
ABSTRACT

LIN, CHEN-YEN. Some Recent Developments in Parametric and Nonparametric Regression
Models. (Under the direction of Hao Helen Zhang and Howard D. Bondell.)

We present several developments in variable selection techniques for parametric and

nonparametric regression models in this dissertation. We begin the series of discussions

from a traditional linear model. In recent years, analysis of high-dimensional data has

become a routine in modern statistics. High-dimensional data brings about new oppor-

tunities and also new challenges for many classical procedures. In Chapter 1, we review a

classic yet popular variable selection method, forward selection. We propose a perturbed

forward selection to alleviate several difficulties that forward selection experiences when

predictors are high-dimensional. As another manifestation of the variable selection en-

semble approach, the proposed method requires running forward selection on multiple

perturbed datasets and aggregating the results to provide a powerful and stable selection

path. In Chapters 2 and 3, we shift attention to nonparametric models. In nonparametric

regression, variable selection for multivariate regression is a challenging task. The success

of penalized regression, especially the COSSO penalty, opens a door for joint estimation

and selection. We first study variable selection for nonparametric quantile regression. We

present a novel computational algorithm to implement the adaptive COSSO penalty in

quantile regression. Moreover, for better parameter tuning, we introduce a bootstrap-type

degrees-of-freedom estimate. The promising numerical results serve as another testament

of the success of COSSO penalty. To better promote the applicability and to establish the

asymptotic properties of COSSO for various regression models, we propose a nonparamet-

ric least squares approximation procedure in Chapter 3 that provides a unified framework

to do variable selection and function estimation. In addition, the proposed procedure also

enjoys lower computational cost, making it a desirable alternative for existing COSSO-

type methods. We observe very encouraging numerical results and our future work is to

study the asymptotic properties of the proposed least squares approximation procedure.
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Chapter 1

Refining Forward Selection in

High-Dimensional Feature Space by

Perturbation

1.1 Introduction

We consider a high-dimensional linear regression model

yi = β1x
(1)
i + . . .+ βpx

(p)
i + εi, i = 1, . . . , n, (1.1)

where yi is the response, xi = (x
(1)
i , . . . , x

(p)
i ) is a p-dimensional vector of predictors,

p ≫ n, and εi is the random error with mean zero and finite variance. We assume that

the response and each predictor are centered so there is no intercept in (1.1).

The motivation of this research arises from current challenges in high-dimensional

regression. For instance, one scientific goal of a microarray experiment is to identify

a set of genes that are related to a continuous phenotypic response. The difficulties

and challenges from this type of study are two-fold: limited sample size; and complex

correlation structure among predictors. In a typical microarray experiment, the number

of arrays is usually on the order of tens while the number of predictors is tens of thousands.

In addition, in such a high-dimensional model, not only can spurious correlations lead to

incorrect scientific findings (Fan and Lv, 2010) but the correlations between genes within

the same biological pathway complicates the selection process.
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The majority of variable selection methods revolve about the notion of selection con-

sistency and examine how often a method identifies the correct model. However, in the

modern world of high-dimensional data, a scientist does not expect to identify the correct

predictors with no mistakes. In many instances, a scientist would simply prefer a properly

ranked list of candidate predictors and hope that the important ones would tend to be

ranked at or near the top of the list. Our goal is to obtain a ranked list whose ordering

improves upon the ordering obtained by the existing methods. As also remarked by Xin

and Zhu (2012), the task of ranking is the most fundamental. Once the variables are

ranked, from a decision-theoretic framework, the choice of thresholding has more to do

with one’s belief on the tradeoff between false positives and false negatives.

For any selection procedure that generates a ranked list or a sequence of candidate

models, such as forward selection or penalized regression, despite many information cri-

teria having been proposed, it remains a highly debated topic how to pick a final model

from the selection path. Even in the traditional large n small p situations, the correct

model may not be an element in the selection path (Leng et al., 2006; Wang, 2009),

making selection consistency less realistic in the high-dimensional case. More discussion

on the selection consistency of penalized regression methods can be found in Zhao and

Yu (2006) and Fan and Lv (2010) and references therein. When selection consistency is

not feasible, a pertinent alternative is to study if a selection procedure possesses the sure

screening property, i.e. all important predictors would be included with probability going

to one (Fan and Lv, 2008).

In this study, we revisit a classic yet popular selection procedure, forward selection

(FS). Recently, Wang (2009) studied the sure screening property of FS and showed the-

oretically and numerically that FS can consistently detect all important predictors even

if the number of predictors is substantially larger than the sample size. Despite that FS

enjoys such desirable property, the method has several limitations. For instance, resulting

from its greedy search algorithm, FS tends to eliminate other informative predictors if

they are correlated with the ones that are in the current model (Efron et al., 2004). In

a high-dimensional setup, Donoho and Stodden (2006) showed that there exists a break-

down point for standard model selection procedures including FS and LASSO (Tibshirani,

1996, 2011) when the number of variables exceeds the sample size. Moreover, both FS

and LASSO can only identify at most n predictors before it saturates when n ≪ p.

We address these limitations by a re-weighting approach. Motivated from the mini-
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mand perturbation of Jin et al. (2001), we propose a computationally-intensive method,

which we call the perturbed FS. The notion of minimand perturbation is originally in-

troduced to derive the sampling distribution of some parameter estimates in parametric

models. In this work, we explore the perturbation technique in order to enhance the sta-

bility in variable selection. Our perturbation method is reminiscent of a weighted least

squares (WLS), as it can be viewed as randomly weighting the observations. With ran-

dom weights, the WLS method bears some similarity with Bayesian bootstrap (Rubin,

1981) and Bayesian Bagging (Clyde and Lee, 2001).

Compared to the original FS, the main advantage of the proposed method is that:

the new method no longer depends on a greedy search hence can better handle corre-

lated predictors and identify more predictors than sample size. More importantly, as we

demonstrate later in the article, the perturbed FS provides a competitive, and often su-

perior, variable ordering and prediction accuracy. Obviously the price we pay is increased

computational intensity. However, as will be explained later, the procedure involves ap-

plying FS to multiple perturbed data and the implementation of the procedure does not

require communication between different tasks and therefore can be facilitated by taking

advantage of parallel computing (Knaus et al., 2009).

Our proposed method is based on repeatedly applying FS on multiple perturbed data

and produces an aggregated importance indicator for each predictor. This philosophy

has a close proximity to a higher-level notion of variable-selection ensemble (VSE) (Xin

and Zhu, 2012). Ensemble methods were originally proposed in the machine learning

literature, such as bagging (Breiman, 1996) and random forests (Breiman, 2001). More

recently, ensemble methods have become popularized in the variable selection context,

for example, random LASSO (Wang et al., 2011) and stability selection (Meinshausen

and Bühlman, 2010). Both methods conceptually generate many bootstrap samples and

apply LASSO algorithm repeatedly to produce a more stable and powerful procedure.

Thus, Random LASSO, stability selection and our perturbed FS can all be viewed as

different manifestations of VSE.

The remainder of the article is organized as follows. Section 2 reviews the classical

FS algorithm and introduces our perturbed FS method. We illustrate the performance

of our method using simulation and a real data in Section 3 and provide a summary of

our findings in Section 4.
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1.2 Forward Selection

Let {(yi,xi), i = 1, . . . , n}, be the observed random sample from a population where the

relationship between yi and xi can be described through a linear function in (1.1). Denote

M = {j1, . . . , jp∗} as the model containing x
(j1)
i , . . . , x

(jp∗ )
i as relevant predictors and |M|

as the cardinality of the set. Further denote the true model as MT = {j : βj ̸= 0} where

we assume |MT | = p0 ≪ p.

1.2.1 Forward Selection Path

The original forward selection algorithm can be summarized in the following steps

Step 0: (Initialization) Set S(0) = {∅}.

Step 1: In the k-th step (k ≥ 1), for all j ∈ {1, . . . , p}\S(k−1), consider a candidate model

S(k−1)∪{j} and compute its sum of squared error SSE
(k−1)
j . Identify which predictor

results in the smallest sum of squared error, say jk∗ = argmin
j∈{1,...,p}\S(k−1)

SSE
(k−1)
j . Then

update the model at the k-th step S(k) = S(k−1) ∪ {jk∗}.

Step 2: Increase loop index k by 1 and go back to Step 1 until k = n.

In a high-dimensional setup, the FS algorithm experiences several difficulties. For

instance, after repeating Step 1 n times, the fitted model will have sum of squared

error zero and thus the procedure stops with at most n predictors in the final fitted

model. Besides, in a high-dimensional feature space, the spurious correlation can easily

mask the true signals and mislead the FS to include a noise variable. Furthermore, FS

fails to provide a stable selection result when the degree of collinearity is high. The

orders of the correlated predictors entering the selection path are sensitive to the data

on hand. To enhance the stability of FS in an ideal situation, we apply FS on multiple

datasets generated from the same population and observe the commonality among their

corresponding selection paths. However, there is only one available data in practice.

Partitioning the data into several small portions is not an efficient way to use the data

and usually the result derived from each portion would be even more unreliable. Thus,

we initiate our new method from data perturbation.
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1.2.2 Perturbed Forward Selection Path

To generate multiple perturbed datasets, one popular method is the bootstrap. How-

ever, bootstrap-type methods suffer from some immediate difficulties when n < p. For

instance, bootstrapping residuals is not practical since all residuals are zeros. Moreover,

nonparametric bootstrap will produce less than n unique observations, making the num-

ber of identifiable predictors less than n, and can in fact be much less. More recently,

Meinshausen and Bühlman (2010) proposed a stability selection procedure which ran-

domly chooses a subsample of size n/2 as a method to stabilize the LASSO penalization.

This method has the limitation that the number of recoverable predictors becomes n/2.

Due to the limitations of bootstrap and related data perturbation methods, we con-

sider an alternative by perturbing the objective function as in Jin et al. (2001). In the

least squares context, the objective function we aim to minimize is given by

min
β

(y −Xβ)TW (y −Xβ), (1.2)

where W = diag(w1, . . . , wn) is a diagonal matrix containing weights for each observa-

tion. The original unperturbed data would have W = I. We adopt a random weight

generated from an underlying distribution F (w), which can be viewed as a perturbation

to the objective function. In principle, any non-negative random variable can be used

as weight and, as remarked in Jin et al. (2001), the solution is robust to the choice of

distribution function. Different choices of F (·) allows us to make several interesting analo-

gies to existing methods. For instance, when F (·) is the Bernoulli distribution function

with success probability 0.5, i.e. we expect to retain n/2 observations, the perturbation

method is closely related to aforementioned stability selection. We propose, instead, to

consider a continuous weight, more specifically, the exponential weight. When F (·) is

the distribution function of an exponential random variable, it is essentially the same

as assigning a random Dirichlet weight to each observation, giving some resemblance to

Bayesian Bootstrap (Rubin, 1981) and Bayesian bagging (Clyde and Lee, 2001).

Although we initiate the new method from perturbing the objective function, the

WLS problem in (1.2) is equivalent to an OLS problem by multiplying each obser-

vation by its corresponding square root of the weight. Thus, as an equivalent formu-

lation, we consider a multiplicative perturbation method to generate B datasets. Let

w
(b)
i

iid∼ F (w) = 1− exp(−w), i = 1, . . . , n; b = 1, . . . , B, and denote the b-th perturbed
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dataset by (y
(b)
i ,x

(b)
i ) =

√
w

(b)
i (yi,xi). After generating B perturbed datasets, we apply

the aforementioned FS algorithm on each of them and store its saturated model S(n)(b).

Denote π̂j = B−1
∑B

b=1 I(j ∈ S(n)(b)), j = 1, . . . , p, as the empirical probability of se-

lecting the j-th predictor among B perturbations, then the perturbed FS path is given

by ranking the empirical selection probabilities in a descending order.

The computation cost depends on the number of perturbed datasets and a naive

programming algorithm is sequentially applying FS on each of them. In light of the fact

that this procedure does not require communication between the FS computations but

performs each task separately, a sophisticated yet efficient programming technique is to

take advantage of parallel computing. Most commercially available computers nowadays

are equipped with two to eight processing cores. To fully exploit the devices, an efficient

algorithm should reduce to multiple parallel tasks, each accessing a specific dataset. We

implemented a parallel computing algorithm to accelerate the procedure in R using the

snowfall package (Knaus et al., 2009). The supporting R code is available from the

authors upon request.

To visually show the effectiveness of data perturbation, we use a microarray exper-

iment of Scheetz et al. (2006) as a motivating example. This gene expression dataset

consists of 120 arrays, each array contains 31,042 probe sets (Affymetric GeneChip Rat

Genome 230 2.0 Array). The complete gene expression data is available at Gene Ex-

pression Omnibus (http://www.ncbi.nlm.nih.gov/geo; accession number GSE5680). The

primary objective of this study is to identify which gene expressions are related to that

of gene TRIM 32, which is recently found to cause Bardet-Biedl syndrome (Chiang et al.,

2006).

The probe ID associated with the response, TRIM32, is 1389163 at. To identify which

genes are correlated with TRIM32, we regress the expression of TRIM32 on the remain-

ing probes. Since this is real data, to demonstrate how our method copes with noise

variables, we first choose 4 probes whose magnitude of marginal correlations with the

response are the largest. Then we randomly select another 1,992 probes from the remain-

ing 31,033 and randomly permute their values across the arrays. The purpose of random

permutation is to create a scenario where the 8 unpermuted probes are treated as true

signals whereas those permuted probes are noise. In Figure 1.1, the empirical selection

probabilities π̂j, j = 1, . . . , 2000, are plotted on the y-axis as a function of the number of

perturbations on the x-axis. Without any perturbation, the original FS can only identify
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3 unpermuted genes out of 8. However, after a reasonable number of perturbations, most

of the unpermuted genes stand out and the separation between permuted and unper-

muted genes becomes clear toward the end. This encouraging finding justifies the use of

perturbation method to achieve better variable ordering in a high-dimensional feature

space.

We give a formal description of the perturbed FS and the computational algorithm

here. The perturbed FS algorithm can be summarized in the following steps.

Step 0: Initialization. Set S(0)
P = {∅}.

Step 1: In the k-th step (k ≥ 1), identify the predictor with the largest empirical selec-

tion probability, say j∗k = argmax
{1,...,p}\S(k−1)

p

π̂j. Then update the model at the k-th step

S(k)
p = S(k−1)

p ∪ {j∗k}.

Step 2: Increase loop index k by 1 and go back to Step 1 until all predictors are included

in the path, i.e. k = p.

Considering the finite number of perturbations may not guarantee an unique maxi-

mum in Step 1, there are two types of situations that needs special treatments, including

Case 1: (π̂j = π̂k > 0, for some j, k): We break the tie by the average step they enter

the FS. For a given perturbed path that selects the j-th predictor, we not only

know j ∈ S(n)(b) but the step it is included. Thus, we let the j-th predictor enter

the perturbed path first if, in average, it takes fewer steps to enter each perturbed

path.

Case 2: (the set {j : π̂j = 0} is not empty): We break the tie by the magnitude of their

marginal correlations with the response. The larger the absolute correlation, the

earlier it enters the perturbed FS path.

Intuitively, when a sufficiently large number of perturbations is used, there should

not be ties between predictors and each predictor, even if it is a noise one, will be

selected at least once. Following the logic, another way to construct a perturbed FS path

is continuing perturbing the data until each predictor has its unique positive empirical

selection probability. This requirement, however, is computationally infeasible when p is

7



in the order of tens of thousands. For a reasonable number of perturbations, we adopt

the tie-breaking technique as introduced before to save computation cost.

By construction, of several major differences between the original FS and the per-

turbed FS, one of which is the traditional FS path can only rank the most important

n predictors; whereas the perturbed path provides a comprehensive rank for all p pre-

dictors. For fair comparison, for those predictors which are not selected by the original

FS, we rank them according to their marginal correlations and then append the ordered

path into the original FS path so that both of the original FS and perturbed paths have

length p.

1.3 Numerical Study

1.3.1 Simulation Models

In this section, we demonstrate the perturbed FS and compare it to the original FS using

simulations. Five different examples are considered in this study.

Example 1 (Independent Features): We start from an example that is similar to the

one used in Fan and Lv (2008). There are p = 1000 predictors and p0 = 10 non-

zero coefficients. Each predictor is independently generated from standard nor-

mal distribution. The first p0 coefficients are non-zero and are given by βj =

(−1)Uj(4 log n/
√
n + |Zj|), j = 1, . . . , p0, where Uj follows a Bernoulli distribu-

tion with success probability 0.4 and Zj is another independent random variable

following a standard normal distribution.

Example 2 (Autoregressive): Following a similar setting as that in Example 1, we let

p = 1000 and p0 = 8 but the correlation between predictors having an autoregressive

structure with pairwise correlation cor(x
(j)
i , x

(k)
i ) = 0.7|j−k|, ∀j ̸= k. Similarly, the

first p0 coefficients are non-zero and generated in the same fashion as before.

Example 3 (Compound Symmetry): To further examine the performance of the per-

turbed FS path, we consider a higher dimensional example. The number of predic-

tors becomes p = 5000 and only the first 8 coefficients are non-zero with constant

value of 5. We consider another common correlation structure, compound symme-

try, so the pairwise correlation becomes cor(xij, xik) = 0.5, ∀j ̸= k.

8



Example 4 (Factor Model): This example is based on Meinshausen and Bühlman (2010)

with p = 1000 and p0 = 4. Let ϕ1, ϕ2 be two latent factors that independently come

from N (0, 1). Then each predictor xij is generated as xij = fij,1ϕi1 + fij,2ϕi2 + ηij,

where fij,1, fij,2 and ηij have i.i.d. standard normal distributions for all j = 1, . . . , p.

The four locations of non-zero coefficients are randomly chosen and the coefficients

are generated from uniform (0, 1).

Example 5 (Diverging parameters): In the previous examples, the true model sizes are

fixed. We consider a different situation where p0 diverges with the sample size (Zou

and Zhang, 2009). More specifically, we adopt the similar setup as Example 1 but

let p = 5000 and p0 = ⌊
√
n⌋.

In Examples 1-4, we consider two sample sizes and two theoretical R2 =
Var(xiβ)

Var(yi)
com-

binations. As for Example 5, we fix R2 = 0.6 and vary the sample size. Later we use the

notation (n, p, p0, R
2) to denote the combination of sample size, number of predictors,

number of non-zero coefficients and theoretical R2. Regarding the number of perturba-

tions, the exploratory experiment shown in Figure 1.1 suggests the selected probability

stabilizes moderately fast. So we use B = 200 in the simulation. We also tried B = 300,

but the results were comparable. We run each simulation scenario 100 times and report

the summary statistics and their associated standard error.

To evaluate the quality of variable ordering, considering the candidate model at each

step of the selection path, we compute the true positives, the number of informative pre-

dictors included in the current step, and the false positives, the number of noise predictors

included in the current step. The receiver operating characteristic (ROC) curve, which

plots the true positive rate against the false positive rate, or equivalently the sensitivity

against one minus specificity, on a two-dimensional plane, is a common tool to illustrate

the relationship between type I error and power.

Like the ROC curve delineates the trade-off between sensitivity and specificity, the

precision recall (PR) curve, which plots one minus False Discovery Rate (FDR) against

true positive rate on a two-dimensional plane, provides another perspective to examine

the relationship between FDR and power. In high-dimensional inference problem, one is

usually more concerned about FDR rather than type I error. Thus the PR curve could

be a more sensible assessment in our study. To give a point summary of the curve, we

use the area under curve as a measurements of the overall performance of the selection

path.
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1.3.2 Simulation Result

Based on the simulation result summarized in Table 1.1, the perturbed FS evidently

outperforms the original FS across all scenarios. In Examples 1 and 5, the area under

PR curve suggests as large as 30% improvement can be achieved by using the perturbed

FS. In Examples 2-4, where we consider correlated predictors, greater improvement can

be expected. This observation is coherent with the theoretical property of the original

FS. The greedy algorithm hinders other prominent predictors from entering the selection

path because of their correlation with the ones that are already included in the current

model. This greedy nature can be illustrated in Figure 1.2. In Figure 1.2, we demonstrate

how the condition number of the design matrix changes with the model size in the second

simulation example. Since the original FS tends to include an additional predictor which

is less correlated to those in the current model, it naturally leads to a design matrix with

relatively smaller condition number.

Complementary to a point summary given in Table 1.1, Figure 1.3 provides a com-

prehensive visual comparison between these two competing methods. Shown in Figure

1.3 are averaged ROC curves over 100 simulated data in Example 1 with n = 150 and

R2 = 0.5. As can be seen from the left panel, the ROC curve of the perturbed FS com-

pletely dominates that of the original FS, particularly when specificity is greater than 0.3.

When specificity becomes less and less, the separation between these two lines quickly

vanishes, which is the reason why their area under ROC curves do not differ by a large

margin as that in the area under PR curve. Nonetheless, when specificity is 0.6, it im-

plies the model size is around 400, which is not feasible since sample size is only 150.

In practice, our attention is usually drawn toward the beginning of the path or a more

practical model size. In the right column of the plot is the same ROC curve but zoom

in the region where specificity is greater than 0.9, or model size is less than 100. In the

region of interest, the effectiveness of perturbed FS becomes transparent. Therefore, it is

clear that most improvement of our new method comes from a better variable ranking

in the beginning of the path.

To better illustrate how the perturbed FS improve the variable ranking, we can di-

rectly compare the true positives at each step of the path. In Figure 1.4, we draw the

boxplots for true positives at model sizes 1 to 15 in Example 3. The perturbed path

constantly has larger true positives at any given model size, which is consistent with

higher power shown in Figure 1.3. An evident separation between two boxes suggests the

10



perturbed FS provides superior ranking.

1.3.3 Real Data

To examine the real data application, we analyzed two microarray datasets: the rat array

(Scheetz et al., 2006) and the inbred mouse array (Lan et al., 2006). The rat array is

described in Section 1.2.2. The inbred mouse data consists of 60 arrays, 31 female and 29

male mice, and each array measures the expression values of 22,690 genes. A continuous

phenotypic variables measured by RT-PCR, stearoyl-CoA desaturase 1 (SCD1), is used

as the response.

We first screen down the number of genes to 2,000 and 1,999, respectively, using sure

independent screening (Fan and Lv, 2008). For the inbred mouse data, we also include

gender as an additional predictor so both datasets consist of 2,000 potential predictors.

The performance of our perturbed FS algorithm is compared to the original FS using

out-of-sample prediction. To assess prediction accuracy, we first split the data into two

folds, training and testing sets, accounting for 80% and 20% of the full data, respectively.

We apply the original FS and perturbed FS algorithm on the training set and estimate

regression parameters each step of the paths, then apply the estimated model parameters

on the testing set and evaluate the mean squared prediction error (MSPE). This process

will be carried out 100 times and averaged.

In Figure 1.5, we compute the MSPE from model sizes 1 to 40. In addition, the

MSPE from the null model, the model without any predictor, is also provided in the

plot as a baseline performance. From Figure 1.5, the MSPE of the perturbed FS is

significantly better than that of the original FS in both datasets. The performance is

similar in small model sizes, suggesting both methods can identify some strong signals

in the beginning. However, the original FS can not continue to identify useful predictors

to improve prediction accuracy.

1.4 Discussion

We propose a perturbed FS method to enhance and improve the original FS. The pro-

posed method explores the applicability of minimand perturbation method in the variable

selection context. As another testament of the powerfulness of ensemble approach, the

novel selection path, which is constructed by empirical selection probabilities, success-
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fully alleviates several limitations of the original FS. The number of identifiable variable

is no loner limited by the sample size as that in the original FS. Moreover, the ordered

variable list has the power to rank important predictors ahead of those irrelevant ones.

Simulation studies suggest that the perturbed FS has superior selection path than the

original FS, and the real analysis of two microarray datasets shows the sound prediction

performance in practice.

In this article, we do not directly address how to select a final model from the

path. More recently, EBIC (Chen and Chen, 2008) has become popularized in the high-

dimensional selection problem. One issue of EBIC is that it targets at controlling FDR,

so that its finite sample performance tends to be conservative (Wang, 2009). The MSPE

curve from the real data analysis suggests a valley-shape pattern, implying a out-of-

sample or cross-validated type of prediction error could serve as a guidance for deter-

mining a “best” model. Nevertheless, as remarked by Xin and Zhu (2012), what really

matters for a VSE procedure is the variable ranking. Selecting a final model will require

a certain thresholding rule but it all depends on researchers’ prior believes. Thus, we are

more concerned about the quality of the path throughout the paper.
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Table 1.1: Average area under ROC and PR curves in 5 simulation examples over 100
runs. The standard error is given in the parentheses.

ROC PR

(n, p, p0, R
2) Original FS Perturbed FS Original FS Perturbed FS

Example 1

(100,1000,10,0.50) 0.846 (0.006) 0.867 (0.007) 0.263 (0.016) 0.346 (0.015)

(100,1000,10,0.80) 0.971 (0.004) 0.989 (0.002) 0.792 (0.021) 0.839 (0.012)

(150,1000,10,0.80) 0.891 (0.005) 0.932 (0.005) 0.540 (0.020) 0.606 (0.014)

(150,1000,10,0.80) 0.998 (0.001) 1.000 (0.000) 0.984 (0.004) 0.993 (0.002)

Example 2

(75,1000,8,0.50) 0.833 (0.012) 0.854 (0.012) 0.326 (0.017) 0.425 (0.023)

(75,1000,8,0.80) 0.906 (0.008) 0.947 (0.007) 0.569 (0.022) 0.694 (0.022)

(100,1000,8,0.80) 0.842 (0.011) 0.896 (0.009) 0.404 (0.017) 0.507 (0.021)

(100,1000,8,0.80) 0.952 (0.006) 0.978 (0.004) 0.750 (0.019) 0.816 (0.018)

Example 3

(100,5000,8,0.90) 0.884 (0.005) 0.890 (0.008) 0.089 (0.010) 0.300 (0.017)

(100,5000,8,0.95) 0.915 (0.005) 0.961 (0.004) 0.170 (0.021) 0.521 (0.019)

(150,5000,8,0.90) 0.928 (0.004) 0.974 (0.003) 0.243 (0.021) 0.598 (0.019)

(150,5000,8,0.95) 0.983 (0.003) 0.998 (0.001) 0.533 (0.025) 0.926 (0.009)

Example 4

(150,1000,4,0.50) 0.738 (0.014) 0.767 (0.016) 0.269 (0.023) 0.351 (0.027)

(150,1000,4,0.80) 0.868 (0.012) 0.887 (0.012) 0.613 (0.028) 0.695 (0.025)

(200,1000,4,0.50) 0.766 (0.015) 0.824 (0.014) 0.383 (0.030) 0.467 (0.028)

(200,1000,4,0.80) 0.899 (0.011) 0.917 (0.009) 0.725 (0.024) 0.817 (0.017)

Example 5

(200,5000,⌊
√
200⌋,0.60) 0.932 (0.004) 0.929 (0.005) 0.482 (0.018) 0.545 (0.014)

(400,5000,⌊
√
400⌋,0.60) 0.958 (0.003) 0.979 (0.002) 0.778 (0.012) 0.800 (0.010)

(800,5000,⌊
√
800⌋,0.60) 0.980 (0.002) 0.994 (0.001) 0.921 (0.006) 0.925 (0.005)
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Figure 1.3: Averaged ROC curves for Example 1 with n = 150 and R2 = 0.5. The plot
on the left panel is the complete ROC curve whereas that on the right is the same curves
but zooms in the region where the Specificity is greater than 0.9.
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Chapter 2

Variable Selection for

Nonparametric Quantile Regression

via Smoothing Spline ANOVA

2.1 Introduction

Quantile regression, as a complement to classical least square regression, provides a more

comprehensive framework to study how covariates influence not only the location but

the entire conditional distribution (Koenker, 2005). In quantile regression problems, the

primary interest is to establish a regression function to reveal how the 100τ% quantile of

the response y depends on a set of covariates x = (x(1), . . . , x(p)). A parametric form of

regression function is often assumed for convenience of interpretation and lower compu-

tational cost. While a linear regression function is studied in Koenker and Bassett (1978)

and numerous follow-up studies, Procházka (1988) and Jurec̆ková and Procházka (1994)

explored nonlinear regression; see Koenker and Hallock (2001) and Koenker (2005) for a

comprehensive overview.

As much as the parametric assumption enjoys a simple model structure and lower

implementation cost, it is not flexible enough and hence carries the risk of model mis-

specifications for complex problems. For a single predictor model, Koenker et al. (1994)

pioneered nonparametric quantile regression in spline models, in which the quantile func-
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tion can be found via solving the minimization problem

min
f∈F

n∑
i=1

ρτ (yi − f(xi)) + λV (f ′), (2.1)

where ρτ (·) is the so-called “check function” of Koenker and Bassett (1978),

ρτ (t) = t[τ − I(t < 0)], τ ∈ (0, 1), (2.2)

λ is a smoothing parameter and V (f ′) is the total variation of the derivative of f . Koenker

et al. (1994) showed that the minimizer is a linear spline with knots at the design points

xi, i = 1, . . . , n, provided that the space F is an expanded second-order Sobolev space

defined as

F =

{
f : f(x) = a0 + a1x+

∫ 1

0

(x− y)+dµ(y), V (µ) < ∞, ai ∈ R, i = 0, 1

}
, (2.3)

where µ is a measure with finite total variation. Bloomfield and Steiger (1983) and Nychka

et al. (1995) considered a similar problem as that in (2.1), but used a smoothing spline

penalty

min
f∈F

n∑
i=1

ρτ (yi − f(xi)) + λ

∫
[f ′′(x)]2dx. (2.4)

The minimizer of (2.4) over a second-order Sobolev space is a natural cubic spline with

all design points as knots. Bosch et al. (1995) proposed an interior point algorithm which

is proven to converge to solve the minimization problem.

For multi-dimensional feature space, He et al. (1998) proposed a bivariate quantile

smoothing spline and He and Ng (1999) generalized the idea to multiple covariates us-

ing an ANOVA-type decomposition. Li et al. (2007) proposed a more general framework

called the kernel quantile regression (KQR). By penalizing the roughness of the func-

tion estimator using its squared functional norm in a reproducing kernel Hilbert space

(RKHS), the KQR solves the regularization problem

min
f∈HK

n∑
i=1

ρτ (yi − f(xi)) +
λ

2
||f ||2HK

, (2.5)

where HK is a RKHS and || · ||HK
is the corresponding function norm. Most recently,
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Fenske et al. (2011) proposed a boosting method to select and estimate additive quantile

function. Although their method was not intentionally targeting at variable selection,

with moderately small number of iterations, boosting algorithm naturally achieves vari-

able selection by using the most important predictors to update the fitted function.

Despite several existing nonparametric quantile function estimators, selecting relevant

predictors in multi-dimensional data is an important yet challenging topic that has not

been addressed in depth. Variable selection in quantile regression is much more difficult

than that in the least square regression. The variable selection is carried at various

levels of quantiles, which amounts to identifying variables that are important for the

entire distribution, rather than limited to the mean function as in the least squares

regression case. This has important applications to handle heteroscedastic data. Several

regularization methods were proposed (Zou and Yuan, 2008a,b; Wu and Liu, 2009) for

linear quantile regression. However, to our knowledge, there still lacks a method for

variable selection in nonparametric quantile regression. This is the main motivation of

our work.

In the presence of multiple predictors, many nonparametric estimation procedures

may suffer from the curse of dimensionality. The smoothing spline analysis of variance

(SS-ANOVA) model (Wahba, 1990) provides a flexible and effective estimation frame-

work to tackle the problem. Since some of the predictors may not be useful or redundant

for prediction, variable selection is important in nonparametric regression. In the context

of least squares regression, the COmponent Selection and Shrinkage Operator (COSSO)

(Lin and Zhang, 2006) was proposed to perform continuous function shrinkage and es-

timation by penalizing the sum of RKHS norms of the components. However, variable

selection in nonparametric quantile regression is void in the literature. In this paper, we

adopt the COSSO-type penalty to develop a new penalized framework for joint quantile

estimation and variable selection. In nonparametric literature, built upon basis expan-

sion, several methods for estimation and selection in additive models have been proposed

(Meier et al., 2009; Huang et al., 2010). We prefer the COSSO penalty in a RKHS for

several reasons. Despite basis expansion enjoying lower computational cost, the choice of

basis functions and number of knots require further justifications. In addition, the notion

of a basis expansion implicitly assumes that the true function lies in the functional space

spanned by the basis functions, which is finite dimensional and should only be treated

as an approximation to the true underlying functional space.

19



The remainder of the article is organized as follows. Section 2 reviews the SS-ANOVA

models and introduces the new estimator. An iterative computation algorithm is given in

Section 3, along with parameter tuning procedure. Extensive empirical studies, including

both the homogeneous and heterogenous errors are given in Section 4. Three real example

analysis results are presented in Section 5. We conclude our findings in Section 6.

2.2 Formulation

2.2.1 Smoothing Spline ANOVA

In the framework of smoothing spline ANOVA (SS-ANOVA), it is assumed that a function

f(x) = f(x(1), . . . , x(p)) has the ANOVA decomposition

f(x) = b+

p∑
j=1

fj(x
(j)) +

∑
j<k

fj,k(x
(j), x(k)) + · · · , (2.6)

where b is a constant, fj’s are the main effects and fj,k’s are the two-way interactions, and

so on. We estimate each of the main effects in a RKHS denoted byHj = {1}⊕H̄j whereas

the interactions are estimated in a tensor product spaces of the corresponding univariate

function spaces. When x(j) is a continuous variable, a popular choice of Hj is the second-

order Sobolev space S2[0, 1] = {g : g, g′ are absolutely continuous and g′′ ∈ L2[0, 1]}.
When endowed with the norm

||g||2 =
{∫ 1

0

g(x)dx

}2

+

{∫ 1

0

g′(x)dx

}2

+

∫ 1

0

{g′′(x)}2 dx, (2.7)

the second-order Sobolev space is a RKHS with reproducing kernel

R(x, y) = 1 + k1(x)k1(y) + k2(x)k2(y)− k4(|x− y|), (2.8)

where k1(x) = x− 1
2
, k2(x) =

1
2

[
k4
1(x)− 1

12

]
and k4(x) =

1
24

[
k4
1(x)− 1

2
k2
1(x) +

7
240

]
. When

x(j) is a categorical variable that takes only finite distinct values, {1, . . . , L}, we use a

different reproducing kernel

R(s, t) = L · I(s = t)− 1, s, t ∈ {1, . . . , L}. (2.9)
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See Wahba (1990) and Gu (2002) for more details. The entire tensor-product space for

estimating f(x) is given by

F = ⊗p
j=1Hj = {1} ⊕

p∑
j=1

H̄j ⊕
∑
j<k

(
H̄j ⊗ H̄k

)
⊕ · · · . (2.10)

Note that F = ⊗p
j=1Hj is also a RKHS, and its reproducing kernel is the sum of the

reproducing kernels of those component spaces.

In practice, the higher-order interactions in (2.6) will usually be truncated for con-

venience in interpretation and to avoid the curse of dimensionality. A general expression

for a truncated space can be written as

F = {1} ⊕ F1 = {1} ⊕
{
⊕q

j=1Fj

}
, (2.11)

where F1, . . . ,Fq are q orthogonal subspaces of F . A special case is the well-known

additive model (Hastie and Tibshirani, 1990) with q = p, in which only the main effects

are kept in the model, say f(x) = b+
∑d

j=1 fj(x
(j)). When both main effects and two-way

interaction effects are retained, the truncated space has q = p(p + 1)/2. For illustration

purpose, we focus on the additive model afterward in this paper, thus all the interactions

are dropped. But the idea can be naturally generalized to any function space with higher

order interactions.

A typical method for estimating nonparametric quantile function is through solving

the regularization problem

min
f∈F

1

n

n∑
i=1

ρτ (yi − f(xi)) + λJ(f), (2.12)

where λ is a smoothing parameter and J(·) is a penalty functional. A smoothing spline

estimate uses the penalty J(f) =
∑p

j=1 θ
−1
j ||P jf ||2, where P j is an orthogonal projection

operator that projects f onto Fj and θj’s are smoothing parameters. The estimation in

(2.12) involves multiple tuning parameters θ1, · · · , θp, which needs to be selected properly

for a good estimation results. The parameter λ is usually included and fixed at some

convenient value for computational stability in practice.
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2.2.2 New Methodology: COSSO-Quantile Regression

To achieve joint variable selection and function estimation in nonparametric quantile

regression, we consider the following regularization problem

1

n

n∑
i=1

ρτ (yi − f(xi)) + λ

p∑
j=1

wj||P jf ||, (2.13)

where wj’s are known weights. We will refer to (2.13) as COSSO-QR afterward.

The problem in (2.13) is a flexible modeling framework that includes several existing

methods as special cases. For instance, it reduces to the L1-norm quantile regression (Li

and Zhu, 2008) in linear models. More specifically, if f(x) = b +
∑p

j=1 βjx
(j) and we

consider a linear functional space F = {1} ⊕
{
⊕p

j=1{x(j) − 1/2}
}

with inner product

⟨f, g⟩ =
∫
fg, then the RKHS norm penalty ||P jf || becomes proportional to |βj|. We

allow each functional component to be penalized differently depending on its associated

weight wj ∈ (0,∞). In principle, smaller weights are assigned to important function

components while larger weights are assigned to less important components. This is

in the same spirit of the adaptive LASSO (Zou, 2006) and adaptive COSSO (Storlie

et al., 2011). We propose to construct the weights wj from the data adaptively. For

each component fj, its L2-norm ||fj(x)||L2 =
√∫

[fj(x)]2dF (x), F (·) is the distribution

function of x, is a natural measure to quantify the importance of functional components.

In practice, given a reasonable initial estimator f̃ , we propose to construct the weights

w’s by its inverse empirical L2-norm

w−1
j = ||P j f̃ ||n,L2 =

√√√√n−1

n∑
i=1

[P j f̃(xi)]2, j = 1, . . . , p. (2.14)

A convenient choice of f̃ is the solution of the KQR.

Due to the fact that both the check loss and the penalty functional J(f) are continuous

and convex in f , the existence of the minimizer of (2.13) is guaranteed as stated in the

following Theorem.

Theorem 1. Let F be an RKHS of functions with the decomposition (2.11), then there

exists a minimizer to (2.13) in F .

Directly minimizing (2.13) can be a daunting task as searching over the infinite di-
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mensional space F for a minimizer is practically infeasible. Analogous to the smoothing

spline models, the following Theorem shows that the minimizer of (2.13) lies in a finite

dimensional space. This important result assures the feasibility of computation.

Theorem 2. Representer Theorem: Let the minimizer of (2.13) be f̂ = b̂ +
∑p

j=1 f̂j

with f̂j ∈ H̄j, then f̂j ∈ span{RFj
(x

(j)
i , ·), i = 1, . . . , n} where RFj

(·, ·) is the reproducing

kernel of Fj.

2.3 Algorithm

To further facilitate the computation, we first present an equivalent formulation of (2.13).

By introducing non-negative slack variables θj, j = 1, . . . , p, and using the Lemma 2 in

Lin and Zhang (2006), it is easy to show that minimizing (2.13) is equivalent to solving

the following optimization problem

min
f,θ

1

n

n∑
i=1

ρτ (yi − f(xi)) + λ0

p∑
j=1

w2
jθ

−1
j ||P jf ||2

s.t.

p∑
j=1

θj ≤ M, θj ≥ 0,∀j,
(2.15)

where λ0 and M are both smoothing parameters. The roles of the slack variables θj’s are

very different from those in smoothing splines model. The slack variables θj’s allow us to

recover the sparse structure since θj = 0 if and only if ||P jf || = 0 (Lin and Zhang, 2006).

Moreover, when θj’s are unknown, the penalty part in (2.15) reduces to that in tradi-

tional smoothing spline and thus by the Representer Theorem of Kimeldorf and Wahba

(1971), the minimizer of (2.15) has the form

f(x) = b+
n∑

i=1

ciRθ,w(xi,x), (2.16)

where c = (c1, . . . , cn) ∈ R
n, b ∈ R, and Rθ,w =

∑p
j=1w

−2
j θjRFj

.

LetRj = {RFj
(x

(j)
i , x

(j)
i′ )}ni,i′=1 be an n×nmatrix and 1n be a column vector of n ones.

When evaluated the minimizer at the design points, we write f = (f(x1), . . . , f(xn)) as

f = b1n + (
∑p

j=1 w
−2
j θjRj)c and define ||v||Cτ = n−1

∑n
i=1 ρτ (vi) for a vector of length
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n. The objective function in (2.15) becomes

min
b,c,θ

∥∥∥∥∥y − b1n −

(
p∑

j=1

θj
w2

j

Rj

)
c

∥∥∥∥∥
Cτ

+ λ0c
T

(
p∑

j=1

θj
w2

j

Rj

)
c

s.t.

p∑
j=1

θj ≤ M, θj ≥ 0, ∀j.
(2.17)

For the remaining of the article, we will refer to (2.17) as the objective function of our

proposed method.

2.3.1 Iterative Optimization Algorithm

It is possible to minimize the objective function in (2.17) with respect to all the pa-

rameters, (b, cT ,θT )T , simultaneously, but the programming effort can be substantial.

Alternatively, we can decompose the parameters into two parts, θ and (b, cT )T , and then

iteratively solve two sets of optimization problems in turn, with respect to θ and (b, cT )T .

Consequently, we suggest the following iterative algorithm:

1. Fix θ, solve (b, cT )T

min
b,c

∥∥∥∥∥y − b1n −

(
p∑

j=1

θj
w2

j

Rj

)
c

∥∥∥∥∥
Cτ

+ λ0c
T

(
p∑

j=1

θj
w2

j

Rj

)
c. (2.18)

2. Fix (b, cT )T , solve

min
θ

∥y∗ −Gθ∥Cτ
+ λ0c

TGθ, s.t.

p∑
j=1

θj ≤ M, θj ≥ 0, ∀j, (2.19)

where y∗ = y − b1n and G = {g1, . . . , gp} is an n × p matrix with columns

gj = w−2
j Rjc.

The optimization problems in (2.18) and (2.19) can be cast into quadratic programming

and linear programming problems, respectively. We defer all the derivations to the Ap-

pendix. So, both of them can be solved using standard optimization software, such as

MATLAB and R.
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In practice, based on our empirical experience, the algorithm converges quickly in a

few steps. We have noted that the one-step solution often provides a satisfactory approx-

imation to the solution. As a result, we advocate the use of one-step update in practice.

An important connection between our proposed method and the KQR can be un-

raveled by realizing that the objective function in (2.18) is exactly the same as that in

the KQR. This connection suggests that when θ is known, our proposed method shares

the same spirit as the KQR. The optimization problem for estimating θ essentially im-

poses the non-negative garrote (Breiman, 1995) type shrinkage on θ’s, and hence achieves

variable selection by shrinking some of θj’s to zero.

2.3.2 Parameter Tuning

Like any other penalized regression problem, the performance of the new estimator criti-

cally depends on properly-tuned smoothing parameters in (2.17). Smoothing parameters

play an important role in balancing the trade-off between the goodness of data fit and the

model complexity. A reasonable parameter choice is usually the one that minimizes some

generalized error or information criterion. In the quantile regression literature, one com-

monly used criterion is the Schwarz information criterion (SIC) (Schwarz, 1978; Koenker

et al., 1994)

log

(
1

n

n∑
i=1

ρτ (yi − f̂(xi))

)
+

log n

2n
df, (2.20)

where df is a measure of complexity of the fitted model. Various authors (Koenker, 2005;

Yuan, 2006; Li et al., 2007) have argued using the number of zero residuals as an estimate

of effective degrees of freedom. In our experimental study, we realized the estimated

degrees of freedom fluctuates a lot among different smoothing parameters and therefore

may lead to an unstable tuning result. As an alternative, we consider a bootstrap method

which will be presented in the following section to estimate the degrees of freedom.

In addition to the SIC, another popular criterion to choose the smoothing parameter

is k-fold cross validation, which has been widely applied to various regression and classi-

fication problems and usually gives competitive performance. In the following numerical

study, we will report the result for both SIC and 5-fold cross validation.

In the following, we summarize the complete algorithm for the proposed method,

including both model fitting and parameter tuning steps.
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Step 1. Initialization. Set θj = 1, ∀j.

Step 2. For each of the grid points of λ0, solve (2.18) for (b, cT )T , and record the SIC

score or CV error. Choose the best λ0 that minimizes the SIC or CV error, then

fix it in later steps.

Step 3. For each of the grid points of M , solve (2.17) for (b, cT ,θT )T using the afore-

mentioned iterative optimization algorithm. Record the SIC score or CV error at

each grid point and choose the best M that minimizes either SIC score or CV error.

Step 4. Solve (2.17) using the chosen λ0 and M pair, on the full data. Note that this is

already done if tuning was based on SIC.

Since the tuning procedure described above does not cover all the possible pairs of

(λ0,M), it would be beneficial to enhance the tuning with a refined search. In particular,

we suggest to do the following. After Step 3, say, we obtain the optimal pair (λ∗
0,M

∗).

Then we focus on a narrowed and more focused region, the neighborhood of (λ∗
0,M

∗)

and apply Step2 and 3 again. The optimal parameters determined at this refined step,

say, (λ∗∗
0 ,M∗∗) will be used as the final selection. Our simulation study also confirms

that this refined tuning procedure can improve the prediction and selection performance

substantially.

2.3.3 Bootstrapped Degrees of Freedom Estimate

In nonparametric quantile regression literature, using the number of zero residuals as a

measure of model complexity has been widely adopted. The notion was originated from

a more generic quantity, the divergence formula
∑n

i=1
∂f̂(xi)
∂yi

, which first appeared in

Stein’s unbiased risk estimation (SURE) (Stein, 1981) and later been extensively used to

evaluate the effective degrees of freedom for various modeling procedures, see Ye (1998),

Efron (2004), Koenker (2005) and reference therein.

In our pilot study, we realized that the number of zero residuals fluctuate a lot across

a wide range of smoothing parameters in our COSSO-QR method. Hence we do not think

it is a reliable estimate. Without an informative measure of the model complexity, SIC

can not be an effective tuning procedure. To alleviate the unstable estimate, we consider

directly estimating the derivative using bootstrap. The procedure can be summarized

into following steps.
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1. For a particular pair of smoothing parameters (λ0,M), fit the COSSO-QR model

in equation (2.17) and store the fitted values f̂i and residuals ri = yi − f̂i.

2. Repeat this step B times.

2.1. Generate a bootstrapped response

ybooti = f̂i + rbooti , rbooti
iid∼ F̂n(r), i = 1, . . . , n, (2.21)

where F̂n is the empirical distribution function of the residuals.

2.2. Fit the COSSO-QR model but replace the original response by the boot-

strapped response and record the fitted values f̂ boot
i .

3. For each i = 1, . . . , n, fit a simple linear regression model by regressing f̂ boot
i on ybooti

and use the estimated slope as an estimate of the derivative. Thus the bootstrapped

degrees of freedom estimate is given by summing up the n estimated slopes.

Estimating the derivative by regression slope was pioneered in Ye (1998). To better

suit our quantile regression model, we generate perturbed response by bootstrapping

rather than adding artificial noise to the observed response as used in Ye’s original pro-

posal. As remarked by Ye (1998), different perturbation methods have minor influence

on estimating the slope and will not lead to considerable bias.

2.4 Numerical Results

In this section we present the empirical performance of the COSSO-QR procedure us-

ing simulated data. For the experiment design, we use the following functions as build-

ing blocks: g1(t) = t; g2(t) = (2t − 1)2; g3(t) = sin(2πt)
2−sin(2πt)

and g4(t) = 0.1 sin(2πt) +

0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt). Similar settings were also con-

sidered in Lin and Zhang (2006).

We evaluate the performance from two aspects, prediction accuracy and model selec-

tion. The integrated absolute error (IAE), defined as IAE = E|f̂(X)− f(X)|, is used to

assess prediction accuracy, where the expectation is evaluated by a monte carlo integra-

tion with 10,000 test points generated from the same distribution as the training data. In

terms of model selection, we first denote M̂ = {j : θ̂j ̸= 0} and M0 = {j : ||P jf || > 0}
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as the selected model and true model, respectively, and |M| as the cardinality of the set

M. Then we compute four statistics for assessing selection accuracy: correct selection,

I(M̂ = M0, type I error rate,
|M̂∩Mc

0|
p−|M0| , power,

|M̂∩M0|
|M0| , and model size, |M̂|. For the

purpose of comparison, we also include the solution of the KQR fitted with only relevant

predictors based on 5-fold cross validation tuning. This method will later be referred to

as the Oracle estimator. The Oracle estimator provides a benchmark for the best possi-

ble estimation risk if the important variables were known. We also include two existing

methods, the KQR and boosting QR (Fenske et al., 2011), for comparisons.

Another property that we would like to study is the role of the adaptive weights in

the performance of the COSSO-QR procedure. Without any a priori knowledge on the

importance of each predictor, we can set all wj = 1 in (2.13) and proceed to solve the

objective function. For the adaptive proposal, we use the KQR as an initial estimate, f̃ ,

to produce an adaptive weight.

Three different quantile values τ = {0.2, 0.5, 0.8}, are used throughout the simulation.

For each of the following examples, we repeat 100 times and report the average summary

statistics and their associated standard errors.

We consider two simulation models with detailed result given in Tables 2.2 to 2.5.

2.4.1 Computational Cost

Before introducing simulation models, we first study how computationally intense our

method is. To assess the computational cost, we present the average elapsed CPU times

for solving equation (2.15) for a fixed pair of (λ0,M) over 200 replicates. The predictors

x = (x(1), . . . , x(p)) are independently generated from U(0, 1) and then take n observations

from the model

yi = 5g1(x
(1)
i ) + 3g2(x

(2)
i ) + 4g3(x

(7)
i ) + 6g4(x

(10)
i ) + ε, i = 1, . . . , n, (2.22)

where εi are independently drawn from t(3). We consider multiple sample size n and

dimension p combinations. All computations are done on a desktop PC with an Intel

Core i7-2600K CPU and 12GB of memory. The average CPU times are summarized in

Table 2.1.

According to the algorithm we provided in 2.3.2, it is understandable that most of

the computational cost comes from solving the quadratic programming in (2.18). Hence,
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the computing time substantially increases from n = 100 to n = 300, but varies little

between different number of inputs and quantiles.

2.4.2 Homoskedastic Error Model

We first consider generating response from a location family given in (2.22) and keep

the error distribution unchanged. It follows that the 100τ% quantile function in the

homoskedastic model is given by

Qτ (y|x) = 5g1(x
(1)) + 3g2(x

(2)) + 4g3(x
(7)) + 6g4(x

(10)) + F−1
ε (τ), (2.23)

where Fε(·) is the distribution function of ε. To examine the model selection of COSSO-

QR, we generate predictors x(j), j = 1, . . . , 40, marginally from U(0, 1) and consider

an autoregressive type of dependency by letting pairwise correlation cor(x(j), x(k)) =

ρ|j−k|, ∀j ̸= k. Two levels of dependency will be used ρ = {0, 0.7}. We use sample size

n = 200 in this case and present the performance of five competing procedures: KQR,

boosting QR, COSSO-QR, adaptive COSSO-QR, and the Oracle estimator, in Table 2.2

and 2.3.

Another interesting observation can be made by examining the robustness property

of the COSSO-QR in estimating the conditional median function. Although least squares

regression and quantile regression are not generally comparable, the conditional median

and mean functions coincide in this example, making the comparison between them jus-

tifiable. Thus, we incorporate two sparse least squares nonparametric regression models,

COSSO (Lin and Zhang, 2006) and adaptive COSSO (Storlie et al., 2011), to estimate

the conditional mean function and see how our method compare with them.

From Table 2.2 and 2.3, in terms of prediction error, the adaptive COSSO-QR has

the smallest IAE, which is quite close to that of the Oracle, and is hence the best,

followed by COSSO-QR, boosting QR, and the KQR is the worst. Besides, using 5-fold

CV produces better estimation result than SIC most of the times. It is clear that the

KQR suffers considerably from those noisy variables. Although boosting QR has size

greater than 28, the four important predictors are selected most of the time during the

boosting update, whereas the other noise variables are chosen much less frequently and

hence the performance is not severely affected by them. Fenske et al. (2011) also found

similar result and recommended using the frequency a predictor is chosen as a guidance
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for variable selection.

With regard to variable selection, the proposed COSSO-QR is effective in identifying

important variables and removing noise variables, particularly when using SIC as a tuning

procedure, which is shown by its small Type I error and large power. The adaptive

COSSO-RQ tends to select a slightly larger model size, thus increases both Type I error

and power. Overall speaking, the COSSO-QR procedure shows promising performance

in terms of both variable selection and quantile estimation in this example.

The conditional mean function estimators, COSSO and adaptive COSSO, give com-

parable model selection. However, as can be seen from IAE, their estimations are seriously

affected by the heavy tail of the error distribution. Benefited from their sparse property,

they still perform better than KQR but are less competitive to the other procedures, even

with adaptive weight. In addition, the standard errors are almost 10 tens larger than the

other median estimators, implying our COSSO-QR method enjoys the robust property

when median is of interest.

Figure 1 gives a graphical illustration for the fitted curve and pointwise confidence

band given by the adaptive COSSO-QR for τ = 0.2. For comparison, the estimated

functions by the Oracle are also depicted. We apply each procedure to 100 simulated

datasets and a pointwise confidence band is given by the 5% and 95% percentiles. Figure

1 suggests that the COSSO-QR produces a very good estimation for the true functions,

and the fits are comparable to those given by the Oracle estimator. The fourth function

component is more difficult to estimate due to its subtle features in extreme values and

inflexion points.

When predictors are correlated, Table 2.3 shows our procedure is slightly affected.

Overall, the type I error is well-controlled within 5% and the power is close to 90% most

of the time. Moreover, the IAE suggests we do not lose too much efficiency relative to

the Oracle estimator.

2.4.3 Heteroskedastic Error Model

To further examine the finite sample performance of the new methods, we consider gen-

erating response from a location-scale family

yi = 5g1(x
(1)
i )+3g2(x

(2)
i )+4g3(x

(7)
i )+6g4(x

(10)
i )+exp

[
2g3(x

(12)
i )

]
ε, i = 1, . . . , n, (2.24)
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where εi
i.i.d.∼ N (0, 1). In the heteroskedastic model, the 100τ% quantile function is given

by

Qτ (y|x) = 5g1(x
(1)) + 3g2(x

(2)) + 4g3(x
(7)) + 6g4(x

(10)) + exp
[
2g3(x

(12))
]
Φ−1(τ), (2.25)

where Φ(·) is the distribution function of standard normal. The predictors are generated

in the same fashion as that in the previous example and we use sample size n = 300 in

this case.

From this example, we aim to evaluate the performance of the COSSO-QR under

the scenario where some variables can only be influential on a certain range of quantiles.

More specifically, like the homoskedastic example, the median function depends on the

1, 2, 7 and 10th predictors. However, other than the median function, x(12) will not only

be influential but its effect becomes larger and larger toward the tails.

Table 2.4 and 2.5 summarize the performance of all competing methods. Again, we

observe that the adaptive COSSO-QR performs the best and the KQR is the worst in

terms of prediction error. However, the boosting QR provides as efficient or sometimes

even more efficient estimation than the COSSO-QR. Similarly, for variable selection, by

penalizing a more complicated model, SIC tuning procedure usually selects a smaller

model size and identifies the correct model more frequently.

Another point we would like to emphasize is that when τ = 0.5, the estimated model

size is close to 4 as expected, since the median only depends on the 1,4,7 and 10th predic-

tors. When τ is away from 0.5, our COSSO-QR procedures can successfully identify the

additional informative predictor in the error variance, suggesting that the new method’s

capability to identify all the relevant predictors that influence the distribution of the

response.

2.5 Real Data Analysis

We apply the COSSO-QR method to two real datasets: prostate cancer data and ozone

data. The prostate data is from Stamey et al. (1989), consisting of 97 patients who were

about to receive a radical prostatectomy. This data was used by Tibshirani (1996) to

model the mean function of the level of prostate-specific antigen on 8 clinical outcomes

and select relevant variables. The ozone data contains 330 observations collected in Los

Angeles in 1976, and the purpose of the study is to model the relationship between the
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daily ozone concentration and 8 meteorological covariates. The data has been used in

various studies (Buja et al., 1989; Breiman, 1995; Lin and Zhang, 2006). These two data

are publicly available in the R packages ElemStatLearn and cosso, respectively.

We apply our methods on these datasets and estimate the prediction risk, Eρτ (Y −
f(X)), by randomly reserving 10% of the data as testing set. The smoothing parameters,

tuned by 5-fold cross validation, and model parameters are estimated using only the

training set. The estimated parameters will then be applied on the testing set and the

prediction risk is used as a comparison between various methods. The entire procedure

is repeated 100 times and averaged.

Table 2.6 summarizes the prediction risk along with its associated standard error.

Based on the result, the adaptive weights is not always helpful in real application. The

advantage of adaptive weight is more perceivable in the prostate data. But, with or

without adaptive weight, the differences between them are usually within reasonable error

margin. Overall, the key observation is that our proposed method provides competitive

and usually superior prediction than the existing methods.

Apart from comparing prediction error, we also apply our methods to the complete

prostate data and summarize variable selection. An interesting comparison is that in

the study of mean function, Tibshirani (1996) selected three prominent predictors, log-

cancer volume, log-weight and seminal vesicle invasion. These three predictors are also

selected by our approach when we consider the median. However, in the 20% quantile,

gleason score shows up as an additional predictor. Meanwhile, in the 80% quantile, only

two predictors are chosen, log-cancer volume and seminal vesicle invasion, but not log-

weight.

2.6 Conclusions

We propose a new regularization method that simultaneously selects important predictors

and estimate the conditional quantile function. Our method is available in the R package

cosso version 2.0-2. The COSSO-QR method conquers the limitation of selecting only

predictors that influence the conditional mean in least square regression, facilitating the

analysis of the full conditional distribution. The proposed method also includes the L1-

norm quantile regression and the KQR as special cases. In a simulation study and real

data analysis, our method provides satisfactory model fitting and great potential for
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selecting important predictors.

The number of predictors we consider in both simulation and real data is moderate.

With advancement of modern technology, high-throughput data becomes more frequent

nowadays. In ultra-high dimensional feature space, Fan et al. (2011) recently proposed a

screening procedure for nonparametric regression model. Further study can work toward

incorporating a suitable screening procedure as a first step and then apply our proposed

method at the second in a ultra-high dimensional feature space.
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Figure 2.1: The fitted function components and their associated pointwise confidence
band for homoskedastic example with independent features. The dark solid line is for the
true function component, the light solid line is for the Oracle estimator and the broken
line is for the adaptive COSSO-QR estimator.

Table 2.1: Elapsed CPU time (in seconds) for solving COSSO-
QR model.

(n, p)

τ (100,10) (100,40) (200,10) (200,40) (300,10) (300,40)

0.2 0.041 0.045 0.300 0.329 0.998 1.154

0.5 0.038 0.044 0.278 0.299 0.914 1.048
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Table 2.2: Simulation results for the homoskedasitc example with independent fea-
tures. The standard errors are given in the parentheses.

τ Method Correct Type I Error Power Model Size IAE

KQR - - - - 2.223 (0.019)

Boosting QR 0.00 (0.00) 0.67 (0.02) 1.00 (0.00) 28.13 (0.60) 1.098 (0.016)

COSSO-QR-5CV 0.70 (0.05) 0.01 (0.00) 0.98 (0.01) 4.23 (0.09) 0.949 (0.021)

0.2 COSSO-QR-SIC 0.81 (0.04) 0.02 (0.01) 0.99 (0.01) 4.58 (0.18) 0.983 (0.021)

ACOSSO-QR-5CV 0.73 (0.05) 0.02 (0.01) 0.99 (0.01) 4.69 (0.20) 0.645 (0.016)

ACOSSO-QR-SIC 0.82 (0.04) 0.02 (0.00) 1.00 (0.00) 4.53 (0.15) 0.667 (0.016)

Oracle - - - - 0.634 (0.011)

KQR - - - - 1.921 (0.017)

Boosting QR 0.00 (0.00) 0.76 (0.02) 1.00 (0.00) 31.18 (0.60) 0.781 (0.009)

COSSO-QR-5CV 0.84 (0.04) 0.01 (0.00) 1.00 (0.00) 4.36 (0.15) 0.612 (0.015)

COSSO-QR-SIC 0.92 (0.03) 0.00 (0.00) 0.99 (0.01) 4.08 (0.13) 0.638 (0.017)

0.5 ACOSSO-QR-5CV 0.82 (0.04) 0.01 (0.00) 1.00 (0.00) 4.39 (0.11) 0.461 (0.008)

ACOSSO-QR-SIC 0.93 (0.03) 0.00 (0.00) 0.99 (0.00) 4.07 (0.06) 0.505 (0.012)

COSSO 0.83 (0.04) 0.01 (0.00) 0.99 (0.01) 4.15 (0.05) 0.824 (0.025)

ACOSSO 0.76 (0.04) 0.01 (0.00) 0.99 (0.01) 4.30 (0.08) 0.616 (0.017)

Oracle - - - - 0.489 (0.007)

KQR - - - - 2.269 (0.021)

Boosting QR 0.00 (0.00) 0.68 (0.02) 1.00 (0.00) 28.43 (0.55) 0.978 (0.014)

COSSO-QR-5CV 0.69 (0.05) 0.01 (0.00) 0.97 (0.01) 4.31 (0.11) 0.904 (0.022)

0.8 COSSO-QR-SIC 0.78 (0.04) 0.02 (0.01) 0.98 (0.01) 4.68 (0.23) 0.944 (0.024)

ACOSSO-QR-5CV 0.74 (0.04) 0.02 (0.01) 0.99 (0.00) 4.60 (0.17) 0.661 (0.015)

ACOSSO-QR-SIC 0.88 (0.03) 0.01 (0.00) 0.99 (0.00) 4.30 (0.15) 0.726 (0.017)

Oracle - - - - 0.644 (0.011)
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Table 2.3: Simulation results for the homoskedasitc example with dependent features.
The standard errors are given in the parentheses.

τ Method Correct Type I Error Power Model Size IAE

KQR - - - - 1.743 (0.015)

Boosting QR 0.00 (0.00) 0.54 (0.02) 1.00 (0.00) 23.50 (0.73) 0.992 (0.020)

COSSO-QR-5CV 0.22 (0.04) 0.03 (0.00) 0.87 (0.01) 4.39 (0.15) 0.935 (0.017)

0.2 COSSO-QR-SIC 0.18 (0.04) 0.02 (0.01) 0.84 (0.01) 4.22 (0.21) 0.978 (0.018)

ACOSSO-QR-5CV 0.23 (0.04) 0.03 (0.01) 0.88 (0.01) 4.52 (0.23) 0.690 (0.014)

ACOSSO-QR-SIC 0.23 (0.04) 0.03 (0.01) 0.87 (0.01) 4.67 (0.28) 0.710 (0.014)

Oracle - - - - 0.609 (0.011)

KQR - - - - 1.512 (0.012)

Boosting QR 0.00 (0.00) 0.50 (0.02) 1.00 (0.00) 21.97 (0.76) 0.700 (0.010)

COSSO-QR-5CV 0.18 (0.04) 0.04 (0.01) 0.89 (0.01) 4.93 (0.23) 0.718 (0.014)

COSSO-QR-SIC 0.27 (0.05) 0.03 (0.01) 0.90 (0.01) 4.83 (0.22) 0.711 (0.015)

0.5 ACOSSO-QR-5CV 0.38 (0.05) 0.04 (0.01) 0.96 (0.01) 5.23 (0.23) 0.488 (0.011)

ACOSSO-QR-SIC 0.60 (0.05) 0.02 (0.00) 0.95 (0.01) 4.51 (0.16) 0.481 (0.012)

COSSO 0.35 (0.05) 0.01 (0.00) 0.88 (0.01) 3.90 (0.09) 1.436 (0.103)

ACOSSO 0.39 (0.05) 0.01 (0.00) 0.91 (0.01) 4.13 (0.10) 0.780 (0.088)

Oracle - - - - 0.459 (0.007)

KQR - - - - 1.700 (0.014)

Boosting QR 0.00 (0.00) 0.45 (0.02) 1.00 (0.00) 20.36 (0.75) 0.954 (0.016)

COSSO-QR-5CV 0.09 (0.03) 0.04 (0.01) 0.84 (0.01) 4.83 (0.20) 0.979 (0.016)

0.8 COSSO-QR-SIC 0.16 (0.04) 0.06 (0.01) 0.90 (0.01) 5.84 (0.25) 0.971 (0.016)

ACOSSO-QR-5CV 0.12 (0.03) 0.06 (0.01) 0.89 (0.01) 5.54 (0.29) 0.731 (0.017)

ACOSSO-QR-SIC 0.27 (0.04) 0.05 (0.01) 0.92 (0.01) 5.52 (0.22) 0.723 (0.017)

Oracle - - - - 0.592 (0.011)
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Table 2.4: Simulation results for the heteroskedasitc example with independent fea-
tures. The standard errors are given in the parentheses.

τ Method Correct Type I Error Power Model Size IAE

KQR - - - - 2.422 (0.019)

Boosting QR 0.00 (0.00) 0.75 (0.01) 1.00 (0.00) 30.72 (0.56) 1.289 (0.017)

COSSO-QR-5CV 0.34 (0.05) 0.01 (0.00) 0.91 (0.01) 5.04 (0.11) 1.419 (0.028)

0.2 COSSO-QR-SIC 0.43 (0.05) 0.01 (0.00) 0.92 (0.01) 4.92 (0.11) 1.474 (0.026)

ACOSSO-QR-5CV 0.57 (0.05) 0.02 (0.00) 0.98 (0.01) 5.65 (0.13) 0.976 (0.026)

ACOSSO-QR-SIC 0.65 (0.05) 0.00 (0.00) 0.94 (0.01) 4.84 (0.10) 1.154 (0.027)

Oracle - - - - 0.663 (0.013)

KQR - - - - 1.718 (0.015)

Boosting QR 0.00 (0.00) 0.74 (0.01) 1.00 (0.00) 30.63 (0.41) 0.681 (0.009)

COSSO-QR-5CV 0.93 (0.03) 0.00 (0.00) 1.00 (0.00) 4.09 (0.05) 0.538 (0.013)

0.5 COSSO-QR-SIC 0.97 (0.02) 0.00 (0.00) 1.00 (0.00) 3.97 (0.02) 0.569 (0.016)

ACOSSO-QR-5CV 0.84 (0.04) 0.01 (0.00) 1.00 (0.00) 4.26 (0.07) 0.371 (0.007)

ACOSSO-QR-SIC 0.95 (0.02) 0.00 (0.00) 1.00 (0.00) 4.11 (0.07) 0.390 (0.010)

Oracle - - - - 0.391 (0.005)

KQR - - - - 2.446 (0.024)

Boosting QR 0.00 (0.00) 0.74 (0.02) 1.00 (0.00) 30.72 (0.56) 1.223 (0.017)

COSSO-QR-5CV 0.53 (0.05) 0.02 (0.00) 0.96 (0.01) 5.51 (0.16) 1.194 (0.031)

0.8 COSSO-QR-SIC 0.65 (0.05) 0.01 (0.00) 0.94 (0.01) 4.98 (0.12) 1.336 (0.029)

ACOSSO-QR-5CV 0.60 (0.05) 0.03 (0.01) 0.99 (0.00) 6.04 (0.20) 0.923 (0.024)

ACOSSO-QR-SIC 0.76 (0.04) 0.01 (0.00) 0.97 (0.01) 5.18 (0.13) 1.090 (0.022)

Oracle - - - - 0.651 (0.013)
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Table 2.5: Simulation results for the heteroskedasitc example with dependent fea-
tures. The standard errors are given in the parentheses.

τ Method Correct Type I Error Power Model Size IAE

KQR - - - - 1.735 (0.018)

Boosting QR 0.00 (0.00) 0.78 (0.02) 1.00 (0.00) 32.06 (0.55) 1.267 (0.012)

COSSO-QR-5CV 0.11 (0.03) 0.07 (0.01) 0.91 (0.01) 7.02 (0.28) 1.155 (0.023)

0.2 COSSO-QR-SIC 0.19 (0.04) 0.05 (0.01) 0.90 (0.01) 6.35 (0.27) 1.188 (0.022)

ACOSSO-QR-5CV 0.21 (0.04) 0.08 (0.01) 0.97 (0.01) 7.46 (0.31) 0.822 (0.020)

ACOSSO-QR-SIC 0.38 (0.05) 0.03 (0.01) 0.94 (0.01) 5.84 (0.23) 0.891 (0.022)

Oracle - - - - 0.613 (0.013)

KQR - - - - 1.343 (0.012)

Boosting QR 0.00 (0.00) 0.73 (0.00) 1.00 (0.00) 30.38 (0.15) 0.562 (0.004)

COSSO-QR-5CV 0.41 (0.05) 0.04 (0.01) 0.95 (0.00) 5.11 (0.18) 0.653 (0.016)

0.5 COSSO-QR-SIC 0.51 (0.05) 0.03 (0.01) 0.95 (0.00) 4.87 (0.24) 0.656 (0.014)

ACOSSO-QR-5CV 0.45 (0.05) 0.05 (0.01) 0.99 (0.00) 5.68 (0.27) 0.413 (0.012)

ACOSSO-QR-SIC 0.70 (0.05) 0.03 (0.01) 0.99 (0.00) 4.86 (0.26) 0.405 (0.011)

Oracle - - - - 0.383 (0.006)

KQR - - - - 1.731 (0.018)

Boosting QR 0.00 (0.00) 0.65 (0.01) 1.00 (0.00) 27.60 (0.50) 1.047 (0.003)

COSSO-QR-5CV 0.19 (0.04) 0.06 (0.01) 0.90 (0.01) 6.64 (0.24) 1.111 (0.026)

0.8 COSSO-QR-SIC 0.25 (0.04) 0.04 (0.01) 0.88 (0.01) 5.64 (0.21) 1.139 (0.023)

ACOSSO-QR-5CV 0.41 (0.05) 0.06 (0.01) 0.98 (0.01) 6.85 (0.28) 0.796 (0.021)

ACOSSO-QR-SIC 0.61 (0.05) 0.02 (0.00) 0.96 (0.01) 5.31 (0.13) 0.839 (0.023)

Oracle - - - - 0.629 (0.015)

Table 2.6: Estimated prediction risk for real data. The standard er-
rors are given in the parentheses.

Methods

τ Data KQR Boosting QR COSSO-QR ACOSSO-QR

0.2
Prostate 0.261 (0.009) 0.316 (0.022) 0.232 (0.007) 0.228 (0.006)

Ozone 1.115 (0.007) 1.136 (0.018) 1.093 (0.016) 1.096 (0.016)

0.5
Prostate 0.333 (0.011) 0.350 (0.016) 0.293 (0.008) 0.294 (0.007)

Ozone 1.629 (0.022) 1.662 (0.018) 1.632 (0.023) 1.656 (0.024)

0.8
Prostate 0.355 (0.013) 0.280 (0.011) 0.213 (0.005) 0.205 (0.005)

Ozone 1.160 (0.017) 1.161 (0.019) 1.156 (0.017) 1.179 (0.017)
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Chapter 3

A unified variable selection and

function estimation procedure for

nonparametric regression using least

squares approximation

3.1 Introduction

Traditional modeling procedures usually involve two steps. In the initial model build-

ing step, a large number of predictors are kept to avoid possible modeling bias, then a

variable selection procedure is carried out in the second step for better interpretation

and prediction (Fan and Li, 2001). More recently, the boundary between these two steps

has gradual vanished. Efficient modeling procedures that perform joint estimation and

selection are now mainstream in modern statistics. In addition, in the age of data deluge,

more and more variables can be collected at the same time thanks to the advancement

in data collection. To find the “needles” in the “haystack”, the research trajectory of

modern statistical modeling has headed toward variable selection.

In the nonparametric context, variable selection is a challenging task for several rea-

sons, partly because of the difficulty of infinite dimensionality of the functional space.

Traditionally, variable selection in nonparametric regression is done by borrowing some

concepts developed in parametric models. For instance, an analogous stepwise or greedy

search algorithm is used in CART (Breiman et al., 1984), TURBO (Friedman and Sil-
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verman, 1989) and MARS (Friedman, 1991). However, based on what we learned from

parametric models, discrete selection procedures, such as stepwise and greedy search,

are known to suffer from several limitations (Breiman, 1995; Efron et al., 2004). From a

nonparametric perspective, Yau et al. (2003) developed a Bayesian method for variable

selection and Zhang et al. (2004) proposed a likelihood basis pursuit method for variable

selection and estimation for exponential family.

Since the ground-breaking work of LASSO (Tibshirani, 1996, 2011), a considerable

amount of work on statistical methods are centered around penalized regression. In para-

metric models, penalized methods, such as LASSO, are appealing for their shrinkage

property by setting small coefficients to exact zeros, so that selection and estimation can

be done simultaneously. In nonparametric modeling, Lin and Zhang (2006) proposed the

COmponent Selection and Smoothing Operator (COSSO) penalty in the smoothing spline

analysis of variance (SS-ANOVA) framework. By showing that COSSO can be viewed

as an extension of the LASSO penalty to nonparametric models, the COSSO penalty

naturally inherits some desirable properties. For instance, it successfully addresses the

stability issue of the aforementioned discrete types of selection methods by imposing a

soft-thresholding operator to achieve continuous selection. Moreover, Storlie et al. (2011)

later introduced an adaptive weight that allows a different amount of shrinkage for each

functional component and proved the adaptive COSSO penalty enjoys a nonparametric

Oracle property under certain assumptions.

The theoretical properties of (A)COSSO have been studied exclusively in the least

squares context, but rather less is known about them for other regression models, such as

generalized linear models (GLM), quantile regression models and Cox proportional haz-

ard models. Numerically, (A)COSSO exhibits promising performance in terms of selec-

tion and estimation in various regression models (Zhang and Lin, 2006; Leng and Zhang,

2007), suggesting similar theoretical results should sustain beyond the least squares con-

text. However, such tasks can be daunting and need to be done in a case-by-case basis.

In this work, we aim to explore the possibility of providing a unified framework to study

the COSSO-type methods.

We motivate this work from the successful development of least squares approxima-

tion (LSA) in the parametric model (Wang and Leng, 2007). Theoretically, the LSA

provides an asymptotic equivalent framework for various LASSO-types of problems and

hence the asymptotic results can be established in a unified fashion. Computationally,
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the LSA requires an initial parameter estimate and its associated covariance matrix as

inputs and then solve an adaptive LASSO problem. Both initial estimator and adaptive

LASSO problems can be solved very efficiently. The success of LSA stimulates us to ex-

plore its applicability in nonparametric model in terms of both numerical and theoretical

perspectives.

In this study, we propose a nonparametric least squares approximation (NPLSA)

method for a unified COSSO estimation. Parallel to the parametric LSA, the proposed

method is also a two-stage method that consists of an initial estimation step and a final

selection and estimation step. We introduce the NPLSA and the two-stage method in

Section 2. Section 3 presents the effectiveness of NPLSA using both simulated and real

examples and we conclude the article with some discussion in Section 4.

3.2 Nonparametric Least Squares Approximation

3.2.1 Model and Notations

Let {(yi,xi) : i = 1, . . . , n} be a random sample, where yi is the response and xi =

(x
(1)
i , . . . , x

(p)
i ) is the p-dimensional predictors. Denote f0(x) as an underlying function

that relates some aspect of the predictors to the response. For example, f0(x) can be the

conditional mean, conditional quantile, etc. A typical nonparametric estimator of f0(x)

is the minimizer of a loss function, which may be the negative of a likelihood function,

plus a penalty term. We formulate the problem in a generic form

min
f∈F

Ln(f) +
λ

2
J(f), (3.1)

where F is a structured functional space, Ln is a reasonable loss or negative likelihood

function, J(f) is the roughness penalty of the function f and λ is a smoothing parameter

that governs the goodness-of-fit and function complexity.

The penalty functional J(·) is required to avoid interpolation in (3.1) for nonpara-

metric methods to control the smoothness of the estimate function. A common choice

of penalty functional is the sum of individual squared functional norm in a reproducing

kernel Hilbert space (RKHS) which we will address later. For simultaneous estimation

and selection, a direct sparse function estimator can be obtained by using the COSSO

penalty for J(·), which penalizes the sum of the RKHS norms. Although a direct sparse
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estimator is conceptually available for various regression models, a tailored computational

algorithm is needed. One key motivation of this study is to provide a unified selection

and estimation framework.

3.2.2 Least Squares Approximation

The LSA in parametric model was motivated from a simple Taylor expansion. In para-

metric model, the loss function is a function of unknown parameters β. Suppose the loss

function has continuous second-order derivative, then the Taylor expansion of the loss

function around an initial estimate β̃ is given by

Ln(β) ≈ Ln(β̃) + L̇n(β̃)(β − β̃) +
1

2
(β − β̃)T L̈n(β̃)(β − β̃), (3.2)

where L̇n is a gradient vector of Ln with respect to β and L̈n is a Hessian matrix. When

evaluated at the initial estimate β̃, the gradient L̇n is a zero vector and Ln is a constant

independent of β. So, the only part that involves unknown parameter β is the quadratic

term, which gives rise to the name least squares approximation.

Let f = (f(x1), . . . , f(xn))
T be a vector of length n containing the values of an

arbitrary function f evaluated at the design points. Analogous to the quadratic term in

parametric LSA, we consider a squared approximation to the loss function Ln in (3.1) by

Ln(f) ≈
1

2
(f̃ − f)T cov−1(f̃)(f̃ − f). (3.3)

In practice, we can derive the diagonal elements of the covariance matrix of f̃ , but the

complete covariance matrix is not always available. In addition, even if the covariance

matrix is available, it will not be invertible in general. To give more insight into the

structure of the covariance matrix, we use a smoothing spline model as an example.

Since the smoothing spline model is a linear smoother, we can write f̃ = Sy, where

S is the smoother matrix. Moreover, the covariance matrix of f̃ is given by cov(f̃) =

σ2SST , assuming yi’s are i.i.d. random sample with constant variance σ2. The difficulty

is, however, S is not full rank (Gu, 2002), and thus neither S nor SST is invertible.

Due to the rank deficiency, we replace cov(f̃) by its diagonal elements and denote it as

V = diag(v1, . . . , vn) afterward.
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3.2.3 Initial Estimation

The main difficulty of estimating a multivariate function through solving equation (3.1)

is the curse of dimensionality. A popular strategy for effective and flexible multivari-

ate function estimation is the SS-ANOVA models (Wahba, 1990). In the SS-ANOVA

framework, a multivariate function is decomposed into a constant term, main effects and

interactions, see Wahba (1990), Gu (2002) and Wang (2011) for a detailed discussion.

To control the model complexity and avoid the curse of dimensionality, higher-order in-

teractions are usually truncated. In this article, for convenience, we will discuss the case

when main effects are kept while all the interactions are dropped, which is commonly

referred to as an additive model (Hastie and Tibshirani, 1990). The general case follows

with just an increase in notational complexity. In an additive model, the decomposition

of a multivariate function f is given by

f(x) = b+

p∑
j=1

fj(x
(j)), (3.4)

and each function fj is estimated within a functional space Fj. Thus, the functional space

we construct to estimate f is given by

F = {1} ⊕
{
⊕p

j=1Fj

}
, (3.5)

where each functional space Fj is orthogonal to the constant functional space {1} for

identifiability.

When x(j) is a continuous variable, a popular choice of Fj is the second-order Sobolev

space S2[0, 1] = {g : g, g′ are absolutely continuous and g′′ ∈ L2[0, 1]}. When endowed

with the norm

||g||2 =
{∫ 1

0

g(x)dx

}2

+

{∫ 1

0

g′(x)dx

}2

+

∫ 1

0

{g′′(x)}2 dx, (3.6)

the second order Sobolev space is a RKHS with reproducing kernel

R(x, y) = 1 + k1(x)k1(y) + k2(x)k2(y)− k4(|x− y|), (3.7)

where k1(x) = x− 1
2
, k2(x) =

1
2

[
k4
1(x)− 1

12

]
and k4(x) =

1
24

[
k4
1(x)− 1

2
k2
1(x) +

7
240

]
. Con-
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trarily, when x(j) is a categorical variable that takes only finite distinct values, {1, . . . , L},
we use a different reproducing kernel

R(s, t) = L · I(s = t)− 1, s, t ∈ {1, . . . , L}. (3.8)

See Wahba (1990); Gu (2002) for more on reproducing kernels.

In the SS-ANOVA framework, a typical procedure is to find the f ∈ F that minimizes

Ln(f) +
λ

2

p∑
j=1

θ−1
j ||P jf ||2, (3.9)

where P j is an orthogonal projection operator that projects f onto Fj and both λ and

θj’s are smoothing parameters. There is an over-parameterizations of λ and θj’s but the

setup is usually used for computational considerations. Denote f̃ be the minimizer of

(3.9) and we later refer f̃ as an initial estimate.

For different kinds of loss functions, various authors have proposed corresponding

estimation procedures. For instance, Gu (1990), Wahba et al. (1995) and Lin et al. (2000)

studied a GLM where Ln is the negative log-likelihood function and Gu (1996, 1998)

studied the bivariate hazard model, including the baseline hazard, where Ln is the full

likelihood function.

In practice, there are other methods that can be adopted to solve an initial estimate f̃ ,

but we prefer the SS-ANOVA model for several reasons. Apart from the close proximity

of COSSO and SS-ANOVA, the functional space considered in the SS-ANOVA model is

a RKHS, which is infinite dimensional. Moreover, SS-ANOVA model provides a flexible

functional decomposition which allows us to quantify the relative importance of each

function using L2-norm. Storlie et al. (2011) studied using the inverse functional L2-

norm as an adaptive weight in the COSSO penalty and derived desirable asymptotic

results in least squares context. Finally, the SS-ANOVAmodel enjoys desirable theoretical

and computational properties. Asymptotic results for various SS-ANOVA models can

be found in Gu (2002) and references therein. Several efficient tuning and estimation

algorithms have been proposed and off-the-shelf computing codes are readily available.

44



3.2.4 Least Squares Approximation Estimator

In the approximation step, we proceed to solve (??) and use the adaptive COSSO penalty

for J(f). Thus, the NPLSA estimator is the minimizer of an adaptive COSSO problem

with the initial estimate f̃i as the pseudo response. More specifically, we solve the following

objective function in the approximation step to derive a final estimate

min
f

1

n
∥V −1/2(f − f̃)∥2 + λ

p∑
j=1

wj||P jf ||, (3.10)

where wj’s are known weights, which are usually the inverse functional L2-norms. Like

equation (3.1), the penalty functional in (3.10) is still required. However, the COSSO

penalty not only controls the smoothness of the function, but also possesses the sparsity

property. We denote f̂ as the minimizer of (3.10).

The existence of the minimizer of (3.10) is guaranteed due to the convexity of the

objective function. Denote RFj
as the reproducing kernel of Fj corresponding to the

decomposition in (3.5), Storlie et al. (2011) showed the minimizer of (3.10) has a finite

form

f(x) = b+
n∑

i=1

ciRθ,w(xi,x), (3.11)

where Rθ,w =
∑p

j=1 θjw
−2
j RFj

and and θj > 0, j = 1, . . . , p, are non-negative slack

variables. The slack variables θj’s play an important role in recovering the sparse structure

of f since θj = 0 if and only if ∥P jf∥ = 0 (Lin and Zhang, 2006). LetRj be an n×nmatrix

containing elements {RFj
(x

(j)
i , x

(j)
i′ )}ni,i′=1 and 1n be a column vector of n ones, then we

write the minimizer evaluated at the design points as f = b1n+(
∑p

j=1 θjw
−2
j Rj)c. Thus,

the optimization problem in (3.10) has an equivalent formulation

min
b,c,θ

1

n

f̃ − b1n −
p∑

j=1

θj
w2
j

Rjc

T

V −1

f̃ − b1n −
p∑

j=1

θj
w2
j

Rjc

+ λ0c
T

p∑
j=1

θj
w2
j

Rjc

s.t.

p∑
j=1

θj ≤ M, θj ≥ 0, ∀j,

(3.12)

where λ0 and M are both smoothing parameters, see Storlie et al. (2011) for a detailed

derivation.

An iterative algorithm that involves solving a smoothing spline problem and a non-
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negative garrote problem is used in Lin and Zhang (2006) and Storlie et al. (2011) to

minimize the objective function in (3.12).

3.2.5 Parameter Tuning

In penalized regression methods, information criteria, such as BIC and SIC, and cross-

validation (CV) or its variant, generalized CV, are widely used in literature to select

regularization parameters. A general consensus is that CV usually gives better predic-

tion but pays the price of over-selection; whereas the information criteria could better

identify the correct model. Leng et al. (2006) remarked that prediction error-based tuning

procedure, like CV, will not be able to identify the correct model consistently. To fully

explore the performance of NPLSA, we adopt both information criteria and CV in the

following numerical study. In terms of CV, we either compute the log-likelihood or some

loss function depending on the model of interest.

In order to use information criteria, an informative assessment of model complexity

is required. To assess the complexity of a nonparametric procedure, a commonly-used

quantity is the trace of the smoother matrix if the nonparametric procedure is a linear

smoother, which is the case for many SS-ANOVA models. For instance, the degrees of

freedom in a SS-ANOVA GLM model can be defined as the trace of a pseudo smoother

matrix (Gu, 2002; Wang, 2011). Similarly, in the approximation step, since the COSSO

algorithm requires solving a smoothing spline problem, Lin and Zhang (2006) argued the

degrees of freedom of the COSSO model can be defined as the trace of the smoother

matrix in the smoothing spline model.

However, the degrees of freedom derived from an individual step could be misleading

considering the NPLSA method practically “smoothes” the data twice. Hence the degrees

of freedom derived from individual step will over-estimate the overall one. To elaborate

the mechanism how the degrees of freedom in the individual step over-estimates the

overall degrees of freedom, we use a GLM as an illustrative example.

Let yi, i = 1, . . . , n, be independent observations from an exponential family (with

dispersion parameter equal 1) whose density has a generic form

g(yi, fi) = exp{yifi − b(fi) + c(yi)}. (3.13)

Lin et al. (2000) argued that a generalized degrees of freedom for an estimator f̂ can be
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defined as

GDF (f̂) =
n∑

i=1

cov(yi, f̂i) =
n∑

i=1

E(yi − b′(fi))f̂i =
n∑

i=1

b′′(fi)
∂E(f̂i)

∂b′(fi)
, (3.14)

where E(·) denotes the conditional expectation of y given x.

Since the final estimate f̂ in our NPLSA procedure requires an initial estimate f̃ , we

can decompose the last equality in (3.14) into

n∑
i=1

b′′(fi)
∂E(f̃i)

∂b′(fi)︸ ︷︷ ︸
Initial Step

∂E(f̂i)

∂E(f̃i)
.︸ ︷︷ ︸

Approximation Step

(3.15)

To give a graphical illustration how the degrees of freedom is decomposed, we conduct

a Monte Carlo experiment to numerically evaluate the components in (3.14) and (3.15)

using a toy example. We generate 10 independent predictors from U(0, 1) and then take

n = 200 binary responses from a Bernoulli model using the logit function logit(P (y =

1|x)) = π sin(2πx(1)) + exp(x(2))− 2. We repeated this for B = 100 times and hence we

can estimate the required quantities in (3.14) and (3.15). In Figure 3.1, the overall degrees

of freedom contribution from each observation, assessed by cov(yi, f̂i), are shown in black

crosses, the initial degrees of freedom, assessed by cov(yi, f̂i), are shown in red circles and

the degrees of freedom in the approximation step, assessed by ∂E(f̂i)

∂E(f̃i)
, are shown in blue

triangles. The overall degrees of freedom estimate is 8.2, whereas the SS-ANOVA model

has a degrees of freedom 13.7, which is consistent with our previous claim that individual

step will over-estimate the overall degrees of freedom.

After realizing the degrees of freedom in the individual step is not a good estimate of

the overall one, the next question is how to better assess the complexity of our NPLSA

procedure. In different kinds of regression models, corresponding generalized degrees of

freedom ideas have been proposed. For instance, in a GLM framework, equation (3.14) is

one option. However, equation (3.14) can not be implemented directly. For practical use,

Lin et al. (2000) introduced a randGACV tuning procedure to choose smoothing param-

eters. In addition to serving as a tuning procedure, this method also allows numerically

evaluating the model degrees of freedom. The randGACV is defined as

randGACV(λ) =
1

n

n∑
i=1

[−yif̂i + b(f̂i)] +
1

n

n∑
i=1

yi(yi − b′(f̂i))
εT (f̂

(Y+ε) − f̂)

εTε− εTŴ (f̂
(Y+ε) − f̂)

, (3.16)
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where f̂ = (f̂1, . . . , f̂n)
T , Ŵ = diag(b′′(f̂1), . . . , b

′′(f̂n)), ε = (ε1, . . . , εn) are random

numbers generated from a underlying distribution and f̂
(Y+ε)

is the vector of estimated

function based on a perturbed response vector yi + εi, i = 1, . . . , n. The generalized

degrees of freedom is defined to be n times the second term in (3.16).

In practice, we will generate ε and evaluate the ratio at the last term of equation (3.16)

multiple times and use their average to produce a more stable estimate. Originally, Lin

et al. (2000) suggested generating ε from N(0, τ 2) independently with tiny τ 2. But in our

experimental study, the ratio was highly unstable regardless the value of τ 2. We consider a

more stable alternative by drawing ε from {−τ, τ}n with probability P (εi = τ) = 0.5, ∀i
and set τ = 0.25 as recommended in Zhang et al. (2004).

Beyond the GLM, the degrees of freedom in nonparametric quantile regression model

have also been studied by various authors (Koenker, 2005; Yuan, 2006; Li et al., 2007)

and it has a simple formula to compute, the number of zero residual. However, the idea is

more appropriate in the initial step. The function estimate at the final approximation step

will no longer interpolate the observed response. Given that the notion of number of zero

residual as a degrees of freedom estimate is originated from a more generic quantity, the

divergence formula, we aim to directly estimate the divergence and use it as an effective

degrees of freedom of our NPLSA procedure. The divergence formula is given by

div(f̂) =
n∑

i=1

∂f̂i
∂yi

. (3.17)

Similar to the generalized degrees of freedom for GLM defined in equation (3.14),

the derivative in (3.17) needs to be evaluated numerically. We later consider a bootstrap

method similar to Ye (1998) to estimate the derivative.

3.3 Numerical Study

3.3.1 Preliminaries

In this section, we present a series of numerical studies to demonstrate the performance

of NPLSA using simulated and real data.

In simulation study, we assess the performance of NPLSA through model selection

and model fidelity. We first denote M̂ = {j : θ̂j ̸= 0} and M0 = {j : ||P jf0|| ̸= 0} as the
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selected and true model components, respectively, and |M| as the size of the set. Then

we compute four criteria, correctly identify the true model, I(M̂ = M0), Type I error,
|M̂∩Mc

0|
p−|M0| , power,

|M̂∩M0|
|M0| , and model size, |M̂|, to evaluate model selection. Furthermore,

we use integrated squared error (ISE), E[f0(X)− f̂(X)]2, to assess function estimation.

In addition to ISE, we will also incorporate appropriate criteria to assess model fitting

for different regression models.

For real data application, we first compare the solution path generated by NPLSA

and that by direct sparse estimator. Once we choose an optimal smoothing parameter

along the path, we further compare the corresponding estimated functional profiles.

For both simulated and real data, as an exploratory experiment, we let V = I in

equation (3.12) to simplify the computation although the pointwise variance is a standard

output in some off-the-shelf R functions. For instance, gssanova (GLM) and sscox (Cox’s

model).

3.3.2 Simulation Examples

Example 1: (Median Regression). In this example, we use the following functions as

building blocks: g1(t) = t; g2(t) = (2t − 1)2; g3(t) = sin(2πt)
2−sin(2πt)

and g4(t) =

0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt). We gen-

erate the response from a location-scale family

yi = 5g1(x
(1)
i ) + 2g2(x

(2)
i ) + 4g3(x

(7)
i ) + 6g4(x

(10)
i ) + σεi, (3.18)

where σ = 1, and εi are independently drawn from a normal mixture 0.8N (0, 3) +

0.2N (0, 25). The number of predictors is 10 and each one of them is marginally

U(0, 1) with autoregressive pairwise correlation cor(x(j), x(k)) = ρ|j−k|, ∀j ̸= k, ρ =

{0, 0.5}. We use the kernel quantile regression (KQR) (Li et al., 2007) with an

additive kernel to solve an initial function estimate. In this example, The smoothing

parameters in the adaptive COSSO are tuned by 5-fold CV and SIC, where SIC

is defined as log
(∑n

i=1 ρτ (yi−f̂i)

n

)
+ logn

2n
df and the df is derived from the divergence

formula in (3.17) using bootstrap. In this example, we vary the sample size from

n = 200 to n = 300.

In addition to use ISE as a model assessment, we incorporate an additional criterion

for model assessment: expected check error (ECE), Eρτ (Y − f̂(x)), where the above
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expectations, including ISE, are evaluated by a Monte Carlo integration with 5,000

points generated from the same distribution as the training data.

For comparison purpose, a direct sparse estimator, a COSSO-QR model, and an

Oracle estimator, a KQR model fitted with the relevant predictors, are also used to

estimate the conditional median function whose smoothing parameters are tuned

by 5-fold CV.

Example 2: (Logistic Regression). In this example, the dichotomous response is taken

from a Bernoulli distribution using the logit function

logit (P (yi = 1|xi)) = 2x
(1)
i + π sin(πx

(2)
i ) + 3

(
x
(7)
i

)5
+

ex
(10)
i

e− 1
− 5. (3.19)

The predictors x(j), j = 1, . . . , 10, are generated in the same fashion as in Example

1. We use the gss package in R to solve an initial function estimate f̃ and then

apply adaptive COSSO to produce the final approximated solution. The smoothing

parameters in the adaptive COSSO are tuned by 5-fold CV, BIC and randGACV,

whereas the degrees of freedom used in BIC is estimated by randGACV. The

randGACV criterion has been introduced in (3.16) and the BIC is−2 log−likelihood+

log(n)df . In this example, we vary the sample from n = 250 to n = 350.

In the Logistic regression model, we also include empirical misclassification rate

(EMR) to assess classification power. Similarly, the above expectations, including

ISE, are evaluated by a Monte Carlo integration with 5,000 points

We also include a direct sparse estimator, a COSSO-GLM model (Zhang and Lin,

2006) and an Oracle estimator, a SS-ANOVA model fitted with the relevant predic-

tors, as references to compare with. The smoothing parameters in the direct sparse

estimator and Oracle estimator are again tuned by 5-fold CV.

3.3.3 Computational Cost

Before presenting the result for two simulation examples, we first demonstrate the advan-

tage of NPLSA in terms of computational cost. To fairly compare the computational cost,

we compare the elapsed CPU time of NPLSA to that of adaptive direct sparse estimator

since both methods depend on an initial estimate. We fix the smoothing parameters in
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the second step of NPLSA and the direct sparse estimator at one particular value without

carrying out the tuning procedure.

We run both simulation examples 200 times using different sample size and number

of features combinations. All computations are done on a desktop PC with an Intel Core

i7-2600K CPU and 12GB of memory. The average computation times are summarized in

Table 3.1. In the median regression model, NPLSA only takes 75-85% of the computation

time of the direct sparse estimator; whereas the percentage further drops to 60-70% in the

Logistic regression example. Although the computational gain in the median regression

example does not seem a lot, it is noteworthy that most of the time is spent on solving

an initial estimate.

The save in computation time can be better elucidated by comparing the algorithms

between different methods. The NPLSA depends on a COSSO algorithm which involves

inverting an n×n matrix and a quadratic programming problem with p unknown param-

eters. COSSO-GLM requires iteratively solving COSSO problem until a certain conver-

gence criterion is met. Finally, COSSO-QR involves a quadratic programming problem

with n unknown parameters and a linear programming problem with n + p unknown

parameters. Hence, both COSSO-GLM and COSSO-QR are more computationally in-

tensive than COSSO. In light of the simpler algorithm, the advantage of NPLSA becomes

transparent in terms of computation.

3.3.4 Simulation Results

The result for median regression, summarized in Table 3.2 and 3.3, indicate the encour-

aging performance of NPLSA. When predictors are independent, the NPLSA clearly

outperforms the direct sparse estimator in terms of both selection and estimation. In the

correlated predictors case, NPLSA does not identify the correct model as frequently as

independent case but its prediction accuracy is still close to the direct sparse estimator,

most of the summary statistics are within reasonable error margins.

The simulation result for Logistic regression, shown in Table 3.4 and 3.5, again con-

firms the power of NPLSA. Overall, two information criteria, BIC and randGACV, give

similar performance and both of them identify the correct model more frequently and

tend to select a smaller model size than 5-fold CV. Probably due to the tuning procedure,

the direct sparse estimator commits one false positive in average and the over-selection

becomes slightly worse in the dependent features case. When predictors are correlated, it
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has limited influence on the performance. The selected model sizes are about the same,

but the power is slightly worse. In terms of ISE, the NPLSA is still about 70% as efficient

as the Oracle estimator.

3.3.5 Real Data Examples

To study the real data application, we apply NPLSA to two real data examples: South

Africa heart disease data and ozone data. The heart disease data consists of 462 male

patients in a heart-disease high-risk region of the Western Cape, South Africa. This data

has been used by other authors (Park and Hastie, 2007; Hastie et al., 2009; Wang and

Leng, 2007) to build a relationship between the disease status, with or without coronary

heart disease, and 9 clinical outcomes. The ozone data contains 330 observations collected

in Los Angeles in 1976, and we aim to model the median function of the daily ozone

concentration on 8 meteorological covariates. Both data are publicly available from R

packages, ElemStatLearn and cosso, respectively.

The evaluation of NPLSA procedure is first done by comparing its L2-norm solution

path to those produced by the direct sparse estimator. The solution paths for both data

are illustrated in Figure 3.2. Shown on the left panel is the solution paths for heart

disease data and on the right panel is that for ozone data. Overall, the solution path

of the NPLSA is close to that of the direct sparse estimator. We also use 5-fold CV

to determine the optimal smoothing parameter M along the path and the vertical line

indicates the selected smoothing parameter. In terms of selection result for the heart

disease data, the direct sparse estimator selects four functional components, whereas

NPLSA selects a subset of them. As for the ozone data, both the direct sparse estimator

and NPLSA select the same four components.

We next compare the estimated functional profiles of the selected components. For the

heart disease data, we show the four components selected by the direct sparse method:

tobacco, ldl, typea and age. As for the ozone data, we show the common four components:

temp, invHt, press and vis. The estimated component functions are given in Figure 3.3.

Once again, the functional profiles produced by NPLSA are very close to those produced

by the direct estimator, suggesting that the NPLSA method provides a competitive

performance in terms of both model selection and function estimation. Although the

direct sparse estimator selects an extra predictor, typea, in the heart disease data it only

shows a weak linear trend, and therefore may not be practically significant. Moreover,
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according to Figure 3.3, all of the predictors in the heart disease data exhibit a linear

effect on the logit function, indicating a linear model could have sufficed. On the contrary,

the predictors in the ozone data suggest a highly nonlinear effect on the median function.

3.4 Discussion

In this study, we explore the applicability of LSA in a nonparametric context. Of several

implementation and computation issues we address in this article, degrees of freedom

estimation remains an open topic that still requires more work for other types of regression

models. Model-free tuning procedure, like CV, can always be an alternative in the absence

of an informative assessment of model complexity, but its tendency to under-smooth

could result in rougher model fit and larger model size. The numerical result indicates

a promising performance of NPLSA and our future work is to derive the theoretical

properties of NPLSA.

This proposed NPLSA provides a unified framework to do variable selection and

function estimation for various nonparametric regression models. Like the COSSO, the

methods proposed by Meier et al. (2009) and Huang et al. (2010) also aim at joint

estimation and selection in least squares problem. A similar NPLSA method can also be

applied to extend the applications of their methods to other regression models.
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Figure 3.1: Degrees of freedom decomposition.

Table 3.1: Average elapsed CPU time (in second) for solving median regression
and Logistic regression models in simulation examples 1 and 2.

Median Regression Logistic Regression

(n, p) KQR NPLSA ACOSSO-QR SS-ANOVA1 NPLSA ACOSSO-GLM

(200,10) 1.048 1.374 1.652 0.536 0.879 1.155

(300,10) 2.419 2.749 3.613 1.186 1.972 2.637

(200,30) 1.119 1.899 2.097 1.277 2.046 3.381

(300,30) 2.925 4.650 5.489 2.728 4.482 7.603

1 To solve the SS-ANOVA model, we use half of the observations as “knots”, the ob-

servations that used to compute the kernel matrix.
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Table 3.2: Simulation result for quantile regression with independent features. The
standard errors are given in the parentheses.

Method Correct Type I Power Size ISE ECE

(n, p, p0) = (200, 10, 4)

COSSO-QR 0.37 (0.05) 0.11 (0.02) 0.91 (0.01) 4.31 (0.15) 1.340 (0.047) 1.073 (0.004)

NPLSA
CV 0.59 (0.05) 0.11 (0.02) 0.98 (0.01) 4.65 (0.11) 1.271 (0.045) 1.067 (0.004)

SIC 0.65 (0.05) 0.10 (0.02) 0.98 (0.01) 4.53 (0.12) 1.238 (0.045) 1.064 (0.004)

Oracle - - - - 1.045 (0.029) 1.045 (0.003)

(n, p, p0) = (300, 10, 4)

COSSO-QR 0.63 (0.05) 0.06 (0.02) 0.94 (0.01) 4.11 (0.11) 0.922 (0.037) 1.038 (0.004)

NPLSA
CV 0.86 (0.04) 0.03 (0.01) 1.00 (0.00) 4.16 (0.04) 0.802 (0.030) 1.028 (0.003)

SIC 0.85 (0.04) 0.03 (0.01) 1.00 (0.00) 4.17 (0.05) 0.807 (0.030) 1.028 (0.003)

Oracle - - - - 0.690 (0.021) 1.018 (0.003)

Table 3.3: Simulation result for quantile regression with correlated features. The stan-
dard errors are given in the parentheses.

Method Correct Type I Power Size ISE ECE

(n, p, p0) = (200, 10, 4)

COSSO-QR 0.22 (0.04) 0.09 (0.02) 0.85 (0.01) 3.92 (0.14) 1.301 (0.058) 1.069 (0.005)

NPLSA
CV 0.09 (0.03) 0.42 (0.03) 0.97 (0.01) 6.39 (0.14) 1.508 (0.049) 1.086 (0.004)

SIC 0.18 (0.04) 0.02 (0.01) 0.80 (0.01) 3.34 (0.06) 1.211 (0.051) 1.061 (0.004)

Oracle - - - - 1.050 (0.042) 1.048 (0.004)

(n, p, p0) = (300, 10, 4)

COSSO-QR 0.25 (0.04) 0.12 (0.02) 0.89 (0.01) 4.27 (0.16) 0.904 (0.032) 1.037 (0.007)

NPLSA
CV 0.10 (0.03) 0.40 (0.03) 0.99 (0.01) 6.35 (0.15) 1.042 (0.035) 1.049 (0.007)

SIC 0.12 (0.03) 0.02 (0.01) 0.79 (0.01) 3.26 (0.05) 0.867 (0.035) 1.033 (0.007)

Oracle - - - - 0.743 (0.022) 1.022 (0.005)
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Table 3.4: Simulation result for Logistic regression with independent features. The
standard errors are given in the parentheses.

Method Correct Type I Power Size ISE EMR

(n, p, p0) = (250, 10, 4)

COSSO-GLM 0.18 (0.04) 0.27 (0.02) 0.95 (0.01) 5.40 (0.13) 0.397 (0.019) 0.292 (0.001)

CV 0.16 (0.04) 0.32 (0.02) 0.96 (0.01) 5.74 (0.16) 0.388 (0.015) 0.292 (0.001)

NPLSA BIC 0.25 (0.04) 0.07 (0.01) 0.85 (0.01) 3.83 (0.09) 0.340 (0.014) 0.289 (0.001)

randGACV 0.21 (0.04) 0.12 (0.02) 0.88 (0.01) 4.19 (0.11) 0.351 (0.014) 0.289 (0.001)

Oracle - - - - 0.249 (0.011) 0.283 (0.001)

(n, p, p0) = (350, 10, 4)

COSSO-GLM 0.28 (0.05) 0.22 (0.02) 0.94 (0.01) 5.06 (0.13) 0.293 (0.013) 0.285 (0.001)

CV 0.24 (0.04) 0.22 (0.02) 0.94 (0.01) 5.05 (0.15) 0.281 (0.011) 0.284 (0.001)

NPLSA BIC 0.30 (0.05) 0.05 (0.01) 0.87 (0.01) 3.74 (0.09) 0.262 (0.011) 0.284 (0.001)

randGACV 0.40 (0.05) 0.07 (0.01) 0.91 (0.01) 4.05 (0.10) 0.263 (0.012) 0.284 (0.001)

Oracle - - - - 0.202 (0.009) 0.280 (0.001)

Table 3.5: Simulation result for Logistic regression with correlated features. The
standard errors are given in the parentheses.

Method Correct Type I Power Size ISE EMR

(n, p, p0) = (250, 10, 4)

COSSO-GLM 0.06 (0.02) 0.34 (0.02) 0.91 (0.01) 5.69 (0.14) 0.296 (0.010) 0.350 (0.001)

CV 0.18 (0.04) 0.19 (0.02) 0.86 (0.02) 4.61 (0.10) 0.262 (0.010) 0.347 (0.001)

NPLSA BIC 0.17 (0.04) 0.19 (0.02) 0.84 (0.02) 4.47 (0.15) 0.281 (0.011) 0.348 (0.001)

randGACV 0.17 (0.04) 0.18 (0.02) 0.83 (0.02) 4.41 (0.14) 0.276 (0.011) 0.348 (0.001)

Oracle - - - - 0.184 (0.007) 0.341 (0.001)

(n, p, p0) = (350, 10, 4)

COSSO-GLM 0.11 (0.03) 0.32 (0.02) 0.91 (0.01) 5.56 (0.14) 0.210 (0.010) 0.342 (0.001)

CV 0.24 (0.04) 0.18 (0.02) 0.88 (0.01) 4.59 (0.10) 0.184 (0.009) 0.340 (0.001)

NPLSA BIC 0.10 (0.03) 0.14 (0.02) 0.79 (0.02) 3.97 (0.15) 0.209 (0.010) 0.343 (0.001)

randGACV 0.09 (0.03) 0.15 (0.02) 0.80 (0.02) 4.10 (0.14) 0.196 (0.008) 0.342 (0.001)

Oracle - - - - 0.126 (0.006) 0.336 (0.001)
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Figure 3.2: Solution paths for two real data: South Africa heart disease data (left) and
ozone (right).
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Appendix A

Technical proofs and derivations for

COSSO-QR

A.1 Existence

Proof. Denote the function to be minimized in (2.13) by

A(f) = n−1

n∑
i=1

ρτ (yi − f(xi)) + λJ(f).

Without loss of generality, let wj = 1,∀j and λ = 1. By decomposition in (2.11), for any

f ∈ F1, we have ||f || = ||
∑p

j=1 P
jf || ≤

∑p
j=1 ||P jf || = J(f). Denote the reproducing

kernel and inner product of F1 as RF1(·, ·) and ⟨·, ·⟩F1 . By the definition of reproducing

kernel,

|f(xi)| = |⟨f(·), RF1(xi, ·)⟩F1 | ≤
√

⟨f(·), f(·)⟩
√

⟨RF1(xi, ·), RF1(xi, ·)⟩F1

= ||f ||
√
RF1(xi,xi) ≤ a||f || ≤ aJ(f),

where a2 = max
i=1,...,n

RF1(xi,xi) and the first inequality holds by Cauchy-Schwarz inequality.

Denote ρ = max
i=1,...,n

|yi|. Consider the set

D(f) =
{
f ∈ F : f = b+ f1, b ∈ {1}, f1 ∈ F1, J(f) ≤ ρ, |b| ≤ (min{τ, (1− τ)}−1 + a+ 1)ρ

}
.
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Then D is a closed, convex and bounded set. By Theorem 4 of Tapia and Thompson

(1978), there exists a minimizer of (2.13) in D. Denote the minimizer by f̄ . Since a

constant function f(x) = y([nτ ]), the sample 100τ% quantile of observed yi’s, is also in

D, we have A(f̄) ≤ A(y[nτ ]) ≤ ρ.

Conversely, if f /∈ D, then it is either (i) J(f) > ρ, or (ii) |b| > (min{τ, (1− τ)}−1 +

a+1)ρ. In case (i), we have A(f) ≥ J(f) > ρ. Whereas in the second case, we first notice

ρτ (yi − b− f1) ≥ min{τ, 1− τ}|b− (yi − f1)| ≥ min{τ, 1− τ}{|b| − |yi| − |f1|}

> min{τ, (1− τ)}{(min{τ, (1− τ)}−1 + a+ 1)ρ− ρ− aρ} = ρ,

thus A(f) > ρ. Thus, for either case, we have A(f) > A(f̄), that is f̄ is a minimizer of

(2.13).

A.2 Representer Theorem

Proof. Without loss of generality, let wj = 1, ∀j. For any f ∈ F , we can write f =

b+
∑p

i=1 fj, where fj ∈ Fj. Denote gj as the projection of fj onto the space spanned by

RFj
(·, ·) and hj as its orthogonal complement. Then fj = gj + hj and ||fj||2 = ||gj||2 +

||hj||2. Since the reproducing kernel of F is 1 +
∑p

j=1RFj
(·, ·), by reproducing theorem,

we have

f(xi) =

⟨
1 +

p∑
j=1

RFj
(x

(j)
i , ), b+

p∑
j=1

fj

⟩

=

⟨
1 +

p∑
j=1

RFj
(x

(j)
i , ), b+

p∑
j=1

(gj + hj)

⟩

= b+

⟨
1 +

p∑
j=1

RFj
(x

(j)
i , ),

p∑
j=1

gj

⟩
+

⟨
1 +

p∑
j=1

RFj
(x

(j)
i , ),

p∑
j=1

hj

⟩

= b+

p∑
j=1

⟨
RFj

(x
(j)
i , ), gj

⟩
,

where ⟨·, ·⟩ is the inner product in F .
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By substituting above expression into (2.13), the objective function becomes

n−1

n∑
i=1

ρτ

(
yi − b−

p∑
j=1

⟨
RFj

(x
(j)
i , ), gj

⟩)
+ λ

p∑
j=1

(
||gj||2 + ||hj||2

)1/2
.

As a result, the minimizer should be chosen such that ||hj||2 = 0 and therefore completes

the proof.

A.3 Quadratic Programming Formula

Proof. To solve (2.18), we first introduce slack variables r+ = (y−b1n−(
∑p

j=1 θjw
−2
j Rj)c)+

and r− = (y− b1n− (
∑p

j=1 θjw
−2
j Rj)c)−, where the positive function, (·)+, and negative

function, (·)−, is applied to the vector y−b1n−
∑p

j=1 θjw
−2
j Rj in an elementwise manner,

then write the optimization problem in (2.18) in a matrix form

min
r+,r−,b,c

τ1T
nr+ + (1− τ)1T

nr− + nλ0c
T

(
p∑

j=1

θjw
−2
j Rj

)
c,

subject to the constraints

r+ ≥ 0, r− ≥ 0, b1n +

(
p∑

j=1

θjw
−2
j Rj

)
c+ r+ − r− − y = 0.

Then the foregoing setting gives the Lagrange primal function,

L = τ1T
nr+ + (1− τ)1T

nr− + nλ0c
T

(
p∑

j=1

θjw
−2
j Rj

)
c+

λT
1

[
b1n +

(
p∑

j=1

θjw
−2
j Rj

)
c+ r+ − r− − y

]
− λT

2 r+ − λT
3 r−,
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where λ1 ∈ R
n,λ2 ≥ 0,λ3 ≥ 0 are Lagrange multipliers. By differentiating L with

respect to r+, r−, b and c, we arrive at

∂L
∂r+

: τ1n + λ1 − λ2 = 0

∂L
∂r−

: (1− τ)1n − λ1 − λ3 = 0

∂L
∂b

: λT
1 1n = 0

∂L
∂c

: 2nλ0

(
p∑

j=1

θjw
−2
j Rj

)
c+

(
p∑

j=1

θjw
−2
j Rj

)
λ1 = 0.

By substituting these conditions into the Lagrange primal function, the dual problem

is given by

min
c

− yTc+
1

2
cT

(
p∑

j=1

θjw
−2
j Rj

)
c,

subject to the constraints

1T
nc = 0,

τ − 1

2nλ0

1n ≤ c ≤ τ

2nλ0

1n.

A.4 Linear Programming Formula

Proof. To solve (2.19), we take similar route as solving (2.18) by introducing slack vari-

ables e = |y∗ −Gθ|, e+ = (y∗ −Gθ)+ and e− = (y∗ −Gθ)− and re-write the objective

function into a matrix form

τ1T
ne+ + (1− τ)1T

ne− + nλ0c
TGθ = 1T

ne− + τ1T
n (e+ − e−) + nλ0c

TGθ

=
1

2
1T
ne− 1

2
1T
n (e+ − e−) + τ1T

n (y
∗ −Gθ) + nλ0c

TGθ

=
1

2
1T
ne+

(
τ − 1

2

)
1T
n (y

∗ −Gθ) + nλ0c
TGθ.
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Since
(
τ − 1

2

)
1T
ny

∗ is a constant, the objective function can be simplified to

min
θ,e

(
nλ0c

TG− (τ − 0.5)1T
nG

1

2
1T
n

)(
θ

e

)
,

subject to the constraints

1T
p θ ≤ M, θj ≥ 0, ∀j, − e ≤ y∗ −Gθ ≤ e.
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