected 5 Hz force to a measured 7 Hz force completely degrade theopen loop control. In this case,�g(t; x) = 100[sin(14�t� 1:8�)� sin(10�t)]over the time interval [0:45; 2:5], and the perturbation control has the form�u�(t) = �R�1BT [��y�(t)� �r(t)]where �r(t) solves � _r(t) = � hA�BR�1BT�iT �r(t) + ��G(t)�r(0) = �r(� ) :In addition to the force perturbation, a perturbed initial condition due to a 0:03 second delayin control initiation was included in the system.The uncontrolled and controlled beam trajectories at the point �x = 3`=5 are comparedin Figure 15. It is noted that while the trajectories di�er in frequency due to the combinedopen and closed loop e�ects, signi�cant attenuation is attained throughout the time intervaldue to the feedback perturbation control component. A comparison with Figure 10 indicatesthat the controlled trajectory is comparable in magnitude to that in the perturbed case even25



though the uncontrolled displacement is signi�cantly larger. Such attenuation levels have alsobeen noted with larger frequency perturbations (e.g., a perturbed driving frequency of 18 Hz).Hence the perturbation control provides a feedback methodology which is highly robust aswell as e�cient to implement.
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Figure 15. Uncontrolled and controlled beam trajectories at the point �x = 3`=5 with a2 Hz force perturbation and control initiated 0.03 seconds late; (uncontrolled),(controlled).5 Concluding RemarksThis paper addressed the development of a physics-based control methodology appropriate formagnetostrictive actuators in moderate to high drive level regimes. At such drive levels, thesematerials exhibit signi�cant hysteresis and nonlinear dynamics which must be incorporated inthe model and control method to attain the full potential of the actuator (both experimentsand numerical simulations have demonstrated that linear methods fail at such drive levels).For various structural applications, it is also necessary to control both transient and steadystate dynamics.To attain these objectives, a model based upon ferromagnetic mean �eld theory was used tocharacterize the actuator dynamics including the inherent hysteresis and nonlinearities. Thisprovided a method of accurately quantifying multiple frequencies and transient dynamics.Optimal control theory was then employed to obtain an open loop control which incorporatedthe actuator hysteresis and nonlinearities. This nonlinear control was combined with a per-turbation feedback control to attain a hybrid method which was highly robust and e�cient toimplement. Finally, the e�cacy of the method was demonstrated through numerical examples.26



We note that the method described here does not address the minimum time controlproblem nor does it actively enforce admissibility criteria. If time minimization is desired,the control problem can be reformulated with the �nal time and �nal adjoint values treatedas components of the solution. For applications which require that the control u(t) lie inan admissible region, the stationary conditions (19) must be replaced by some form of thePontryagin minimum principle. Details concerning both cases can be found in [6, 27].In its present form, the method is currently designed for linear structural models. While itwas illustrated in the context of a PDE-based thin beam model, the exibility for employinglarge discretization limits in Matlab (in excess of 144 basis functions) indicates that themethod can be directly applied to certain linear plate and shell models. For larger problemsin which the number of spatial variables or time steps prohibits global optimization over thefull time interval, piecewise methods of the type described in [20, 21] can be employed toobtain suboptimal solutions over each time step. These piecewise states and controls can thenbe patched together to obtain a global solution over the full time interval. Finally, we notethat the extension of this method to nonlinear structural models is also important due to theadvantages of high output actuators in such regimes and is under current investigation.AcknowledgementsThe author would like to thank H.T. Banks and K. Ito, North Carolina State University,for input and suggestions regarding the control methods considered here. Sincere thanks arealso extended to F.T. Calkins, M. Dapino, A.B. Flatau and D. Jiles, Iowa State University, forextensive discussions regarding the construction, modeling and dynamics of magnetostrictivematerials.References[1] U.M. Ascher, R.M.M. Mattheij and R.D. Russell, Numerical Solution of Boundary ValueProblems for Ordinary Di�erential Equations, SIAM Classics in Applied Mathematics,1995.[2] H.T. Banks, W. Fang, R.J. Silcox and R.C. Smith, \Approximation methods for control ofacoustic/structure models with piezoceramic actuators," Journal of Intelligent MaterialSystems and Structures, 4(1), 1993, pp. 98-116.[3] S. Bittanti, A. Locatelli and C. Ma�ezzoni, \Periodic optimization under small perturba-tions," in Periodic Optimization, Vol. II, A. Marzollo, ed., Udine, Springer-Verlag, NewYork, 1972, pp. 183-231.[4] M.D. Bryant, B. Fern�andez, N. Wang, V.V. Murty, V. Vadlamani and T.S. West, \Activevibration control in structures using magnetostrictive Terfenol with feedback and/or neu-ral network controllers" Proceedings of the Conference on Recent Advances in Adaptiveand Sensory Materials and their Applications (Technomic Publishing), Blacksburg, VA,April 27-29, 1992, pp. 465-479. 27
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