
ABSTRACT

JOHNSON, SPENCER JOSEPH. Modulation of Radio Frequency Signals by Nonlinearly Gen-
erated Acoustic Fields. (Under the direction of Michael B. Steer and Mohammed A. Zikry.)

Acousto-electromagnetic scattering is a process in which an acoustic excitation is utilized

to induce modulation on an electromagnetic (EM) wave. This phenomenon can be exploited in

remote sensing and detection schemes whereby target objects are mechanically excited by high

powered acoustic waves resulting in unique object characterizations when interrogated with

EM signals. Implementation of acousto-EM sensing schemes, however, are limited by a lack of

fundamental understanding of the nonlinear interaction between acoustic and EM waves and

inefficient simulation methods in the determination of the radiation patterns of higher order

scattered acoustic fields. To address the insufficient simulation issue, a computationally efficient

mathematical model describing higher order scattered sound fields, particularly of third-order in

which a 40x increase in computation speed is achieved, is derived using a multi-Gaussian beam

(MGB) expansion that expresses the sound field of any arbitrary axially symmetric beam as a

series of Gaussian base functions. The third-order intermodulation (IM3) frequency components

are produced by considering the cascaded nonlinear second-order effects when analyzing the

interaction between the first- and second-order frequency components during the nonlinear

scattering of sound by sound from two noncollinear ultrasonic baffled piston sources. The theory

is extended to the modeling of the sound beams generated by parametric transducer arrays,

showing that the MGB model can be efficiently used to calculate both the second- and third-

order sound fields of the array. Additionally, a near-to-far-field (NTFF) transformation method

is developed to model the far-field characteristics of scattered sound fields, extending Kirchhoff’s

theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source

from amplitude and phase measurements made in the near-field by including the higher order

sound fields generated by the nonlinear scattering of sound by sound as the acoustic waves

propagate into the far-field.

With improvements in the sensitivity of radio frequency (RF) receivers, spectral content pre-

viously below the measurable noise floor, such as the nonlinear content produced by acousto-EM

scattering, can now be examined and analyzed. Through the use of a high dynamic range nonlin-

ear measurement system based on analog cancellation, the ability to experimentally investigate

the effects of nonlinear interaction between acoustic and EM waves previously unattainable is

enabled. To further the understanding of the effects of acousto-EM scattering and verify experi-

mental results, a mathematical description of the periodic change in the medium characteristics

due to the propagation of a high powered acoustic wave through a medium that modulates an

EM signal proportional to the acoustic frequency is developed.
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Chapter 1

Introduction

1.1 Overview

High frequency acoustic signals for remote sensing applications have regained interest in recent

years as field simulation techniques have improved and alternatives to common electromagnetic

(EM) sensing methods have gained favor for countering limitations in many environments.

Typically, remote sensing refers to the use of propagating EM signals to interrogate an object

at distance without making direct physical contact in an effort to gather information about

that object; however, sensing techniques do not have to be restricted solely to EM radiation

as there are a variety of other mechanisms that provide the ability to induce a response by

an object at distance, such as acoustics, thereby enabling the acquisition of information. In

a process analogous to that found in EM, the interaction of an incident acoustic wave on an

object generates a scattered acoustic field that contains information about the scattering object

and, since acoustic signals provide an orthogonal sensing modality to the more conventional

EM methods, this acoustic interrogation can provide distinctive information about the excited

environment not achievable by EM sensing, making it an attractive option for remote sensing

applications. Additionally, due to the orthogonal nature of the methods, acoustic interrogation

can be combined with common EM sensing to allow for further information to be ascertained

within an excited environment through the use of dual remote sensing techniques, referred to

as acousto-EM sensing. The implementation of acousto-EM sensing, however, has traditionally

been infeasible as the fundamental understanding of the interacting processes have been limited

by difficulties in experimentally detecting and verifying the effects of the interacting acoustic

and EM waves as well as inadequate modeling capabilities for propagating acoustic fields.

Acousto-EM sensing has been investigated primarily as a potential means of improving

buried object detection schemes, whereby the acoustic signals act as an excitation source in-

ducing vibrations on an object that scatter the interrogating EM signal. Early endeavors to

1



develop an acousto-EM approach for buried object detection employed acoustic transducers

and RF antennas that were configured specifically to the testing environment and operated

at small distances from the target [1–4], limiting the feasibility of the approach in unknown

environments and at stand-off ranges. More recent efforts have focused primarily on theoretical

investigations, utilizing high power acoustic sources and vibrational targets chosen for their

mathematical tractability rather than practicality [5–11], ignoring any attempt to experimen-

tally verify their results. The theoretical investigations were performed at stand-off ranges but

required a high power acoustic source capable of generating plane waves at 150 dB sound pres-

sure level (SPL), where strong acoustic nonlinearities occur during propagation, while simulta-

neously measuring mechanical vibrational effects on targets that were typically very small and

often dominated by the excitation from the source; thus, the investigations become extremely

difficult to implement experimentally.

Numerical techniques employed to model interacting EM and acoustic energies also have a

unique set of challenges due to the physical properties of the different wave types. The discrep-

ancy in wavelength between EM and acoustic signals can be quite large, requiring simulations

to have a considerable time-scale disparity. Additionally, vibrating objects have very small dis-

placements, rarely over 1 mm, necessitating fine mesh sizes to accurately capture the response

while under interrogation. Typically, the acoustic effects are accounted for as a time-varying

perturbation [5, 7] or boundary condition [10, 11] within the EM domain, however, not as an

independent scattering phenomenon.

A major obstacle in the implementation of acousto-EM sensing schemes is the inability to

calculate the acoustic field solutions efficiently. Traditional techniques for calculating sound

field radiation patterns require substantial computation, particularly in the determination of

the higher order scattered sound fields, limiting their use in real-time sensing applications.

The scattered sound fields that radiate energy into the harmonics, sum-, difference-, and in-

termodulation frequencies of the primary interacting signals are produced by the nonlinear

interactions of high frequency acoustic signals and the nonlinearity of the medium in which the

signals propagate, a phenomenon known as the scattering of sound by sound. These higher or-

der sound signals, generated by the nonlinear scattering, have a narrower beamwidth than that

of the primary interacting signals, making them ideal for use in remote sensing and detection

applications. To model the nonlinearities required to generate these higher order acoustic sig-

nals, the Khokhlov-Zabolotskaya-Kuznetsov (KZK) partial differential equation (PDE) [12,13]

was developed. However, conventional methods used to solve this equation are computationally

inefficient and, therefore, efforts to improve the computational efficiency of the sound field cal-

culations have recently emerged. Expansion techniques based upon the idea that sound beams

generated from acoustic sources can be expressed as a series of base functions have become the

foundation for deriving more computationally efficient sound field solutions. The initial works
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used a series of Gaussian-Laguerre [14] and Gaussian [15] base functions to develop numerical

models for the primary field of a circular plane baffled transducer. The expansion technique

was then extended to the second-order sound fields generated by arbitrary axial-symmetric

acoustic sources [16–18], allowing for simple analytic solutions that are computationally more

efficient than previous methods that relied on cumbersome numerical techniques such as finite

difference methods to yield sound field solutions. However, the expansion technique has been

confined solely to the primary and secondary sound fields generated by a single transducer,

neglecting higher order fields as well as common acoustic devices such as transducer arrays.

Since the initial work on scattering of sound by sound using two independent acoustic waves

[19,20], scattered sound fields have been widely studied for their applications in sound projection

[21], acoustic radar [22], and sonar [23], primarily focusing on modeling the radiation of the

acoustic fields from a variety of sources. Expressions for the primary, harmonic, and secondary

sound fields have been developed in the near- and far-field [24–26] showing the legitimacy of

the fully nonlinear wave equation in both regions; but these solutions are valid under very

limited constraints, otherwise requiring the solving of volumetric field integrals commonly done

using slow numerical simulation techniques. Similar efforts have been applied to analyzing the

primary and secondary sound fields generated from parametric radiation [27–36] but emphasis

was placed on comparing numerical results obtained with theory and measurements from earlier

works and not on computational efficiency.

Considerable effort has been put forth to expand the idea of parametric radiation for prac-

tical applications. A variety of mathematical models have been developed that yield solutions

for the radiated sound fields, utilizing various techniques to solve the wave equation [31,32,35],

accounting for different types of acoustic sources [28,33], and incorporating effects such as spher-

ical spreading of the primary sound beams [37]. Additionally, explorations into the resultant

acoustic fields generated from the intersection of two independent sound sources at varying

intersection angles [29, 30, 33, 36] as well as from transducer arrays [27, 34, 38, 39] have been

significant areas of interest due to their application in detection schemes.

The focus of this work is on improving acoustic field simulation techniques to enable real-

time implementation in systems and using these improvements to enhance the understanding of

the coupling between acoustic and EM energies during remote sensing. A mathematical model

is developed solving the fully nonlinear acoustic wave equation that is computationally efficient

and valid for the higher order harmonics and intermodulation frequencies that are primarily

ignored in previous literature. In addition, a near-to-far-field (NTFF) transformation technique

that is commonly implemented in EM to determine the far-field radiation patterns of antennas

is established for radiated acoustic fields in an effort to further improve the computational

efficiency of acoustic simulations. These techniques are then exploited to extend acousto-EM

sensing methods to stand-off ranges by modeling the response of an object under acoustic
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illumination and its effects on a scattered EM wave. To continue the investigation of acousto-

EM coupling, analysis is also provided on the physical changes in the medium caused by the

propagation of high powered acoustic waves that lead to additional distortion of an EM signal.

1.2 Motivation

Remote sensing and detection schemes have improved in recent years as there have been many

advancements in implementation algorithms and receiver performance capabilities; however,

complications remain in these systems resulting from the difficulty in distinguishing objects of

interest from clutter in the background environment. These problems are further exacerbated

as the knowledge and ability to manipulate propagating waves, notably EM waves, have become

common, leading to structures intelligently designed to avoid exposure by conventional detec-

tion schemes. Therefore, interest has been growing in the development of alternative sensing

modalities that can provide unique methods of characterizing unknown objects, particularly at

stand off distances.

As a means of developing an alternative sensing technique, the use of acoustic signals to

interrogate remote objects has received much research attention as it is an orthogonal modality

to EM sensing. Traditional acoustic sensing schemes utilizing linear and nonlinear excitation

methods suffer from similar difficulties in distinguishing objects of interest from the environ-

ment; however, it has been shown that acoustic signals can produce a scattered EM spectrum

within an environment by generating vibrations that cause phase modulation on the EM signal.

This scattering effect has prompted the development of a hybrid acousto-EM sensing technique,

particularly as a potential means of enhancing buried object detection schemes. Although an

improvement, current acousto-EM approaches have practicality concerns, as investigations have

been either purely theoretical using acoustic power levels not easily produced to analyze objects

with the simplest of geometries or experimental conditions unrealistically configured to yield

optimal results. Additionally, acousto-EM techniques experience difficulties in determining the

acoustic fields as computation methods to ascertain the nonlinear sound field solutions are

inefficient.

Experimental investigations utilizing practical sources and target structures that are veri-

fiable by theoretical results in addition to the development of acoustic field solutions that are

calculable in real-time can enable a realistic implementation of an acousto-EM sensing tech-

nique, thereby achieving an alternative sensing modality with the capability of providing unique

object characterization at stand off ranges.
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1.3 Original Contributions

During the culmination of this research, a number of original techniques and algorithms were

developed in order to accomplish the work described. This section provides a brief summary

of those original research contributions by the author to the fields of nonlinear acoustics and

remote RF and microwave sensing.

1.3.1 Efficient Modeling of Third-Order Scattering of Sound by Sound

The determination of the radiation patterns of higher order sound fields has been of great

interest in nonlinear acoustics; however, the computational effort required to calculate these

field solutions remains quite high. Without making simplifying approximations, the analytical

solutions for these fields are typically in the form of PDEs or multi-variable field integrals,

thereby necessitating the use of numerical computation methods that are often difficult to

compute and time intensive. One method of alleviating these computation issues is to determine

a mathematical representation for the acoustic source that enables the higher order PDEs and

field integrals to be simplified analytically. Following this approach, a mathematical model is

developed in Chapter 3 to describe the third-order sound field, generated through the physical

process known as scattering of sound by sound, by defining the acoustic source as a superposition

of Gaussian functions and, thus, enabling a simplified solution for the third-order sound field

to be derived.

1.3.2 Scattered Acoustic Field Modeling using Near-to-Far-Field Transfor-

mations

The issue of slow computation time is further exacerbated when the acoustic waves radiate into

the far-field, requiring mesh grids that are extremely fine to account for the hundreds of acoustic

wavelengths to be computed in the determination of the field patterns. This problem is not

unique to acoustics, however, as the modeling of EM propagation and antenna radiation patterns

suffer from similar situations. In EM, a common method of handling these simulation concerns

is to implement a NTFF transformation technique whereby the field pattern in the near-field

is extrapolated to determine the equivalent far-field radiation characteristics. Applying this

concept in an attempt to mitigate large computation efforts, a NTFF transformation method

is developed in Chapter 4 to determine the acoustic far-field radiation patterns for the higher

order scattered fields using known near-field data. Implementation of this technique, along with

the improved efficiency gained by simplifying the third-order sound field solution, allows for

a much more computationally efficient means of determining the higher order scattered fields

radiated from an acoustic source.
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1.3.3 Advancements in the Design of Third-Order Parametric Arrays

The second-order parametric array has become a useful and common acoustic source for gener-

ating highly directional sound signals, as much research effort has been put into understanding

the second-order nonlinear interaction between two ultrasonic signals. However, the third-order

parametric array has garnered much less attention despite the advantages gained in signal di-

rectivity from this alternate array configuration. By investigating the implementation of the

fundamental components comprising the array, a design for the third-order parametric array is

developed in Chapter 3 with improvements in the overall efficiency of the system. The design

considers the frequency location and relative power of the ultrasonic signals, implemented mod-

ulation schemes, and architecture of the electrical system used in the generation of the acoustic

signals.

1.3.4 Effects of High Powered Acoustic Excitation on Electromagnetic Scat-

tering

Scattering of EM signals within an acoustically-excited environment with vibrating objects has

traditionally been attributed to phase modulation associated with the Doppler effect. Recent

advancements in receiver capabilities have prompted a reevaluation of the fundamental phys-

ical mechanisms related to the scattering of an EM signal from a vibrating object, however,

the effects of the acoustic wave on the propagation medium have been ignored. When the

vibrating objects are acoustically-induced at stand-off ranges, particularly for high powered

acoustic signals, the propagating wave can cause considerable time-harmonic changes in the

medium that can lead to modulation of the EM signal comparable to those generated by the

vibrations. By analyzing the fluctuations in the medium over time, an analytical model is de-

veloped in Chapter 5 that describes the modulation on a scattered EM signal propagating in an

acoustically-excited environment. Additionally, in order to measure the modulations due to the

time-harmonic fluctuations, transient capabilities were developed for the high dynamic range

measurement system by incorporating a zero-span frequency measurement into the architecture

of the analog canceller.

1.4 Dissertation Outline

Chapter 2 of this dissertation presents a literature review of the theory of nonlinear acoustics

and the approaches utilized in generating solutions to the nonlinear wave equations. It dis-

cusses the development of the second-order parametric array and the scattering of sound by

sound through the radiation of acoustic signals generated by a single transducer as well as a

multi-element transducer array. Additionally, a discussion on acousto-electromagnetic interac-
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tion theory is given, outlining the various physical mechanisms in which a vibrating object can

produce modulation on a scattered RF wave. A brief description of the high dynamic range

measurement system used to generate the acousto-electromagnetic measurements is also pro-

vided.

Chapter 3 develops an approach for determining the third-order scattered acoustic fields

that is computationally more efficient than previously implemented methods. It begins by de-

riving the third-order quasilinear solution of the fully nonlinear KZK parabolic wave equation

that is used to develop a solution for the third-order scattered sound fields by expressing the

acoustic source as a superposition of Gaussian functions. By defining the source in this manner,

mathematical simplifications for the third-order fields are made that lead to improvements in

computation time. With the ability to produce simplified solutions for the scattered acoustic

fields, the mathematical model is then utilized to determine the radiation patterns generated

by parametric transducer arrays. The simulation results given by the model are compared with

sound field measurements and previously presented results showing that the model is compu-

tationally more efficient than previous methods while accurately representing the sound fields.

The advancement of the design of the third-order parametric array is also detailed, improv-

ing the overall efficiency of the system by optimizing the relationship between the transmitted

signals as well as the architecture of the system.

Chapter 4 continues the development of efficient computation of scattered sound fields by

implementing a NTFF transformation method that uses known sound field data in the near-field

to determine the far-field radiation characteristics. The mathematical model extends Kirchhoff’s

Theorem from the linear solution valid for only the primary acoustic fields to the higher order

scattered fields by deriving a comparable solution from the KZK nonlinear wave equation. The

method provides a significant increase in efficiency since it utilizes near-field data that can be

computed relatively easily or provided prior to far-field calculation. Measurements are made of

the second-order scattered sound fields generated from a single transducer as well as a multi-

element transducer array and compared to the results provided from the NTFF transformation

method illustrating that the model produces accurate sound field radiation patterns.

Chapter 5 explores the effect of a high powered acoustic signal on the medium in which

it propagates and the modulation on a scattered RF signal directly related to this medium

fluctuation. The analysis begins by establishing a relationship between the periodic pressure

changes in the medium and the propagating acoustic wave then introduces that time-dependent

fluctuation into Maxwell’s equations, deriving an EM wave equation that defines a propagating

signal in the sound perturbed medium. The resultant solution includes spectral components

corresponding to the propagating acoustic frequency that are interpreted as acoustic modulation

of the EM signal. Those components are then compared to other known phase and amplitude

modulations that have been investigated in an acoustically-excited environment with vibrating
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objects to determine the relative importance of this effect when detecting modulation due to

the presence of an acoustic transmission. The additional capability of transient measurement

using the high dynamic range measurement system is also described, implementing a zero-span

frequency measurement and using the recorded I/Q data of the system to capture the measured

power over time. Spectral and transient measurements are then taken to correlate the acoustic

excitation with the observed modulations on the scattered EM signal.

Chapter 6 concludes with a summary of the presented research and a discussion of potential

future work to continue the advancement of research in this area.

1.5 Authored Works

1.5.1 Journal Articles

S. J. Johnson and M. B. Steer, “An Efficient Approach to Computing Third-Order Scat-

tering of Sound by Sound with Application to Parametric Arrays,” IEEE Trans. Ultrason.,

Ferroelectr., Freq. Control, accepted for publication.

S. J. Johnson and M. B. Steer, “A Near-to-Far-Field Transformation Method for the

Determination of Nonlinearly Generated Scattered Acoustic Fields,” submitted to IEEE

Trans. Ultrason., Ferroelectr., Freq. Control.

S. J. Johnson, J. M. Wetherington, and M. B. Steer, “Near-Field Radio Frequency Scatter-

ing from Acoustically-Excited Vibrating Structures,” submitted to IEEE Trans. Antennas

Propag.

1.5.2 Patents

M. B. Steer and S. J. Johnson. 2014. High-Order Parametric Sound System. US Provi-

sional Patent Application No. 62/005,477, filed May 30, 2014.
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Chapter 2

Literature and Concepts Review

2.1 Introduction

Remote sensing using acousto-EM scattering is an appealing alternative to conventional sensing

methods as the use of two orthogonal modalities enables the acquisition of information not

attainable through the use of sensing schemes employing only a single modality. Implementation

of the acousto-EM sensing schemes is hindered, however, by inadequate modeling capabilities

for the radiation of scattered acoustic fields and ability to experimentally verify the effects of

the nonlinear interaction between the acoustic and EM waves at stand off distances. To provide

a foundation from which the development of the solutions to improve these shortcomings and

facilitate practical application of acousto-EM sensing methods are built, the fundamentals of

nonlinear acoustics and the effects of incident acoustic signals on objects are presented along

with a discussion of the current theoretical development of acousto-EM scattering as it pertains

to remote sensing.

Section 2.2 establishes the nonlinear acoustic wave equation for plane waves and sound

beams beginning with the general motion of a fluid and building to the KZK parabolic wave

equation. Mathematical models are then developed that solve the nonlinear acoustic wave equa-

tion and define the sound fields emitted from several types of acoustic sources. With models

describing a single sound field generated by a single source, the concept of scattering of sound

by sound where multiple sound fields exist in a single environment is discussed. Section 2.3 then

reviews a variety of methods currently utilized to compute the equations of nonlinear acoustics.

Section 2.4 provides background for the current state of the theoretical and experimental de-

velopment of acousto-EM scattering theory. A brief discussion is given on Doppler theory and

the different modulation effects that contribute to the resultant distortion of an EM signal in

an acoustically-excited environment. Prior research studying the use of acousto-EM scattering

in detection schemes is also examined. Section 2.5 discusses the development of a high dynamic
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range measurement system created using analog cancellation that will be employed in the mea-

surement of the EM modulation induced by acousto-EM scattering. Section 2.6 summarizes

the key concepts of this chapter to be used in the development of the original contributions in

Chapters 3, 4, and 5.

2.2 Nonlinear Acoustics Theory

Acoustic waves are interpreted as fluid particles in motion, therefore it is necessary to establish

a description of the fundamental movement of a fluid in a medium to facilitate the development

of the equations of nonlinear acoustics. The general motion of a fluid can be defined by the

conservation laws of fluid dynamics (for mass, momentum, and energy) along with the thermo-

dynamic equation of state [40]. Beginning with these equations for fluid motion, the nonlinear

wave equation for acoustic propagation in a fluid can be derived, following a similar method as

provided by Hamilton [41].

The conservation of mass in a fluid volume yields the acoustic equation of continuity, given

by
Dρ

Dt
+∇ · (ρu) = 0, (2.1)

where ρ is the mass density, u is the fluid particle velocity, ∇ is the material time derivative, and

D/Dt = ∂/∂t+ u · ∇. Similarly, from the conservation of momentum, the momentum equation

is

ρ
Du

Dt
+∇P = µ∇2u+ (µB + 1

3µ)∇(∇ · u), (2.2)

where P is the thermodynamic pressure, µ is the shear viscosity considering the momentum

diffusion between adjacent fluid particles, and µB is the bulk viscosity describing the variations

between the local and thermodynamic pressures. Equation (2.2) is valid when the relaxation

times in the system are shorter than the acoustic time scale. Under these conditions, the con-

servation of energy produces the entropy equation, expressed as

ρT
Ds

Dt
= κ∇2T + µB(∇ · u)2 + 1

2µ

(
∂ui
∂xj

+
∂uj
∂xi

− 1
2δij

∂uk
∂xk

)2

, (2.3)

where T is the absolute temperature, s is the specific entropy per unit mass, κ is the thermal

conductivity, and δij is the Kronecker delta equal to unity for i = j and zero otherwise where the

final term in (2.3) is written in Cartesian tensor notation so that ui indicates the fluid particle

velocity in the direction xi. With expressions for the laws of conservation, the final expression

required to develop the equations of nonlinear acoustics is the thermodynamic equation of state:

P = P (ρ, s). (2.4)
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To simplify the analysis, a plane wave in a lossless fluid is considered where the sound of speed,

ca, is defined as

c2a =

(
∂P

∂ρ

)
s

. (2.5)

By assuming the condition of a lossless fluid, the shear and bulk viscosities along with the

thermal conductivity become zero, indicating that the fluid is uniform with specific entropy

equivalent to its ambient state, s0, and the thermodynamic equation of state in (2.4) simplifies

to P = P (ρ). A common form of the thermodynamic equation of state is that for a perfect gas,

found using the ideal gas law [42], and, using (2.5), can be expressed in a lossless fluid as

P

P0
=

(
ρ

ρ0

)γ

exp

(
s− s0
cv

)
=

(
ca
c0

)2γ/(γ−1)

, (2.6)

where P0 and ρ0 are the ambient pressure and density reference values, respectively, c0 is the

small-signal sound speed, cp and cv are the specific heats at constant pressure and constant

volume, and γ = cp/cv is the ratio of the specific heats. Additionally, for a perfect gas, (2.5)

reduces to c2a = γP/ρ. Thus, (2.1), (2.2), (2.3), and (2.6) describe the conservation laws of fluid

dynamics and the thermodynamic equation of state for a plane wave in a lossless fluid.

Extending the discussion to include nonplanar waves, also in a lossless fluid, (2.1) and (2.2)

can be expressed in terms of velocity potential, ϕ, with u = ∇ϕ and Ds/Dt = 0 (since the

viscosities and thermal conductivity are zero), as

∂ρ

∂t
+∇ρ · ∇ϕ+ ρ∇2ϕ = 0, (2.7)

∇
(
∂ϕ

∂t
+ 1

2 |∇ϕ|
2

)
+

∇P
ρ

= 0, (2.8)

where |∇ϕ|2 = ∇ϕ · ∇ϕ and ∇P = ρ∇q, found with the relation

q =

∫ P

P0

dP

ρ
=

∫ ρ

ρ0

c2a
ρ
dρ =

c2a − c20
γ − 1

, (2.9)

where the integrals are solved for a perfect gas along s = s0. Integrating (2.8) with respect to

the spatial coordinates, the momentum equation simplifies to

∂ϕ

∂t
+ 1

2 |∇ϕ|
2 + q = 0. (2.10)

Substituting the solution for a perfect gas in (2.9) into (2.10), the speed of sound becomes

c2a = c20 − (γ − 1)

(
∂ϕ

∂t
+ 1

2 |∇ϕ|
2

)
, (2.11)

11



which enables (2.7) to be rewritten as

∂c2a
∂t

+∇c2a · ∇ϕ+ (γ − 1)c2a∇2ϕ = 0. (2.12)

Finally, substituting (2.11) into (2.12), the wave equation expressed in terms of the velocity

potential is

c20∇2ϕ− ∂2ϕ

∂t2
=

(
2∇∂ϕ

∂t
+ 1

2 |∇ϕ|
2

)
· ∇ϕ+ (γ − 1)

(
∂ϕ

∂t
+ 1

2 |∇ϕ|
2

)
∇2ϕ. (2.13)

This is the exact solution describing the propagation of a wave for a lossless perfect gas.

To this point, the development of the wave equation has solely considered a lossless fluid,

however, for practical application, attention needs to be given to the nonlinear acoustic prop-

agation of a wave in a dissipative fluid. In this fluid, the dissipation losses introduced are

primarily due to thermoviscous effects caused by the medium in which the wave propagates:

thermal losses from increased particle velocity resulting in heat generation and viscous losses

from resistance by the medium due to shear and compressive stress. When these effects are

included, exact analytical solutions for the wave equation are unobtainable, thus approxima-

tions are required to develop model equations that describe nonlinear acoustic propagation. A

common approximation method is to utilize perturbation techniques as a means of deriving

an analytical solution, whereby small disturbances from equilibrium are introduced into the

variables of the linearized equations for the laws of conservation and equation of state (i.e.,

p = P − P0, ρ
′ = ρ− ρ0, s

′ = s− s0, and T = T − T0).

Beginning again with the conservation of mass and including the perturbed medium density

ρ′ into (2.1), the continuity equation remains exact for higher-order approximations and can be

expressed as
∂ρ′

∂t
+ ρ0∇ · u = −ρ′∇ · u− u · ∇ρ′. (2.14)

Similarly, for the conservation of momentum, incorporating the pressure perturbation p into

(2.2), discarding terms higher than second-order, and rearranging terms, the second-order mo-

mentum equation can be written as

ρ0
∂u

∂t
+∇p = (µB + 4

3µ)∇
2u− 1

2ρ0∇u
2 − ρ′

∂u

∂t
. (2.15)

Examining the entropy equation, it can be seen from the terms on the right hand side of (2.3)

that the entropy perturbations s′ are of second-order and that the amplitude of the viscosity
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terms are much less than that of the thermal conductivity. Therefore, (2.3) simplifies to

ρ0T0
∂s′

∂t
= κ∇2T ′. (2.16)

Finally, to determine the second-order equation of state, (2.4) is expanded using a Taylor series

evaluated about the equilibrium point (ρ0, s0) so that

P − P0 =

(
∂P

∂ρ

)
s,0

(ρ− ρ0) +
1

2

(
∂2P

∂ρ2

)
s,0

(ρ− ρ0)
2 + . . . , (2.17)

which can be expressed using the perturbed states as

p = A

(
ρ′

ρ0

)
+
B

2

(
ρ′

ρ0

)2

+
C

3

(
ρ′

ρ0

)3

+ . . . , (2.18)

where

A = ρ0

(
∂P

∂ρ

)
s,0

= ρ0c
2
0, B = ρ20

(
∂2P

∂ρ2

)
s,0

, C = ρ30

(
∂3P

∂ρ3

)
s,0

. (2.19)

Rearranging terms and ignoring terms higher than second-order, the equation of state can be

written in the more common form of

p = c20ρ
′ +

c20
ρ0

B

2A
ρ
′2 +

(
∂P

∂s

)
ρ,0

s′. (2.20)

Here, the term B/A describes the nonlinearity of the medium [43]. Thus, (2.14), (2.15), (2.16),

and (2.20) define the second-order equations of motion and equation of state for an acoustic

wave in a thermoviscous fluid.

Through the manipulation of the second-order solutions found for the laws of conservation

and thermodynamic equation of state, the nonlinear second-order wave equation can be derived.

To enable this development, a cascaded approach is used whereby first-order terms can be

substituted into second-order terms since the resulting error terms will be of third-order and,

therefore, can be discarded. The second-order continuity (2.14) and momentum (2.15) equations

can then be written [24]

∂ρ′

∂t
+ ρ0∇ · u =

1

ρ0c40

∂p2

∂t
+

1

c20

∂L
∂t
, (2.21)

ρ0
∂u

∂t
+∇p = − 1

ρ0c20
(µB + 4

3µ)∇
∂p

∂t
−∇L, (2.22)

where L = 1
2ρ0u

2− p2/2ρ0c20 is the second-order Lagrangian density. (2.16) and (2.20) can then
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be combined using the thermodynamic relations(
∂P

∂s

)
ρ

= ρ2
(
∂T

∂ρ

)
s

,

(
∂T

∂ρ

)2

s

=
RTc2

cvcpρ2
, (2.23)

to obtain

ρ′ =
p

c20
− 1

ρ0c40

B

2A
p2 − κ

ρ0c40

(
1

cv
− 1

cp

)
∂p

∂t
. (2.24)

By taking the divergence of (2.22) and subtracting the time derivative of (2.21) then using

(2.24) to replace ρ′, the second-order wave equation is found [24],

�2p+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
−
(
∇2 +

1

c20

∂2

∂t2

)
L. (2.25)

where �2 = ∇2 − c20(∂
2/∂t2) is the d’Alembertian operator, β = 1 +B/2A is the coefficient of

nonlinearity, and δ is the diffusivity of sound [44]

δ = v

(
4

3
+
µB
µ

+
γ − 1

Pr

)
, (2.26)

where v = µ/ρ0 is the kinematic viscosity.

From (2.25), the Westervelt equation can be established by eliminating the final term con-

taining the Lagrangian density, L, yielding [45]

�2p+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
. (2.27)

This approximation of the full second-order wave equation in (2.25) remains valid for progressive

plane waves, where L = 0, and when the nonlinear effects that accumulate from propagation

can be considered much more significant than local nonlinear effects. The latter condition is

true when the distance from the source is much greater than a wavelength, thus, local nonlinear

effects can generally be ignored when considering quasi-plane waves, such as directional sound

beams, for distances greater than a few wavelength from the source. Local nonlinear effects,

however, become increasingly important when examining standing waves and the scattering of

sound by sound (discussed in Section 2.2.2).

The most commonly used model describing the propagation of second-order sound waves

while accounting for the medium nonlinearity and dissipation is the Burger’s equation. This is

derived from the one-dimensional form of the Westervelt equation (2.27),(
∂2

∂x2
− 1

c20

∂2

∂t2

)
p+

δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
, (2.28)
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whereby a slow scale is introduced corresponding to the retarded time τ and, through manip-

ulation of the partial derivatives, the Burger’s equation is found [46,47],

∂p

∂x
− δ

2c30

∂2p

∂τ2
=

β

ρ0c30

∂p2

∂τ
. (2.29)

Thus, (2.29) is a one-dimensional model that accounts for the effects of dissipation and nonlin-

earity on progressive plane waves.

Expanding Westervelt’s equation (2.27) to account for the effect of diffraction in addition

to dissipation and nonlinearity, particularly in directional sound beams, the KZK equation is

found by introducing a slow scale and manipulating the partial derivatives in a similar manner

used to derive the Burger’s equation. Defining z to be the direction of propagation with the

source having a radius a located at z = 0 and operating at a frequency that satisfies the relation

ka≫ 1 so that beam has reasonable directionality, the KZK equation is [12,13]

∂2p

∂z∂τ
− c0

2
∇2

⊥p−
δ

2c30

∂3p

∂τ3
=

β

2ρ0c30

∂2p2

∂τ2
. (2.30)

where τ = t = z/c0 and ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian in the plane perpendicular to

the propagation of the wave.

2.2.1 Acoustic Source Modeling

The partial differential equations (PDEs) detailed in Section 2.2 describe the nonlinear prop-

agation of an acoustic wave through a medium; however, to model the generation of a sound

field from an acoustic source, such as a piston transducer, solutions to these equations need

to be found. Restricting the sound pressure field p to the primary sound field p1 consisting

of fundamental frequencies linearly generated by an acoustic source and secondary sound field

p2 consisting of the second harmonic, sum frequency, and difference frequency produced from

nonlinear propagation in a medium, solutions to the nonlinear PDEs can be found by assuming

a quasilinear approximation for the pressure field,

p = p1 + p2. (2.31)

Under this approximation, the linear summation of the primary and secondary sound fields

is valid assuming p1 ≫ p2, indicating that the secondary pressure is a small perturbation

of the linear primary sound field. This section will examine the sound fields generated by

a single acoustic source transmitting a single tone, thereby further limiting the analysis to

the fundamental frequency f and only the second harmonic 2f in the secondary sound field.

Section 2.2.2 will extend this investigation to incorporate the sum and difference frequencies
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of the secondary sound field in addition to the second harmonic by considering multiple tones

generated from a single acoustic source as well as an array of sources. Thus, the fundamental

and second harmonic pressure fields can be defined as

pn(r, z, τ) = qn(r, z, τ)e
ȷnωτ , (2.32)

where r =
√
x2 + y2 is the cylindrical coordinate normal to the direction of propagation z

and n = 1 or 2 for the fundamental and second harmonic frequencies, respectively. For either

sound field n, qn(r, z, τ) is the complex pressure amplitude, and nω is the radian frequency of

the pressure field where ω = 2πf . By substituting (2.31) and (2.32) into the KZK equation

(2.30), the quasilinear equations for the propagation of the fundamental and second harmonic

frequencies in a nonlinear, dissipative medium can be written

∂q1
∂z

+
ȷ

2k
∇2

⊥q1 + α1q1 = 0, (2.33)

∂q2
∂z

+
ȷ

4k
∇2

⊥q2 + α2q2 =
βk

2ρ0c20
q21, (2.34)

where k = ω/c0 is the acoustic wavenumber and αn = δ(nω)2/2c30 is the thermoviscous attenu-

ation coefficient, however, the attenuation coefficient αn can be determined through a variety of

alternative methods [40,48–51]. The right hand side of (2.33) and (2.34) represents the acoustic

driving mechanism for the generation of the primary and secondary sound fields, respectively.

The primary sound field is produced from the physical acoustic source and, therefore, this term

is set to zero, whereas the secondary sound field is generated from the nonlinear propagation

of the primary sound fields, thus becoming proportional to the square of the primary complex

pressure amplitude, q21.

Solutions can be found for the fundamental and second harmonic frequencies in (2.33) and

(2.34) by integrating over the product of the acoustic driving source and the appropriate Green’s

function, Gn(r, z | r′, z′). Thus,

q1(r, z) = 2π

∫ ∞

0
q1(r

′, 0)G1(r, z|r′, 0)r′dr′, (2.35)

q2(r, z) =
πβk

ρ0c20

∫ z

0

∫ ∞

0
q21(r

′, z′)G2(r, z|r′, z′)r′dr′dz′, (2.36)

where the integration occurs over the surface dS′ = 2πr′dr′ for the primary sound fields since

the source is solely located in the z′ = 0 plane and over the volume dV ′ = 2πr′dr′dz′ for the

secondary sound fields. The integration of (2.36) over a volume can be interpreted as the second

harmonic being generated by an array of virtual sources in that volume, an assumption that is

a product of the quasilinear approximation in (2.31). q1(r
′, 0) in (2.35) is the source function
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for the primary sound field that is determined by type and shape of the source to be modeled

(several of the more common source functions will be discussed in greater detail later in this

section). Finally, to solve the integral equations in (2.35) and (2.36), the Green’s function,

defined as an impulse response to an inhomogeneous differential equation, can be ascertained

as a solution of
∂Gn

∂z
+

ȷ

2nk
∇2

⊥Gn + αnGn =
1

2πr
δ(r − r′)δ(z − z′), (2.37)

where 1
2πrδ(r−r

′)δ(z−z′) is the three-dimensional Dirac delta function. Following the procedures

outlined in [41] and [52] to solve (2.37), the Green’s function can be expressed as

Gn(r, z|r′, z′) =
ȷnk

2π(z − z′)
J0

(
nkrr′

z − z′

)
exp

(
−ȷnk(r

2 + r
′2)

2(z − z′)
− αn(z − z′)

)
. (2.38)

With the Green’s function determined, the integral equations in (2.35) and (2.36) provide

generic descriptions of the complex pressure amplitudes of the radiated primary and secondary

sound fields. To describe the fields radiated from specific types of acoustic sources, the source

function q1(r, 0) must be appropriately defined dependent upon the desired source to be mod-

eled, the most common being Gaussian and circular piston sources, both of which will be

analyzed here. The Gaussian source is an often modeled acoustic source because the mathe-

matical description of the source lends itself well to developing closed form solutions for the

sound fields under the quasilinear approximation. Therefore, to begin the analysis, the source

function will be defined with a simple Gaussian distribution,

q1(r, 0) = p0 exp
(
−(r/a)2

)
, (2.39)

where p0 is the peak pressure from an acoustic source with a radius a. For purposes of normal-

izing the coordinates to simplify the model equations in later analysis, the radial coordinate

of the Gaussian source function is shown divided by the acoustic source radius. This will be

done for the axial coordinate z in the upcoming analysis as well where it will be divided by

the distance to the limit between the near- and far-fields, z0 = 1
2ka

2. Substituting (2.39) into

(2.35), the linear solution for the primary sound field of a Gaussian source is found to be

q1(r, z) =
p0e

−α1z

1− ȷz/z0
exp

(
− (r/a)2

1− ȷz/z0

)
. (2.40)

The solution for the second harmonic can then be found by substituting (2.40) into (2.36)
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Figure 2.1: The normalized pressure amplitudes for the fundamental and second harmonic
frequencies generated from a Gaussian source along the normalized radial axis, r/a, at a distance
of 150 m from the source.

yielding [41]

q2(r, z) =
ȷβp20k

2a2

4ρ0c20

e−α2z+ȷ(2α1−α2)z0

1− ȷz/z0
exp

(
− 2(r/a)2

1− ȷz/z0

)
×
[
E1

(
ȷ(2α1 − α2)z0

)
− E1

(
ȷ(2α1 − α2)(z0 − ȷz)

)]
(2.41)

where E1(x) =
∫∞
x t−1e−tdt is the exponential integral function [53]. Fig. 2.1 depicts the nor-

malized pressure amplitudes for the fundamental and second harmonic frequencies at a dis-

tance of 150 m from a Gaussian source and are produced using (2.40) and (2.41), respectively.

The parameters used to generate the results were given by [26] and [27]: ρ0 = 995.8 kg/m3,

c0 = 1497.7 m/s, β = 3.59, a = 0.87 m, and f = 16 kHz. The radial responses in Fig. 2.1

show that the beamwidth of the second harmonic is narrower than the fundamental, which is

consistent with the analytic development of the secondary sound fields as q2 ∝ q21.

For a circular piston source, the analytic closed form solutions for the primary and secondary

sound fields cannot be as easily obtained as with the Gaussian source. To obtain closed form

solutions, approximations must be made when solving the field integrals as, typically, they are

only attainable for the primary sound fields in (2.35) along the axis of propagation and in the
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far-field while only under asymptotic conditions can they be derived for the secondary sound

fields in (2.36). As with the Gaussian source, the analysis begins by defining the source function

for the circular piston as

q1(r, 0) = p0H(a− r), (2.42)

where H(x) is the Heaviside step function. Substituting (2.42) into (2.35), the primary sound

field for a circular piston source can be expressed [54]

q1(r, z) = p0e
−α1z

(
1− e−ȷz0/2 + 2e−ȷz0/2

∫ rz0/az

0
e−ȷzξ2/z0J1(2ξ)dξ

)
, (2.43)

where J1(x) is the first-order Bessel function and ξ is the radial component to be integrated.

Substituting (2.43) into (2.36), the solution for the secondary sound field will contain a quadru-

ple integral since the field integral along the radial axis cannot be simplified for the primary

sound field. Thus, in order to generate the secondary sound fields, direct numerical integration

of (2.30) is the most common approach performed to determine the radiation patterns of these

fields, discussed in further detail in Section 2.3. Since the radial component r is only present in

the integral of (2.43), a simplified solution for the primary sound field can be obtained along

the axis of propagation that could lead to a more desirable solution for the secondary sound

fields, however, the solution would be restricted to use solely along that axis and have limited

practical use. Therefore, to realize a closed form solution for the secondary sound fields of a

circular piston, the analysis will be confined to only the far-field asymptotic conditions. Thus,

following the derivations in [55] and [26] under the additional assumption that the attenuation

of the second harmonic is greater than twice that of the fundamental frequency (α2 > 2α1),

the solution for the second harmonic can be written [41]

q2(θ, z) = − βp20k
3a4

8ρ0c20(α2 − 2α1)

e−2α1z

z2
D2

1(θ) exp
(
−jkz tan2 θ

)
, (2.44)

where

D1(θ) =
2J1(ka tan θ)

ka tan θ
(2.45)

and θ is the cylindrical coordinate denoting the angle off of the axis of propagation z. It is

worth pointing out that under these similar conditions, the solution for the second harmonic

produced by a Gaussian source (2.41) can be simplified to be identical to (2.44).

To avoid the restrictions imposed when using the closed form solution in (2.44) or having to

use direct numerical integration of the KZK equation to determine the second harmonic (as well

as the other second-order sound fields) for a circular piston source, much research effort has been

put into finding solutions for the secondary sound fields that are valid under a wide range of
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conditions. Tjotta and Tjotta [37] considered spherically spreading primary sound beams from

collinear sources and developed asymptotic solutions of the generated sound, including contri-

butions from the near-field. Aanonsen et al. [24] and Hamilton et al. [25] developed expressions

for the primary and harmonic sound fields in the near- and far-field showing the validity of the

fully nonlinear equation in both regions. However, a successful approach that capitalizes on the

advantages in analytical simplicity that comes with Gaussian sources yet describes the radiated

sound fields from a circular piston source is the use of expansion techniques based on the idea

that sound beams can be expressed as a series of base functions. Cavanagh and Cook [14] and

Wen and Breazeale [15] provided the initial development of numerical models for the primary

field of a circular plane baffled transducer using a series of Gaussian-Laguerre and Gaussian base

functions, respectively. Similarly, Hasegawa et al. [56] developed an expression for the velocity

potential of a circular piston radiator using a series expansion consisting of spherical Bessel

functions, spherical Hankel functions of the second kind, and Legendre polynomials. Ding has

since presented a series of papers that expand upon Wen and Breazeale’s work by extending

the expansion technique with Gaussian base functions also describing the second-order sound

fields [16–18], known as the multi-Gaussian beam (MGB) expansion model. The sound field

expressions found for the primary and secondary fields using a series of base functions have

the advantage of yielding simple analytic solutions that are computationally more efficient than

previous methods. Therefore, by defining the acoustic source function q1(r, 0) as a linear su-

perposition of Gaussian beams, this model provides the unique advantage of enabling closed

form solutions to be found for the secondary sound fields produced by a circular piston source

without requiring any assumptions or approximations that limit the validity of the solution.

Assuming linear superposition, a circular piston source (or any arbitrary axially symmetric

source) can be defined by a series of base functions so that the linear combination of these

functions describes the resultant sound field

q1(r, z) =

N∑
n=1

q1n(r, z) (2.46)

where N is the total number of functions within the series. Wen and Breazeale [15] expanded

upon this principle and showed that any axially symmetric beam field can be expressed as the

linear superposition of a set of Gaussian base functions

q1(r, 0) = p0

N∑
n=1

An exp
(
−Bn(r/a)

2
)
, (2.47)

where An and Bn are the Gaussian coefficient set and beam waist parameters, respectively.

These coefficients can be determined through any means of optimization but have been tradi-
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tionally calculated by minimizing the mean square error between the objective function and

Gaussian function series:

Q =

∫ ∞

0

[
q1(r, 0)− p0

N∑
n=1

An exp
(
−Bn(r/a)

2
)]2

dr. (2.48)

Substituting the MGB expansion definition for the source function of a circular piston (2.47)

into (2.35) and ignoring the attenuation term, the primary sound field of an axially symmetric

circular piston expressed as a linear superposition of Gaussian beams is [15]

q1(ξ, η) = p0

N∑
n=1

An

1 + ȷBnη
exp

(
− Bnξ

2

1 + ȷBnη

)
, (2.49)

where the cylindrical coordinates have been normalized such that the radial and axial coordi-

nates are given by ξ = r/a and η = z/z0, respectively, and, again, N is the number of functions

within the series as defined by the Gaussian coefficient set.

In Wen’s original work, two sets of coefficients were presented defining an edge supported

piston and a rigid piston with six and ten terms, respectively, but several sets have since been

presented in the literature. Ding [57] derived a simplified method of calculating the coefficients

also resulting in ten terms while Wei and Jun [58] provided an alternative optimization method

where the coefficients were found by combining solutions of linear equations with Fourier series

expansions, resulting in fifteen terms. Kim et al. [59] continued Ding’s work by generating a

new set of coefficients that increased the precision of the expansion for a piston radiator but

also increased the number of terms to twenty five. More recently, Cervenka et al. [60] presented

a heuristic evolutionary algorithm that minimized the number of coefficients in the set, yielding

a solution with only four terms. Fig. 2.2 is a comparison of the primary sound fields produced

using (2.49) along the acoustic axis illustrating the improvement in accuracy into the near-field

as the number of coefficients is increased while the far-field accuracy can be maintained with

fewer coefficients. The Gaussian coefficient sets are given in their entirety in Appendix A.

With the substitution of (2.49) into (2.36), the simplified solution for the second harmonic

can be found following the derivation in [16]

q2(ξ, η) = −βp
2
0k

2a2

2ρ0c20

N∑
n=1

N∑
j=1

AnAj

r1
exp

(
−s1ξ

2

r1

)[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
, (2.50)

21



10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Axial Distance, η

N
or

m
al

iz
ed

 P
re

ss
ur

e,
 |p

1i
/p

0i
|

 

 
n = 10
n = 15
n = 25

Figure 2.2: Comparison of the on-axis acoustic pressure for the primary frequency using the
MGB method with n = 10, 15, and 25 as given in [15], [58], and [59], respectively.

where

r1 = (Bj +Bn) + 2ȷηBnBj , (2.51a)

r2 = (Bn +Bj)η − 2ȷ, (2.51b)

s1 = 4BnBj , (2.51c)

s2 = −2ȷ(Bn −Bj)
2. (2.51d)

The exponential integral function has several convenient asymptotic properties that allow fur-

ther simplifications of (2.50) when the integrand is much greater or much less than unity:

E1(x) ≃ x−1e−x for x ≫ 1 and E1(x) ≃ −(Γ + lnx) for x ≪ 1 where Γ = 0.577 is Euler’s

constant. Additionally, by using the series expansion of the exponential integral function when

on the acoustic axis, (2.50) further simplifies to

q2(0, η) = − βp20k
2a2

2ρ0c20

N∑
n=1

N∑
j=1

AnAj

r1
ln

(
1 +

r1
r2
η

)
. (2.52)

Thus, the MGB expansion model produces a closed form solution for the second harmonic

radiated from a circular piston source that is valid for all conditions under the quasilinear ap-
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Figure 2.3: The normalized pressure amplitudes for the fundamental and second harmonic
frequencies generated from a circular piston source using the MGB expansion model along the
normalized radial axis ξ at a distance of 150 m from the source.

proximation. Similar to the depiction of the fields radiated from the Gaussian source, Fig. 2.3

describes the normalized pressure amplitudes for the fundamental and second harmonic frequen-

cies generated from a circular piston source determined using (2.49) and (2.50), respectively.

Again, the parameters used to produce the results were given by [26] and [27].

2.2.2 The Scattering of Sound by Sound and the Parametric Array

The analysis thus far has been limited to the radiation of a single acoustic tone; however, by

expanding the investigation to account for the radiation of two or more tones, the resultant

sound field will include the second-order sum and difference frequencies, in addition to the

fundamental frequencies and the second harmonics for both acoustic tones, generated by the

scattering of sound by sound. The scattering of sound by sound is a physical phenomenon

whereby the nonlinear interaction of two or more sound fields produce intermodulation products

that continue to propagate outside of the interaction region of the initial sound fields (i.e., the

sum and difference frequencies for the second-order sound field) [19,20,61–63]. This phenomenon

typically refers to the sound fields that are generated by noncollinear sources oriented so that

their acoustic axes intersect at non-zero angles resulting in finite interaction regions. However,
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the most commonly exploited use of the scattering of sound by sound is the generation of

highly directional acoustic parametric arrays, a special case discovered by Westervelt during

his investigations into the scattering of sound by sound [45] that lead to the development of

his equation defining the nonlinear propagation of an acoustic wave (2.27). The parametric

array is a virtual end-fire sound source that is generated by the beat pattern produced through

the summing of two or more collinearly located ultrasonic sound fields where the nonlinear

interaction of the fields create a directional sound beam at the intermodulation frequencies.

Since the sources are collinearly located, the intermodulation frequencies propagate in the same

direction as the primary frequencies and, therefore, are continuously pumped unlike the sound

fields generated from noncollinear sources. While parametric radiation produces both the sum

and difference frequencies, typically, parametric arrays refer to the generation of the difference

frequency from two ultrasonic sound fields close in frequency so that this resultant tone will

be located in the audio frequency range, thereby experiencing much less attenuation than the

sum frequency that is located at much higher frequencies. Similar to the second harmonic, the

Westervelt, Burgers, and KZK nonlinear equations developed in Section 2.2 are valid for the

scattered sound fields and, thus, this section will follow a similar procedure as Section 2.2.1 to

develop solutions that describe the scattered sound fields generated from a parametric array.

Considering a two tone primary sound field with fundamental frequencies f1 and f2 where

f1 > f2, the secondary sound field will consist of the second harmonics 2f1 and 2f2, the sum

frequency fS = f1+f2 and the difference frequency fD = f1−f2. Therefore, the sound pressure

field p in (2.31) can be expanded as

p = p1 + p2 =
2∑

i=1

p1i +
∑
ς

p2ς = p11 + p12 + p21 + p22 + p2S + p2D, (2.53)

where p1i indicates the ith primary field and p2ς indicates the second-order scattered field. The

scattered field subscript ‘ς’ specifies the choice between one of the two second harmonics, sum,

and difference frequencies, ς = 1, 2, S, or D, respectively. Thus, the first subscript indicates the

sound field order and the second subscript denotes the specific frequency component within

that field (e.g., p12 and p21 are the pressure fields of the fundamental frequency f2 and second

harmonic 2f1, respectively). The two tone pressure field can then be written

p1(r, z, τ) = q11(r, z, τ)e
ȷω1τ + q12(r, z, τ)e

ȷω2τ , (2.54)

p2(r, z, τ) = q21(r, z, τ)e
ȷ2ω1τ + q22(r, z, τ)e

ȷ2ω2τ + q2S(r, z, τ)e
ȷωSτ + q2D(r, z, τ)e

ȷωDτ . (2.55)

Substituting (2.53), (2.54), and (2.55) into the KZK equation (2.30) yields equations for the

primary and secondary sound fields that are identical to (2.33) and (2.34). Therefore, (2.35)
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and (2.36) remain valid integral solutions for the fundamental and second harmonic frequencies

within the two tone pressure field. Solutions can be found for the sum and difference frequencies

by, again, integrating over the product of the acoustic driving source and appropriate Green’s

function producing a similar solution as for the second harmonic in (2.36), where the second-

order field subscript ± denotes the choice between the sum and difference frequencies. Thus,

the integral solution can be found as

q2±(r, z) = ±πβk±
ρ0c20

∫ z

0

∫ ∞

0
q11(r

′, z′)q∗12(r
′, z′)G±(r, z|r′, z′)r′dr′dz′, (2.56)

where k± = ω±/c0 is the wavenumber determined by the selection of the sum or difference

frequency (ω± = ω1 ± ω2), the superscript ∗ indicates the complex conjugate taken only for

the calculation of the difference frequency, nk and αn in (2.38) are replaced with k± and α±,

respectively, for the Green’s function G±, and the driving source q21 in (2.36) is replaced with

the interacting two tone primary field q11q12.

To determine solutions to the integral equation for the sum and difference frequencies (2.56),

expressions for the two tone primary sound field must first be ascertained. Again, these solutions

are dependent upon the type of acoustic source radiating the sound fields and their correspond-

ing source function. Given a Gaussian source, the source functions for the two tone primary

field are

q11(r, 0) = p01 exp
(
−(r/a)2

)
, q12(r, 0) = p02 exp

(
−(r/a)2

)
. (2.57)

where p0n is the peak pressure amplitude for each of the fundamental frequencies fn, n = 1, 2.

The source functions in (2.57) yield the primary sound fields, found using (2.35), for each tone

as

q11(r, z) =
p01e

−α11z

1− ȷz/z01
exp

(
− (r/a)2

1− ȷz/z01

)
, q12(r, z) =

p02e
−α12z

1− ȷz/z02
exp

(
− (r/a)2

1− ȷz/z02

)
,

(2.58)

where kn, z0n, and α1n are the wavenumber, limit between the near- and far-field, and atten-

uation coefficient for the fundamental frequencies fn, n = 1, 2. Substituting (2.58) into (2.56),

the solution for the sum and difference frequencies generated from a Gaussian source can be

written [41]

q2±(r, z) =
ȷβk2±z01z02p01p02

2ρ0c20f±
exp

(
−
k2±r

2

2f±

)
×
[
E1

(
k1k2(z01 ∓ z02)

2k2±r
2

2f±(g± ∓ ȷf±k±z)

)
− E1

(
k1k2(z01 ∓ z02)

2k2±r
2

2f±g±

)]
(2.59)

where f±(z) = k1z01+k2z02−ȷk±z, and g±(z) = k2±z01z02−ȷ(k2z01+k1z02)k±z. On the acoustic
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axis, the series expansion for the exponential integral functions in (2.59) can be utilized to

simplify the expression to

q2±(0, z) =
ȷβk2±z01z02p01p02

2ρ0c20f±
ln (1∓ ȷk±zf±/g±) . (2.60)

Whereas (2.59) is derived assuming a single Gaussian source is simultaneously generating both

fundamental frequencies, a similar result was obtained by Darvennes and Hamilton [30] using

two noncollinear Gaussian sources with intersecting sound beams operating at unique frequen-

cies.

The development of closed form solutions to the sum and difference frequencies generated

from a circular piston requires similar approximations to be made as the development of the

second harmonic in Section 2.2.1. To ease in the derivation, the analysis here will be restricted

to the difference frequency solely. Considering only far-field conditions and that the circular

piston is radiating collimated planes waves, closed form solutions to the primary sound fields

can be expressed as

q11(r, z) = p01H(a− r)eα11z, q12(r, z) = p02H(a− r)eα12z. (2.61)

Under the far-field approximation and since the nonlinear interaction of the fields is primarily

in the near-field, the axial component in the Green’s function term (z− z′)−1J0(kDrr
′/(z− z′))

can be simplified to z−1J0(kDrr
′/z) and, therefore, the solution for the difference frequency

generated from a circular piston source can be written [41]

q2D(θ, z) ≃ −
ȷp01p02βk

2
Da

2

4ρ0c20αT

e−αDz

z
DW (θ)DA(θ) exp

(
−1

2ȷkDz tan
2 θ
)
, (2.62)

where αT = α11 + α12 − αD and the Westervelt directivity DW (θ) [45] and aperture factor

DA(θ) [64] are given by

DW (θ) =
1

1 + ȷ(kD/2αT ) tan2 θ
, (2.63)

DA(θ) =
2J1(kDa tan θ)

kDa tan θ
. (2.64)

The Westervelt directivity accounts for the directionality gained by the end-fire effect of the

parametric array while the aperture factor considers the directivity of a virtual source directly

generating an acoustic wave at the difference frequency. Additionally, it can be seen that the

amplitude of the difference frequency along the axis of propagation is proportional to the

effective length of the parametric array, La = α−1
T .
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While (2.62) has a convenient closed form solution describing the difference frequency, the

assumptions required to enable the development of the solution dramatically limit its applica-

bility. Therefore, much effort has been put into finding alternative methods to determine the

radiation pattern of the difference frequency [26–36, 65], commonly done by implementing nu-

merical integration techniques to directly solve (2.56). This was the procedure implemented by

Garrett et al. [27] and Muir and Willette [65], both of which developed primary sound field solu-

tions for circular piston sources and calculated the difference frequency in the far-field through

direct numerical evaluation of (2.56) for comparison with experimental results. Less effort has

been put into determining the radiation of the sum frequency, however, similar analytical com-

plications are encountered in the development of the sum frequency solutions. Analogous to the

methods taken to solve for the difference frequency, Berntsen et al. [26] solved (2.56) directly

for the second harmonic and sum frequency for comparison with measurements.

As a means of avoiding the restrictions imposed by assumptions made in alternate methods

or using less efficient numerical integration techniques, Ding [17,18] was able to develop closed

form solutions for the sum and difference frequencies radiated from a circular piston source

through the implementation of the MGB expansion model. In a similar derivation as was per-

formed for the second harmonic using the MGB expansion model, the primary sound fields can

be expressed as

q11(ξ, η) = p01

N∑
n=1

An

1 + ȷBlnη
exp

(
− lBlnξ

2

1 + ȷBlnη

)
,

q12(ξ, η) = p02

N∑
j=1

Aj

1 + ȷBmjη
exp

(
− mBmjξ

2

1 + ȷBmjη

)
, (2.65)

where l = k1/k0 andm = k2/k0 are the wavenumbers of the fundamental frequencies normalized

to the mean of the two fundamental frequencies k0 = (k1 + k2)/2 and Bln = Bn/l and Bmj =

Bj/m are the normalized beam waist coefficients. The limit between the near- and far-field is also

redefined to the mean of the primary frequencies as z0 = 1
2k0a

2. Normalizing the wavenumber

in the Green’s function, nk = l+m, and substituting (2.65) into (2.56), the simplified solution

for the sum and difference frequencies can be written [17]

q2±(ξ, η) = − βp01p02k
2
0a

2(l +m)2

4ρ0c20

N∑
n=1

N∑
j=1

AnAj

r1
exp

(
−s1ξ

2

r1

)

×
[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
, (2.66)
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where

r1 = (lBj +mBn) + ȷ(l +m)ηBnBj , (2.67a)

r2 = (lBn +mBj)η − ȷ(l +m), (2.67b)

s1 = (l +m)2BnBj , (2.67c)

s2 = −ȷ(l +m)lm(Bn −Bj)
2. (2.67d)

and the selection of the sum or difference frequency defines the normalized wavenumbers (i.e.,

l = k1/k0 and m = ±k2/k0 for the sum and difference frequencies, respectively). As with

the second harmonic, (2.66) can be simplified along the acoustic axis by employing the series

expansion of the exponential integral function,

q2±(0, η) = − βp01p02k
2
0a

2(l +m)2

4ρ0c20

N∑
n=1

N∑
j=1

AnAj

r1
ln

(
1 +

r1
r2
η

)
. (2.68)

When the frequencies of the primary fields are equivalent denoting the second harmonic (i.e.,

k1 = k2 so that l = m), (2.66) simplifies to (2.50). As was the case for the second harmonic,

the MGB expansion model produces a closed form solution for the scattered sound fields gen-

erated from a circular piston that is valid under the quasilinear approximation with no further

restrictions. Fig. 2.4 shows the secondary sound fields produced using the MGB expansion

equations (2.50) and (2.66) to model the radiated sound fields found in [26], [27], [16], and [17],

and are reproduced here to verify the validity of the MGB expansion model to accurately de-

termine the radiation patterns of the second-order scattered sound fields. In these results, the

acoustic waves are transmitted through water and the parameter values are ρ0 = 995.8 kg/m3,

c0 = 1497.7 m/s, β = 3.59, a1 = 0.87 m, a2 = 0.83 m, f1 = 16 kHz, and f2 = 11 kHz

(f1 = 15 kHz and f2 = 12 kHz for the difference frequency). Fig. 2.4a describes the pressure

amplitude on the acoustic axis for the second-order sound fields and Figs. 2.4b–2.4d show the

normalized pressure amplitudes on various planes normal to the axis of propagation for the

second harmonic, sum, and difference frequencies, respectively.

Westervelt’s discovery of the parametric array, and the subsequent investigations into mod-

eling the generation of the difference frequency, has prompted a vast amount of interest in the

generation of highly directional audio. Yoneyama et al. [21] was the first to apply the concept

of the parametric array in the development of a practical loudspeaker design and, since then,

the highly directional loudspeaker has garnered attention in a variety of applications. For use in

detection schemes, Haupt [66] investigated the detection of buried landmines by remotely ex-

citing the landmine with the parametric array and using a laser Doppler vibrometer to measure

the resultant response. Use of the parametric array has also grown in popularity in the fields of
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Figure 2.4: Normalized pressure amplitudes of the second-order sound field distributions (a)
on the acoustic axis of the harmonic, sum, and difference frequencies where Ai = πa2 is the
area of the source for the ith primary frequency and at various distances from the source for
(b) the second harmonic, (c) sum frequency, and (d) difference frequency as described in [16]
and [17].

sound localization and active noise control as the highly directional beam produced by the array

is ideal in controlling small regions of sound [67–72]. Ji et al. [67] studied the use of intersecting

parametric beams to generate localized regions of sound and Shi and Gan [68] continued that

investigation by discussing its use as a component of an audio system for gaming and immersive

virtual reality simulations. Conversely, Tanaka and Tanaka [69, 70] investigated the use of the

parametric array in the field of active noise control to generate localized cancellation regions.

More recently, the parametric array has be investigated as a new method for delivering sound
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Figure 2.5: Frequency spectrum for the interacting primary (f1 and f2) and secondary (2f2
and fD = f1−f2) sound fields with the resultant third-order fields (fL = (2f2−f1)+(f2−fD)).

to individualized users of mobile phones and multimedia devices [73–75].

Primarily, research on the nonlinear acoustic properties that produce the scattering of sound

by sound and the parametric array have focused on the second-order effects, ignoring third- and

higher-order nonlinear processes. However, recent works by Garner and Steer [38, 39, 76] have

shown that a third-order parametric array can be developed that offer advantages in directivity

and sidelobe power over the more common second-order parametric array. Rather than using two

primary sound fields close in frequency to produce a second-order difference tone in the audio

frequency range, the third-order parametric array is generated from two ultrasonic primary

sound fields distantly spaced so that one primary frequency is roughly twice that of the other

(2f2 & f1) resulting in a third-order intermodulation product in the audio frequency range, as

illustrated in Fig. 2.5. Using a cascaded second-order approach and the concept of quadratic

nonlinearity, the third-order sound fields are generated through the nonlinear interaction of the

primary field with the secondary field during propagation to produce the third harmonics, 3f1

and 3f2, and the upper and lower third-order intermodulation (IM3) products, fU = 2f1 − f2

and fL = 2f2 − f1, respectively, along with several other fields that will be ignored in this

discussion.

The sound pressure field p in (2.31) and (2.53) can, therefore, be expanded to incorporate

the third-order sound fields as

p =
2∑

i=1

p1i +
∑
ς

p2ς +
∑
ζ

p3ζ

= p11 + p12 + p21 + p22 + p2S + p2D + p31 + p32 + p3U + p3L, (2.69)

where p1i and p2ς indicate the first- and second-order sound fields, as previously defined, and

p3ζ indicates the third-order sound fields. Similarly to its use in identifying the second-order

scattered fields, the subscript ‘ζ’ specifies the choice of one of the two third harmonics, upper,
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and lower IM3 tones, ζ = 1, 2, U, or L, respectively. The third-order contribution to the two

tone pressure field given by (2.54) and (2.55) can then be written

p3(r, z, τ) = q31(r, z, τ)e
ȷ3ω1τ + q32(r, z, τ)e

ȷ3ω2τ + q3U (r, z, τ)e
ȷωU τ + q3L(r, z, τ)e

ȷωLτ . (2.70)

Under the cascaded second-order approach, (2.69) and (2.70) are substituted into the KZK

equation (2.30) to yield the third-order quasilinear equation for propagation of the tertiary

sound fields, written as

∂p3
∂z

+
ȷ

8k
∇2

⊥p3 + α3p3 =
βk

2ρ0c20
(p1 + p2)

2, (2.71)

where the source contributions for the third-order sound fields can be found by expanding the

quadratic driving source (p1+p2)
2 in the right hand term of (2.71) to determine the interacting

primary and secondary fields. For the third-order fields of interest, these driving sources are

(p1 + p2)
2 = [q21q11] + [q22q12] + [q21q12 + q11q2D] + [q22q11 + q12q2D] + . . . (2.72)

where the brackets ‘[ ]’ indicate the distinct driving sources for the third harmonics 3f1 and 3f2,

the IM3 upper fU , and the IM3 lower fL frequencies, respectively. It is worth bringing attention

to the fact that the IM3 products are determined by two independent nonlinear interactions

as each of the interactions yield a result at the IM3 frequency of interest. As with the primary

and secondary sound fields, integrating over the product of the appropriate acoustic driving

source and Green’s function, solutions for the third harmonic and IM3 upper, and IM3 lower

frequencies can be found as

q3i(r, z) =
4πβk23i
3ρ0c20

∫ z

0

∫ ∞

0

[
q1i(r

′, z′)
]3
G3(r, z | r′, z′)r′dr′dz′, (2.73)

q3U (r, z) =
4πβk2U
3ρ0c20

∫ z

0

∫ ∞

0

[
q21(r

′, z′)q∗12(r
′, z′) + q11(r

′, z′)q2D(r
′, z′)

]
G3U (r, z | r′, z′)r′dr′dz′,

(2.74)

q3L(r, z) =
4πβk2L
3ρ0c20

∫ z

0

∫ ∞

0

[
q22(r

′, z′)q∗11(r
′, z′) + q12(r

′, z′)q∗2D(r
′, z′)

]
G3L(r, z | r′, z′)r′dr′dz′.

(2.75)

Solutions to the third-order integral equations are not easily obtained and, similar to the pro-

cedure taken with the second-order sound fields, direct numerical integration of the KZK equa-

tion is often used to determine these fields. Chapter 3 explores methods for finding solutions to

(2.73)–(2.75) and efficiently determining the radiation patterns of the third-order sound fields.
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2.3 Computation of the Equations of Nonlinear Acoustics

Advancements in the fields of nonlinear acoustics and audio engineering [77–84] have improved

the ability to generate and manipulate sound fields making the use of sound an intriguing option

in a variety of applications, including radar [85, 86], detection [2, 3, 7, 9], and object character-

ization [11, 87, 88]. Practical implementation in many of these applications requires real-time

analysis of the sound fields, however, as discussed in Section 2.2.1, solutions to the KZK equation

and other governing equations of nonlinear acoustics are commonly found through numerical

techniques necessitating substantial computation, thus, preventing real-time utilization. Chap-

ters 3 and 4 address this issue by presenting computationally efficient methods of determining

higher-order sound fields by employing expansion and transformation techniques that yield

sound field integrals with fewer dimensions and smaller mesh sizing. This section explores com-

monly employed methods for solving the KZK equation and determining the radiation patterns

of higher-order sound fields.

2.3.1 Direct Numerical Evaluation of the KZK Equation

Convenient, closed form solutions to the KZK equation (2.30) are typically unobtainable with-

out the use of assumptions that limit their validity; therefore, a variety of methods have been

developed to solve the KZK equation directly. The most common of these methods was devel-

oped at the Department of Mathematics, University of Bergen [89–91] where a solution to the

KZK equation was found in the form of a Fourier series, expressed as

p(ξ, η) =

∞∑
n=1

(gn(ξ, η) sinnτ + hn(ξ, η) cosnτ) , (2.76)

where n is the harmonic number, τ is the retarded time, and ξ and η are the normalized spatial

coordinates. Thus, from (2.30) and (2.76), a set of coupled partial differential equations can be

found for gn and hn as

∂gn
∂η

= − n2αr0gn +
1

4n(1 + η)2
∇2

⊥hn

+
nr0

2lD(1 + η)

1

2

n−1∑
p=1

(gpgn−p − hphn−p)−
∞∑

p=n+1

(gp−ngp + hp−nhp)

 , (2.77)

∂hn
∂η

= − n2αr0hn − 1

4n(1 + η)2
∇2

⊥gn

+
nr0

2lD(1 + η)

1

2

n−1∑
p=1

(hpgn−p + gphn−p) +
∞∑

p=n+1

(hp−ngp + gp−nhp)

 , (2.78)
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where n = 1, 2, . . . and lD is the plane wave shock formation distance. The infinite series

on the right hand side of (2.77) and (2.78) represent the physical flow of energy from the

lower harmonics to the higher harmonics. To numerically integrate these equations, an implicit

backward finite difference method is utilized where the infinite series are truncated for practical

implementation. The effect of truncating the series is that the energy flow from the lower

harmonics stops at the final harmonic in the series and, therefore, can result in a much larger

amplitude for the final harmonic than expected. Thus, restrictions must be imposed on the

numerical methods such that one harmonic does not exceed the amplitude of the next lower

harmonic. The number of harmonics required to generate a stable solution can vary based

upon the desired error bounds and acoustic source being modeled; thus, many works using this

technique often repeat results with a varied number of total harmonics used in the infinite series.

This approach was first implemented to compute the near-field of an acoustic source [24, 34]

and finite amplitude wave propagation [92]. It was then extended to determine the nonlinear

effects in the far-field of an acoustic source [25] as well as more complicated sound fields, such

as propagation from a bifrequency sound source [93].

2.3.2 Calculation of Multidimensional Integrals

Direct numerical evaluation of the KZK equation yields highly accurate results given that the

errors introduced by the truncated infinite series remain low. However, the implicit backward

finite difference method and other numerical methods of this nature are not the most efficient

and can take a considerable amount of time to generate a solution that is stable. Therefore,

continued research efforts have gone into finding simplified solutions of the sound fields. The

most straightforward simplification has come from the derivation of multidimensional integral

solutions from the KZK equation that describe the primary sound field, (2.35), secondary sound

field, (2.36) and (2.56), and tertiary sound field, (2.73)–(2.75), radiated from an acoustic source.

As discussed in Sections 2.2.1 and 2.2.2, closed form solutions of these integrals can be found

under the appropriate assumptions but this limits the range of validity of the results; thus, a

variety of methods have been employed to numerically compute the multidimensional integrals.

A popularly applied method to solve multidimensional integrals was developed by Berntsen

et al. [94–98] that utilizes an adaptive quadrature integration routine, named DCUHRE, that

splits the integral regions into increasingly small hyperrectangular segments until all regions

can be solved within suitable error and stability bounds. This method has been exploited by
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many works to solve for the second harmonic [26]

q2(x, z) = − ȷβk31
2πzρ0c20

∫ ∞

0

∫ ∞

0

∫ π

0

[
E1

(
ȷk1
4z

(
x21 + x22 − 2x1x2 cosϕ

))]∗
J0

(
xk1G

1/2

z

)

× exp

(
ȷk1
4z

(
4x2 +G

))
q1(0, x1)q

∗
2(0, x2)x1x2dϕdx1dx2, (2.79)

where G = x21 + x22 + 2x1x2 cosϕ as well as the sum and difference frequencies [27,29,55]

q±(x, z) = − ȷβk1k2k±
2πzρ0c20

∫ ∞

0

∫ ∞

0

∫ π

0
E1

(
ȷk1k2
2k±z

(
x21 + x22 − 2x1x2 cosϕ

))
J0

(
xF 1/2

z

)

× exp

(
ȷ

2k±z

(
(k±x)

2 + F
))

q1(0, x1)q
∗
2(0, x2)x1x2dϕdx1dx2, (2.80)

where F = (k1x1)
2 + (k2x2)

2 ± 2k1x1k2x2 cosϕ and the complex conjugate is taken of the

exponential integral instead of q2(0, x2) for the sum frequency.

A common issue with solving the multidimensional integrals in acoustics is that the integrand

is often highly oscillatory in nature, containing the product of functions that oscillate rapidly

with different speeds, as seen in (2.79) and (2.80). Automated adaptive routines, such as those

developed by Berntsen et al., often address the oscillatory integrand by using integration rules

with higher degree to minimize the number of evaluations required to find a stable solution,

but this increases the computational complexity. An alternative approach was developed by

Leble et al. [99–101] to solve the multidimensional integrals specifically when they contain

highly oscillatory integrands. By rearranging the second-order integral solution to separate the

integration terms as best as possible, the integral becomes

q2(ξ, η) = − β(ka)2

ρ0c20
e−α2η

∫ η

0
exp

(
− 2ȷξ2

η − η′
+ α2r0η

′
)

dη′

η − η′

×
∫ ∞

0
q21(ξ, η) exp

(
− 2ȷξ

′2

η − η′

)
J0

(
4ξξ′

η − η′

)
ξ′dξ′. (2.81)

Focusing on the first of the two integrals in (2.81) so as to exclude the influence of the source

q21(ξ, η), a special quadrature formula can be utilized [101],

q =

∫ b

a
f(x)eg(x)dx =

N∑
k=1

∫ xk+h/2

xk−h/2
f(x)eg(x)dx ≈

N∑
k=1

Bk, (2.82)

Bk =

f(xk)eg(xk)h, if | g′(xk)h |≤ 0.1,

f(xk)e
g(xk) sinh

[
h
2g

′(xk)
]

2
g′(xk)

, if | g′(xk)h |≥ 0.1,
(2.83)
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to obtain an approximation for the integral. Repeating this quadrature formula for both inte-

grals, (2.81) can be expressed as [100]

q2(ξn, ηp) ∼= − β(ka)2

ρ0c20
e−α2r0η

×
p−1∑
k=0


feg1p,n,k

ηp−ηk
∆ηk, if | dg1p,n,k∆ηk |≤ 0.1,

feg1p,n,k

ηp−ηk
sinh

[
∆ηk
2 dg1p,n,k

]
2

dg1p,n,k
, if | dg1p,n,k∆ηk |> 0.1,

(2.84)

where

feg1p,n,k = exp

(
− 2ȷξ2n
ηp − ηk

+ α2r0ηk

)

×
∑
l

feg2p,n,k,l∆ξl, if | dg2p,k,l∆ξl |≤ 0.1,

feg2p,n,k,l sinh
[
∆ξl
2 dg2p,k,l

]
2

dg2p,k,l
, if | dg2p,k,l∆ξl |> 0.1,

(2.85)

feg2p,n,k,l = (q1(ξl, ηk))
2 ξlJ0

(
4ξnξl
ηp − ηk

)
exp

(
−

2ȷξ2l
ηp − ηk

)
, (2.86)

and

dg1p,n,k = − 2ȷξ2n
(ηp − ηk)2

+ α2r0, dg2p,k,l = − 4ȷξl
ηp − ηk

. (2.87)

For proper application of this technique, the selection of the grid parameters ηmin and ∆ηk

are critical to address the integrand oscillations. ηmin is dependent upon the source and wave

parameters under the KZK equation,

ηmin < (ka)(1/3)a/r0, (2.88)

and the step size ∆ηk must be defined such that

ηmin > −∆ηk
2

(
1−

√
1 +

2

∆ηkπ

)
. (2.89)

The expressions given by (2.84)–(2.87) offer the advantage of simple numerical implementation

over the automatic adaptive routine when dealing with rapidly oscillating functions in multidi-

mensional integrals. This is the technique that is utilized to determine the radiation patterns

of the third-order sound fields that are developed in Chapter 3.
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2.4 Acousto-Electromagnetic Scattering

Acousto-EM scattering is a physical phenomenon whereby acoustic and electromagnetic waves

interact to generate a scattered EM field, traditionally considered a Doppler spectrum produced

by the mechanical vibration of an object under the illumination of the acoustic, or seismic, wave.

In this process, the incident acoustic wave induces vibrations on the object, thereby displacing

the boundary while simultaneously modulating the object density causing the incident EM wave

to be modulated, producing the scattered EM fields. This phenomenon is commonly exploited

in sensing systems as the use of two orthogonal modalities, acoustic and electromagnetic, offers

many advantages over single mode systems that make acousto-EM sensing a highly attractive

alternative to conventional sensing systems. Primarily, these advantages appear in the ability of

the system to benefit from the combined capabilities of the individual sensing methods, relying

on one modality when the other is insufficient or obtaining a unique set of information about

the same object from each modality. For instance, acoustic- and EM-only sensing systems can

have trouble obtaining information from objects under conditions that prevent penetration of

the wave into the interior of the object or receipt of a reflected wave. For an acoustic system,

the high reflection coefficient of the majority of materials prevents the coupling of acoustic

energy into an object and, conversely for an EM system, electromagnetically lossy and metal

objects prevent EM energy from coupling into the object interior, thereby making it difficult

to obtain any information about the object in either situation. Additionally, in acoustically

saturated environments where there is a large amount of background clutter or when dealing

with acoustic shear waves where a directly reflected signal is not generated, acoustic detection

of the desired reflected signal may not be possible. However, with a hybrid acousto-EM sensing

system, information may be obtained in these scenarios where it was not previously feasible by

detecting acoustic resonances for the metallic object in the EM-only system or simply adding

EM interrogation capabilities in the acoustic-only system. Thus, with these improvements in

the effectiveness of a sensing system, acousto-EM sensing systems have received growing interest

for use in a variety of applications, such as landmine detection [1–10,102], medical imaging [11],

and structural integrity evaluation [11,88].

The idea of scattering an EM signal with an acoustic wave was originally introduced by

Brillouin [103] when he determined the interaction of a propagating EM wave with a fluctu-

ating sound source in fluids and solids would result in a Doppler shift of the EM wave. This

was later verified experimentally by Debye and Sears [104] by detecting a Doppler shift on

scattered light from acoustic waves in a liquid while discussing the importance of the Bragg

scattering condition on the results, which occurs when the EM wavelength is twice that of the

acoustic wavelength. Interacting acoustic and EM waves has since been used in radio acoustic

sounding systems (RASS) to measure meteorological conditions in the atmosphere by exploiting
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the Bragg scattering condition [105, 106]. RASS systems simultaneously transmit a spherical

acoustic wave and an EM signal that reflects off of the acoustic wave fronts when variations

occur allowing for the acoustic propagation speed to be determined and atmospheric tempera-

ture calculated. More recently, acousto-EM scattering has been proposed as an alternative to

conventional detection schemes [3–5,7, 9–11,102]. EM signals have long been used for probing,

characterizing, and identifying targets in a variety of sensing applications, including interferom-

etry [107], navigation [86], and ground penetrating radar (GPR) [108]; however, the use of EM

signals in many detection schemes, particular GPR, has been greatly limited by the typically

low contrast between the target object and the background environment. Therefore, as a means

of improving the distinction between an object and its surrounding environment, acousto-EM

sensing systems have been proposed to enhance the interrogated object contrast through me-

chanical vibration. Scott et al. [3,4] developed an acousto-EM approach to detect buried objects

by exciting the object with a seismic wave and using radio frequency (RF) antennas close to

the surface of the soil to measure the scattered EM response while the objects are under seismic

illumination. Lawrence, Buerkle, and Sarabandi [5, 7, 9–11] investigated theoretical implemen-

tations of the acousto-EM scattering by developing mathematical models for the scattered EM

fields produced by an object excited with a high power acoustic source at stand-off ranges.

Thus, Scott et al. and Lawrence, Buerkle, and Sarabandi show experimentally and theoretically

that the resultant reflected and scattered EM signals are modulated with characteristics unique

to the structure and composition of the vibrating object, thereby providing information about

the structure of the target as well as distinguishing it from clutter.

To develop a mathematical model to describe the scattering of an EM signal in an acousto-

EM sensing system, Sections 2.4.1 and 2.4.2 will discuss Doppler theory and amplitude modu-

lation, respectively, as they pertain to EM waves in the presence of vibrating structures.

2.4.1 Doppler Theory

In the conventional analysis of interacting acoustic and EM waves, the Doppler effect is solely

responsible for the resultant scattered EM fields, as the acoustic waves generate a sinusoidal

vibrational motion on an object that shifts the frequency of an RF signal. The vibrational

motion varies the distance of the object relative to the EM source which modulates the phase

of the reflected RF signal. Thus, the reflected frequency fr can be expressed as

fr = fRF

(
1− v/cRF

1 + v/cRF

)
, (2.90)

where fRF is the frequency of the transmitted RF signal, v is the velocity of the object, and cRF

is the speed of light. Using a Maclaurin series expansion and since the velocity of the object is
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typically much less than the speed of light in most radar applications (v ≪ cRF), (2.90) can be

simplified as

fr = fRF

(
1− 2v

cRF

)
. (2.91)

Therefore, given the transmitted RF signal g(t) = cosωRFt, the reflected signal s(t) can be

expressed

s(t) = cos

[
ωRFt

(
1− 2v

cRF

)]
= cos [ωRFt+ 2kRFv(t)] , (2.92)

where ωRF is the radian frequency of the transmitted RF signal with the corresponding wavenum-

ber kRF and v(t) is the velocity of the object at time t. Thus, from (2.92), it can be seen that the

vibrational motion of the object modulates the phase of the transmitted RF signal. The phase

term can be considered the change in phase over the distance between the EM source and vibrat-

ing object, therefore, the velocity can be replaced by the time-varying distance r(t) = R0+d(t),

where R0 is the distance when the object is stationary and d(t) is the vibrational displacement

of the object. For the simple case of a constant velocity, d(t) = vt, the conventional Doppler

equation in (2.92) is obtained. Considering a sinusoidal surface displacement, as would be

encountered with a vibrating object under acoustic illumination, the displacement can be ex-

pressed as d(t) = dV cos(ωV t) where dV is the vibrational displacement amplitude and ωV is

the vibration radian frequency. The reflected signal, (2.92), can then be rewritten as

s(t) = cos [ωRFt+ 2kRFdV cos(ωV t)] , (2.93)

where the 2kRFR0 phase term has been ignored as it is produced by the propagation of the

EM wave and not the vibrational motion of the object. Expanding (2.93) into its complex

exponential form and using the Jacobi-Angier expansion, the reflected signal can again be

rewritten as [109]

s(t) =

∞∑
n=1

(2π)n

n!

(
dV
λRF

)n

cos
[
(ωRF ± nωV )t± nπ

2

]
. (2.94)

Thus, the RF signal reflected from a vibrating object produces a broad frequency spectrum

containing the transmitted RF signal as well as modulation sidebands spaced at intervals of the

vibration frequency, as illustrated in Fig. 2.6.

Considerable effort has been put into understanding the scattering of an RF signal by a vi-

brating structure [110–118]. Borkar and Yang [110] developed solutions for the fields scattered by

oscillating plane and cylindrical surfaces. Kleinman and Mack [111] presented solutions account-

ing for the Doppler shift when determining the fields scattered by linearly vibrating objects.

De Zutter [112] investigated the effect of translational motion in the generation of a scattered
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Figure 2.6: Frequency spectrum of an RF signal scattered by a vibrating object with modu-
lation sidebands produced by the Doppler effect. The spectrum is centered at the frequency of
the transmitted RF signal fRF with modulation sidebands at fRF ± nfV .

RF field and Cooper [113] and Gray and Addison [117] considered the effect of nonuniform mo-

tion on the resultant EM spectrum. Van Bladel and De Zutter [114] and De Zutter [115] derived

solutions for the scattered fields from sinusoidally moving plates interrogated at normal and

oblique incidences, respectively. From these works it can be seen that sidebands in the scattered

EM spectrum resulting from a vibrating surface has traditionally been attributed solely to the

Doppler effect. This assumption that the Doppler effect is the singular physical mechanism in

which a scattered spectrum is generated has also been extended to a variety of applications in

order to account for EM scattering from vibrating objects, particularly radar [116–118].

2.4.2 Amplitude Modulation

While the scattering of an EM wave has traditionally been attributed to the Doppler effect,

which manifests as a phase modulation (PM), the modulation of an EM wave can also be pro-

duced from amplitude modulations (AM). Both modulation modes contain useful information,

however, they are commonly interpreted differently depending on the sensing system implemen-

tation and processing performed on the received signal. Historically, AM has been ignored in

the analysis of EM scattering from vibrating objects as the overall contribution to the power of

the modulation sidebands has been considerably less than the PM introduced by the Doppler

effect and often below the measurable noise floor of the system. However, advancement in ana-

log cancellation technologies has significantly improved the dynamic range of RF measurement

systems allowing for the improved detection capability of low-frequency and low-level sideband

modulation in a reflected signal [102, 119–122], thus prompting an initial re-examination of

the fundamental physical mechanisms that produce scattering of an RF signal from vibrating

objects [109]. Therefore, AM contributions due to special relativity, path loss, and radar cross
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section (RCS) were examined and reintroduced into the analysis of a scattered RF signal by a

vibrating object, as these contributions were previously considered insignificant.

The investigation into the AM of an RF signal will begin by examining the modulation

effects due to special relativity. An expression for the modulated signal can be written

s(t) = γ(t) cos(ωRFt), (2.95)

where γ(t) is the amplitude modulation term due to special relativity which can be expressed

using relativistic boundary conditions and the d’Alembertian solution [117] as

γ(t) =
1− v(t)/cRF

1 + v(t)/cRF
. (2.96)

As with the Doppler effect, the velocity of the object can be defined as a sinusoidal motion,

v(t) = dV ωV cos(ωV t), so that with the use of the Maclaurin series expansion, (2.96) can be

rewritten

γ(t) = 1 + 2

∞∑
n=1

(−1)n
(
v(t)

cRF

)n

= 1 + 2

∞∑
n=1

(−1)n
(
dV ωV

cRF

)n

[cos(ωV t)]
n . (2.97)

Using the trigonometric expansion of the cosine term in (2.97) and following the derivation

in [109] to develop the Fourier series coefficients, the amplitude modulation term can be found

to be

γ(t) = Fγ,0 +

∞∑
n=1

Fγ,n cos (nωV t) , (2.98)

where

Fγ,0 ≈ 1, Fγ,n ≈ 4

(
dV ωV

2cRF

)n

= 4πn
(
dV
λV

)n

, (2.99)

where λV = cRF/fV is the vibrational wavelength. Substituting (2.98) and (2.99) into (2.95),

the received modulated signal can be rewritten

s(t) =

[
Fγ,0 +

∞∑
n=1

Fγ,n cos (nωV t)

]
cos(ωRFt)

= Fγ,0 cos(ωRFt) +

∞∑
n=1

{
Fγ,n

2
cos [(ωRF ± nωV ) t]

}
. (2.100)

Therefore, the AM due to special relativity produces modulation sidebands at the same fre-

quencies as the Doppler PM. Additionally, the amplitude ratio of the contribution from special

relativity to that of the Doppler effect for the lowest-order modulation sideband is the ratio of

the RF to the vibration frequency, indicating that the power contribution from special relativity
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remains negligible in remote sensing applications where the RF frequency is much greater than

the vibrational frequency.

The contribution of the far-field path loss on the modulation of an RF signal is additionally

considered since the RF power on the object decreases with distance due to the spherical

spreading of the wave, a critical component in acousto-EM sensing systems as they interrogate

objects at stand-off ranges. As an object vibrates, the path distance between the EM source and

object will vary introducing a modulation on the signal; thus, an expression for the modulated

signal when considering path loss is

s(t) = APL(t) cos (ωRFt) , (2.101)

where, when surface displacement of the object is sinusoidal d(t) = dV cos(ωV t), the path loss

AM can be defined as

APL(t) ∝
1

[R0 − d(t)]2
=

1

[1−B cos (ωV t)]
2 , (2.102)

where B = dV /R0 is the distance-normalized displacement amplitude. Again, using the Maclau-

rin series expansion and developing the Fourier series coefficients, (2.102) becomes [109]

APL(t) =

∞∑
n=0

(n+ 1) [B cos (ωV t)]
n = FPL,0 +

∞∑
n=1

FPL,n cos (nωV t) , (2.103)

where

FPL,0 ≈ 1, FPL,n ≈ 2 (n+ 1)

(
B

2

)n

=

(
2(n+ 1)

2n

)(
dV
R0

)n

. (2.104)

Substituting (2.103) and (2.104) into (2.101), the received modulated signal can be rewritten

s(t) =

[
FPL,0 +

∞∑
n=1

FPL,n cos (nωV t)

]
cos (ωRFt)

= FPL,0 cos (ωRF t) +

∞∑
n=1

{
FPL,n

2
cos [(ωRF ± nωV ) t]

}
. (2.105)

Again, the far-field path loss AM produces modulation sidebands at the same frequencies as the

Doppler PM. Similar to AM due to special relativity, the power contribution will be much less

than Doppler PM, however, unlike the other modulation types, path loss AM is independent of

the RF wavelength.

Common examination of a vibrating object assumes only linear motion as to simplify the

analysis, however, in practice, additional modes of motion are present, thereby requiring extra

investigation into the effects of the physical geometry on the scattering of an EM wave. These
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effects are typically accounted for by using RCS, which for simpler structures can have relatively

simple approximations [123,124]. An expression for an RCS modulated signal can be written

s(t) = ARCS(t) cos (ωRFt) , (2.106)

For the case of a flat, rectangular plate, the RCS, σ, expression is

σplate =
4πA2

λ2RF

cos2 θ

[
sin (kRFa sin θ)

kRFa sin θ

]2
, (2.107)

where A is the are of the plate, a is the major dimension of the plate, and θ is the angle between

the normal area vector of the plate and the propagation vector of the incident wave. Therefore,

a plate that rotates in a rocking motion around its major axis will generate modulations as the

angle θ changes over time. For a vibrational rocking motion where the angle varies sinusoidally,

θ = φ sin(ωV t), the RCS can be written

σplate ∝ cos2 (φ sinωV t)

[
sin (kRFa sin (φ sinωV t))

kRFa sin (φ sinωV t)

]2
, (2.108)

where φ is the rotational amplitude of the vibration. The received modulated signal can then

by found by inserting (2.108) into the radar equation [125] yielding

ARCS(t) = cos (φ sinωV t)

[
sin (kRFa sin (φ sinωV t))

kRFa sin (φ sinωV t)

]
. (2.109)

Similar to the approaches taken with AM due to special relativity and path loss, the expression

for the received modulated signal is found by developing the Fourier series coefficients for RCS.

Using the Jacobi-Anger expansion, (2.109) becomes [109]

ARCS(t) =
2

kRFaφ

∞∑
m=0

J2m+1(kRFaφ)
sin [(2m+ 1)ωV t]

sinωV t

=
2

kRFaφ

∞∑
m=0

J2m+1(kRFaφ)
4

kRFaφ

∞∑
n=1

[ ∞∑
m=0

Jn+2m+1(kRFaφ)

]
cos(2nωV t)

= FRCS,0 +

∞∑
n=1

FRCS,n cos (2nωV t) , (2.110)

where

FRCS,0 ≈ 1, FRCS,n ≈ 2

(n+ 1)!

(
kRFaφ

2

)n

=
2(2π)n

(n+ 1)!

(
aφ/2

λRF

)n

. (2.111)
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Thus, substituting (2.110) and (2.111) in (2.106), the received modulated signal can be written

s(t) =

[
FRCS,0 +

∞∑
n=1

FRCS,n cos (2nωV t)

]
cos (ωRFt)

= FRCS,0 cos (ωRFt) +

∞∑
n=1

{
FRCS,n

2
cos [(ωRF ± 2nωV ) t]

}
. (2.112)

Unlike the previous modulation types, the AM due to RCS produces only even modulation

sidebands. Additionally, (2.112) has a similar form to that of Doppler PM as the plate linear

edge deflection, aφ/2, takes the place of the vibrational displacement, dV , in (2.94).

A comparison of the phase and amplitude modulations will be made in Chapter 5 as addi-

tional modulation effects caused by the propagation of a high powered acoustic wave through

a medium are explored.

2.5 High Dynamic Range Nonlinear Measurement

Acousto-EM sensing systems offer many advantages over conventional remote sensing systems,

however, a major issue is that they suffer from difficulty in measurement as acousto-EM scat-

tering produces very low-level modulation sidebands close in frequency to the transmitted EM

signal. This is a problem commonly encountered in modern day nonlinear measurement sys-

tems as noise and distortion on a signal, particularly from strongly nonlinear devices such as

amplifiers, often appear in similar low-level, low-frequency conditions. The dynamic range of a

system refers to its ability to detect these small signals in the presence of large signals and has

received a significant amount of research as the desire to distinguish signals from background

clutter and characterize signals that were previously undetectable has increased. Though there

are several ways of defining dynamic range, depending upon the application, for the purposes of

detecting the modulation sidebands produced within an acousto-EM sensing system, dynamic

range is defined as the ratio of the measured input signal power to the minimum discernible

signal at a given frequency offset from the input signal carrier. The dynamic range of a mea-

surement system is critical in the detection of acousto-EM scattering as the interaction between

the acoustic and EM waves is weakly nonlinear, requiring the use of high power signals to gen-

erate a detectable response. Thus, since the modulation sidebands will have significantly less

power than the transmitted carrier signal and the frequency of the sidebands is dependent upon

the vibration frequency, typically in the low kilohertz frequency range, a system with a high

dynamic range is essential for practical implementation of an acousto-EM sensing system.

Conventional nonlinear measurement systems employ receivers, such as spectrum analyzers,

that achieve dynamic range through designs that make them very linear, however, this approach
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is unable to yield the dynamic ranges required to measure the low-level modulations produced

by acousto-EM scattering, which are generally more than 100 dB below the received carrier

signal. Therefore, to enable the measurement of small signals, the most common and successful

approaches have attempted to eliminate the high power transmitted signal, routinely performed

by implementing filtering and analog cancellation techniques to effectively lower the level of the

minimum discernible signal and increase the system’s dynamic range.

Filtering has been the long-established method for attempting to remove the high power

signal from the measured response and is the most commonly implemented approach in com-

mercially available nonlinear measurement systems. Analog filters are designed to operate across

specific bandwidths where content at particular frequencies is passed through or strongly at-

tenuated, with these frequency ranges termed passband and stopband, respectively. To remove

the undesired high power signal, nonlinear measurement systems use bandstop filters where

spectral content within a precise frequency range is attenuated while frequencies outside of

this range remain unchanged, thereby lowering the power level of the measured input signal

which, in turn, lowers the minimum discernible signal level. Ideal filters assume a direct tran-

sition between the bands at a single frequency but in real filters this transition takes place

over a finite frequency range where there is a roll-off in attenuation, known as the filter skirt.

Therefore, the use of filters can be inadequate if the small signals are close in frequency to the

high power signal, locating them within the filter skirt and, thus, inaccurately attenuating the

signals. To avoid these inaccuracies, a bandstop filter with a very narrow stopband and a steep

filter skirt is required; however, in practical radar applications, this necessitates a filter designed

with a quality factor higher than physically achievable, particularly in acousto-EM sensing ap-

plications where the small signals will be within a few kilohertz of the carrier signal. Thus, as

an alternative approach for making high dynamic range nonlinear measurements, feedforward

analog cancellation techniques have been developed to address the limitations of filter based

measurement systems.

2.5.1 Analog Cancellation

Rather than attenuate an entire range of frequencies, as done with filtering based systems,

feedforward analog cancellation eliminates only the high power input signal by combining it with

a signal that has an equal amplitude but opposite phase resulting in a reduction in the power

level of the measured input signal, thereby lowering the minimum discernible signal level. To

implement this technique, the high power input signal is split and independently passed through

the nonlinearity as well as amplitude and phase controls before being recombined to achieve

cancellation, as shown in Fig. 2.7. The small signals are generated solely by the nonlinearity,

therefore the feedforward signal that passed through the amplitude and phase controls will only

44



Figure 2.7: Feedforward analog cancellation implementation block diagram for use in high
dynamic range nonlinear measurement systems.

effect the high power input signal upon recombination, thus improving the effective dynamic

range of the system while leaving the small signals unaltered.

To achieve high levels of cancellation, accurate control of the amplitude and phase of the

feedforward signal is critical as the the maximum achievable cancellation, given by (2.113), is

determined by the ratio of the amplitudes of the feedforward and measurement signals and

the discrepancy of the phase difference between the feedforward and measured signals and two

perfectly anti-phased signals,

CA,dB = −10 log
[
1 + ϵ2α − 2ϵα cos(ϵϕ)

]
, (2.113)

where CA,dB is the achievable cancellation, ϵα is the amplitude error, and ϵϕ is the phase error.

Manual control of the amplitude and phase of the feedforward signal yields unsatisfactory re-

sults as amplitude and phase errors must be less than 0.1 dB and 0.6◦, respectively, to achieve

a cancellation of only 40 dB; therefore, measurement systems using analog cancellation typi-

cally automate control of the feedforward signal. Historically, automated control was performed

with derivative-based iterative techniques that required a large number of iterations to achieve

reasonable levels of cancellation, however, recent advancements have developed a predictive

algorithm that determines the appropriate settings at each iteration of the system and per-

forms calibrations during the cancellation process to better capture the nonlinear effects during

measurement, thus enabling over 70 dB of cancellation to be achieved [109,119,120,126].

By achieving such high levels of cancellation, the high dynamic range nonlinear measure-

ment system developed by Wilkerson, Wetherington, and Steer [109, 119, 120, 126] is ideal for

the measurement and characterization of acousto-EM scattering and Chapter 5 discusses its

utilization as part of an acousto-EM sensing system employed to experimentally investigate the

effect of medium fluctuations generated by a propagating acoustic wave on the scattering of an
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EM signal.

2.6 Summary

Acousto-EM sensing is a hybrid sensing scheme that utilizes two orthogonal sensing modalities,

acoustic and EM, to interrogate objects at distance, thereby providing the ability to ascertain

unique information not attainable by conventional single modality remote sensing schemes.

Practical implementation of acousto-EM sensing has been unattainable, however, as insuffi-

cient modeling capabilities for the nonlinear propagation of acoustic waves and the inability

to measure the effects of the nonlinear interaction between acoustic and EM waves at stand

off distances have limited the development of the sensing scheme. This chapter reviewed the

current state of acousto-EM sensing by investigating recent theoretical and experimental devel-

opments pertaining to acoustically-induced scattering of an EM wave as well as examining the

latest advancements in the generation and modeling of sound waves in nonlinear acoustics.

The KZK nonlinear parabolic wave equation is derived from the general motion of a fluid

and is established as the fundamental equation of nonlinear acoustics, describing the propa-

gation of an acoustic wave through a nonlinear medium. Common acoustic sources were then

investigated with solutions to the KZK equation found for the primary and secondary sound

fields radiated from each source. A review of several common numerical techniques used to solve

the KZK equation, and the associated multiple field integrals, is also given since closed form

solutions to the KZK equation can only be found under very limited conditions. The analysis

was then extended to include the scattering of sound by sound whereby the acoustic field con-

tains two or more interacting sound waves generated from collinear and noncollinear sources to

produce second-order scattered acoustic fields. Primarily, previous research has focused on the

parametric array, a special case of scattering of sound by sound, therefore, the development and

application of these virtual sound sources was also discussed. The analytical models developed

in Chapters 3 and 4 determine the scattered sound fields using methods that are computa-

tionally more efficient than the present theory. Chapter 3 extends the multi-Gaussian beam

expansion technique to model the third-order scattered sound fields produced by the scatter-

ing of sound by sound. Chapter 4 implements a near-to-far-field transformation technique that

enables far-field radiation patterns of the second-order scattered sound fields to be determined

from data collected in the near-field.

Acousto-EM scattering is the physical phenomenon describing the scattering of an EM sig-

nal due to the nonlinear interaction with an acoustic wave. Traditionally, the scattering has

been attributed solely to phase modulations introduced by the Doppler effect, however, recent

investigations, prompted by advancements in nonlinear measurement systems, have shown that

amplitude modulations due to special relativity, path loss, and radar cross section also con-
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tribute to the scattering process. High dynamic range nonlinear measurement systems using

feedforward analog cancellation techniques are critical in enabling the detection of these effects,

as the modulations are quite small compared to the high power stimulus used in the sensing

scheme. Chapter 5 continues this examination into the fundamental mechanisms that result in

the scattering of an EM signal by exploring the effect acoustically-induced medium fluctuations

have on an EM signal.
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Chapter 3

Computationally Efficient Modeling

of Third-Order Scattering of Sound

by Sound

3.1 Introduction

Nonlinear interactions of high frequency acoustic signals in air produce a scattered sound field

that radiates energy into the harmonics and the sum and difference frequencies of the primary

interacting signals. The scattered sound fields can have very high directivity [39, 65] and are

used in sound projection [21], acoustic radar [22], and sonar [23]. The source of both scattering

and directivity is the nonlinearity of the acoustic medium and calculations of the scattered field

using traditional methods is computationally intensive preventing the use of these calculations

in real time. Such calculations are required to characterize the sound beam produced as the

sound pressure level and the medium’s characteristics such as density and, in the case of air,

humidity change.

Westervelt initially described the scattering of sound by sound using two independent acous-

tic waves [19] and since then the modeling of this phenomenon has received much attention.

As a one-dimensional manipulation of the Westervelt equation, the Burgers equation [46] ac-

counts for the nonlinearity and dissipation of a plane wave as it propagates through a medium.

By modifying the Burgers equation, Khokhlov, Zabolotskaya, and Kuznetsov incorporated the

contributions of diffraction and absorption along with the nonlinearity and dissipation of the

medium to produce the fully nonlinear wave equation known as the Khokhlov-Zabolotskaya-

Kuznetsov (KZK) equation [12, 13]. This equation accurately represents the nonlinear prop-

agation of a finite-amplitude sound beam generated by an arbitrarily shaped source and has

become instrumental in modeling the nonlinear scattering of sound, with particular focus on
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the development and application of ultrasonic parametric arrays [39,41,127].

With a well-defined expression describing nonlinear acoustic propagation, considerable ef-

fort has been put forth to expand upon Westervelt’s original idea of the parametric array,

in which a highly directional sound beam is generated from a two-tone primary field consist-

ing of perfectly collimated, planar waves such that the resultant intermodulation products are

continuously pumped and propagate in the same direction as the primary fields [45]. Tjotta

and Tjotta [37] considered spherically spreading primary sound beams from collinear sources

and developed asymptotic solutions of the generated sound, including contributions from the

near-field. Aanonsen et al. [24] and Hamilton et al. [25] developed expressions for the primary

and harmonic sound fields in the near- and far-field showing the validity of the fully nonlinear

equation in both regions. Berntsen et al. [26] developed expressions for the secondary sound

field valid into the far-field of an acoustic transducer. Garrett et al. [27], along with many

others [28–36], analyzed the primary and secondary sound fields generated from parametric

radiation comparing numerical results with theory and measurements from earlier works.

All of the techniques above require substantial computation which prevents their use in

real-time simulation as required in some sensor applications. The long computation times derive

from the use of numerical techniques such as finite difference methods that solve the nonlinear

wave equation. To improve the computational efficiency of the sound field calculations, the

use of expansion techniques based on the idea that sound beams can be expressed as a series

of base functions has been proposed. Cavanagh and Cook [14] and Wen and Breazeale [15]

provided the initial development of numerical models for the primary field of a circular plane

baffled transducer using a series of Gaussian-Laguerre and Gaussian base functions, respectively.

Similarly, Hasegawa et al. [56] developed an expression for the velocity potential of a circular

piston radiator using a series expansion consisting of spherical Bessel functions, spherical Hankel

functions of the second kind, and Legendre polynomials. Ding has since presented a series of

papers that expand upon Wen and Breazeale’s work by extending the expansion technique with

Gaussian base functions also describing the second-order sound fields [16–18]. The sound field

expressions found for the primary and secondary fields using a series of base functions have

the advantage of yielding simple analytic solutions that are computationally more efficient than

previous methods.

Nearly always, the second-order mixing is only considered although recently it has been

shown that third-order interactions derived from cascaded second-order interactions result in

very narrow sound beams [39]. The improvement in beam pattern gained by using higher-order

fields has recently generated interest for use in a variety of applications, such as biomedical

imaging [128–131] and non-destructive evaluation [87]. For use in biological media, Liu et al.

[129] developed expressions for higher-order acoustic fields by including commonly ignored third-

order terms in an investigation of the third-order nonlinear parameter. With similar applications
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proposed, Zu-wen [130], with corrections by Mitri [131], derived third-order velocity and pressure

equations that describe the harmonic generation of infinite plane acoustic waves within fluids.

This chapter presents a computationally-efficient model for third-order nonlinear interaction of

two primary sound beams using the series expansion of a set of Gaussian base functions. The

model is then extended to show that it can accurately represent the sound fields generated from

parametric transducer arrays—acoustic sources where the two-tone primary field is generated

using multiple collinear transducers resulting in a radiated parametric sound field with higher

power and greater directionality than achievable with a single transducer equivalent in size.

Section 3.2 is a theoretical development of the first- and second-order field integrals derived

from the Westervelt and KZK wave equations and describes the development of the third-order

field integral that follows the cascaded second-order approach [38,39]. Section 3.3 develops the

sound field expressions for the primary, secondary, and tertiary waves in terms of the Gaussian

base functions. Section 3.3.1 describes the radiated sound fields generated by the nonlinear

interactions of the parametric transducer array in terms of the Gaussian base function solutions

presented in the previous sections. Section 3.4 demonstrates that the analytical results of the

third-order and parametric array sound field models are in good agreement with measurements

and theory presented by previous authors. Section 3.5 compares the computational efficiency

of the results achieved using the Gaussian base function solutions with the efficiency obtained

using conventional numerical methods. Section 3.6 details the design criteria required to enhance

the performance of the third-order parametric array.

3.2 Third-Order Quasilinear Solution

Westervelt’s derivation of the inhomogeneous wave equation [19] from Lighthill’s equation for

arbitrary fluid motion [47] is the fundamental statement of nonlinear acoustics, as derived in

Section 2.2. Given in (2.27), the Westervelt equation is reproduced here, ignoring effects from

sound diffusivity, as

∇2p− 1

c20

∂2p

∂t2
= − β

ρ0c40

∂2p2

∂t2
, (3.1)

where p is the acoustic pressure comprised of the primary and scattered sound fields as a func-

tion of position and time t, c0 is the small-signal sound speed, ρ0 is the medium density, β is

the coefficient of nonlinearity, and ∇2 is the Laplace operator. Khokhlov, Zabolotskaya, and

Kuznetzov expanded upon Westervelt’s work by combining the effects of diffraction and absorp-

tion with the medium nonlinearity, thus developing the KZK nonlinear parabolic wave equation

in which this theory is based [12, 13]. The KZK equation is given in (2.30) for nondissipative
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fluids and reproduced here, also ignoring the effects from sound diffusivity, as

∂2p

∂z∂τ
− c0

2
∇2

⊥p =
β

2ρ0c30

∂2p2

∂τ2
, (3.2)

where z is the Cartesian coordinate in the direction of wave propagation, ∇2
⊥ = ∂2/∂x2+∂2/∂y2

is the second-order spatial gradient transverse to the direction of propagation, τ = ωit− kiz is

the retarded time, and ki = ωi/c0 is the wave number of the acoustic wave at angular frequency

ωi. The subscript ‘i’ denotes the desired primary frequency, where i = 1, 2 and ω1 > ω2.

In order to solve the KZK equation, linearized solutions for the primary fields and quasilinear

solutions for the secondary fields can be derived as is commonly done in the literature. This

approach is used to obtain integral equations for the second- and third-order sound fields in a

form which can be easily discretized. Following the standard approach under the quasilinear

approximation, the acoustic pressure in (3.1) and (3.2) is restricted to consist only of the

two primary frequencies and the second-order sound field resulting from the interaction of the

primary fields. Therefore, as was given in (2.53), the acoustic pressure, p, can be written for

the primary and secondary sound fields as

p =

2∑
i=1

p1i +
∑
ς

p2ς = p11 + p12 + p21 + p22 + p2S + p2D (3.3)

where p1i indicates the ith primary field and p2ς indicates the second-order scattered field. The

scattered field subscript ‘ς’ specifies the choice of one of the two second harmonics, sum, and

difference frequencies, ς = 1, 2, S,D respectively, as explained in Section 2.2.2.

The development of the solution begins by expressing the sound field equations in terms

of the nondimensional field variables ξ = r/a and ηi = 2z/kia
2 that correspond to the radial

and axial coordinates, r and z respectively, where a is the radius of the source. The linearized

solution of the primary sound field for angular frequency ωi can then be written [41]

p1i(ξ, ηi, τi) = ℜ
{
p0ie

−ȷτiq1i(ξ, ηi)
}
, (3.4)

where the integral solution for the primary sound field given in (2.35) is normalized as

q1i(ξ, ηi) = 2π

∫ ∞

0
q1i(ξ

′, 0)G1(ξ, ηi | ξ′, η′i)ξ′dξ′. (3.5)

In (3.5), q1i(ξ
′
i, 0) is the function that describes the type of source for angular frequency ωi

located in the η′ = 0 plane. For a simple Gaussian source, this is defined by a Gaussian

function, as given in (2.39),

q1i(ξ
′, 0) = p0i exp

(
−bξ′2

)
, (3.6)
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where p0i is the peak pressure and b is an arbitrary, real constant corresponding to the shape

of the resultant beam. G1(ξ, ηi | ξ′, η′i) is the Green’s function which is derived following the

method in [41], as detailed in Section 2.2.1, and expressed here as a normalized form of (2.38)

Gσ(ξ, ηi | ξ′, η′i) =
ȷσ

(ηi − η′i)
J0

(
2σξξ′

ηi − η′i

)
exp

[
ȷσ(ξ2 + ξ′2)

ηi − η′i

]
. (3.7)

Similarly, the quasilinear solution of the second-order sound field can be written [17]

p2ς(ξ, η, τ) = ℜ
{
−p01p02(l +m)2

[
β(ka)2

ρ0c20

]
e−ȷ(l+m)τq2ς(ξ, η)

}
, (3.8)

where the integral solution for the secondary sound field given in (2.56) is normalized as

q2ς(ξ, η) =
1

2

∫ η

0

∫ ∞

0
q11(ξ

′, η′)q12(ξ
′, η′)G2ς(ξ, η | ξ′, η′)ξ′dξ′dη′. (3.9)

Again, it is important to note that the second-order sound field, (3.8), is comprised of the

second harmonics and tones at the sum and difference frequencies. In the above equations,

p0i = ρ0c0u0i is the peak acoustic pressure where u0i is the amplitude of the vibration velocity

of the source for the ith primary frequency. For the second-order sound fields, the parameters

are normalized to the center of the primary wave numbers, k = (k1 + k2)/2. Therefore, the

normalized wave numbers of the primary fields are l = k1/k and m = k2/k, the retarded time

becomes τ = ωt−kz where ω = kc0, the nondimensional axial coordinate becomes η = 2z/ka2,

and the radius of the source, a, is chosen as the average radius of the two sources, q11(ξ
′, 0) or

q12(ξ
′, 0). As previously stated, the subscript ‘ς’ identifies the choice of one of the two second

harmonics, and sum and difference frequencies, ς = 1, 2, S,D respectively. Thus, ς sets the values

for l and m to select the identified frequency component. For example, the second harmonic

of the first primary field, p21, is selected when k1 = k2 (l = m = k1/k), the sum frequency,

p2S , is selected when l = k1/k and m = k2/k, and the difference frequency, p2D, is selected

when l = k1/k and m = −k2/k. Similarly, when calculating the Green’s function, σ is the

normalized wave number and is set to 1 for the primary frequency, 2 for the second harmonic,

and is replaced by l +m for the sum and difference frequencies.

The development of the third-order solutions is based upon the cascaded second-order ap-

proach originally proposed by Garner and Steer [39]. This method takes the concept of quadratic

nonlinearity that produces the second-order sound field through the interaction of two primary

sound beams and applies it to the interaction of the secondary field with the primary field

to generate the third-order sound fields. For the purposes of this chapter, the interactions of

these fields are limited to only include the contributions of the fundamental, second harmonic,

and difference frequencies to the generation of the third harmonics and the upper and lower
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third-order intermodulation (IM3) products: ω3U = 2ω1 − ω2 and ω3L = 2ω2 − ω1. For the

intermodulation tones to be produced in the audio band, the primary frequencies must be dis-

tantly spaced (ω1 ≤ 2ω2) so that the secondary fields 2ω2 and ω1−ω2 interact with the primary

fields to yield the third-order audio tones. Expanding the acoustic pressure, p, to include the

third-order tones, as was done in (2.69), it can be written

p =

2∑
i=1

p1i +
∑
ς

p2ς +
∑
ζ

p3ζ

= p11 + p12 + p21 + p22 + p2S + p2D + p31 + p32 + p3U + p3L (3.10)

where p1i and p2ς indicate the first- and second-order sound fields, as previously defined, and

p3ζ indicates the third-order tones. Similarly to its use in identifying the second-order scattered

fields, the subscript ‘ζ’ specifies the choice of one of the two third harmonics, upper, and lower

IM3 tones, ζ = 1, 2, U, L respectively.

Under these conditions the solutions for the desired third-order sound fields can be found.

The solution for these fields can be written

p3ζ(ξ, η, τ) = ℜ

{
P3ζ(l +m+ h)2

[
β(ka)2

ρ0c20

]2
e−ȷ(l+m+h)τq3ζ(ξ, η)

}
, (3.11)

where the integral solutions for the tertiary sound fields given in (2.73), (2.74), and (2.75) are

normalized as

q3i(ξ, η) =
4

3

∫ η

0

∫ ∞

0

(
q1i(ξ

′, η′)
)3
G3(ξ, η | ξ′, η′)ξ′dξ′dη′, (3.12)

q3U (ξ, η) =
4

3

∫ η

0

∫ ∞

0

[
q21(ξ

′, η′)q∗12(ξ
′, η′) + q11(ξ

′, η′)q2D(ξ
′, η′)

]
G3U (ξ, η | ξ′, η′)ξ′dξ′dη′,

(3.13)

q3L(ξ, η) =
4

3

∫ η

0

∫ ∞

0

[
q22(ξ

′, η′)q∗11(ξ
′, η′) + q12(ξ

′, η′)q∗2D(ξ
′, η′)

]
G3L(ξ, η | ξ′, η′)ξ′dξ′dη′.

(3.14)

As can be seen in (3.11)–(3.14), the third-order sound field solutions consist of contributions

from second-order sound fields interacting with the primary waves. It is worth mentioning

that the upper and lower IM3 tones are composed of a pair of interactions between both

primary sound fields and corresponding second-order fields. Since each pair consists of a different

combination of primary and secondary interacting sound fields, it is required to calculate them

separately, as will be discussed below and in Section 3.3.

As with the second-order sound fields, the wave numbers corresponding to the primary and
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secondary fields are normalized to the center of the primary wave numbers, k = (k1+k2)/2. The

normalized wave numbers l = k1/k and m = k2/k are defined in such a way as to describe the

second-order sound field contribution, where k1 = k2 (l = m = k1/k) for the second harmonic

and l = k1/k and m = −k2/k for the difference frequency. The additional wave number, h, is

the normalized wave number of the contributing primary sound field component. As previously

stated, the subscript ‘ζ’ identifies the choice of one of the two third harmonics, upper, and

lower IM3 tones, ζ = 1, 2, U, L respectively. Thus, ζ sets the values for l, m, and h to select

the identified frequency component as well as the peak acoustic pressure amplitude, P3ζ . For

example, the third harmonic of the first primary field, p31, is defined in (3.12) with P3ζ = p301
and is selected when k1 = k2 (l = m = h = k1/k). The upper IM3 tone, p3U , is defined in

(3.13) with P3ζ = p201p02 and is given by the addition of the first pair of interacting fields, the

second harmonic of the first primary field with the second primary field (selected when l = k1/k,

m = k1/k, and h = −k2/k), and the second pair of interacting fields, the difference frequency

with the first primary field (selecting l = k1/k, m = −k2/k, and h = k1/k). Similarly, the lower

IM3 tone, p3L, is defined in (3.14) with P3ζ = p01p
2
02 and is given by the addition of the first pair

of interacting fields, the second harmonic of the second primary field with the first primary field

(selected when l = k2/k, m = k2/k, and h = −k1/k), and the second pair of interacting fields,

the difference frequency with the second primary field (selected when l = k2/k, m = −k1/k,
and h = k2/k). While both pairs of interacting fields for a given IM3 tone have the same sum

of the normalized wave numbers (l +m+ h), the definition of the value for each wave number

differs between the pairs and, therefore, the pairs require separate calculation. As before, when

calculating the Green’s function, σ is the normalized wave number and is set to 3 for the third

harmonic and is replaced by l +m+ h for the intermodulation frequencies.

3.3 Gaussian Beam Expansion

The fundamental sound field of an axially symmetric circular piston can be described using

the multi-Gaussian beam (MGB) expansion model whereby the acoustic source is defined as a

linear superposition of Gaussian beams [15], as developed in Section 2.2.1 and given by (2.49),

q1i(ξ, ηi) =
N∑

n=1

An

1 + ȷBnηi
exp

(
− Bnξ

2

1 + ȷBnηi

)
. (3.15)

where, again, An and Bn are the Gaussian coefficient set and beam waist parameters, respec-

tively, and N is the number of functions within the series as defined by the Gaussian coefficient

set. By defining the primary sound field in this manner, it has been shown that a closed form

solution for the second-order sound fields can be developed that is computationally more effi-
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cient than traditional methods used to determine the fields. Therefore, with the substitution of

(3.15) into (3.9), the simplified solution for the second-order sound fields can be found following

the derivation in [17], as shown in Section 2.2.2, yielding

q2ς(ξ, η) =

N∑
n=1

N∑
j=1

AnAj

4r1
exp

(
−s1ξ

2

r1

)[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
, (3.16)

where

r1 = (lBj +mBn) + ȷ(l +m)ηBnBj , (3.17a)

r2 = (lBn +mBj)η − ȷ(l +m), (3.17b)

s1 = (l +m)2BnBj , (3.17c)

s2 = −ȷ(l +m)lm(Bn −Bj)
2, (3.17d)

and E1(x) =
∫∞
x t−1e−tdt is the exponential integral function.

Since the first- and second-order sound field solutions are expressed in closed-form, they can

be used to find a solution for the third-order sound fields. Substituting (3.15) and (3.16) into

(3.12)–(3.14), the third-order sound field can be expressed as

q3ς(ξ, η) =

N∑
n=1

N∑
j=1

N∑
f=1

1

3

∫ η

0

∫ ∞

0

AnAjAfξ
′

(η − η′)(1 + ȷBfη′)(r
′
1)
J0

(
2(l +m+ h)ξξ′

η − η′

)

× exp

(
−

hBfξ
′2

1 + ȷBfη′

)
exp

(
−s1ξ

′2

r′1
+
ȷ(l +m+ h)(ξ2 + ξ′2)

η − η′

)
×
[
E1

(
s2ξ

′2

r′1(r
′
1η

′ + r′2)

)
− E1

(
s2ξ

′2

r′1r
′
2

)]
dξ′dη′. (3.18)

Using the Taylor series expansion for the exponential integral function, given by

E1(z) = −γ − ln z −
∞∑
n=1

(−z)n

nn!
(3.19)

where γ is the Euler-Mascheroni constant, and the known integral formulas for Bessel and

Gaussian functions in (3.20) and (3.21), the third-order sound field solution in (3.18) can be

simplified, yielding an expression in terms of only the axial field integral, η′:∫ ∞

0
e−a2t2tµ+1Jµ(bt)dt =

bµ

(2a2)µ+1
e−(b2/4a2) (3.20)
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and ∫ ∞

0
e−a2t2tµ−1Jv(bt)dt =

Γ
(
1
2v +

1
2µ
) (

1
2
b
a

)v
2aµΓ(v + 1)

M

(
1

2
v +

1

2
µ, v + 1,− b2

4a2

)
, (3.21)

where the gamma function is given by

Γ(n) = (n− 1)!, (3.22)

for all positive integers n and

M(a, b, z) =

∞∑
n=0

a(n)zn

b(n)n!
(3.23)

is the confluent hypergeometric function [53] where

a(0) = 1, (3.24)

a(n) = a(a+ 1)(a+ 2) . . . (a+ n− 1), (3.25)

is the rising function. (3.23) is Kummer’s function of the first kind and is a generalized hyper-

geometric series that is considered a function of a, b, or z (with the other two held constant).

Thus, by assuming an axially symmetric source and simplifying (3.18), the third-order sound

field for the given interaction pair can be expressed using the MGB expansion method as

q3ς(ξ, η) =

N∑
n=1

N∑
j=1

N∑
f=1

exp

(
−s3ξ

2

r3

)∫ η

0

AnAjAf

6(r3η′ + r4)
exp

(
− s4ξ

2

r3(r3η′ + r4)

)

×

[
ln

(
1 +

r′1
r′2
η′
)
+

∞∑
u=1

(−1)u+1

uu!
Γ(u+ 1)

[(
s2

r′1(r
′
1η

′ + r′2)

)u

−
(
s2
r′1r

′
2

)u]

×

√r′1(1 + ȷBfη′)(η − η′)

r3η′ + r4

u+1

M

(
−u, 1, s5ξ

2

(r3η′ + r4)(η − η′)

)]
dη′, (3.26)
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where

r3 = (l +m) [(lBjBf +mBnBf + hBjBn) + ȷ(l +m+ h)BjBnBfη] , (3.27a)

r4 =
[
(l +m)2BjBn + hBf (lBj +mBn)

]
η − ȷ(l +m+ h)(lBj +mBn), (3.27b)

s3 = (l +m+ h)2(l +m)2BjBnBf , (3.27c)

s4 = ȷ(l +m+ h)(l +m)2 [(lBj +mBn)(2(l +m) + h)hBjBnBf

− (l +m)2h(B2
f +BjBn)BjBn − (l +m)h(B2

n(h(Bj +mBf ) +B2
j (hBn + lBf )

]
,

(3.27d)

s5 = (l +m+ h)2
[
(lBj +mBn)− (l +m)BjBnBfη

′2

+ ȷ ((l +m)BjBn +Bf (lBj +mBn)) η
′] . (3.27e)

Additionally, r′1 and r′2 are equivalent to (3.17a) and (3.17b) where η is replaced by η′. On the

acoustic axis where ξ = 0, this simplifies to

q3ς(0, η) =

N∑
n=1

N∑
j=1

N∑
f=1

∫ η

0

AnAjAf

6(r3η′ + r4)

[
ln

(
1 +

r′1
r′2
η′
)
+

∞∑
u=1

(−1)u+1

uu!
Γ(u+ 1)

×
[(

s2
r′1(r

′
1η

′ + r′2)

)u

−
(
s2
r′1r

′
2

)u]√r′1(1 + ȷBfη′)(η − η′)

r3η′ + r4

u+1]
dη′. (3.28)

Again, it is necessary to solve (3.26) for both pairs of interacting sound fields to generate the

complete third-order sound field for a given IM3 tone.

It can be seen that the third-order sound field solution derived in (3.26) and (3.28) is

considerably simplified relative to previously reported methods. The single field integral in

(3.26) is computationally more efficient than the triple field integral method used in [39] and

the implicit backward finite difference method to solve the coupled partial differential equations

in [34], along with many other implementation schemes for second- and third-order sound fields,

as discussed in Section 2.3.

3.3.1 Application to Parametric Transducer Arrays

The sound field solutions generated using the MGB technique can also be applied to describe

and efficiently calculate the resultant sound fields radiated from a parametric transducer array.

The parametric array is the virtual end-fire sound source that is generated by the beat pattern

that is produced by summing two ultrasonic sound beams and can be modeled as a linear ar-

ray of sources. The nonlinear interactions of the sound fields from each ultrasonic transducer

comprising the array creates a focused sound source with scattered sound fields of higher direc-
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tionality than achievable by a linear transducer of the same size as the ultrasonic transducer

array, as described in Section 2.2.2. Since most of the nonlinear interaction is produced through

collinear rather than noncollinear scattering, the arrays, comprising T transducers in a single

plane, can be modeled using the summation of the contributions from each individual trans-

ducer. With the location of each transducer in the array denoted by ξ0t, the primary, secondary,

and tertiary sound field solutions of the parametric array can written as

q1(ξ, η) =

T∑
t=1

N∑
n=1

An

1 + ȷBnη
exp

(
−Bn (ξ − ξ0t)

2

1 + ȷBnη

)
, (3.29)

q2ς(ξ, η) =
T∑
t=1

N∑
n=1

N∑
j=1

AnAj

4r1
exp

(
−s1(ξ − ξ0t)

2

r1

)[
E1

(
s2(ξ − ξ0t)

2

r1(r1η + r2)

)
− E1

(
s2(ξ − ξ0t)

2

r1r2

)]
,

(3.30)

and

q3ς(ξ, η) =

T∑
t=1

N∑
n=1

N∑
j=1

N∑
f=1

exp

(
−s3 (ξ − ξ0t)

2

r3

)∫ η

0

AnAjAf

6(r3η′ + r4)
exp

(
− s4 (ξ − ξ0t)

2

r3(r3η′ + r4)

)

×

[
ln

(
1 +

r′1
r′2
η′
)
+

∞∑
u=1

(−1)u+1

uu!
Γ(u+ 1)

[(
s2

r′1(r
′
1η

′ + r′2)

)u

−
(
s2
r′1r

′
2

)u]

×

√r′1(1 + ȷBfη′)(η − η′)

r3η′ + r4

u+1

M

(
−u, 1, s5 (ξ − ξ0t)

2

(r3η′ + r4)(η − η′)

)]
dη′, (3.31)

respectively. Therefore, by adding an additional summation layer, it is straightforward to extend

the MGB expansion to describe the sound fields radiated from the transducer array.

It is important to note that the simplifications of the MGB expansion method are valid

only when the sound beam is generated from an axially symmetric source, allowing for the

simplifications shown in the secondary, and thus tertiary, sound fields to be achieved. For non-

axially symmetric sources, the sound field solutions require numerical integration of a single

field integral [60, 127,132]. Additionally, since the MGB expansion method is derived from the

KZK equation, the method has similar validity for all nondissipative fluids.

3.4 Sound Field Measurement

The simulation results calculated using the MGB expansion technique for the scattered sound

fields are obtained in this section and compared to both measured responses and results calcu-

lated using the quasi-analytic theory presented in Section 3.3. These calculations were performed
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on a Dell Precision R5500 having 48 GB of RAM and 500 GB of hard disk drive space with

a processor speed of 3.470 GHz. The amplitude distributions for the second- and third-order

sound fields generated from a single uniform planar piston source on the acoustic axis and at

various planes perpendicular to the axis of propagation are considered. In addition, the ampli-

tude response of the scattered sound fields produced by parametric arrays of various sizes are

explored, illustrating the applicability of the expansion method to arrays. In this section, the

Gaussian coefficient set for a rigid piston radiator as given in Table I of [15] is used, however,

any of the coefficient sets given in Appendix A could alternatively be utilized.

3.4.1 Measurement Equipment

The experimental results presented in the following sections were found inside of a dual acoustic-

RF anechoic chamber with an insertion loss up to 100 dB and 90 dB and a return loss up to

45 dB and 50 dB for the acoustic and RF waves, respectively, as described by Garner et al. [133].

The sound fields were transmitted using several acoustic sources, including individual circular

pistons as well as parametric transducer arrays, as detailed in Sections 3.4.2 and 3.4.3, and the

pressure levels were measured using a 6.4 mm PCB Piezotronics, Inc. Model 377B01 Type 1

precision condenser microphone that is pre-polarized with has a frequency range of 4 Hz to

80 kHz and operating on a constant 2-20 mA current supply provided from a Piezotronic

482A22 signal conditioner. The signals that were sent to the acoustic sources and received

by the microphone were generated and recorded using a National Instruments (NI) PXI-4461

data acquisition card performing with a sampling rate of 204.8 kS/s. As shown in Fig. 3.1, the

acoustic source was placed at a distance R from the microphone and rotated using a Kaidan

Magellan MDT-19 turntable to measure the sound field radiation pattern at angle θ from the

acoustic axis. These spherical coordinates were then converted to cylindrical coordinates for

use in (3.16) and (3.26) using the simple transformations for the radial coordinate, ρ = R sin θ,

and axial coordinate, z = R cos θ.

3.4.2 Single Uniform Planar Piston

To verify the suitability of the MGB method to modeling the third-order sound field solutions,

the third harmonic and intermodulation sound fields nonlinearly generated by interaction of the

primary and secondary fields from a uniform planar piston source are considered. That is, the

third-order response is the result of the two cascaded second-order interactions. The solution

of the third harmonic in (3.26) is compared to that given in [34], where ρ0 = 1.2 kg/m3,

c0 = 344.8 m/s, β = 1.2, and a = 0.21 m. Fig. 3.2a describes the pressure amplitude on the

acoustic axis for the first three harmonic sound fields driven at f1 = 30 kHz and p0 = 116 dB SPL

while Fig. 3.2b describes the normalized pressure amplitudes of the first three harmonics at a
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Figure 3.1: Acoustic measurement system used to determine the sound field distributions of
the acoustic sources discussed in Sections 3.4.2 and 3.4.3.

distance of 6 m from the source driven at f1 = 25 kHz and p0 = 117 dB SPL, as found in Figs. 2

and 4 of [34]. The results obtained using the MGB expansion are in agreement with [34], with a

slight discrepancy in the near-field of the third harmonic. For comparison to the intermodulation

frequencies, measured data was obtained using an AirmarTM AT-50 ultrasonic transducer with

a radius of 22 mm, a center frequency of 50 kHz, and driven at f1 = 51 kHz and f2 = 49 kHz

with primary sound pressure amplitudes of p01 = p02 = 95 dB SPL. The sound fields were

transmitted through air (with ρ0 = 1.2 kg/m3, c0 = 343 m/s, and β = 1.21) and are measured

at a distance of 2 m from the source. Using the parameters given, Figs. 3.2c and 3.2d show the

measured and theoretical normalized pressure amplitudes of the upper and lower IM3 tones,

fU = 53 kHz and fL = 47 kHz, at a distance of 2 m from the source. The amplitude of the

side lobes of the IM3 tones does not exceed the level of the measurement noise floor at angles

greater than 30◦ off the acoustic axis, thus accounting for the discrepancy between the MGB

expansion method and the measured results in the figures. Since the transducer and driving

amplifier are nonlinear, they generate intermodulation distortion that contributes to the sound

field. To account for this contribution in Figs. 3.2c and 3.2d, the equipment is characterized

following the method outlined in [39] and [38]. From Fig. 3.2, it can be seen that the MGB

expansion technique accurately models the third-order sound fields.

In computing the solutions for the third-order sound fields as shown in Fig. 3.2, the infinite

series found in (3.26) and (3.28) resulting from the simplification of (3.12)–(3.14) by the MGB
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Figure 3.2: The third-order sound field distribution. The pressure amplitudes of the first three
harmonic sound fields (a) on the acoustic axis and (b) normalized at a distance of 6 m from
the source as described in [34]. The measured and theoretical pressure amplitude at a distance
2 m from the source for (c) the IM3 upper and (d) the IM3 lower tones.

expansion method converge, on average, in fewer than ten terms. A small percentage of the field

points converge more slowly, requiring as much as several hundred terms, however, restricting

the number of terms has a minimal effect on the resultant sound fields and the scarcity of these

series prevents any significant increases in computation time. Additionally, changes in the source

and medium parameters cause negligible variations in series convergence and simulation speeds

due to the normalization of these parameters in the implementation of the MGB expansion

method. At increased angles off the acoustic axis, however, the average number of terms required

within the series to reach convergence increases slightly as the highly oscillatory nature of the

functions within the third-order integrals imposes greater difficulty in generating the proper

solutions. To address the challenges encountered by these types of functions and help improve

simulation performance, the third-order integrals were solved using the numerical simulation
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technique proposed by Kshevetsky and Leble [99].

3.4.3 Parametric Transducer Array

Since the sound field solutions generated by a parametric transducer array are linear superpo-

sitions of the contributions from each acoustic transducer, the MGB expansion method can be

extended to accurately represent the fields from more complex sources. To verify the accuracy

of the expansion, two distinct parametric array configurations are measured, comprising trans-

ducers that are different in size, number, and frequency. The first transducer array consists

of 19 AirmarTM AT-50 ultrasonic transducers (each as described in Section 3.4.2 hexagonally

arranged with spacing between the center of adjacent transducers of 66 mm. The transduc-

ers are driven at f1 = 51 kHz and f2 = 49 kHz with primary sound pressure amplitudes

p01 = p02 = 95 dB SPL yielding a difference tone at fD = 2 kHz and IM3 upper and lower

tones at fU = 53 kHz and fL = 47 kHz. Figs. 3.3a–3.3b show the measured and theoretical

results for the primary frequencies generated by the parametric array. Figs. 3.3c–3.3d show

the measured and theoretical results for the difference and IM3 lower frequencies, respectively.

Similar to the results for the IM3 tones from a single planar piston, the amplitude of the side

lobes of the difference frequency does not exceed the level of the measurement noise floor at

angles greater than 15 degrees off the acoustic axis. Additionally, the series convergence of the

third-order sound field solutions for the parametric transducer array follow a similar behav-

ior as discussed for the single planar piston. Thus, Fig. 3.3 illustrates the ability of the MGB

expansion to represent the sound fields generated by a parametric transducer array.

The second transducer array considered is a 45 cm. diameter Audio SpotlightTM 416296

from Holosonic Labs Inc., comprising 81 circular piezoelectric transducers each with a radius

of 16 mm, also hexagonally arranged with spacing between the center of adjacent transducers

of 45 mm. A complete hexagonal array with this configuration would contain 91 elements,

however, six transducers have been removed from the corners of the sound source to fit into

the round bezel housing the transducers and four additional transducers were removed from

the center column to allow for the mounting and wiring of the device. The acoustic system

also utilized a Holosonic Labs AS-18-3 amplifier that was modified to bypass its pre-distortion

circuitry, thereby enabling the transmission of pure frequency tones. The transducers are driven

at f1 = 51 kHz and f2 = 49 kHz with primary sound pressure amplitudes p01 = p02 = 115 dB

SPL with nonlinear scattering yielding second- and third-order sound fields. Again, Figs. 3.4a–

3.4b show the measured and theoretical results for the primary frequencies generated by the

Holosonic parametric array. Figs. 3.4c–3.4d show the measured and theoretical results for the

difference and IM3 lower frequencies, respectively. For a comparison to the results in Figs. 4

and 5 of [39], the primary frequencies are set to f1 = 72 kHz and f2 = 70 kHz with primary
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Figure 3.3: The sound field distribution generated by a 19 element parametric array. The
measured and theoretical pressure amplitudes of the primary frequencies, (a) f1 = 51 kHz and
(b) f2 = 49 kHz. The measured and theoretical pressure amplitudes of (c) the difference and
(d) the IM3 lower frequencies.

sound pressure amplitudes of p01 = p02 = 115 dB and then f1 = 72 kHz and f2 = 36 kHz

with primary sound pressure amplitudes of p01 = p02 = 128 dB to yield difference and IM3

lower tones at 2 kHz. Fig. 3.5 matches those given in [39] and further verifies the ability of the

expansion method to model resultant sound fields of parametric arrays. Again, the amplitude

of the side lobes of the IM3 tones does not exceed the level of the measurement noise floor at

angles greater than 30 degrees off the acoustic axis for Figs. 3.4d and 3.5f.

While the results presented focus primarily on the scattering of sound by sound within air,

it is important to note that the MGB expansion method can easily be extended to model similar

scattering effects within water, biological media, and other fluids throughout the audible and

ultrasonic frequency ranges. Thus, use of the method can provide computational advantages in

practical applications, such as diagnostic ultrasound and harmonic imaging, where it is common

to use the KZK equation to model nonlinear acoustic wave propagation.
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Figure 3.4: The sound field distribution generated by a 81 element parametric array. The
measured and theoretical pressure amplitudes of the primary frequencies, (a) f1 = 51 kHz
and (b) f2 = 49 kHz. The measured and theoretical pressure amplitudes of (c) the difference
frequency and (d) the IM3 lower tone.

3.5 Comparison of Computation Methods

To determine the computation efficiency of the MGB expansion technique, the results in Sec-

tions 3.4.2 and 3.4.3 were compared to the traditional methods outlined in Section 2.3. Figs. 3.2a

and 3.2b were simulated using the solutions for the harmonic fields given by (2.77) and (2.78), as

utilized by Kamakura et al. [34] and developed at the University of Bergen [89–91]. Implement-

ing the implicit backward finite difference method to solve the KZK equation directly as done

by Kamakura et al., the computation time required in the generation of the harmonic field was

significantly increased compared to the MGB expansion method, greater than a 40x increase in

computation time compared to the MGB expansion which generated the third harmonic fields

in Figs. 3.2a and 3.2b in roughly 3.5 sec. This is the result of the requirement of these types

of simulation techniques to simultaneously compute additional harmonics in order to calculate

the field of interest, yielding larger memory requirements and longer computation times.

Similarly, the solutions for the third-order intermodulation products in Figs. 3.2c and 3.2d
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Figure 3.5: The sound field distribution generated by a 81 element parametric array as a
comparison to [39]. The measured and theoretical pressure amplitudes of the primary frequencies
(a) f1 = 72 kHz and (c) f2 = 70 kHz that generate (e) the difference frequency at fD =
f1−f2 = 2 kHz. Additionally, the measured and theoretical pressure amplitudes of the primary
frequencies (b) f1 = 70 kHz, and (d) f2 = 36 kHz that generate (f) the third-order lower
frequency at fL = 2f2 − f1 = 2 kHz.

were computed using the method given by Garner and Steer [39], whereby the three-dimensional

field integrals were solved using the composite Simpson’s Rule. Again, the computation time

required in the generation of the third-order fields was significantly increased compared to the

MGB expansion method, a 25x increase in computation time when generating the third-order
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intermodulation products in Figs. 3.2c and 3.2d which the MGB expansion completed in about

8 sec. This is due to the need for much finer mesh sizing to account for a larger number of integral

dimensions as well as from the use of Bessel functions that are more difficult in computing than

the exponentials employed by the MGB expansion.

The advantages in computation efficiency over traditional simulation methods discussed for

single planar pistons also apply for the transducer arrays, becoming even more pronounced as

the number of elements within the arrays increases, which is evident in the generation of the

sound field distributions in Figs. 3.3–3.5.

3.6 Third-Order Parametric Array Design Enhancements

The initial development of the third-order parametric array by Garner and Steer [38, 39, 76]

demonstrated the ability to achieve an acoustic source having a higher directivity and lower

sidelobe power than the more common second-order parametric array by exploiting the effects

of third-order scattering of sound by sound. Since the third-order parametric array is generated

by two ultrasonic primary sound fields that are distantly spaced in frequency as opposed to close

in frequency as is the case for the second-order parametric array, the design criteria to efficiently

produce the third-order parametric array differs from its second-order counterpart. The third-

order parametric arrays reported in the works by Garner and Steer and analyzed in Section 3.4,

however, are produced by modifying a system developed specifically for the generation of a

second-order parametric array, thereby resulting in the highly inefficient production of sound

fields in the audio frequency range (e.g., the Holosonic Labs Inc. acoustic system described

in Section 3.4.3 yields a maximum sound pressure level for the third-order intermodulation

products of 40 dB SPL despite transmitting the primary sound fields at close to 130 dB SPL,

the maximum achievable pressure level of the system). Therefore, to enhance the generation

of the third-order parametric array, an improved design of the acoustic system producing the

third-order sound fields needs consideration.

3.6.1 Relationship of Transmitted Signals

The fundamental difference in the design of the second- and third-order parametric arrays is

the frequency relationship between the two primary sound fields, as they are required to be

either close in frequency [83, 134] or distantly spaced with one frequency roughly twice that

of the other [38, 39, 76] to yield a second-order difference tone or third-order intermodulation

product, respectively, in the audio frequency range. The maximum achievable sound pressure

for the desired signal in the audio frequency range is dependent upon the power levels of

the primary sound fields as they interact while propagating away from the acoustic source.

66



Thus, to increase the sound pressure level of the second-order difference tone or third-order

intermodulation product, the sound pressure of the primary sound signals must be maximized.

The transmitted power levels of the primary sound signals can be directly increased, however,

this is limited by the ability of transducers to produce sound waves with significantly high

pressure levels. The improved performance of transducers is a major area of interest within audio

engineering [77–80] and, although the maximum obtainable pressure levels of the transducers

effect the performance of the third-order parametric array, the design will ignore this factor

and instead focus on alternative methods for enhancing the system. One factor that limits

the production of sound fields with high pressure levels is the development of shock waves.

Shock waves are formed by the nonlinear steepening of an ordinary sound wave with a high

enough pressure amplitude to generate significant heat in the medium near the wave front

to cause the pressure front to overtake the pressure trough, thereby creating a discontinuity.

However, the shock formation limit increases as the transmitted ultrasonic frequency is lowered,

thereby enabling higher power levels to be transmitted before reaching shock saturation. The

lowering of the ultrasonic frequency also improves the ability to maintain the pressure level

of the primary sound signals as they propagate away from the acoustic source, as a signal

amplitude is attenuated during propagation through a nonlinear medium, with the attenuation

increasing quickly as the frequency increases. Therefore, by lowering the ultrasonic frequency,

the primary sound signals will experience less attenuation and maintain higher sound pressure

levels. Thus, by moving the primary sound fields as close as possible to the boundary between

the audio and ultrasonic frequency ranges, the maximum achievable sound pressure level of the

primary sound fields is increased, resulting in an increase in the maximum obtainable sound

pressure level for the desired signals in the audio frequency range. For the third-order parametric

array, this implies that the lower frequency primary sound field, f2 in Fig. 2.5, would be chosen

so that it is close to the audible sound boundary while still maintaining a frequency relationship

of roughly twice that of the other primary sound signal.

In general, ultrasonic signals can be driven at substantially higher sound pressure levels

than lower frequency audible signals due to safety concerns with human hearing and moving

the primary sound signals close to the audible boundary can result in it being within the range

of sound detection by some individuals, so caution is required in the system design to avoid

this effect.

3.6.2 Modulation Schemes

Since the generation of a directed single frequency sound beam, as has been discussed thus

far, has minimal practical application, modulation schemes are necessary to properly convert

an ultrasonic signal with a finite bandwidth to the audio frequency range. To achieve the
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Figure 3.6: Frequency spectrum for the interacting primary sound fields utilized to produce
the third-order parametric array having a finite bandwidth, with a single frequency signal, f2,
a finite bandwidth signal, f1, and the resultant finite bandwidth third-order intermodulation
product, fL.

desired demodulated signal in the audio frequency range, a variety of amplitude modulation

schemes have been employed, the most common of which are full amplitude modulation, trun-

cated double-sideband modulation (with and without a suppressed carrier), and single-sideband

modulation [81,82]. Single-sideband modulation schemes have become the most popular because

it allows for the ultrasonic frequencies of the transmitted signals to be lowered closer to the

threshold of audible human hearing, as described in the previous section, particularly for the

second-order parametric array systems. Either of the primary sound fields can have a finite band-

width when implementing the third-order parametric array, however, due to the loss associated

in generated the second harmonic, 2f2, required for producing the third-order intermodulation

product, the most efficient design locates the content bearing finite bandwidth signal as the

higher frequency primary sound signal, f1, as shown in Fig. 3.6. The system can then employ

a modulation scheme to convert the finite bandwidth signal to the audio frequency range in

the third-order parametric array implementation. Similar to the second-order parametric array,

single-sideband modulation would be the ideal modulation scheme to utilize since less power is

required as only one sideband is transmitted. The required power can be further reduced by

using single-sideband suppressed-carrier modulation whereby the carrier is also eliminated so

that only the sideband containing the desired signal is transmitted.

3.6.3 System Architecture

To further improve the power efficiency of the acoustic system designed to produce the third-

order parametric array, the architecture of the system must be constructed in such a manner

as to optimize the generation of the transmitted primary sound signals. Developing amplifiers

and transducers to operate efficiently over a large bandwidth, as is required for the third-order
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Figure 3.7: Block diagram of the third-order parametric array implementation utilizing sep-
arate narrowband and broadband amplifiers and transducers as to improve the efficiency of
generating the interacting primary sound fields that produce the third-order intermodulation
product.

parametric array due to the distantly spaced primary sound fields being transmitted, is quite

difficult. A more efficient approach is to separately generate and transmit the primary sound

signals using independent amplifiers and transducers designed specifically to operate at the

frequency location of the respective primary signal. This is the preferred implementation as the

design of both amplifiers and transducers operating over a small frequency range is simple, and

inexpensive to produce, yet still provides an improvement in the performance of the devices

over those designed to operate over much larger frequency ranges (e.g., higher gains for the

amplifiers are achievable while consuming less power). The system would, therefore, have two

sets of amplifiers and transducers thereby doubling the number of components of the second-

order parametric array, however, the performance of each set would be significantly better.

Since only one of the primary sound signals will have a finite bandwidth, as shown in Fig. 3.6,

the efficiency of the system can be further enhanced by using a narrowband amplifier and

transducer set, having all of the advantages in simplistic design, gain, and power consumption,

for the lower frequency primary sound signal, f2, and a broadband amplifier and transducer

for the finite bandwidth signal, f1. Fig. 3.7 illustrates a potential system configuration utilizing

separate narrowband and broadband components to realize the third-order parametric array.

By employing a narrowband amplifier and transducer that easily produces high sound pressure

levels, the requirements for the broadband amplifier and transducer can be relaxed so that

only low-to-moderate pressure levels need to be attained to yield acceptable pressure levels

for the third-order intermodulation product, thereby simplifying the design of the broadband

components and lowering the production cost. Additionally, as frequency increases the relative

bandwidth of the primary sound signal reduces making it is easier to realize the transducers

that would be required, again easing the design of the higher frequency broadband amplifier

and transducer.
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3.7 Summary

An analytical description of the scattered sound fields was presented using the MGB expansion

technique. A method for deriving the Gaussian coefficients for the MGB technique was also

discussed. With the use of the linear and quasilinear solutions of the KZK nonlinear equation,

it was shown that the expressions for the MGB expansion of the first- and second-order solutions

agree with previous theoretical and experimental results. Using these expressions, solutions for

the third-order sound fields were obtained and compared with measurements and results found

in the literature. In addition, the method was shown to be accurate for use with higher-order

parametric transducer arrays.

The MGB expansion is computationally more efficient than previously reported methods in

finding solutions to higher-order sound fields due to the ability to mathematically reduce the

required number of field integrals. In addition, commonly used closed-form second-order sound

field solutions require that the two primary frequencies are either close in frequency [45] or

distantly spaced [28] in order to be simplified, whereas the MGB solution for the second-order

fields does not have these frequency constraints, thus making them valid over a wider range of

conditions.
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Chapter 4

Determination of Nonlinearly

Generated Scattered Acoustic Fields

using a Near-to-Far-Field

Transformation Method

4.1 Introduction

Scattered sound fields produced by the nonlinear interactions of high frequency acoustic signals

radiate energy into the harmonics, sum and difference frequencies, and third-order intermodula-

tion products of the primary interacting signals [135]. The radiation pattern of these nonlinearly

generated scattered fields offer advantages over their primary signal counterparts, including an

increase in beam directivity, decreased power in the sidelobes, and the ability to use smaller sized

sources when generating low-frequency sound signals. These have been explored in a variety

of research areas and applications, such as acoustic radar [85] and sonar [136], non-destructive

evaluation [137], and 3D sound field reproduction [138]. However, with the scattered sound

fields being generated through a nonlinear process, the determination of the far-field response

is challenging, as computation of these fields using traditional methods is time consuming and

intensive, often requiring calculation over hundreds of wavelengths, and measurement at suf-

ficient distances to be in the far-field is typically impractical, especially for large transducers.

With these concerns and the increased deployment of acoustic sources intended for use over

very large distances, such as long range acoustic devices (LRAD), an alternative approach to

simply but accurately determine the far-field characteristics of an acoustic source is desired. The

main contribution of this chapter is the development of a nonlinear near-to-far-field (NTFF)
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transform that enables the far-field radiation pattern of nonlinearly generated scattered acoustic

fields to be determined from amplitude measurements sampled in the near-field.

The problem of determining sound fields as they propagate into the far-field is not unique

to acoustics as similar issues are encountered in determining the electromagnetic (EM) radi-

ation patterns of antennas. In EM, a common approach that mitigates the need for lengthy

simulations and impractical measurements, yet still ascertains the far-field radiation pattern, is

utilizing a linear NTFF transformation, whereby data collected in the near-field of the source

is used to determine the value at points in the far-field [139–144]. This technique is widely

used and has been applied through an assortment of methods to determine antenna far-field

characteristics. To account for varying antenna apertures and applications, various near-field

scanning geometries have been employed to support the transformation. These geometries in-

clude plane-polar [145], spiral [146], and spheroidal [147]. Similarly, a considerable number of

algorithms have been proposed to implement the transformation [148–155]. Ludwig [148] and

Ricciardi and Stutzman [147] developed series expansions to define their algorithms using spher-

ical waves and eigenfunctions, respectively. Petre and Sarkar [149] developed a transformation

method utilizing an array of dipole probes to improve the near-field measurements. Kobayashi et

al. [150] presented a transformation algorithm using antenna array-factor as a simplified alter-

native to the expansion methods. Ohashi and Arai [151], Bucci et al. [152], and Costanzo and Di

Massa [153] considered methods where phase was extrapolated from amplitude measurements

on two different planes in order to overcome the difficulty of measuring phase.

While linear NTFF transformations have been extensively explored in EM, the use of sim-

ilar techniques in acoustics has only occurred in recent years as their application has proven

beneficial in a variety of research areas. In the initial development by Ballantine [156], a proof

was given of the wave-potential theorem based on Kirchhoff’s [157] solution of Huygens’ princi-

ple that he applied to acoustic systems. Horton and Innis [158] and Baker [159] continued this

work by experimentally applying Ballantine’s solution to determine the far-field characteristics

of underwater acoustic transducers from measurements made in the near-field using a special

application of the Helmholtz integral equation and multiple measurement surfaces. A variety of

techniques have since been proposed to improve measurement in the near-field of the acoustic

sources [160–163]. Predominantly, the linear NTFF transformation technique presented in these

works has been used to determine the characteristics of the primary frequency signal as it ra-

diates into the far-field. However, Wang [164] demonstrated the usefulness of the application of

the NTFF transformation by implementing the technique as a means of computing the acoustic

far-field directional pattern for primary fields scattered by objects modeled in the near-field

using finite-difference time-domain acoustic simulations.

More recently, near-field transformation techniques have been applied in the fields of acoustic

holography and imaging. Williams and Maynard [165–168] introduced the concept of near-field
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acoustic holography (NAH) as a means of reconstructing the acoustic pressure on the surface

of a radiating structure from near-field data. Typically, the conversion of the near-field data is

performed using a series of Fourier transforms, however, generalized approaches using Green’s

functions that satisfy the homogeneous Dirichlet and Neumann conditions have also been de-

veloped for simple geometries where a Green’s function can be derived for the desired struc-

ture [169,170]. Implementation of these techniques is challenging due to the difficult derivations

required, therefore, a variety of alternative methods have been developed. The Fourier-based

techniques have been improved by the development of patch NAH which enables a reduction in

the number of measurement points required [171,172]. Additionally, inverse boundary element

methods have emerged as a numerical approach to solve the Helmholtz integral, thereby enabling

the reconstruction of the acoustic radiation from arbitrary structures [173–175]. This technique

employs spatial discretization that requires multiple nodes per wavelength to accurately recon-

struct the acoustic source, which can result in a large number of data points leading to lengthy

computation times. To address this issue, the Helmholtz equation least squares method [176],

as well as subsequent hybrid techniques built upon this method [177, 178], was developed that

approximates the acoustic field using an expansion of the particular solution to the Helmholtz

equation and minimizing the error using least squares, thus yielding simple mathematical results

to improve computation efficiency. These advancements in NAH techniques have prompted its

use in many research areas, including noninvasive imaging [179, 180], nonstationary acoustic

field visualization [181,182], and object characterization [183].

This chapter focuses on developing a nonlinear NTFF transformation concept that can be

used when nonlinear scattering of sound by sound also occurs outside the near-field region.

A nonlinear NTFF transform model is presented that computes the far-field characteristics of

higher-order fields generated by acoustic scattering of sound by sound through the nonlinear in-

teraction of two primary sound beams based on their radiation characteristics in the near-field;

thereby effectively extending linear NTFF theory to include the scattered nonlinear second-

order acoustic fields. By establishing the near-field characteristics of the scattered sound fields

either with measurements made near the source or simple calculation, the scattered far-field

radiation patterns are determined without requiring measurements to be taken at large, im-

practical distances and without performing lengthy computations. Section 4.2 is a theoretical

development of the NTFF transformation as it pertains to the first- and second-order sound

fields. Section 4.3 demonstrates that the far-field radiation patterns of the higher-order sound

fields produced by the transformation are in good agreement with measurements and theory

presented by previous authors for both single transducer sound sources and parametric trans-

ducer arrays.
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4.2 Transformation Development for Acoustic Fields

In this section, nonlinear NTFF transformations are developed to calculate the far-field radi-

ation patterns of higher-order sound fields. Expanding upon Kirchhoff’s solution to Huygens’

principle, the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation, a fully nonlinear parabolic

wave equation that has been shown to accurately describe second- and third-order sound

fields [135], is used to derive expressions for the higher-order transformations.

Kirchhoff’s theorem [156, 157] is a mathematical solution to Huygens’ principle that states

that any point exterior to an enclosed surface can be determined from the amplitude and phase

information along that surface if all sources are interior to the surface. Assuming the amplitude

of the pressure wave is small enough to enable use of the linear Helmholtz equation,

∇2p+ k2p = 0, (4.1)

then the surface integral form of Kirchhoff’s theorem is [156,157]

p(P ) =
1

4π

∫∫
S

[
p(Q)

∂

∂n
U(P | Q)− U(P | Q)

∂p(Q)

∂n

]
dS, (4.2)

where p is the acoustic pressure located at the field point and a point on the closed surface, P

and Q, respectively, k = ω/c0 is the wave number of the acoustic wave having angular frequency

ω, c0 is the small-signal sound speed, ∇2 is the Laplace operator, and U(P |Q) is a solution to

the Helmholtz equation. The Green’s function, G(P |Q), is a simple expression that serves as

a solution to the linear Helmholtz equation, therefore,

U(P | Q) = G(P | Q)e−ȷωt =
e−ȷωteȷkR

R
, (4.3)

where R is the distance from point Q on the closed surface to the field point P , t is time,

and ω = kc0 is the angular frequency of the acoustic wave. Then the Helmholtz formula [184]

becomes

p(P ) =
e−ȷωt

4π

∫∫
S

[
p(Q)

∂

∂n

eȷkR

R
− eȷkR

R

∂p(Q)

∂n

]
dS. (4.4)

It can be seen from (4.4) that any point in the far-field can be determined by measuring the

amplitude and phase of the pressure, p, and the normal gradient of the pressure, ∂p/∂n, in the

near-field. However, due to the difficulty of measuring the normal component of the pressure

gradient, this term is commonly approximated as ȷkp, the exact solution given by a plane wave

propagating in the normal direction of the closed surface. This remains valid for cylindrical

transducers given that the radius of curvature of the transducer is comparable to a wavelength,

or less, and the rate of variation of the phase over the transducer surface is not large [185]. With
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this limitation, the near-field pressure wave, p(Q), can be approximated as a quasi-plane wave,

as has been shown to be acceptable in several previous works [158, 159, 185]. Since the field

point is located in the far-field where kR ≫ 1, the expression can be further reduced by using

the Fraunhofer approximation to simplify the normal gradient of the Green’s function [158]:

∂

∂n

eȷkR

R
= ȷk

eȷkR

R

∂R

∂n
= −ȷk e

ȷkR

R
cosϕ, (4.5)

where ϕ is the angle between the normal component and a line connecting P to Q. Thus,

with discrete frequency components, a linear expression for the far-field pressure determined by

near-field contributions can be written as [159]

p(P ) = −ȷke
−ȷωt

4π

∫∫
S
(1 + cosϕ)

eȷkR

R
p(Q)dS. (4.6)

By assuming that the pressure wave is described by the Helmholtz equation in (4.1), the far-

field solution in (4.6) accounts solely for the linearly propagating primary waves generated from

an acoustic source, this is the linear NTFF transformation. To extend Kirchhoff’s theorem to

include nonlinearly generated higher-order sound fields, the nonlinear Khokhlov-Zabolotskaya-

Kuznetzov (KZK) parabolic wave equation, which considers the effects of diffraction, absorption,

and medium nonlinearity on a sound field as it propagates through a medium, as detailed in

Section 2.2, is used to describe the pressure wave as it propagates into the far-field [12, 13].

Given in (3.2), the KZK equation is again reproduced here as

∂2p

∂z∂τ
− c0

2
∇2

⊥p =
β

2ρ0c30

∂2p2

∂τ2
, (4.7)

where p is the acoustic pressure comprised of the primary sound field and higher-order sound

fields as a function of position and time τ = ωit − kiz, ρ0 is the medium density, β is the

coefficient of nonlinearity, z is the Cartesian coordinate in the direction of wave propagation,

and ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the second-order spatial gradient transverse to the direction of

propagation. The subscript ‘i’ denotes the primary frequency component, where i = 1, 2, and

ω1 > ω2.

Traditionally, quasilinear solutions are derived to solve the KZK equation for the higher-

order sound fields, as demonstrated in Chapter 3. Under the quasilinear approximation, the

acoustic pressure in (4.7) is restricted to consist only of two primary frequencies, the second-

order sound field resulting from the interaction of the primary fields, and the third-order sound

field resulting from the cascaded interactions of the primary and secondary sound fields [39,135].

Therefore, as was given in (2.53) and (3.3), the acoustic pressure, p, can be written for the
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primary and secondary sound fields as

p =
2∑

i=1

p1i +
∑
ς

p2ς = p11 + p12 + p21 + p22 + p2S + p2D, (4.8)

where p1i indicates the ith primary field and p2ς indicates the second-order scattered field. As

discussed in Sections 2.2.2 and 3.2, the second-order sound field includes the second harmonic

and the sum and difference frequencies (ω2S = ω1 + ω2 and ω2D = ω1 − ω2) where the second-

order field subscript ‘ς’ identifies the second harmonics of the two primary frequencies, sum, or

difference frequency, ς = 1, 2, S, or D, respectively.

To solve Kirchhoff’s theorem for the second-order sound fields, the Green’s function must

be utilized to derive a solution to the KZK equation in (4.7). Again, following the method

in [41] where a linearized version of the KZK equation is developed, the corresponding Green’s

function for the higher-order fields generated by an axially symmetric source, as given in (2.38)

and (3.7), can be expressed as

Gσ(ξ, η | ξ′, η′) = ȷσe−ȷστ

(η − η′)
J0

(
2σξξ′

η − η′

)
exp

[
ȷσ(ξ2 + ξ′2)

η − η′

]
. (4.9)

As before, the parameters are normalized to the center of the primary wave numbers, k0 =

(k1 + k2)/2, so that the normalized angular frequency is ω0 = k0c0, the normalized wave

numbers of the primary fields are k1/k0 and k2/k0, and the nondimensional axial and radial

coordinates become η = 2z/k0a
2 and ξ = r/a, respectively, where a is the radius of the source.

The selection of the second-order field ς sets the values for l and m to select the identified

frequency component, σ = l + m; therefore, the second harmonic of the first primary field,

p21, is selected when l = m = k1/k0, the sum frequency, p2S , is selected when l = k1/k0 and

m = k2/k0, and the difference frequency, p2D, is selected when l = k1/k0 and m = −k2/k0.
Additionally, in cylindrical coordinates, (ξ, η) and (ξ′, η′) are the normalized radial and axial

distances of the field point and closed surface, respectively. Thus, as a solution to (4.7), U(P |Q)

can be found using (4.9) and following the derivations in Sections 2.2.1 and 3.3, where it is shown

that the second-order sound fields generated from an axially symmetric piston source can be

expressed as a series of Gaussian functions, as given in (2.66) and (3.16), resulting in

U(P | Q) =

N∑
n=1

N∑
j=1

AnAje
−ȷ(l+m)τ

4r1
exp

(
−s1ξ

2

r1

)[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
, (4.10)
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where

r1 = (lBj +mBn) + ȷ(l +m)ηBnBj , (4.11a)

r2 = (lBn +mBj)η − ȷ(l +m), (4.11b)

s1 = (l +m)2BnBj , (4.11c)

s2 = −ȷ(l +m)lm(Bn −Bj)
2, (4.11d)

E1(x) =
∫∞
x t−1e−tdt is the exponential integral function, and, again, An and Bn are the

Gaussian coefficient set and waist parameters, respectively. It is important to note that the

normalized axial and radial distances, η and ξ, are the distances from the closed surface to the

field point for each of the dimensions.

Using an approach similar to that used to develop a solution to the linear Helmholtz formula,

the normal gradient of the pressure and the solution to the KZK equation given in (4.10) are

approximated to solve the surface integral in (4.2) for the second-order sound field. Again,

assuming that the radius of curvature of the transducer is comparable to a wavelength of the

lowest frequency primary tone and the phase variation over the transducer surface is minimal,

the normal gradient of the pressure can be approximated as a plane wave at the higher-order

frequency propagating in the normal direction of the closed surface, ȷ(l+m)p. Since the wave is

propagating in the axial direction, as indicated by the KZK equation and implied by the form

of the Green’s function in (4.9), the normal gradient of (4.10) can be restricted to the direction

of propagation and, thus, can be expressed as

∂U

∂n
=

N∑
n=1

N∑
j=1

AnAje
−ȷ(l+m)τ

4

∂

∂η

1

r1
exp

(
−s1ξ

2

r1

)[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
∂η

∂n
.

(4.12)

As with the simplification of the Green’s function in the linear Helmholtz equation, the normal

gradient of η can be found as − cosϕ, where ϕ is the angle between the normal component and

a line connecting the field point to the closed surface. Then ignoring the components of the

normal gradient on the order of η−3 or smaller, (4.12) simplifies to

∂U

∂n
=

N∑
n=1

N∑
j=1

−ȷ(l +m)AnAjBnBje
−ȷ(l+m)τ

r21
exp

(
−s1ξ

2

r1

)

×
[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
cosϕ. (4.13)

Substituting (4.10) and (4.13) into (4.2) and using the approximation ∂p/∂n ≈ ȷ(l +m)p,

the far-field pressure of the second-order fields determined by their near-field contributions can

77



be written as

p2ς(P ) = −
∫∫

S

N∑
n=1

N∑
j=1

ȷ(l +m)AnAje
−ȷ(l+m)τ

4πr1

(
BnBj

r1
cosϕ+ k0

)
exp

(
−s1ξ

2

r1

)

×
[
E1

(
s2ξ

2

r1(r1η + r2)

)
− E1

(
s2ξ

2

r1r2

)]
p2ς(Q)dS. (4.14)

This, (4.14), is the nonlinear NTFF transformation for the second-order sound fields produced

by the scattering of sound by sound enabling the far-field radiation patterns to be determined

for the second-order sound fields from measurements made in the near-field, without requiring a

detailed knowledge of the acoustic source enclosed within the surface.. As previously stated, the

choice of l+m in (4.14) is dependent upon the far-field sound field component of interest (e.g.,

l = k1/k0 or k2/k0 and m = k1/k0, k2/k0, or −k2/k0 selects the second harmonic, sum, and

difference frequencies, respectively). Additionally, since the nonlinear NTFF transformation is

derived from a solution of the KZK equation that is valid in the paraxial region for sound beams

generated from axially symmetric sources propagating in nondissipative fluids, (4.10) is only

valid under similar conditions.

4.3 Measurement with High Powered Acoustic Sources

In this section, the linear and nonlinear NTFF transforms, (4.6) and (4.14), are used to deter-

mine the far-field primary and secondary scattered sound fields, respectively, from near-field

data. These are compared to the response found by calculating the far-field pressure amplitudes

directly using the closed form expansions given in Chapter 3. Section 4.3.2 considers the near-

and far-field amplitude responses for the primary and secondary sound fields generated from a

single uniform planar piston. Similarly, application of the transformation method to determine

the far-field amplitude distribution of the sound fields produced by the scattering of sound

by sound from transducer arrays are investigated in Section 4.3.3. To determine the far-field

radiation patterns in this section, the near-field data is obtained on the surface of the cylinder

enclosing the acoustic source, as shown in Fig. 4.1. Found by either measurement taken inside

of an anechoic chamber [133], as detailed in Section 4.3.1, or calculation using the implicit

backward finite difference method given by [89–91] that employs a set of coupled partial differ-

ential equations to solve Westervelt’s nonlinear wave equation as discussed in Section 2.3, the

data collected within the near-field has less than λ separation between adjacent measurement

points to ensure appropriate representation of the near-field for accurate far-field computations

(Baker [159] reported that less than 0.8λ separation should be used otherwise spurious scallops

arise in the far-field radiation patterns of the primary fields). Under Kirchhoff’s theorem, the
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Figure 4.1: Geometry of coordinate system used in the NTFF transformation. The near-field
points along the closed surface are at an angle α from the x-axis and at a distance a and
elevation y from the source. Similarly, the field point is located at P (R,ψ,θ).

surface of integration in (4.2) should be a completely closed surface, however, if the pressure

amplitudes are negligible away from the paraxial region, a partially closed surface centered

on the axis of radiation can be used. The coordinate system in Fig. 4.1 is employed to define

the relationship between the closed surface in the near-field and the observation point in the

far-field, where the near-field data points along the closed surface are given by (a,α,y) and the

far-field observation point is located at (R,ψ,θ).

4.3.1 Near-Field Measurement Architecture

Similar to the methods utilized to determine the experimental results in Chapter 3, the near-field

data was measured inside of the dual acoustic-RF anechoic chamber using the PCB Piezotronics,

Inc. condenser microphone. Again, the sound fields were transmitted from individual circular

piston sources as well as parametric transducer arrays, as discussed in Sections 4.3.2 and 4.3.3,

with the acoustic sources rotated by a Kaidan Magellan MDT-19 turntable employed to capture
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Figure 4.2: Acoustic measurement system employed to ascertain the near-field data on the
surface of a cylinder enclosing the acoustic sources required by the linear and nonlinear NTFF
transformations to determine the far-field responses discussed in Sections 4.3.2 and 4.3.3.

the measurement of the near-field data along an arc in the XZ plane. The microphone was

attached to an XY scanner controlled by a Newark Systems NSD 2000 high-precision microstep

driver to provide the ability to measure the near-field data at fractions of a wavelength in the

y-axis, thus, yielding the data for a full near-field surface enclosing the acoustic sources when

combined with the turntable rotation, as illustrated in Fig. 4.1, that can be used in (4.6) and

(4.14) to determine the far-field response. The complete measurement configuration is shown

in Fig. 4.2.

4.3.2 NTFF Transformation for a Single Uniform Planar Piston

Acoustic far-field radiation patterns calculated for primary frequencies using the Helmholtz

formula have been shown to produce accurate results for a variety of transducer types operating

in water [158, 159]. A similar method was used to calculate the far-field radiation pattern at

150 m at the fundamental frequency of a high power acoustic signal produced by a piston source

driven at 50 kHz [38,135], shown as the direct profile in Fig. 4.3b. The piston source has a radius

of 22 mm, a moderate pressure amplitude, p0, of 90 dB SPL, and is operating in air with the

corresponding medium parameters: density, ρ0, of 1.2 kg/m3, sound speed, c0, of 343 m/s, and

coefficient of nonlinearity, β, of 1.21. The near-field was measured over a hemisphere at 10λ from

the source with sample points spaced approximately 1
3λ apart, shown in Fig. 4.3a. Evaluating
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Figure 4.3: The primary sound field generated from a 22 mm diameter transducer operating at
f = 50 kHz demonstrating the ability of the linear NTFF transformation, (4.6), to accurately
produce the far-field pressure amplitude from near-field data: (a) the measured near-field data
obtained at 10λ from the source and (b) a comparison of the normalized far-field pressure
amplitude at 150 m obtained using direct calculation and using the linear NTFF transformation
of the measured near-field data.

(4.6), this near-field data was linearly transformed into the far-field yielding the results identified

as NTFF in Fig. 4.3b. The result of the linear transformation follows the general envelope of

the directly calculated far-field radiation pattern; however, the nulls that are produced are not

as deep as those obtained with the directly calculated results. This is a consequence of the

finite number of near-field measurement points used in the transform. We have observed that

increasing the near-field resolution increases the depth of the notches in the results in the far-

field, yielding a closer agreement with the results from direct far-field calculation. Furthermore,

the plane wave and Fraunhofer approximations made in the derivation of (4.6) account for the

minor deviations in the far-field amplitude pressure for the outer sidelobes in Fig. 4.3b.

A more sophisticated use of the NTFF method is the determination of the second-order

sound fields in the far-field. In Figs. 4.4 and 4.5, the solution to the second-order fields in

(4.14) is compared to the results given in [135], where ρ0 = 995.8 kg/m3, c0 = 1497.7 m/s, and

β = 3.59, using the near-field data given in [26] and [27] at 100λ from the source with sample

points spaced approximately 1
5λ apart and shown in Figs. 4.4a, 4.5a, and 4.5c (calculated here

using the implicit backward finite difference method previously discussed). The large transducer

is driven at frequencies f1 = 16 kHz and f2 = 11 kHz for the second harmonic and sum frequency

and at f1 = 15 kHz and f2 = 12 kHz for the difference frequency, where the effective radii of the

transducer at these frequencies are found to be a1 = 0.87 m and a2 = 0.83 m using the method
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Figure 4.4: The pressure amplitudes for the second harmonic: (a) the near-field data at 100λ
from the source used in the nonlinear NTFF transformation and (b) a comparison of the nor-
malized far-field pressure amplitudes produced using the nonlinear NTFF transformation and
direct computation. The radial distance is the distance from the axis normal to the direction
of propagation.

outlined in [186]. Figs. 4.4b, 4.5b, and 4.5d present the normalized pressure amplitudes of the

second harmonic, sum, and difference frequencies, respectively, at a distance of 150 m from

the source generated using the nonlinear NTFF transformation and compared to the previously

published results. Thus, it can be seen from Figs. 4.4 and 4.5 that the results obtained using the

nonlinear NTFF transformation method are in agreement with the directly calculated profile for

the second-order sound fields. The far-field agreement of the transformed and directly calculated

far-field results is high. The close match is a result of the high density of the near-field sampled

data points made possible by calculating the near-field (using the finite difference method).

This can be compared to the more moderate agreement shown in Fig. 4.3b where near-field

samples were experimentally measured using a coarser grid. Additionally, since the nonlinear

NTFF transformation was derived from the KZK equation which is only valid at small angles

in the paraxial region, the transformation is restricted to a similar region of validity. Therefore,

due to this constraint, the far-field NTFF results for the second harmonic in Fig. 4.4b and sum

frequency in Fig. 4.5b begin to develop discrepancies in their pressure amplitudes as the far-field

angle increases off axis. The far-field pressure amplitude of the difference frequency is affected

less by this constraint as the steady slope of the near-field pattern enables a more accurate

integration than that of the second harmonic and sum frequencies. The many sidelobes of the

second harmonic and sum frequency result in less accurate integration, thus, the the far-field
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Figure 4.5: Sound pressure amplitudes for the second-order sum and difference frequencies:
the near-field data at 100λ from the source used in the nonlinear NTFF transformation for (a)
the sum frequency and (c) the difference frequency and a comparison of the normalized far-field
pressure amplitudes calculated using the nonlinear NTFF transformation of the near-field data
found using the implicit backward finite difference method and direct computation for (b) the
sum frequency and (d) the difference frequency. The radial distance is the distance from the
axis normal to the direction of propagation.

radiation pattern determined using the nonlinear NTFF transformation is more accurate for

the difference frequency, shown in Fig. 4.5d, than for the sum frequency, shown in Fig. 4.5b.
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4.3.3 NTFF Transformation for a Parametric Transducer Array

Since the NTFF transformation is valid as long as all sources are within a closed surface,

the method can be applied to parametric transducer arrays given that the surface is large

enough to enclose the entire physical transducer array. Therefore, to verify the accuracy of

the transformation method when applied to arrays, the response of two distinct parametric

transducer arrays is measured in air within the near-field and the transformation employed to

determine their far-field radiation patterns. The first transducer array consists of 19 AirmarTM

AT-50 ultrasonic transducers with a diameter of 31 mm hexagonally arranged with spacing

between the centers of adjacent transducers of 66 mm. The transducers were driven by two tones

with frequencies f1 = 51 kHz and f2 = 49 kHz with primary sound pressure amplitudes p01 =

p02 = 115 dB SPL. The far-field secondary sound fields, with sum frequency fS = 100 kHz and

difference frequency fD = 2 kHz, were calculated at a distance of 150 m from the transducers,

again using the method described in [38,135]. The sound profiles of the primary sound fields and

the nonlinearly generated scattered sound fields were measured in the near-field at a distance

of 25λ from the source (i.e., 17 cm) with sample points spaced approximately 0.9λ apart, given

in Figs. 4.6a, 4.7a, and 4.7c. The NTFF transformations were then employed to evaluate the

measured near-field data yielding the far-field characteristics shown in Figs. 4.6b, 4.7b, and 4.7d.

Fig. 4.6b shows the pressure amplitude of the fundamental frequency at a distance of 150 m

found using (4.6) and Figs. 4.7b and 4.7d show the pressure amplitudes of the sum and difference

frequencies, respectively, at a distance of 150 m found using (4.10). The expected results for the

far-field radiation pattern determined by direct calculation for the 19 element transducer array

can be seen to be close to the results obtained by transforming the near-field measurements.

As with the single transducer, the results of the linear NTFF transform follows the general

envelope of the directly calculated far-field profile, however, there is an inconsistency between

the transformation and directly calculated pressure amplitudes for the first sidelobe. The error

in pressure amplitude is caused by insufficient sampling of the near-field along the horizontal

axis, as the near-field measurements were not extended beyond the active face of the array,

visible in Fig. 4.6a, leading to inaccuracies in the far-field radiation pattern. Additionally, the

second-order far-fields in Figs. 4.7b and 4.7d suffer from similar problems in pressure amplitude

accuracy due to the insufficient near-field sampling, as well as having errors introduced by the

applicability of the KZK equation which become more apparent as the angle increases away

from the direction of propagation. Again, the difference frequency does not encounter similar

pressure amplitude discrepancies from the limitations imposed by the KZK equation since the

near-field integration surface is less complex and the change in far-field amplitude is less than

3 dB.

The second transducer array considered is a 92 cm LRAD-1000XTM long range acoustic
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Figure 4.6: The primary sound field at 51 kHz for the 19 element parametric transducer array:
(a) the near-field data experimentally sampled at 25λ from the source and (b) a comparison
of the normalized far-field pressure amplitudes using the linear NTFF transformation of the
measured near-field data and direct computation.

device from American Technology Corp. that consists of 7 hexagonally arranged circular trans-

ducers each with a diameter of 81 mm and spacing between the centers of adjacent transducers

of 28 cm. The transducers are driven at the lower frequencies of f1 = 4 kHz and f2 = 3 kHz

with primary sound pressure amplitudes p01 = p02 = 140 dB SPL producing a sum frequency

fS = 7 kHz and difference frequency fD = 1 kHz. Again, the near-field data is measured in-

side of the anechoic chamber at a distance of 10λ (i.e., 98 cm) from the source with sample

points spaced approximately 1
10λ apart and shown in Figs. 4.8a, 4.9a, and 4.9c. Figs. 4.8b,

4.9b, and 4.9d describe the pressure amplitudes of the fundamental, sum, and difference fre-

quencies, respectively, at a distance of 150 m from the LRAD and are shown to agree with the

expected results found via direct computation. As with the first transducer array, the far-field

radiation pattern for the fundamental frequency in Fig. 4.8b was generated using (4.6) while

the secondary sound fields in Figs. 4.9b and 4.9d were generated used (4.10). The far-field

radiation pattern found using the linear NTFF transformation for the fundamental frequency

generated by the LRAD experiences the same inaccuracies in the pressure amplitude of the first

sidelobe as the 19 element transducer array. As before, the size of the measurement surface in

the near-field was insufficient, due to the constraints caused by the physical dimensions of the

transducer array inside of the anechoic chamber, yielding amplitude errors in the far-field of

both the primary and secondary sound fields. Again, it is evident from the discrepancy between

the nonlinear transformation and directly calculated far-field results as the angle increases away
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Figure 4.7: Sound pressure amplitudes for the second-order sum and difference frequencies
generated from the 19 element parametric transducer array: the near-field data experimentally
sampled at 25λ from the source for (a) the sum frequency and (c) the difference frequency
and a comparison of the normalized far-field pressure amplitudes calculated using the nonlinear
NTFF transformation of the measured near-field data and direct computation for (b) the sum
frequency and (d) the difference frequency.

from the propagation axis for the sum frequency in Fig. 4.9b that as the accuracy of the KZK

equation declines, so does the accuracy of the nonlinear NTFF transform. Additionally, the

nonlinear transformation of the difference frequency is, once again, in excellent agreement with

the directly calculated results as the far-field radiation pattern varies by less than 1 dB across

the computed region.

Therefore, as is suggested by Kirchhoff in his theorem, Figs. 4.6, 4.7, 4.8, and 4.9 show that
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Figure 4.8: The primary sound field for the LRAD parametric transducer array: (a) the near-
field data experimentally sampled at 10λ from the source and (b) a comparison of the normal-
ized far-field pressure amplitudes calculated using the linear NTFF transformation and direct
computation.

solutions to (4.2) remain valid for determining the far-field radiation patterns of multiple sources

as long as all sources are contained within the closed surface used for integration. There are slight

discrepancies, however, between the directly calculated results and the NTFF transformation

for the amplitude of the first sidelobe of the primary sound field from the transducer arrays.

This is due to the plane wave approximation for the change in the pressure normal to the

source, ∂p/∂n = ȷkp, and the Fraunhofer approximation made in the derivation of the solution

given in (4.6). Additionally, the KZK equation is strictly valid only for sound beams and the

accuracy decreases at large angles from the primary axis; thus, the second-order solutions suffer

similar accuracy disparity at large off-axis angles, which can be seen in Figs. 4.7b and 4.9b.

Insufficient near-field sampling, particularly when measurements do not exceed the dimensions

of the active face of the acoustic source, can also significantly effect the accuracy of the linear

and nonlinear NTFF transformations.

4.4 Summary

A nonlinear near-to-far-field, NTFF, transformation was presented that accurately models the

far-field characteristics of second-order acoustic fields produced by the scattering of sound by

sound. Using solutions to the KZK nonlinear parabolic wave equation in place of Kirchhoff’s

solution to the linear Helmholtz equation, it was shown that the expressions for the NTFF
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Figure 4.9: Sound pressure amplitudes for the second-order sum and difference frequencies
generated from the LRAD parametric transducer array: the near-field data experimentally
sampled at 10λ from the source for (a) the sum frequency and (c) the difference frequency
and a comparison of the normalized far-field pressure amplitudes calculated using the nonlinear
NTFF transformation of the measured near-field data and direct computation for (b) the sum
frequency and (d) the difference frequency.

transformation yield solutions for the second-order sound fields (i.e., second harmonic, sum, and

difference frequencies) that agree with previous theoretical and experimental results. It was also

shown that the transformation remains valid when multiple sources are enclosed within the near-

field surface enabling its use with more complex acoustic sources, such as parametric transducer

arrays, as long as the sources are axially symmetric. Since the nonlinear NTFF transformation,

(4.10), was derived from a solution of the KZK equation, the validity of the transformation
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is similar to that for the KZK equation, particularly its restriction to the paraxial region.

Computationally, the NTFF transformation is comparable to the results from direct calculation

in terms of time and memory. Deviations between the far-field radiation patterns produced

by the NTFF transformation and the expected results arise from the approximations made

in derivations of (4.6) and (4.10), particularly the plane wave and paraxial approximations;

however, the general envelope of the NTFF transform provides an accurate portrayal of the

far-fields generated by the acoustic sources.

The NTFF transformation yields accurate far-field characteristics given that the near-field

data is sampled properly. The sampled near-field data must have less than λ separation be-

tween adjacent measurement points to produce valid results from the transformation. As the

separation between the sampled points decreases, the accuracy of the far-field results increases,

in particular, the depth of the nulls in the far-field response determined by the NTFF trans-

formation increases thereby providing a closer agreement with the results from direct far-field

calculation. Additionally, the sampled near-field data should compose a completely closed sur-

face containing the acoustic source, however, a partially closed surface can be utilized given

that the pressure amplitudes outside of the surface are negligible. If the sampled surface does

not exceed the dimensions of the active face of the acoustic source, thus yielding an insufficient

sampling in the near-field, significant errors are introduced into the results of the transforma-

tion. The location of the near-field surface is also critical to a proper sampling of the near-field

data. The surface must reside at a sufficient distance from the acoustic source to allow for the

sound wave to travel multiple wavelengths but not far enough away to begin to approach the

Fraunhofer distance, which denotes the boundary of the far-field.

As the ability to determine the far-field characteristics of higher-order sound fields has grown

in importance with their increased use in a variety of applications, the NTFF transformation

provides the unique capability of computing the far-field radiation patterns of an acoustic

source by requiring measured or calculated information only from the near-field of the source.

The primary interests when analyzing sound field radiation patterns are the directivity of the

main beam and the sidelobe levels, both of which are accurately calculated in the far-field under

conditions in which the KZK equations is valid using the NTFF transformation. Of the first-

and second-order sound fields, the difference frequency signal holds significant importance as

the primary, harmonic, and sum tones will be rapidly attenuated in mediums such as air and

water when the frequencies of the primary tones are sufficiently high. Additionally, the difference

frequency has high directivity but it is often impractical to physically measure the profile of

this signal’s far-field response. The work presented in this chapter enables the determination

of far-field acoustic radiation pattern of the difference frequency, along with the other second-

order sound fields, by using near-field data easily obtained through computationally simple

calculation or practical measurement.
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Chapter 5

Near-Field Radio Frequency

Scattering from Vibrating

Structures in an

Acoustically-Excited Environment

5.1 Introduction

The previous chapters addressed limitations in the practical implementation of acousto-EM

sensing schemes by developing improved methods for determining the acoustic radiation pat-

terns generated from a variety of sound sources. This chapter, however, will enhance the under-

standing of the fundamental processes that produce the nonlinear interaction between acoustic

and EM waves by developing a mathematical description of the modulation induced on an EM

signal by the periodic change in the medium characteristics due to the propagation of a high

powered acoustic wave, experimentally verifying the model using bistatic radar and a long range

acoustic device (LRAD) for the generation of high powered acoustic waves.

Radio frequency (RF) signals have long been used for probing, characterizing, and identify-

ing targets in a variety of sensing applications, including interferometry [107], navigation [86],

and ground penetrating radar (GPR) [108]. However, the use of RF signals in many detection

schemes, particular GPR, is greatly limited by the typically low contrast between the target

object and the background environment. As a means of improving the distinction between an

object and its surrounding environment, recent works have proposed using an acoustic or seismic

wave to induce a mechanical vibration on the object, thereby modulating a scattered electro-

magnetic (EM) signal and enhancing the interrogated object contrast [3–5, 7, 11, 88, 102, 121].
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The resultant reflected and scattered RF signals are modulated with characteristics unique to

the structure and composition of the vibrating object; thus, providing information about the

structure of the target as well as distinguishing it from clutter.

Acoustically- or seismically-induced mechanical vibrations of buried objects tend to be in

the one hertz to hundreds of hertz region so that the modulation sidebands on the scattered EM

signal are very close in frequency to the relatively large, directly reflected transmitted signal

which, for many cluttered or embedded environments, is usually very large. This is a common

problem arising when attempting to employ acousto-EM sensing schemes as the acoustically- or

seismically-excited mechanical vibrations often lead to low-level close-in modulated sidebands

from objects such as landmines.

This chapter considers an additional sensing modality beyond the Doppler effect and more

commonly examined effects, such as path loss, radar cross section, and special relativity, arising

from the scattering of an EM wave by a propagating high powered acoustic wave in the medium

and develops a theoretical analysis that enables the various near- to mid-field sensing modalities

to be compared. Enhanced detectability and identifiability of reflected radar returns embodying

scattering resulting from mechanical vibrations and rotations from targets such as aircraft is

well known [187]; however, in these cases, the modulating signal is often hundreds of hertz

to many tens of kilohertz with a distant target and the clutter environment is typically much

less severe than with ground-based sensing. Exploitation of the induced acousto-EM interaction,

therefore, enables the improvement of RF probing in near-field non-contact characterization and

stand-off non-destructive evaluation applications, such as landmine detection [3, 4, 7], medical

imaging [11], and structural integrity evaluation [11,88].

Considerable effort has been put into understanding the scattering of an RF signal by a vi-

brating structure [110–118]. Borkar and Yang [110] developed solutions for the fields scattered by

oscillating plane and cylindrical surfaces. Kleinman and Mack [111] presented solutions account-

ing for the Doppler shift when determining the fields scattered by linearly vibrating objects.

De Zutter [112] investigated the effect of translational motion in the generation of a scattered

RF field and Cooper [113] and Gray and Addison [117] considered the effect of nonuniform mo-

tion on the resultant EM spectrum. Van Bladel and De Zutter [114] and De Zutter [115] derived

solutions for the scattered fields from sinusoidally moving plates interrogated at normal and

oblique incidences, respectively. From these works it can be seen that sidebands in the scattered

EM spectrum resulting from a vibrating surface has traditionally been attributed solely to the

Doppler effect. This assumption that the Doppler effect is the singular physical mechanism in

which a scattered spectrum is generated has also been extended to a variety of applications in

order to account for EM scattering from vibrating objects, particularly radar [116–118].

A major issue in developing an understanding of the effects of acousto-EM scattering is

that numerical analyses of the scattering processes, particularly for motions that are more com-
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plex, provide little intuition into the fundamental mechanism generating the scattering, as the

analyses are typically limited to full-field EM solutions [5,7,188] or to arbitrary waveform analy-

sis [117,118]. Experimental investigations also provide little insight since many of the identifying

characteristics of the reflected RF signal (i.e., vibration-induced modulation of the signal) occur

at small signal levels that are not detectable because of the limited dynamic range of traditional

sensors. With recent developments in sensor technologies due to enhancements in analog can-

cellation techniques, however, the dynamic range of RF sensors has greatly improved, thereby

enabling better detection of low-frequency and low-level sideband modulation in a reflected

signal [102,119–122]. Therefore, with the improved detection capabilities, fundamental physical

processes that result in the scattering of an RF signal that were previously undetectable, such

as modulations induced by medium fluctuations due to a propagating acoustic wave, can be

examined. This understanding of the fundamental sensing limits of RF systems can prove use-

ful in the determination of new sensing modalities that utilize responses in a physical domain

orthogonal to the RF sensing probe, such as is the case with acousto-EM interactions.

This chapter presents an analytical description of the scattering of an RF signal from fluc-

tuations in the electrical properties of the embedding medium caused by the propagation of

an acoustic wave. This enhances the understanding of the fundamental physics behind the the

generation of scattered EM fields produced by the nonlinear interaction of acoustic and EM

waves in an acoustically-excited environment. Section 5.2 theoretically develops an analytical

solution for the modulation effects introduced when a high-powered acoustic wave propagates

through a medium to induce vibrations on a structure and compares the analytical results

with the predominant modulation effects emerging as a direct result of an object vibrating,

including Doppler phase modulation and amplitude modulation due to special relativity, path

loss, and radar cross section (RCS). Section 5.3 describes the detection of acoustically-induced

modulation of an RF signal using zero span frequency measurement as an alternative approach

to measure the modulation sideband power over time instead of over a frequency range. Sec-

tion 5.4 demonstrates that the analytical solutions for the combined modulation effects are in

good agreement with near-field radar scattering measurements while providing key insights into

the fundamental physics behind the production of the scattered RF signals due to presence of

high powered acoustic waves.

5.2 Radio Frequency Scattering from Medium Property Fluc-

tuations due to High Powered Acoustic Sources

Conventional analysis of interacting acoustic and EM waves attributes the generation of the

resultant scattered EM fields solely to the Doppler effect, as the sinusoidal vibrational motion
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induced on an object by the incident acoustic waves shifts the frequency of an RF signal, as

discussed in Section 2.4.1. A recent investigation [109] reexamining the fundamental physical

mechanisms that result in the scattering of an EM signal in an acoustically-excited environment

focused primarily on modulation effects resulting directly from vibrations induced on a target,

as detailed in Section 2.4.2, however, when an acoustic or seismic wave induces vibrations, the

electrical properties of the embedding medium, especially its permittivity, fluctuate. Thus, a

complicating modulated signal will be introduced into the clutter return. As the sound wave

propagates, the dielectric constant of the medium, ϵ(t), varies periodically due to density varia-

tion created by the traveling pressure wave. This can be expressed mathematically as [189,190]

ϵ(t) = ϵ0ϵr [1 + δ(t)] , (5.1)

where

δ(t) =
KpA(t)

ϵr
=
pA(t)

ρ0c2A

(ϵr − 1)(ϵr + 2)

3ϵr
(5.2)

is the amplitude fluctuation of the permittivity, K is a constant of proportionality obtained

as an approximation of the Lorentz-Lorenz relation, pA(t) is the propagating acoustic pressure

at a particular position, ϵ0 is the free-space permittivity, and ϵr, ρ0, and cA are the at-rest

relative permittivity, density, and the acoustic sound speed of the medium, respectively. It can

be seen from (5.2) that the fluctuations in permittivity are directly proportional to the acoustic

frequency and amplitude over time. Therefore, an EM signal in the sound perturbed medium

will experience modulation corresponding to the frequency of the propagating acoustic signal,

ωA, and its harmonics.

Assuming that the transmitted RF signal is a linearly polarized plane wave traveling in the

z direction, Maxwell’s equations in the absence of sources become

∂Ey(t)
∂z

=
∂Bx(t)

∂t
,

∂Hx(t)

∂z
=
∂Dy(t)

∂t
, (5.3)

where the constitutive relations for the nonmagnetic medium, incorporating (5.1), are given by

Dy(t) = ϵ(t)Ey(t) = ϵ0ϵr

[
1 +

pA(t)

ρ0c2A

(ϵr − 1)(ϵr + 2)

3ϵr

]
Ey(t), (5.4)

Hx(t) =
1

µ0
Bx(t). (5.5)

Realizing that the acoustic frequencies will be relatively close to the RF carrier so that the

differentiation of the EM signal with respect to time may be simplified in the phasor form to

−ȷωRF, the wave equation describing the propagation of the RF signal in the sound perturbed
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medium can be written

∂2Ey(tA)
∂z2

+ k2RFϵr

[
1 +

pA(tA)

ρ0c2A

(ϵr − 1)(ϵr + 2)

3ϵr

]
Ey(tA) = 0, (5.6)

where kRF = ωRF/c is the free-space EM wave number and Ey(tA) is the phasor of the y-directed
E field varying slowly at the acoustic time scale, tA.

If the periodic acoustic pressure wave, pA(t), is defined as having a radian frequency and

wavenumber of ωA and kA = ωA/cA, respectively, so as to be expressed

pA(t) =
∞∑
n=1

pn cos(nωAt) cos(nkAz), (5.7)

where pn is the amplitude of the acoustic source at the n-th harmonic, then it can be seen

that the EM wave equation in (5.6) takes the canonical form of Mathieu’s differential equation,

written in a generic form as
∂2y

∂z2
+ [a− 2q cos (2z)] y = 0. (5.8)

Therefore, by following the method in [189] to solve Mathieu’s differential equation, a solution

for the acoustically-modulated EM wave equation can be found as

s(t) = a0 cos (ωRFt+ kRF
√
ϵrz)

×

{
1 +

∞∑
n=−∞
n ̸=0

2pn (kRF/nkA)
2 (ϵr − 1)(ϵr + 2)

3ρ0c2A

[
1− 4 (kRF/nkA)

2 ϵr

] cos(nωAt) cos(nkAz)

}
, (5.9)

where a0 is an amplitude term. Thus, from (5.9), it is seen that an RF signal propagating

in a sound perturbed medium will be amplitude modulated by the acoustic signal. Therefore,

by omitting the attenuation terms as the signal propagates, an expression for the modulation

signal when considering acoustically-induced fluctuations in a medium can be written

s(t) = AAcoust(t) cos(ωRFt). (5.10)

Examining (5.9), a simple expression for the normalized amplitude modulation can then be
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obtained as

A′
Acoust(t) = 1 +

∞∑
n=−∞
n ̸=0

2pn (kRF/nkA)
2 (ϵr − 1)(ϵr + 2)

3ρ0c2A

[
1− 4 (kRF/nkA)

2 ϵr

] cos(nωAt)

= FAcoust,0 + 2

∞∑
n=1

FAcoust,n cos(nωAt) (5.11)

with Fourier coefficients

FAcoust,0 = 1, FAcoust,n =
pn (kRF/nkA)

2 (ϵr − 1)(ϵr + 2)

3ρ0c2A

[
1− 4 (kRF/nkA)

2 ϵr

] . (5.12)

Substituting (5.11) and (5.12) into (5.10), the received modulated signal can be written

s′(t) =

[
FAcoust,0 + 2

∞∑
n=1

FAcoust,n cos(nωAt)

]
cos(ωRFt)

= FAcoust,0 cos(ωRFt) +
∞∑
n=1

FAcoust,n cos [(ωRF ± nωA)t] . (5.13)

Thus, the amplitude of the n-th acoustic AM sideband tone relative to the RF carrier tone is

AAcoust,n =
pn (kRF/nkA)

2 (ϵr − 1)(ϵr + 2)

3ρ0c2A

[
1− 4 (kRF/nkA)

2 ϵr

]
=
pn (λA/nλRF)

2 (ϵr − 1)(ϵr + 2)

3ρ0c2A

[
1− 4 (λA/nλRF)

2 ϵr

] , (5.14)

where λA is the acoustic wavelength in the medium and λRF is the free-space EM wavelength.

Note that when a vibrating structure is acoustically excited, the frequency of vibration is

that of the acoustic frequency (ωV = ωA). Thus, the vibration induced modulation and the

modulation produced by the acoustic wave in an embedding medium are at the same frequency.

Thus, it can be seen that the effect of the propagating pressure wave on the characteristics of

a medium causes modulation on an RF carrier. The amplitude of the modulation due to acoustic

propagation is directly proportional to the sound pressure level of the wave and, therefore, this

modulation effect can be magnified by the use of high powered acoustic sources. Additionally,

there is a resonance point corresponding to when the RF wavelength is equal to 2/n of the

acoustic wavelength,
2

n

λA
λRF

√
ϵr = 1. (5.15)
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Therefore, for a lossless medium, the solution for the modulation induced by a propagating

acoustic wave will mathematically blow up under the condition in (5.15). However, in prac-

tical application where the medium is lossy, the amplitude of the resonance will be limited.

To minimize the situation where the permittivity modulation effect masks detection of an

acoustically-excited vibrating target, the RF wavelength in the medium, λRF/
√
ϵr, should not

be submultiples of twice the acoustic wavelength. However, in some circumstances, it may be

desirable to maximize the coupling of the acoustic and RF waves in a medium in which case

the RF wavelength should be twice the acoustic wavelength.

5.2.1 Comparison with Other Acousto-Electromagnetic Modulation Effects

To determine the significance of the modulation due to acoustically-induced medium fluctua-

tions, the results derived in Section 5.2 were compared to the phase and amplitude modulations

that appear on a signal propagating in an acoustically-excited environment and reflected from

a vibrating surface, particularly a linearly vibrating plate, as discussed in Sections 2.4.1 and

2.4.2. By combining all of these effects, the modulated received signal for an acoustically-induced

linearly vibrating plate can be written

s(t) = α0AAcoust(t)APL(t)ARCS(t)γ(t) cos [ωRFt− ϕDoppler(t)] , (5.16)

where

APL(t) = 1 +

∞∑
n=1

(
2(n+ 1)

2n

)(
dV
R0

)n

cos (nωV t) , (5.17)

ARCS(t) = 1 +

∞∑
n=1

2(2π)n

(n+ 1)!

(
aφ/2

λRF

)n

cos (2nωV t) , (5.18)

γ(t) = 1 +

∞∑
n=1

4πn
(
dV
λV

)n

cos (nωV t) , (5.19)

are the amplitude modulations due to path loss variation, a rocking target, and special relativity,

as given by (2.103), (2.110), and (2.97), respectively, ϕDoppler(t) is the phase modulation from

the Doppler effect yielding the reflected signal, as given by (2.94),

s(t) =
∞∑
n=1

(2π)n

n!

(
dV
λRF

)n

cos
[
(ωRF ± nωV )t± nπ

2

]
, (5.20)

AAcoust(t) is amplitude modulation from propagation in the sound perturbed medium, as given

by (5.11), and α0 is a constant accounting for transmitted power, non time-dependent effects,

and amplitude solution of the Mathieu’s equation for path loss, radar cross section, and medium
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fluctuations, respectively. Therefore, substituting the Fourier series expansions for (5.11) and

(5.17)–(5.20) into (5.16), and assuming that the AM effects are multiplicative, the normalized

signal becomes

s′(t) =

[ ∞∑
n=−∞

ADoppler,n cos
(
ωRFt+ nωV t+ n

π

2

)]

×

[
FAcoust,0 +

∞∑
n=1

FAcoust,n cos(nωAt)

]

×

[
FPL,0 +

∞∑
n=1

FPL,n cos (nωV t)

]

×

[
FRCS,0 +

∞∑
n=1

FRCS,n cos(2nωV t)

]

×

[
Fγ,0 +

∞∑
n=1

Fγ,n cos (nωV t)

]
, (5.21)

which is a similar expression for the normalized signal due to the combined modulation effects

given in [109] with the addition of the AM due to a sound perturbed medium. Following a

similar development as performed in [109], (5.21) can be simplified to

s′(t) ≈

[ ∞∑
n=−∞

ADoppler,n cos
(
ωRFt+ nωV t+ n

π

2

)]

+

[ ∞∑
n=1

FPL,n cos (nωV t)

]
cos (ωRFt)

+

[ ∞∑
n=1

FAcoust,n cos(nωAt)

]
cos(ωRFt)

+

[ ∞∑
n=1

FRCS,n cos (2nωV t)

]
cos(ωRFt)

+

[ ∞∑
n=1

Fγ,n cos (nωV t)

]
cos (ωRFt) , (5.22)

since the zero-order terms in the Fourier series expansions of the contributing modulation mech-

anisms are approximated as unity resulting in a single first-order term for each of the processes

discussed with additional modulation tones that are the product of the higher-order Fourier

coefficients of multiple modulation mechanisms; however, these higher-order products have am-

plitudes that are much lower than those produced by a single process alone and, therefore,

can be discarded. Using trigonometric expansions to combine the carrier and modulated signal
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frequencies, the normalized modulated signal can be further simplified as

s′(t) ≈ cos(ωRFt)

+
∞∑
n=1

[
ADoppler,n cos

(
ωRFt± nωV t± n

π

2

)]
+

∞∑
n=1

[AAcoust,n cos (ωRF ± nωA) t]

+

∞∑
n=1

[APL,n cos (ωRF ± nωV ) t]

+

∞∑
n=1

[ARCS,n cos (ωRF ± 2nωV t)]

+

∞∑
n=1

[Aγ,n cos (ωRF ± nωV ) t] . (5.23)

Therefore, the AM due to fluctuations in the medium is accounted for as a simple addition to the

previously reported modulation effects. It is important to note, again, that when the vibrations

are acoustically-induced, ωV = ωA and the modulation tones occur at the same frequencies.

For a comparison of the results of the modulation processes, the modulation due to the

acoustically-induced medium fluctuations is added to the presented summary of modulation

tone amplitudes given by Table 4.1 in [109], shown here in Table 5.1. While the sideband tone

amplitudes for Doppler PM, special relativity AM, and path loss AM are all proportional to

the vibrational amplitude raised to the order of the tone, for the case of an acoustically-induced

linearly vibrating plate, the acoustic AM is proportional to the pressure of the harmonic tone

and the ratio of the acoustic and RF wavelengths. For moderate acoustic pressure levels, the

phase modulation introduced by the Doppler effect remains the most dominant as ωRF ≫ ωV

and R0 ≫ λRF, thereby minimizing the contributions from special relativity, path loss, and

acoustically-induced medium fluctuation modulations. However, as the amplitude of the sound

pressure increases, as is the case with high powered acoustic sources, the modulation from the

acoustic excitation of the medium becomes more important since the amplitude is proportional

to the acoustic pressure level. Fig. 5.1 is a comparison of the modulation powers of each of

the processes relative to the RF carrier for the first eight modulation tones, as an extension of

Fig. 4.4 in [109] using similar input parameters, where dV = 3
100λRF, R0 = 3λRF, λRF = 1

3 m,

and fV = fA = 2 kHz which represent a ground penetrating radar operating at 900 MHz,

with 1 m standoff from an object vibrating with an amplitude of 1 cm at 2 kHz. (2.94), (2.97),

(2.103), and (5.11) were employed to produce the plots in Fig. 5.1, with the sound pressure

level p0 at the source in (5.11) being 100 dB SPL where the subsequent harmonic pressure
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Table 5.1: Comparison of sideband tone power for various modulation types normalized to
the RF carrier. The sideband amplitude is normalized to the primary unmodulated RF signal
amplitude.

Normalized n-th

Type, equation order tone amplitude valid n

Doppler PM, (2.94)
(2π)n

n!

(
dV
λRF

)n

n = 1, 2, ...

Special Relativity AM, (2.97)
2

2n

(
dV
λV

)n

n = 1, 2, ...

Path Loss AM, (2.103)
n+ 1

2n

(
dV
R0

)n

n = 1, 2, ...

Rocking AM, (2.110)
(2π)n

(n+ 1)!

(
aφ/2

λRF

)n

n = 2, 4, ...

Acoustic AM, (5.14)

pn(ϵr − 1)(ϵr + 2)

(
λA
nλRF

)2

3ρ0c2A

[
1− 4

(
λA
nλRF

)2

ϵr

] n = 1, 2, ...

levels, pn, are found using the methods described in [25, 135]. While the contribution from the

acoustic AM is minimal under these conditions, it can be seen that by increasing the sound

pressure level closer to the threshold in which shock waves appear (roughly 194 dB SPL), the

modulation amplitude steadily approaches that produced by the Doppler effect. The significance

of this effect will be further analyzed in Section 5.4 whereby a high powered acoustic source

is utilized to induce vibrations on an aluminum annular disc creating conditions in which the

amplitudes of the modulation tones produced by the Doppler effect and acoustically-induced

medium fluctuations are separated by less than 6 dB.

5.3 Vibration Modulation Detection from Stand-off Excitation

The improved detection of modulation sidebands on RF signals has been enabled by advance-

ments in analog cancellation techniques that have increased the dynamic range capabilities of

sensor systems, particularly for low-level low-frequency modulations, as discussed in Section 2.5.

While these advancements have facilitated the detection and characterization of many nonlin-

ear effects typically below the noise floor of conventional sensing systems, they often require
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Figure 5.1: Expected power relative to the RF carrier tone of the first eight normalized mod-
ulation sideband tones for an acoustically-induced linearly vibrating plate using dV = 0.03λRF,
R0 = 3λRF, λRF = 1

3 m, and fV = 2 kHz

the systems to operate solely in the frequency domain due to the time constraints imposed

by the process of canceling the carrier signal and sweeping the desired frequency span with a

narrow resolution bandwidth. However, for the measurement of vibrational responses due to

acoustic excitation, this is often inadequate as systems employing sound fields commonly pulse

the acoustic signals, thus, a transient measurement is needed to capture the pulsed response

over time. Therefore, Sections 5.3.1 and 5.3.2 develop an implementation of a zero span fre-

quency measurement for the high dynamic range nonlinear measurement system developed by

Wilkerson, Wetherington, and Steer [109, 119, 120, 126], thereby extending the capabilities of

the current system to include transient measurement.

5.3.1 Measurement Architecture

Zero span frequency measurement extends the capabilities of the current architecture of the high

dynamic range nonlinear measurement system [109, 119, 120, 126] by taking a pseudo-transient

approach for determining the measured transient response. To implement this approach, the

cancellation algorithm of the system is utilized to obtain the initial cancellation of the RF

carrier, which requires some time to achieve, as discussed in Section 2.5, followed by the con-
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Figure 5.2: Block diagram of the pseudo-transient zero span frequency measurement architec-
ture as an extension of the analog canceller used in the high dynamic range nonlinear measure-
ment system.

tinuous measurement of the received power over time. Once the cancellation is realized, the

In-phase (I) and Quadrature-phase (Q) components of the received signal are measured us-

ing the NI PXI-5660 RF Vector Signal Analyzer, which is comprised of the NI PXI-5600 RF

Downconverter and NI PXI-5620 Intermediate Frequency (IF) Digitizer. The canceled signal,

obtained using the feedforward analog cancellation implementation shown in Fig. 2.7, is down-

converted to an intermediate frequency which is then shifted to baseband and centered around

DC by mixing the signal with a local oscillator. A lowpass filter is then applied to eliminate

any higher frequency spectral content and the resultant signal is decimated to obtain the I/Q

data, as shown in Fig. 5.2. With this implementation, the system can be configured to perform

transient measurements by specifying the desired center frequency, filter bandwidth for which

the zero span frequency measurement will record the power, and duration of time for which to

acquire the I/Q data (see Appendix B.2 for more detail on configuring the system for transient

measurement).

5.3.2 Zero Span Frequency Measurement

The ability to capture transient data was incorporated into the high dynamic range nonlinear

measurement system using a zero span frequency measurement. Zero span frequency measure-

ment is a measurement configuration offering the ability to effectively measure the power in

a frequency band as a function of time. Rather than perform a power versus frequency sweep

using a narrow resolution bandwidth across a given frequency span, the zero span frequency

measurement centers a filter at the frequency of the signal of interest and measures the power

across the entire bandwidth versus time, thereby enabling a response to be evaluated in the time

domain. The analog canceller was developed for a steady-state operation, as its current imple-

mentation requires several iterations of the cancellation algorithm to occur while the spectrum
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analyzer slowly sweeps the desired frequency span with a very narrow resolution bandwidth

making instantaneous measurement infeasible. Therefore, to enable a transient measurement,

the cancellation process of the measurement system is performed and, after the proper can-

cellation is found, held at the canceled state while the zero span frequency measurement is

performed over the desired length of time.

This pseudo-transient approach enables the response of the system in the time domain to

be measured, however, several limitations remain in generating the time domain responses. The

accuracy of the cancellation is temporary, as the phase and amplitude will drift over time in-

creasing error and deteriorating the cancellation of the carrier signal. Therefore, the maximum

measurement length must be limited in this approach to avoid the introduction of errors as the

quality of the cancellation diminishes. Additionally, the zero-span frequency measurement cap-

tures the spectral content within a specified bandwidth centered at the transmitted frequency,

however, in the case where acoustically-induced vibrations create modulation sidebands that

are close in frequency to the transmitted RF carrier, the bandwidth of the filter is larger than

the distance between the transmitted frequency and the modulation frequency. Therefore, the

power levels detected with the zero span frequency band include both the transmitted signal

as well as the sideband signals, thereby yielding a transient signal response with a noise floor

equivalent to the canceled power level of the carrier, making the ability to measure low-level

modulation sidebands difficult.

5.4 Spectral Measurement

To verify the theoretical developments in Section 5.2 and examine the transient capabilities

introduced by the zero span frequency measurement, modulation effects within an acoustically-

excited environment were explored using a long range acoustic device (LRAD), capable of

generating sound waves up to 155 dB SPL, to excite an aluminum annular disc with a diam-

eter of 17.5 cm and thickness of 1.2 cm inside of the dual acoustic-RF anechoic chamber, as

detailed previously in Section 3.4.1, with the experimental setup as shown in Fig. 5.3. The high

dynamic range nonlinear measurement system was configured as a bistatic radar operating at

915 MHz transmitting 1 W total power at a standoff distance of 2 m from the disc, which was

hung horizontally and supported by two looped threads positioned through the center of the

disc. To generate the largest vibrational displacement, the plate was acoustically-excited at its

mechanical resonance of 2.18 kHz using the LRAD, which provided an incident sound pressure

level of 130 dB SPL yielding a surface displacement of 1.5 µm. The mechanical resonance was

found by producing a linear frequency modulation (LFM) chirp signal, a pulsed signal which in-

creases in frequency over time, to excite the disc over a large frequency range with the resultant

vibrational response measured using a laser Doppler vibrometer (LDV).
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Figure 5.3: Top view of the experimental setup for the bistatic radar measurement of the
vibrating plate acoustically-induced by an LRAD.

Under these conditions, the solution for the combined modulation effects in (5.23) is com-

pared to the results obtained using the bistatic radar detailed above. Fig. 5.4 shows the theo-

retical and experimental resultant power spectrums where it can be seen that the modulation

offset on either side of the RF carrier is equivalent to the acoustic excitation frequency. The

modulation sideband power levels predicted by (5.23) are highly accurate, producing a very

good agreement with the measured results. It is important to note that the discrepancy be-

tween the RF carrier power levels for the predicted and measured results is due to reporting the

RF carrier power level before and after cancellation, respectively. Additionally, as predicted, the

higher-order tones were well below the dynamic range of the measurement system and, there-

fore, could not be detected. Thus, it can be seen that the model equations, (5.23), can accurately

represent the modulation effects on an RF signal within an acoustically-excited environment.

In contrast to the conditions considered previously in Fig. 5.1, the amplitude modulation

contributions are much more significant as the relative power of the contributions from Doppler

PM, path loss AM, and AM due to medium fluctuations for the first tone are separated by

less than 6 dB, whereas contributions from special relativity and RCS remain negligible. This

is a consequence of the fact that the actual surface displacement generated on an object by

an incident acoustic wave is relatively small, 1.5 µm in this scenario, thereby decreasing the

absolute difference in power between the modulation effects generated from the vibrations on

the surface of the object (i.e., Doppler PM, special relativity AM, and path loss AM). The
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Figure 5.4: Measured narrowband RF power spectrum showing the modulation of an RF carrier
at 915 MHz by an acoustic excitation tone at 2.18 kHz compared to the expected model results,
i.e., using (5.23). On this scale, the predicted spectrum consists of the RF carrier at 0 kHz
and the modulation tones offset from the carrier at ±2.18 kHz. Except for noise evident in the
measured results, the responses are almost identical.

achievable level of surface displacement is heavily dependent upon the material properties of

the object and the medium in which the acoustic wave is propagating. For instance, in air,

the majority of the acoustic power incident upon a metal object is reflected with only a small

portion of the incident power being transmitted to the object, thus yielding very little surface

displacement. This can be further exacerbated if the mass of the object increases, as the amount

of power required to initiate the displacement of larger, heavier objects increases proportionally.

Therefore, when vibrations are acoustically-induced, AM has a much larger influence on the

overall generated modulation, with the dominance of Doppler PM being significantly reduced.

By employing the zero span frequency measurement system detailed in Section 5.3, the

transient response of the aluminum annular disc was measured, as shown in Fig. 5.5. Fig. 5.5a

is the measured frequency response of the disc during acoustic excitation, similar to the results

produced in Fig. 5.4, and Fig. 5.5b is the corresponding transient response for a single mod-

ulation sideband while the acoustic source was pulsed. The modulation sidebands are present

while under acoustic interrogation, however, when the excitation ceases the sideband power

levels ring down at the mechanical resonance of the object, which can be seen in Fig. 5.5b as
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Figure 5.5: Measured response showing the modulation of an RF carrier at 915 MHz by an
aluminum annular disc excited at its mechanical resonance of 2.18 kHz in the (a) frequency
and (b) time domains. The transient response in (b) was found using a zero span frequency
measurement centered around a single modulation sideband.

the power level reduces to the noise floor when the excitation is terminated. Since the modula-

tion sideband is close in frequency to the RF carrier, the power in the filter band of the zero

span frequency measurement includes the carrier resulting in power levels higher than that of

the modulation sideband. This undesirable effect can be avoided by introducing filters into the

nonlinear measurement system that have much smaller bandwidths, capable of isolating narrow

frequency ranges of only a few kilohertz when operating at mega- and gigahertz frequencies.

5.5 Summary

Analytical descriptions of the fundamental physical mechanisms of RF scattering by a vibrating

object in an acoustically-excited environment were explored. It was shown that the interaction

between a vibrating structure and an incident EM wave produces modulation sidebands de-

tectable on a reflected wave. Additionally, the fluctuations of the permittivity of an embedding

medium, due to the propagation of a acoustic wave, generates detectable modulation side-

bands. For moderate acoustic pressure levels, the Doppler effect is the most critical process in

determining the modulation of an RF signal by a linearly vibrating object, however, amplitude

modulation from fluctuations in the medium permittivity become quite significant when acous-

tic pressure levels are increased, as possible through the use of high powered acoustic sources

similar to an LRAD. Furthermore, in an environment where the vibrations are acoustically-
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induced yielding relatively small surface displacements, the influence of amplitude modulation

from medium fluctuations on the overall modulation of a signal increases substantially, as the

resultant power levels of the modulation process become comparable to that of Doppler phase

modulation.

EM sensing of an acoustically-induced vibrating target provides improved detectability of

buried targets compared to EM scattering alone. This has been enabled by the development of

high dynamic range cancelers that suppress the carrier of scattered EM signals while allowing

the passage of low frequency modulation sidebands. This increased sensing capability of sensor

systems prompted the re-investigation of EM scattering from vibrating objects. This chapter

provided a thorough investigation of scattered EM responses from such embedded targets.
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Chapter 6

Conclusions

6.1 Summary of Research and Original Contributions

This dissertation addressed the limitations in the practical implementation of acousto-EM sens-

ing schemes by developing alternative methods for efficiently computing the nonlinearly gen-

erated scattered acoustic fields as well as by investigating additional fundamental physical

properties that result in the scattering of an EM signal. A growing interest in the development

of alternative sensing modalities that can provide unique object characterization has been the

motivation for improving the fundamental principles behind acousto-EM sensing schemes. With

the advancements in computational efficiency when calculating higher-order sound fields and

the model enhancements describing the scattering of an EM wave in an acoustically-excited

environment that are presented in this dissertation, improvements have been made to the per-

formance of acousto-EM remote sensing technologies.

A mathematical model was developed that improves the computational efficiency of higher-

order sound fields produced by the scattering of sound by sound, particularly when applied

to more complex acoustic sources, such as transducer arrays. By defining the acoustic source

as a series of Gaussian functions, an analytical solution for the third-order sound fields was

realized that provided computational advantages over traditional methods for solving the partial

differential equations of nonlinear acoustics, enabling a computation speed of over 40x faster

than methods employing finite difference schemes and over 25x faster than methods solving

multidimensional field integrals. The higher-order sound fields have a high directionality that

make them ideal for use in detection and characterization systems, thus, the computational

enhancements demonstrated improve the ability to implement acousto-EM sensing schemes,

which rely on the real-time calculation of the radiated sound fields.

Design criteria detailing the necessary modifications to enhance the performance of the

current third-order parametric array system were also introduced. The requirements for pro-
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ducing a highly directional sound beam in the audio band using third-order scattering of sound

by sound necessitate the use of two sets of transducers and driving amplifiers to efficiently

generate the primary sound fields that will result in the desired third-order intermodulation

frequency. The design demonstrates that by utilizing a narrowband amplifier with a high power

level that is located lower in frequency along with a broadband amplifier that drives the con-

tent bearing signal, the third-order parametric array system will operate much more efficiently,

requiring less electrical power to drive acoustic signals with high sound pressure levels. The cur-

rent third-order parametric array system produces third-order intermodulation products that

have a maximum sound pressure level of 40 dB SPL, which is inadequate for use in any real

application, however, with the modifications proposed, the maximum achievable pressure levels

can easily double the current amount using relatively moderate primary sound field pressure

levels (i.e., 120–130 dB SPL). Additionally, by increasing the primary sound field pressure levels

through the use of high powered acoustic signals, such as a long range acoustic device, the max-

imum achievable third-order intermodulation product sound pressure level can increase even

further. With the increased power levels achieved by the improved design and advantages gained

in directivity by employing third-order sound fields, the enhanced third-order parametric array

system is an exceptional option for the acoustic source that is an essential component in an

acousto-EM sensing scheme.

As an additional means of determining the radiation patterns generated by an acoustic

source, a near-to-far-field transformation was developed that demonstrated the ability to deter-

mine the far-field radiation patterns of second-order sound fields produced by the scattering of

sound by sound from data obtained in the near-field of the source. The nonlinear transformation

was derived from the KZK equation as an extension to Kirchhoff’s theorem and demonstrated

the ability to determine the far-field characteristics of an arbitrary configuration of acoustic

sources as long as the sources resided completely within the chosen near-field surface. This

enables the far-field radiation patterns to be ascertained without a detailed knowledge of the

actual acoustic sources, which can be useful in remote sensing schemes, particularly those uti-

lizing acousto-EM scattering, by establishing the effect an unknown source may have on the

environment. The transformation provides an alternative method for computing far-field ra-

diation patterns that becomes especially useful when the sound fields from physical acoustic

sources that lack simple analytical expressions are desired.

To enable a better fundamental understanding of the nonlinear processes resulting in acousto-

EM scattering, the effect of a high powered acoustic source on the medium in which an EM

wave propagates thereby yielding a scattered EM signal was investigated. An analytical solution

was derived for the modulation of an EM signal due to the fluctuations in the permittivity of

the embedding medium caused by the propagation of an acoustic source. This was compared to

additional known modulation processes occurring in an acoustically-excited environment caused
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by vibrating structures, including phase modulation due to the Doppler effect as well as ampli-

tude modulation from special relativity, path loss, and radar cross section. It was demonstrated

that while Doppler phase modulation was a considerable contributor to the overall modulation

detected, the effect of the modulation due to the fluctuating medium was quite significant, par-

ticularly when high sound pressure levels existed with low levels of vibration, which resulted in a

modulation power level that was within 6 dB of that produced by the Doppler phase modulation.

The analytical model combining the contribution from each of the modulation processes was

shown to correlate well with an RF signal reflected from an acoustically-induced vibrating plate

measured using the high dynamic range nonlinear measurement system. Therefore, as measure-

ment capabilities continue to improve enabling further advancements in the understanding of

known scattering mechanisms, especially for the nonlinear interactions between acoustic and

EM waves, systems looking to exploit acousto-EM scattering, such as buried object detection

schemes, can be more effectively designed.

The research presented in this dissertation establishes a foundation for the continued im-

provement in the design of a system utilizing acousto-EM sensing.

6.2 Future Research

While the research presented in this dissertation establishes important advancements in the

development of acousto-EM sensing schemes, additional efforts may be applied to expand upon

the topics introduced, thereby continuing the evolution of the hybrid remote sensing scheme.

A major opportunity area for future research lies in the continued development of the third-

order parametric array. Section 3.6 established important design criteria required to improve

the performance of the third-order parametric array, which currently has been demonstrated

only as a modification to a second-order parametric array system. Therefore, to fully investigate

the advantages provided over the second-order parametric array, a third-order parametric array

system needs to be developed implementing the design enhancements detailed in Chapter 3. The

most critical developmental components will reside with the design of the driving amplifiers for

each of the primary frequencies and the transducer array configuration, as to efficiently produce

a third-order intermodulation frequency in the audio band, the primary frequencies must be

distantly spaced in frequency thereby requiring two unique sets of amplifiers and transducers. As

per the design enhancements proposed, the amplifier pair will consist of a narrowband amplifier,

which can easily be designed to operate with a very high efficiency, and a broadband amplifier.

Broadband amplifiers are much more difficult to produce as achieving a uniform gain across the

desired frequency band is challenging and often leads to designs that are physically much larger

than narrowband amplifiers. Additionally, it has been shown that the most efficient means of

generating the nonlinearly generated scattered sound fields is with collinearly located sources,
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therefore, the third-order parametric array should have both sets of transducers residing within

a single array. However, the configuration of the transducers within the array and the method in

which the elements are driven, whether continuously or alternating dependent upon frequency

and array location, needs to be determined.

The nonlinear near-to-far-field transformation developed in Chapter 4 to determine the far-

field radiation patterns from near-field data was derived under the quasilinear approximation

considering only the primary and secondary sound fields generated from the scattering of sound

by sound. The demonstrated results show that the transformation yields highly accurate results

when the far-field remains in the paraxial region, as is the valid range of the KZK equation

from which the transformation is derived, however, errors quickly accumulate as the transfor-

mation advances beyond this region. The validity constraint in the far-field imposed by the KZK

equation can be quite limiting, therefore, it would be advantageous to develop an alternative

nonlinear transformation based on solutions derived from the Westervelt equation, particularly

for applications in which the sound fields at large angles away from the acoustic axis are desired.

With significant research efforts being given to the application of third-order sound fields and

the development of third-order parametric arrays, an extension of the nonlinear transformation

to account for third-order sound fields can be developed. Since closed form solutions for the

third-order sound fields have yet to be established, the resulting transformation will contain

additional layers of integration not encountered with the nonlinear transformation presented in

Chapter 4. Therefore, it may be worthwhile to investigate a closed form solution for the third-

order sound fields, which may require additional validity approximations to obtain a viable

expression, to enable a more ideal near-to-far-field transformation for use in ascertaining the

far-field radiation patterns for the tertiary sound fields generated by the scattering of sound by

sound. This work focused solely on determining the far-field radiation patterns of nonlinearly

generated scattered sound fields, however, it can also be extended to include the modeling of the

far-field characteristics of the sound fields scattered by objects in the near-field. This extension

would be similar to the research being performed in the field of acoustic holography and could

provide useful results for application in object detection and biomedical research.

An analytical solution for the modulation of an EM signal by permittivity fluctuations

from periodic pressure changes as an acoustic wave propagates through the embedding medium

was derived in Chapter 5. A comparison of the resultant relative power level of the amplitude

modulation from the medium fluctuations with the more commonly considered processes that

generate modulation sidebands (e.g., Doppler effect, path loss, special relativity, and radar

cross section) shows that the propagating acoustic wave can produce modulation sidebands

with power levels comparable to those generated by the phase modulation introduced by the

Doppler effect, with the theoretical model incorporating the additional modulation source shown

to match experimental results. While the experimental results correlate with the theoretical
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model when considering the effects of all of the modulation processes, individually verifying the

contribution from each source of modulation has not been done as isolating each effect during

measurement is currently infeasible. To better characterize the modulation effects, effort can be

put forth to investigate the development of a set of experiments that have parameters chosen

specifically to emphasize the effects of a single modulation process at a time, thereby improving

the analytical solutions describing the contribution from each process. Improved experimental

configurations may also prove beneficial in better characterizing the modulation processes, as

the acoustic sources and antennas were located very closely due to the confinements of the

anechoic chamber, which may have contributed to the difficulties in isolating the individual

modulation processes.

Additionally, there are several opportunities to enhance the performance of the transient

response of the high dynamic range nonlinear measurement system. The current system employs

a pseudo-transient implementation where the full cancellation algorithm is performed followed

by a continuous capture of the I/Q data over time, achieved by fixing a filter with a given

bandwidth at a single frequency and rapidly evaluating the power within that band as a function

of time. In the current configuration of the measurement system, the minimum bandwidth of

the filter able to measure I/Q data is 10 MHz, which is significantly larger than frequency of

the modulation sidebands generated by acousto-EM scattering. Therefore, when attempting to

measure these modulation sidebands, the power of the carrier signal will also be captured as the

frequency separation between the carrier and the modulation sideband is not large enough to

measure the power level of the sideband without distortion and allow for the transition between

the passband and stopband of the filter. Furthermore, all of the power within the passband

of the filter is summed at each point in time, therefore, with such a large bandwidth, low

level frequency content drops below the cumulative noise floor. Thus, the measurement system

needs to be reconfigured as to contain a filter with a much smaller bandwidth that is capable

of continuously capturing the data if transient measurement is to be achieved. The pseudo-

transient implementation also assumes that the environment remains in a relatively steady-

state condition so that the cancellation remains accurate for the duration of the measurement,

which is inadequate for any practical application and limits the actual time allotted for a valid

measurement in a laboratory environment. For true transient capabilities, the speed in which the

analog cancellation algorithm completes must be drastically reduced as to enable continuous

cancellation in a changing environment, which would require tremendous engineering effort;

however, it would facilitate the extension of the high dynamic range nonlinear measurement

system for use with more complex applications, such as wireless systems.
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Appendix A

Gaussian Beam Expansion

Coefficient Sets

The implementation of the MGB expansion technique described in Chapters 2 and 3 requires

the optimization of the coefficients of the Gaussian base functions, An and Bn, as discussed

in Section 2.2.1. As a means of determining these coefficients, an assortment of optimization

methods have been employed to produce a variety of acceptable coefficient sets that vary in the

number of terms required in each set. The following presents several Gaussian coefficient sets

previously reported in the literature. This dissertation utilizes the ten term coefficient set given

by Wen and Breazeale [15] and detailed in Table A.1.

n An Bn

1 11.428 + 0.95175ȷ 4.0697 + 0.22726ȷ
2 0.06002− 0.08013ȷ 1.1531− 20.933ȷ
3 −4.2743− 8.5562ȷ 4.4608 + 5.1268ȷ
4 1.6576 + 2.7015ȷ 4.3521 + 14.997ȷ
5 −5.0418 + 3.2488ȷ 4.5443 + 10.003ȷ
6 1.1227− 0.68854ȷ 3.8478 + 20.078ȷ
7 −1.0106− 0.26955ȷ 2.5280− 10.310ȷ
8 −2.5974 + 3.2202ȷ 3.3197− 4.8008ȷ
9 −0.14840− 0.31193ȷ 1.9002− 15.820ȷ
10 −0.20850− 0.23851ȷ 2.6340 + 25.009ȷ

Table A.1: Ten term coefficient set defining an edge supported piston, as given by Wen and
Breazeale [15].
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n An Bn

1 −0.0366 + 0.0698ȷ 0.9568 + 22.0499ȷ
2 −0.2880− 0.1072ȷ 1.8966 + 17.3281ȷ
3 0.0463− 0.8593ȷ 2.5687 + 12.2845ȷ
4 2.4278− 0.4273ȷ 3.1522 + 7.1375ȷ
5 −1.6515 + 6.9321ȷ 3.7393 + 2.2497ȷ
6 −1.6515− 6.9321ȷ 3.7393− 2.2497ȷ
7 2.4278 + 0.4273ȷ 3.1522− 7.1375ȷ
8 0.0463 + .8593ȷ 2.5687− 12.2845ȷ
9 −0.2880 + 0.1072ȷ 1.8966− 17.3281j
10 −0.0366− 0.0698ȷ 0.9568− 22.0499ȷ

Table A.2: Ten term coefficient set given by Ding using a simplified method of calculation [57].

n An Bn

1 −0.0647− 0.0042ȷ 1.21 + 35.6867ȷ
2 0.0334− 0.2398ȷ 2.3108 + 31.3481ȷ
3 0.5113− 0.0972ȷ 2.8161 + 26.2901ȷ
4 0.5858 + 0.7912ȷ 3.2223 + 21.1344ȷ
5 −0.6908 + 1.5627ȷ 3.486 + 15.8696ȷ
6 −3.0363 + 0.5081ȷ 3.6537 + 10.4523ȷ
7 −3.6501− 6.3857ȷ 4.0206 + 5.0002ȷ
8 13.6222 4.3552
9 −3.6501 + 6.3857ȷ 4.0206− 5.0002ȷ
10 −3.0363− 0.5081ȷ 3.6537− 10.4523ȷ
11 −0.9608− 1.5627ȷ 3.486− 15.8696ȷ
12 0.5858− 0.7912ȷ 3.2223− 21.1344ȷ
13 0.5113 + 0.0972ȷ 2.8161− 26.2901ȷ
14 0.0334 + 0.2398ȷ 2.3108− 31.3481ȷ
15 −0.0647 + 0.0042ȷ 1.21− 35.6867ȷ

Table A.3: Fifteen term coefficient set given by Wei and Jun using an alternative optimization
method that combines solutions of linear equations with Fourier series expansions [58].

n An Bn

1 1.96364 + 1.28797ȷ 4.90285 + 0.72127ȷ
2 1.16005− 2.30785ȷ 5.64040− 4.11116ȷ
3 −1.73228 + 0.93175ȷ 4.23459− 4.52195ȷ
4 −0.39524 + 0.09089ȷ 2.95782 + 4.37533ȷ

Table A.4: Four term coefficient set given by Cervenka using a heuristic evolutionary algorithm
[60].
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n An Bn

1 −0.051932 + 0.074854ȷ 1.9598− 68.491ȷ
2 −0.001932 + 0.13338ȷ 2.2259− 62.801ȷ
3 0.2038 + 0.15604ȷ 2.6482− 51.148ȷ
4 0.49313− 0.054592ȷ 3.0329− 39.309ȷ
5 −0.01404− 0.017898ȷ 0.97296− 79.031ȷ
6 0.75146− 0.7956ȷ 3.4613− 27.379ȷ
7 −4.6458− 6.3564ȷ 4.4953− 9.5366ȷ
8 17.899− 9.5721ȷ 5.344 + 6.6418ȷ
9 0.020451 + 0.4854ȷ 4.2603 + 45.77ȷ
10 −4.2364− 3.8044ȷ 4.9867 + 17.935ȷ
11 0.1324− 0.04058ȷ 3.8823 + 60.869ȷ
12 −0.064179− 10.45ȷ 5.1546 + 12.172ȷ
13 −0.24048 + 0.96624ȷ 4.9921 + 36.952ȷ
14 −3.1798 + 0.057147ȷ 4.8183 + 23.873ȷ
15 0.24524 + 0.14556ȷ 3.6069 + 52.531ȷ
16 −1.308 + 1.0953ȷ 4.658 + 30.099ȷ
17 −0.000527− 0.020896ȷ 0.83072 + 68.991ȷ
18 0.64227− 0.32108ȷ 3.2362− 33.351ȷ
19 0.086431 + 0.16529ȷ 2.4479− 57.008ȷ
20 −0.05428 + 0.011274ȷ 1.5995− 73.994ȷ
21 14.433 + 29.229ȷ 5.3897 + 1.3751ȷ
22 0.68906− 1.6732ȷ 3.7246− 21.401ȷ
23 −0.11112− 3.4071ȷ 4.0538− 15.436ȷ
24 −21.03 + 3.9134ȷ 5.0621− 3.8817ȷ
25 0.34217 + 0.090409ȷ 2.84− 45.245ȷ

Table A.5: Twenty-five term coefficient set given by Kim et al. that increased the precision of
the expansion for a piston radiator into the near-field [59].

n An Bn

1 2.2097− 0.39647ȷ 3.7227− 0.13038ȷ
2 0.06733− 0.00417ȷ 3.0331 + 15.467ȷ
3 −0.29108− 0.10913ȷ 2.2474− 4.5275ȷ
4 0.00901− 0.01554ȷ 2.3366 + 21.301ȷ
5 0.11751 + 0.21108ȷ 3.4625 + 9.7999ȷ
6 −0.93941 + 0.30743ȷ 3.7731 + 4.5318ȷ

Table A.6: Six term coefficient set defining a rigid piston, as given by Wen and Breazeale [15].
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Appendix B

LabVIEW Measurement and

Automation Code

The experimental results presented in this dissertation were enabled by the use of NI LabVIEW

software to control the acoustic and RF equipment required to conduct each measurement. The

following is a brief overview of the LabVIEW code employed to generate the presented results.

B.1 Acoustic Signal Generation and Measurement Code

The acoustic measurements performed relied heavily on the LabVIEW code developed by Dr.

Glenwood Garner for the generation and recording of acoustic signals, a detailed description

of which can be found in Appendix C of his Ph.D. dissertation titled “Design of Optimal Di-

rectional Parametric Acoustic Arrays in Air”. The appendix describes the operation and use

of LabVIEW code designed to generate and receive acoustic signals (“Signal Generation.vi”),

maneuver the Magellan MDT-19 turntable used to obtain the radiation pattern of an acoustic

source (“Turn Table Control.vi”), and control the XY scanner employed to determine the near-

field characteristics for use in the NTFF transformation (“Master 2D Sweep Controller.vi”).

“Signal Generation.vi” provides the capability of generating many commonly utilized acoustic

signals (e.g., pulsed sinusoid, frequency sweeps, and two tone signals) while allowing for si-

multaneously recording up to four input channels (two microphone inputs, an input from the

LDV, and a voltage input) through the use of two NI PXI-4461 data acquisition cards that

transmit and receive the acoustic signals. “Turn Table Control.vi” automates the measurement

of acoustic radiation patterns by synchronizing the rotation of the Magellan MDT-19 turntable

with the acoustic measurements. When the turntable motor activates, thereby producing a

sound signal exceeding a specified threshold, a secondary microphone located near the mo-

tor triggers the acoustic measurement to be taken using a similar signal acquisition process
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as “Signal Generation.vi”. “Master 2D Sweep Controller.vi” controls the two-dimensional XY

scanner used to capture the near-field data that would be converted to its far-field counterpart

using the NTFF transformation method. This code manages the acceleration and velocity of

the scanner’s stepper motors to scan a plane in front of the acoustic source; however, it does

not control the acoustic measurements, thus requiring “Signal Generation.vi” (or another signal

acquisition script) to be used simultaneously.

To suit the specific experiments performed in this dissertation, slight modifications were

made to these LabVIEW codes, however, these modifications have a negligible impact on the

configuration and performance as compared to the original version of the code. Thus, the

reader is directed to the Garner dissertation as it details in depth the operation of the acoustic

measurements, turntable, and XY scanner.

B.2 Zero Span Frequency Measurement Analog Cancellation

Code

The RF measurements in this dissertation were found using the high dynamic range nonlinear

measurement system originally developed by Wilkerson, Wetherington, and Steer. This system

performs the feedforward analog cancellation operation, as described in Sec. 2.5, to obtain a

maximum cancellation of the received carrier power of 60 dB, which is then passed to the

spectrum analyzer where the final measurement is realized. To perform this measurement, a

steady state environment is required (and assumed by the LabVIEW code) as many individual

measurements are taken across the frequency spectrum over time to comprise the complete

frequency spectrum. To obtain the transient measurement results in this dissertation, transient

capabilities were incorporated into the nonlinear measurement system by adding the option

of taking a zero span frequency measurement. This measurement function occurs immediately

following the cancellation of the received carrier power and continues until the LabVIEW code

is terminated. As specified in Chapter 5, this is a pseudo-transient technique as some time

is required to achieve the cancellation of the carrier signal, however, the signal is measured

at the given frequency in real-time once the cancellation algorithm completes. For a detailed

description of the system along with system documentation, the reader is directed to the Ph.D.

dissertation of Dr. Joshua Wetherington titled “Characterization of Passive Spectral Regrowth

in Radio Frequency System”.

Since the zero span frequency measurement is incorporated into the existing system, the

front panel of the LabVIEW code is very similar to that presented in the Wetherington dis-

sertation, as shown in Fig. B.1, with the addition of inputs related to the zero span frequency

measurement. The transient measurement is defined by the inputs provided for the desired mod-
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Figure B.1: Front panel of user interface of the high dynamic range nonlinear measurement
system with zero span frequency measurement incorporated.

ulation sideband frequency, bandwidth of the measurement filter, and duration of the measure-

ment. These settings center a stationary filter with the specified bandwidth at the modulation

sideband frequency and display the measured results for the duration specified (however, since

the code runs continuously, the display is refreshed at the completion of each measurement

duration interval). Additionally, options for saving the frequency and time domain data are

included, both producing a Microsoft Excel spreadsheet containing the data acquired during

the measurement. Choosing to save the frequency domain data will record the power (in dB)

across the entire frequency range specified after the carrier signal has been canceled. Choosing

to save the time domain data will record the power (in dB) within the filter bandwidth centered

at the specified sideband frequency and will continue to record the data until the LabVIEW

code is terminated or the switch indicating to save the time domain data is deactivated.
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Figure B.2: Block diagram of zero span frequency measurement implementation in the mea-
surement system.

Similar to the front panel, the back panel of the LabVIEW code strongly resembles the code

presented in the Wetherington dissertation. To perform the zero span frequency measurement,

an additional step was inserted into the system process, as shown in Fig. B.2, immediately

following the cancellation algorithm and will run continuously until the user terminates the

measurement process. This step configures the filter used in the zero span frequency measure-

ment, captures the I/Q data of the received signal over time and saves it to a file, if indicated.

When the measurement is terminated, the system continues to the appropriate shut down rou-

tine to properly power down the hardware used in the measurement, as specified in the original

system documentation in the Wetherington dissertation.
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Appendix C

MATLAB Simulation Code

This appendix details the MATLAB code used to generate the theoretical results presented in

this dissertation.

C.1 Multi-Gaussian Beam Expansion Code

%% Multi−Gaussian Beam Expansion Technique

% Acous t i c F i e ld Gene ra to r .m i s the main s c r i p t in the gene ra t i on o f

% acou s t i c f i e l d s us ing the multi−Gaussian beam (MGB) expansion

% technique . This s c r i p t gene ra t e s the s o l u t i o n s f o r the primary ,

% secondary , and t e r t i a r y a cou s t i c f i e l d s under the s p e c i f i e d

% cond i t i on s us ing the multi−Gaussian beam expansion technique as

% desc r ibed in ”An E f f i c i e n t Approach to Computing Third−Order

% Sca t t e r i ng with Appl i ca t ion to Parametric Arrays ” by

% Spencer J . Johnson .

c l e a r a l l ; c l o s e a l l ; c l c ;

%% Input S p e c i f i c a t i o n s

% The user i s to input the s p e c i f i c a t i o n s f o r the sound f i e l d s o f

% i n t e r e s t in t h i s s e c t i o n . Provide the two primary sound f i e l d s

% with the sound pre s su r e l e v e l s , the medium prope r t i e s , the

% transducer and sound source s p e c i f i c a t i o n s with e l e c t r i c a l

% non l i n e a r i t y con f i gu ra t i on s , and the r e s u l t i n g far− f i e l d area f o r

% the sound f i e l d s o f i n t e r s t .
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% Se l e c t the de s i r ed f r e qu en c i e s

% Note : f 1 must be g r e a t e r than f 2

f 1 = 60000 ;

f 2 = 49000 ;

% Se l e c t the medium p r op e r t i e s

rho = 1 . 2056 ; %medium dens i ty

c = 343 ; %smal l s i g n a l sound speed

beta = 1 . 2 ; %c o e f f i c i e n t o f n on l i n e a r i t y

% Se l e c t the sound pre s su r e l e v e l f o r each primary tone ( in dB SPL)

p 1 = 128 ;

p 2 = 128 ;

% Se l e c t t ransducer s p e c i f i c a t i o n s

a t = 0 . 0161 ; %transducer rad iu s (Note : 0 .0161 or 0 . 022 )

trans num = 81 ; %number o f t ransduce r s

%(Note : must be 1 , 7 , 19 , 37 , 61 , or 81)

d = 0 . 0 4 ; %d i s t anc e between transducer e lements

% Se l e c t sound f i e l d area s p e c i f i c a t i o n s

r f = 5 ; %d i s t anc e to obse rvat i on po int

theta max = 15 ; %maximum obse rvat i on ang le ( in degree s )

%(Note : must be between 0 and 90)

theta num = 36 ; %numbers o f po in t s to be c a l c u l a t ed in f i e l d

% Se l e c t d e s i r ed sound f i e l d

order = 1 ; %sound f i e l d order (Note : must be 1 , 2 , or 3)

f i e l d = ’ one ’ ; %sound f i e l d s e l e c t i o n

%For Primary : ’ one ’ or ’ two ’

%For Secondary : ’ harmonic ’ , ’ sum ’ , or ’ d i f f ’

%For Ter t i a ry : ’ harmonic , ’ upper ’ , or ’ lower ’

% Se l e c t t r an s i e n t s imu la t i on opt ions

time = ’ o f f ’ ; %t r an s i e n t s imu la t i on : ’ on ’ or ’ o f f ’

t s t a r t = 0 ; %s t a r t / stop s e l e c t i o n should be in seconds

t s t op = 1e−5;
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% Se l e c t e l e c t r i c a l n on l i n e a r i t y c on f i g u r a t i on

e l e c non = ’ none ’ ; %non l i n e a r i t y con t r i bu t i on from

%amp l i f i e r / t ransducer

%For None : ’ none ’

%For Holoson ic : ’ holo ’

%For Airmar : ’ airmar ’

%% DO NOT ALTER THE SCRIPT AFTER THIS POINT

% This s e c t i o n u t i l i z e s the input s p e c i f i c a t i o n s to generate the

% output f i e l d s o f i n t e r e s t .

% This l oads the MGB c o e f f i c i e n t s f o r use in the s imu la t i on

t e n c o e f f i c i e n t

% Check frequency con f i gu r a t i on

i f f 1<f 2

d i sp ( ’ f 1 must be g r e a t e r than f 2 . ’ ) ;

break

end

% Primary sound pre s su r e conver s i on from dB SPL

p 1 = sq r t (2 ) *20e−6*10ˆ( p 1 /20) ;

p 2 = sq r t (2 ) *20e−6*10ˆ( p 2 /20) ;

% Check theta c on f i gu r a t i on

i f ( theta max > 90) | | ( theta max <= 0)

d i sp ( ’ Theta max must be between 0 and 90 . ’ ) ;

break

end

% Generating sound f i e l d mesh

t h e t a f = l i n s p a c e (0 , theta max , theta num ) * pi /180 ; %f i e l d po int ang le

z f = r f * cos ( t h e t a f ) ;

x f = r f * s i n ( t h e t a f ) ;

y f = ze ro s (1 , l ength ( z f ) ) ;

z max = r f * cos ( t h e t a f (1 ) ) ;
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x max = r f * s i n ( t h e t a f ( end ) ) ;

% Step number f o r mesh gr id ( r , phi are equ iva l en t to x , z here )

x s t ep = 400 ;

z s t ep = 100 ;

% Def ine t iming s e t t i n g s f o r t r an s i e n t s imu la t i on s

t = l i n s p a c e ( t s t a r t , t s top , 100 ) ;

% Check far− f i e l d c r i t e r i a

lambda 1 = c/ f 1 ;

lambda 2 = c/ f 2 ;

S = pi * a t ˆ2 ; %transducer area

r 0 = S/( ( lambda 1+lambda 2 ) /2) ; %Rayle igh d i s t anc e

i f r f<r 0

d i sp ( ’ I n c r e a s e d i s tance , you are not in the f a r f i e l d . ’ ) ;

break

end

% Def in ing t ransducer l o c a t i o n s

switch trans num

case 1

rad iu s = 0 ;

case 7

rad iu s = 1 ;

case 19

rad iu s = 2 ;

case 37

rad iu s = 3 ;

case 61

rad iu s = 4 ;

case 81

rad iu s = 5 ;

o therwi se

d i sp ( ’ S e l e c t an appropr ia te number o f t ransduce r s . ’ )

break

end

136



[ x t , y t , z t ] = par a r ray co rd ( radius , d , ’ ve r t ’ ) ;

% Check element spac ing with in the t ransducer array

i f d<=(2*a t )

d i sp ( ’ I n c r e a s e element s epa ra t i on or dec r ea s e element rad iu s . ’ ) ;

break

end

% Def ine de s i r ed sound f i e l d

switch order

case 1

ord = ’ f i r s t ’ ;

name = ’ Primary ’ ;

switch f i e l d

case ’ one ’

f = f 1 ;

type = ’ Fundamental Frequency ’ ;

ind = ’ f 1 ’ ;

case ’ two ’

f = f 2 ;

type = ’ Fundamental Frequency ’ ;

ind = ’ f 2 ’ ;

end

case 2

ord = ’ second ’ ;

name = ’ Secondary ’ ;

switch f i e l d

case ’ harmonic ’

f = 2* f 1 ;

type = ’ Second Harmonic ’ ;

ind = ’ 2 f 1 ’ ;

case ’sum ’

f = f 1+f 2 ;

type = ’Summation Frequency ’ ;

ind = ’ f S ’ ;

case ’ d i f f ’

f = f 1−f 2 ;
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type = ’ D i f f e r e n c e Frequency ’ ;

ind = ’ f D ’ ;

end

case 3

ord = ’ th i rd ’ ;

name = ’ Ter t i a ry ’ ;

switch f i e l d

case ’ harmonic ’

f = 3* f 1 ;

type = ’ Third Harmonic ’ ;

ind = ’ 3 f 1 ’ ;

case ’ upper ’

f = 2* f 1−f 2 ;

type = ’IM3 Upper Frequency ’ ;

ind = ’ f U ’ ;

case ’ lower ’

f = 2* f 2−f 1 ;

type = ’IM3 Lower Frequency ’ ;

ind = ’ f L ’ ;

end

otherwi se

d i sp ( ’ S e l e c t an appropr ia te sound f i e l d . ’ )

break

end

% Def ine de s i r ed e l e c t r i c a l n on l i n e a r i t y con t r i bu t i on

switch e l e c non

case ’ none ’

a 1 = 1 ;

a 2 = 0 ;

a 3 = 0 ;

case ’ holo ’

a 1 = 3e−1;

a 2 = 2e−6;

a 3 = −1.5e−10;

case ’ airmar ’

a 1 = 5 .5 e−1;
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a 2 = 1 .8 e−3;

a 3 = −1.4e−2;

o therw i se

d i sp ( ’ S e l e c t an appropr ia te e l e c t r i c a l n on l i n e a r i t y

c h a r a c t e r i z a t i o n . ’ )

break

end

p = ze ro s ( s i z e ( t h e t a f ) ) ;

% Steps through the far− f i e l d po in t s

f o r the ta ind = 1 : l ength ( t h e t a f )

% Steps through the t ransducer e lements in the sound source

f o r t r an ind = 1 : l ength ( x t )

r = sq r t ( ( x f ( the ta ind )−x t ( t r an ind ) ) ˆ2 . . .

+( y f ( the ta ind )−y t ( t r an ind ) ) ˆ2) ;

z = ( z f ( the ta ind )−z t ( t r an ind ) ) ;

p temp = Sing l e P i s ton Funct i on Genera to r . . .

( r , z , f 1 , f 2 , p 1 , p 2 , a t , z max , x max , z s tep , . . .

x step , rho , c , beta ,A,B, a 1 , a 2 , a 3 , ord , f i e l d ) ;

p ( the ta ind ) = p( the ta ind ) + p temp ;

end

end

myTitleTop = s t r c a t (name , ’ Sound F ie ld ’ ) ;

myTitleBot = s t r c a t ( type , ’ at \ i t ’ , ind , ’ \rm =’ , . . .

s p r i n t f ( ’ %d kHz ’ , f ) ) ;

% S p e c i f i e s whether the t r an s i e n t s e t t i n g s f o r the s imu la t i on are to

% be turned on . This s e c t i o n a l s o p l o t s the sound f i e l d s as a

% func t i on o f the ang le o f f o f the primary ax i s .

switch time

case ’ on ’

[P, T] = ndgrid (p , t ) ;
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P = P.* exp(−2*pi * f *T) ;

p dB = 20* l og10 ( abs (P) /( sq r t (2 ) *20e−6) ) ;

p dB2 = p dB ;

f o r t i nd = 1 : l ength ( t )

f i g u r e (1 )

c l a ( f i g u r e (1 ) , ’ r e s e t ’ )

h = subplot ( 2 , 2 , 1 ) ;

p l o t ( t h e t a f *180/ pi , p dB ( : , 1 ) )

x l ab e l ( ’ Angle ( deg ) ’ )

y l ab e l ( ’ Sound Pressure Level (dB SPL) ’ )

p = get (h , ’ pos ’ ) ;

s e t (h , ’ pos ’ , [ p (1 ) p (2 ) −.075 p ( 3 : 4 ) ] ) ;

h = subplot ( 2 , 2 , 2 ) ;

p l o t ( t h e t a f *180/ pi , p dB ( : , t i nd ) )

x l ab e l ( ’ Angle ( deg ) ’ )

y l ab e l ( ’ Sound Pressure Level (dB SPL) ’ )

ax i s ( [ min ( t h e t a f *180/ p i ) max( t h e t a f *180/ p i ) −50 100 ] )

p = get (h , ’ pos ’ ) ;

s e t (h , ’ pos ’ , [ p (1 ) p (2 ) −.075 p ( 3 : 4 ) ] ) ;

p dB2 ( p dB2 < 0) = 0 ;

p lot s tep max = c e i l (max( p dB2 ( : , 1 ) ) /10) *10 ;

i f p lot s tep max <= 0 ;

p lot s tep max = 10 ;

end

p lo t s t ep min = 0 ;

p l o t s t e p = plot s tep max /5 ;

P dB = transpose ( p dB2 ( : , 1 ) ) ;

h = subplot ( 2 , 2 , 3 ) ;

ha l fPo l a r ( [ p i/2− f l i p l r ( t h e t a f ) t h e t a f+pi / 2 ] , . . .

[ f l i p l r (P dB) P dB ] , { ’ b ’ } , [ p l o t s t ep min . . .

p l o t s t e p 2* p l o t s t e p 3* p l o t s t e p 4* p l o t s t e p . . .

p lot s tep max ] ) ;

p = get (h , ’ pos ’ ) ;
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s e t (h , ’ pos ’ , [ p (1 ) p (2 ) −.05 p ( 3 : 4 ) ] ) ;

P dB = transpose ( p dB2 ( : , t i nd ) ) ;

h = subplot ( 2 , 2 , 4 ) ;

ha l fPo l a r ( [ p i/2− f l i p l r ( t h e t a f ) t h e t a f+pi / 2 ] , . . .

[ f l i p l r (P dB) P dB ] , { ’ b ’ } , [ p l o t s t ep min . . .

p l o t s t e p 2* p l o t s t e p 3* p l o t s t e p 4* p l o t s t e p . . .

p lot s tep max ] ) ;

p = get (h , ’ pos ’ ) ;

s e t (h , ’ pos ’ , [ p (1 ) p (2 ) −.05 p ( 3 : 4 ) ] ) ;

sup l abe l ({myTitleTop ; myTitleBot } , ’ t ’ ) ;

s e c = . 0 0 1 ;

t i c ;

whi l e toc < s ec

end

end

case ’ o f f ’

p dB = 20* l og10 ( abs (p) /( sq r t (2 ) *20e−6) ) ;

f i g u r e (1 )

subplot ( 2 , 1 , 1 )

p l o t ( t h e t a f *180/ pi , p dB )

mt i t l e (myTitleTop , myTitleBot ) ;

x l ab e l ( ’ Angle ( deg ) ’ )

y l ab e l ( ’ Sound Pressure Level (dB SPL) ’ )

p dB (p dB < 0) = 0 ;

p lot s tep max = c e i l (max(p dB) /10) *10 ;

i f p lot s tep max <= 0 ;

p lot s tep max = 10 ;

end

p lo t s t ep min = 0 ;

p l o t s t e p = plot s tep max /5 ;
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subp lot ( 2 , 1 , 2 )

ha l fPo l a r ( [ p i/2− f l i p l r ( t h e t a f ) t h e t a f+pi /2 ] , . . .

[ f l i p l r ( p dB) p dB ] ,{ ’ b ’ } , [ p l o t s t ep min p l o t s t e p . . .

2* p l o t s t e p 3* p l o t s t e p 4* p l o t s t e p p lot s tep max ] ) ;

end
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f unc t i on [ p ] = S ing l e P i s ton Funct i on Genera to r ( x i , z i , f 1 , f 2 , . . .

p 1 , p 2 , a t , z max , x max , z s t ep , x step , rho , c , beta ,A,B , . . .

a 1 , a 2 , a 3 , order , cho i c e )

% S ing l e P i s ton Funct i on Genera to r .m i s c a l l e d by

% Acous t i c F i e ld Gene ra to r .m, s e t s the norma l i za t i on cond i t i on s

% f o r the r e s u l t a n t sound f i e l d s o f i n t e r e s t , and c a l l s the

% appropr ia te s c r i p t s to generate the sound f i e l d .

% Radian f r e qu en c i e s

omega 1 = 2* pi * f 1 ;

omega 2 = 2* pi * f 2 ;

% Wave numbers

k 1 = omega 1/c ;

k 2 = omega 2/c ;

k0 = ( k 1+k 2 ) /2 ;

z 0 = k0* a t ˆ2/2 ;

% Attenuation c o e f f i c i e n t s

a lpha f 1 = alpha x ( f 1 , 2 9 . 9 2 , 7 0 , 5 0 ) ; %primary f requency #1

a lpha f 2 = alpha x ( f 2 , 2 9 . 9 2 , 7 0 , 5 0 ) ; %primary f requency #2

a lpha 2 f1 = alpha x (2* f 1 , 2 9 . 9 2 , 7 0 , 5 0 ) ; %second harmonic #1

alpha D = alpha x ( f 1−f 2 , 2 9 . 9 2 , 7 0 , 5 0 ) ; %d i f f e r e n c e tone

alpha S = alpha x ( f 1+f 2 , 2 9 . 9 2 , 7 0 , 5 0 ) ; %d i f f e r e n c e tone

X1 = x i / a t ;

Z1 = z i / z 0 ;

% S e l e c t s the norma l i za t i on c r i t e r i o n based upon the input s e t t i n g s

switch order

case ’ f i r s t ’

q1 = ze ro s ( s i z e (X1) ) ;

switch cho i c e

case ’ one ’

l = k 1/k0 ;

p0 = p 1 ;

pOTHER = p 2 ;
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a lpha 1 = a lpha f 1 ;

case ’ two ’

l = k 2/k0 ;

p0 = p 2 ;

pOTHER = p 1 ;

a lpha 1 = a lpha f 2 ;

o therw i se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Choice ’ ’ s e l e c t i o n f o r the primary ( f i r s t )

f i e l d should be ’ ’ one ’ ’ or ’ ’ two ’ ’ . ’ ) ;

throw ( e r r )

end

f o r n = 1 : l ength (A)

B1 = B(n) / l ;

q1 = q1 + A(n) ./(1+1 i .*B1 .*Z1) . . .

.* exp(− l *B1 .*X1.ˆ2 ./(1+1 i .*B1 .*Z1)+1 i * l *k0* z 0 *Z1) ;

end

p = sum(sum( ( a 1 *p0+a 3 * (0 . 75* p0ˆ3+1.5*p0*pOTHERˆ2) ) . . .

*q1 .* exp(−a lpha 1 * z 0 *Z1) ) ) ;

case ’ second ’

switch cho i c e

case ’ harmonic ’

k1 = k 1 ;

k2 = k 1 ;

l = k 1/k0 ;

m = k 1/k0 ;

p0 = p 1*p 1 /2 ;

a lpha 2 = 4* a lpha f 1 ;

a lpha 21 = a lpha 2 f1 ;

case ’sum ’

k1 = k 1 ;

k2 = k 2 ;

l = k 1/k0 ;

m = k 2/k0 ;
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p0 = p 1*p 2 ;

a lpha 2 = alpha S ;

a lpha 21 = alpha S ;

case ’ d i f f ’

k1 = k 1 ;

k2 = k 2 ;

l = k 1/k0 ;

m = −k 2 /k0 ;

p0 = p 1*p 2 ;

a lpha 2 = alpha D ;

a lpha 21 = alpha D ;

otherwi se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Choice ’ ’ s e l e c t i o n f o r the secondary ( second )

f i e l d should be ’ ’ harmonic ’ ’ , ’ ’ sum ’ ’ , or ’ ’

d i f f ’ ’ . ’ ) ;

throw ( e r r )

end

% Primary sound f i e l d

q21 = ze ro s ( s i z e (X1) ) ;

f o r n = 1 : l ength (A)

B1 = B(n) /( l+m) ;

q21 = q21 + A(n) ./(1+1 i .*B1 .*Z1) . . .

.* exp(−( l+m) *B1 .*X1.ˆ2 ./(1+1 i .*B1 .*Z1) . . .

+1 i *( l+m) *k0* z 0 *Z1) ;

end

% Secondary sound f i e l d

q2 = Second Order MGB(X1 , Z1 , k1 , k2 , k0 ,A,B, cho i c e ) ;

p2 = (−p0*beta *( l+m) ˆ2*( k0* a t ) ˆ2/( rho*c ˆ2) . . .

*q2 .* exp(−a lpha 2 * z 0 *Z1+1 i *( l+m) *k0* z 0 *Z1) ) ;

p temp = sum(sum( a 2 *p0*q21 . . .

.* exp(−alpha 21 * z 0 *Z1+1 i *( l+m) *k0* z 0 *Z1) ) ) ;

p = p2 + p temp ;

case ’ th i rd ’
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syms u ;

xi min = 0 ;

x i n = x i / a t ;

xi max = x max/ a t ;

x i s t e p = ( xi max−xi min ) / x s t ep ;

sigma p = z i / z 0 ;

s igma kzk = ( k0* a t ) ˆ(1/3) * a t / z 0 ;

sigma min = 3/4* s igma kzk ;

sigma max = z max/ z 0 ;

s igma step = ( sigma max−sigma min ) / z s t ep ;

% Def in ing the mesh f o r the t e r t i a r y sound f i e l d

x i = l i n s p a c e ( xi min , xi max , f l o o r ( ( xi max−xi min ) / x i s t e p ) ) ;

sigma = l i n s p a c e ( sigma min , sigma max , . . .

f l o o r ( ( sigma max−sigma min ) / s igma step ) ) ;

x i l = x i ;

s igma k = sigma ( 1 : end−1) ;

s igma step = sigma ( 2 : end )−sigma ( 1 : end−1) ;

[ XI L SIGMA K] = ndgrid ( x i l , s igma k ) ;

[ XI L s igma step ] = ndgrid ( x i l , s i gma step ) ;

% Tert ia ry sound f i e l d

[ q3 qn lmh p0 alpha 3 ] = MGB Integrand Generator . . .

(XI L ,SIGMA K, p 1 , p 2 , f 1 , f 2 , c , x i n , sigma p , . . .

x i s t ep , s igma step ,A,B, cho i c e ) ;

p3 = 1/2*p0* lmhˆ2*( beta *( k0* a t ) ˆ2/( rho*c ˆ2) ) ˆ2 . . .

*q3 .* exp(−a lpha 3 * z 0 *Z1+1 i * lmh*k0* z 0 *Z1) ;

p temp = sum(sum(3/4* a 3 *p0*qn . . .

.* exp(−a lpha 3 * z 0 *Z1+1 i * lmh*k0* z 0 *Z1) ) ) ;

p = p3 + p temp ;

otherwi se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Order ’ ’ s e l e c t i o n should be ’ ’ f i r s t ’ ’ , ’ ’ second ’ ’ , or

’ ’ t h i rd ’ ’ . ’ ) ;

throw ( e r r )

end
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f unc t i on [THIRD, qn , lmh , p0 , a lpha 3 ] = MGB Integrand Generator . . .

( x i l , sigma k , p 1 , p 2 , f 1 , f 2 , c , x i n , sigma p , . . .

x i s t ep , s igma step ,A,B, cho i c e )

% MGB Integrand Generator .m i s c a l l e d by

% Sing l e P i s ton Funct i on Genera to r .m and c a l c u l a t e s the th i rd order

% sound f i e l d us ing the MGB expansion techn ique .

X1 = x i l ;

Z1 = sigma k ;

% Wave numbers

k1 = 2* pi * f 1 /c ;

k2 = 2* pi * f 2 /c ;

k0 = ( k1+k2 ) /2 ;

q f1 = ze ro s ( s i z e (X1) ) ;

q f2 = ze ro s ( s i z e (X1) ) ;

qn = ze ro s ( s i z e (X1) ) ;

% S e l e c t s the th i rd order sound f i e l d based upon the input s e t t i n g s .

switch cho i c e

case ’ harmonic ’

l = k1/k0 ;

m = k1/k0 ;

h = k1/k0 ;

p0 = p 1 ˆ3 ;

a lpha 3 = alpha x (3* f 1 , 2 9 . 9 2 , 7 0 , 5 0 ) ;

f o r n = 1 : l ength (A)

B1 = B(n) / l ;

B3 = B(n) /( l+m+h) ;

q f1 = qf1 + A(n) ./(1+1 i .*B1 .*Z1) . . .

.* exp(− l *B1 .*X1.ˆ2 ./(1+1 i .*B1 .*Z1) ) ;

qn = qn + A(n) ./(1+1 i .*B3 .*Z1) . . .

.* exp(−( l+m+h) *B3 .*X1.ˆ2 ./(1+1 i .*B3 .*Z1) ) ;

end
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s i g n a l = qf1 .* qf1 .* qf1 ;

case ’ upper ’

l = k1/k0 ;

m = k1/k0 ;

h = −k2/k0 ;

p0 = p 1 ˆ2* p 2 ;

a lpha 3 = alpha x (2* f 1−f 2 , 2 9 . 9 2 , 7 0 , 5 0 ) ;

f o r n = 1 : l ength (A)

B1 = B(n) / l ;

B2 = B(n)/(−h) ;

B3 = B(n) /( l+m+h) ;

q f1 = qf1 + A(n) ./(1+1 i .*B1 .*Z1) . . .

.* exp(− l *B1 .*X1.ˆ2 ./(1+1 i .*B1 .*Z1) ) ;

q f2 = qf2 + A(n) ./(1+1 i .*B2 .*Z1) . . .

.* exp(−(−h) *B2 .*X1.ˆ2 ./(1+1 i .*B2 .*Z1) ) ;

qn = qn + A(n) ./(1+1 i .*B3 .*Z1) . . .

.* exp(−( l+m+h) *B3 .*X1.ˆ2 ./(1+1 i .*B3 .*Z1) ) ;

end

[ q2f1 ] = Second Order MGB(X1 , Z1 , k1 , k1 , k0 ,A,B, ’ harmonic ’ ) ;

[ q d i f f ] = Second Order MGB(X1 , Z1 , k1 , k2 , k0 ,A,B, ’ d i f f ’ ) ;

s i g n a l = 1/2* q2f1 .* conj ( q f2 ) + ( qf1 ) .* conj ( q d i f f ) ;

case ’ lower ’

l = −k1/k0 ;

m = k2/k0 ;

h = k2/k0 ;

p0 = p 1*p 2 ˆ2 ;

a lpha 3 = alpha x (2* f 2−f 1 , 2 9 . 9 2 , 7 0 , 5 0 ) ;

f o r n = 1 : l ength (A)

B1 = B(n)/(− l ) ;

B2 = B(n) /m;

B3 = B(n) /( l+m+h) ;

q f1 = qf1 + A(n) ./(1+1 i .*B1 .*Z1) . . .
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.* exp(−(− l ) *B1 .*X1.ˆ2 ./(1+1 i .*B1 .*Z1) ) ;

q f2 = qf2 + A(n) ./(1+1 i .*B2 .*Z1) . . .

.* exp(−m*B2 .*X1.ˆ2 ./(1+1 i .*B2 .*Z1) ) ;

qn = qn + A(n) ./(1+1 i .*B3 .*Z1) . . .

.* exp(−( l+m+h) *B3 .*X1.ˆ2 ./(1+1 i .*B3 .*Z1) ) ;

end

[ q2f2 ] = Second Order MGB(X1 , Z1 , k2 , k2 , k0 ,A,B, ’ harmonic ’ ) ;

[ q d i f f ] = Second Order MGB(X1 , Z1 , k1 , k2 , k0 ,A,B, ’ d i f f ’ ) ;

s i g n a l = 1/2* q2f2 .* conj ( q f1 ) + ( qf2 ) .* conj ( q d i f f ) ;

o the rw i se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Choice ’ ’ s e l e c t i o n f o r the t e r t i a r y ( th i rd ) f i e l d

should be ’ ’ harmonic ’ ’ , ’ ’ upper ’ ’ , or ’ ’ lower ’ ’ . ’ ) ;

throw ( e r r )

end

dg1 = 1 i * x i n . ˆ 2 . / ( sigma p−sigma k ) . ˆ2* ( l+m+h) ;

dg2 = 2 i * x i l . / ( sigma p−s igma k ) *( l+m+h) ;

f eg2 = 4/3* x i l .* b e s s e l j ( 0 , 2* ( l+m+h) * x i n * x i l . . .

. / ( sigma p−s igma k ) ) .* exp (1 i *( l+m+h) * x i l . ˆ2 . . .

. / ( sigma p−s igma k ) ) .* s i g n a l ;

f eg1 = exp (1 i *( l+m+h) * x i n ˆ2 . / ( sigma p−sigma k ) ) .* f eg2 .* x i s t e p ;

f eg1 ( abs ( dg2* x i s t e p ) > 0 . 1 ) = feg1 ( abs ( dg2* x i s t e p ) > 0 . 1 ) . . .

.* s inh ( x i s t e p /2 .* dg2 ( abs ( dg2* x i s t e p ) > 0 . 1 ) ) . . .

. * 2 . / ( x i s t e p .* dg2 ( abs ( dg2* x i s t e p ) > 0 . 1 ) ) ;

THIRD = feg1 . / ( sigma p−sigma k ) .* s igma step ;

THIRD( abs ( dg1 .* s igma step ) > 0 . 1 ) = . . .

THIRD( abs ( dg1 .* s igma step ) > 0 . 1 ) . . .

.* s inh ( s igma step ( abs ( dg1 .* s igma step ) > 0 . 1 ) . . .

. / 2 . * dg1 ( abs ( dg1 .* s igma step ) > 0 . 1 ) ) . . .

. * 2 . / ( s igma step ( abs ( dg1 .* s igma step ) > 0 . 1 ) . . .

.* dg1 ( abs ( dg1 .* s igma step ) > 0 . 1 ) ) ;

THIRD( isnan (THIRD) ) = 0 ;
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THIRD = sum(sum(THIRD) ) ;

lmh = l+m+h ;
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f unc t i on [ q 2 ] = Second Order MGB(X,Z , k1 , k2 , k0 ,A,B, cho i c e )

% Second Order MGB .m i s c a l l e d by Acous t i c F i e ld Gene ra to r .m

% and MGB Integrator Generator .m and c a l c u l a t e s the second order

% sound f i e l d us ing the MGB expansion techn ique .

% S e l e c t s the second order sound f i e l d based upon the input s e t t i n g s

switch cho i c e

case ’ harmonic ’

l = k1/k0 ;

m = k2/k0 ;

case ’sum ’

l = k1/k0 ;

m = k2/k0 ;

case ’ d i f f ’

l = k1/k0 ;

m = −k2/k0 ;

o therw i se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Choice ’ ’ s e l e c t i o n should be ’ ’ harmonic ’ ’ , ’ ’ sum ’ ’ , or

’ ’ d i f f ’ ’ . ’ ) ;

throw ( e r r )

end

s i z = s i z e (X) ;

X1 = X( : ) ;

Z1 = Z ( : ) ;

q 2 = ze ro s ( s i z e (X1) ) ;

f o r n = 1 : l ength (A)

An = A(n) ;

Bmn = B(n) /m;

f o r k = 1 : l ength (A)

Ak = A(k ) ;

Blk = B(k ) / l ;

r1 = ( l .*Bmn+m.* Blk ) + 1 i . * ( l+m) .*Z1 .* Blk .*Bmn;

r2 = ( l .* Blk+m.*Bmn) .*Z1 − 1 i . * ( l+m) ;
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i f Blk == Bmn

q2 temp = An.*Ak . / ( 4 . * ( l+m) .* Blk .*(1+1 i .* Blk .*Z1) ) . . .

.* exp(−(Blk . * ( l+m) .*X1. ˆ 2 ) ./(1+1 i .* Blk .*Z1) ) . . .

.* l og (1+1 i .*Blk .*Z1) ;

q2 temp (X1==0) = An.*Ak . / ( 4 . * ( l+m) .* Blk . * . . .

(1+1 i .* Blk .*Z1(X1==0)) ) .* l og (1+1 i .* Blk .*Z1(X1==0)) ;

e l s e

s1 = ( l+m) . ˆ 2 . * Blk .*Bmn;

s2 = −1 i . * ( l+m) .* l .*m. * ( Blk−Bmn) . ˆ 2 ;

e1 = ( s2 . / ( r1 . * ( r1 .*Z1+r2 ) ) .*X1. ˆ 2 ) ;

e2 = ( s2 . / ( r1 .* r2 ) .*X1. ˆ 2 ) ;

exp e1 = expint ( e1 ) ;

exp e2 = expint ( e2 ) ;

e i n t = exp e1−exp e2 ;

e i n t ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi ) = . . .

e i n t ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi )+2 i . . .

* pi * s i gn ( ang le ( e1 ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi ) ) ) ;

q2 temp = An.*Ak . / ( 4 . * r1 ) .* exp(−s1 . / r1 .*X1. ˆ 2 ) . * ( e i n t ) ;

q2 temp (X1==0) = An.*Ak . / ( 4 . * r1 (X1==0)) . . .

.* l og (1+r1 (X1==0) . / r2 (X1==0) .*Z1(X1==0)) ;

end

q2 temp ( i snan ( q2 temp ) ) = 0 ;

q 2 = q 2 + q2 temp ;

end

end

q 2 = reshape ( q 2 , s i z ) ;
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f unc t i on [ x t , y t , z t ] = par a r ray co rd ( R tran , d , al ignment )

% par a r ray co rd .m i s c a l l e d by Acous t i c F i e ld Genera to r .m

% and determines the l o c a t i o n o f the t ransduce r s used to d e f i n e

% the sound source . The s c r i p t was o r i g i n a l l y wr i t t en by Glenwood

% Garner and can be found in h i s d i s s e r t a t i o n ”Design o f Optimal

% D i r e c t i o n a l Parametric Acoust ic Arrays in Air ” .

A = d* cos ( p i /6) ; %Adjacent d i s t ance

% Recurs ive te rminat ion

i f R tran == 0

x t = 0 ;

y t = 0 ;

z t = 0 ;

e l s e

x t = [ ] ;

y t = [ ] ;

% Compute coo rd ina t e s f o r one p i e s l i c e

f o r a r ray ind = 1 :6

% Compute coo rd ina t e s o f each edge element

f o r edge ind = 1 : R tran

y edge = ( edge ind −1)*A;

x edge = ( R tran−(( edge ind −1) *0 . 5 ) ) *d ;

a r r ay ang l e = atan ( y edge / x edge )+(array ind −1)* pi /3 ;

a r r a y d i s t = sq r t ( y edgeˆ2+x edge ˆ2) ;

x t = [ x t a r r a y d i s t * cos ( a r r ay ang l e ) ] ;

y t = [ y t a r r a y d i s t * s i n ( a r r ay ang l e ) ] ;

end

end

% Recur s ive ly c a l l p a r a r r a y c o r d f o r next sma l l e r rad iu s

i f strcmp ( alignment , ’ ho r i z ’ )

[ x t r e c , y t r e c ] = par a r ray co rd ( R tran−1,d , al ignment ) ;

x t = [ x t x t r e c ] ; %concatenate cur rent and prev ious

y t = [ y t y t r e c ] ; %concatenate cur rent and prev ious

z t = ze ro s (1 , l ength ( y t ) ) ;
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e l s e i f strcmp ( alignment , ’ ve r t ’ )

[ y t r e c , x t r e c ] = par a r ray co rd ( R tran−1,d , al ignment ) ;

x t temp = x t ; %switch x and y coo rd ina t e s

x t = [ y t y t r e c ] ; %concatenate cur rent and prev ious

y t = [ x t temp x t r e c ] ; %concatenate cur rent and prev ious

z t = ze ro s (1 , l ength ( y t ) ) ;

e l s e

d i sp ( ’ Error : a l ignment not s p e c i f i e d ’ ) ;

end

end

remove = [1 6 11 15 16 21 26 85 88 9 1 ] ;

i f R tran == 5

x t ( remove ) = [ ] ;

y t ( remove ) = [ ] ;

z t ( remove ) = [ ] ;

end
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f unc t i on [ alpha Np per m ] = alpha x ( f , ps inch ,F , hr )

% alpha x .m i s c a l l e d by S ing l e P i s ton Funct i on Genera to r .m

% and MGB Integrand Generator .m and determines the at tenuat ion

% of the sound s i g n a l as i t propagates through the atmosphere .

% The s i g n a l a t t en tua t i on i s g iven by the ISO 9613−1 i n t e r n a t i o n a l

% standard .

ps = .0334224599* ps inch ; %convert inche s Hg to atmospheres

ps0 = 1 ; %standard atmospher ic p r e s su r e

C = (5/9) *(F−32) ; %convert degree s F to degree s Ce l c iu s

F = f /ps ; %normal ize f requency to p r e s su r e

T = C+273.15; %convert temp . to abso lu t e temp .

T0 = 293 . 1 5 ; %standard abso lu t e temp .

T01 = 273 . 1 6 ; %abso lu te f r e e z i n g temp . o f water

% Saturat ion pr e s su r e

psat = ps0 *(10ˆ((−6.8346*((T01/T) ˆ1 .261) ) +4.6151) ) ;

% Absolute humidity

h = hr*psat /ps ;

% Oxygen thermoviscous l o s s

FrO = (1/ ps0 ) *(24+(4.04 e4*h*((0.02+h) /(0.391+h) ) ) ) ;

% Nitrogen thermoviscous l o s s

FrN = (1/ ps0 ) *(T0/T) ˆ(1/2) *(9+280*h*exp (−4.17*((T0/T) ˆ(1/3)−1) ) ) ;

alpha Np per m = ( ps *(F . ˆ 2 ) . / ps0 ) . * ( 1 . 8 4 e−11*(T/T0) ˆ(1/2) . . .

+(T/T0) ˆ(−5/2) * (0 .01278* exp (−2239.1/T) . / (FrO+(F. ˆ 2 . /FrO) ) . . .

+0.1068* exp(−3352/T) . / (FrN+(F. ˆ 2 . /FrN) ) ) ) ;

% You could a l s o re turn at tenuat ion in dB/m

alpha dB per m = 8.686* alpha Np per m ;
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%% Ten Term MGB Co e f f i c i e n t Set

% t e n c o e f f i c i e n t .m i s c a l l e d by Acous t i c F i e ld Gene ra to r .m

% and Near to Far Fie ld Trans format ion Techn ique .m and loads the

% ten term MGB c o e f f i c i e n t s e t g iven by Wen and Breazea l e .

A = [11 .428+0.95175 i 0.06002−0.08013 i −4.2743−8.5562 i . . .

1 .6576+2.7015 i −5.0418+3.2488 i 1.1227−0.68854 i . . .

−1.0106−0.26955 i −2.5974+3.2202 i −0.14840−0.31193 i . . .

−0.20850−0.23851 i ] ;

B = [4 .0697+0.22726 i 1.1531−20.933 i 4.4608+5.1268 i . . .

4 .3521+14.997 i 4.5443+10.003 i 3.8478+20.078 i 2.5280−10.310 i . . .

3.3197−4.8008 i 1.9002−15.820 i 2.6340+25.009 i ] ;
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C.2 Near-to-Far-Field Transformation Code

%% Near−to−Far−Fie ld Transformation Technique

% Near to Far Fie ld Trans format ion Techn ique .m i s the main s c r i p t

% u t i l i z e d to implement the near−to−fa r− f i e l d (NTFF) t rans fo rmat ion

% technique . This program gene ra t e s the far− f i e l d s o l u t i o n s f o r

% the NTFF trans fo rmat ion method as de s c r ibed in ”A Near−to−Far−
% Fie ld Transformation method f o r the determinat ion o f non l i n e a r l y

% generated s c a t t e r ed a cou s t i c f i e l d s ” by Spencer J . Johnson .

c l e a r a l l ; c l o s e a l l ; c l c ;

% This l oads the MGB c o e f f i c i e n t s f o r use in the s imu la t i on

t e n c o e f f i c i e n t

%% Transmitted Sound Fie ld S p e c i f i c a t i o n s

% The user i s to input the s p e c i f i c a t i o n s f o r the sound f i e l d s o f

% i n t e r e s t in t h i s s e c t i o n . Provide the two primary sound f i e l d s

% with the sound pre s su r e l e v e l s , the medium prope r t i e s , the

% transducer and sound source s p e c i f i c a t i o n s , the near− f i e l d sound

% f i e l d sampled , and the r e s u l t i n g far− f i e l d area f o r the

% sound f i e l d s o f i n t e r s t .

% Se l e c t the de s i r ed f r e qu en c i e s

% Note : f 1 must be g r e a t e r than f 2

f 1 = 4000 ;

f 2 = 3000 ;

% Se l e c t the medium p r op e r t i e s

rho = 1 . 2 1 ; %medium dens i ty

c = 344 . 8 ; %smal l s i g n a l sound speed

beta = 1 . 2 ; %c o e f f i c i e n t o f n on l i n e a r i t y

% Se l e c t the sound pre s su r e l e v e l f o r each primary tone ( in dB SPL)

p 1 = 140 ;

p 2 = 140 ;
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% Se l e c t t ransducer s p e c i f i c a t i o n s

% Note : Holosonic , Airmar , or LRAD

a t = 0 . 0404 ; %transducer rad iu s

%Note : 0 .0161 , 0 . 022 , or 0 .0404)

trans num = 7 ; %number o f t ransduce r s

%Note : 81 , 19 , or 7

d = 0 . 2 7 9 ; %d i s t anc e between transducer e lements

%Note : 0 . 045 , 0 . 066 , or 0 .279

% Spec i f y measured near− f i e l d cond i t i on s

cho i c e = ’sum ’ ;

r n f = 0 . 3 4 ;

theta max = 60 ;

theta num = 200 ;

y max = 1 ;

num y = 75 ;

% Spec i f y d e s i r ed far− f i e l d cond i t i on s

the ta max f f = 15 ;

theta num f f = 150 ;

r f = 150 ;

%% DO NOT ALTER THE SCRIPT AFTER THIS POINT

% This s e c t i o n u t i l i z e s the input s p e c i f i c a t i o n s to generate the

% output f i e l d s o f i n t e r e s t .

% Primary sound pre s su r e conver s i on from dB SPL

p 1 = sq r t (2 ) *20e−6*10ˆ( p 1 /20) ;

p 2 = sq r t (2 ) *20e−6*10ˆ( p 2 /20) ;

S = pi * a t ˆ2 ; %transducer area

% Radian f r e qu en c i e s

omega 1 = 2* pi * f 1 ;

omega 2 = 2* pi * f 2 ;

% Wave numbers

k 1 = omega 1/c ;
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k 2 = omega 2/c ;

% Fie ld s e l e c t i o n

switch cho i c e

case ’ harmonic ’

k1 = k 1 ;

k2 = k 1 ;

k0 = ( k1+k2 ) /2 ;

l = k 1 /k0 ;

m = k 1/k0 ;

p0 = p 1*p 1 ;

case ’sum ’

k1 = k 1 ;

k2 = k 2 ;

k0 = ( k1+k2 ) /2 ;

l = k 1 /k0 ;

m = k 2/k0 ;

p0 = p 1*p 2 ;

case ’ d i f f ’

k1 = k 1 ;

k2 = k 2 ;

k0 = ( k1+k2 ) /2 ;

l = k 1 /k0 ;

m = −k 2 /k0 ;

p0 = p 1*p 2 ;

end

z 0 = k0* a t ˆ2/2 ;

lambda = 2* pi /k0 ;

r 0 = S/( lambda /2) ;

% Def in ing t ransducer l o c a t i o n s

switch trans num

case 1

rad iu s = 0 ;

case 7

rad iu s = 1 ;

case 19
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rad iu s = 2 ;

case 37

rad iu s = 3 ;

case 61

rad iu s = 4 ;

case 81

rad iu s = 5 ;

o therwi se

d i sp ( ’ S e l e c t an appropr ia te number o f t ransduce r s . ’ )

break

end

[ x t , y t , z t ] = par a r ray co rd ( radius , d , ’ ve r t ’ ) ;

%% Near−Fie ld and Far−Fie ld Mesh S p e c i f i c a t i o n s

% Generates the mesh g r i d s f o r the near− and far− f i e l d s imu la t i on s

% in order to perform the NTFF trans fo rmat ion .

% Se l e c t sound f i e l d area s p e c i f i c a t i o n s

th e t a n f = ( l i n s p a c e (−theta max , theta max , theta num ) ) * pi /180 ;

x = r n f * s i n ( t h e t a n f ) ;

z = r n f * ones ( s i z e ( t h e t a n f ) ) ;

y = l i n s p a c e (−y max , y max , num y) ;

a = sq r t ( x.ˆ2+z . ˆ 2 ) ;

d e l t a a = the t a n f (2 )−t h e t a n f (1 ) ;

y l eng th = max(y )−min(y ) ;

y num = length (y ) ;

d e l t a y = y (2)−y (1 ) ;

the ta y = as in (y ) ;

M = (max( th e t a n f )−min( th e t a n f ) ) / d e l t a a + 1 ;

% Determines the weight ing f o r the i n t e g r a l s o l u t i o n

[ y i , w y ] = lgwt (y num , y (1 ) / a t , y ( end ) / a t ) ;

y i = f l i p l r ( y i ’ ) ;

w y = w y ’ ;

[ x i , w x ] = lgwt ( theta num , x (1 ) / a t , x ( end ) / a t ) ;

x i = f l i p l r ( x i ’ ) ;
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w x = w x ’ ;

[X,Y] = ndgrid (x , y ) ;

[ Z ,Y1 ] = ndgrid ( z , y ) ;

[THETA,Y2 ] = ndgrid ( th e t a n f *180/ pi , y ) ;

[ X i , Y i ] = ndgrid ( x i , y i ) ;

[W x,W y] = ndgrid (w x , w y ) ;

W = W x.*W y;

rho n f = sq r t (X.ˆ2+Y.ˆ2 ) ;

X1 = rho n f / a t ;

Z1 = Z/ z 0 ;

% Far− f i e l d mesh

t h e t a f f = ( l i n s p a c e (− theta max f f , theta max f f , . . .

the ta num f f ) ) * pi /180 ;

x f f = r f * s i n ( t h e t a f f ) ;

z f f = r f * ones ( s i z e ( t h e t a f f ) ) ;

y f f = ze ro s ( s i z e ( x f f ) ) ;

R = sq r t ( x f f .ˆ2+ y f f .ˆ2+ z f f . ˆ 2 ) ;

X1 f f = sq r t ( x f f .ˆ2+ y f f . ˆ 2 ) / a t ;

Z 1 f f = z f f / z 0 ;

% On−ax i s mesh

z on = logspace (−3 ,1 , theta num f f ) ;

x on = ze ro s ( s i z e ( z on ) ) ;

y on = ze ro s ( s i z e ( z on ) ) ;

% Loads the Near−Fie ld Data

addpath ( ’C:\NearFieldDataPathName ’ )

load DataFileName .mat

q1 nf = data 1 ;

q2 n f = data 2 ;
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%% Primary Sound F ie ld Generation

% This s e c t i o n determines the far− f i e l d r ad i a t i on pattern f o r the

% primary sound f i e l d s us ing the NTFF trans fo rmat ion .

q1 on = ze ro s ( s i z e ( z on ) ) ;

q 1 f f = ze ro s ( s i z e ( x f f ) ) ;

p 1 n t f f = ze ro s ( s i z e ( x f f ) ) ;

phi = ze ro s ( l ength ( th e t a n f ) , l ength ( t h e t a f f ) ) ;

a l pha f 1 = alpha x ( f 1 , 2 9 . 9 2 , 7 0 , 5 0 ) ;

% Far−Fie ld Primary Sound F ie ld us ing the MGB expansion

f o r t = 1 : l ength ( x t )

X1 f f = sq r t ( ( ( x f f−x t ( t ) ) / a t ) . ˆ2 + ( ( y f f−y t ( t ) ) / a t ) . ˆ 2 ) ;

Z 1 f f = ( z f f −z t ( t ) ) / z 0 ;

f o r n = 1 : l ength (A)

B1 = B(n) / l ;

q 1 f f = q 1 f f + p 1*A(n) ./(1+1 i .*B1 .* Z1 f f ) . . .

.* exp(− l *B1 .* X1 f f .ˆ2 ./(1+1 i .*B1 .* Z1 f f ) ) ;

end

end

q 1 f f = q 1 f f /max( q 1 f f ) ;

q1 f f dB = 20* l og10 ( abs ( q 1 f f ) ) ;

% Primary NTFF Expansion Technique

f o r n = 1 : l ength ( x f f )

phi ( : , n ) = t h e t a f f (n) − t h e t a n f ;

end

f o r n = 1 :M

p1 n t f f = p1 n t f f − a (n) *(1+ cos ( phi (n , : ) ) ) . . .

.* exp(−1 i *k 1 *a (n) * cos ( phi (n , : ) ) ) .* abs ( q1 n f (n) ) ;

end

C = −1 i *k 1 * de l t a a /(4* pi ) *exp(−1 i *k 1 *R) . / (R) * y l eng th /y num ;

p 1 n t f f = C.* p1 n t f f ;

p 1 n t f f = p1 n t f f /max( p 1 n t f f ) ;

p1 nt f f dB = 20* l og10 ( abs ( p 1 n t f f ) ) ;
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% Primary Sound Fie ld Plot s

f i g u r e (1 )

ha l fPo l a r ( t h e t a n f+pi /2 , p1 nf dB ) ;

f i g u r e (1 )

subplot ( 2 , 1 , 1 )

semi logx ( z on , p1 on dB )

hold on

v l i n e ( r n f , ’ b ’ )

hold on

v l i n e ( r 0 , ’ r ’ )

subplot ( 2 , 1 , 2 )

semi logx ( z on , q2 on dB )

hold on

v l i n e ( r n f , ’ b ’ )

hold on

v l i n e ( r 0 , ’ r ’ )

f i g u r e (2 )

s u r f (THETA,Y, q1 nf dB , ’ Edgecolor ’ , ’ none ’ )

x l ab e l ( ’ Radial Distance (m) ’ )

y l ab e l ( ’ E levat ion (m) ’ )

view (0 ,90 )

ax i s ( [ min (min (THETA) ) max(max(THETA) ) min (min (Y) ) max(max(Y) ) ] )

h = co l o rba r ;

y l ab e l (h , ’ Pres sure (dB SPL) ’ )

z l a b e l ( ’Near−Fie ld Sur face Pressure ’ )

t i t l e ( ’ Primary Near−Fie ld ’ )

f i g u r e (3 )

p l o t ( x f f , q1 f f dB , ’ r ’ , x f f , p1 nt f f dB , ’b ’ )

s e t ( gca , ’XTick ’ , [−50 ,−40 ,−30 ,−20 ,−10 ,0 ,10 ,20 ,30 ,40 ,50])

x l ab e l ( ’ Radial Distance (m) ’ )

y l ab e l ( ’ Normalized Pressure (dB SPL) ’ )

l egend ( ’ Di rec t ’ , ’NTFF ’ )

xlim ([−50 50 ] )

t i t l e ( ’ Far−Fie ld Comparison −− Primary Sound Fie ld ’ )
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%% Secondary Sound F ie ld Generation

% This s e c t i o n determines the far− f i e l d r ad i a t i on pattern f o r the

% secondary sound f i e l d s us ing the NTFF trans fo rmat ion .

p 2 n t f f = ze ro s ( s i z e ( x f f ) ) ;

p2 other = ze ro s ( s i z e ( x f f ) ) ;

q2 harm f f = ze ro s ( s i z e ( x f f ) ) ;

% Far−Fie ld Secondary Sound F ie ld us ing the MGB expansion

f o r t = 1 : l ength ( x t )

X1 f f = sq r t ( ( ( x f f−x t ( t ) ) / a t ) . ˆ2 + ( ( y f f−y t ( t ) ) / a t ) . ˆ 2 ) ;

Z 1 f f = ( z f f −z t ( t ) ) / z 0 ;

temp = Second Order MGB( X1 ff , Z1 f f , k1 , k2 , k0 ,A,B, cho i c e ) ;

q2 harm f f = q2 harm f f + temp ;

end

q2 harm f f = −p0*beta *( l+m) ˆ2*( k0* a t ) ˆ2/( rho*c ˆ2) * q2 harm f f ;

q2 harm f f = q2 harm f f /max( q2 harm f f ) ;

q2 harm ff dB = 20* l og10 ( abs ( q2 harm f f ) ) ;

% Second Order So lu t i on

cos B = ze ro s ( s i z e ( rho n f ) ) ;

s in B = ze ro s ( s i z e ( rho n f ) ) ;

f o r p = 1 : l ength ( p 2 n t f f )

z p = z f f (p) ;

r pr ime = sq r t ( ( ( x f f (p) − X)/ a t ) .ˆ2+(Y/ a t ) . ˆ 2 ) ;

z pr ime = ( z p − Z) / z 0 ;

f o r n = 1 : l ength (y )

cos B ( : , n ) = cos ( t h e t a f f (p) − t h e t a n f ) .* cos ( the ta y (n) ) ;

s in B ( : , n ) = s i n ( t h e t a f f (p) − t h e t a n f ) .* s i n ( the ta y (n) ) ;

end

p2 n t f f (p) = Second Order NTFF ( r prime , z prime , abs ( q2 nf ) , . . .

cos B , sin B ,W, k1 , k2 , k0 ,A,B, cho i c e ) ;

end

C = 1/(4* pi ) * de l t a a *y max/ a t ;

p 2 n t f f = p2 n t f f .*C;

p2 n t f f = p2 n t f f /max( p 2 n t f f ) ;

p2 nt f f dB = 20* l og10 ( abs ( p 2 n t f f ) ) ;
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% Secondary Sound Fie ld Plot s

f i g u r e (4 )

s u r f (X,Y, q2 nf , ’ Edgecolor ’ , ’ none ’ )

x l ab e l ( ’ Radial Distance (m) ’ )

y l ab e l ( ’ E levat ion (m) ’ )

view (0 ,90 )

ax i s ( [ min (min (X) ) max(max(X) ) min (min (Y) ) max(max(Y) ) ] )

g r id o f f ;

h = co l o rba r ;

y l ab e l (h , ’ Pres sure (dB SPL) ’ )

z l a b e l ( ’Near−Fie ld Sur face Pressure ’ )

t i t l e ( ’ Secondary Near−Fie ld ’ )

f i g u r e (5 )

p l o t ( x f f , q2 harm ff dB , ’ r ’ , x f f , p2 nt f f dB , ’b ’ )

x l ab e l ( ’ Radial Distance (m) ’ )

y l ab e l ( ’ Normalized Pressure (dB SPL) ’ )

l egend ( ’ Di rec t ’ , ’NTFF ’ )

xlim ([−15 15 ] )

ylim ([−40 0 ] )

t i t l e ( ’ Far−Fie ld Comparison −− Secondary Sound Fie ld ’ )
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f unc t i on [ q 2 NTFF ] = Second Order NTFF (X,Z , p Q , cos B , sin B , . . .

W, k1 , k2 , k0 ,A,B, cho i c e )

% Second Order NTFF .m i s c a l l e d by

% Near to Far Fie ld Trans format ion Techn ique .m and c a l c u l a t e s the

% far− f i e l d r ad i a t i on pat t e rns o f the second order sound f i e l d

% us ing the NTFF trans fo rmat ion and MGB expansion techn iques .

% S e l e c t s the second order sound f i e l d based upon the input s e t t i n g s

switch cho i c e

case ’ harmonic ’

l = k1/k0 ;

m = k2/k0 ;

case ’sum ’

l = k1/k0 ;

m = k2/k0 ;

case ’ d i f f ’

l = k1/k0 ;

m = −k2/k0 ;

o therw i se

e r r = MException ( ’TypeChk : UnknownDef ’ , . . .

’ ’ ’ Choice ’ ’ s e l e c t i o n should be ’ ’ harmonic ’ ’ , ’ ’ sum ’ ’ , or

’ ’ d i f f ’ ’ . ’ ) ;

throw ( e r r )

end

s i z = s i z e (X) ;

X1 = X( : ) ;

Z1 = Z ( : ) ;

pQ = p Q ( : ) ;

cosB = cos B ( : ) ;

sinB = sin B ( : ) ;

W1 = W( : ) ;

q 2 NTFF = ze ro s ( s i z e (X1) ) ;

f o r n = 1 : l ength (A)

An = A(n) ;
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Bmn = B(n) /m;

f o r k = 1 : l ength (A)

Ak = A(k ) ;

Blk = B(k ) / l ;

r1 = ( l .*Bmn+m.* Blk ) + 1 i . * ( l+m) .*Z1 .* Blk .*Bmn;

r2 = ( l .* Blk+m.*Bmn) .*Z1 − 1 i . * ( l+m) ;

s1 = ( l+m) . ˆ 2 . * Blk .*Bmn;

i f Blk == Bmn

q2 temp = An.*Ak . / ( 4 . * ( l+m) .* Blk .*(1+1 i .* Blk .*Z1) ) . . .

.* exp(−(Blk . * ( l+m) .*X1. ˆ 2 ) ./(1+1 i .* Blk .*Z1) ) . . .

.* l og (1+1 i .*Blk .*Z1) ;

q2 temp (X1==0) = An.*Ak . / ( 4 . * ( l+m) .* Blk . * . . .

(1+1 i .* Blk .*Z1(X1==0)) ) .* l og (1+1 i .* Blk .*Z1(X1==0)) ;

x norm = 0 ;

e l s e

s2 = −1 i . * ( l+m) .* l .*m. * ( Blk−Bmn) . ˆ 2 ;

e1 = ( s2 . / ( r1 . * ( r1 .*Z1+r2 ) ) .*X1. ˆ 2 ) ;

e2 = ( s2 . / ( r1 .* r2 ) .*X1. ˆ 2 ) ;

exp e1 = expint ( e1 ) ;

exp e2 = expint ( e2 ) ;

e i n t = exp e1−exp e2 ;

e i n t ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi ) = . . .

e i n t ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi )+2 i . . .

* pi * s i gn ( ang le ( e1 ( abs ( ang le ( e1 )−ang le ( e2 ) ) > pi ) ) ) ;

q2 temp = An.*Ak . / ( 4 . * r1 ) .* exp(−s1 . / r1 .*X1. ˆ 2 ) . * ( e i n t ) ;

q2 temp (X1==0) = An.*Ak . / ( 4 . * r1 (X1==0)) . . .

.* l og (1+r1 (X1==0) . / r2 (X1==0) .*Z1(X1==0)) ;

x norm = −2./( r1 .*X1) .* exp(−s1 . / r1 .*X1. ˆ2 ) . . .

. * ( exp ( e1 )−exp ( e2 ) ) ;

x norm (X1==0) = 0 ;

end

q2 temp ( i snan ( q2 temp ) ) = 0 ;

q2 temp = W1. * ( q2 temp .*(−1 i . * ( l+m) . * ( Blk .*Bmn . . .

. / r1 .* cosB+k0 )−2.* s1 . / r1 .* sinB ) + x norm .* sinB ) .*pQ;

q 2 NTFF = q 2 NTFF + q2 temp ;
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end

end

q 2 NTFF = sum(sum( reshape (q 2 NTFF , s i z ) ) ) ;
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C.3 Acousto-Electromagnetic Interaction Code

%% Acousto−Electromagnet i c I n t e r a c t i o n

% Acousto EM Interact ion .m i s the main s c r i p t in determining the

% modulation o f an e l e c t r omagne t i c (EM) wave by an acou s t i c f i e l d .

% This program gene ra t e s the s o l u t i o n s f o r the comparison data f o r

% the d i f f e r e n t modulation p ro c e s s e s as de s c r ibed in ”Near−Fie ld

% Radio Frequency Sca t t e r i ng from Acous i ca l ly−Excited Vibrat ing

% St ruc tu r e s ” by Spencer J . Johnson .

c l e a r a l l ; c l o s e a l l ; c l c ;

addpath ( ’C:\DataPathName ’ )

%% Comparison o f Power Leve l s o f Modulation Tones

% Se l e c t the RF s i g n a l p r op e r t i e s

f r f = 915 e6 ;

c r f = 3e8 ;

lambda rf = c r f / f r f ;

omega rf = 2* pi * f r f ;

k r f = omega rf / c r f ;

% Se l e c t the a cou s t i c s i g n a l p r op e r t i e s

f a = 2e3 ;

c a = 343 ;

lambda a = c a / f a ;

omega a = 2* pi * f a ;

k a = omega a/ c a ;

% Se l e c t the medium p r op e r t i e s

rho = 1 . 2 1 ;

e r = 1 .00058986 ;

% Se l e c t the sound pre s su r e l e v e l ( in dB SPL)

p0 dBSPL = 150 ;

R0 = 3* lambda rf ;
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d v = 3/100* lambda rf ;

p0 = sq r t (2 ) *20e−6*10ˆ(p0 dBSPL/20) ;

n = 1 : 1 : 8 ;

dopp = ze ro s ( s i z e (n) ) ;

spec = ze ro s ( s i z e (n) ) ;

path = ze ro s ( s i z e (n) ) ;

acoust = ze ro s ( s i z e (n) ) ;

% Transmitted RF s i g n a l power l e v e l ( in W)

p = 1 ;

% Determines the con t r i bu t i on o f the d i f f e r e n t modulation types

% f o r the f i r s t n tones .

f o r m = 1 : l ength (n)

dopp (m) = p* b e s s e l j (m,2* k r f *d v ) ;

spec (m) = 4*( d v*omega a /(2* c r f ) ) ˆm;

path (m) = 2*(m+1) * ( ( d v/R0) /2) ˆm;

acoust (m) = p0 *( k r f /(m*k a ) ) ˆ2*( e r −1)*( e r +2) . . .

/(3* rho* c a ˆ2*(1−4*( k r f /(m*k a ) ) ˆ2* e r ) ) ;

end

ca r r i e r dB = 20* l og10 ( abs (p) ) ;

dopp dB = 20* l og10 ( abs ( dopp ) ) ;

spec dB = 20* l og10 ( abs ( spec ) ) ;

path dB = 20* l og10 ( abs ( path ) ) ;

acoust dB = 20* l og10 ( abs ( acoust ) ) ;

combo dB = 20* l og10 ( abs ( acoust )+abs ( dopp )+abs ( path )+abs ( spec ) ) ;

% Determines the doppler spectrum per um of su r f a c e d isp lacement

d i sp v = l i n s p a c e ( . 0 1 , 2 , 1 00 ) *10ˆ−6;

dopp dv = b e s s e l j (1 ,2* k r f * d i sp v ) ;

dopp dv dB = 20* l og10 ( abs ( dopp dv ) ) ;

% Plot s the doppler spectrum and modulation tones

f i g u r e (1 )

p l o t ( d i sp v *10ˆ6 , dopp dv dB )

x l ab e l ( ’ Displacement (\mum) ’ )
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y l ab e l ( ’Power Spectrum (dBm) ’ )

f i g u r e (2 )

p l o t (n , dopp dB , ’ s− ’ ,n , spec dB , ’ˆ− ’ ,n , path dB , ’ o− ’ ,n , acoust dB , ’v− ’ )

ax i s ( [ min (n) max(n) −250 0 ] )

x l ab e l ( ’Tone Number , \ i t {n} ’ )

y l ab e l ( ’ Normalized Modulation Tone Amplitude (dBc) ’ )

l egend ( ’PM (Doppler ) ’ , ’AM ( Spec . Rel . ) ’ , ’AM (Path Loss ) ’ , . . .

’AM ( Acoust ic ) ’ )

%% Combined modulation e f f e c t s on the RF c a r r i e r

% This p l o t s the measured modulation data and compares i t with the

% expected c a l c u l a t ed r e s u l t s .

% Reads the measured modulation data in from an Excel worksheet and

% and s e l e c t s the f r e qu en c i e s from the appropr ia te worksheet c e l l .

worksheet = ’DataFileName . x l sx ’ ;

s t a r t f r e q = ’A8 :A8 ’ ;

s t e p f r e q = ’B8 :B8 ’ ;

c a r r f r e q = ’A2 :A2 ’ ;

span f r eq = ’C4 :C4 ’ ;

Radar data = x l s r e ad ( worksheet , ’A:A ’ ) ;

Radar data ( 1 : 8 ) = [ ] ;

f r e q s t a r t = x l s r e ad ( worksheet , s t a r t f r e q ) ;

f r e q s t e p = x l s r e ad ( worksheet , s t e p f r e q ) ;

f r e q c a r r = x l s r e ad ( worksheet , c a r r f r e q ) ;

f r eq span = x l s r e ad ( worksheet , span f r eq ) ;

f r e q l e n g t h = length ( Radar data ) ;

f r eq end = −f r eq span /2 + ( f r eq l eng th −1)* f r e q s t e p ;

f r e q da t a = −f r eq span /2 : f r e q s t e p : f r eq end ;

% Determines the sampling ra t e

Fs = f r eq span ;

171



samp time = 1/Fs ;

samp num = 1e6 ;

time = 0 : samp time : samp time *( samp num−1) ;

% Combined modulation e f f e c t s

omega rf = 0 ; %c a r r i e r o f f s e t

combine = abs (p* b e s s e l j (1 ,2* k r f *d v ) ) . . .

. * ( cos ( omega rf * time+omega a* time+pi /2) . . .

+cos ( omega rf * time−omega a* time−pi /2) ) . . .

+abs (2*(1+1) * ( ( d v/R0) /2) )+abs ( p0 *( k r f /( k a ) ) ˆ2 . . .

*( e r −1)*( e r +2)/(3* rho* c a ˆ2*(1−4*( k r f /( k a ) ) ˆ2* e r ) ) ) ) . . .

. * ( cos ( omega rf * time+omega a* time ) . . .

+cos ( omega rf * time−omega a* time ) )+abs (p) * cos ( omega rf * time ) ;

% Performs the FFT of the modulation s i g n a l to generate the

% frequency domain p l o t .

f r e q l e n g t h = pow2( nextpow2 (samp num) ) ;

f r e q s t e p = f r eq span / f r e q l e n g t h ;

f r eq end = −f r eq span /2 + ( f r eq l eng th −1)* f r e q s t e p ;

f r e q = −f r eq span /2 : f r e q s t e p : f r eq end ;

combine2 = [ combine .*hamming( l ength ( combine ) ) . ’ , . . .

z e r o s (1 , f r e q l eng th−l ength ( combine ) ) ] ;

combined = 2/ length ( combine2 ) * f f t ( combine2 , f r e q l e n g t h ) ;

combined2 = combined ( 1 : l ength ( combined ) /2+1) ;

combined = combined ( l ength ( combined ) /2+2: end ) ;

combined = horzcat ( combined , combined2 ) ;

combined = 20* l og10 ( abs ( combined ) ) ;

[ peak , l o c ] = f indpeaks ( combined , ’MinPeakHeight ’ , −120 , . . .

’ MinPeakDistance ’ ,10 e3 ) ;

peak (2 ) = [ ] ;

l o c (2 ) = [ ] ;

% Plot o f the modulation e f f e c t s and the RF c a r r i e r

f i g u r e (3 )

s e t ( gcf , ’ DefaultAxesColorOrder ’ , [ 0 0 . 5 0 ; 0 0 0 ; 0 0 .5 0 ] ) ;

h = p lo t ( f r e q /1e3 , combined , f r e q da t a /1e3 , Radar data , ’b ’ , . . .
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f r e q ( l o c ) /1e3 , peak , ’ * ’ ) ;

x l ab e l ( ’ Frequency Of f s e t (kHz) ’ )

y l ab e l ( ’Power (dBm) ’ )

legend name = { ’ Pred ic ted ’ , ’Measured ’ } ;
o rder = [2 1 ] ;

l egend (h( order ) , legend name{ order })
t i t l e ( s p r i n t f ( ’ Acous t i ca l l y−Induced Modulation onto RF Carr ie r , F {

RF} = %d MHz ’ , f r e q c a r r /1 e6 ) ) ;

ax i s ([−3 3 −140 −40])
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%% Reading the Frequency Spectrum Radar Data from Excel Spreadsheet

% Radar Frequency Domain Excel Read .m i s c a l l e d by

% Acousto EM Interact ion .m and loads and p l o t s the f requency

% spectrum data from the high dynamic range non l in ea r measurement

% system .

c l e a r a l l ; c l o s e a l l ; c l c ;

addpath ( ’C:\DataPathName ’ )

worksheet = ’DataFileName . x l sx ’ ;

s t a r t f r e q = ’A8 :A8 ’ ;

s t e p f r e q = ’B8 :B8 ’ ;

c a r r f r e q = ’A2 :A2 ’ ;

span f r eq = ’C4 :C4 ’ ;

Radar data = x l s r e ad ( worksheet , ’A:A ’ ) ;

Radar data ( 1 : 8 ) = [ ] ;

f r e q s t a r t = x l s r e ad ( worksheet , s t a r t f r e q ) ;

f r e q s t e p = x l s r e ad ( worksheet , s t e p f r e q ) ;

f r e q c a r r = x l s r e ad ( worksheet , c a r r f r e q ) ;

f r eq span = x l s r e ad ( worksheet , span f r eq ) ;

f r e q l e n g t h = length ( Radar data ) ;

f r eq end = −f r eq span /2 + ( f r eq l eng th −1)* f r e q s t e p ;

f r e q = −f r eq span /2 : f r e q s t e p : f r eq end ;

f i g u r e (1 )

s e t ( gca , ’ FontSize ’ ,16)

p l o t ( f r e q /1e3 , Radar data )

x l ab e l ( ’ Frequency (kHz) ’ )

y l ab e l ( ’Power (dBm) ’ )

t i t l e ( s p r i n t f ( ’ Acous t i ca l l y−Induced Modulation onto RF Carr ie r , F {
RF} = %d MHz ’ , f r e q c a r r /1 e6 ) ) ;

ax i s ([−3 3 −140 −40])
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%% Reading the Time Domain Radar Data from Excel Spreadsheet

% Radar Time Domain Excel Read .m i s c a l l e d by

% Acousto EM Interact ion .m and loads and p l o t s the t r an s i e n t data

% from the high dynamic range non l in ea r measurement system .

c l e a r a l l ; c l o s e a l l ; c l c ;

addpath ( ’C:\DataPathName ’ )

worksheet = ’DataFileName . x l sx ’ ;

c a r r f r e q = x l s r e ad ( worksheet , ’A2 :A2 ’ ) ;

mod freq = x l s r ead ( worksheet , ’B2 :B2 ’ ) ;

data = x l s r ead ( worksheet , ’A:A ’ ) ;

data ( 1 : 5 ) = [ ] ;

dt = x l s r ead ( worksheet , ’A4 :A4 ’ ) ;

time = 0 : dt : dt *( l ength ( data )−1) ;

myTitleBottom = sp r i n t f ( ’ F {RF} = %d MHz and F {AC} = %0.3 f kHz ’ , . . .

c a r r f r e q /1e6 , mod freq /1 e3 ) ;

h = f i g u r e (1 ) ;

p l o t ( time , data )

x l ab e l ( ’Time ( sec ) ’ )

y l ab e l ( ’Power (dBm) ’ )

mt i t l e ( ’ Acous t i ca l l y−Induced Modulation onto RF Car r i e r ’ , . . .

myTitleBottom ) ;

p = get (h , ’ pos ’ ) ;

s e t (h , ’ pos ’ , [ p (1 ) p (2 ) −.075 p ( 3 : 4 ) ] ) ;

ax i s ( [ min ( time ) max( time ) −68 −58])
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