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SUMMARY

A complete study of structures built under water must include the dynamic analysis,
because these structures will inevitably be under the effects of some dynamic forces. For this
reason, in the present work, a random forcing function representing a seismic excitation is
chosen as a dynamic force.

When a structure is partially or totally submerged in a fluid medium, its dynamic
characteristics will be substantially different from those due to its vibration in absence of
the medium. A very important aspect of the problem is the solid-fluid interaction. Hydro-
dynamic pressures are generated by the vibrating structure which in turn modifies the pres-
sures causing them. Therefore, what one is actually faced with is a “coupled” or “elastic-
hydrodynamic” problem.

The mathematical model of the containment structure of an underwater nuclear power
plant used in this investigation is a clamped hemispherical shell. In the derivation of the
theory the following assumptions are made: (a) The shell is thin and elastic, (b) a linear
analysis is sufficient, (c) the shell is in deep water and so the effects of the surface waves
can be ignored, (d) the water is inviscid and irrotational. These assumptions reduce the
problem to the analysis of forced motion of the shell in a semi-infinite fluid medium.

The differential equations governing

the behaviour of the shell are: The wave equation:
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In these equations (u,0,w) and (ii,0,#) are absolute and relative displacement components,
respectively. The dots represent time derivatives, [L] is a (3 x 3) linear matrix differential
operator. Moreover, q,=external pressure in radial direction, ¢=damping coefficient,
/, s=constants of fluid medium, V2;=Laplacian operator in spherical coordinates.

In equations (1) the absolute displacements are expressed in terms of the relative dis-
placements. These relations insert the ground acceleration function into the equations.
All dependent variables are expanded in a sine or cosine series in terms of the circumferential
coordinate. The problem is completed by specifying the boundary, apex, kinematic boundary,
and initial conditions. The conclusions that can be drawn from this work can be summarized
as follows:

(a) The wave equation is always coupled with the other three equations through velocity
potential term.

(b) For mode number #> 2 the problem is a free-vibration problem. These circumferential
modes are not set into motion by the horizontal ground motion.

(c) The ground motion does not excite the axisymmetric mode, either. Since it is a horizontal
ground motion, only the # = 1 mode is excited thereby and the shell responds with only

a cantilever beam-type motion.

The equations given above are solved by finite difference techniques, using central diffe-
rence formulas for space derivatives and Houbolt’s backward difference formulas for time
derivatives. In the solution of the difference equations Potters’ method is employed. Some
numerical results are presented.
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1., Introduction

Nuclear power plants will eventually be built under water for safety
purposes, if for no other reason. In densely populated coastal areas, since
the availability of land is limited, the underwater construction of plants
may prove to be an economical solution. Moreover, for the undersea cities
of the future energy will most probably be supplied by undersea power plants
In fact, in recent literature some proposals, such as the ones by Hromaedik
and Breckenridge [1] , have been made regarding the design of this type of
structures.

Nuclear power plants are sometimes bullt on sites where earthquake ac-
tivity has been known to occur.Hence, it is necessary to include the seismic
analysis in the general design analysis of the plant. Actually,the problem
of nucleer reactor safety against earthquakes is one particular aspect of
the more general safety problem.

The seismic analysis of nuclear power plants in a fluid medium is subs-
tantiaelly different from that in absence of a medium. A very important
aspect of the problem is the solid-fluid interaction. Hydrodynemic pressures
are generated by the vibrating structure.These pressuree modify the defor-
matlons which in turn modify the hydrodynsmic pressures causing them.There-
fore, what one is actually faced with is a "coupled" or elasto-hydrodynamic
problem,

The seismic response of nuclear containment vessels in vacuo has received
considerable attention in the literature. Lin [2] studied the earthquake
response of the vessel modeling it as a fixed-free thin c¢ylindricel shell.
In his analysis he uses the linear shell theory. His solution indicates that
when subjected to horizontal ground motion, the vessel vibrates purely as a
cantilever beam. This conclusion had previously been obtained numerically
by Kalnins [3] . The nonlinear seismic response of thin reactor contaimment
vessels subjected to a horizontal acceleration at the base was exemined by
Citerley and Bell { 4,5] . Their model is a cylindrical shell with a spheri-
cal head.They conclude that the nonlinear effects are negligible and motion
in the ovalling mode of the veesel is insignificant.

The dynamic interaction between a shell and a fluid medium has mostly
been investigated as an acoustics problem. Most of the investigations of
this nature avallable in the literature are on cylindrical shells. The in-
veatigations on the forced vibration of a spherical shell in an acoustic
medium are not very many. Junger [6] discusses the steady state response of
a spherical shell in an infinite acoustic medium, and the equations are
derived on the basis of the extensional theory only. The problem of forced
motion of a spherical shell in an acoustic medium under a concentrated
force was studied by Hayek [ 7] . Lou and Klosner [8] investigated the tran-
sient response of a submerged, ring-stiffened spherical shell to a pressure
increase in the surrounding acoustic medium. In references [ 7] and [8] the
equations for axisymmetric, nontorsional vibration of spherical shells
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have been used. To the author's knowledge the selsmic response of spherical
shells in a fluid medium has not been investigated so far.

It is the purpose of this paper to study the response of undersea nuclear
power plant conteinment vessels during earthquakes. The vessel is modeled as
a clamped hemispherical shell. The earthqueke is simulsted by a random hori-
zontal acceleration, The governing equetions are solved numerically and some
numerical results are presented.

2. Theory
The mathematical model of the contalnment structure of an underwater

nuclear power plant used in this investigation is a clemped hemispherical
shell as shown in Fig,l. The shell is assumed to be thin, and the shell
material is linearly elastic, homogeneous, and isotropic. The containment
structure is in deep water and so the effects of the surface waves are
ignored, The water is inviscid and irrotational. Only those aspects of fluid
loading that are essentially a reaction of the fluid to motion of the body
are teken into consideration, Forces due to fluid motion, such as turbulent
boundary layers, on bodies are not considered. No approximate relations are
introduced in the fluid-shell phenomena in this study; hence, the results
obttalned are exact within the scope of the linear thin shell theory, and the
approximation errors introduced by the numerical techniques.
© Under the assumptions given above the equations of motion for the shell
are given, in nondimensionel form, as follows :
2’3 /2 T+ cou /2T
=(1-9)sine ¥ atr?+cav /3T (1)
qQ &% /2T~ caw /2T
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in which [L] is a 3x3 linear matrix differential operator whose elements
are given in the Appendix. Equations (1) are similer to the ones given by
Fligge [ 9] . The nondimensional quantities appearing in egqs. (1) are related
to the corresponding physical quantities through the following rels tions:

1 h 2 _ - _ _ _ _
k= —(—) U=0/a,v=Ve,w=Wa
12 a
u=U/a, v=V/a, w=Wae (2)

In the foregoing expressions a and h are, respectively, the radius and the
thickness of the shell. U,V,W are the absolute meridional,circumferentiel,
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and radiel displacement components, respectively; and U,V,W are the corres-
ponding relative displecement components. The mass density and the modulus
of elasticity of the shell material are denoted by j; and E, respectively.
The damping coefficient is C, t denotes the physical time, and p is the
pressure in redial direction. Finally, Poisson's ratio is denoted by » ’ @
and @ are meridional and circumferential coordinates.

The motion of an inviscid and irrotational fluid undergoing small oscil-
lations is governed by the wave equation. In spherical coordinates its non-
dimensional form is

@d 2 20 1 2% cotf 20 . _ 1 2’9 1 29 )

2r2 r ar 2 34’ r2 3%}  r?sin?f 26 §2 a2
in which the nondimensional quantities are related to the physical quanti-
ties through the following relations :

) . R . %

@ ac, r a » 8 Cq (4)
Here, c, and c  are the speeds of sound in the fluild end the shell, respec-
tively. R is radial coordinate and § is described in Fig.l. The velocity
potential is denoted by § .

The absolute and relative displacements of a point on the hemispherical
shell are related through

a -Cos@ Cos ¢

v + X Sine (5)

w w -Cos0 Sin ¢

in which X=x/a is the nondimensional horizontal displacement of the base of
the shell and x is the actual ground displacement,

To represent the ground displecement a random acceleration function of
the form

a’x 7 at?2 = 0 for t<O0
(6)

: S.t
a°x / at? t gj te Y Cos(wjt +\yd) for t2>0

will be used. This random acceleration function is suggested by Bogdanoff
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et al. [10] and it is employed by Permelee et al. [11] in their seismic
anslysis of structure-foundation systems. In eq.(6) f.andﬁj are real posi-
tive numbers, withtul < Wy L ees g “ﬁ , and Yo ¥, ,j,,, y; 8are J indepen-
dent real random variables uniformly distributed over the interval O to 2w,
Following Parmelee et al. [11] , in this study it is assumed that fj and 5}
are constants and equal to 0,50 and 0.3%33, respectively. Moreover, J is
taken to be ten and wj and ¥j for j =1,2,....10 are given in reference[ll].
The resulting earthqueke acceleration is shown in Fig.2,

Substituting egs.(5) into eqs.(l) one obtains

u 2?u/ati+e

2
fu] v = (1- v )sing {2 v/aT +c
w q -2*w/a

The radial pressure q consists of three components:

2 & (8)

in which qy and qg ere internal and external pressures, respectively, and
the third term is the pressure in the fluid. The nondimensional fluid-shell
interaction parameter f is

e 20 (9)
hjg
in which ¢  1is the mass density of the fluid.
Assuming that the earthqueke forcing function is applied at @ = 0°, the
response of the shell will be symmetric with respect to @ = O , w plane.
Therefore, one can let

o0
(u,v,w,d) = Z (u Cosn® , v Sin n@, w Cosnd,d Coene) (10)
n=0
in which n is the circumferential mode number. Substituting eqs.(8) and(10)
into eqs.(7) and (3) one obtains

w, , 2 u, 2T+ c2 u /2T -Cose¢ dzx/d"fzs.,
. 2 2 2
[Ly] { vy | = 1-)sing] 2 v /3T?+ cav /2T + a“x/aT§, (11)
W 2?2 wn/aT2 - c2w /2T +Sing a®x/at?s,

+(ay-a4)8, - £2 9, /27T

2 2 2
a@n*l a@n’l EQn’Cotf 20, 20, _a 2 0, (12)
ar2 r ar r2 a2 r? 25 r?sin2¥  s? a7?
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in which

{ 1 for i=n

é = (1%)

0 for i #n

The matrix differential operator [Ln] is obtained from [L] by substituting
corresponding n's for the derivatives with respect to circumferential coor-
dinate 0 .

The linear behavior of a hemispherical shell in a fluid medium subjected
to a horizontal earthquake motion is governed by eqs.(11l) and (12). The
problem 1is completed by specifying the apex, boundary, initial, and kine-
matic boundary conditions. The kinematic boundary condition is given as
follows :

2@,/2r = 2w, /2T - § Siny dX/dT (14)

at r = 1, This implies that the radial velocities of the shell and fluid
are equal for all ¢ and T . The initial conditions used in this work are

= = = 2% _ 3% _ 2Wn _ _2b =
Yn=Vn T ¥ 2T aT 2T Qn 2T 0 (15)

at T = 0. Moreover, as r—»oo,([)n — 0.

Referring to egs.(1l) and (12) it is seen that the wave equation (12) is
always coupled with the other three equations through the = @n /27T term.
For n > 2 the problem is a free-vibration problem. The circumferential
modes with n > 2 are not set into motion by the horizontal ground motion.
This type of ground motion does not excite the axisymmetric mode (n = 0) ,
either, Therefore, only n = 1 mode is excited by the horizontal ground
motion, and the shell responds with only a cantilever beam-type motion,This
conclusion is obtained also by Lin [2] .

The total response of the containment vessel of the nuclear power plant
consiste of the seismic response and the static response of the vessel due
to an Internally applied pressure, if there is any, and the external hydro-
static pressure. For the static response only the mode n = O needs to be
considered, and for the seismic response only n = 1 mode is to be considered
These responses are then added linearly to obtain the total response, In
the following section the numerical results will be presented only for n=1
mode,

3+ Numerical Procedure and Results
The coupled linear differential equations (11) and (12) governing the
behavior of hemispherical shell under water subjected to & horizontal

ground motion are solved numerically by finite difference techniques, The
meridional and radial derivatives are replaced by the conventional central
finite difference approximations. However, at the apex of the shell the
forward finite difference approximations are used. The inertiel terms that



—7 —
K 4/9
appear in the equations are approximated by Houbolt's [12] backward diffe-

rencing scheme. Accordingly, the second time derivative of the nondimen-
sional velocity potential Q , for instance, 1s approximated as follows :
K

2
2 k k-1 k-2 k-3
—q),- =1 (20 -850 «4d -0 (16)
aT% (™ LJ IJ IJ 1,J

in which AT is the nondimensional time intervel and k denotes the time
step. Stations along meridional and radial directions are denoted by I and
J, respectively. For the first time derivative of the ground displacement

function X the following approximation is used :

k 2 k
ax _ 1 k k-1 AT 47X
T = av (X - X ) + - Txe n

Using the finite difference approximations mentioned the governing
equations are reduced to sets 6f amlgebraic equations which are, then,solved
using Potters' [13] form of Gaussien elimination.

For the finite difference approximations the shell meridian in one qued-
rant is divided into nine equal increments; in other words, the meridional
inerement is taken to be ten degrees. The size of the computer available
limited the number of equal increments along the radial direction to five.
The finite difference scheme 1s shown in Fig.l. The physical time increment
At is taken to be 0,20 sec.

For the numerical calculations it is assumed that the contelnment vessel
is made of steel and the surrounding medium is water. The physical dimen-
sions and properties used are as follows :

a = 600 in. , h =3 in.,

0.30, E = 30 x 10° psi

0.7347 x 107 1b - sec?/in* s

0.9582 x 10™%  1b - sec?/in? ,

J
S
k?f
cp =6 x 104 in/sec,

Since, in the numerical calculations, only n = 1 mode is analyzed, the
adequacy of the shell with the dimensions given in resisting the hydros-
tatic pressure present is not considered in this investigation.

The nondimensional displacements u,,vq, and W, ere plotted in Figs.3-5
as functions of time t. They are plotted only for I=5 ; however, the conc-
lusions are the same for the other mesh points. A comparlson of Fige.2-5
reveals that the displacements are also random functions of time. The
effect of damping 1s also shown in Figs.%-5. The nondimensional damping
coefficlent ¢ is taken to be 10. Damping 1s generally reducing the ampli-
tude of the vibrations, although at some time stations the displacements
of the damped system are larger than those of the undemped system. One
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final remark about Figs.3-5 is the fact that the radial and meridional

displacements uqy and w, are in phase, but the circumferential displacement
vy has a 0.2 seconds phase difference. Fig.6 presents the velocity poten-
tial @1, at I=4 , J=1 as a function of time t. The figure is self-expla-
natory.

In Fig.7 the nondimensional displacements Uqy,Vq, and w, are plotted as
functions of meridional mesh point I at a fixed time t=2.20 sec. The effect
of damping for ¢=10 is also shown in the figure. Finally, Figs.8 and 9 give
the nondimensional velocity potential Q1as functions of radial mesh point
J end meridional mesh point I, respectively at t=2.20sec, Damping coeffi-
cient ¢ is taken to be zero.
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Fig.1l Geometry of the shell
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Fig.2 Barthqueke acceleration function.
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Fig.4 Circumferential displacement v, a8 function of time,
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Fig.5 Radial displacement w, as function of time.
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Fig.6 Velocity potential é1 as function of time.
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Fig.7 Displacements as functions of meridional mesh point
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