
ABSTRACT

JIN, RICHENG. Privacy-Preserving Information Exchange in Collaborative Security, Crowdsensing,
and Machine Learning. (Under the direction of Dr. Huaiyu Dai).

The explosive development in modern technologies brings unprecedented opportunities in

collaboration among network entities through information exchange. In the meantime, we have

witnessed the emergence of various security and privacy problems. In this dissertation, we explore

the security and privacy problems in three important emerging areas: collaborative security,

crowdsensing, and machine learning.

The first part of this dissertation focuses on collaborative security. To cope with the increas-

ingly sophisticated intrusions, collaborative intrusion detection systems (CIDSs) are proposed in

the literature. In particular, intrusion detection systems (IDSs) in collaboration can dynami-

cally share available computational resources with each other to enhance the overall detection

performance. However, due to resource limitation, it is infeasible for the IDSs to respond to all

the intrusion detection requests from their collaborative peers. In the meantime, obtaining the

optimal IDS configuration in CIDSs is far from trivial. With such consideration, in Chapter 2, the

collaborative IDS configuration problem is formulated as a two-layer stochastic game (SG). To

solve the two-layer SG, a centralized Vickrey–Clarke–Groves (VCG) auction based collaboration

scheme and a distributed game-theoretic incentive mechanism are proposed. It is shown that

the proposed IDS collaboration schemes can achieve both efficient configuration and effective

collaboration. Considering that sharing the security-related information in collaborative security

may lead to privacy concerns, the security-privacy tradeoff is investigated in Chapter 3. The

interplay between the attacker and the collaborative security entities (e.g., IDSs) is formulated

as Quantitative Information Flow (QIF) games, in which the QIF theory is adapted to measure

the collaboration gain and the privacy loss of the entities in the information sharing process.

More specifically, three QIF games are formulated and solved, each corresponding to one possible

scenario of interest in practice. Based on the game-theoretic analyses, the expected behaviors

of both the attacker and the security entities are obtained. Through numerical computation,

we obtain the security-privacy tradeoff curves, with which the collaborative entities can better

evaluate the privacy cost of achieving certain security performance.

Chapter 4 is devoted to location privacy preservation in crowdsensing, in which multiple

mobile agents are employed by a Base Station (BS) to perform location-dependent information

collection tasks. In this case, the mobile agents are required to share their locations with the BS,

which incurs location privacy concerns and may deter them from participating in the information

delivery process. With such consideration, a location privacy-aware incentive mechanism is

proposed for the BS to incentivize the mobile agents to trade their location privacy with the BS.



Different from most of the existing approaches that assume fixed privacy levels, the proposed

incentive mechanism allows the BS to motivate the mobile agents to report their locations

with differential privacy levels desired by the BS. Furthermore, considering that the BS usually

has a limited budget, it is essential to properly select the set of mobile agents to perform

the information collection tasks. Therefore, a cost-efficient mobile agent selection algorithm is

proposed. The effectiveness of the proposed incentive mechanism and the mobile agent selection

algorithm is demonstrated through numerical simulations.

Chapter 5 and Chapter 6 are dedicated to the machine learning field. Particularly, we

focus on federated learning (FL), which is a prominent distributed learning paradigm that

enhances user privacy since the decentralized data reside on mobile devices during the training

process. However, FL entails some pressing needs for developing novel parameter estimation

approaches with theoretical guarantees of convergence, which are also communication efficient,

differentially private, and Byzantine resilient in the heterogeneous data distribution settings. To

improve the communication efficiency, Quantization-based SGD solvers have been widely adopted

in FL and the recently proposed SIGNSGD with majority vote shows a promising direction.

Nonetheless, no existing methods enjoy all the aforementioned properties. In Chapter 5, we

propose Stochastic-Sign SGD, which utilizes novel stochastic-sign based gradient compressors to

enable the aforementioned properties in a unified framework. We also present an error-feedback

variant of the proposed Stochastic-Sign SGD which further improves the learning performance

in FL. The practical implementation of the aforementioned sign based SGD algorithms over

wireless networks is investigated in Chapter 6. Different from most of the existing works that

consider Channel State Information (CSI) at both the transmitter and the receiver sides, only

receiver side CSI is assumed in our study. In such a case, an essential problem for the mobile

devices is to select appropriate local processing and communication parameters to achieve the

desired balance between the overall learning performance and their energy consumption. For

SIGNSGD, two optimization problems are formulated and solved. The first problem minimizes

the energy consumption of the workers given the learning performance requirement, while the

second problem optimizes the learning performance given the energy consumption requirement.

Furthermore, considering that the data are distributed across the mobile devices in a highly

uneven fashion in FL, Stochastic-Sign SGD is adapted by considering the outage probability of

the workers. Compared with SIGNSGD, the proposed stochastic-sign based algorithm achieves

better learning performance while reducing the energy consumption of the mobile devices.

In summary, several interesting and important security and privacy problems in the three

aforementioned emerging areas have been investigated in this dissertation. We hope that our

work can stimulate further development in these burgeoning research fields.
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Chapter 1

Introduction

The advances in communication technologies enable individuals and devices to communicate with

each other at an extremely low cost and therefore play an increasingly important role in modern

society. In collaborative security, the security entities (e.g., intrusion detection systems) can

benefit from the knowledge about the attacks shared by other peers, which enhances the overall

intrusion detection accuracy. In crowdsensing, mobile agents can collect and share information

to help the platform finish the sensing tasks in a cost-effective way. In machine learning, the

users can collect local training data and collaboratively train a machine learning model in a

distributed and efficient manner. While bringing unprecedented opportunities in these areas, the

information exchange introduces new security and privacy challenges. In this dissertation, we

focus on studying the collaboration schemes in collaborative security and the tradeoff between

security and privacy, developing location privacy-preserving crowdsensing schemes, designing and

implementing the communication-efficient federated learning algorithms over wireless networks.

1.1 Privacy-aware Information Exchange in Collaborative Se-

curity

We start our study from the intrusion detection system (IDS) collaboration problem in collab-

orative security. As an important defense mechanism against various network intrusions, the

IDSs monitor the network status and detect suspicious activities. With the rapid development

of attacking tactics, detecting the increasingly sophisticated intrusions is becoming much harder

for individual IDSs. To mitigate this problem, intrusion detection networks (IDNs) which consist

of multiple collaborative IDSs have been developed in the literature [2–4]. In a consultation

based IDN, when an IDS does not have sufficient confidence to make a decision, it may send

consultation requests to other more powerful IDSs and ask them to help detect intrusions [5, 6].

On the one hand, due to resource limitation, it is impossible for the IDSs to respond to all the
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requests from their collaborative peers, and hence an adequate strategy is needed to achieve

efficient collaboration. On the other hand, the collaboration procedure makes it highly non-

trivial for the IDSs to obtain their optimal configuration. In Chapter 2, the collaborative IDS

configuration problem is modeled as a two-layer stochastic game, in which the first layer deals

with the interaction between each IDS and the corresponding attacker and the second layer

deals with the collaboration among IDSs. Two IDS collaboration schemes, which are among the

first approaches that address the IDS collaboration problem and the IDS configuration problem

simultaneously, are proposed for the centralized and the distributed settings, respectively.

Despite that sharing the security-related information enhances the overall detection accuracy,

it leads to potential privacy leakage, which may prevent the security entities to participate in

the collaboration, especially when they are self-interested. Although various privacy-preserving

techniques have been proposed for collaborative defense in the literature [7–15], they often

lead to a certain level of utility degradation. In addition, it is often difficult to quantify the

amount of preserved privacy and utility loss in the existing methods. Moreover, the existing

methods do not have the flexibility of properly adjusting the collaboration strategies in response

to a given privacy requirement. In Chapter 3, the tradeoff between security and privacy in

collaborative security is studied. To quantitatively measure the amount of preserved privacy

and the corresponding utility loss, the Quantitative Information Flow (QIF) theory, which has

seen rapid development in the past decade [16–18], is adopted. Three QIF games are formulated,

each corresponding to one possible scenario of interest in practice. By solving the QIF games,

the optimal attacking strategy for the attacker, and the optimal collaboration strategies for the

entities in different settings are obtained.

1.2 Location Privacy Preservation in Crowdsensing

Many emerging applications, for instance, traffic monitoring [19], noise pollution monitoring [20]

and air quality monitoring [21], depend on the collection of status updates from a set of ground

terminals that are equipped with specialized sensors. On the one hand, these applications require

timely status updates for information freshness. The recently proposed metric Age of Information

(AoI) [22] can capture the timeliness of the updates in these applications. On the other hand,

considering that the ground terminals may not be able to communicate with the Base Station

(BS) directly due to power limitation [23], mobile agents are commonly employed to help gather

the information updates [23–25]. In particular, mobile crowd sensing (MCS) based methods have

achieved remarkable performance in numerous time-sensitive applications [26–28]. In an MCS

system, a number of mobile agents, equipped with mobile devices, are employed to perform

sensing tasks. Since the information collection task is location-sensitive, at each time slot, the

mobile agents are supposed to report their locations before the BS determines whether to select
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and pay them to help deliver information or not. However, reporting the locations may incur

location privacy concerns for the mobile agents. Therefore, a location privacy-aware incentive

mechanism is in need to motivate the mobile agents to participate in the information delivery

process.

Protecting location privacy is essential when location privacy-aware mobile agents are

considered, and therefore, has attracted lots of research interests. Conventional approaches

regarding location privacy preservation include cloaking [29] and k-anonymity [30]. However,

such approaches are vulnerable to adversaries with prior knowledge about the locations of the

mobile agents [31]. To address this problem, differential privacy [32] has been introduced for

location privacy preservation [31,33–38]. Nonetheless, most of the existing approaches only use

differential privacy as a tool for location privacy protection and assume a fixed privacy level. [39]

considers differential location privacy in the design of the incentive mechanism. However, it

assumes that the workers share their true location information with a trustworthy BS which

releases the location information in a differentially private manner. In this sense, the workers

do not have control over their own location information. A trading market is developed in [40]

which allows the workers to determine their own privacy levels and trade their location privacy.

However, since auction-based methods are used, the workers are supposed to determine their

privacy levels before submitting their bids. Different from these works, in Chapter 4, the location

differential privacy is considered as a “commodity” that the mobile agents are willing to trade,

together with their working efforts, with the BS for a higher payment. An incentive mechanism

is proposed for the BS to incentivize the mobile agents to trade their location privacy with the

BS. Compared to the existing methods in the literature, our proposed incentive mechanism

allows the BS to adjust its payment mechanism to motivate the mobile agents to select its

desired privacy levels. Given the incentive mechanism, a cost-efficient mobile agent selection

algorithm is proposed to minimize the AoI of the ground terminals.

1.3 Privacy-Preserving Federated Learning over Wireless Net-

works

Besides collaborative security and crowdsensing, machine learning is another emerging area that

benefits from efficient information exchange. To train a machine learning model, traditionally a

centralized approach is adopted in which the training data are aggregated on a single machine.

Such a centralized training approach is privacy-intrusive, especially when the data are collected

by mobile devices and contain the owners’ sensitive information (e.g., locations, user preference

on websites, social media). With such consideration, Federated Learning (FL) has become a

prominent distributed machine learning paradigm since it allows training on a large amount
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of decentralized data residing on devices like mobile phones [1] and therefore provides certain

privacy guarantees for the mobile devices. During each communication round, after receiving

the learning model parameters from the server, the workers (e.g., mobile devices) train their

local learning models using their local data and transmit the parameter updates back to the

server, which will aggregate the information from all the workers and start the next round by

broadcasting the updated model parameters. FL imposes several critical challenges. First of all,

the communication capability of mobile devices can be a significant bottleneck. Furthermore,

the training data on a given worker is typically based on its usage of the mobile devices,

which results in heterogeneous data distribution. Finally, the local data usually contain some

sensitive information about a particular mobile device user. Despite that the training data are

kept private on the mobile devices, adversaries may still infer sensitive information from the

parameter updates shared by the workers [41]. Therefore, there is a pressing need to develop a

privacy-preserving distributed learning algorithm. Finally, similar to many distributed learning

methods, FL may suffer from malicious participants. As is shown in [42], even a single Byzantine

worker, which may transmit arbitrary information, can severely disrupt the convergence of

distributed gradient descent algorithms. However, to the best of our knowledge, no existing

methods can cope with all the aforementioned challenges.

To alleviate the communication burden of the workers, there have been various gradient

quantization methods [43–47] in the literature, among which the recently proposed SIGNSGD with

majority vote [48] is of particular interest due to its robustness and communication efficiency.1

In SIGNSGD, during each communication round, only the signs of the gradients and aggregation

results are exchanged between the workers and the server, which leads to around 32× less

communication than full-precision distributed stochastic gradient descent (SGD). Nonetheless,

it has been shown in [49] that SIGNSGD fails to converge when the data on different workers

are heterogeneous (i.e., drawn from different distributions), which is one of the most important

features in FL. In Chapter 5, we propose Stochastic-Sign SGD, which is a class of stochastic-

sign based SGD algorithms and guarantees to converge in the heterogeneous data distribution

setting. More specifically, two compressors sto-sign and dp-sign are proposed, which extend

SIGNSGD to its stochastic and differentially private variants. In order to further improve the

learning performance, the error-feedback technique is incorporated, which extends the proposed

algorithms to their error-feedback variants.

In Chapter 6, the practical implementation of the sign based SGD algorithms over wireless

networks is studied. Since all the communications between the workers and the server are over

wireless links, the learning performance depends on the wireless environments as well as the

workers’ communication resource and energy constraints. There have been some works that

1Note that all the algorithms considered in this chapter use the idea of majority vote. Therefore, we ignore the
term “with majority vote” in the following discussions for ease of presentation.
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study the communication aspects of FL [50–62]. Nonetheless, they either do not consider the

existing strategies that have shown promising improvement in communication efficiency (e.g.,

gradient quantization [63]) or ignore the energy consumption of the workers, the impact of

transmission errors, and data heterogeneity. In addition, all these works assume channel state

information (CSI) at both the server side and the worker side, which may not be reasonable

in practice. In Chapter 6, the workers are assumed to transmit their parameter updates over

flat-fading channels and CSI is only available at the receiver side. Channel capacity with outage

is considered and each worker is supposed to determine its transmission rate and transmission

power. It is worth mentioning that in real-world FL applications over wireless networks, the

communication time between the server and the workers is not negligible. Therefore, it becomes

more critical to improve the learning performance with respect to the total training time instead

of the number of communication rounds. With such consideration, the implementation of the

FL algorithms given a fixed total training time is considered. In such a case, the learning

performance depends on the number of communication rounds that the FL algorithm can be

run and the outage probabilities of the workers for each communication round. In addition,

considering that mobile devices usually have limited batteries, it is essential to minimize their

energy consumption by appropriately configuring the local computation and communication

parameters while satisfying the learning performance requirement (or the other way around).

In Chapter 6, in the homogeneous data distribution scenario, two optimization problems are

formulated and solved. The first problem minimizes the energy consumption of the workers

given the learning performance requirement, while the second problem optimizes the learning

performance given the energy consumption requirement. Furthermore, in the heterogeneous data

distribution scenario, Stochastic-Sign SGD is adapted by incorporating the outage probability

of the workers, which outperforms SIGNSGD in learning performance while reducing the energy

consumption of the mobile devices.

1.4 Organizations

The remainder of this dissertation is organized as follows. Two collaborative IDS schemes are

proposed in Chapter 2. The tradeoff between security and privacy in collaborative security is

investigated in Chapter 3. The location privacy-preserving crowdsensing scheme is proposed in

Chapter 4. The communication efficient federated learning algorithms and their implementation

over wireless networks are presented in Chapter 5 and Chapter 6, respectively. Finally, the

dissertation is concluded in Chapter 7, together with some possible directions for future work.
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Chapter 2

Collaborative IDS Configuration: A

Two-Layer Game-Theoretic

Approach

In this chapter, two IDS collaboration schemes that can achieve both efficient configuration and

effective collaboration are proposed for the centralized and the distributed settings, respectively.

In the considered framework, the IDSs with ample computational resources (e.g., CPU time and

memory) are allowed to help run intrusion detection algorithms for the IDSs with insufficient

resources. As a result, the overall detection rate of the IDN can be enhanced. To find an effective

collaboration strategy for such a dynamic IDS collaboration problem, a two-layer stochastic

game (SG) is proposed in this chapter. Specifically, the first layer deals with the interaction

between each IDS and the corresponding attacker. In the interaction, both the IDSs and the

attackers can use learning algorithms (e.g., Nash Q-learning [64]) to gradually learn their own

strategies. The second layer deals with the collaboration among IDSs in the IDN. To promote

collaboration among IDSs, a Vickrey-Clarke-Groves (VCG) auction [65] based collaboration

scheme is proposed. In this scheme, an IDN manager that can help determine a resource

allocation strategy to optimize the overall detection performance of the entire IDN is assumed

available. When such an IDN manager is not available, a distributed game-theoretic incentive

mechanism is further developed. In addition, the proposed collaboration schemes are suitable

for general collaborative security problems and hence can find broader applications beyond

collaborative intrusion detection.

The remainder of this chapter is organized as follows. Section 2.1 formulates the collaborative

IDS configuration problem. The VCG auction based two-layer collaboration scheme is presented

in Section 2.2. The distributed incentive mechanism for IDS collaboration is presented in

Section 2.3. The effectiveness of the proposed algorithms is examined through simulations in

6



Section 2.4. Related works are discussed in Section 2.5. Section 2.6 concludes this chapter.

2.1 Problem Formulation

In this section, a two-layer SG is formulated for the collaborative IDS configuration problem.

Important notations used in this chapter are summarized in Table 2.1. An IDN that consists of

N IDSs is considered, denoted by N = {1, 2, ..., N}. Without loss of generality, the following

assumptions are made:

• The IDSs in the IDN are host-based and signature-based; each of them monitors the

network activities of one subsystem in the IDN.

• Each IDS faces one attacker that can launch multiple attacks simultaneously.

• Each subsystem has two possible states {H, I}, where H (I) stands for the healthy (ill)

state. Here the healthy state refers to the situation that the subsystem is in a normal

operating condition while the ill state refers to the case that the subsystem is working in a

vulnerable state. However, the subsystem can recover from the ill state once the intrusion

is detected and the vulnerabilities are fixed.1 Take the CPU exhaustion attacks [66] as

an example. Specifically, the attacker can launch the flood attacks, and if successful, the

resource allocated to the IDSs will be greatly suppressed due to CPU exhaustion at the

host. In this case, the ill state can refer to a state that the adversary has successfully

conducted a DoS attack and depleted a significant portion of the computational resource

(e.g., CPU) of the host. The memory exhaustion attacks [66] induce similar effects. In

addition, it is assumed that the IDSs can monitor the states of the subsystems.2

• Host-based IDSs are assumed in this chapter, and hence they consume the computational

resources (e.g., CPU) of the subsystems they are monitoring [67]. As a result, more

computing resources can be allocated to an IDS when the corresponding subsystem is

in the healthy state. In contrast, when a subsystem is in the ill state (due to previously

undetected attacks), some computational resources may be compromised [68], and therefore,

fewer resources will be available to support the associated IDS. For CPU exhaustion attacks

and signature-based IDSs, the intrusion detection rates of the IDSs may substantially

degrade since fewer signatures can be compared in each timeslot due to CPU resource

shortage. In this chapter, the computational resource difference of different system states

is measured by the number of signature libraries that the IDSs can load and utilize for

real-time comparison based on the current computational resources.

1A similar model can be found in [64].
2Since each IDS corresponds to one subsystem, whenever the state of an IDS is mentioned, we are referring to

the state of the subsystem that the IDS is monitoring, for ease of presentation.
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Table 2.1: Important notations

N the set of IDSs.

si the state of subsystem i.

Ui(s
i) the number of libraries IDSi can load at state si

L the set of detection libraries.

A the set of attacks.

li the configuration of IDSi.

ai the action of attacker γi.

pln,am the probability of attack am been detected by library ln.

pst state transition probability.

wIDSi
si,ak

the importance of detecting attack ak for IDSi at state si.

wγi
si,ak

the profit of fulfilling attack ak for attacker γi at state si.

gij the amount of resource that IDSi shares IDSj .

πIDS the strategy of IDS.

πγ the strategy of attacker.

π̃γ the attacker’s strategy estimated by IDS.
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Figure 2.1: Block diagram of an IDN.

• The action sets of both the IDSs and the attackers are assumed fixed and publicly

known [64] in this study, while unknown attacks are left to future work.

Fig. 2.1 depicts the scenario of three fully connected IDSs facing three independent attackers.

Let S = {s1, s2, ..., sN , U1(s1), U2(s2), ...UN (sN )} denote the system state, in which si ∈ {H, I}
represents the state of subsystem i, and Ui(s

i) represents the number of libraries IDSi can load

depending on the current state of subsystem i. Let L = {l1, l2, ..., lL} denote the set of detection

libraries available to all the IDSs. Denoted by L∗ = σ(L) the power set of L, with cardinality

|L∗| = 2L. Each li ∈ L∗ corresponds to a possible configuration of IDSi.

It is assumed that the attackers (denoted by γ) can launch L different attacks A =

{a1, a2, ..., aL} and attack am will be detected by library ln with probability pln,am . The detection

probability pln,am is assumed high when the library matches the attack (i.e., m = n) and low

8



otherwise. Similarly, each attacker γi can launch a set of attacks ai ∈ A∗, with A∗ = σ(A) the

power set of A.

To model the influence of library configuration li and attacks ai on the subsystem state, it

is assumed that the subsystem state will transit from si to si
′
, with probability pst(s

i′ |si, li,ai).
When the subsystem is at state si and IDSi loads the set of libraries li while the attacker γi

takes the set of attacks ai, the reward function of IDSi is modeled as

RIDSi(si, li,ai) =
∑
ak∈ai

pli,akw
IDSi
si,ak

, (2.1)

where wIDSi
si,ak

represents the importance of detecting attack ak when subsystem i is at state si,

and pli,ak refers to the probability of detecting ak when IDSi loads the set of libraries li, which

is given by

pli,ak = 1−
∏
ln∈li

(1− pln,ak). (2.2)

Note that the modeling in (2.1) conforms to the intuition that the IDS can obtain a better reward

when it loads the right library. The term wIDSs,ak
is motivated by the fact that the damage caused

by the same attack at different system states may be different. In this chapter, homogeneous

IDSs and attackers are considered.

The reward function of the attacker γi is modeled as

Rγi(si, li,ai) =
∑
ak∈ai

(1− pli,ak)wγi
si,ak

, (2.3)

where wγi
si,ak

denotes the profit of fulfilling attack ak for attacker γi when subsystem i is at state

si. To maximize its reward, IDSi has to form a strategy πIDSi(si, li) to select its detection

libraries that match the potential attacks from the attacker γi.

In the considered collaborative IDS configuration problem, the connected IDSs are allowed to

cooperate through resource sharing. Let gij be the amount of resource that IDSi offers to IDSj ,

for i, j ∈ N . The resource that can be shared by each IDS is restricted by its state-dependent

capacity, i.e., ∑
j∈N

gij 6 Ui(s
i),∀i ∈ N . (2.4)
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2.2 VCG Auction Based Collaboration Scheme

The VCG auction based collaboration scheme for collaborative IDS configuration is illustrated

in this section. In each round of the proposed scheme, the IDSs will first interact with their

corresponding attackers to learn their strategies, and then all the IDSs will report to the IDN

manager the amount of resources they have as well as their expected reward functions.3 The IDN

manager then determines a resource allocation scheme for a better overall detection performance.

Fig. 2.2 gives an overview of this scheme.

2.2.1 First Layer: Stochastic Game

The first layer is concerned with the interaction between each IDS and its corresponding

attacker. The objective of each IDS (attacker) is to maximize its cumulative discounted reward

E{∑∞n=1 β
nRIDSn } (E{∑∞n=1 β

nRγn}) with discounting factor β ∈ [0, 1) representing its long-term

performance with diminishing weight on the future. The IDS (attacker) needs to learn a strategy

πIDS(s, l) (πγ(s,a)) which specifies the probability of taking action l ∈ L∗ (a ∈ A∗) at a given

state s. To this end, the interaction can be formulated as a SG as follows: the IDS and the

attacker are the two players; the set of possible subsystem states defines the state space of

the stochastic game; σ(A) and σ(L) are the action space of the IDS and the attacker; and the

state transition function pst(s
′|s, l,a) defines the probability of reaching a future state given the

current state and actions of both the IDS and the attacker. Interested readers may refer to [69]

for more details on SG.

3It is assumed that the IDN manager is secure and able to verify the messages from IDSs and thus no IDS will
send false information. Selfish and malicious IDSs will be considered in our future work.
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The Nash-Q learning algorithm [69] can be employed to solve the SG described above. At

each time slot n, after observing the actions (ln,an), the reward rIDSn = RIDS(sn, ln,an), and

the state transition from sn to sn+1, the IDS updates the quality and the value functions QIDS

and V IDS for itself. It will also maintain a pair of virtual quality functions Q̃γ and Ṽ γ , to keep

track of the attacker’s behavior. In particular, these quantities are updated as follows:

QIDSn+1 (s, l,a) (2.5)

=

{
(1− αn)QIDSn (s, l,a) + αn

[
rIDSn + β · V IDS

n (sn+1)
]
, for (s, l,a) = (sn, ln,an),

QIDSn (s, l,a), otherwise ,

Q̃γn+1(s, l,a) (2.6)

=

(1− αn)Q̃γn(s, l,a) + αn

[
Rγ(s, l,a) + β · Ṽ γ

n (sn+1)
]
, for (s, l,a) = (sn, ln,an),

Q̃γn(s, l,a), otherwise ,

V IDS
n+1 (s) = NASHIDS(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)), (2.7)

Ṽ γ
n+1(s) = NASHγ(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)). (2.8)

The updated strategies of the IDS and attacker are given by

πIDSn+1 (s, ·) = arg NASHIDS(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)), (2.9)

π̃γn+1(s, ·) = arg NASHγ(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)). (2.10)

Note that the optimal quality function QIDS (Q̃γ) represents the total expected discounted

reward of the IDS (attacker) attained by taking action l (a) given the state s and attacker’s

action a (IDS’s action l). In (2.7) and (2.9), NASHIDS(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)) and

arg NASHIDS(QIDSn+1 (s, ·, ·), Q̃γn+1(s, ·, ·)) give the reward and the corresponding strategy of the

IDS at a NE of an equivalent single stage game with corresponding reward functions of the two

players specified by the two matrices QIDSn+1 (s, ·, ·) and Q̃γn+1(s, ·, ·), respectively. The reward and

the corresponding strategy of the attacker is defined similarly.

It has been shown in [69] that with a suitable learning rate αn in (2.5) and (2.6), the learned

quantities in the Nash-Q algorithm converge to the corresponding optimal ones under certain

sufficient conditions. The attacker can learn its optimal strategy through a similar procedure.
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2.2.2 Second Layer: Resource Allocation

The second layer is concerned with the resource sharing in the IDN. In this subsection, a VCG

auction algorithm is employed, which can be described as follows: First, given the learned

strategies from the first layer, each IDSi reports to the IDN manager the number of libraries it

can load currently (i.e., Ui(s
i)) and the expected reward function given by

R̃IDSi(si, li(Ui), π̃
γi) =

∑
ak∈A

π̃γi(si, ak)pli,akw
IDSi
si,ak

, (2.11)

in which π̃γi(si, ak) denotes the estimated probability that the attacker γi will launch attack ak

when the subsystem i is at state si. The IDN manager then computes the resource allocation

U ′ = (U ′1, ..., U
′
N ) that maximizes the total expected reward of all the IDSs by solving the

following problem:

R̃max = max
gij

∑
u

R̃IDSu(su, lu(U ′u), π̃γu)

s.t.
∑
j

gij 6 Ui(s
i)

U ′i = Ui(s
i) +

∑
j

gji −
∑
j

gij

gij ∈ N, ∀i, j ∈ N .

(2.12)

Furthermore, the IDN manager computes the maximum total expected reward if IDSu is

excluded from the auction, i.e., R̃max/u for each u ∈ N . The manager then charges IDSu by the

amount given by

R̃max/u −
∑
i 6=u

R̃IDSi(si, li(U ′i), π̃
γi). (2.13)

Note that for the IDSs who share their resource with the other IDSs, the charges will be negative,

which means that the IDN manager will pay them for their effort. The proposed method is

summarized in Algorithm 1.

2.2.3 Performance Analysis

In this subsection, some analytical results of the proposed algorithm 1 are presented. Throughout

the entire analysis, the following assumptions are made to facilitate the discussion, without

loss of generality. To simplify the presentation, it is assumed that the detection probability

of library lm against attack ak is q1 when m = k and q2 otherwise (i.e., plm,ak = q1 if m = k,

and plm,ak = q2 otherwise), with q1 > q2 > 0. It is further assumed that the first m IDSs (i.e.,

IDS1, IDS2, ..., IDSm) are in the healthy state and can load U1 = U2 = · · · = Um = U(H)
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Algorithm 1 Collaborative Nash-Q Learning for IDS Configuration

1: Initialization: {QIDS0 } = 0, {Q̃γ0} = 0, {V IDS
0 } = 0, {Ṽ γ

0 } = 0 and πIDS0 , π̃γ0 are uniformly
distributed.

2: Each IDS takes action ln at current state sn

• uniformly at random with probability pexplr;

• otherwise, with probability {πIDSn (sn, ln)}.
3: Learning: after receiving the reward {rIDSn } and observing the system state transition from
sn to sn+1, each IDS

• update QIDS and Q̃γ using (2.5) and (2.6), respectively.

• update V IDS , πIDS , Ṽ γ and π̃γ using (2.7), (2.9), and (2.8), (2.10) respectively.

4: Run the resource allocation algorithm.
5: Repeat.

Algorithm 2 Resource Allocation Algorithm: VCG Auction

1: Each IDS senses the current system state Sn = {s1
n, s

2
n, ..., s

N
n , U1(s1

n), U2(s2
n), ...UN (sNn )}

and obtains the strategies of both its attacker and itself.
2: Each IDS reports to the IDN manager the amount of resource it has and the expected

reward function (2.11).
3: After receiving all the reports from IDSs, the IDN manager computes the optimal resource

allocation using (2.12).
4: The manager computes the charges for all the IDSs using (2.13).

libraries at a time, while the other IDSs (i.e., IDSm+1, IDSm+2, ..., IDSN ) are in the ill state

and can only load Um+1 = Um+2 = · · · = UN = U(I) < U(H) libraries simultaneously. Following

the same procedure below, the above assumptions may be relaxed and similar results can be

obtained for more general cases.

In the following discussion, for the ease of presentation, let π̃γij = π̃γi(si, aj) denote the

estimated probability of attacker γi launching attack aj , and wIDSij = wIDSi
si,aj

denote the

importance of detecting attack aj for IDSi. Define eij = π̃γij w
IDSi
j (here the subscript si is

omitted because in the resource allocation process, the states of all the subsystems remain

unchanged), which admits

L∑
j=1

π̃γij w
IDSi
j =

L∑
j=1

eij = ki, (2.14)

where ki is a constant if wIDSij and π̃γij are known and fixed for 1 ≤ j ≤ L. Without loss of
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generality, the following ordering ei1 > ei2 > ... > eiL is assumed, ∀i ∈ N .4 Then, it is not difficult

to realize that IDSi is expected to achieve the highest reward if it loads the first Ui libraries,

i.e., l1, l2, ..., lUi . As a result, the expected reward of IDSi before resource allocation can be

express as

E{RIDSi |Ui} =
Ui∑
j=1

eij [1− (1− q1)(1− q2)Ui−1] +
L∑

j=Ui+1

eij [1− (1− q2)Ui ]. (2.15)

Similarly, the expected reward of IDSi after resource allocation can be expressed as

E{RIDSi |U ′i} =
U ′i∑
j=1

eij [1− (1− q1)(1− q2)U
′
i−1] +

L∑
j=U ′i+1

eij [1− (1− q2)U
′
i ], (2.16)

in which U ′i = Ui +
∑

j gji−
∑

j gij denotes the number of libraries IDSi can load after resource

allocation.

Theorem 1. Let

I = max
1≤t≤N

{q2(1− q2)kt − (q1 − q2)[
Ut∑
j=1

etj − (1− q2)
Ut+1∑
j=1

etj ]}(1− q2)Ut−1, (2.17)

D = min
1≤t≤N

{q2kt − (q1 − q2)[(1− q2)−1
Ut−1∑
j=1

etj −
Ut∑
j=1

etj ]}(1− q2)Ut−1. (2.18)

Then the resource allocation scheme will lead to improvement in terms of expected reward if

and only if the following condition holds:

I > D. (2.19)

Proof. Please see Appendix A.1.

Remark 1. In (2.17) and (2.18), I represents the maximum performance gain of IDN if one of

the IDSs receives one unit of resource (one library), while D represents the minimum performance

loss of IDN if one of the IDSs gives out one unit of resource. Assume that in a resource allocation

scheme which leads to performance improvement, some IDSs give out r units of resource in

total, while some other IDSs receive the r units of resource. The concavity of the functions fj

(according to (A.3) in Appendix A.1) indicates that the total performance loss of the IDSs that

give out resource is at least rD, while the total performance gain of the other IDSs is at most

rI. The necessary condition for performance improvement is thus rI > rD, which explains the

4In the more general case, the ei’s can be ordered first and IDS i can load the corresponding libraries after the
resource allocation process.
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necessity of (2.19). On the other hand, when I > D, it means that performance gain can be

obtained by simply exchanging one unit of resource, which verifies the sufficiency of (2.19).

The following corollary considers a special but important case.

Corollary 1. When q2 = 0, i.e., mismatched libraries have no chance to detect attacks success-

fully, the resource allocation scheme will lead to improvement in terms of expected reward if and

only if the following condition holds:

max
1≤t≤N

{etUt+1} > min
1≤t≤N

{etUt}. (2.20)

Remark 2. Note that Ut represents the number of libraries that IDSt could load before resource

allocation. Therefore, the extra expected reward that IDSt could gain if one more library can be

loaded is given by
∑Ut+1

j=1 q1e
t
j −

∑Ut
j=1 q1e

t
j = q1e

t
Ut+1, according to (2.15) and (2.16). Similarly,

q1e
t
Ut

represents the loss of expected reward if IDSt gives out one unit of resource. When the

reward gain for a certain IDS is larger than the loss of another, there will be a performance

improvement in terms of expected reward by exchanging one unit of resource. In practice, this

condition is fairly easy to satisfy, especially when some IDSs face severe attacks (i.e., the

probabilities of attacks or the importance of detecting such attacks is high, or equivalently etUt+1

is large) while some other IDSs face mild attacks (i.e., a relatively small etUt).

2.3 Distributed Incentive Mechanism Design

Despite the effectiveness of the VCG auction scheme presented above, an IDN manager may not

always be available in the case that the collaborative IDSs belong to different institutions. In

addition, the centralized architecture assumed by the VCG auction based scheme may suffer

from single point of failure, and may not scale well to large systems due to limited computing

capability. Considering these, in this section, a distributed game-theoretic incentive mechanism

with low computation complexity (as compared to the centralized VCG) is proposed to facilitate

effective collaboration among IDSs. Fig. 2.3 depicts the flowchart of the whole resource allocation

process. Particularly, the resource allocation process is divided into multiple rounds during

which each IDS will allocate all of its resources to all the IDSs (including itself) in the IDN. In

each round (indexed by rd), the IDSs with unallocated resource will serve as resource providers,

and each resource provider will allocate one unit of resource (and therefore there are max(Ui)

rounds in total) through the proposed incentive mechanism.
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Figure 2.3: Flowchart of the incentive mechanism.

2.3.1 Incentive Model

In this section, the same notations and assumptions are adopted as those of Section 2.2.3. Recall

that given the assumption ei1 > ei2 > ... > eiL,∀i ∈ N , when IDSi obtains k units of resource,

its optimal strategy is to load the libraries corresponding to the k-largest ei’s (i.e., ei1, · · · , eik).
As mentioned above, the resource allocation process is divided into multiple rounds. Let

gji denote the amount of resource that IDSi allocates to IDSj .
5 In each round, IDSi with

unallocated resource chooses to allocate one unit of resource to one of the IDSs (i.e., gji ∈
{0, 1},∑N

j=1 g
j
i ≤ 1). However, this leads to an integer programming problem similar to (2.12)

which is NP-hard.6 Therefore, in this section, the condition gji ∈ {0, 1} is relaxed to 0 ≤ gji ≤ 1.

The reward received by IDSi from allocating resource to IDSj is given by7

Pji(g
j) = fji(

N∑
m=1

hji,mg
j
m)− cigji , (2.21)

for some pre-specified payment function fji(·), in which gj = [gj1, g
j
2, · · · , gjN ] is a vector denoting

the amount of resource that IDSj has received from each IDS, hji,m is the weight of gjm that

represents the relative importance of the resource received from IDSm from IDSi’s perspective,

5Different from gij which represents the total amount of resource that IDSi shares with IDSj in the VCG
auction based scheme, here, gji denotes the amount of resource that IDSi allocates to IDSj in each round of the
proposed incentive mechanism.

6The integer programming problem of VCG auction based collaboration scheme is solved by brute-force search,
and therefore has high computation complexity.

7If IDSi has shared all of its resource in the previous rounds, gji is set to 0,∀j ∈ N .
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and cig
j
i is the linear cost of IDSi due to the resource sharing procedure. Intuitively, the payment

from IDSj - the first term in (2.21) - depends on all the resources IDSj receives in this round,

and is expressed in a general form here for flexibility and wider applicability.

For each payment function fji(·), the following assumptions are made:

Assumption 1. Each fji(·) is

• continuous

• strictly increasing

• strictly concave on [0,∞]

• fji(0) = 0

• f ′ji(0) > ci.

Some explanations about the practical implications of the above assumptions are in order.

The second condition is intuitive since the more resource an IDS receives, the more it will pay to

others. The third condition implies diminishing returns for additional resource allocation. The

fourth condition suggests that if IDSj does not receive any resource, it will not pay anything to

any other IDSs. The fifth condition requires that the costs of resource sharing (c.f. the second

term in (2.21)) should not be too high, otherwise the IDSs have no incentive to collaborate. In

this chapter, the following payment functions that conform to these assumptions are considered:

fji(

N∑
m=1

hji,mg
j
m) = [q1e

j
lj

+ q2
∑
l 6=lj

ejl ] ln(

N∑
m=1

hji,mg
j
m + 1), (2.22)

in which lj is the index of library that IDSj intends to load if it receives one unit of resource

in the current round (i.e., IDSj has obtained lj − 1 units of resource in the previous rounds)

and [q1e
j
lj

+ q2
∑

l 6=lj e
j
l ] is the corresponding expected reward it can obtain by loading library

lj . Note that when the IDSs have comparable ej ’s, it makes sense to assume that (almost) all

the IDSs will be allocated no more than one unit of resource due to the limited total amount

of resource available. When an IDS faces much more severe attacks (or equivalently it sets

high importance to attack detection), it is possible that more than one unit of resource can be

allocated. In such cases, rigorously speaking, the expected reward should also depend on ejlj+d
for some d ≥ 1. However, by the assumption that the ej ’s are in a descending order, only the

most significant term is considered (i.e., ejlj ) here for tractability. Our simulation results below

show that this simplification incurs little performance degradation.

In each round, the objective of IDSi with unallocated resource is to maximize its total
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received reward

Wi(gi) =

N∑
j=1

Pji(g
j), (2.23)

in which gi = [g1
i , g

2
i , · · · , gNi ] is a vector that denotes the amount of resource that IDSi allocates

to each IDS (at most one unit in each round). To find the optimal resource sharing stretegy,

each IDS needs to solve the following (concave) optimization problem:

max
gji ,∀j∈N

N∑
j=1

[
[q1e

j
lj

+ q2

∑
l 6=lj

ejl ] ln(

N∑
m=1

hji,mg
j
m + 1)− cigji

]
s.t.

∑
j

gji 6 1

gji ≥ 0, ∀j ∈ N .

(2.24)

Note that the decision variable of each IDSj is a vector gi and the action sets of IDSs are

not coupled. Therefore, Lagrangian relaxation is used to penalize the constraints to solve the

optimization problem. The Lagrangian Li(gi, λi) of IDSi’s optimization problem is given by

Li(gi, λi) =
N∑
j=1

[q1e
j
lj

+ q2

∑
l 6=lj

ejl ] ln(
N∑
m=1

hji,mg
j
m + 1)− ci

N∑
j=1

gji − λi(
N∑
j=1

gji − 1), (2.25)

in which λi is the Lagrange multiplier. By Lagrangian relaxation, the action set is reduced to

Gi = {gi|gji ≥ 0, ∀j ∈ N}. The above Lagrangian will be considered as the reward function of

the relaxed resource allocation game, and the corresponding NE properties will be discussed in

the next subsection.

2.3.2 Equilibrium Properties

As a common approach in the literature (e.g., [5, 70]), pure strategy Nash Equilibrium is

considered in this chapter.

Definition 1. [71] For a given Lagrangian multiplier λi, a Nash equilibrium (NE) {g∗i , i ∈ N}
for the relaxed game is a set of strategies that satisfy

Li(g
∗
i , g

∗
−i, λi) ≥ Li(gi, g∗−i, λi), ∀gi ∈ Ai, i ∈ N , (2.26)

in which g−i = {gv : v 6= i, v ∈ N} is comprised of the resource sharing decision vectors of other

IDSs.
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Optimality Conditions

To solve the relaxed optimization problems in (2.25) for the IDSs, the equivalence between

finding the NE and solving the corresponding Linear Complementarity Problems (LCPs) [72] is

illustrated first.

Specifically, given the relaxed optimization problems and their corresponding Lagrangians,

applying the first-order KKT condition to each IDS’s optimization problem yields

∂Li

∂gji
= 0,∀i, j ∈ N , (2.27)

which implies that

N∑
m=1

hji,mg
j
m =

[q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

ci + λi
− 1,∀i, j ∈ N . (2.28)

It also follows from KKT that for any equilibrium point, gji must satisfy

N∑
m=1

hji,mg
j
m =

[q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

ci + λi
− 1 if gji > 0,

N∑
m=1

hji,mg
j
m ≥

[q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

ci + λi
− 1 if gji = 0,

(2.29)

and by concavity of fji made previously, these conditions are also sufficient. To simplify the

notations, define a set of weight matrices H(j)’s and vectors b(j)’s as follows:

H(j)
mn = [hjm,n], ∀m,n ∈ N ,

b
(j)
i =

[q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

ci + λi
− 1, ∀i, j ∈ N .

(2.30)

Then the optimality conditions can be rewritten as the following LCP

yj = H(j)gj − b(j)

yj
T
gj = 0

gj ≥ 0,yj ≥ 0, ∀j ∈ N .
(2.31)

Since the above conditions are both necessary and sufficient, it follows that finding a NE for

the game is equivalent to solving the corresponding LCPs.
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Existence and Uniqueness of NE

The existence of NE guarantees that by following the proposed distributed incentive mechanism,

each IDS can finally obtain a resource allocation strategy that maximizes its own reward given

that other IDSs are rational. The uniqueness of NE guarantees that such resource allocation

strategy is unique, and hence there will be no dispute among the selfish IDSs about equilibrium

strategy selection.

Definition 2. A matrix W ∈ Rn×n is strictly diagonally dominant if
∑

m6=n |Wnm| < |Wnn| =
1, ∀n.

Definition 3. A complex square matrix W ∈ Rn×n is a P-matrix if its every principal minor

is strictly positive.

In order to motivate the IDSs to collaborate and share their resource with each other, in

the proposed distributed incentive mechanism, H(j)’s are chosen to be diagonally dominant for

all j ∈ N . In this case, hji,i > hji,m, ∀i, j,m 6= i ∈ N . It can be verified (c.f. the best response of

each IDS given by (2.29)) that such a setting can promote resource sharing among collaborative

IDSs. Particularly, the matrices H(j)’s are set to

H(j)
mn =


1 if m = n,

1
N if m 6= n.

For the matrices H(j)’s considered above, the following theorem holds:

Theorem 2. The given game admits a unique Nash Equilibrium.

Proof. Please see Appendix A.2.

2.3.3 Iterative Algorithm

Intuitively, when the collaboration mechanism is at the NE, no IDS will deviate. When it is

not at the NE, then each IDS may choose to update its sharing strategies based on the current

strategies of other IDSs. Formalizing this intuition, a dynamic algorithm to compute the unique

NE is introduced in this subsection to compute the NE.

Let gji (t) denote the amount of resource that IDSi allocates to IDSj at time step t. Consider

the following asynchronous update rule:

gji (t+ 1) =

max(0,
[q1e

j
lj

+q2
∑
l 6=lj

ejl ]

ci+λi
− 1− 1

N

∑
n 6=i g

j
n) if t+ 1 ∈ T i,

gji (t) if t+ 1 /∈ T i,
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in which T i is the set of times at which IDSi updates its sharing strategy. Suppose that all the

IDSs follow the asynchronous update rule and broadcast their sharing strategies using their own

schedule, and assume that the time sets T i’s are infinite for the IDSs, which means all the IDSs

will update infinitely often. The following theorem holds:

Theorem 3. Suppose that H(j)’s are diagonally dominant for all j ∈ N . Then the asynchronous

update algorithm converges to the unique game NE from any starting point gji > 0,∀i, j ∈ N .

The convergence of the asynchronous update algorithm can be proved using similar a method

as in [73]. Moreover, in the proposed incentive mechanism, the algorithm described above

depends on the Lagrange multiplier λi. Therefore, duality can be exploited to devise an iterative

algorithm for the Lagrange multiplier [5]. Let Di(λi) be the dual function given by

Di(λi) = max
gi

Li(gi, λi). (2.32)

According to (2.25), the dual function is given by

Di(λi) =
N∑
j=1

[q1e
j
lj

+ q2

∑
l 6=lj

ejl ] ln(H(j)gj + 1)− ci
N∑
j=1

gji − λi(
N∑
j=1

gji − 1). (2.33)

It is easy to realize that Di(λi) is a convex function and a dual optimal λ∗i solves the dual

optimization problem given by

min
λi>0

Di(λi). (2.34)

By using (2.29) and taking the first-order derivative of the dual function, it is easy to find

that

D′i(λi) = 1 +
∑
j∈Ci

[1 +
1

N

∑
n 6=i

gjn −
[q1e

j
lj

+ q2
∑

l 6=lj e
j
l ]

ci + λi
], (2.35)

in which Ci = {j ∈ N|gji > 0}.
By further taking the second-order derivative of the dual function, it can be obtained that

D′′i (λi) =
∑
j∈Ci

[q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

(ci + λi)2
. (2.36)

Note that given (2.36),D
′′
i (λi) ≥ 0 always holds, withD

′′
i (λi) = 0 if and only if gji = 0, ∀j ∈ N .

Furthermore, for any resource provider IDSi, the cost ci is upper-bounded by our assumption.

Therefore, it can be concluded that the dual function is strongly convex, i.e., the corresponding

Hessian is bounded B1 ≤ D′′i (λi), for some strictly positive B1 [74].

Due to convexity, the dual optimal λ∗i can be computed by applying D′i(λi) = 0, which is
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obtained as follows:

λ∗i =

∑
j∈Ci [q1e

j
lj

+ q2
∑

l 6=lj e
j
l ]

1 +
∑

j∈Ci [1 + 1
N

∑
n6=i g

j
n]
− ci. (2.37)

To achieve the dual optimal, the following gradient search can be used to find the optimal

λ∗i :

λi(t+ 1) = λi(t)− βiD′i(λi(t)), ∀i ∈ N , (2.38)

in which βi ∈ (0, 1) is the step size.

Theorem 4. D′i(λi) is Lipschitz continuous with some strictly positive Lipschitz constant K, and

the gradient based iterative algorithm converges to dual optimal λ∗i with step size βi <
min(2,B1)

K .

Proof. Please see Appendix A.3.

Based on the discussion above, the asynchronous update algorithm for the proposed incentive

mechanism is summarized in Algorithm 3. During the asynchronous updating process, in addition

to the amount of resource Ui and the reward function given by (2.21), each IDSi also broadcasts

the amount of resource gji allocated to another IDSj as well as the Lagrange multiplier λi.

Algorithm 3 Resource Allocation Algorithm: Distributed Incentive Mechanism

1: Initialization: obtain Ui and eik for 1 ≤ i ≤ N, 1 ≤ k ≤ L, from the first layer game and
IDSi broadcasts the obtained information, ∀i

2: Set rd = 0
3: while rd < max(Ui) do
4: Determine the resource providers set P (Ui > rd)
5: Run the asynchronous update algorithm
6: Run the heuristic resource allocation algorithm
7: rd = rd+ 1
8: end while

Note that the resource allocation strategies given by the distributed incentive mechanism

are continuous. However, in the final resource allocation scheme, the amount of resource that

each IDS receives should be integers. To mitigate this problem, a heuristic resource allocation

algorithm is proposed as given by Algorithm 5. In each round, the total amount of resource that

each IDS has received is computed and compared. Then one unit of resource is allocated to the

IDS which receives the most resource according to Algorithm 3, followed by a procedure which

updates the total amount of received resource.
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Algorithm 4 Asynchronous Update Algorithm

1: Initialization: set t = 0, gji = 0, λi = 1, ∀i ∈ P, j ∈ N
2: repeat
3: for i = 1, · · · , N do
4: if t ∈ T i and i ∈ P then

5: gji (t+ 1) = max(0,
[q1e

j
lj

+q2
∑
l 6=lj

ejl ]

ci+λi
− 1− 1

N

∑
n6=i g

j
n)

6: λi(t+ 1) = λi(t)− βiD′i(λi(t))
7: else
8: gji (t+ 1) = gji (t)
9: λi(t+ 1) = λi(t)

10: end if
11: end for
12: t = t+ 1
13: until converged

Algorithm 5 Heuristic Resource Allocation Algorithm

1: Given gji , ∀i ∈ P, j ∈ N , let g̃j =
∑

i g
j
i

2: for n = 1, · · · , |P| do
3: k = argmaxm[g̃m]
4: U ′k = U ′k + 1

5: g̃k = g̃k −
∑
j g̃
j

|P|
6: end for

2.4 Simulation Results

This section presents the simulation results to evaluate and compare the effectiveness of the

proposed algorithms in different scenarios. Specifically, in all the scenarios, unless otherwise

noted, it is assumed that there are three IDSs, with three corresponding attackers. It is further

assumed that the detection libraries available to all the IDSs are L = {l1, l2, ..., l8}, and the

attacking libraries available to all the attackers are A = {a1, a2, ..., a8}. The detection probability

pli,ak of library li against attack ak is 0.85 (q1) when i = k and 0.1 (q2) otherwise. It is further

assumed that an IDS can load 1 and 5 libraries when it is at the ill and the healthy states,

respectively, i.e., U(I) = 1, U(H) = 5. The discounting factor β, exploration probability pexplr

and the learning rate for the Nash-Q learning algorithms of both IDSs and attackers are chosen

according to [69, 75]. The average accumulated reward r̄IDSn defined below is considered as the

performance metric of interest:

r̄IDSn =
1

n

n∑
i=1

rIDSi . (2.39)
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Figure 2.4: The overall average accumulated reward of IDSs.

2.4.1 Performance of the proposed algorithms

First, the performance of the proposed algorithms in terms of the overall average accumulated

reward of the three IDSs in an exemplary case is examined and compared. It is assumed that

IDS1 and IDS2 face attackers that can only launch one attack while IDS3 faces an attacker that

can launch five attacks simultaneously. The importance factors of detecting different attacks for

IDS1 and IDS3 are set as wIDS1 = [ 1 1 2 3 1 1 3 15
4 2 1 2 3 1 1 9 ] and wIDS3 = [ 11 12 11 15 17 2 1 1

12 14 23 24 17 1 3 2 ],

with the number at the i-th row and the j-th column representing the importance of detecting

attack aj at state i (i=1 for healthy and i=2 for ill). Similarly, the profit factors for attackers

are set as wγ1 = [ 1 1 1 3 1 1 2 10
3 2 1 4 3 1 8 13 ] and wγ3 = [ 11 13 12 12 15 5 3 1

12 17 13 14 16 2 4 1 ]. Besides, for IDS1, the

corresponding action-dependent state transition matrices are set as pst(·|·) = [ 1 0
0.5 0.5 ] if the

corresponding attack is detected and pst(·|·) = [ 0.5 0.5
0.2 0.8 ] otherwise, with the number at the i-th

row and the j-th column representing the probability of transiting from state i to state j. For

IDS3, the corresponding action-dependent state transition matrices are set as pst(·|·) = [ 1 0
0.5 0.5 ]

if all the 5 attacks are detected, pst(·|·) = [ 0.5 0.5
0.2 0.8 ] if 4 attacks are detected, pst(·|·) = [ 0.2 0.8

0.1 0.9 ]

if 3 attacks are detected, pst(·|·) = [ 0.1 0.9
0.05 0.95 ] if 2 attacks are detected, pst(·|·) = [ 0.05 0.95

0.01 0.99 ] if

only 1 attack is detected, and pst(·|·) = [ 0.01 0.99
0 1 ] if no attack is detected. The parameters

of IDS2 are set to be the same as IDS1; The overall average accumulated rewards of using

the proposed algorithms are compared with the original Nash-Q Learning Algorithm without

the resource allocation step and a collaboration scheme in which the IDSs randomly allocate

their redundant resources. It can be observed from Fig. 2.4 that the performance of both of the

proposed algorithms (denoted by “Incentive Mechanism” and “VCG”, respectively) significantly

outperforms the counterparts “Non-collaborative” and “Random Allocation”, with performance

improvement of around 100% and 25%. Similar trends are observed when different sets of system
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Figure 2.5: Average number of libraries loaded by each IDS in the three IDSs case.

parameters are used (the results are omitted in the interest of space). As expected, the more

spare resource the IDSs have, the larger the collaboration gain is. As can be seen from Fig.

2.5, comparing to the non-collaborative case, IDS3 who faces the most severe attack cam load

around 5 more libraries on average. While IDS1 and IDS2 sacrifice some performance (since

their average number of libraries loaded decreases compared to the “Non-collaborative case”),

the overall performance is significantly improved due to the dramatic improvement at the IDN

bottleneck, IDS3 in this case (because IDS3 faces a more aggressive attacker and therefore is

more likely to be compromised). In addition, it can be seen from both Fig. 2.4 and Fig. 2.5 that

the performance of the proposed distributed incentive mechanism is close to the socially optimal

outcome given by the VCG based scheme.

2.4.2 Improvement Against Aggressiveness of the Attacker

In this section, we examine the impact of the attacker’s aggressiveness on the proposed algorithms.

It is assumed that IDS1 and IDS2 face attackers who can only launch one attack, but IDS3

faces a more aggressive attacker who can launch multiple attacks. It is shown in Table 2.2

that when IDS3 faces a more aggressive attacker, the collaboration gains of both proposed

algorithms in terms of improvement in the overall average accumulated reward become more

significant. Intuitively, when one of the IDSs faces more attacks, it is more important for this

IDS to acquire help from others. Moreover, the performance differences between the proposed

incentive mechanism and VCG auction based collaboration scheme is only around 7%.
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Table 2.2: The improvement in reward against aggressiveness of attackers

Number of attacks on IDS3 3 4 5 6

Improvement-Incentive
mechanism

70% 80% 100% 113%

Improvement-VCG 77% 86% 107% 120%
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Figure 2.6: The improvement in reward against q1 and q2.

2.4.3 Improvement with Respect to Detection Probabilities

In this section, the impact of detection probabilities of libraries against attacks (i.e., q1 and q2)

are examined.8 Again, assume that IDS1 and IDS2 face attackers who can only launch one

attack at a time, and IDS3 faces an attacker who can launch 5 attacks simultaneously. Fig. 2.6

shows that the performance of both proposed algorithms degrades as q2 increases. This may be

explained as follows: when q2 is larger, the probability of detecting attacks with mismatched

libraries increases, thus reducing the need for collaboration among IDSs. It can also be observed

that in all the examined cases, the performance gap between the proposed distributed incentive

mechanism and the VCG auction based collaboration scheme is no larger than 10%, which

indicates the effectiveness of the incentive mechanism.

In addition, Table 2.3 shows the probability of the condition in Corollary 1 being satisfied

when q2 = 0, in which the probability is the number of time slots that the condition is satisfied

over the total number of time slots. It can be observed that it is almost always satisfied for all

the simulated scenarios, which indicates the effectiveness of the proposed VCG action based

collaboration scheme.

8Note that the learned strategies (i.e, π̃γ in (2.14)) depend on q1 and q2. The results in this section show the
impact of q1 and q2 on the conditions under which the proposed algorithm leads to improvement.

26



Table 2.3: The probability of the condition in Corollary 1 being satisfied

q1 0.65 0.75 0.85 0.95

Probability
99.82% 99.65% 99.57% 99.49%
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Figure 2.7: The overall average accumulated reward of IDSs.

2.4.4 Performance of the proposed algorithms with more IDSs

In this section, an IDN with ten IDSs is considered. The parameters of the first five IDSs are

set to be the same as those of IDS1 in Section 2.4.1, while the parameters of the last five IDSs

are set to be the same as those of IDS3. In addition, the first five IDSs face attackers that

can only launch one attack, and the last five IDSs face attackers that can launch five attacks

simultaneously. Similar to the three IDSs case, it can be observed from Fig. 2.7 that both of the

proposed algorithms (denoted by “Incentive Mechanism” and “VCG”, respectively) significantly

outperform the “Non-collaborative” baseline, and the relative performance gains are about 120%.

In this case, it can be observed that the performance of the proposed distributed incentive

mechanism is closer to the socially optimal performance given by the VCG based scheme, which

further verifies its effectiveness.

2.5 Related Works

In the past decades, various game-theoretic approaches have been applied to predict the behavior

of intruders and thus improve the detection performance of IDSs. Early works in this direction

often model the interaction between a single IDS and an intruder as a two-player game [76–78].

These studies mainly focus on determining the optimal strategies of the IDS and predicting the
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possible actions of the intruder by analyzing the NE of the corresponding two-player game. For

example, in [76], a two-player, nonzero-sum, non-cooperative game is formulated to facilitate

the IDS to form an optimal defense strategy for the sensor network, based on the corresponding

NE. [77] studies a network environment where multiple intrusion detection techniques are

deployed, and the NE was used to guide the IDS to choose among the different intrusion

detection techniques. In addition, considering that the target systems are often dynamic in

practice, [78] formulates a multi-stage dynamic intrusion detection game in which the IDS

maintains and updates beliefs about the intruders by using Bayesian rules, and the resulting

Perfect Bayesian equilibrium (PBE) specifies the best response strategies of the IDS in each

stage. Besides, SG has been employed in [64] to study the IDS configuration problem. Our

previous work [75] further considers incomplete information due to uncertainty in the intruder’s

type.

In this chapter, the same model as the ones in [64] and [75] is used to model the configuration

problem. This model is rather general and can be used to model a wide range of signature-

based IDSs, among which a popular one is Snort. Snort performs rule-based content pattern

matching and can detect a variety of attacks and probes, such as buffer overflows, stealthy port

scans, and much more [79]. Upon scrutinizing a packet, Snort compares the features (e.g., IP

address, payloads) of the packet with the rules defined in the configuration file and generates

alerts if necessary. The rules can be downloaded online or designed by a host itself. Essentially,

different rules have different detection performance against the same attack [80]. In addition, a

host-based IDS usually has only limited resources (e.g., CPU execution time) available from the

host system. Even worse, if the host is under attack (e.g., resource exhaustion attacks), even

fewer computational resources can be allocated to the IDS. In this case, if too many rules are

considered, packet drop will occur because Snort does not have the capacity to examine the

packets against all the rules fast enough. In our model, a library l is a set of rules for a specific

attack; the subsystem state s measures the security state of the host. For example, the ill state

indicates that the IDS failed to detect some previously launched attacks (e.g., CPU exhaustion

attacks) and therefore fewer libraries can be loaded. The goal of a host is to find the optimal

configuration of rules under resource constraints against a smart attacker. In this sense, [64]

can be considered as the non-collaborative case of our model, which serves as a baseline in the

simulation.

In practice, multiple IDSs may be deployed in a network and therefore these IDSs can

collaborate to improve the overall detection performance. Some collaborative intrusion detection

systems (CIDSs) have been proposed in the literature (see [3] and the references therein). Most

of the existing CIDSs consider the scenario in which multiple local monitors share their network

traffic or alert information with either the collaborative peers (in the distributed case) or a

central node (in the centralized case), which will further aggregate the shared information
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for more accurate detection. In particular, the IDSs in these CIDSs collaborate to detect the

same attack. However, in practice, different hosts (e.g., companies and organizations) may face

different attackers. With such consideration, another form of collaboration is considered in this

chapter, in which the IDSs (and equivalently the hosts) share their computational resources

to help detect the intrusions for the IDSs with insufficient resources. The consultation-base

collaborative model in [5,6,81,82] is adapted to model the collaboration among the IDSs in this

chapter. In particular, when an IDS predicts severe potential attacks, it can send requests to

the other IDSs such that those more powerful IDSs can help them by allocating their redundant

resources to do the intrusion detection and responding to the requests. [5, 6, 81, 82] mainly focus

on trust management models and incentive designs to overcome the system vulnerability to

malicious peers in CIDSs and therefore provide more effective collaboration. However, none of

these works consider that the performance of an IDS may be severely degraded when it is in an

ill state and does not have sufficient resources to perform intrusion detection. In addition, none

of the existing works considers both the configuration problem and the collaboration problem

simultaneously. In this chapter, a Nash-Q learning based algorithm is proposed, combined with

a distributed incentive mechanism which approaches the socially optimal outcome given by the

VCG auction in performance.

2.6 Conclusions

In this chapter, the collaborative IDS configuration problem against rational attackers is tackled

through a two-layer SG approach. To solve the two-layer SG, the VCG auction based collaboration

scheme is proposed. To further mitigate the communication overhead and complexity issues in

VCG auction, a distributed game-theoretic incentive mechanism is also proposed. Analytical and

simulation results show that the proposed algorithms can both provide effective collaborative

configurations and deliver substantial performance gain as compared to the non-collaborative

counterpart.

29



Chapter 3

On the Security-Privacy Tradeoff in

Collaborative Security: A

Quantitative Information Flow

Game Perspective

While improving the overall security performance, the security-related information exchange

leads to potential privacy leakage. As a result, it is essential for collaborative entities to better

understand the potential privacy leakage risk in the collaboration. In this chapter, the security-

privacy tradeoff in collaborative security is investigated, in which the Quantitative Information

Flow (QIF) theory is adopted to quantitatively measure the amount of preserved privacy and the

corresponding utility loss. Three QIF games are formulated, each corresponding to one possible

scenario of interest in practice. In particular, we first consider the scenario that the entities in

the network are fully collaborative, which means that they act as a whole and take the privacy

of the whole network into consideration. In this case, the interaction between the collaborative

entities and the attacker is modeled as a zero-sum game. Then, considering that the entities

and the attacker may give different weights to learning the other’s secret, the zero-sum game is

further generalized into a non-zero-sum one. Finally, considering that the entities may be selfish

and concerned only about their own privacy, we formulate the interaction between the entities

and the attacker as a two-layer non-fully collaborative game. The first-layer leader-follower

game models the interaction between the attacker and the entities, in which the attacker acts as

the leader and the entities act as the followers. The second-layer game models the interaction

among the collaborative entities. By solving the QIF games, the optimal attacking strategy for

the attacker and the optimal collaboration strategies for the entities in different settings are
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Table 3.1: Important notations

N the set of collaborative entities.

s state of the network.

a1(a2) the attacker launches (does not launch) an attack

πA attacking strategy of attacker.

Qj observation capability of entity j.

Yj observation of entity j.

pcj misreport probability of entity j.

Ŷj obfuscated (shared) observation of entity j.

Y the true observations of all the entities.

Ŷ the obfuscated observations received by the leader.

V prior vulnerability.

V̂X (V̂Yj ) posterior vulnerability of the attacker (entity j).

obtained.

The remainder of this chapter is organized as follows. Section 3.1 formulates the collaborative

security problem. Some preliminary knowledge about QIF is introduced in Section 3.2. The

proposed games are formulated and solved in Section 3.3. A case of study is provided in

Section 3.4. Related works are discussed in Section 3.5, and Section 3.6 concludes this chapter.

3.1 Problem Formulation

In this chapter, a network that consists of N different security entities is considered, denoted

by N = {1, 2, ..., N}. Let s denote the state of the network. Important notations used in this

chapter are summarized in Table 3.1.

3.1.1 Attacker Model

An external attacker that can infer and adapt to the collaborative strategies of the security

entities is considered. It is assumed that the attacker is able to manipulate the state of the

network by launching attacks and its goal is to attack the network without being detected. For

the ease of presentation, the following discussion will be focused on one type of attack (e.g.,

Phishing attack).1 As a result, there are two possible network states, i.e., s ∈ {0, 1} in which

s = 1 (s = 0) stands for the abnormal (normal) state, corresponding to the case that the attacker

launches (does not launch) an attack. To this end, the attacker has to determine a probability

distribution πA = [πA(a1), πA(a2)], in which πA(a1) (πA(a2) = 1− πA(a1)) is the probability

1The model can also be easily extended to the setting of multiple attack types by enlarging the network state
space.
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that the attacker chooses to launch (not to launch) an attack. In this sense, the action space of

the attacker is given by A = {πA|0 ≤ πA(a1), πA(a2) ≤ 1}. The cost and reward of the attacker

will be discussed in Section 3.3. In addition, it is assumed that the collaborative entities face a

powerful attacker that can obtain (e.g., by eavesdropping [83]) the information shared among

the entities in the network (i.e., the obfuscated observations and the misreport probabilities).

3.1.2 Defender Model

Each entity (i.e., defender) j in the network independently obtains a private observation

(denoted by Yj) about the network state s and the goal of the entities is to estimate the true

network state in a collaborative manner. Each entity j knows the probability distribution of

its private observation, which is represented by a set of parameterized marginal distributions

Qj = {qj(Yj |s)|Yj ∈ {0, 1}}, where qj(·|s) is the distribution of the private observation given

the true network state s. For example, in collaborative intrusion detection, qj(Yj = 1|s = 1),

qj(Yj = 0|s = 1) and qj(Yj = 1|s = 0) correspond to the detection rate, false negative rate and

false positive rate of IDS j, respectively. Note that Q’s (i.e., {Qj}Nj=1) are typically known to the

collaborators (e.g., the detection rate of an IDS can be captured by its ROC curve, which can be

shared among the entities in the network) while the attacker can also obtain such information

from past experience. With such consideration, the Q’s are considered common knowledge to

both the collaborative entities and the attacker.

Since the private observation may not be sufficient for each entity to learn the true network

state s individually, this chapter considers the scenario in which the entities in the network

can collaborate and share their observations to further enhance the network security. However,

considering that the observations are private, such observation sharing will lead to potential

privacy leakage for the entities, particularly under the assumption that the shared information

may be eavesdropped by the attacker. Specifically, by revealing the exact observations, additional

security-related information of an entity (e.g., the fact that the attacker has already been detected

and therefore some critical parts of an entity’s system may be monitored) may be inferred by

the attacker. Given the information that some critical parts of an entity’s system are monitored,

the attacker can design better future attacking strategy targeting this entity [84]. Given the true

detection result, the attacker that launches the attack can further explore whether it has already

been detected and determine its follow-up moves (e.g., leave the system to avoid being identified

and backtracked, or discard the data obtained during the attack which has possibly been altered

by the entity). Note that if an entity detects the attack successfully, instead of removing the

attacker immediately, the entity can pretend that the attack succeeds and provide false data to

mislead the attacker and collect the attacker’s information (e.g., IP address), which is called

deception in the literature [85]. The leakage of the detection results renders such deception
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Figure 3.1: Block diagram of the system model.

techniques useless.2

In order to preserve privacy, each entity j shares an obfuscated version of Yj with others,

denoted by Ŷj . In this chapter, it is assumed that each entity j will misreport its true observation

results with probability pcj ∈ [0, 0.5].3 In addition, the entity with the best observation capability

(e.g., highest detection rate in the intrusion detection case) is elected as the leader to make the

final decision and all the other entities share their observations with the leader. In practice, the

administrator of the network can work as the leader since it has a better view of the whole

network (therefore a better observation capability), and has the authority to directly react to

the attacks on behalf of the whole network. Once the attacker is identified and appropriate

action is taken, the leader can share the information with the other entities at a later stage. In

addition, the leader is assumed to be honest and will not deliberately lie about its knowledge of

the attack.

3.1.3 An Overview of the Collaboration Model

Fig. 3.1 depicts the scenario in which there are 3 collaborative entities and a leader. In particular,

the attacker chooses an attacking strategy π which determines the state of the network. Then,

the entities observe the network state independently and obtain their observation results Y ’s.

For the sake of privacy-preserving, each entity obfuscates its true results with a predetermined

misreport probability and share the obfuscated observations Ŷ ’s with the leader. Finally, given

the shared observations from the collaborative entities, the leader can compute the probability

distribution of the network state and therefore decide whether the attacker has launched an

2Note that the study of the follow-up moves (e.g., how to design a better attack against the entities with the
security related information or how to deal with the possibly false data obtained during the attack) is highly
non-trivial and deserves an independent work. Therefore, we focus on collaborative detection of the current attack
in this chapter while leaving the follow-up moves of the attacker (and the investigation of the corresponding
consequences) and the deception strategies of the entities as future works.

3In this chapter, it is assumed that the misreport probabilities are common knowledge for all the entities (i.e.,
they are shared together with the obfuscated observations). Therefore, it is equivalent for an entity to misreport
with probability pcj or 1− pcj .
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attack. In this sense, when the other entities have high privacy requirements and choose high

misreport probabilities (e.g., 0.5), the leader barely obtains any useful information and can only

make decision about the network state based on its own observation. However, when the entities

care less about their privacy and share their observations with lower misreport probabilities, the

leader gains more information and can estimate the network state more accurately. That being

said, for the collaborative entities, a tradeoff between the collaboration gain and the preserved

privacy exists. In addition, the main focus of this chapter is to study the benefit of collaboration,

and therefore, it is first assumed that all the entities are obliged to collaborate by sharing their

obfuscated observations and then it is shown that any rational entities will participate in the

collaboration to maximize their utility.

3.2 Preliminaries of QIF

In this section, some basic concepts and properties of QIF are reviewed.

3.2.1 Quantitative Information Flow

We start by reviewing some basic notations in QIF. In particular, a secret is considered as

something that is known to the adversary only as a prior probability distribution π. A channel

C : X × Y → R is a function in which X is the set of input values and Y is the set of output

values, and C(x, y) measures the conditional probability of the channel output y ∈ Y when

the input is x ∈ X . It is typically assumed that the adversary knows the channel matrix C,

which models the systems with observable behaviors that change the adversary’s probabilistic

knowledge, making the secret more vulnerable and hence causing information leakage [16].

Various vulnerability functions which measure the vulnerability of a secret and the information

leakage caused by the observable behaviors of the systems exist. In this chapter, the secrets of

the attacker and the entities, as well as some other notations, are defined as follows.

Definition 4. The secret of the attacker (denoted by X) is whether it launches an attack or

not (i.e., X = 1 if the attacker launches an attack and X = 0, otherwise).4 The secrets of the

entities are the observations they obtain, i.e., Yj = 0 or Yj = 1, ∀j.

Remark 3. Note that the secrets of the attacker and the entities are known deterministically to

themselves but probabilistically to their opponents. When the attacker and the entities evaluate

their vulnerability, they consider the amount of information that their opponents know about

their secrets. Therefore, the vulnerabilities of the secrets are measured in the probabilistic sense.

4Since the network state s is determined by whether an attack is launched, the attacker’s secret is equivalently
the true network state and s = X.
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Definition 5. The observation matrix Qj for entity j is a matrix that satisfies Qj(x, y) =

qj(Yj = y|s = x), in which qj(Yj = y|s = x) is the probability of the private observation being

Yj = y given the true network state s = x.

Definition 6. The obfuscation matrix Rj for entity j is a matrix that satisfies Rj(y, ŷ) =

p(Ŷj = ŷ|Yj = y), in which p(Ŷj = ŷ|Yj = y) is the probability of the obfuscated observation

being Ŷj = ŷ given the true observation Yj = y.

Remark 4. In this sense, the channel for the secret of entity j is the obfuscation matrix:

C(yj , ŷj) = Rj(yj , ŷj), which maps the true observation yj to the obfuscated one ŷj; the channel

for the secret of the attacker is given by C(x, ŷ) =
∏
j Q

j(x, yj) × Rj(yj , ŷj), which maps the

attacker’s action x to the obfuscated observations of all the entities ŷ = [ŷ1, · · · , ŷN ]. Note that

if entity k is elected as the leader, it does not have to obfuscate its observation and therefore

ŷk = yk.

In addition, g-vulnerability [86], which is a general framework that can be adapted to many

different vulnerability models, is adopted in our study. In the considered collaborative security

framework, both the attacker and the collaborative entities aim to maximize their opponent’s

vulnerability and minimize their own. In the following, we take the attacker’s secret as an

example and introduce how to measure the vulnerability of the attacker using g-vulnerability.

The vulnerability of the entities’ secrets can be measured in a similar way.

g-vulnerability

In g-vulnerability, a gain function g : W × X → R, which measures the benefit of the leader

(and therefore the entities) for making the guess w ∈ W when the secret of the attacker is

X = x ∈ X , is introduced. The g-vulnerability measures the threat to the attacker’s secret as

the entities choose the optimal guess w that maximizes its expected gain, and hence given the

prior probability distribution πA, the prior g-vulnerability is defined as

Vg(π
A) = supw∈W

∑
x∈X

πAx g(w, x), (3.1)

in which W is the set of possible guesses for the entities, and πAx is the prior probability of the

secret being x, which is determined by the attacker.

By pushing the secret with prior probability distribution πA to the channel C and observing

the channel output ŷ ∈ YN , the entities can update their probabilistic knowledge on the attacker’s

secret. Given the prior probability distribution πA and the channel C, the probability distribution

of ŷ can be obtained. The posterior vulnerability is naturally defined as the expectation of

the corresponding prior vulnerability (i.e., Vg) applied to each posterior distribution (i.e.,
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p(X|ŷ)), weighted by the probability of each possible ŷ being realized. Therefore, the posterior

g-vulnerability is given by [16]

V̂g(π
A, C) =

∑
ŷ∈YN

p(ŷ)Vg(p(X|ŷ)) =
∑

ŷ∈YN
supw∈W

∑
x∈X

πAx C(x, ŷ)g(w, x), (3.2)

in which p(X|ŷ) is the posterior probability distribution of X given the output of channel ŷ and

p(ŷ) is the probability of Ŷ = ŷ; by the Bayes’ formula, p(X|ŷ) = C(x,ŷ)πAx
p(ŷ) ; C(x, ŷ) is given in

Remark 4.

Finally, the information leakage L of the channel C is defined by the difference between

the entities’ prior knowledge and their posterior knowledge of the secret. The comparison is

typically done additively, which is given by

Lg(π
A, C) = V̂g(π

A, C)− Vg(πA). (3.3)

Note that the g-vulnerability is a general framework due to the flexibility of selecting the gain

functions. In the following, we further introduce one of the most commonly used vulnerability

functions in this category [16].

Bayes-vulnerability

Bayes-vulnerability considers the entities trying to guess the secret of the attacker in one attempt

and measures the threat to the attacker’s secret as the probability of a correct guess [87]. Given

the prior probability distribution πA, the best strategy for the entities is to guess the secret to

which it assigns the highest probability, and hence the Bayes-vulnerability is given by

Vb(π
A) = maxx∈Xπ

A
x , (3.4)

Similarly, the posterior Bayes-vulnerability is given by

V̂b(π
A, C) =

∑
ŷ∈YN

p(ŷ)Vb(p(X|ŷ)) =
∑

ŷ∈YN
maxxπxC(x, ŷ). (3.5)

By taking W = X and let g(w, x) = 1 if and only if w = x and 0 otherwise, one can easily

verify that Vg(π
A) = Vb(π

A). By taking proper gain function g, both Guessing-entropy [88] and

Shannon-entropy [89], which are also commonly used as vulnerability measures, can be captured

in this framework.
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3.2.2 Properties of Posterior Vulnerabilities

In this subsection, some properties of posterior g-vulnerabilities are introduced as follows.

Definition 7. An n×m channel C is useless [90] (or equivalently non-interfering [16]) if it has

identical rows, i.e.,
∑

j C(i, j) = 1, ∀1 ≤ i ≤ n and C(i, j) = C(k, j), ∀1 ≤ i, k ≤ n, 1 ≤ j ≤ m.

Lemma 1. Monotonicity (MONO) [16]: Pushing a prior probability distribution through a

channel C does not decrease vulnerability:

V̂g(π,C) ≥ Vg(π), ∀π,C, (3.6)

in which the equality holds if and only if C is a useless channel or Vg is linear.

Lemma 2. Data-processing inequality (DPI) [16]: Post-processing does not increase vul-

nerability:

V̂g(π,C) ≥ V̂g(π,CR),∀π,C,R, (3.7)

in which the number of columns in channel matrix C is the same as the number of rows in

post-processing matrix R. The equality holds if and only if at least one of C and R is a useless

channel or Vg is linear.

Lemma 3. Convexity (CVX) [91]: Let {Ci}i∈I be a family of channels that have the same

input and output alphabets, and µ be a distribution on I. Then for every prior distribution π,

and every vulnerability Vg, the corresponding posterior vulnerability is convex with respect to

channel composition, i.e., V̂g(π,
∑

i µ(i)Ci) ≤
∑

i µ(i)V̂g(π,Ci).

3.3 Quantitative Information Flow Game Model

In this section, three games are considered, each capturing one possible scenario of interest

in practice. The first zero-sum game considers the scenario in which the entities work as a

whole against the attacker. The second game generalizes the first zero-sum game into a general-

sum game. The third game further considers independent and selfish entities. In this chapter,

complete information games are considered (i.e., the utility functions and strategies are common

knowledge), which is a common practice in literature [92–96]; incomplete games will be considered

in future works.

In addition, g-vulnerability is adapted to measure the vulnerabilities of both the attacker’s

and the entities’ secrets to capture more realistic settings.5 Having the properties of posterior

vulnerabilities at hand, the following propositions can be proved.

5In the following discussion, unless otherwise noted, the prior vulnerability and the posterior vulnerability refer
to prior g-vulnerability and posterior g-vulnerability. However, in the examples and simulations, Bayes-vulnerability,
as one special case of g-vulnerability, is adopted for the ease of illustration.
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Proposition 1. For any entity j that shares obfuscated observations with the leader, if neither

Qj nor Rj is a useless channel and Vg is nonlinear, the observation sharing process increases

the vulnerabilities of both entity j’s secret and the attacker’s secret.

Proof. Please see Appendix B.1.

Proposition 2. For any entity j that shares obfuscated observations with the leader, if neither

Qj nor Rj is a useless channel and Vg is nonlinear, the obfuscation process decreases the

vulnerabilities of both the attacker’s secret and entity j’s secret. In particular, if the misreport

probabilities of all the other entities are fixed, increasing the misreport probability of entity j

decreases the vulnerabilities of both the attacker’s secret and entity j’s secret.

Proof. Please see Appendix B.2.

Remark 5. Note that for the attacker’s secret, V̂g(π,C) =
∑

ŷ∈YN p(ŷ)Vg(pX|ŷ)

≥ Vg(
∑

ŷ∈YN p(ŷ)pX|ŷ) = Vg(π), given that Vg is convex [16]. According to Jensen’s inequality,

the equality holds when pX|ŷ’s are the same for any ŷ or Vg is linear. Therefore, Proposition

1 and Proposition 2 hold only when Vg is nonlinear over pX|ŷ,∀ŷ. Otherwise, the observation

sharing process and the obfuscation process (which determine pX|ŷ’s) do not change the posterior

vulnerability of the attacker. Similar results can be verified for the entities.

Note that Proposition 2 indicates that there is indeed a tradeoff between learning about the

attacker’s secret and keeping their own secrets for the collaborative entities. To investigate the

optimal attacking strategy and obfuscation strategies for the attacker and entities, respectively,

the following games are formulated and solved. For the ease of presentation, it is assumed that

entity k is elected as the leader and the set of the other collaborative entities is denoted as Nc.
In particular, since the leader does not have to share anything with others, the tradeoff of the

collaboration gain and privacy loss is considered only for the entities in Nc.

3.3.1 Game I: Zero-Sum Fully Collaborative Game

In this game, it is assumed that the entities always act as a whole, which means that each entity

takes into consideration not only its own privacy but also that of the whole network. In addition,

it is assumed without loss of generality that the action space of both the attacker and the entities

is finite and denoted by A = {πAL , πAH} and D = {RL, RH}, respectively.6 πAL and πAH correspond

to attacking with low probability (i.e., low πA(a1)) and high probability (i.e., high πA(a1))

for the attacker, respectively, while RL and RH are the channel matrices that correspond to

6The study can be extended to the scenarios with larger action space.
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misreporting with low probability and high probability for the entities, respectively. Note that

for any R ∈ D,

R(Y , Ŷ ) =
N∏
j=1

Rj(Yj , Ŷj), (3.8)

in which Y = [Y1, · · · , YN ] is the true observations of all the entities and Ŷ = [Ŷ1, · · · , Ŷk−1, Yk,

Ŷk+1, · · · , ŶN ] consists of the received obfuscated observations from the entities and the leader’s

true observation; Rj is the obfuscation matrix of entity j.7 In the case that the attacker chooses

action πA ∈ A and the entities choose action R ∈ D, the reward of the attacker is given by

uA(πA, R) = λA
∑
j∈Nc

V̂Yj (π
A, R)− V̂X(πA, R), (3.9)

in which V̂Yj (π
A, R) is the posterior vulnerability of the secret of entity j (i.e., Yj) given the

obfuscation matrix R; V̂X(πA, R) is the posterior vulnerability of the secret of the attacker (i.e.,

X) given the obfuscation matrix R; λA is the importance factor of learning the entities’ secrets

for the attacker. Note that instead of information leakage, the posterior vulnerability is used to

model the rewards of both the attacker and the entities, because it measures how vulnerable their

secrets are to the opponents and therefore determines their security performance. In addition,

due to the zero-sum setting, the rewards of the entities are given by

uE(πA, R) = −uA(πA, R). (3.10)

Note that V̂Yj (π
A, R) and V̂X(πA, R) depend on the vulnerability functions used to measure

the posterior vulnerability of the secrets of the entities and the attacker, respectively. When

g-vulnerability is adopted, they are given by

V̂Yj (π
A, R) =

∑
X

πA(X)V̂Yj |X(πA, R) =
∑
X

πA(X)
∑
Ŷj

supw
∑
Yj

Qj(X,Yj)p(Ŷj |Yj)g(w, Yj),

(3.11)

V̂X(πA, R) =
∑
Ŷ

supw
∑
X

πA(X)p(Ŷ |X)g(w,X), (3.12)

in which πA(X) measures the probability that the true network state is X; V̂Yj |X(πA, R) measures

the posterior vulnerability of entity j’s secret (from the attacker’s view) given the true network

state X;8 Qj(X,Yj) is the probability that the true observation of entity j is Yj given that the

7Note that Rj may be different for different j, so the entities may have different misreport probabilities.
8Note that after the attacker takes an action, it can estimate V̂Yj |X since it knows the true network state X.

However, before the attacker determines its attacking strategy (i.e., πA(X)) and takes an action, X is unknown
to anyone and therefore the vulnerability of entity j’s secret is modeled as the average posterior vulnerability over
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true network state is X; p(Ŷj |Yj) measures the probability that entity j shares Ŷj given the

true observation Yj ; p(Ŷ |X) measures the probability that the entities share Ŷ when the true

network state is X.9

Therefore, the expected utility functions of both the attacker and the entities are given by

UA(pA(πA), pE(R)) =
∑
πA∈A

∑
R∈D

pA(πA)pE(R)uA(πA, R), (3.13)

UE(pA(πA), pE(R)) = −UA(pA(πA), pE(R)), (3.14)

in which pA(πA) is the probability that the attacker takes action πA and pE(R) is the probability

that the entities take action R.

Theorem 5. (von Neumann’s minimax theorem). Let X ⊂ Rm and Y ⊂ Rn be compact sets,

and U : X × Y → R be a continuous function such that U(x, y) is a convex function in x ∈ X
and a concave function in y ∈ Y. Then:

min
x∈X

max
y∈Y

U(x, y) = max
y∈Y

min
x∈X

U(x, y). (3.15)

Corollary 2. The Nash Equilibrium (NE) of Game I is given by

p∗E(RL) =
uE(πAH , RH)− uE(πAL , RH)

uE(πAL , RL)− uE(πAH , RL)− uE(πAL , RH) + uE(πAH , RH)
, (3.16)

p∗A(πAL ) =
uE(πAH , RH)− uE(πAH , RL)

uE(πAL , RL)− uE(πAH , RL)− uE(πAL , RH) + uE(πAH , RH)
, (3.17)

if these values are in [0, 1], in which p∗E(RL) is the probability that the entities take action

RL and p∗A(πAL ) is the probability that the attacker take action πAL . Otherwise, there exist pure

strategies. In particular, when

uE(πAH , RH)− uE(πAH , RL)

uE(πAL , RL)− uE(πAH , RL)− uE(πAL , RH) + uE(πAH , RH)
/∈ [0, 1], (3.18)

the entities have pure strategy

p∗E(RL) =

{
1, if uE(πAH , RH)− uE(πAH , RL) < 0,

0, if uE(πAH , RH)− uE(πAH , RL) > 0.
(3.19)

πA(X).
9Note that p(Ŷj |Yj) is determined by the obfuscation matrix R and p(Ŷ |X) is determined by observation

matrices Q’s and the obfuscation matrix R.
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Therefore, the attacker has pure strategy

πA = argmax
π∈A

uA(π,R), (3.20)

in which R ∈ D is determined by (3.19). Similarly, when

uE(πAH , RH)− uE(πAL , RH)

uE(πAL , RL)− uE(πAH , RL)− uE(πAL , RH) + uE(πAH , RH)
/∈ [0, 1], (3.21)

the attacker has pure strategy

p∗A(πAL ) =

{
1, if uE(πAH , RH)− uE(πAL , RH) > 0,

0, if uE(πAH , RH)− uE(πAL , RH) < 0.
(3.22)

Therefore, the entities have pure strategy

R = argmax
R∈D

uA(πA, R), (3.23)

in which πA ∈ A is determined by (3.22).

Proof. Please see Appendix B.3.

Example 1. Consider a collaborative security system consisting of 2 entities that observe the

network state and collaborate by sharing obfuscated observations with a leader. Assume that both

the two entities and the leader can observe the network state correctly with probability 0.95 (0.7)

when s = 0 (s = 1). In addition, the attacker has two possible attacking strategies with πAL = 0.1

and πAH = 0.6. The entities act as a whole and they have two possible collaboration strategies.

In particular, when they choose RH , one entity misreports with probability 0.2 and the other

one misreports with probability 0.5; when they choose RL, one entity misreports with probability

0.1 and the other one misreports with probability 0.2. Finally, both the attacker and the entities

adopt Bayes-vulnerability to measure their vulnerability. Therefore, the utility function of the

attacker is given by

uA(πA, R) =



1.88λA − 0.7208, for (πA, R) = (πAL , RL),

1.86λA − 0.7080, for (πA, R) = (πAL , RH),

1.78λA − 0.7033, for (πA, R) = (πAH , RL),

1.66λA − 0.7, for (πA, R) = (πAH , RH),

(3.24)

in which λA is the importance factor of learning the entities’ secrets for the attacker. As a result, the

payoff matrix of Game I is given by Table 3.2.
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Table 3.2: Payoff matrix of Game I

RL RH

πAL
1.88λA − 0.7208,
−1.88λA + 0.7208

1.86λA − 0.7080,
−1.86λA + 0.7080

πAH
1.78λA − 0.7033,
−1.78λA + 0.7033

1.66λA − 0.7,
−1.66λA + 0.7

According to Corollary 2, the NE is given by

p∗E(RL) =
0.2λA − 0.008

0.1λA + 0.0095
, p∗A(πAL ) =

0.12λA − 0.0033

0.1λA + 0.0095
,

if these values are in [0, 1]. Otherwise, there exist pure strategies as suggested in Corollary 2. In particular,

when λA is chosen such that 0.12λA−0.0033
0.1λA+0.0095 /∈ [0, 1], we have p∗E(RL) = 0 if λA is large (e.g., λA = ∞)

and p∗E(RL) = 1 if λA is small (e.g., λA = 0).10

Remark 6. From the above example, it can be observed that for the same attacking strategy,

when the entities switch from RL to RH , the vulnerabilities of both the attacker and the entities

decrease. This is because, when the entities misreport with higher probability, the shared obfuscated

observations contain less information about both the attacker’s secret (i.e., whether it has launched

an attack or not) and the entities’ secrets (i.e., the true observation results). Therefore, for

the entities, there is indeed a tradeoff between the collaboration gain and the privacy loss, and

the optimal collaboration strategy depends on the importance factor λA. In particular, when

λA is large (i.e., the attacker allocates more importance on learning the entities’ secrets or

equivalently the entities allocate more importance on preserving their own secrets), the entities

tend to obfuscate their observations with a high probability. In contrast, when λA is small, the

entities tend to obfuscate their observations with a low probability.

3.3.2 Game II: Non-zero-sum Fully Collaborative Game

In Game I, the problem is modeled as a zero-sum game, in which the defender’s utility is exactly

the opposite of that of the attacker. In practice, the QIF game may not necessarily be zero-sum

and need to be generalized to capture the non-zero-sum setting.11 For instance, when the entities

and the attacker have different importance factors of learning each other’s secret (i.e., λA in

10Note that the utility of the entities is not necessarily positive. For instance, in practice there are often
constraints in the detection performance, i.e., the posterior vulnerability of the attacker must be higher than a
threshold for security guarantee. In this case, the entities may be required to misreport with a probability of less
than 0.5 even if they select RL. Consequently, a large λA may result in negative utility for the entities, which can
be viewed as the price paid for higher security.

11Note that the following results are obtained from the perspective of the collaborative entities. By switching
the roles of the attacker and the entities, one can derive similar results from the perspective of the attacker.
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(3.9)), the utility function of the entities may differ from (3.10). With such consideration, the

rewards of the attacker and the entities in this game are modeled by

uA(πA, R) = λA
∑
j∈Nc

V̂Yj (π
A, R)− V̂X(πA, R), (3.25)

uE(πA, R) = −λE
∑
j∈Nc

V̂Yj (π
A, R) + V̂X(πA, R), (3.26)

in which λE is the importance factor of preserving their secrets for the entities.

Similarly, the utility functions of both the attacker and the entities are given by

UA(pA(πA), pE(R)) =
∑
πA∈A

∑
R∈D

pA(πA)pE(R)uA(πA, R), (3.27)

UE(pA(πA), pE(R)) =
∑
πA∈A

∑
R∈D

pA(πA)pE(R)uE(πA, R). (3.28)

Note that due to the non-zero-sum formulation, many properties of Game I no longer hold in

Game II. For example, a minimax strategy in Game II may not be a maximin strategy, which

means that we can no longer use Theorem 5 to obtain the NE of Game II. In this case, the NE

strategies are determined by the importance factors λE and λA.

Case 1:

When λE ≤ λmin , min(
V̂X(πAL ,RH)−V̂X(πAL ,RL)

LY (πAL ,RH)−LY (πAL ,RL)
,
V̂X(πAH ,RH)−V̂X(πAH ,RL)

LY (πAH ,RH)−LY (πAH ,RL)
), where LY (πA, R) =∑

j∈Nc V̂Yj (π
A, R), it can be verified that

uE(πAL , RL) > uE(πAL , RH), (3.29)

uE(πAH , RL) > uE(πAH , RH). (3.30)

Therefore, RL is a dominant strategy for the entities. In this case, there exists a pure NE

strategy given by

R = RL;πA = argmax
π∈A

uA(π,RL).

Case 2:

When λE ≥ λmax , max(
V̂X(πAL ,RH)−V̂X(πAL ,RL)

LY (πAL ,RH)−LY (πAL ,RL)
,
V̂X(πAH ,RH)−V̂X(πAH ,RL)

LY (πAH ,RH)−LY (πAH ,RL)
), it can be verified that

uE(πAL , RL) < uE(πAL , RH), (3.31)
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uE(πAH , RL) < uE(πAH , RH). (3.32)

Therefore, RH is a dominant strategy for the entities. In this case, there exists a pure NE

strategy given by

R = RH ;πA = argmax
π∈A

uA(π,RH).

Case 3:

When λE ∈ (λmin, λmax), there is no dominant strategy for the entities, and hence mixed NE

strategies are explored. Particularly, we are interested in the case that λA ∈ (λmin, λmax). In

this case, when the entities switch to another pure strategy (e.g., from RL to RH) that increases

their payoffs, the payoff of the attacker decreases, which means that the attacker and the entities

are competing to maximize their own utility while minimizing their opponent’s. Using similar

technique as that in [97], it can be proved that any entity’s NE strategy is also a minimax

strategy.

Define the set of entities’ minimax strategies as:

ΩMinimax = argmin
pE

max
pA

UA(pA, pE). (3.33)

For any attacker’s strategy pA(πA) = [pA(πAL ), pA(πAH)], define a function f(pA(πA)) = p̂A(πA)

such that

p̂A(πAL ) = η
uE(πAL , RL)− uE(πAL , RH)

uA(πAL , RH)− uA(πAL , RL)
pA(πAL ), (3.34)

p̂A(πAH) = η
uE(πAH , RL)− uE(πAH , RH)

uA(πAH , RH)− uA(πAH , RL)
pA(πAH), (3.35)

where η > 0 is chosen to satisfy p̂A(πAL ) + p̂A(πAH) = 1. Then the following Lemma holds.

Lemma 4. When λE , λA ∈ (λmin, λmax), (pA, pE) is an NE of Game II if and only if (f(pA), pE)

is an NE in Game I.

Proof. Please see Appendix B.4.

Theorem 6. When λE , λA ∈ (λmin, λmax), the set of entities’ minimax strategies is identical

to the set of entities’ NE strategies in Game II.

Proof. Please see Appendix B.5.

To this end, we can solve Game II by first obtaining the entities’ minimax strategy, based

on which the corresponding NE strategy of the attacker can be further derived.
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Remark 7. Note that in Game I and Game II, the action sets of the entities are determined

by the whole network. For those entities that are not willing to collaborate, their misreport

probabilities can be set as 0.5 so that there is no privacy leakage for them. In this case, all the

entities can obtain higher reward by following the leader’s decision when the misreport probability

of any entity is less than 0.5, since the leader has the best observation capability and according to

Proposition 1, receiving obfuscated observations from the entities further increases the attacker’s

posterior vulnerability (i.e., larger V̂X) from the leader’s perspective. Therefore, all the entities

will participate in the collaboration and act as a whole.

3.3.3 Game III: Two-layer Non-fully Collaborative Game

Different from Game I/II, a scenario in which the entities assume certain independence is

considered in this game. In particular, the entities are willing to cooperate for the joint benefits

temporarily but their ultimate concern is their own privacy. In addition, larger action sets for

the attacker and the entities are assumed, denoted by A = {πA1 , πA2 , · · · , πAMA
} and Pmis =

{p1, p2, · · · , pMD}, with pi ∈ [0, 0.5],∀1 ≤ i ≤ MD and πAj ∈ [0, 1],∀1 ≤ j ≤ MA, respectively.

With these considerations, the problem is modeled as a two-layer single-leader multi-follower

game, in which the attacker acts as the leader and entities act as the followers that are informed

of the attacker’s attacking strategy. The first-layer game models the interaction between the

attacker and the entities, while the second-layer game models the collaborative information

sharing among the entities themselves.

In this case, the utility function of the attacker is given by12

UA(πA,pc) =
∑
j∈Nc

λj V̂Yj (π
A, pcj)− V̂X(πA,pc), (3.36)

in which pc = [pc1, p
c
2, · · · , pcN ] is a vector consisting of the entities’ misreport probabilities

and pcj ∈ Pmis,∀j ∈ N ; V̂Yj (π
A, pcj) is the posterior vulnerability of entity j’s secret given its

misreport probability; V̂X(πA,pc) is the posterior vulnerability of the attacker’s secret given the

misreport probabilities of the entities; λj is the importance factor of learning Yj for the attacker.

Similarly, the utility function of entity j is given by

UEj (π
A,pc) = V̂X(πA,pc)− λj V̂Yj (πA, pcj). (3.37)

Note that the leader-follower game is often solved by backward induction. First, solve the

follower’s problem for every possible strategy taken by the leader. The solution consists of the

12In this case, the utility of the attacker may be negative even when it chooses not to attack. However, since
the utility function as well as the vulnerability function (i.e., the gain function g(w, x) in g-vulnerability) are
subject to design, one can set the utility of such outside options for the attacker as 0.
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best response strategy of the follower as a function of the leader’s strategy. Then, the leader

decides its optimal strategy according to the follower’s best responses. Therefore, for every

possible πA taken by the attacker, we first solve the second-layer game among the collaborative

entities.

Theorem 7. [98] Every finite potential game admits at least one pure-strategy NE.

Corollary 3. For any attacking strategy πA, the second-layer game in Game III is a potential

game and therefore admits at least one pure-strategy NE.

Proof. Consider the function

P (πA,pc) = V̂X(πA,pc)−
∑
j∈Nc

λj V̂Yj (π
A, pcj). (3.38)

It can be shown that

P (πA, [pcj ,p
c
−j ])− P (πA, [p′cj ,p

c
−j ]) = UEj (π

A, [pcj ,p
c
−j ])− UEj (πA, [p′cj ,pc−j ]),

∀p′cj , pcj , πA ∈ [0, 1], j ∈ N ,pc−j ∈ [0, 1]N−1.

(3.39)

Therefore, P is a potential function for the second-layer game in Game III, which means it is a

potential game. As a result, according to Theorem 7, the second-layer game in Game III admits

at least one pure-strategy NE.

Given the existence of NE at hand, the log-linear learning algorithm [99] can be adapted to

compute the NE.

Theorem 8. [99] With a sufficiently large β, the proposed log-linear learning algorithm asymp-

totically converges to an action profile that maximizes the potential function.

Note that the utility functions of all the entities are publicly known and therefore an entity can

mimic the behaviors of the others and run Algorithm 6 locally. To this end, for every possible

mixed strategy taken by the attacker, the entities can learn their optimal collaboration strategies

by running Algorithm 6, which maximizes the potential function P (πA,pc) given by (3.38). Since

P (πA,pc) = −UA(πA,pc), the obtained NE strategy is indeed the optimal one which minimizes

the attacker’s utility. In the meantime, by running the same algorithm, the attacker can infer the

optimal collaboration strategies of the entities and therefore find its optimal attacking strategy.

Theorem 9. For any attacking strategy πA from the attacker, a rational entity that intends to

maximize its own utility will choose to participate in the collaboration.

Proof. Note that the utility function of entity j in the collaborative case (at NE) is given

by UNEEj
(πA,pc) = V̂X(πA,pc) − λj V̂Yj (π

A, pcj). If entity j chooses not to collaborate and
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Algorithm 6 Log-linear Learning Algorithm

1: Initialization: Set the iteration index t = 0, let each collaborative entity j,∀j ∈ Nc randomly
select a misreport probability pcj ∈ Pmis and set the binary flag xj(t) = 0,∀j ∈ Nc. All the
collaborative entities simultaneously execute the following procedure:

2: for t = 1, 2, ... do
3: Exploration:
4: if xj(t− 1) = 0 then
5: Entity j updates its selection according to the following rule:

Pr[pcj(t) = a] =


γj

|Pmis| − 1
, a ∈ {Pmis\pcj(t− 1)},

1− γj , a = pcj(t− 1),

in which |Pmis| is the cardinality of the set Pmis and γj is the exploration rate of entity j.
In addition, set xj(t) = 1 if pcj(t) 6= pcj(t− 1), and xj(t) = 0 otherwise.

6: end if
7: Update:
8: if xj(t− 1) = 1 then
9: Entity j updates the selection according to the following rule:

Pr[pcj(t) = pcj(t− 1)] =
e
uEj (t−1)β

X
,

Pr[pcj(t) = pcj(t− 2)] =
e
uEj (t−2)β

X
,

(3.40)

in which β is the learning parameter, uEj (t − 1) and uEj (t − 2) are the received utility

function of entity j in iteration t− 1 and t− 2, respectively, and X = e
uEj (t−1)β

+ e
uEj (t−2)β

.
Furthermore, set xj(t)=0.

10: end if
11: end for

makes decision on whether the attacker has launched attacks based on its own observation,

the posterior vulnerability of the attacker is given by V̂ Non
X (πA, Qj) and its own posterior

vulnerability is equal to its prior vulnerability V̂ Non
Yj

(πA) = VYj (π
A). Since the leader (i.e.,

entity k) has the best observation capability among all the entities, it is immediate that

V̂ Non
X (πA, Qj) ≤ V̂ Non

X (πA, Qk). Furthermore, when all the other entities choose the same

collaborative strategies as those at NE, according to Proposition 1, the observation sharing

process increases the posterior vulnerability of the attacker from the leader’s view, and therefore

V̂ Non
X (πA, Qk) ≤ V̂X(πA, [pcj = 0.5,pc−j ]). On the other hand, as is discussed in Remark 5,

V̂Yj (π
A, pcj = 0.5) = VYj (π

A). As a result, the utility of the non-collaborative entity j is

UNonEj
(πA) = V̂ Non

X (πA, Qj)− λj V̂ Non
Yj

(πA) ≤ UNEEj
(πA, [pcj = 0.5,pc−j ]). In addition, due to the
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property of NE, the utility of entity j at NE satisfies UNEEj
(πA, [pcj = 0.5,pc−j ]) ≤ UNEEj

(πA,pc).

Therefore,

UNonEj (πA) ≤ UNEEj (πA, [pcj = 0.5,pc−j ]) ≤ UNEEj (πA,pc). (3.41)

Remark 8. Note that in (3.41), the first equality holds only when either of the two conditions

is satisfied. (1) Entity j has the same observation capability as the leader and the misreport

probabilities of all the other entities that participate in the collaboration are 0.5 at NE. (2) The

attacker acts deterministically, i.e., it always chooses to launch (not to launch) attack. The

second equality holds when the misreport probability of entity j is 0.5 at NE if it chooses to

collaborate. These two conditions correspond to extreme events that in general are not of interest

in practice. In any case, participating in collaboration will incur no loss for the entities.

3.4 Numerical Illustrations

In this section, we apply our game-theoretic analysis to the case of collaborative intrusion

detection against an attacker in the centennial campus of North Carolina State University

(NCSU). In the centennial campus, NCSU shares the same network with its industrial partners

as shown in Fig. 3.2. We consider a scenario in which the network faces a smart attacker and the

companies collaborate by sharing their observations with an administrator, which resides in the

Engineering Buildings and further determines whether there is an attack or not. In this case, the

administrator in the Engineering Buildings works as the leader while all the 8 companies work

as the entities in our model. In the simulation results presented in this section, the participated

companies are randomly selected from these 8 companies with 1 ≤ |Nc| ≤ 8 and N = |Nc|+ 1.

An ideal scenario, in which the shared information can be collected by the leader without any

delay or errors, is considered. Since the NE strategies of both the attacker and entities in Game
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I and Game II can be theoretically derived, we mainly present the numerical results for Game

III in this section.

3.4.1 Utility-privacy Tradeoff

In this subsection, the tradeoff between the collaboration utility (i.e., V̂X) and the privacy

(i.e., 1
N−1

∑
j∈Nc V̂Yj ) is examined, given that N − 1 entities (i.e., companies) participate in the

collaboration. In particular, instead of focusing on the NE strategies in the proposed game

models, the posterior vulnerabilities of both the attacker and the entities for all possible misreport

probabilities are examined. It is assumed that the entities can observe the network state correctly

with probability 0.6 (0.95) when the attacker launches (does not launch) an attack, while the

leader can observe the network state correctly with probability 0.9 (0.95) when the attacker

launches (does not launch) an attack. In addition, Bayes-vulnerability is used to measure the

vulnerability of both the attacker and the entities.

Fig. 3.3 shows the relationship between the misreport probabilities of the entities and the

corresponding posterior vulnerability of both the entities and the attacker, in the case that

N = 5 and the attacker attacks with probability 0.5. In addition, it is assumed that all the

entities misreport with the same probability.13 It can be seen that for any misreport probability

pc < 0.5, the posterior vulnerability of the attacker is no smaller than 0.9 while that of the

entities is larger than 0.775, which means the observation sharing process indeed leads to larger

posterior vulnerabilities and therefore information leakage for the collaborative entities, and at

13Similar results are obtained when the entities adopt different misreport probabilities and/or the attacker
adopts other attacking strategies, which are omitted in the interest of space.
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the same time may render the attacker more vulnerable.14 In addition, compared to the case

that the entities share their observations honestly (pc = 0), both the posterior vulnerability of

the attacker and the average posterior vulnerability of the entities decrease as the misreport

probability increases, which indicates that the obfuscation process decreases the vulnerabilities

of both the attacker’s and the entities’ secrets.

Fig. 3.4 shows the tradeoff between the posterior vulnerability of the attacker and the average

posterior vulnerability of the entities. In general, larger average posterior vulnerability for the

entities corresponds to larger posterior vulnerability for the attacker. This is because when the

entities misreport with lower probability, the shared observations are more accurate and contain

more information about the true network state, which helps the leader estimate the attacker’s

action more accurately. In addition, it can be seen that with more collaborative entities, the

posterior vulnerability of the attacker in most cases increases for the same average posterior

vulnerability of the entities. Intuitively, when there are more collaborative entities, the leader

can gather more information about whether the attacker launches an attack or not and obtain a

better estimate.

In addition, it can be observed that when the misreport probability is large (equivalently

the average posterior vulnerability of the entities is small), the posterior vulnerabilities of both

the attacker and the entities stop decreasing as the misreport probability increases. This can be

explained as follows: when the misreport probability is high, the Bayes-vulnerability function

becomes linear. According to the discussion in Remark 5, the posterior vulnerability of the

attacker does not change as pc increases.

3.4.2 Convergence of the Log-linear Learning Algorithm

In this subsection, the convergence of the log-linear learning algorithm is examined. Similar to

the setting in Section 3.4.1, a network consisting of N collaborative entities is considered. It

is assumed that both the entities and the leader can observe the network state correctly with

probability 0.7 (0.95) when the attacker launches (does not launch) an attack. The λ’s (i.e., the

importance factor of learning the attacker’s secret) are set to 0.05 for all the entities. In addition,

the action sets for the entities are set as Pmis = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5};
the exploration rate used in the log-linear algorithm is chosen as γj = e−10−5βt in which β = 500

and t is the iteration index, for all j. Fig. 3.5 shows the average reward of the entities of the

second-layer game in Game III in the case that the attacker takes the attacking strategy πA = 0.5.

It can be seen that for all the scenarios examined, the average reward of the entities converges.

14Note that in this case, given the observation of the leader, the posterior vulnerability of the attacker is 0.9,
while the average prior vulnerability of the entities is equal to 0.775.
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Figure 3.5: The convergence of the log-linear
learning algorithm
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Figure 3.6: Optimal attacking strategy

3.4.3 Optimal Attacking Strategy

In this subsection, the optimal attacking strategy is investigated. In particular, a network

consisting of 3 collaborative entities is considered. The action set of the attacker is set as

A = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and the other parameters are the same as those

in Section 3.4.2. Fig. 3.6 shows the attacker’s reward in terms of attacking probability. It can be

seen that in this case, the optimal attacking strategy is to attack with probability 40%. Note

that for all possible parameters (e.g., λ’s, observation capabilities, etc.), the attacker can always

infer the actions of the entities and therefore obtain its reward as a function of its attacking

probability and then choose the optimal one. From Fig. 3.6, it can be seen that the reward

of the attacker is not necessarily positive. On the one hand, the (Bayes)-vulnerability of the

attacker (i.e., V̂X) is measured by the probability of the entities guessing its action correctly,

which satisfies V̂X ≥ 0.5. On the other hand, due to the strategic action of the entities, their

privacy loss
∑

j∈Nc λj V̂Yj may be smaller than the attacker’s vulnerability. That being said,

when the entities perfectly know that the attacker will not attack at all, the vulnerability of

the attacker is non-zero, which may result in a negative reward for the attacker. However, the

reward of the outside option for the attacker (i.e., not to attack at all) could be set as 0 by

designing appropriate reward functions and vulnerability functions (i.e., the gain function g(w, x)

in g-vulnerability) if needed.

3.4.4 Optimal Number of Collaborating Entities

In this subsection, the optimal number of collaborating entities is examined. In particular, it is

assumed that all the entities have the same importance factor λ. The other parameters are the
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same as those in Section 3.4.2.

Fig. 3.7 and Fig. 3.8 show the potential function (c.f. Eq. (3.38)) and the average entity

reward (c.f. Eq. (3.37)) in terms of the number of entities N with different λ at NE, respectively.

It can be seen that when λ = 0, the potential function (which is the opposite of the attacker’s

reward function) and the average entity reward increase as the number of entities increases. In

this case, the entities have no concern on privacy and therefore they are willing to collaborate

honestly (i.e., pc = 0). As a result, as the number of entities grows, the posterior vulnerability of

the attacker (and therefore the potential function and the average entity reward) increases. When

λ is small, the potential function first increases as the number of entities increases and then

decreases. In these cases, the collaboration gain (i.e., the increase in the posterior vulnerability

of the attacker V̂X by adding one entity) decreases as the number of entities grows. For the first

few entities, the collaboration gains are still larger than the privacy loss (i.e., λV̂Y ) of the added

entities, but they are quickly overpowered by the latter. For larger λ’s, the collaboration gain

can never make up for the privacy loss of any entity and the potential function decreases as the

number of entities increases. However, the average entity reward behaves differently for large λ.

In particular, it gradually stabilizes. The reason behind this result is that when the number of

entities increases, the leader has sufficient information to estimate the action of the attacker

accurately (i.e., V̂X is close to 1). In this case, adding a new entity does not help much since the

collaboration gain may not be able to compensate for the corresponding privacy loss and the

entity will misreport with a high probability. It can be seen from Fig. 3.7 that the reward of

the attacker is increasing as the number of entities grows. As a result, the optimal number of

collaborating entities should be taken as the smallest N when the average entity reward achieves

its stable point (e.g., N = 7 when λ = 0.5).
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3.5 Related Works

As sophisticated large-scale attacks emerge, the performance of an individual security system is

rarely satisfactory. As a result, significant research efforts have been devoted to private security-

related information sharing for collaborative defense. Most of the existing works consider the

scenario that the collaborative entities share their alerts or traffic data directly and prevent the

information leakage from the shared information (e.g., the IP addresses) using Bloom filters [7–9],

sanitization [10,11] or anonymization and encryption methods [12–14]. [15] allows each entity to

directly query the traffic data of other entities and proposes to protect the user information

by ensuring differential privacy of the query results. In this chapter, a different type of privacy

issue is considered. In particular, we consider the collaborative detection of the same attack,

in which multiple entities share their observations (e.g., detection results) directly, and no

user-specific private information is involved. Furthermore, the QIF theory is adapted to quantify

the collaboration gain and privacy loss of the entities.

To guide the information sharing process for a good tradeoff between the collaboration gain

and the privacy loss, various game-theoretic methods have been developed. For example, [100]

proposed a two-player game model to reveal the benefit of information sharing and pointed

out how the characteristics of the entities affect the incentives for information sharing. In [92]

and [93], a two-player game between two competing firms that share a common platform was

formulated. By game-theoretic analysis, the tradeoff between security investment and privacy

breach in information sharing was studied and discussed. [94] used a two-stage Bayesian game

to analyze the information sharing decisions of the two competing firms. [95] modeled the

information exchange among the firms as a distributed non-cooperative game and found the

best security investment and information sharing strategies. [96] considered a set of users in a

public cloud who share the same hypervisors and obtained the necessary conditions under which

a rational user in a public cloud will share his discovered vulnerabilities by analyzing the NE

strategies of the proposed two-player game. However, the above works did not explicitly consider

the optimal attacking strategy of the attacker and the privacy issues induced by information

sharing. To quantitatively study the tradeoff between the utility and privacy, in the presence

of an attacker, our previous works [101, 102] formulated the problem as a repeated two-layer

single-leader multi-follower game and investigated the optimal collaboration strategies of the

collaborative entities. The game is solved under the assumption that the attacker will stop

attacking once its attack is detected by the security entities and the privacy leakage of the

entities are measured by Shannon-entropy. In this chapter, we use the QIF theory to measure

the vulnerability of both the attacker and the collaborative entities and solve the games without

any constraint. In addition, instead of using heuristic reward functions as in our previous works,

we use the quantitative information flow theory to model the collaboration gain, which captures
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more general and practical settings.

There are some security games that consider the defender’s information leakage induced

by its actions. [103] proposed two-player zero-sum games in which a defender chose probabil-

ities of secrets and an attacker tried to learn some of the defender’s secrets. The impact of

the potential information leakage on the defender’s optimal strategy was investigated. [104]

considered two-player games in which the attacker incrementally and stealthily obtained partial

information about the defender’s secret and the defender periodically changed the secret to

prevent compromise of the system. [91] presented zero-sum information leakage games in which

both the defender and the attacker were taking actions to minimize or maximize the information

leakage of a certain secret, respectively. The utilities of both the attacker and the defender were

defined as information-leakage measures. However, to the best of our knowledge, none of the

existing works has explored the games that capture the secrets of both the attacker and multiple

defenders while the defenders are trying to learn the attacker’s secret in a collaborative and

privacy-aware manner.

3.6 Conclusions

In this chapter, three games are formulated to model the interaction among collaborative security

entities and the attacker, with each game corresponding to one possible scenario of interest in

practice. By solving the games, the optimal strategies for the adversary and the entities are

obtained. In addition, when the entities are selfish and independent, a provably convergent

log-linear learning algorithm is adapted to compute the optimal collaboration strategies for the

entities. Through numerical computation, we obtain the utility-privacy tradeoff curves, with

which the collaborative entities can better evaluate the privacy cost of achieving certain security

performance. In particular, in some scenarios, if the entities obfuscate their true observations such

that their privacy loss is less than a threshold (which decreases as the number of entities increases),

sharing the obfuscated observations does not help to increase the Bayes-vulnerability of the

attacker. This essentially helps the entities avoid adopting ineffective collaboration strategies in

practice. In addition, given the utility-privacy tradeoff curve, the optimal collaboration strategies

of the entities are obtained for any possible attacking strategy. Furthermore, it is revealed

that there is always an optimal attacking probability that the attacker can infer based on its

observations of the entities’ behavior and its knowledge about the system and the game. Finally,

the simulation results show that the privacy concern changes the outcome of collaboration. More

specifically, different from the scenario without privacy concern in which more collaborative

entities are always preferred, there is an optimal number of participating entities when they are

concerned about their privacy, which can serve as a guidance for the design of such collaborative

detection groups in practice.
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Chapter 4

Minimizing the Age of Information

in the Presence of Location

Privacy-aware Mobile Agents

In this chapter, the problem of AoI minimization in the presence of multiple location privacy-

aware mobile agents in mobile crowd sensing is considered. As introduced in Chapter 1, the

location differential privacy is considered as a “commodity” that the mobile agents are willing to

trade with the BS. The BS first publishes its payment mechanism. After receiving the payment

information, the mobile agents determine their differential privacy levels by optimizing their

utility functions, which measure the difference between the expected payment they will receive

and their privacy loss. In this sense, for rational mobile agents that aim to maximize their own

utility, the BS can adjust its payment mechanism to motivate the mobile agents to select its

desired privacy levels. In this chapter, the lower bound of the expected payment for the BS is

derived as a function of the differential privacy level for each mobile agent, and the corresponding

payment mechanism that achieves the lower bound is proposed. Given the privacy levels of all

the mobile agents and the corresponding expected payments, the AoI minimization problem

under budget constraint is formulated and a cost-efficient mobile agent selection algorithm is

proposed.

The remainder of this chapter is organized as follows. Section 4.1 presents the overview of the

system. The incentive mechanism is proposed in Section 4.2. Section 4.3 presents the proposed

mobile agent selection algorithm. The discussion about large scale scenarios is presented in

Section 4.4. The effectiveness of the proposed algorithm is demonstrated by simulations in

Section 4.5. Related works are discussed in Section 4.6, and Section 4.7 concludes this chapter.
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Table 4.1: Important notations

N the number of ground terminals.

An(t) age of information of ground terminal n at time slot t.

εi differential privacy level of mobile agent i.

P̄i(εi) expected payment of the BS to mobile agent i.

gi(εi) privacy loss function of mobile agent i.

Ci information collection and delivery cost of mobile agent i.

ptr(n) the probability that ground terminal n determines to transmit its update.

p(st)
the probability that the set of ground terminals that determine to transmit
their updates at time slot t is st.

lit true location of mobile agent i at time slot t.

p(lit = j) the probability of mobile agent i visiting ground terminal j at time slot t.

l̂it obfuscated location of mobile agent i at time slot t.

psi (l̂
i
t)

the probability of mobile agent i being selected by the BS for information
delivery if it reports an obfuscation location l̂it.

c(t) budget of the BS at time slot t.

Sl
the set of mobile agents that report the obfuscated location l and are selected
by the BS for information delivery.

4.1 System Overview

4.1.1 System Model

In this chapter, a network consisting of a BS and N ground terminals (denoted by N ), which

need to communicate with the BS, is considered. Important notations used in this chapter are

summarized in Table 4.1. We consider a time-slotted system with slot duration normalized to

unity. At each time slot, each ground terminal i independently determines whether to transmit

its update or not by following some stationary policy which is controlled by or known to the

BS.1 However, the ground terminals cannot directly communicate with the BS (e.g., due to their

limitations in transmit power and communication capability). Therefore, the BS outsources

the information delivery tasks to some location privacy-aware mobile agents. More specifically,

the BS first publishes the AoI minimization task on MCS platforms and receives necessary

information from interested mobile agents (e.g., utility functions and mobility models). By

accepting the information delivery tasks, the mobile agents are required to collect and deliver

the updates for a pre-determined period (e.g., τ time slots) while travelling in the network.2

Given the set of mobile agents, an overview of the system is shown in Fig. 4.1. Specifically,

1For instance, it can adopt some fixed policy and transmit the updates with certain probability at each time
slot. Some more complicated stationary policy (such as the one proposed in [105]) can also be considered. We
note that our proposed method can deal with any possible transmission policy.

2Note that when τ = 1, it is equivalent to the commonly considered MCS systems with one-shot tasks.
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the BS first publishes the specified non-negative payment mechanism for each mobile agent,

based on which the mobile agents will determine their privacy levels and report obfuscated

locations to the BS. Then, the BS selects a set of mobile agents to collect information from

the terminals at their reported locations. Similarly to [23], we consider the scenario where the

mobile agents can only collect information from ground terminal n when they are near the

location of ground terminal n.3 Therefore, the mobile agents that are selected for information

delivery fail to collect the information if they report locations other than the true locations and

the BS will know it right after. In particular, it is assumed that the mobile agents cannot send

falsified information to fool the BS. For instance, the ground terminals may incorporate some

encrypted information, which can be decrypted only by the BS, together with the updates. The

BS can therefore verify whether the updates are from the corresponding ground terminals by

checking the embedded authentication code. By reporting an obfuscated location n, the mobile

agents indicate that they are in the communication range of the ground terminal n without

revealing their exact location (i.e., it means that the mobile agents can be at any locations

within the communication range of the ground terminal n). In addition, it is assumed that the

communication ranges of the ground terminals do not overlap and the mobile agents cannot

collect information from multiple ground terminals at one location (otherwise, these ground

terminals can be considered as a whole and treated as one “virtual” ground terminal). After

information collection, the mobile agents forward the updates to the BS and the BS will pay

the mobile agents accordingly.

3We note that if a mobile agent is allowed to collect information from a far away ground terminal, the
corresponding travel time may not be negligible, which makes the mobile agent selection highly complicated. Such
a scenario will be considered in our future works.
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4.1.2 Age of Information Model

In this chapter, a discrete time model is considered. In each time slot t ∈ {1, 2, 3, · · · }, the

BS stimulates the mobile agents to report their locations and selects a set of mobile agents to

deliver the updates. AoI [22] is adopted as the key performance metric to quantify the freshness

of the status information regarding the ground terminals at the BS. It is essentially defined

as the elapsed time since the generation of the last status update that the BS received from

the ground terminals. Let An(t) denote the AoI of ground terminal n at the end of time slot t.

Then, we have An(t) = t− r(n), in which r(n) is the time instance at which terminal n’s most

recent status update received by the BS is generated. If any mobile agents are selected to collect

information from a ground terminal that determines to transmit an update, the ground terminal

generates and sends a fresh update to the mobile agent. The same information delivery model

as that in [23,105] is adopted. More specifically, when a mobile agent collects an update from

the ground terminals, the update will be relayed to the BS immediately. In addition, the update

is supposed to be generated in the beginning of the time slot and delivered to the BS within one

time slot without any error. In this sense, the AoI of the corresponding ground terminal drops

to 1 every time an update is delivered successfully. The dynamics of An(t) are given by

An(t) =

1, if status update arrives at the BS,

An(t− 1) + 1, otherwise.
(4.1)

In this sense, the instantaneous AoI of all the ground terminals is given by

A(t) =
1

N

N∑
n=1

An(t). (4.2)

4.1.3 Agent’s Utility Model

In this chapter, M location privacy-aware mobile agents are considered. In particular, note that

the mobile agents are able to receive the updates as long as they are in the communication

range of the ground terminals. Therefore, in this chapter, the location privacy is considered as

whether the mobile agents are in the communication range of each ground terminal. For the

mobile agents that successfully deliver the information to the BS, they will receive a payment

for their work, which can also be considered as a compensation for revealing their locations.

However, for those mobile agents that do not deliver the information successfully (i.e., the mobile

agents are not selected to perform the information collection tasks or the corresponding ground

terminals decide not to transmit updates), sharing their locations induces location privacy loss

without receiving any payment. Such privacy concerns in turn deter the mobile agents from
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participating in the information delivery process. Therefore, the mobile agents are allowed to

misreport their locations for location privacy preservation. Specifically, location differential

privacy [35] is adopted to measure the privacy loss of the mobile agents caused by location

sharing. Its definition is given as follows.

Definition 8. [35] At any time slot t, a randomized mechanism A satisfies ε-differential privacy

if for any output l̂t ∈ N and any two locations x1 ∈ N and x2 ∈ N , the following holds:

Pr(A(x1) = l̂t)

Pr(A(x2) = l̂t)
≤ eε. (4.3)

Differential privacy ensures that the ratio of the probabilities of a mobile agent reporting

any obfuscated location given any two possible true locations is no larger than eε, which can be

controlled by choosing a suitable value for ε. As a result, by knowing the obfuscated location,

the BS can hardly distinguish the true location of the mobile agent. According to the above

definition, the privacy level ε is given as follows.

ε = max

{
ln

(
Pr(A(x1) = l̂t)

Pr(A(x2) = l̂t)

)
, ∀l̂t, x1 6= x2 ∈ N

}
. (4.4)

Therefore, similar to [106,107], the objective of each mobile agent i is to maximize its own

utility given by4

Ua,i(εi) = P̄i(εi)− gi(εi)− E[1collection]Ci, (4.5)

in which εi is the differential privacy level of mobile agent i; P̄i(εi) is the expected payment

of the BS; gi(εi) is the privacy loss function of mobile agent i, assumed to be continuously

differentiable; 1collection is an indicator function for the event that mobile agent i collects and

delivers the information successfully and the expectation is over the probability of successfully

information delivery; Ci is the corresponding information collection and delivery cost. It is

assumed that the participating mobile agents are willing to trade their location privacy for

payment and gi(εi) can be set properly to capture their privacy requirements.5

4.1.4 Agent’s Mobility Model

In this chapter, it is assumed that the ground terminals form a graph and mobile agents are

traveling inside the network along the connecting edge by following the Graph Random Waypoint

4We note that the mobile agent may use any randomized mechanisms to achieve ε-differential privacy. In the
context of differential privacy, two mechanisms with the same ε lead to the same privacy loss. Therefore, the
notation of the randomized mechanism is omitted for the ease of presentation.

5For the mobile agents that are only willing to trade their location privacy up to a certain level εmax, they can
also share such information with the BS such that the BS will not select an ε > εmax.
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(GRW) mobility model [108]. In particular, the probability of a mobile agent selecting its next

location is captured by the following mobility matrix.6

M =


p1,1 p1,2 . . . p1,N

p2,1 p2,2 . . . p2,N

...
...

. . .
...

pN,1 pN,2 . . . pN,N


In particular, pn,j is the probability that the mobile agent chooses to move to the location of

ground terminal j in the next time slot given its current location of ground terminal n.7 Note

that in practice, the mobile agent may not be able to move from location n to location j due

to geographic constraints, which can be captured by setting pn,j = 0. It is assumed that the

mobility models of the mobile agents are known to the BS. We note that the main goal of this

chapter is to protect the current true locations of mobile agents. In this sense, compared to the

true locations, the mobility models are of less privacy concern. In addition, the BS can also

obtain the probability of the mobile agents being at different locations from observations or past

experiences [34]. The impact of the knowledge about the mobile agents’ mobility models will be

left as our future work.

Given the history of the reported locations of a mobile agent and the fact whether it delivers

the information successfully, the BS is able to update and store the probability of the mobile

agent visiting each ground terminal. In particular, if a mobile agent delivers the information

for ground terminal n successfully at time slot t, the probability of this mobile agent being at

location j at time slot t+ 1 is pn,j . Let lt and l̂t denote the true location and the obfuscated

location of the mobile agent, respectively. If the mobile agent reports an obfuscated location n

but is not selected to collect information, the probability of this mobile agent being at location

j at time slot t+ 1 is given by

Pr(lt+1 = j|l̂t = n) =

N∑
k=1

Pr(lt+1 = j|lt = k) Pr(lt = k|l̂t = n)

=

N∑
k=1

Pr(lt+1 = j|lt = k)
Pr(l̂t = n|lt = k) Pr(lt = k)∑N

m=1 Pr(l̂t = n|lt = m) Pr(lt = m)
,

(4.6)

in which Pr(lt+1 = j|lt = k) = pk,j is the probability that the mobile agent moves from

location k to j, which is determined by its mobility matrix; Pr(l̂t = n|lt = k) is the probability

that the mobile agent reports location n given its true location k, which is determined by its

location obfuscation strategy that will be discussed in Section 4.2; Pr(lt = k) is the probability

6Note that the mobility models of different mobile agents can be different.
7For the ease of presentation, we denote location n as the location of ground terminal n in the following

discussion.

60



distribution of the mobile agent’s location at time slot t from the BS’s perspective, which is

locally stored and updated by the BS.

Finally, if the mobile agent, which reports an obfuscated location n and is selected to collect

information, fails to deliver the information, the probability of this mobile agent being at location

j at time slot t+ 1 is given by

Pr(lt+1 = j|l̂t = n, fail) =

N∑
k=1

Pr(lt+1 = j|lt = k) Pr(lt = k|l̂t = n, fail)

=
N∑
k=1

Pr(lt+1 = j|lt = k)
Pr(l̂t = n, fail|lt = k) Pr(lt = k)∑N

m=1 Pr(l̂t = n, fail|lt = m) Pr(lt = m)
,

(4.7)

in which Pr(l̂t = n, fail|lt = k) is the probability of the mobile agent reporting the location n

but failing to deliver the information, given its true location k. Particularly, we have

Pr(l̂t = n, fail|lt = k) =

Pr(l̂t = n|lt = n)(1− ptr(n)), if k = n,

Pr(l̂t = n|lt = k), otherwise,
(4.8)

in which ptr(n) is the probability that ground terminal n determines to transmit its update.

In addition, if a new mobile agent joins the information delivery process, the probability of it

visiting each ground terminal depends on the prior knowledge of the BS (uniform distribution if

no prior knowledge is available).

4.2 The Proposed Incentive mechanism

4.2.1 Payment Mechanism of the BS

In practice, the objective of the BS is to minimize the expected AoI given a limited budget.

Intuitively, in order to achieve a smaller expected AoI, the BS should stimulate the mobile agents

to trade more location privacy (i.e., larger εi’s), which requires a larger payment. Therefore, a

smaller payment for fixed εi’s allows the BS to select larger εi’s given a budget, which leads

to better AoI performance. With such consideration, the objective of the payment mechanism

is to minimize the payment for any fixed εi’s. Let lit and l̂it denote the true location and the

obfuscated location of mobile agent i, respectively. In this section, it is first assumed that the

obfuscation strategy of each mobile agent i is given by

Pr(l̂it = j|lit = j) =
eεi

N − 1 + eεi
, (4.9)
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and

Pr(l̂it = k|lit = j) =
1

N − 1 + eεi
,∀k 6= j ∈ N . (4.10)

It can be verified that the above obfuscation strategy satisfies εi-differential privacy and is

commonly used in the randomized response mechanism to ensure differential privacy (see,

e.g., [109]).

Let psi (l̂
i
t) > 0 denote the probability of the mobile agent i being selected by the BS for

information delivery if it reports an obfuscation location l̂it. Given the above obfuscation strategy,

the following theorem can be proved.

Theorem 10. Suppose that all the mobile agents intend to maximize their own payoffs. To

incentivize a mobile agent i to report its location with εi-differential privacy, the expected lower

bound of the payment P̄i(εi) from the BS in the multi-agent scenario is given by

P̄i(εi) ≥ [
1

N − 1
− 1

N − 1 + eεi
]
g′i(εi)(N − 1 + eεi)2

eεi

+
∑
st

p(st)
N∑
j=1

p(lit = j)
eεi

N − 1 + eεi
psi (j)1(j ∈ st)Ci,

(4.11)

in which p(st) is the probability that the set of ground terminals that determine to transmit their

updates at time slot t is st. gi(·), lit and Ci are the privacy loss function, the true location and

the information collection cost of mobile agent i, respectively. psi (·) is the probability of mobile

agent i being selected.

Proof. Please see Appendix C.1.

Remark 9. In the considered application, the expected AoI depends only on whether a mobile

agent is in the communication range of the ground terminals. That being said, reporting any

location inside the communication range of a ground terminal results in the same utility for

the BS and therefore discrete obfuscation mechanism is used, among which the randomized

response mechanism and the exponential mechanism [40] are most commonly used. We focus

on the randomized response mechanism given in (4.9) and (4.10) in this chapter. In addition,

(4.11) is general in terms of the privacy loss function gi(ε) and it holds for any continuous and

differentiable gi(ε).

It can be learned from Theorem 10 that given the randomized response mechanism, the BS

cannot pay less than the lower bound in (4.11) to stimulate mobile agent i to obfuscate its

true location with εi-differential privacy. This essentially allows the BS to evaluate its payment

mechanism. In particular, any payment mechanism that achieves the lower bound is optimal

for the BS. In addition, it also specifies the BS’s cost for certain privacy level εi that further

determines the expected AoI.
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Remark 10. Note that the mobile agent selection probability psi (l̂
i
t) depends on the BS’s mobile

agent selection strategy, which may consider lots of factors in practice (e.g., AoI of the network, the

BS’s budget, and the reported locations of the other mobile agents). For the ease of presentation,

we use the notation psi (l̂
i
t) since only l̂it can be controlled by each individual mobile agent i. In

particular, in the multi-agent scenarios, psi (l̂
i
t) can be evaluated by psi (l̂

i
t) = E[1(l̂it)], where 1(l̂it)

is an indicator function for the event that the mobile agent i is selected given its reported location

l̂it and the mobile agent selection strategy, and the expectation is over the reported locations of

all the other mobile agents.

Note that since mobile agent i’s selection of optimal differential privacy level εi depends on

both the payment mechanism and its privacy loss function gi(εi), it is difficult, if not impossible,

to design a payment mechanism without knowing gi(εi) (and therefore the utility function of

mobile agent i). To facilitate the discussion, we consider the following privacy loss function for

the mobile agent.

gi(εi) = Li(e
εi − 1), (4.12)

in which Li is some positive constant. Some explanations about (4.12) are in order. On the one

hand, according to [35], if mobile agent i adopts εi-differential privacy strategy, the knowledge

about mobile agent i’s true location that an adversary, with any prior knowledge, can obtain

is bounded by
p(lit=j|l̂it)
p(lit=j)

≤ eεi ,∀j, in which p(lit = j) and p(lit = j|l̂it) are the prior and posterior

probability distribution of mobile agent’s location from the adversary’s view, respectively. In this

sense, (4.12) conforms to this intuition that the privacy loss grows exponentially as εi increases.

On the other hand, it can be observed that when εi = 0, i.e., the most strict requirement where

sharing the obfuscated location does not leak any information, the privacy loss satisfies gi(0) = 0.

Given the above privacy loss function, the following incentive mechanism, which can achieve

the lower bound, is proposed. In particular, since the incentive mechanism is the same for all

the mobile agents, the indices of the mobile agents are ignored in the following discussion for

the ease of presentation.

The Proposed Incentive Mechanism:

• In the beginning of each time slot t, depending on the corresponding level of privacy ε

(which can be different for different mobile agents) that it expects the mobile agent to

select, the BS publishes the mobile agent selection probability ps(l̂t),∀l̂t ∈ N and the
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following payment mechanism.8

P (ε) =


g′(ε)(N−1+eε)2

ps(l̂t)ptr(l̂t)(N−1)eε
+ C, if l̂t = lt and l̂t ∈ st,

0, Otherwise,
(4.13)

in which ptr(l̂t) =
∑

st
p(st)1(l̂t ∈ st) is the probability that ground terminal l̂t determines

to transmit its update.

• Then based on its true location lt and the payment mechanism, the mobile agent selects

a privacy level that maximizes its own utility and sends an obfuscated location l̂t to the

BS. The BS then determines whether the mobile agent is selected to deliver the updates

according to the mobile agent selection strategy, which is subject to design.

• If the mobile agent is selected for information delivery and l̂t ∈ st, i.e., ground terminal

l̂t determines to transmit its update, it collects the update from ground terminal l̂t and

delivers it to the BS (successfully only when lt = l̂t).

• The BS verifies whether l̂t = lt and l̂t ∈ st and determines the final payment according to

(4.13).

Remark 11. The criteria l̂t = lt and l̂t ∈ st are easy to verify. Since the mobile agent can only

collect the information successfully from the ground terminals that are at its reported location

and determine to transmit their updates, the BS can determine whether l̂t = lt ∈ st or not by

checking if the mobile agent delivers the information successfully. In addition, it can be verified

that Ua(ε) = L(N−1+e2ε)
N−1 > 0 given the above incentive mechanism.

In general, when the budget is limited, the probability of a mobile agent being selected ps(·)
decreases as the number of mobile agents increases. According to (4.13), to stimulate a mobile

agent to report with the same differential privacy level, the payment required for each successful

information delivery increases. Intuitively, as the probability of being selected decreases, the

utility of a mobile agent decreases since there is always a location privacy loss regardless of

whether it is selected or not. Therefore, a larger payment for successful information delivery is

needed. Such a phenomenon is important but largely ignored in the existing works (e.g., [40]).

Theorem 11. The proposed incentive mechanism achieves the lower bound in Theorem 10 for

any privacy loss function g(ε) that satisfies

g′(x)

g′(y)
≤ ex

ey
,∀0 ≤ x ≤ y. (4.14)

8Note that (4.13) is constructed according to the condition that the equality in (4.11) holds, which is given in
Appendix C.1. In addition, we note that ε is determined by the BS and the payment mechanism is designed such
that the optimal privacy level for the mobile agent is also ε.
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Proof. Please see Appendix C.2.

Remark 12. It can be verified that the privacy loss function in (4.12) satisfies (4.14). The

optimal incentive mechanisms for other privacy loss functions are left as future work.

To this end, some explanations about the proposed incentive mechanism are in order. Firstly,

Theorem 10 shows that the lower bound of the payment to mobile agent i depends on the privacy

level εi and the probability of mobile agent i being selected psi (·). To minimize the AoI given a

budget ci(t) for mobile agent i, it is expected that P̄i(εi) = ci(t). As a result, the corresponding

lower bound and upper bound of εi can be obtained by setting psi (·) = 1 and psi (·) = 0 in the

right-hand side of (4.11), respectively.

Similarly, in the multiple mobile agent scenario, given the total budget
∑M

i=1 P̄i(εi) = c(t),

the feasible region of εi’s can be obtained. Secondly, given the payment mechanism, Theorem

11 guarantees that the privacy levels selected by the mobile agents are the same as the εi’s

determined by the BS, and the expected payment is minimized and given by the right-hand

side of (4.11). Finally, the probability of each mobile agent being selected depends on the BS’s

mobile agent selection strategy. From the above discussion, it can be seen that to minimize the

AoI given a budget constraint, the BS has to jointly optimize the privacy levels εi’s and the

mobile agent selection strategy. For instance, the BS may assign a larger ε to the mobile agents

(corresponding to higher payments) that are more likely to visit the ground terminals with

higher AoI, and select them with a higher probability, which leads to better AoI performance. In

this chapter, we mainly investigate the mobile agent selection strategy with fixed εi and budget

constraint, which is deferred to Section 4.3. The optimization of εi’s is highly non-trivial and

left as future work. However, our payment mechanism is general and can be applied together

with any realization of εi’s and mobile agent selection strategies.

4.2.2 Optimality of the Obfuscation Strategy

In the above discussion, it is assumed that the obfuscation strategy is given by (4.9) and (4.10).

Next, we show the optimality of such a symmetric obfuscation strategy based on the following

assumptions.

Assumption 2. Given the mobile agent’s true location i, it reports its location truthfully with

probability pi ≥ 1
N and a misreported location j with probability 1−pi

N−1 ,∀j 6= i.

Note that the first condition in Assumption 2 (i.e., pi ≥ 1
N ) is commonly used in the

randomized mechanisms for differential privacy (e.g., [109]). The second condition indicates

that when the mobile agent determines to misreport its location, it will randomly select the

other locations with the same probability. Considering that the mobile agent will not receive any
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payment when it misreports its location, such an assumption is reasonable. Given Assumption

2, by plugging pi, ∀i into (4.4), the privacy level ε is reduced to

ε = ln
(

max
{(N − 1)pi

1− pj
,

1− pj
(N − 1)pi

,
1− pi
1− pj

,
1− pj
1− pi

,∀i, j
})
. (4.15)

Assumption 3. The probability of the mobile agent visiting any location is no larger than 1
2 ,

i.e., p(lt = i) ≤∑j 6=i p(lt = j), ∀i ∈ N .

Remark 13. We note that the above assumption conforms to the intuition that in order to

minimize the AoI as well as preserving location privacy, it is better for the mobile agent to visit

each ground terminal more evenly.

Theorem 12. For the payment mechanism proposed above, given Assumption 2 and Assumption

3, the obfuscation strategy given by (4.9) and (4.10) is optimal for the mobile agent.

Proof. Please see Appendix C.3.

4.3 Mobile Agent Selection

In this section, the mobile agent selection strategy is discussed. In particular, it is assumed that

there are always more than one mobile agent available for selection. Note that the payment

in (4.11) and the AoI depend on the mobile agent selection strategy (i.e., psi (·)). In addition,

considering that the budget of the BS is usually limited in practice, an effective mobile agent

selection strategy is in need. In particular, given the AoI of the ground terminals at time t (i.e.,

Ai(t),∀i ∈ N ) and the desired differential privacy level of each mobile agent εj , ∀1 ≤ j ≤M , the

objective is to minimize the expected AoI E[A(t+ 1)] given the budget c(t). The corresponding

optimization problem can be formulated as follows.9

min
S

E[A(t+ 1)]

s.t.
∑
i∈S

P̄i(εi) ≤ c(t),
(4.16)

9Note that it may be desirable to minimize the time-average AoI 1
T

∑T
t=1A(t), which is determined by the

budget allocated to each time slot c(t), the privacy levels of the mobile agents εi’s and the mobile agent selection
strategy. However, joint optimization over these parameters is highly non-trivial and left as our future work. In
this chapter, the mobile agent selection problem given c(t) and εi’s is considered. In such a case, minimizing the
expected time average AoI is equivalent to minimizing E[A(t+ 1)].
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in which S is the set of mobile agents to be selected by the BS. In particular, the expected AoI

E[A(t+ 1)] is given by

E[A(t+ 1)] =
1

N

N∑
k=1

[
(1− ptr(k))[Ak(t) + 1] + ptr(k)

[
[
∏
i∈S

(1− qki )]Ak(t) + 1
]]
, (4.17)

in which ptr(k) is the probability that ground terminal k determines to transmit its update; qki
is the probability of mobile agent i delivering the update from ground terminal k successfully;

Ak(t) is the AoI of ground terminal k at time slot t. In particular, we have

qki = p(lit = k)
eεi

N − 1 + eεi
psi (l̂

i
t = k), (4.18)

in which lit = k means that the true location of mobile agent i at time t is k and p(lit = k) is the

corresponding probability; psi (l̂
i
t = k) is the probability of mobile agent i being selecting when

its reported location is l̂it = k.

In addition, similar privacy loss functions as that in (4.12) are considered for the mobile

agents, i.e.,

gi(εi) = Li(e
εi − 1), (4.19)

in which Li is some positive constant for mobile agent i.

Note that the optimization problem (4.16) can be considered as an integer programming

problem with constraints, and therefore is difficult to solve in general. As a result, a sub-optimal

greedy algorithm is proposed in this section. Specifically, before introducing the algorithm, we

have the following proposition.

Proposition 3. Let Sl denote the set of selected mobile agents that report an obfuscated location

l ∈ N , with the probabilities of successful information delivery being qli,∀i ∈ Sl. Considering a

sequence of virtual expected AoI Âjl (t), 1 ≤ j ≤ |Sl| and Â0
l (t) = Al(t) in which |Sl| is the size of

Sl and Âjl (t) = (1− qlj)Âj−1
l (t), then

E[Al(t+ 1)] = (1− ptr(l))Al(t) + ptr(l)Â
|Sl|
l (t) + 1, (4.20)

in which the expectation is over the probabilities of successful information delivery.

Remark 14. Note that instead of determining the set of selected mobile agents simultaneously,

Proposition 3 essentially allows us to evaluate the expected AoI reduction of selecting each

individual mobile agent by introducing the virtual expected AoI sequence. In particular, the first

and third term in (4.20) are independent of Sl. As a result, the difference between ptr(l)Âj−1
l (t)

and ptr(l)Âjl (t) in Proposition 3 can be understood as the expected AoI reduction by selecting

j-th mobile agent in Sl.
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Algorithm 7 Mobile Agent Selection Algorithm

1: Initialization: The AoI of each ground terminal: Ai(t),∀i ∈ N ; the average budget at time t:
c(t); the reported location of each mobile agent j: l̂jt = kj ; the set of selected mobile agents:
S = ∅; Virtual AoI sequence Âzii (t) = Ai(t), with zi = 0,∀i ∈ N .

2: Compute the budget for information collection costs: ĉ(t) = c(t) − ∑M
j=1[ 1

N−1 −
1

N−1+eεj
]
g′j(εj)(N−1+εj)

2

eεj
.

3: while ĉ(t) ≥ minj p(l
j
t = kj |l̂jt = kj)p

tr(kj)Cj do

4: For each mobile agent j, compute the expected AoI reduction Â
zkj
kj

(t)p(ljt = kj |l̂jt =

kj)p
tr(kj) and the expected payment (for information collection cost) p(ljt = kj |l̂jt =

kj)p
tr(kj)Cj , then find (with random tie breaking)

j = arg max
j /∈S

{Âzkjkj (t)

Cj
|p(ljt = kj |l̂jt = kj)p

tr(kj) > 0,

p(ljt = kj |l̂jt = kj)p
tr(kj)Cj ≤ ĉ(t)

}
.

(4.21)

5: Add j into set S: S = S ∪ j.
6: Update the virtual AoI sequence by

Â
zkj+1

kj
(t) = (1− p(ljt = kj |l̂jt = kj))A

zkj
kj

(t), (4.22)

zkj = zkj + 1. (4.23)

7: Update the budget for information collection costs by

ĉ(t) = ĉ(t)− p(ljt = kj |l̂jt = kj)p
tr(kj)Cj . (4.24)

8: end while
9: Return S.

Based on the idea in Proposition 3, the proposed mobile agent selection strategy is given

in Algorithm 7. In particular, note that the first term in the payment (4.11) does not depend

on the mobile agent selection strategy, which can be considered as the cost to stimulate each

mobile agent to report its location with the BS’s desired differential privacy level. Therefore, we

first compute the budget for information collection costs in step 2. Then, based on the results in

Proposition 3, the (virtual) AoI reduction per unit cost for each mobile agent is evaluated and

the mobile agents are greedily selected in step 4-5. Finally, the virtual AoI sequence and the

remaining budget are updated in step 6-7.
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Algorithm 8 Large-scale Information Collection and Delivery Process

1: Initialization: The AoI of each ground terminal: Ai(0), ∀i ∈ N ; the total number of time
slots: T ; the average budget per time slot: cM ; the total payment: P = 0.

2: for t = 0, 1, 2, · · · , T do
3: Update the average budget allocated to each sub-network N b at time t: cb(t) =

cMT−P
T−t+1

∑
i∈Nb Ai(t)∑
i∈N Ai(t)

,∀1 ≤ b ≤ B.

4: The BS publish the incentive mechanism described in Section 4.2.
5: The mobile agents report their obfuscated locations.
6: The BS Selects the set of mobile agents in each sub-network for information delivery by

running Algorithm 7.
7: The selected mobile agents try to collect and deliver the information, the AoI of the

network is updated according to (4.1).
8: The BS updates the total payment P .
9: end for

4.4 Large-scale Scenarios

In practice, for large-scale MCS scenarios with a large number of ground terminals, it is usually

not optimal for the mobile agents to select their obfuscated locations from N . For instance,

from the BS’s perspective, the probability of a mobile agent visiting somewhere far away from

her working/living area is low. Therefore, the BS would prefer not to select the mobile agents

reporting the locations that they rarely visit due to the low probability of successful information

delivery. Nonetheless, the mobile agents still suffer from the location privacy loss for sharing

the obfuscated locations. One simple but effective solution is to divide the whole network into

multiple sub-networks according to the mobility models of the mobile agents such that they can

select their obfuscated locations from the sub-networks. For the ease of discussion, we assume

that the network is divided into B sub-networks and each mobile agent will travel only inside

one corresponding sub-network. With such consideration, the information collection and delivery

process in the large-scale scenarios is summarized in Algorithm 8.

Remark 15. In Algorithm 8, we assume that there is a total budget cMT and the remaining

budget is evenly allocated to the future time slots. At each time slot, the budget allocated to each

sub-network is proportional to its AoI. In addition, the differential privacy levels of the mobile

agents (and therefore the budget allocated to each mobile agent) are assumed to be pre-determined.

However, our proposed incentive mechanism and mobile agent selection algorithm can deal with

any budget allocation strategy over the time, the sub-networks as well as the mobile agents. The

goal of this chapter is to introduce the proposed incentive mechanism with the desired properties,

and the optimization of the budget allocation strategy will be considered in our future work.
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4.5 Simulation Results

In this section, the performance of the proposed incentive mechanism and mobile selection

algorithm is examined by simulation. It is assumed that the network is divided into B sub-

networks, each containing 20 ground terminals that adopt fixed stationary policy and transmit

their updates with a probability of 0.5. In particular, we consider a 4×5 grid for each sub-network

and the mobile agents can move from one ground terminal to another if they are connected.10

The information delivery tasks consist of T = 3000 time slots. In addition, two types of mobile

agents are considered. Type-1 mobile agents will stay at their current location i with a probability

of pi and move to each neighboring ground terminal in the corresponding sub-network b with the

same probability of 1−pi
|N bi |

, in which N b
i is the set of neighboring ground terminals in sub-network

b; Type-2 mobile agents are more AoI sensitive, in that they will visit the neighboring ground

terminals with probabilities that are proportional to their AoI. In particular, the probability of

a type-2 mobile agent at ground terminal k visiting a neighboring ground terminal i is given by
Ai(t)∑

j∈Nb
k
Aj(t)

.11

4.5.1 The Performance of the Proposed Incentive Mechanism

In this subsection, one sub-network is considered and the performance of the proposed payment

mechanism is examined. First of all, we examine the payment required to stimulate the mobile

agents to obfuscate their locations with desired differential privacy levels (i.e., ε). In particular, it

is assumed that the BS’s budget is large enough such that all the mobile agents will be selected.

To the best of our knowledge, there is no existing payment mechanisms in the literature that

stimulate the mobile agents to select the BS’s desired differential privacy levels. Therefore, we

compare the proposed incentive mechanism with some naive mechanisms. A natural idea is to

pay the mobile agents more when they reports their true locations and less otherwise. Since

the true locations of the mobile agents are unknown, we assume that the BS utilizes its prior

knowledge and considers the locations with the highest probabilities as the mobile agents’ “true”

locations in the naive counterparts. In addition, the BS pays the mobile agents whenever they

report the “true” locations and the payments are determined analytically (similarly to the

procedures in the proof of Theorem 11) such that the utilities of the mobile agents are maximized

when they select the corresponding ε. For the “Lower Bound” counterpart, we compute the

payment in (4.11). Fig. 4.2 shows the required payments to stimulate a type-2 mobile agent with

the privacy loss factor L = 1 and the information collection cost C = 0 to select a differential

10In the simulations, it is assumed that the mobile agents only travel inside the sub-network that they belong
to. However, it can be easily generalized to the scenario that they can travel across the sub-networks by modifying
their mobility models.

11Note that our proposed method can also be applied in other graphs, mobility models and system parameters,
and qualitatively similar simulation results can be obtained, which is omitted in the interest of space.
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privacy level of ε. We note that for the baseline, the payment also depends on the BS’s prior

knowledge about the mobile agent’s true location and a smaller payment is required when the

BS can estimate the mobile agent’s location more accurately. A larger ε (i.e., the mobile agent

reports its true location with a higher probability) in general indicates better prior knowledge in

the following time slots and therefore smaller payments. On the other hand, the instant payment

at each time slot is an increasing function of ε. As a result, as ε increases, the payment in the

baseline first decreases and then increases. It can be observed that compared to the baseline,

the proposed mechanism reduces the payment by over 90%, 70% and 40% when ε is 0, 1 and

2, respectively, which demonstrates its effectiveness. In addition, it can be observed that the

payment of the proposed mechanism is essentially the same as that of the lower bound, which

verifies Theorem 11.

4.5.2 The Impact of the Number of Mobile Agents

In this subsection, one sub-network is considered and the impact of the number of mobile agents

M is examined. In particular, when M = 2, there is one type-1 mobile agent and one type-2

mobile agent. Each time we increase M , one type-2 mobile agent and one type-1 mobile agent

are added in turn. The privacy loss factors L’s of all the mobile agents are set as 0.3 and the

information collection costs C’s of the type-1 mobile agents and the type-2 mobile agents are

set as 40 and 20, respectively. In addition, the staying probabilities of the type-1 mobile agents

are set as pi = 0.5, ∀i ∈ N .

Fig. 4.3 compares the AoI for different number of mobile agents when the proposed Algorithm

7 is implemented, with the privacy levels of all the mobile agents being ε = 1. When M = 2,

both mobile agents are always selected and the corresponding average payment is obtained.

When M > 2, we set the BS’s average budget the same as that in the M = 2 case. It can

71



500 1000 1500 2000 2500 3000
Iterations

80

90

100

110

120

130

Ao
I

2 mobile agent: ε=1.32
3 mobile agents: ε=1.15
5 mobile agents: ε=0.9

Figure 4.4: AoI vs the Number of Mobile
Agents

0 500 1000 1500 2000 2500 3000
Iterations

4

6

8

10

12

Pa
ym

en
t 2 mobile agent: ε=1.32

3 mobile agents: ε=1.15
5 mobile agents: ε=0.9

Figure 4.5: Payment vs the Number of Mobile
Agents

be observed that as the number of mobile agents increases, the AoI first decreases and then

increases. This is because when the number of mobile agents is small, increasing the number of

mobile agents helps since more mobile agents are available for selection. When the number of

mobile agents is large enough, the probability of being selected for the mobile agents decreases

as the number of mobile agents increases. Therefore, a larger payment is required to stimulate

each mobile agent to select the desired privacy level. As a result, fewer mobile agents can be

selected, which results in larger AoI.

In addition, we also examine the scenario in which the BS selects a fixed number of mobile

agents at each iteration. In particular, at each iteration, only one mobile agent is selected

according to step 4 in Algorithm 7 (i.e., set c(t) as infinity and stop running Algorithm 7 when

|S| = 1). The privacy levels ε of all the mobile agents are the same and selected such that the

average payment of the BS is 5. Fig. 4.4 and Fig. 4.5 show the AoI performance and the BS’s

average payment. It can be observed that, as the number of mobile agents increases, the AoI

also first decreases and then increases. When the number of mobile agents is large enough, the

probability of being selected for the mobile agents decreases as the number of mobile agent

increases. As a result, for the same payment, the mobile agents will select smaller ε’s, which

leads to larger AoI.

From the above results, it can be learned that allocating the budget to more mobile agents

may lead to worse AoI performance. It may be better for the BS to restrict the number of

mobile agents in each sub-network (e.g., by offering its payment mechanism to a small subset of

the available mobile agents). Such insights are not captured in the existing methods since they

consider fixed privacy levels (i.e., the mobile agents do not adjust their privacy levels based on

the payment mechanism).
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4.5.3 The Effectiveness of Algorithm 7

In this subsection, the performance of the proposed mobile agent selection algorithm is examined.

In particular, we consider the scenario in which there are two type-2 mobile agents with privacy

loss factor L1 = 2 and L2 = 1, respectively, and one type-1 mobile agent with L3 = 5 in

each sub-network. In particular, the type-1 mobile agent stays at their current locations with

probabilities pi = 0.5,∀i ∈ N . The information collection cost of the mobile agents are set as

10, 20 and 40, respectively. The privacy levels of all the mobile agents are set as ε = 1. The

performance of Algorithm 7 is compared with two baselines. In the “Random” baseline, two

mobile agents are randomly selected in each sub-network at each time slot while in the ”Brute

Force” baseline, the optimal mobile agent selection strategies are obtained through brute force

search. In particular, we first run the “Random” baseline algorithm and obtain the corresponding

average payment. Taking the average payment of the “Random” baseline as the budget, the

performances of Algorithm 7 and the “Brute Force” baseline are obtained. Fig. 4.6 shows the

AoI of Algorithm 7 and the baselines when B = 1. It can be observed that Algorithm 7 provides

a decrease of around 30% in AoI compared to the “Random” method and achieves almost the

same performance as that of the ”Brute Force” method, which demonstrates its effectiveness.

Fig. 4.7 shows the average payments of Algorithm 7 and the baselines. In particular, we

note that in the proposed payment mechanism, the probability of a mobile agent being selected

(i.e., psi (·) in (4.11)) is estimated based on the BS’s knowledge about the true locations of the

mobile agents. Such an estimate may not be accurate since the true locations are unknown.

Therefore, in the “Lower Bound” counterpart, we compute the accurate probabilities of the

mobile agents being selected based on their true locations. It can be observed that the payment

for the proposed algorithm is almost the same as that of the lower bound.

Fig. 4.8 and Fig. 4.9 show the AoI performance and the average payment (per sub-network)

of Algorithm 8 for different number of sub-networks, each with the same setting as the one
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examined in Fig. 4.6. In particular, when B > 1, the budget of the BS is selected such that the

AoI is the same as that in the single sub-network scenario. It can be observed that for the same

AoI performance, the required payment decreases as the number of sub-networks increases. This

is because, in Algorithm 8, the budget allocated to each sub-network at each time slot depends

on its AoI and the sub-networks with higher AoI are allocated more budget. With the same

payment, the expected AoI reduction in the sub-networks with higher AoI is larger than that in

the sub-networks with smaller AoI. As a result, the budget is more effectively used.

4.6 Related Works

Many emerging applications require persistent monitoring over a set of locations, in which

mobile agents are employed to help collect information. There are several works on the design

of trajectory for AoI minimization in the single agent scenario. In particular, [25] obtains the

optimal permutation of nodes for the mobile agent to visit in sequence which minimizes the

AoI; [23] further considers the scenarios in which the mobility of the mobile agent is constrained

by a general graph and studies the optimal trajectory over the space of all trajectories allowed

on the graph. [110] designs the mobile agent’s trajectory as well as energy and the service time

allocation to minimize the peak AoI. However, these works consider only one mobile agent,

which may not be enough in a large network. In this chapter, the AoI minimization problem in

a more general setting, in which multiple location privacy-aware mobile agents are employed by

the BS, is considered.

Since the introduction of Geo-indistinguishability [33], there have been many existing works

(see e.g., [31, 34–38] and the references therein) which use differential privacy approaches for

location privacy preservation. However, most of the existing approaches only use differential

privacy as a tool for location privacy protection and assume a fixed privacy level, either

determined by the users or the BS. [39] considers differential location privacy in the design of the
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incentive mechanism. However, it assumes that the workers share their true location information

with a trustworthy BS which releases the location information in a differentially private manner.

In this sense, the workers do not have control over their own location information. With such

consideration, [40] develops a trading market which allows the workers to determine their own

privacy levels for location privacy. In particular, the BS first announces a set of sensing tasks to

the workers, and the workers determine their privacy levels as well as sensing costs and submit

bids to the BS. After the BS determines the winners, they embed the obfuscated locations

in their sensing reports such that a certain level of location differential privacy is preserved.

However, since auction based method is considered, the workers need to determine their privacy

levels first before submitting their bids, which is not desired in the considered scenarios. In

addition, the optimality of the differentially private obfuscation strategy is not established. In

this chapter, a payment mechanism which can stimulate the mobile agents to select the ideal

privacy levels for the BS is proposed. In addition, with the given payment mechanism, the

optimality of the differentially private obfuscation strategy is proved under certain conditions.

Besides, some theoretical research efforts have been devoted to the study of private data

(other than location privacy) trading in terms of differential privacy, in which the users can

determine their own privacy levels given the payment. [111] designs a coupon game in which the

agent is offered a coupon for the signal it sends. The value of the coupon determines the level

of privacy that the agent will select. [106,107] propose a game among the data sellers and the

optimal payment to incentivize the workers to report with certain privacy level is established by

solving the Nash equilibrium of the game. However, on the one hand, these works only consider

binary data, which is not the case in the considered location privacy scenario. On the other

hand, their approaches cannot be directly used in the considered AoI minimization problem in

which the moving trajectories of the mobile agents are also taken into account.

There are also some differential privacy-preserving incentive mechanisms concerning the

privacy of the workers’ bids or sensing data. [112–114] allow the workers to obfuscate their bids

or sensing data before sending them to the BS. However, in these works, the privacy levels

are determined by the BS rather than the workers (i.e., the workers cannot choose their own

privacy levels). [115,116] propose privacy-preserving mechanisms to protect the workers’ privacy

against the outsiders. Similar to [39], it is assumed that the workers share their raw data with a

trustworthy BS. In this chapter, the mobile agents determine their own privacy levels, and the

location privacy is protected from the BS as well.

4.7 Conclusions

In this chapter, the AoI minimization problem in the presence of multiple location privacy-

aware mobile agents is considered. In particular, a payment mechanism is proposed for the
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BS to motivate the mobile agents to report their locations. The optimality of the obfuscation

strategy given the payment mechanism is established, which allows the BS to adjust its payment

mechanism such that the mobile agents will select its desired privacy levels. Then, given the

payment mechanism, a cost-efficient mobile agent selection algorithm under budget constraint is

proposed. Simulations are performed to demonstrate the effectiveness of the proposed method.
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Chapter 5

Stochastic-Sign SGD for

Privacy-Preserving Federated

Learning with Theoretical

Guarantees

In this chapter, we present Stochastic-Sign SGD, which is a class of stochastic-sign based SGD

algorithms. In particular, we first propose a stochastic compressor sto-sign, which extends

SIGNSGD to its stochastic version Sto-SIGNSGD. In this scheme, instead of directly transmitting

the signs of gradients, the workers adopt a two-level stochastic quantization and transmit the signs

of the quantized results. We note that different from the existing 1-bit stochastic quantization

schemes (e.g., QSGD [43], cpSGD [47]), the proposed algorithm also uses the majority vote rule

in gradient aggregation, which allows the server-to-worker communication to be 1-bit compressed

and ensures robustness as well. Then, to further resolve the privacy concerns, a differentially

private stochastic compressor dp-sign is proposed, which can accommodate the requirement of

(ε, δ)-local differential privacy [117]. The corresponding algorithm is termed as DP-SIGNSGD. We

then prove that when the number of workers is large enough, both of the proposed algorithms

converge with a rate of O(
√
d√
T

) under heterogeneous data distribution, where d is the dimension

of the hypothesis vector and T is the total number of training iterations. We also extend the

proposed algorithm to its error-feedback variant, termed as Error-Feedback Stochastic-Sign

SGD. In this scheme, the server keeps track of the error induced by the majority vote operation

and compensates for the error in the next communication round. Both the convergence and

the Byzantine resilience are established. Assuming that there are M normal (benign) workers,

it is shown that the Byzantine resilience of the proposed algorithms is upper bounded by
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|∑M
m=1(g

(t)
m )i|/bi,∀i, where (g

(t)
m )i is the i-th entry of worker m’s gradient at iteration t and

bi ≥ maxm(g
(t)
m )i is some design parameter. Particularly, bi depends on the data heterogeneity

(through maxm(g
(t)
m )i). Extensive simulations are performed to demonstrate the effectiveness of

all the proposed algorithms.

The remainder of this chapter is organized as follows. Section 5.1 formulates the federated

learning problem. The Stochastic-Sign SGD algorithms and the convergence analysis are presented

in Section 5.2. Section 5.3 shows the Byzantine resilience of the Stochastic-Sign SGD algorithms.

The discussion about the extension to SGD is presented in Section 5.4. The error-feedback

variants are discussed in Section 5.5. Related works are discussed in Section 5.6, and Section 5.7

concludes this chapter.

5.1 Problem Formulation

In this chapter, we consider a typical federated optimization problem with M normal workers

as in [1]. Formally, the goal is to minimize the finite-sum objective of the form

min
w∈Rd

F (w) where F (w)
def
=

1

M

M∑
m=1

fm(w). (5.1)

For a machine learning problem, we have a sample space I = X × Y , where X is a space of

feature vectors and Y is a label space. Given the hypothesis space W ⊆ Rd, we define a loss

function l :W × I → R which measures the loss of prediction on the data point (x, y) ∈ I made

with the hypothesis vector w ∈ W . In such a case, fm(w) is a local function defined by the local

dataset of worker m and the hypothesis w. More specifically,

fm(w) =
1

|Dm|
∑

(xn,yn)∈Dm

l(w; (xn, yn)), (5.2)

where |Dm| is the size of worker m’s local dataset Dm. In many FL applications, the local

datasets of the workers are heterogeneously distributed. In this case, we have Dm 6= Dj and

therefore ∇fm(w) 6= ∇fj(w),∀m 6= j.

We consider a parameter server paradigm. At each communication round t, each worker m

forms a batch of training samples, based on which it computes and transmits the stochastic

gradient g
(t)
m as an estimate to the true gradient ∇fm(w

(t)
m ). When the worker m evaluates the

gradient over its whole local dataset, we have g
(t)
m = ∇fm(w

(t)
m ). After receiving the gradients

from the workers, the server performs aggregation and sends the aggregated gradient back to

the workers. Finally, the workers update their local model weights using the aggregated gradient.

In this sense, the classic stochastic gradient descent (SGD) algorithm [118] performs iterations
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Algorithm 9 Stochastic-Sign SGD with majority vote

1: Input: learning rate η, current hypothesis vector w(t), M workers each with an independent

gradient g
(t)
m , the 1-bit compressor q(·).

2: on server:
3: pull q(g

(t)
m ) from worker m.

4: push g̃(t) = sign
(

1
M

∑M
m=1 q(g

(t)
m )
)

to all the workers.
5: on each worker:
6: update w(t+1) = w(t) − ηg̃(t).

of the form

w(t+1)
m = w(t)

m −
η

M

M∑
m=1

g(t)
m . (5.3)

In this case, since all the workers adopt the same update rule using the aggregated gradient,

w
(t)
m ’s are the same for all the workers. Therefore, in the following discussions, we omit the

worker index m for the ease of presentation. To accommodate the requirement of communication

efficiency in FL, we adopt the popular idea of gradient quantization and assume that each worker

m quantizes the gradient with a stochastic 1-bit compressor q(·) and sends q(g
(t)
m ) instead of its

actual local gradient g
(t)
m . Combined with the idea of majority vote in [45], the corresponding

algorithm is presented in Algorithm 9.

Intuitively, the performance of Algorithm 9 is limited by the probability of wrong aggregation,

which is given by

sign

(
1

M

M∑
m=1

q(g(t)
m )

)
6= sign

(
1

M

M∑
m=1

∇fm(w(t))

)
. (5.4)

In SIGNSGD, q(g
(t)
m ) = sign(g

(t)
m ) and (5.4) holds when ∇fm(w(t)) 6= ∇fj(w(t)), ∀m 6= j with

a high probability, which prevents its convergence. In this chapter, we propose two compressors

sto-sign and dp-sign, which guarantee that (5.4) holds with a probability that is strictly smaller

than 0.5 and therefore the convergence of Algorithm 9 follows. Moreover, dp-sign is differentially

private, i.e., given the quantized gradient q(g
(t)
m ), the adversary cannot distinguish the local

dataset of worker m from its neighboring datasets that differ in only one data point with a high

probability.

In addition to the M normal workers, it is assumed that there exist B Byzantine attackers,

and its set is denoted as B. Instead of using sto-sign and dp-sign, the Byzantine attackers

can use an arbitrary compressor denoted by byzantine-sign. In this chapter, we consider the

scenario that the Byzantine attackers have access to the average gradients of all the M normal

workers (i.e., g
(t)
j = 1

M

∑M
m=1 g

(t)
m , ∀j ∈ B) and follow the same procedure as the normal workers.
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Therefore, we assume that the Byzantine attacker j shares the opposite signs of the true gradients,

i.e., byzantine-sign(g
(t)
j ) = −sign(g

(t)
j ).

In order to facilitate the convergence analysis, the following commonly adopted assumptions

are made.

Assumption 4. (Lower bound). For all w and some constant F ∗, we have objective value

F (w) ≥ F ∗.

Assumption 5. (Smoothness). ∀w1, w2, we require for some non-negative constant L

F (w1) ≤ F (w2)+ < ∇F (w2), w1 − w2 > +
L

2
||w1 − w2||22, (5.5)

where < ·, · > is the standard inner product.

Assumption 6. (Variance bound). For any worker m, the stochastic gradient oracle gives an

independent unbiased estimate gm that has coordinate bounded variance:

E[gm] = ∇fm(w),E[((gm)i −∇fm(w)i)
2] ≤ σ2

i , (5.6)

for a vector of non-negative constants σ̄ = [σ1, · · · , σd]; (gm)i and ∇fm(w)i are the i-th coordinate

of the stochastic and the true gradient, respectively.

Assumption 7. The total number of workers is odd.

We note that Assumptions 4, 5 and 6 are standard for non-convex optimization and Assump-

tion 7 is just to ensure that there is always a winner in the majority vote [49], which can be

easily relaxed.

Experimental Settings. To facilitate empirical discussions on our proposed algorithms

in the remaining sections, we first introduce our experimental settings here. We implement

our proposed method with a two-layer fully connected neural network on the standard MNIST

dataset [119]. We consider a scenario of M = 31 normal workers. To simulate the heterogeneous

data distribution scenario, each worker only stores exclusive data for one out of the ten categories,

unless otherwise noted. We use a constant learning rate and tune the parameter from the set

{1, 0.1, 0.01, 0.005, 0.001, 0.0001}. We compare the proposed algorithms with two baselines:

SIGNSGD [45] and FedAvg [1]. More details about the implementation can be found in Appendix

D.4.

5.2 Algorithms and Convergence Analysis

In this section, we propose two compressors sto-sign and dp-sign for the Stochastic-Sign SGD

framework, which can deal with the heterogeneous data distribution scenario. The basic ideas of
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the two compressors are given as follows.

• sto-sign: instead of directly sharing the signs of the gradients, sto-sign first performs a

two-level stochastic quantization and then transmits the signs of the quantized results.

• dp-sign: it is a differentially private version of sto-sign. The probability of each coordinate

of the gradients mapping to {−1, 1} is designed to accommodate the local differential

privacy requirements.

In this section, we first consider the scenario in which all the workers are benign. The

Byzantine resilience of sto-sign and dp-sign will be discussed in Section 5.3. In addition, we

assume that each worker evaluates the gradients over its whole local dataset for simplicity

(i.e., g
(t)
m = ∇fm(w(t)),∀1 ≤ m ≤ M). Particularly, in federated learning, the workers usually

compute ∇fm(w(t)) due to the small size of the local dataset. The discussion about stochastic

gradients is presented in Section 5.4.

5.2.1 The Stochastic Compressor sto-sign

Formally, the compressor sto-sign is defined as follows.

Definition 9. For any given gradient g
(t)
m , the compressor sto-sign outputs sto-sign(g

(t)
m , b),

where b is a vector of design parameters. The i-th entry of sto-sign(g
(t)
m , b) is given by

sto-sign(g(t)
m , b)i =


1, with probability bi+(g

(t)
m )i

2bi
,

−1,with probability bi−(g
(t)
m )i

2bi
,

(5.7)

where (g
(t)
m )i and bi ≥ maxm|(g(t)

m )i| are the i-th entry of g
(t)
m and b, respectively.

Recall that the performance of Algorithm 9 largely depends on the probability of wrong

aggregation (c.f. (5.4)). When q(g
(t)
m ) = sign(g

(t)
m ), whether (5.4) holds or not is determined

by the gradients g
(t)
m ’s, which are unknown. As a result, the convergence of SIGNSGD is not

guaranteed. The key idea of sto-sign is to introduce the stochasticity such that the probability

of wrong aggregation can be theoretically bounded for an arbitrary realization of g
(t)
m ’s.

In the following discussion, we term Algorithm 9 with q(g
(t)
m ) = sto-sign(g

(t)
m , b) as Sto-

SIGNSGD. For the ease of presentation, we consider the scalar case and obtain the following

results for the compressor sto-sign. They can be readily generalized to the vector case by

applying the results independently on each coordinate.

81



Theorem 13. Let u1, u2, · · · , uM be M known and fixed real numbers and consider random

variables ûm = sto-sign(um, b), 1 ≤ m ≤M . Then we have

P

(
sign

(
1

M

M∑
m=1

ûm

)
6= sign

(
1

M

M∑
m=1

um

))
<
[(

1− x
)
ex
]M

2
, (5.8)

where x =
|
∑M
m=1 um|
bM .

Proof. Please see Appendix D.1.1. Here we provide some intuition about the proof. Given the

majority vote rule, the aggregation result is wrong if more than half of the workers share the

wrong signs. In addition, based on (5.7), we can obtain the probability of each worker sharing 1

or -1. Therefore, the number of workers that share the wrong signs can be modeled as a Poisson

binomial variable, denoted as Z. The key difficulty is that the correct sign sign( 1
M

∑M
m=1 um) is

unknown. However, thanks to the special structure of (5.7), the mean of the number of workers

sharing either -1 or 1 depends on 1
M

∑M
m=1 um rather than on each individual um. That being

said, we can always obtain the expectation of Z as a function of 1
M

∑M
m=1 um. As a result, we

can invoke the Markov inequality and obtain (5.8) after some algebra.

Remark 16. (selection of b) Some discussions on the choice of the vector b in (5.7) are in

order. We take the i-th entry of b as an example. In the FL application, the i-th entry of the

gradient g
(t)
m corresponds to um in Theorem 13. On the one hand, according to the definition

of sto-sign, bi ≥ maxm|(g(t)
m )i|. On the other hand, it can be shown that

(
1− x

)
ex in (5.8) is

a decreasing function of x (and therefore an increasing function of bi) when x < 1. Therefore,

to minimize the probability of wrong aggregation, it is optimal to select bi = maxm|(g(t)
m )i|. In

addition, since the true gradients change during the training process, the optimal bi varies across

the iterations too. In the implementation of sto-sign, for a fixed vector b, it is possible that

bi < maxm|(g(t)
m )i| for some coordinates. In such cases, the probabilities defined in (5.7) may

fall out of the range [0, 1]. We round them to 1 if they are positive and 0 otherwise. However,

in practice, since maxm|(g(t)
m )i| is unknown, the selection of an appropriate b is an interesting

problem deserving further investigation.

Theorem 14. Given the same {um}Mm=1 and {ûm}Mm=1 as those in Theorem 13, for a sufficiently

large b, we have P
(
sign

(
1
M

∑M
m=1 ûm

)
6= sign

(
1
M

∑M
m=1 um

))
< 1

2 .

Proof. Please see Appendix D.1.2.

Theorem 15. Suppose Assumptions 4, 5 and 7 are satisfied, and set the learning rate η = 1√
Td

.
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Figure 5.1: The left figure compares the training accuracy of Sto-SIGNSGD with SIGNSGD and
FedAvg [1]. The right figure shows the training and the testing accuracy of Sto-SIGNSGD for

different b = b · 1. The results are averaged over 5 repeats. For FedAvg, we tune the number of
local epochs from the set {1, 10, 20, 30} and present the best results.

Then for any M , by running Sto-SIGNSGD for T iterations, we have

1

T

T∑
t=1

c||∇F (w(t))||1 ≤
(F (w(0))− F ∗)

√
d√

T
+
L
√
d

2
√
T

+ 2bd∆(M), (5.9)

where 0 < c < 1 is some positive constant, and ∆(M) is the solution to
[(

1− x
)
ex
]M

2
= 1−c

2 .

Proof. Please see Appendix D.1.3.

Remark 17. Similar to SIGNSGD, the convergence rate of Sto-SIGNSGD depends on the L1-norm

of the gradient. A detailed discussion on this feature can be found in [45]. Note that compared to

the convergence rate of SIGNSGD, there is a positive coefficient c < 1. This can be understood as

the cost of dealing with the heterogeneous data distribution.

Remark 18. It can be verified that ∆(M) is a decreasing function of M and limM→∞∆(M) = 0.

The last term in (5.9) captures the gap induced by the scenarios where the probability of wrong

aggregation is larger than 1−c
2 . If we select b ∝ 1√

dT
, the right hand side of (5.9) is upper bounded

by O(
√
d√
T

).

Moreover, note that Theorem 15 holds for any b. According to Theorem 14, the probability

of wrong aggregation is strictly smaller than 1
2 when b is sufficiently large. That being said,

there exists a positive constant c such that the probability of wrong aggregation is no larger than
1−c

2 . As a result, the last term in (5.9) can be eliminated in such a case. However, a larger b

corresponds to a smaller positive constant c, which negatively impact the convergence.
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Experimental results. We perform experiments to examine the learning performance of

Sto-SIGNSGD for different selection of b. Throughout our experiments, in the fixed b scenarios,

we set b = b · 1 for some positive constant b. For “Optimal b”, we set bi = maxm|(g(t)
m )i|, ∀i.

The results are shown in Figure 5.1. It can be observed that Sto-SIGNSGD outperforms SIGNSGD

and FedAvg, and the performance of “b = 0.005” is almost the same as “Optimal b”. That

being said, compared to FedAvg, Sto-SIGNSGD achieves better performance while requires less

communication overhead per communication round. In addition, it can be observed that for

fixed b, b should be large enough to optimize the performance. Then when b keeps increasing,

both the training accuracy and the testing accuracy decrease, which corroborates our analysis

above.

5.2.2 The Differentially Private Compressor dp-sign

In this subsection, we present the differentially private version of sto-sign. In this chapter,

we study the privacy guarantee of the proposed algorithms from the lens of local differential

privacy [117], which provides a strong notion of individual privacy in data analysis. The definition

of local differential privacy is formally given as follows.

Definition 10. Given a set of local datasets D provided with a notion of neighboring local

datasets ND ⊂ D × D that differ in only one data point. For a query function f : D → X ,

a mechanism M : X → O to release the answer of the query is defined to be (ε, δ)-locally

differentially private if for any measurable subset S ⊆ O and two neighboring local datasets

(D1, D2) ∈ ND,

P (M(f(D1)) ∈ S) ≤ eεP (M(f(D2)) ∈ S) + δ. (5.10)

A key quantity in characterizing local differential privacy for many mechanisms is the

sensitivity of the query f in a given norm lr, which is defined as

∆r = max
(D1,D2)∈ND

||f(D1)− f(D2)||r. (5.11)

For more details about the concept of differential privacy, the reader is referred to [117] for a

survey.

Formally, the compressor dp-sign is defined as follows.

Definition 11. For any given gradient g
(t)
m , the compressor dp-sign outputs dp-sign(g

(t)
m , ε, δ).

The i-th entry of dp-sign(g
(t)
m , ε, δ) is given by

dp-sign(g(t)
m , ε, δ)i =


1, with probability Φ

(
(g

(t)
m )i
σ

)
−1, with probability 1− Φ

(
(g

(t)
m )i
σ

) (5.12)
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where Φ(·) is the cumulative distribution function of the normalized Gaussian distribution;

σ = ∆2
ε

√
2 ln(1.25

δ ), where ε and δ are the differential privacy parameters and ∆2 is the sensitivity

measure.

Theorem 16. The proposed compressor dp-sign(·, ε, δ) is (ε, δ)-differentially private for any

ε, δ ∈ (0, 1).

Proof. Please see Appendix D.1.4.

Remark 19. Note that throughout this chapter, we assume δ > 0. For the δ = 0 scenario,

the Laplace mechanism [117] can be used by replacing the cumulative distribution function

of the normalized Gaussian distribution in (5.12) with that of the Laplace distribution. The

corresponding discussion can be found in Appendix D.2.

We term Algorithm 9 with q(g
(t)
m ) = dp-sign(g

(t)
m , ε, δ) as DP-SIGNSGD. Similar to sto-sign,

we consider the scalar case and obtain the following result for dp-sign(·, ε, δ).

Theorem 17. Let u1, u2, · · · , uM be M known and fixed real numbers. Further define random

variables ûi = dp-sign(ui, ε, δ),∀1 ≤ i ≤M . Then there always exist a constant σ0 such that when

σ ≥ σ0, P (sign( 1
M

∑M
m=1 ûi) 6= sign( 1

M

∑M
m=1 ui)) <

[(
1− x

)
ex
]M

2
, where x =

|
∑M
m=1 um|
σM .

Proof. Please see Appendix D.1.5.

Given Theorem 17, the convergence of DP-SIGNSGD can be obtained by following a similar

analysis to that of Theorem 15.

5.3 Byzantine Resilience

In this section, the Byzantine resilience of the proposed algorithms is investigated. We note

that the convergence of Sto-SIGNSGD and DP-SIGNSGD is limited by the probability of wrong

aggregation (i.e., more than half of the workers share the wrong signs). Let Zi denote the number

of normal workers that share (quantized) gradients with different signs from the true gradient

∇F (w(t)) on the i-th coordinate (i.e., q(g
(t)
m )i 6= sign(∇F (w(t))i)). Then, Zi is a Poisson binomial

variable. In order to tolerate ki Byzantine workers on the i-th coordinate of the gradient, we

need to have P (Zi ≥ M−ki
2 ) < 1

2 , where M is the number of benign workers. Therefore, we can

prove the following theorem.

Theorem 18. There exists a positive constant s0 such that when s > s0, Sto-SIGNSGD and

DP-SIGNSGD can at least tolerate ki Byzantine attackers on the i-th coordinate of the gradient at

t-th iteration and ki satisfies

ki <
|∑M

m=1∇fm(w(t))i|
s

,
[(

1− x
)
ex
]M−ki

2
<

1

2
, (5.13)
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Figure 5.2: The training and the testing accuracy of Sto-SIGNSGD for different number of
Byzantine workers and different b.

where x =
|
∑M
m=1∇fm(w(t))i|−ski

(M−ki)s , s = σ for DP-SIGNSGD and s = bi ≥ maxm|(g(t)
m )i| for Sto-

SIGNSGD.

Overall, the number of Byzantine workers that the algorithms can tolerate is given by

min1≤i≤dki.

Proof. Please see Appendix D.1.6.

In this case,
[(

1− x
)
ex
]M−ki

2
measures the probability of wrong aggregation after taking

the Byzantine workers into consideration. As we know,
(

1− x
)
ex is decreasing function of x

(and therefore an increasing function of s). So the second equation of (5.13) indicates that the

Byzantine tolerance decreases as s increases, which conforms to the observation from the first

equation of (5.13).

According to (5.13), when sto-sign is used, we can set bi = maxm|∇fm(w(t))i|. In this case,

ki <
|
∑M
m=1∇fm(w(t))i|

maxm|∇fm(w(t))i|
, which means that the Byzantine resilience depends on the heterogeneity

of the local datasets. When the workers can access the same dataset, i.e., ∇fm(w(t))i =

∇fn(w(t))i, ∀m,n, Theorem 18 gives x = 1 and ki < M . Therefore, it can tolerate M − 1

Byzantine workers.

Remark 20. Our analysis of the convergence and the Byzantine resilience is based on each

individual coordinate of the gradients, which corresponds to the generalized Byzantine attacks and

the dimensional Byzantine resilience [120]. Furthermore, it also indicates that the parameter σ

in dp-sign can be different across coordinates and iterations, which allows one to select suitable

parameters for different coordinates and iterations to improve the privacy performance of the

algorithm. A similar idea has been explored in [121] without considering quantization.
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Table 5.1: Testing Accuracy of Sto-SIGNSGD

B 1 Label 2 Labels 4 Labels

0 91.90% 94.57% 91.79%
1 85.39% 94.21% 92.42%
2 70.04% 83.95% 93.76%
3 10.31% 80.61% 92.35%
4 0.25% 57.52% 85.92%

Experimental results. Fig. 5.2 shows the performance of Sto-SIGNSGD for different selection

of b = b · 1 and different number of Byzantine workers B. It can be seen that when b = 0.001, it

is not large enough to optimize the performance according to our results in Section 5.2. Setting

b = 0.005 and b = 0.01 achieves almost the same performance as “Optimal b” when there is

no Byzantine worker (B = 0). However, as the number of Byzantine workers increases, both

the training and the testing accuracy of “b = 0.01” drop much faster than those of “b = 0.005”,

which conforms to our analysis above that a lager b results in worse Byzantine resilience.

To examine the impact of data heterogeneity, we vary the number of labels of each worker’s

local training dataset. Table 5.1 shows the testing accuracy of Sto-SIGNSGD with optimal b. It

can be observed that the Byzantine resilience of Sto-SIGNSGD increases as the number of labels

increases. Up to now, we examine the performance of Sto-SIGNSGD, the results for DP-SIGNSGD

are deferred to Section 5.5.

5.4 Extending to SGD

Up until this point in the chapter, the discussions are based on the assumption that each

worker can evaluate its local true gradient ∇fm(w(t)) for the ease of presentation. In the SGD

scenario, we have to further account for the sampling noise. Particularly, the following theorem

for Sto-SIGNSGD can be proved. The corresponding result for DP-SIGNSGD can be obtained

following a similar strategy.

Theorem 19. Suppose Assumptions 4-7 are satisfied, and set the learning rate η = 1√
Td

. Then,

when b = b · 1 and b is sufficiently large, Sto-SIGNSGD converges to the (local) optimum with a

rate of O( 1√
T

) if either of the following two conditions is satisfied.

• P
(
sign( 1

M

∑M
m=1(gtm)i) 6= sign(∇F (wt)i

)
< 0.5,∀1 ≤ i ≤ d.

• The mini-batch size of stochastic gradient at each iteration is at least T .

Proof. Please see Appendix D.1.7.
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Remark 21. Note that the first condition is not hard to satisfy. One sufficient condition is

that the sampling noise of each worker is symmetric with zero mean. This assumption is also

used in [48], which shows that the sampling noise is approximately not only symmetric, but also

unimodal.

Remark 22. We note that by replacing the compressor sign in SIGNSGD with sto-sign or

dp-sign, we can obtain the improved rate (a factor of 1√
M

in the variance term) without assuming

unimodal and symmetric stochastic gradient sampling noise as in [45].

Remark 23. We note that the above discussion assumes that b is sufficiently large, which

guarantees that the probability of wrong aggregation is less than 0.5. For an arbitrary b that

satisfies the condition in the definition of sto-sign, we believe that it is possible to prove that

the algorithm converges to the neighborhood of the (local) optimum. In particular, similar to the

proof of Theorem 15, there will be an additional term
∑d

i=1 |∇F (wt)i|1| 1
M

∑M
m=1(gtm)i|≤b∆(M). It

is possible to upper bound this additional term given the fact that E[ 1
M

∑M
m=1(gtm)i] = ∇F (wt)i,

despite that more efforts are required to make the analysis rigorous.

5.5 Extending to Error-feedback Variant

To further improved the performance of Algorithm 9, we incorporate the error-feedback technique

and propose its error-feedback variant, which is presented in Algorithm 10.

Algorithm 10 Error-Feedback Stochastic-Sign SGD with majority vote

1: Input: learning rate η, current hypothesis vector w(t), current residual error vector ẽ(t), M

workers each with an independent gradient g
(t)
m = ∇fm(w(t)), the 1-bit compressor q(·).

2: on server:
3: pull q(g

(t)
m ) from worker m.

4: push g̃(t) = sign
(

1
M

∑M
m=1 q(g

(t)
m ) + ẽ(t)

)
to all the workers,

5: update residual error:

ẽ(t+1) =
1

M

M∑
m=1

q(g(t)
m ) + ẽ(t) − 1

M
g̃(t). (5.14)

6: on each worker:
7: update w(t+1) = w(t) − ηg̃(t).

Remark 24. Note that in Algorithm 10, only the server adopts the error-feedback method. When

dp-sign is used, implementing error-feedback on the worker’s side may increase the privacy
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leakage. Accounting for the additional privacy leakage caused by error-feedback is left as future

work.

Remark 25. In (5.14), by adding the coefficient 1
M to g̃(t), the server keeps the magnitude

information about the aggregation results and enables more effective error-feedback performance.

More discussion about the parameter 1
M is can be found in Appendix D.3.

Both sto-sign and dp-sign can be used in Algorithm 10 and the corresponding algorithms

are termed as EF-Sto-SIGNSGD and EF-DP-SIGNSGD, respectively. In the following, we show the

convergence and Byzantine resilience of Algorithm 10 when dp-sign is used. The results can be

easily adapted for sto-sign. Particularly, the following theorems can be proved.

Theorem 20. When Assumptions 4, 5 and 7 are satisfied, there exists a σ0 such that when

σ ≥ σ0, by running Algorithm 10 with η = 1
M
√
Td

, we have

1

T

T−1∑
t=0

||∇F (w(t))||22
σ

≤ (F (w0)− F ∗)
√
d√

T
+

(1 + L+ L2β)
√
d√

T
, (5.15)

where β is some positive constant.

Proof. Please see Appendix D.1.8.

Besides the fact that error-feedback is only used on the server’s side, another difference

between Algorithm 10 and those in [122,123] is that it does not require the workers to share the

magnitude information about the gradients. On the one hand, it saves communication overhead.

On the other hand, it keeps the resilience against the re-scaling attacks. By following a similar

strategy to the proofs of Theorem 20 and considering the impact of Byzantine attackers, we

obtain the Byzantine resilience of Algorithm 10 as follows.

Theorem 21. At each iteration t, there exists a constant σ0 such that when σ > σ0, Algorithm

10 can at least tolerate ki = |∑M
m=1∇fm(w(t))i|/σ Byzantine attackers on the i-th coordinate of

the gradient. Overall, the number of Byzantine workers that Algorithm 10 can tolerate is given

by min1≤i≤dki.

Proof. Please see Appendix D.1.9.

Experimental results. For DP-SIGNSGD and EF-DP-SIGNSGD, we follow the idea of gradient

clipping in [124] to bound the sensitivity ∆2. After computing the gradient for each individual

training sample in the local dataset, each worker clips it in its L2 norm for a clipping threshold

C to ensure that ∆2 ≤ C. We set C = 4 in the experiments and the results are shown in Fig. 5.3.

It can be observed from the first two figures that when there is no Byzantine attackers, EF-DP-

SIGNSGD outperforms DP-SIGNSGD for all the examined ε’s, which demonstrates its effectiveness.
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Figure 5.3: The first figure shows the performance of DP-SIGNSGD and EF-DP-SIGNSGD for
different ε when δ = 10−5, without Byzantine attackers. The ε’s measure the per epoch privacy

guarantee of the algorithms. The second figure compares EF-DP-SIGNSGD with DP-SIGNSGD
when ε = 1. The last figure compares Sto-SIGNSGD with EF-Sto-SIGNSGD in the presence of 1

Byzantine attacker.

In addition, both DP-SIGNSGD and EF-DP-SIGNSGD outperform SIGNSGD, while providing privacy

guarantees.

Another observation is that the error-feedback variants do not necessarily perform better.

For instance, in the second figure of Fig. 5.3, when there is one Byzantine attacker and ε = 1, the

testing accuracy of EF-DP-SIGNSGD is worse than that of DP-SIGNSGD. In the beginning of the

training process, ki’s in Theorem 21 are large enough such that the algorithm can tolerate the

Byzantine attacker. As the gradients decrease, the probability of wrong aggregation increases.

In this case, the error-feedback mechanism may carry the wrong aggregations to the future

iterations and have a negative impact on the learning process. Similar results are obtained for

Sto-SIGNSGD when b = 0.007 in the last figure of Fig. 5.3. In the meantime, for “Optimal b”,

the error-feedback variant can tolerate the Byzantine attacker and therefore provide better

performance.

5.6 Related Works

Gradient Quantization: To accommodate the need of communication efficiency in distributed

learning, various gradient compression methods have been proposed. Most of the existing works

focus on unbiased methods [125,126]. QSGD [43], TernGrad [44] and ATOMO [127] propose to

use stochastic quantization schemes, based on which a differentially private variant is proposed

in [47]. Due to the unbiased nature of such quantization methods, the convergence of the

corresponding algorithms can be established.

The idea of sharing the signs of gradients in SGD can be traced back to 1-bit SGD [63]. [128]

and [45, 48] show theoretical and empirical evidence that sign based gradient schemes can

converge well despite the biased approximation nature in the homogeneous data distribution

scenario. In the heterogeneous data distribution case, [49] shows that the convergence of SIGNSGD
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is not guaranteed and proposes to add carefully designed noise to ensure a convergence rate of

O(d
3
4 /T

1
4 ). However, their analysis assumes second order differentiability of the noise probability

density function and cannot be applied to some commonly used noise distributions (e.g., uniform

and Laplace distributions). In addition, their analysis requires that the variance of the noise

goes to infinity as the number of iterations grows, which may be unrealistic in practice.

Error-Compensated SGD: Instead of directly using the biased approximation of the

gradients, [63] corrects the quantization error by adding error feedback in subsequent updates and

observes almost no accuracy loss empirically. [46] proposes the error-compensated quantized SGD

in quadratic optimization and proves its convergence for unbiased stochastic quantization. [129]

proves the convergence of the proposed error compensated algorithm for strongly-convex loss

functions and [130] proves the convergence of sparsified gradient methods with error compensation

for both convex and non-convex loss functions. In addition, [122] proposes EF-SIGNSGD, which

combines the error compensation methods and SIGNSGD; however, only the single worker

scenario is considered. [123] further extends it to the multi-worker scenario and the convergence

is established. However, it is required in these two works that the compressing error cannot

be larger than the magnitude of the original vector, which is not the case for some biased

compressors like SIGNSGD. [131] considers more general compressors and proves the convergence

under the assumption that the compressors have bounded magnitude of error. However, to

the best our knowledge, none of the existing works consider the Byzantine resilience of the

error-compensated methods.

Byzantine Tolerant SGD in Heterogenous Environment: There have been significant

research interests in developing SGD based Byzantine tolerant algorithms, most of which consider

homogeneous data distribution, e.g., Krum [132], ByzantineSGD [133], and the median based

algorithms [134]. [48] shows that SIGNSGD can tolerate up to half “blind” Byzantine workers

who determine how to manipulate their gradients before observing the gradients.

To accommodate the need for robust FL, some Byzantine tolerant algorithms that can

deal with heterogeneous data distribution have been developed. [135] proposes to incorporate a

regularized term with the objective function. However, it requires strong convexity and can only

converge to the neighborhood of the optimal solution. [136] uses trimmed mean to aggregate the

shared parameters. Nonetheless, it can only tolerate a small (unknown) number of Byzantine

workers. In addition, both [135] and [136] assume model aggregation, i.e., both the workers and

the parameter server share their models with others in full precision, which may incur significant

communication cost.
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5.7 Conclusions

We propose a Stochastic-Sign SGD framework that utilizes two novel gradient compressors and

can deal with heterogeneous data distribution. The proposed algorithms are proved to converge

in the heterogeneous data distribution scenario. In particular, the proposed differentially private

compressor dp-sign improves the privacy and the accuracy simultaneously without sacrificing any

communication efficiency. Then, we further improve the learning performance of the proposed

method by incorporating the error-feedback scheme. In addition, the Byzantine resilience of the

proposed algorithms is shown analytically. It is expected that the proposed algorithms can find

wide applications in the design of communication efficient, differentially private, and Byzantine

resilient FL algorithms.
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Chapter 6

Communication Efficient Federated

Learning with Energy Awareness

over Wireless Networks

In Chapter 5, it is assumed that the communications between the workers and the parameter

server are error-free. However, such an assumption may not hold in practice, especially over

wireless links. In this chapter, the practical implementation of the sign based SGD algorithms

over wireless networks is investigated. The workers are assumed to transmit their parameter

updates over flat-fading channels and CSI is only available at the receiver side. Channel capacity

with outage is considered and each worker is supposed to determine its transmission rate and

transmission power. The impact of wireless communications on the performance of SIGNSGD

over wireless networks is first analyzed. In this case, the learning performance depends on the

number of communication rounds that the FL algorithm can be run and the outage probabilities

of the workers for each communication round. Intuitively, increasing the transmission power

and decreasing the transmission rate of a worker both decrease its outage probability. However,

increasing the transmission power results in higher energy consumption for communication while

decreasing the transmission rate requires faster local computation (i.e., training the local FL

model) given a fixed time duration for each communication round, which leads to higher energy

consumption for local computation. With such consideration, two optimization problems are

formulated and solved. The first problem minimizes the energy consumption of the workers

given the learning performance requirement, while the second problem optimizes the learning

performance given the energy consumption requirement. Then, the scenario with heterogeneous

data distribution across the workers is considered and the Stochastic-Sign SGD in Chapter 5

is adapted by considering the outage probabilities of the workers. Extensive simulations are

performed to demonstrate the effectiveness of the proposed method. Particularly, compared with
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SIGNSGD, the proposed stochastic sign based algorithm achieves better learning performance

while reducing the energy consumption of the workers.

The remainder of this chapter is organized as follows. Section 6.1 introduces the system

model. Performance analysis of SIGNSGD over wireless networks is provided in Section 6.2.

The optimization problems are formulated in Section 6.3 and the corresponding solutions

are presented in Section 6.4. Section 6.5 extends the proposed method to the scenario with

heterogeneous data distribution across the workers. Section 6.6 presents the simulation results.

Section 6.7 discusses the related works, and Section 6.8 concludes this chapter.

6.1 System Model

In this chapter, a wireless multi-user system consisting of one parameter server and a set of M

workers is considered. In particular, each worker m ∈M stores a local dataset Dm, which will

be used for local training. The local dataset can be locally generated or collected through each

worker’s usage of mobile devices. Considering that the training of a prediction model, especially

in deep learning, usually requires a large dataset, the goal of the workers is to cooperatively

learn a machine learning model while keeping the local training data on their mobile devices.

6.1.1 Machine Learning Model

A typical federated learning problem with M normal workers is considered. Formally, the goal is

to minimize a finite-sum objective of the form

min
w∈Rd

F (w) where F (w)
def
=

1

M

M∑
m=1

Fm(w). (6.1)

For a machine learning problem, we have a sample space I = X × Y , where X is a space of

feature vectors and Y is a label space. Given the hypothesis space W ⊆ Rd, we define a loss

function l :W × I → R which measures the loss of prediction on the data point (x, y) ∈ I made

with the hypothesis vector w ∈ W . In such a case, Fm(w) is a local function defined by the local

dataset of worker m and the hypothesis w. More specifically,

Fm(w) =
1

|Dm|
∑

(xn,yn)∈Dm

l(w; (xn, yn)), (6.2)

where |Dm| is the size of worker m’s local dataset Dm. The loss function l(w; (xn, yn)) depends

on the learning tasks and the machine learning models.

To accommodate the requirement of communication efficiency in FL, we adopt the popular

idea of gradient quantization as in SIGNSGD with majority vote [45], which is presented in
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Algorithm 11 SIGNSGD with majority vote [45] over wireless networks

1: Input: initial weight: w(0); number of workers: M ; learning rate: η.
2: for t = 0, 1, · · · , T do

3: Each worker m obtains its gradient g
(t)
m = ∇Fm(w(t)) and transmits sign(g

(t)
m ) to the

parameter server over wireless links.

4: The parameter server obtains a noisy estimate (denoted by ĝ
(t)
m ) of the transmit-

ted information sign(g
(t)
m ) from each worker m and sends the aggregated result g̃(t) =

sign
(

1
M

∑M
m=1 ĝ

(t)
m

)
back to the workers.

5: The workers update their local models

w(t+1) = w(t) − ηg̃(t). (6.3)

6: end for

Algorithm 11. At t-th communication round, each worker m computes the gradient g
(t)
m based on

its locally stored model weights w(t) and the local datasets Dm. Then, instead of transmitting

the gradient g
(t)
m directly, worker m transmits sign(g

(t)
m ) to the parameter server, in which sign(·)

is the sign function. After receiving the shared signs of the gradients from the workers (prone to

channel errors), the parameter server performs aggregation using the majority vote rule and

sends the aggregated result back to the workers. Finally, the workers update their local model

weights using the aggregated result.

6.1.2 Local Computation Model

In this chapter, we consider a similar local computation model as those in [50] and [58]. Let cm

and fm denote the number of CPU cycles required for worker m to process per bit data and its

CPU cycle frequency, respectively, which are assumed known to the parameter server. Then, the

CPU energy consumption of worker m for the local computation of one communication round is

given by [137]

Ecmpm =
αm
2
cmDmf

2
m, (6.4)

in which αm
2 is the effective capacitance coefficient of worker m’s computing chip, Dm is the size

of worker m’s training data for each communication round (in bits). In addition, the computation

time for each communication round of worker m is given by

T cmpm =
cmDm

fm
. (6.5)
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6.1.3 Transmission Model

In this chapter, it is assumed that the workers transmit their local updates (i.e., the signs of

the gradients) to the parameter server via the orthogonal frequency division multiple access

(OFDMA), and do not interfere with each other. Given that the parameter server has more

power and bandwidth compared to the mobile devices, the downlink transmission time is ignored

in this chapter.1 Moreover, similar to most of the existing literature (e.g., [50,58]), it is assumed

that the downlink transmissions are error-free for simplicity.

For the uplink transmission, different from the existing works that consider CSI at both the

transmitter and the receiver sides, we consider flat-fading channels with receiver only CSI and

the capacity with outage. Capacity with outage is defined as the maximum rate that can be

transmitted over a channel with a certain outage probability, which corresponds to the probability

that an outage happens and the transmission cannot be decoded correctly [138]. For each worker

m, we assume a discrete-time channel with stationary and ergodic time-varying normalized gain√
hm following Rayleigh distribution, and additive white Gaussian noise (AWGN). Suppose that

worker m transmits at a rate of rm = log2(1 + γmin), in which γmin is some fixed minimum

received SNR, the data can be correctly received if the instantaneous received SNR γm = Pmhm
N0Bm

is greater than or equal to γmin, in which Pm is the transmission power of worker m; N0 is the

noise power spectral density and Bm is the corresponding bandwidth. The probability of outage

is thus pout = P (γm < γmin). Particularly, for Rayleigh fading channel, we have

pout(rm) = 1− e−
(2rm−1)N0Bm

Pm . (6.6)

The corresponding communication time and energy consumption are given by

T comm =
sm

rmBm
, Ecomm =

Pmsm
rmBm

, (6.7)

in which sm is the size of the transmitted data (in bits).2

For simplicity, the wireless link between each worker m and the parameter server for each

entry of the transmitted gradients is assumed to be a binary symmetric channel with crossover

probability pout(rm).3

1Note that given a fixed transmission rate for the parameter server, the downlink transmission time is a
constant that can be readily integrated to the first and the second constraints of the optimization problems (6.15)
and (6.16), respectively, if needed.

2Note that in the schemes where full precision gradients are transmitted, each worker is supposed to transmit
32 bits for each element in the gradient vectors. Therefore, Algorithm 11 leads to a 32-fold improvement in
communication time and communication energy consumption. In addition, sm also depends on the machine
learning model. For instance, in a softmax regression model for k-class classification tasks, sm = d× k, in which d
is the dimension of the gradients.

3In this chapter, it is assumed that for each worker m, sign(g
(t)
m ) is transmitted as a single packet in the uplink
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6.2 Performance Analysis of Algorithm 11 over Wireless Net-

works

Before diving into the details of the system design, we first analyze how wireless communications

affect the performance of Algorithm 11. To facilitate the analysis, the following commonly

adopted assumption is made.

Assumption 8. (Smoothness). ∀w1, w2, we require for some non-negative constant L

F (w1) ≤ F (w2)+ < ∇F (w2), w1 − w2 > +
L

2
||w1 − w2||22, (6.8)

where < ·, · > is the standard inner product.

Given the above assumption, the following result can be proved.

Theorem 22. Suppose that the model parameter at the beginning of t-th communication round

is w(t), then by performing one communication round of Algorithm 11, we have

E[F (w(t))− F (w(t+1))] ≥ −η||∇F (w(t))||1 −
Lη2d

2

+ 2η

d∑
i=1

|∇F (w(t))i|P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
,

(6.9)

in which d is the dimension of the gradients; g̃
(t)
i and ∇F (w(t))i are the i-th entry of the

aggregated result g̃(t) and the gradient vector ∇F (w(t)), respectively. sign(·)i is the i-th entry

of the vector after taking the sign operation. The expectation and the probability are over the

dynamics of the wireless channels.

Proof. Please see Appendix E.1.

Remark 26. Theorem 22 lower bounds the expected improvement of the learning objective

during the t-th communication round (i.e., E[F (w(t)) − F (w(t+1))]). Intuitively, the learning

performance depends on two quantities: (1) the improvement of the learning objective during each

communication round; (2) the number of communication rounds. In particular, when the data are

homogeneously distributed across the workers, SIGNSGD converges with a rate of O(1/
√
T ) [45],

in which T is the total number of communication rounds.

Note that given w(t), F (w(t)) and ∇F (w(t)) are constants. Therefore, maximizing the lower

bound of the expected improvement of the learning objective (i.e., the right-hand side of (6.9)) is

and all entries of sign(g
(t)
m ) are incorrectly decoded when an outage happens. The analysis in this study is thus

conservative. The extension to the scenarios where partial bits of the packet may be recovered is straightforward,
and won’t change the fundamental tradeoffs revealed in this study.
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equivalent to maximizing the probabilities of correct aggregation P (g̃
(t)
i = sign(∇F (w(t)))i), 1 ≤

i ≤ d. For the ease of discussion, we consider the i-th entry of the gradient and define a series of

random variables {Xm}Mm=1 given by

Xm =

1, if sign(ĝ
(t)
m )i 6= sign(∇F (w(t)))i,

0, if sign(ĝ
(t)
m )i = sign(∇F (w(t)))i.

(6.10)

Xm can be considered as the outcome of one Bernoulli trial with successful probability P (Xm = 1).

Let Z =
∑M

m=1Xm, then it can be verified that4

P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
= P

(
Z <

M

2

)
. (6.11)

In addition, Z follows the Poisson binomial distribution with mean E[Z] =
∑M

m=1 P (Xm = 1).

Since Z is non-negative, the Markov’s inequality gives

P
(
Z ≥ M

2

)
≤ 2E[Z]

M
, (6.12)

and therefore

P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
= 1− P

(
Z ≥ M

2

)
≥ M − 2E[Z]

M
. (6.13)

Note that E[Z] and M −E[Z] are the expected number of workers that share wrong and correct

signs, respectively. The lower bound in (6.13) represents the difference between the ratios of

workers that share the correct signs and that share the wrong signs.

Remark 27. Note that the closed form of the expected improvement of the learning objective

during the t-th communication round (i.e., E[F (w(t))−F (w(t+1))]) and the probabilities of correct

aggregation P (g̃
(t)
i = sign(∇F (w(t)))i), 1 ≤ i ≤ d are difficult to obtain, especially when the

objective function F (·) is unknown. Therefore, the bound derived in (6.13) is used to measure the

expected improvement during each communication round. In this sense, in order to optimize the

learning performance, we need to: (1) maximize (M − 2E[Z])/M ; (2) increase the total number

of communication rounds given a fixed total training time (until convergence).5

Given any M , maximizing the right-hand side of (6.13) is equivalent to minimizing E[Z] =∑M
m=1 P (Xm = 1). In particular, let p

(t)
m denote the probability of sign(g

(t)
m )i = sign(∇F (w(t)))i

4Note that the scenario in which F (w(t))i = 0 is not considered in our study for simplicity.
5Theoretically, it can be shown that E[ 1

T

∑T
t=1 ||∇F (w(t))||1] ≤ O(1/

√
T ). In practice, it is usually not expected

that the gradients be reduced to 0. The machine learning algorithms are said to converge when the performance
stops improving, which usually takes a finite number of communication rounds.
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(i.e., the i-th entry of the local gradient of worker m has the same sign as that of the true

gradient ∇F (w(t))), it can be shown that

P (Xm = 1) = p(t)
m pout(rm) + (1− p(t)

m )(1− pout(rm)). (6.14)

When p
(t)
m > 0.5,6 minimizing P (Xm = 1) is equivalent to minimizing pout(rm).

6.3 Problem Formulation

In this section, the scenario with homogeneous data distribution across the workers is considered.

According to our discussion in Section 6.2, in order to optimize the learning performance, it

is desired to minimize the outage probabilities of the workers and maximize the number of

communication rounds. In this chapter, the implementation of the FL algorithm given a fixed

total training time is considered. In this case, the number of communication rounds is inversely

proportional to the time duration for each communication round (i.e., T cmpm +T comm ). In addition,

considering that the workers (i.e., the mobile devices) have limited batteries, two optimization

problems are formulated. Essentially, the first optimization problem addresses the needs of

battery-constrained workers while satisfying the requirement for learning performance (which

may be dictated by the server), while the second optimization problem is of more interests to

the parameter server, whose goal is to optimize the learning performance without consuming

excessive energy for the workers.

In the first optimization problem, the energy consumption is minimized given the learning

performance constraint (i.e., the outage probabilities of the workers and the time duration for

each communication round). It can be seen from (6.6) that given fixed bandwidth Bm and noise

power spectral density N0, the transmission rate rm and the transmission power Pm determine

the outage probability of worker m. Increasing the transmission power Pm and decreasing the

transmission rate rm both decrease the outage probability. However, according to (6.7), a larger

Pm and a smaller rm result in higher communication energy consumption. In addition, given a

fixed time duration for each communication round (i.e., T cmpm + T comm ), decreasing rm increases

the communication time T comm and therefore requires worker m to increasing the CPU frequency

fm such that the local computation time can be reduced. As a result, the local computation

energy consumption of worker m also increases. By solving the first optimization problem,

each worker m minimizes its energy consumption by selecting appropriate local computation

parameter fm, communication parameters Pm and rm while satisfying the learning performance

6We note that in the scenario with homogeneous data distribution across the workers, the local gradient g
(t)
m of

worker m can be understood as a noisy estimate of the gradient ∇F (w(t)). Following the assumption in [45] that

the noise is symmetric with zero mean, p
(t)
m > 0.5 always holds. The discussions concerning the heterogeneous

data distribution are provided in Section 6.5.
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constraint.

In the second optimization problem, the learning performance is optimized given the energy

consumption constraint for the workers. Particularly, minimizing the outage probabilities of

the workers (and therefore maximizing (M − 2E[Z])/M) during each communication round

and maximizing the total number of communication rounds are conflicting. On the one hand,

given fixed transmission power Pm and CPU frequency fm, increasing the time duration for

each communication round allows worker m to select a smaller transmission rate rm, which

decreases its outage probability. On the other hand, given a fixed total training time, a larger

time duration for each communication round results in fewer communication rounds. That

being said, there exists a tradeoff between the total number of communication rounds and the

outage probabilities of the workers. By solving the second optimization problem, the tradeoff is

appropriately balanced while satisfying the energy consumption constraint for the workers.

Considering that SIGNSGD converges with a rate of O(1/
√
T ), the objective of the second

optimization problem is to maximize
√
T (M − 2E[Z])/M , in which

√
T captures the impact of

the number of communication rounds and (M − 2E[Z])/M captures the improvement of the

learning objective at each communication round (c.f. (6.13)).

6.3.1 Energy Minimization Given Learning Performance Constraint

In this subsection, the energy minimization problem given the requirements for the time duration

for each communication round and the outage probability of each worker is considered. Given

a constraint pout,m on the outage probability and a constraint Tl on the time duration for

each communication round, the goal of worker m is to minimize its energy consumption. The

corresponding optimization problem is formulated as follows.

min
fm,rm,Pm

αm
2
cmDmf

2
m +

Pmsm
rmBm

s.t.
cmDm

fm
+

sm
rmBm

≤ Tl,

1− e−
(2rm−1)N0Bm

Pm ≤ pout,m,
Pmin,m ≤ Pm ≤ Pmax,m,
fmin,m ≤ fm ≤ fmax,m,

(6.15)

The CPU frequency for local computation fm, the transmission rate rm and the transmission

power Pm are the parameters to be optimized. The feasible regions of CPU frequency and

transmission power of worker m are imposed by the second and the third constraints, respectively.

Considering that the time duration for each communication round is determined by the slowest

worker (the straggler), Tl is set the same for all the workers. Given a fixed total training time, the
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time duration requirement imposes a lower bound on the number of communication rounds, while

the outage probability requirement imposes a lower bound on (M − 2E[Z])/M . Considering that

the learning performance improves as the number of communication rounds and (M −2E[Z])/M

increase, Tl and pout,m specify the worst learning performance that the system will achieve in

the considered scenario.

6.3.2 Learning Performance Optimization Given Energy Consumption Con-

straint

In this subsection, the tradeoff between the total number of communication rounds and the

outage probabilities of the workers is investigated. According to the discussion in Section 6.2,

E[Z] =
∑M

m=1 p
(t)
m pout(rm) + (1 − p(t)

m )(1 − pout(rm)), in which p
(t)
m is determined by the local

dataset of worker m and therefore unknown to the server. To facilitate the discussion, we assume

that p
(t)
m = 1,∀m, t.7 Given a fixed total training time, since the number of communication rounds

is inversely proportional to the time duration of each communication round, the optimization

problem is formulated as follows.

max
Tl,rm

M − 2
∑M

m=1 pout(rm)√
Tl

s.t.
αm
2
cmDmf

2
m +

Pmsm
rmBm

≤ Em, ∀m,

max
m

{
cmDm

fm
+

sm
rmBm

}
≤ Tl,

(6.16)

in which the time duration for each communication round Tl and the transmission rate rm are

the parameters to be optimized. Em is the energy consumption upper limit for worker m. The

first constraint captures the energy consumption requirement for each worker m and the second

constraint captures the time duration requirement for each communication round.

Furthermore, we assume that the workers transmit with high SNR and therefore we have

pout(rm) ≈ (2rm − 1)N0Bm
Pm

. (6.17)

Remark 28. We note that in practice, it is usually the parameter server that coordinates the

whole training process and sets the learning performance requirements (i.e., the time duration

and outage probability requirements for each communication round) for the workers. In this sense,

7Note that when all the workers have the same dataset, g
(t)
m = ∇F (w(t)) and therefore p

(t)
m = 1, ∀m, t. In the

homogeneous data distribution setting, g
(t)
m can be considered as a noisy version of ∇F (w(t)). As long as the noise

is not too large (e.g., when the local datasets are large enough), this assumption is approximately true. This is
verified in our simulation results.
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different from (6.15), the optimization problem (6.16) is of more interests to the parameter server.

In this case, the primary goal of the parameter server is to optimize the learning performance

rather than the energy consumption of the workers (and therefore the parameter server may

set a large Em for each worker m). As a result, the parameter server prefers that fm = fmax,m

and Pm = Pmax,m, ∀m, such that the communication time and the outage probabilities are

minimized. This can be realized by properly setting the outage probability and time duration

requirements for each communication round. More specifically, the parameter server solves (6.16)

with Pm = Pmax,m and fm = fmax,m, ∀m and sends the corresponding Tl and pout(rm) to

the workers. If worker m selects a smaller fm, it has to increase its transmission rate rm to

accommodate the time duration requirement. However, a larger rm results in a higher outage

probability, which violates the outage probability requirement. Similar results can be obtained for

the transmission power.

6.4 Optimization of System Parameters for Federated Learning

6.4.1 Energy Minimization Given Outage Probability Constraint

We note that the optimization problem (6.15) is not always feasible. In particular, according to

the time duration requirement Tl, it is required that rm ≥ sm
(Tl− cmDm

fmax,m
)Bm

. Combining it with

the power constraint and plugging them into (6.6) yields

pout(rm) ≥ 1− e−

(
2

sm

(Tl−
cmDm
fmax,m

)Bm
−1

)
N0Bm

Pmax,m , (6.18)

which may violate the given outage constraint pout,m at least for some worker m. Therefore, two

scenarios are considered.

(1) The optimization problem (6.15) is infeasible

In this case, we assume that Pm = Pmax,m, fm = fmax,m and rm = sm
(Tl− cmDm

fmax,m
)Bm

.

Remark 29. We note that Tl and pout(rm) are the two most important parameters that determine

the performance of the FL algorithm. When the optimization problem (6.15) is infeasible, i.e.,

the outage probability given in (6.18) exceeds pout,m at least for some worker m, the delay

requirement and the outage probability requirement cannot be satisfied simultaneously. Since the

time duration for each communication round is supposed to be determined by the slowest worker

(the straggler), we assume that each worker accommodates the time duration requirement while

reducing the outage probability as best it can.
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(2) The optimization problem (6.15) is feasible

For the ease of presentation, we define r
(1)
m = log2

(
− Pmin,m ln(1−pout,m)

N0Bm
+ 1
)

, r
(2)
m = log2

(
−

Pmax,m ln(1−pout,m)
N0Bm

+ 1
)

, and r
(3)
m = sm

Bm(Tl− cmDm
fmax,m

)
.

Lemma 5. Given any max{r(1)
m , r

(3)
m } ≤ rm ≤ r(2)

m , the optimal transmission power P ∗m is given

by

P ∗m = −N0Bm(2rm − 1)

ln(1− pout,m)
. (6.19)

Given any max{r(1)
m , r

(3)
m } ≤ rm ≤ r(2)

m , the optimal CPU frequency for local computation is given

by

f∗m = max

{
cmDm

Tl − sm
rmBm

, fmin,m

}
. (6.20)

Proof. Please see Appendix E.2.

Remark 30. Note that [r
(3)
m , r

(2)
m ] defines the feasible region of rm. If rm < r

(3)
m , the time

duration requirement cannot be satisfied even with the maximum fm. Similarly, the outage

probability requirement cannot be satisfied even with the maximum Pm if rm > r
(2)
m .

r
(1)
m denotes the minimum transmission rate that worker m is supposed to select. For any

Pmin,m ≤ Pm ≤ Pmax,m, the outage probability requirement is satisfied (i.e., pout(rm) ≤ pout,m)

for any rm ≤ r(1)
m . Given the time duration requirement Tl, a larger rm allows worker m to select

a smaller fm. Considering that the objective function of the optimization problem (6.15) is a

decreasing (increasing) function of rm (fm), we have the optimal transmission rate r∗m ≥ r(1)
m .

With Lemma 5 at hand, the optimization problem (6.15) can be reformulated as follows.

min
rm

αmcmDm

2
z2
m(rm)− N0sm(2rm − 1)

ln(1− pout,m)rm

s.t. max{r(1)
m , r(3)

m } ≤ rm ≤ r(2)
m ,

(6.21)

in which zm(rm) = max{ cmDm
Tl− sm

rmBm

, fmin,m}.
It can be verified that the objective in (6.21) is convex and therefore, the widely used

subgradient methods [139] can be adopted to solve the optimization problem (6.21).
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6.4.2 Learning Performance Optimization Given Energy Consumption Con-

straint

Lemma 6. In the optimization problem (6.16), given any fixed Tl, the optimal transmission

rate of worker m is given by

r∗m = max

{
Pmsm

Bm(Em − αm

2 cmDmf2m)
,

smfm
BmfmTl −BmcmDm

}
. (6.22)

Proof. Please see Appendix E.3.

Let U =
{
m| Pmsm

Bm(Em−αm2 cmDmf2m)
≥ smfm

BmfmTl−BmcmDm

}
. According to Lemma 6, the workers

can be divided into two groups. The optimal transmission rates of the workers in the first group

(i.e., U) is limited by their energy consumption upper limit Em (i.e., further decreasing the

transmission rate results in the violation of the energy consumption constraint), while those of

the workers in the second group is limited by the time duration for each communication round

Tl (i.e., further decreasing the transmission rate results in the violation of the time duration

requirement), which is subject to design. Further define the following two functions:

g(x) =
2
∑

m∈U

(
2

Pmsm
Bm(Em−αm2 cmDmf

2
m) − 1

)
N0Bm

Pm
√
x

+
2
∑

m/∈U

(
2

smfm
Bmfmx−BmcmDm − 1

)
N0Bm

Pm
√
x

,

(6.23)

h(x) =
M√
x
. (6.24)

Based on Lemma 6, the optimization problem (6.16) can be reformulated as follows.

min
Tl

g(Tl)− h(Tl)

s.t. Tl ≥ max
m

{
cmDm

fm

}
.

(6.25)

It can be verified that both g(x) and h(x) are convex functions of x. Therefore, (6.25) is a

difference of convex programming problem, which can be solved by the DCA algorithm [140].

6.5 Extension to the Scenario with Heterogeneous Data Distri-

bution across the workers

The discussions in the previous sections consider the scenario with homogeneous data distribution

across the workers. It has been shown that SIGNSGD fails to converge when the the data
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are heterogeneously distributed across the workers even when the workers can deliver their

information without any error [49]. The following example is provided for further illustration.

Example 2. Suppose that the i-th entry of worker m’s gradient is given as follows8

∇Fm(w(t))i =

−1, if 1 ≤ m ≤M − 1,

M, if m = M.
(6.26)

In this case, we have

sign(∇F (w(t)))i = sign

(
1

M

M∑
m=1

∇Fm(w(t))

)
i

= sign

(
1

M

)
= 1 (6.27)

It can be easily verified that

P (Xm = 1) = P (sign(ĝ(t)
m ) 6= sign(∇F (w(t)))) =

1− pout(rm), if 1 ≤ m ≤M − 1,

pout(rm), if m = M.

(6.28)

Essentially, when pout(rm) = 0, ∀m,

sign

(
M∑
m=1

sign(ĝ(t)
m )

)
= sign

(
M∑
m=1

sign(∇Fm(w(t)))

)
6= sign(∇F (w(t))), (6.29)

which leads to wrong aggregation.

In Example 2, it can be observed that for worker m ∈ {1, 2, · · · ,M − 1}, a smaller pout(rm)

results in a larger P (Xm = 1) and smaller (M − 2E[Z])/M , in sharp contrast with the ho-

mogeneous case. In this case, the parameter server obtains wrong aggregation results even if

all the workers deliver their information without any error. In addition, when the data are

heterogeneously distributed across the workers, the probability of such scenarios that lead to

wrong aggregation is unknown since neither the parameter server nor the workers has knowledge

about the global objective function F (·) (and therefore p
(t)
m ’s). As a result, the convergence of

Algorithm 11 cannot be guaranteed. Therefore, it is of vital importance to develop an algorithm

that can deal with heterogeneous data distribution across the workers. With such consideration,

a stochastic sign based algorithm (i.e., Algorithm 12), termed as Stochastic SIGNSGD with

8Recall that in the homogeneous data distribution setting, the gradients of the workers are considered noisy
versions of ∇F (w(t)). As a result, such a scenario as (6.26) happens with a small probability (i.e., p

(t)
m is large,

∀m). In the heterogeneous data distribution setting, p
(t)
m ’s depend on the local datasets of the workers and may

be very different from those in the homogeneous data distribution setting.

105



Algorithm 12 Stochastic SIGNSGD with majority vote over wireless networks

1: Input: initial weight: w0; number of workers: M ; learning rate: η.
2: for t = 0, 1, · · · , T do
3: Each worker m obtains its gradient ∇Fm(w(t)). Then, it estimates its outage probability
pout(rm) and does the following pre-processing

(g(t)
m )i =

{
−sign(∇Fm(w(t)))i, with probability pim,

sign(∇Fm(w(t)))i, with probability 1− pim,
(6.30)

where pim =
1
2
−pout(rm)−b|∇Fm(w(t))i|

1−2pout(rm) and b is a parameter subject to design. Particularly,

0 < b < 1−2pout(rm)

2|∇Fm(w(t))i|
such that pim ∈ (0, 1

2).

4: Each worker m transmits sign(g
(t)
m ) to the parameter server over wireless links.

5: The parameter server obtains a noisy estimate (denoted by ĝ
(t)
m ) of the transmit-

ted information sign(g
(t)
m ) from each worker m and sends the aggregated result g̃(t) =

sign
(

1
M

∑M
m=1 ĝ

(t)
m

)
back to the workers.

6: The workers update their local models

w(t+1) = w(t) − ηg̃(t). (6.31)

7: end for

majority vote, is proposed. In particular, compared to Algorithm 11, there is a pre-processing

step (i.e., step 3) in Algorithm 12, in which each worker projects each entry of the locally

obtained gradient to -1 and +1 with certain probabilities, respectively. The aforementioned issue

is alleviated by the stochasticity of the projection. Taking M = 3 in Example 2 as an example,

it can be verified that

p(t)
m = P (sign(g(t)

m )i = sign(∇F (w(t)))i) =


1
2
−pout(rm)−b|∇Fm(w(t))i|

1−2pout(rm) , if 1 ≤ m ≤ 2,
1
2
−pout(rm)+b|∇Fm(w(t))i|

1−2pout(rm) , if m = 3.
(6.32)

Plugging (6.32) into (6.14) yields

P (Xm = 1) =


1
2 + b, if 1 ≤ m ≤ 2,

1
2 − 3b, if m = 3.

(6.33)
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Therefore,

P

(
Z <

3

2

)
= P

(
3∑

m=1

Xm = 1

)
+ P

(
3∑

m=1

Xm = 0

)

= 2

(
1

2
+ b

)(
1
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)(
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)
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1

2
− b
)2(

1
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)
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1
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)2(

1

2
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)
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1

2
+

1

2
b− 6b3.

(6.34)

It can be verified that when 0 < b < 1√
12

, P (Z < 3/2) > 1
2 . That being said, the probability

of correct aggregation (c.f. (6.11)) is strictly larger than 1
2 when b is small enough, based on

which the convergence of Algorithm 12 can be established [141]. For more general scenarios,

Lemma 7 in the following can be proved.

Lemma 7. For a sufficiently small b, when pout(rm) ≤ mini{1
2 − b|∇Fm(w(t))i|}, in which

∇Fm(w(t))i is the i-th entry of the gradient ∇Fm(w(t)), we have

P
(
g̃

(t)
i = 1

)
=

1

2
+

( M−1
dM+1

2
e−1

)
2M

M∑
m=1

b∇Fm(w(t))i +O

(
b2

2M

)
. (6.35)

Proof. Please see Appendix E.4.

Remark 31. In (6.35), if the second term dominates the third term (i.e., b is sufficiently small),

P
(
g̃

(t)
i = 1

)
> 1

2 when
∑M

m=1 b∇Fm(w(t))i > 0; P
(
g̃

(t)
i = 1

)
< 1

2 when
∑M

m=1 b∇Fm(w(t))i < 0.

That being said, the probability of wrong aggregation is always smaller than 1/2.

Given Lemma 7, the following theorem can be proved.

Theorem 23. Suppose Assumption 8 is satisfied and set the learning rate η = 1√
dT

, then by

running Algorithm 12 for T iterations, we have

1

T

T∑
t=1

c||∇F (w(t))||1 ≤
E[F (w(0))− F (w(T+1))]

√
d√

T
, (6.36)

where c is some positive constant.

Proof. Please see Appendix E.5.

It is worth mentioning that according to Lemma 7 and Theorem 23, the convergence of

Algorithm 12 is based on the condition pout(rm) ≤ mini{1
2 − b|∇Fm(w(t))i|}. Therefore, in order
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to optimize the learning performance, the corresponding constraint needs to be added to the

optimization problem (6.16). In the meantime, b should also be optimized. However, since

∇Fm(w(t))’s are unknown to the server, optimizing the learning performance of Algorithm 12 is

highly non-trivial and left as our future work.

With such consideration, in this chapter, we mainly consider the energy consumption

minimization problem given predetermined b,9 time duration requirement Tl and the outage

probability requirement pout,m for each worker. It can be observed from (6.35) that the probability

of correct aggregation is independent of the outage probability pout(rm). In the meantime,

according to (6.15), the feasible region of the energy consumption minimization problem with

a smaller pout,m is a subset of that with a larger pout,m. As a result, it is optimal to select

pout,m = mini{1
2−b|∇Fm(w(t))i|} at the t-th communication round. In this case, worker m has to

obtain ∇Fm(w(t)) before computing pout,m. That being said, it has to finish the local computation

of the gradients before solving the energy consumption minimization problem. In this sense, we

consider a pre-determined local computation CPU frequency fm for each worker m’s energy

consumption minimization problem (which can be realized by setting fmin,m = fmax,m = fm in

(6.15)).

To this end, during each communication round, each worker m first computes its gradient

∇Fm(w(t)) and determines the optimal outage probability requirement pout,m as above. By

solving the energy consumption minimization problem (6.15), it obtains the communication

parameters Pm and rm. Then, each worker m estimates its outage probability pout(rm) (e.g.,

through (6.6)) and performs the pre-processing step, after which the processed information is

transmitted to the parameter server over wireless links.

6.6 Simulation Results

In this section, we examine the performance of the proposed methods through extensive

simulations. We implement a soft-max regression model on the well-known MNIST dataset that

consists of 10 categories ranging from digit “0” to “9” and a total of 60,000 training samples

and 10,000 testing samples. In this case, the dimension of the gradient is d = 785 and the size of

updates for each worker is sm = 7850 bits for each communication round. It is assumed that

there are 10 workers that collaboratively train a global model given a total training time of

50 seconds. For all the workers, we set αm = 2 × 10−28; cm = 20 cycles/bit; Dm = 5 × 106

bits; fmin,m = 0.3 GHz; fmax,m = 2 GHz; Pmin,m = 0; Pmax,m = 1 W; N0 = 10−8 W/Hz;

9In the implementation of Algorithm 12, it is possible that the predetermined b ≥ 1−2pout(rm)

2|∇Fm(w(t))i|
for the i-th

entry of worker m’s gradient such that pim ≤ 0. In this case, we round pim to 0, and it can be verified that (6.30)

is reduced to (g
(t)
m )i = sign(∇Fm(w(t)))i. That being said, Algorithm 11 is a special case of Algorithm 12 where b

is large enough.
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Figure 6.1: The Impact of Outage Probability in the Scenario with Homogeneous Data
Distribution across the workers

Bm = 15 kHz. In the scenario with homogeneous data distribution across the workers, each

worker randomly samples 2000 training samples from the training dataset. In the scenario with

heterogeneous data distribution across the workers, the whole training dataset is divided into 10

subsets, each containing the training data for one label. Each worker randomly samples 2000

training samples from one of the subsets.

6.6.1 Energy Minimization Given Learning Performance Constraint: Homo-

geneous

In this subsection, the impact of the outage probability and time duration for each communication

round in (6.15) is examined. We set the same outage probability constraints for all the workers,

i.e., pout,m = pout, ∀m. The three figures in Fig. 6.1 show the training accuracy, testing accuracy

and the average energy consumption for each worker of Algorithm 11 with different pout and Tl,

respectively. It can be observed that as pout and Tl increase, the energy consumption decreases.

This is because the feasible region of (6.15) corresponding to a smaller pout and Tl is a subset

of that of (6.15) corresponding to a larger pout and Tl. On the other hand, both the training

accuracy and the testing accuracy decrease as pout and Tl increase. This indicates that there

exists a tradeoff between the energy consumption and the learning performance. Given the

tradeoff curves, the workers and the parameter server can select suitable pout and Tl to achieve

a desired balance between the learning performance and the energy consumption.

6.6.2 Learning Performance Optimization Given Energy Consumption Con-

straint: Homogeneous

In this subsection, we examine the impact of the transmission power Pm and the time duration

for each communication round Tl. The energy consumption upper limit is set as Em = 100 J. Fig.

6.2 shows the performance of Algorithm 11 with different Pm and Tl. Particularly, the training

loss is measured by the loss function F (·) corresponding to the soft-max regression model. For

the solid curves, the transmission rates rm’s are given by (6.22), while the configurations of

the marked points are given by the solution of (6.16). It can be shown that as Tl increases, the
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Figure 6.2: The Impact of Tl in the Scenario with Homogeneous Data Distribution Scenario
cross Workers

learning performance of Algorithm 11 first increases and then decreases. According to (6.22),

when Tl increases, rm decreases and therefore the outage probability pout(rm) also decreases.

However, in the meantime, as Tl increases, the number of communication rounds decreases

given the fixed training time. As a result, when the outage probability has a larger impact

on the learning performance, increasing Tl results in better performance. When Tl is larger

than a certain critical value, the number of communication rounds plays a more important role

and therefore increasing Tl leads to worse performance. In addition, it can be seen that such a

critical value decreases as the transmission power increases. Furthermore, Fig. 6.2 shows that

the proposed method works close to the optimal operation point for all the examined scenarios,

which validates its effectiveness.

6.6.3 Energy Minimization Given Learning Performance Constraint: Hetero-

geneous

In this subsection, the performance of Algorithm 12 is examined. The CPU frequencies are

set as fm = 2 GHz, ∀m. The outage probability requirements pout,m’s are set according to the

discussion in Section 6.5. Fig. 6.3 shows the performance of Algorithm 12 for different b when

Tl = 0.15. In the “Full Power without Pre-processing” counterpart, we show the performance

of Algorithm 12 without the pre-processing step (i.e., step 3) and set Pm = Pmax,m, and

rm = sm/(TlBm− cmDmBm/fm), i.e., the outage probability pout,m is minimized given that the

time duration for each communication round Tl is satisfied. For the “SIGNSGD” baseline, it is

assumed that the communication between the workers and the parameter server is perfect (i.e.,

the outage probabilities are zero). In the considered scenario, the outage probabilities of the

workers in the “Full Power without Pre-processing” baseline are small. As a result, “Full Power

without Pre-processing” and “SIGNSGD” provide comparable performance. It can be observed

that Algorithm 12 outperforms the “Full Power without Pre-processing” and the “SIGNSGD”

counterparts for all the examined b’s. More specifically, when b = 0.01, Algorithm 12 gives an

improvement of around 27% in testing accuracy. Table 6.1 shows the corresponding average
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Figure 6.3: The Performance of Algorithm 12 in the Scenario with Heterogeneous Data
Distribution across the workers

Table 6.1: Average Energy Consumption of the Workers

b
0.005

0.01 0.1
Full Power without Pre-
processing

Energy Consumption (J)
28.37 42.80 46.62

46.62

energy consumption of the workers. It can be observed that when b = 0.1, the energy consumption

of Algorithm 12 is the same as that of “Full Power without Pre-processing”. In this case, the

required outage probability pout,m = mini{1
2 − b|∇Fm(w(t))i|} for each worker is small. As a

result, as we discussed in Section 6.4.1, the outage probability requirement and the time duration

requirement for each communication round cannot be satisfied simultaneously. Therefore, the

workers are operating with Pm = Pmax,m. In this case, the only difference between Algorithm 12

and “Full Power without Pre-processing” is the pre-processing step (i.e., step 3) in Algorithm 12.

This indicates that the pre-processing step alone gives an improvement of around 20% in testing

accuracy as seen in Fig. 6.3. Moreover, Table. 6.1 shows that the average energy consumption

increases as b increases. This is because, as b increases, the required outage probability pout,m

decreases. As a result, similar to the results in the scenario with homogeneous data distribution

across the workers, the average energy consumption of the workers increases. However, it can

be observed that different from the scenario with homogeneous data distribution across the

workers, increasing b (and therefore decreasing the outage probability) does not necessarily

improve the learning performance in the scenario with heterogeneous data distribution across

the workers. For instance, Algorithm 12 with b = 0.01 performs around 8% better than b = 0.1

in testing accuracy. This indicates that compared with Algorithm 11 and “SIGNSGD”, Algorithm

12 improves the learning performance and reduces the energy consumption simultaneously by

selecting an appropriate b. Furthermore, it can be seen that further decreasing b from 0.01 to

0.005 leads to a degradation of around 3% in testing accuracy while reducing around 30% energy

consumption. In practice, a suitable b can be selected to achieve a desired balance between the
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learning performance and the energy consumption of the workers.

6.7 Related Works

To improve the communication efficiency of the distributed learning algorithms, various methods

have been proposed, including quantization [43–47,63], sparsification [127, 142, 143] and subsam-

pling [144,145]. However, most of these works ignore the impact of wireless environments and the

resource constraints of the mobile devices, which are of vital importance in the implementation

of FL algorithms over real-world wireless networks.

Recently, there have been a number of existing works that study the communication aspects

of FL algorithms. In [50,51], the weighted sum of the training time and the energy consumption

is optimized by properly selecting the local computation and the communication parameters.

The energy consumption of the communications between the mobile devices and the server is also

considered in [52] and the goal is to minimize the weighted sum of the energy consumption and

the number of participated mobile devices by mobile device scheduling and effective bandwidth

allocation. [53] considers a joint mobile device scheduling and bandwidth allocation problem

to minimize the expected FL training time. To further reduce the FL convergence time, [54]

incorporates artificial nueral networks (ANNs) to estimate the local FL models of the devices

that are not scheduled for transmission. [55] proposes a joint device scheduling and resource

block allocation policy for FL under imperfect CSI. [56] considers a cell-free massive MIMO

scenario and the training time is minimized by jointly optimizing the local computation and

the communication parameters. [57] empirically proposes a learning efficiency metric which is a

function of the mini-batch size and the time of each communication round. Resource allocation

and the mini-batch size are jointly optimized to maximize the learning efficiency. [58] takes the

effect of packet transmission errors into consideration and analyzes its impact on the performance

of FL. A joint bandwidth allocation and mobile device selection problem is formulated and solved

to minimize a FL loss function that captures the performance of the FL algorithm. However, in

these works, the aforementioned effective strategies for improving communication efficiency are

not considered.

[59] adopts gradient quantization and proposes a one-bit broadband over-the-air aggregation

scheme. The impact of wireless channel hostilities is analyzed. [60–62] propose to combine the

quantization, sparsification and error compensation schemes. However,, the energy consumption

of the devices as well as the impact of transmission errors are ignored in these works. Moreover,

all these works assume CSI at both the transmitter and the receiver sides. In this chapter, we

adopt the idea of SIGNSGD with majority vote [45] in the design of the communication system

and consider flat-fading channels with receiver only CSI.
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6.8 Conclusions

In this chapter, the implementation of the sign based FL algorithms over wireless networks is

studied. In particular, considering that the workers have limited batteries, two optimization

problems concerning the learning performance and the energy consumption of the workers

are formulated and solved for appropriate local processing and communication parameter

configuration. Furthermore, since SIGNSGD fails to converge in the scenario with heterogeneous

data distribution across the workers, a stochastic sign based algorithm that can deal with data

heterogeneity across the workers is proposed and the corresponding energy minimization problem

is solved. It is shown that the proposed algorithm improves the learning performance with less

energy consumption for the workers. The simulation results demonstrate the effectiveness of the

proposed method.
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Chapter 7

Summary and Future Work

7.1 Conclusions

While the rapidly developing communication technologies bring collaboration opportunities in

various areas, the information exchange in collaboration raises security and privacy concerns.

In this dissertation, we investigated the security and privacy problems in three important and

emerging areas: collaborative security, crowdsensing, and machine learning.

In Chapter 2, the collaborative IDS configuration problem against rational attackers is

tackled through a two-layer SG approach, in which the first layer models the interaction between

the attackers and the IDSs while the second layer models the interaction among the IDSs. To

solve the two-layer SG, the VCG auction based collaboration scheme is proposed. To further

mitigate the communication overhead and complexity issues in VCG auction, a distributed

game-theoretic incentive mechanism is also proposed. It is shown that the proposed algorithms

can both provide effective collaborative configurations and deliver substantial performance gain

as compared to the non-collaborative counterpart. Considering that sharing the security-related

information may lead to privacy leakage, the security-privacy tradeoff in collaborative security

is investigated in Chapter 3. Three QIF games are formulated to model the interaction among

collaborative security entities and the attacker, with each game corresponding to one possible

scenario of interest in practice. By solving the games, the optimal strategies for both the attacker

and the collaborative entities are obtained.

In Chapter 4, we investigate the AoI minimization problem in the presence of multiple

location privacy-aware mobile agents in mobile crowd sensing. The lower bound of the expected

payment for the BS is derived as a function of the differential privacy levels for the mobile agents.

Then, a payment mechanism that achieves the lower bound is proposed for the BS, which allows

it to stimulate the mobile agents to report their locations with its differential privacy levels.

Considering that the BS usually has a limited budget, a cost-efficient mobile agent selection
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algorithm under budget constraint is also developed.

In Chapter 5, we look into the machine learning area and focus on federated learning which

provides privacy guarantees for the mobile devices. In particular, we propose a Stochastic-Sign

SGD framework that utilizes two novel gradient compressors and can deal with heterogeneous

data distribution. The proposed algorithms are proved to converge in the heterogeneous data

distribution scenario. In particular, the proposed differentially private compressor dp-sign

improves the privacy and the accuracy simultaneously without sacrificing any communication

efficiency. Then, we further improve the learning performance of the proposed method by

incorporating the error-feedback scheme. In addition, the Byzantine resilience of the proposed

algorithms is shown analytically. In Chapter 6, the implementation of the sign based SGD

algorithms over wireless networks is studied. Considering that the workers have limited batteries,

two optimization problems are formulated and solved for appropriate local processing and

communication parameter configuration. The Stochastic-Sign SGD proposed in Chapter 5 is

adapted to the wireless settings, which outperforms SIGNSGD in learning performance with less

energy consumption for the workers.

7.2 Future Works

Finally, we list below some of the interesting but open topics.

• In the study of collaborative security in Chapter 2 and Chapter 3, the attackers are assumed

to be rational. Further consideration of irrational attackers or more intelligent attackers who

may explicitly attempt to misguide the security entities remains an interesting direction

for future research.

• In Chapter 4, the trajectory of the mobile agents are assumed fixed and known. Designing

the trajectory of the mobile agents to maximize their utilities as well as minimize the AoI

of the network remains an interesting future direction.

• In Chapter 5 and Chapter 6, each entry of the gradient is represented by 1 bit. In deep

learning, however, since the dimension of the gradient vector can be in the order of

millions, the communication overhead is still a big concern. Incorporating more aggressive

compression methods in FL is another interesting research direction.
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Appendix A

A.1 Proof of Theorem 1

Proof. For the ease of presentation, define XUi
i ,

Ui∑
j=1

eij . Let ∆j =
∑

i gij −
∑

i gji denote the

amount of resource that IDSj receives from (or gives to) other IDSs, which satisfies
∑n

j=1 ∆j = 0.

Further define

fj(∆j) = [(1− q2)kj − (q1 − q2)X
Uj
j ]− [(1− q2)kj − (q1 − q2)X

Uj+∆j

j ](1− q2)∆j , (A.1)

Then according to (2.15) and (2.16), the difference between the IDS’s rewards before and after

resource allocation is given by

N∑
i=1

E{RIDSi |U ′i}−
N∑
i=1

E{RIDSi |Ui} =
N∑
j=1

fj(∆j)(1− q2)Uj−1. (A.2)

When ∆j > 0, it is easy to see that X
Uj+∆j

j > X
Uj
j and (1− q2)∆j < 1, thus fj(∆j) > 0.

Similarly, when ∆j < 0, fj(∆j) < 0.

When there exists j such that ∆j 6= 0, some terms in (A.2) will be positive and the others

will be non-positive. Thus, (A.2) > 0 (i.e., there is performance improvement) if and only if

the sum of the absolute values of the positive terms are larger than that of the negative terms.

Further checking the property of function fj , it can be verified that

fj(l + 2)− fj(l + 1) < fj(l + 1)− fj(l), (A.3)

which indicates that as l increases, the increasing rate of the function fj is decreasing. Thus,

the necessary and sufficient condition for (A.2) > 0 can be transformed into

max
1≤j≤N

|fj(∆j = 1)(1− q2)Uj−1| > min
1≤j≤N

|fj(∆j = −1)(1− q2)Uj−1|, (A.4)

which is equivalent to (2.19).
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A.2 Proof of Theorem 2

Proof. If the matrix H(j) is diagonally dominant, then it is also P-matrix [70]. As a result, the

corresponding LCP has a unique solution for any bj [72]. Since H(j)’s are diagonally dominant

for all j ∈ N , all the associated LCPs have unique solutions, which means the game has a unique

NE.

A.3 Proof of Theorem 4

Proof. According to (2.35), for any λi and λ
′
i,

|D′i(λi)−D
′
i(λ
′
i)| = |

∑
j∈Ci [q1e

j
lj

+ q2
∑

l 6=lj e
j
l ]

(ci + λi)
−
∑

j∈Ci [q1e
j
lj

+ q2
∑

l 6=lj e
j
l ]

(ci + λ
′
i)

| (A.5)

= |
∑

j∈Ci [q1e
j
lj

+ q2
∑

l 6=lj e
j
l ](λi − λ

′
i)

(ci + λi)(ci + λ
′
i)

|.

Since both λi and λ
′
i are bounded from both above and below, there exists a positive constant

K such that

|D′i(λi)−D
′
i(λ
′
i)| ≤ K|λi − λ

′
i|, (A.6)

which means that D
′
i(λi) is Lipschitz continuous with Lipschitz constant K.

As a result, when βi <
min(2,B1)

K , (2.38) is a contraction mapping of λi and hence the gradient

based iterative algorithm converges to dual optimal λ∗i .
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Appendix B

B.1 Proof of Proposition 1

Proof. According to the monotonicity of posterior vulnerability, when the channel matrix C is

not useless and Vg is nonlinear, we have V̂g(π,C) > Vg(π). For the attacker’s secret, π corresponds

to its attacking strategy and C corresponds to entity j’s observation and obfuscation process

(i.e., Qj ×Rj). For entity j, π corresponds to the distribution of its true observation result and

C corresponds to the obfuscation process (i.e., Rj). This can also be interpreted as follows: if

the channel matrix is not useless (i.e., contains some information), by observing the obfuscated

observation of an entity, the adversary gains information about the true observation result and

the leader gains information about the true network state which is only determined by the

attacker’s action.

B.2 Proof of Proposition 2

Proof. On the one hand, if entity j does not obfuscate its observation before sharing, its secret

is shared directly and the vulnerability is maximized in this case. On the other hand, for the

attacker, its attacking strategy can be considered as the prior probability distribution π in

(3.7) while the observation matrix Qj and the obfuscation matrix Rj take the roles of the

channel matrix C and post-processing matrix R, respectively. Therefore, according to DPI, the

vulnerability of the attacker’s secret decreases due to the obfuscation process.

Let p1 and p2 be two possible misreport probabilities for entity j, with p1 < p2 < 0.5. Then it

can be verified that Rj1 =
[

1−p1 p1
p1 1−p1

]
, Rj2 =

[
1−p2 p2
p2 1−p2

]
, and Rj2 = 1−2p2

1−2p1
Rj1+(1− 1−2p2

1−2p1
) [ 0.5 0.5

0.5 0.5 ].

According to the convexity of posterior vulnerability function and the monotonicity,

V̂g(π,R
j
2) ≤ 1− 2p2

1− 2p1
V̂g(π,R

j
1) + (1− 1− 2p2

1− 2p1
)Vg(π)

<
1− 2p2

1− 2p1
V̂g(π,R

j
1) + (1− 1− 2p2

1− 2p1
)V̂g(π,R

j
2),

(B.1)
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which further indicates

V̂g(π,R
j
2) < V̂g(π,R

j
1). (B.2)

Similarly, it can be verified that for any observation matrix Qj which is not useless, we have

V̂g(π,Q
jRj2) < V̂g(π,Q

jRj1). (B.3)

For entity j, (B.2) indicates that the vulnerability of its secret decreases as its misreport

probability increases. In addition, by taking the probability distribution of the attacker’s secret

before the leader receives the obfuscated observation from entity j as the prior probability

distribution π, (B.3) indicates that the vulnerability of the attacker’s secret decreases when

entity j increases its misreport probability. Therefore, increasing the misreport probability of an

entity decreases the vulnerabilities of both the attacker’s secret and the entity’s secret.

B.3 Proof of Corollary 2

Proof. In the case in which the action sets of the two players contain two elements each, the

solution of the minimax problem can be obtained as (3.16) and (3.17) and Theorem 5 ensures

that such solution always exists and is the same as the NE. In addition, when (3.18) holds, it

can be verified that

∂UE
∂pE(RL)

{
> 0, if uE(πAH , RH)− uE(πAH , RL) < 0,

< 0, if uE(πAH , RH)− uE(πAH , RL) > 0.

Therefore, the entities have pure strategy given by (3.19). Similarly, it can be verified that when

(3.21) holds, the attacker has pure strategy given by (3.22). Given the pure strategy of the

entities (attacker), the attacker (entities) can obtain the optimal strategy that maximizes its

own utility.

B.4 Proof of Lemma 4

Proof. Note that if a mixed strategy is played at an NE, all pure strategies in the support of

that mixed strategy must yield an equal expected payoff. Otherwise, a player could profitably

deviate to playing the specific strategy in the support that would generate a higher payoff. In

addition, the supports of strategies f(pA) and pA are the same as suggested by the definition of

function f , and the attacker’s utility function is the same in Game I and Game II. Therefore, pA

is the best response to pE in Game II if and only if f(pA) is the best response to pE in Game I.

Let UG2
E (pA, pE) denote the utility of the entities if (pA, pE) is played in Game II, and

UG1
E (f(pA), pE) the utility of the entities if (f(pA), pE) is played in Game I. It can be shown
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that
UG2

E (pA, pE)− UG2

E (pA, p
′
E)

=
∑
πA∈A

pA(πA)[pE(RL)− p′E(RL)][uE(πA, RL)− uE(πA, RH)]

=
∑
πA∈A

1

η
p̂A(πA)[pE(RL)− p′E(RL)][uA(πA, RH)− uA(πA, RL)]

=
1

η
[UG1

E (f(pA), pE)− UG1

E (f(pA), p′E)].

(B.4)

Therefore UG2

E (pA, pE)− UG2

E (pA, p
′
E) ≥ 0 is equivalent to UG1

E (f(pA), pE)− UG1

E (f(pA), p′E) ≥ 0, which

means that pE is a best response to pA in Game II if and only if pE is a best response to f(pA) in Game

I, which completes the proof of Lemma 4.

B.5 Proof of Theorem 6

Proof. Suppose (pA, pE) is an NE strategy in Game II, according to Lemma 4, (f(pA), pE) is

an NE strategy in Game I. Since Game I is a zero-sum game, it is also a minimax strategy.

Considering that the utility functions of the attacker in Game I and Game II are the same, pE

is also a minimax strategy in Game II.

Suppose (pA, pE) is a minimax strategy in Game II, then it is also a minimax strategy in

Game I, which further indicates that it is an NE strategy in Game I. As a result, according to

Lemma 4, there exists a strategy (f−1(pA), pE) which is the NE strategy in Game II. Therefore,

pE is also an NE strategy for the entities in Game II.
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Appendix C

C.1 Proof of Theorem 10

Proof. let p̂si (̂l
−i
t , l̂

i
t = k) > 0 denote the probability that mobile agent i is selected for

information delivery given the reported locations from all the other mobile agents l̂
−i
t =

[l̂1t , · · · , l̂i−1
t , l̂i+1

t , · · · , l̂Nt ] and its own reported location l̂it = k; Ri(lt, l̂t, st) denote the payment

of mobile agent i given the true locations of all the mobile agents lt = [l1t , l
2
t , · · · , lNt ], their

obfuscated locations l̂t, and the set of nodes that determine to transmit their updates st. Then,

the utility of agent i, at location k, is given by

Ui(εi, k)

=
∑
st

p(st)

[
eεi

N − 1 + eεi

∑
lt

∑
l̂t

p(lt|lit = k)p(̂lt|lt, l̂it = k)p̂si (̂l
−i
t , l̂

i
t = k)[Ri(lt, l̂t, st)− 1(k ∈ st)Ci]

+
1

N − 1 + eε

∑
j 6=k

∑
lt

∑
l̂t

p(lt|lit = k)p(̂lt|lt, l̂it = j)p̂si (̂l
−i
t , l̂

i
t = j)Ri(lt, l̂t, st)

]
− gi(εε),

(C.1)

in which p(lt|lit = k) is the probability that the true locations of the mobile agents are lt given

that the true location of agent i is lit = k; p(̂lt|lt, l̂it = k) is the probability that the reported

locations of the mobile agents are l̂t given that the true locations of the mobile agents are lt

and the reported location of agent i is l̂it = k.

Let

R̂i(k, k, st) =

∑
lt

∑
l̂t
p(lt|lit = k)p(̂lt|lt, l̂it = k)p̂si (̂l

−i
t , l̂

i
t = k)Ri(lt, l̂t, st)∑

lt

∑
l̂t
p(lt|lit = k)p(̂lt|lt, l̂it = k)p̂si (̂l

−i
t , l̂

i
t = k)

, (C.2)
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and

R̂i(k, j, st) =

∑
lt

∑
l̂t
p(lt|lit = j)p(̂lt|lt, l̂it = j)p̂si (̂l

−i
t , l̂

i
t = j)Ri(lt, l̂t, st)∑

lt

∑
l̂t
p(lt|lit = j)p(̂lt|lt, l̂it = j)p̂si (̂l

−i
t , l̂

i
t = j)

, (C.3)

we have

Ui(εi, k)

=
∑
st

p(st)

[
eεi

N − 1 + eεi
psi (k)[R̂i(k, k, st)− 1(k ∈ st)Ci] +

1

N − 1 + eεi

∑
j 6=k

psi (j)R̂i(k, j, st)

]
− gi(εi),

(C.4)

in which psi (k) =
∑

lt

∑
l̂t
p(lt|lit = k)p(̂lt|lt, l̂it = k)p̂si (̂l

−i
t , l̂

i
t = k). In addition,

∂Ui(εi, k)

∂εi

=
∑
st

p(st)

[
(N − 1)eεipsi (k)[R̂i(k, k, st)− 1(k ∈ st)Ci]

(N − 1 + eεi)2
− eεi

(N − 1 + eεi)2

∑
j 6=k

psi (j)R̂i(k, j, st)

]
− g′i(εi) = 0.

(C.5)

Therefore,

∑
st

p(st)
[
(N − 1)psi (k)[R̂i(k, k, st)− 1(k ∈ st)Ci]−

∑
j 6=k

psi (j)R̂i(k, j, st)
]

=
g′i(εi)(N − 1 + eεi)2

eεi
.

(C.6)
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The expected payment of the BS for mobile agent i is given by

P̄i(εi) =
∑
st

p(st)
N∑
k=1

p(lit = k)

[
eεipsi (k)[R̂i(k, k, st)− 1(k ∈ st)Ci] +

∑
j 6=k p

s
i (k)R̂i(k, j, st)

N − 1 + eεi

]

+
∑
st

p(st)
N∑
k=1

p(lit = k)
eεi

N − 1 + eε
psi (k)1(k ∈ st)Ci

≥
∑
st

p(st)

N∑
k=1

p(lit = k)

[
1

N − 1
− 1

N − 1 + eεi

]
×[

(N − 1)psi (k)[R̂i(k, k, st)− 1(k ∈ st)Ci]−
∑
j 6=k

ps(j)R̂i(k, j, st)
]

+
∑
st

p(st)
N∑
k=1

p(lit = k)
eεi

N − 1 + eεi
ps(k)1(k ∈ st)Ci

=

[
1

N − 1
− 1

N − 1 + eεi

]
g′i(εi)(N − 1 + eεi)2

eεi

+
∑
st

p(st)

N∑
k=1

p(lit = k)
eεi

N − 1 + eεi
psi (k)1(k ∈ st)C,

(C.7)

In particular, the second inequality is due to the fact that
∑
st
p(st)

∑N
k=1 p(l

i
t=k)

∑
j 6=k p

s
i (j)R(k,j,st)

N−1 >

0 and the equality holds when
∑

st
p(st)

∑N
k=1 p(lt = k)

∑
j 6=k p

s
i (j)R̂i(k, j, st) = 0; the third

equality is due to (C.6).

C.2 Proof of Theorem 11

Proof. Suppose that the true location of the mobile agent is lt, given the proposed incentive

mechanism, the expected payment P̄ (x) of the BS is given by

P̄ (x) =
ex

N − 1 + ex
ps(lt)p

tr(lt)

[
g′(ε)(N − 1 + eε)2

ps(lt)ptr(lt)(N − 1)eε
+ C

]
,

where x is the privacy level of the mobile agent and ε is the privacy level that has been determined

by the BS. The utility of the mobile agent is therefore given by

Ua(x) =
ex

N − 1 + ex
g′(ε)(N − 1 + eε)2

(N − 1)eε
− g(x), (C.8)
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As a result,

∂Ua(x)

∂x
=

ex

(N − 1 + ex)2

g′(ε)(N − 1 + eε)2

eε
− g′(x). (C.9)

It can be verified that if (4.14) holds, ∂Ua(x)
∂x > 0 when x < ε and ∂Ua(x)

∂x < 0 when x > ε.

Therefore, the utility of the mobile agent is maximize when x = ε.

C.3 Proof of Theorem 12

Proof. Given that pi ≥ 1
N ,∀i ∈ N , we have (N−1)pi

1−pj ≥
1−pi
1−pj ,

1−pj
1−pi ≥

1−pj
(N−1)pi

and
(N−1)pj

1−pi ≥
1−pj
1−pi .

Therefore,

ε = ln(N − 1) + ln
(

max
{ pj

1− pi
,∀i 6= j

})
. (C.10)

For any pi, the corresponding terms are
{

pi
1−pj ,

pj
1−pi , ∀j

}
. We first show that for any i, the

optimal pi, denoted by p∗i , satisfies

max
{ p∗i

1− p∗j
,

p∗j
1− p∗i

, ∀j
}

= max
{ p∗m

1− p∗j
,

p∗j
1− p∗m

,∀m 6= j
}
. (C.11)

If not, i.e., there exists some k such that max
{

p∗k
1−p∗j

,
p∗j

1−p∗k
,∀j
}
< max

{
p∗m

1−p∗j
,

p∗j
1−p∗m

, ∀m 6= j
}

.

Observing that f1(pk) = pk
1−pj and f2(pk) =

pj
1−pk are both increasing functions of pk. Then there

exist some δ > 0, such that

max
{p∗k + δ

1− p∗j
,

p∗j
1− (p∗k + δ)

, ∀j
}

= max
{ p∗m

1− p∗j
,

p∗j
1− p∗m

,∀m 6= j
}
, (C.12)

which means that the agent can increase pk without increasing the privacy loss. On the other

hand, increasing pk results in higher expected payment, and therefore higher utility for the

mobile agent. As a result, for any i, we have

max
{ p∗i

1− p∗j
,

p∗j
1− p∗i

, ∀j
}

= max
{ p∗m

1− p∗j
,

p∗j
1− p∗m

,∀m 6= j
}
. (C.13)

Without loss of generality, we assume that p∗1 ≥ p∗2 ≥ · · · ≥ p∗N , then the above equation reduces

to

max
{ p∗1

1− p∗i
,

p∗i
1− p∗1

}
= max

{ p∗1
1− p∗j

,
p∗j

1− p∗1

}
,∀2 ≤ i ≤ N, 2 ≤ j ≤ N, (C.14)
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which can be further verified that

p∗1 ≥ p∗2 = p∗2 = · · · = p∗N . (C.15)

The privacy level is then given by

ε = ln(N − 1) + ln
(

max
{ p∗1

1− p∗2
,

p∗2
1− p∗1

})
. (C.16)

The expected utility of the agent is given by

Ua(ε) =
∑
st

p(st)

[
p(lt = 1)p∗1p

s(1)[R(1, 1, st)− 1(1 ∈ st)C]

+
∑
i≥2

p(lt = i)p∗2p
s(i)[R(i, i, st)− 1(i ∈ st)C]

]
− g(ε).

(C.17)

Given Assumption 3, it can be verified that, given the proposed incentive mechanism, we

have ∀i ∈ N ∑
st

p(st)p(lt = i)ps(i)[R(i, i, st)− 1(i ∈ st)C]

≤
∑
st

p(st)
∑
j 6=i

p(lt = j)ps(j)[R(j, j, st)− 1(j ∈ st)C].
(C.18)

With such consideration, it can be shown that
p∗1

1−p∗2
=

p∗2
1−p∗1

= max
{

p∗1
1−p∗2

,
p∗2

1−p∗1

}
. Otherwise,

there are two possible scenarios.

Scenario 1: p1
1−p2 <

p2
1−p1

In this case, it can be verified that 1− p1 < p2 < p1. In addition, we have

∂ p1
1−p2
∂p1

=
1

1− p2
> 0,

∂ p1
1−p2
∂p2

=
p1

(1− p2)2
> 0, (C.19)

and
∂ p1

1−p2
∂p1

−
∂ p1

1−p2
∂p2

=
1− p1 − p2

(1− p2)2
< 0. (C.20)

This means that there exists a δ1 > 0 such that p1
1−p2 <

p1−δ1
1−(p2+δ1) ≤

p2
1−p1 . On the other hand,

∂ p2
1−p1
∂p1

=
p2

(1− p1)2
> 0,

∂ p2
1−p1
∂p2

=
1

1− p1
> 0, (C.21)
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and
∂ p2

1−p1
∂p1

−
∂ p2

1−p1
∂p2

=
p1 + p2 − 1

(1− p2)2
> 0. (C.22)

This means that there exists a δ2 > 0 such that p2+δ2
1−(p1−δ2) ≤

p2
1−p1 . Let δ = min{δ1, δ2} and

consider the strategy p′1 = p1 − δ and p′2 = p2 + δ, we have

max
{ p′1

1− p′2
,

p′2
1− p′1

}
≤ max

{ p1

1− p2
,

p2

1− p1

}
. (C.23)

On the other hand, according to (C.18), the payment of the mobile agent with strategy

p′1 = p1− δ, p′2 = p2 + δ is higher than that of p1, p2. Therefore, the mobile agent can increase p2

and decrease p1 to achieve higher utility.

Scenario 2: p1
1−p2 >

p2
1−p1

In this case, it can be verified that 1− p1 > p2. In addition, we have

∂ p1
1−p2
∂p1

=
1

1− p2
> 0,

∂ p1
1−p2
∂p2

=
p1

(1− p2)2
> 0, (C.24)

and
∂ p1

1−p2
∂p1

−
∂ p1

1−p2
∂p2

=
1− p1 − p2

(1− p2)2
> 0. (C.25)

This means that there exists a δ1 > 0 such that p1−δ1
1−(p2+δ1) ≤

p1
1−p2 . On the other hand,

∂ p2
1−p1
∂p1

=
p2

(1− p1)2
> 0,

∂ p2
1−p1
∂p2

=
1

1− p1
> 0, (C.26)

and
∂ p2

1−p1
∂p1

−
∂ p2

1−p1
∂p2

=
p1 + p2 − 1

(1− p2)2
< 0. (C.27)

This means that there exists a δ2 > 0 such that p2
1−p1 <

p2+δ2
1−(p1−δ2) ≤

p1
1−p2 .

Let δ = min{δ1, δ2} and consider the strategy p′1 = p1 − δ and p′2 = p2 + δ, we have

max
{ p′1

1− p′2
,

p′2
1− p′1

}
≤ max

{ p1

1− p2
,

p2

1− p1

}
. (C.28)

According to (C.18), the payment of the mobile agent with strategy p′1 = p1 − δ, p′2 = p2 + δ

is higher than that of p1, p2. Therefore, the agent can increase p2 and decrease p1 to achieve

higher utility.

Given
p∗1

1−p∗2
=

p∗2
1−p∗1

= max
{

p∗1
1−p∗2

,
p∗2

1−p∗1

}
at hand, we have either p∗2 = 1 − p∗1 or p∗2 = p∗1.

When p∗2 = 1− p∗1 the privacy loss is a constant, which means that the mobile agent can again
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increase p2 and decrease p1 to achieve higher utility. Since p∗2 ≤ p∗1, the optimal strategy is

p∗2 = p∗1. Furthermore, for any 1
N ≤ p < 1, one can always find some ε ≥ 0 such that p = eε

N−1+eε ,

which completes the proof.
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Appendix D

D.1 Proofs

D.1.1 Proof of Theorem 13

Proof. Without loss of generality, assume u1 ≤ u2 ≤ · · · ≤ uK < 0 ≤ uK+1 ≤ · · · ≤ uM and
1
M

∑M
m=1 um < 0. Note that similar analysis can be done when 1

M

∑M
i=m um > 0. Further define

a series of random variables {Xm}Mm=1 given by

Xm =


1, if ûm 6= sign

(
1
M

∑M
m=1 um

)
,

0, if ûm = sign

(
1
M

∑M
m=1 um

)
.

(D.1)

In particular, Xm can be considered as the outcome of one Bernoulli trial with successful

probability P (Xm = 1). Let Z =
∑M

m=1Xm and we have

P

(
sign

(
1

M

M∑
m=1

ûm

)
6= sign

(
1

M

M∑
m=1

um

))
= P

(
Z ≥ M

2

)
. (D.2)

Note that according to the definition of sto-sign, b is large enough such that b > maxm |um|.
The probability of Xm = 1 is given by

P (Xm = 1) =
b+ um

2b
. (D.3)
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Then, Z follows the Poisson binomial distribution with mean and variance given by

µ =
M∑
m=1

P (Xm = 1) =
M

2
+

∑M
m=1 um

2b
,

σ2 =
M∑
m=1

(b− um)(b+ um)

4b2
.

(D.4)

For any variable a > 0, we have

E
[
eaZ
]

= E
[
ea

∑M
m=1Xm

]
= E

[
M∏
m=1

eaXm

]
=

M∏
m=1

E
[
eaXm

]
, (D.5)

where the last equality is due to the independence among Xm’s. In addition,

E
[
eaXm

]
= P (Xm = 1)ea + P (Xm = 0) = 1 + P (Xm = 1)(ea − 1) ≤ eP (Xm=1)(ea−1), (D.6)

where the last inequality is due to the inequality 1 + y ≤ ey.
Combining (D.5) and (D.6), we have

E
[
eaZ
]

=

M∏
m=1

E
[
eaXm

]
≤

M∏
m=1

eP (Xm=1)(ea−1) ≤ e(ea−1)µ. (D.7)

Therefore,

P

(
Z ≥ M

2

)
= P

(
eaZ ≥ eMa

2

)
≤

E
[
eaZ
]

e
Ma
2

≤ e(ea−1)µ

e
Ma
2

, (D.8)

where we invoke the Markov’s inequality.

Since
∑M
m=1 um

2b < 0 by our assumption, it can be verified that M
2µ > 1. Let a = ln(M2µ) > 0,

we have

P

(
Z ≥ M

2

)
≤ e

(
e
ln(M2µ )−1

)
µ

e
M ln(M2µ )

2

=
e
M
2
−µ

(M2µ)
M
2

=
e−

∑M
m=1 um

2b

( M
M+ 1

b

∑M
m=1 um

)
M
2

. (D.9)

Let x =
|
∑M
m=1 um|
bM and it can be verified that x < 1 since b > maxm|um|. Then (D.9) can

be reduced to

P

(
Z ≥ M

2

)
≤
[(

1− x
)
ex
]M

2
. (D.10)
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D.1.2 Proof of Theorem 14

Proof. Without loss of generality, assume u1 ≤ u2 ≤ · · · ≤ uK < 0 ≤ uK+1 ≤ · · · ≤ uM .

According to the definition of sto-sign, we have

ûm = sto-sign(um, b) =


1, with probability b+um

2b ,

−1,with probability b−um
2b ,

(D.11)

Further define a series of random variables {X̂m}Mm=1 given by

X̂m =

1, if ûm = 1,

0, if ûm = −1.
(D.12)

In particular, X̂m can be considered as the outcome of one Bernoulli trial with successful

probability P (X̂m = 1). Let Ẑ =
∑M

m=1 X̂m, then

P

(
sign

(
1

M

M∑
m=1

ûm

)
= 1

)
= P

(
Ẑ ≥ M

2

)
=

M∑
H=M+1

2

P (Ẑ = H). (D.13)

In addition,

P (Ẑ = H) =

∑
A∈FH

∏
i∈A(b+ ui)

∏
j∈Ac(b− uj)

(2b)M
=
aM,Hb

M + aM−1,Hb
M−1 + · · ·+ a0,Hb

0

(2b)M
,

(D.14)

in which FH is the set of all subsets of H integers that can be selected from {1, 2, 3, ...,M};
am,H ,∀0 ≤ m ≤M is some constant. It can be easily verified that aM,H =

(
M
H

)
.

When b is sufficiently large, P (Ẑ = H) is dominated by the first two terms in (D.14). In

particular, ∀m, we have∑
A∈FH

∏
i∈A

(b+ ui)
∏
j∈Ac

(b− uj) = (b+ um)
∑

A∈FH ,m∈A

∏
i∈A/{m}

(b+ ui)
∏
j∈Ac

(b− uj)

+ (b− um)
∑

A∈FH ,m/∈A

∏
i∈A

(b+ ui)
∏

j∈Ac/{m}

(b− uj).
(D.15)

As a result, when M+1
2 ≤ H ≤M − 1, the um related term in aM−1,H is given by[(

M − 1

H − 1

)
−
(
M − 1

H

)]
um. (D.16)
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When H = M , the um related term in aM−1,H is given by[(
M − 1

H − 1

)]
um. (D.17)

By summing over m, we have

aM−1,H =

[(
M − 1

H − 1

)
−
(
M − 1

H

)] M∑
m=1

um, (D.18)

and

aM−1,H =

[(
M − 1

H − 1

)] M∑
m=1

um, (D.19)

when M+1
2 ≤ H ≤M − 1 and H = M , respectively.

By summing over H, we have

M∑
H=M+1

2

aM,H =
M∑

H=M+1
2

(
M

H

)
= 2M−1, (D.20)

M∑
H=M+1

2

aM−1,H =

(
M − 1
M−1

2

) M∑
m=1

um (D.21)

As a result,

P

(
Ẑ ≥ M

2

)
=

M∑
H=M+1

2

P (Ẑ = H) =
2M−1bM +

(M−1
M−1

2

)∑M
m=1 umb

M−1

(2b)M
+O

(
1

b2

)

=
1

2
+

(M−1
M−1

2

)
2Mb

M∑
m=1

um +O

(
1

b2

)
.

(D.22)

Therefore, if the second term dominates the third term (i.e., b is sufficiently large), P
(
Ẑ ≥

M
2

)
> 1

2 when
∑M

m=1 um > 0; P
(
Ẑ ≥ M

2

)
< 1

2 when
∑M

m=1 um < 0. That being said, the

probability of wrong aggregation is always smaller than 1/2.
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D.1.3 Proof of Theorem 15

Proof. According to Assumption 5, we have

F (w(t+1))− F (w(t))

≤< ∇F (w(t)), w(t+1) − w(t) > +
L

2
||w(t+1) − w(t)||2

= −η < ∇F (w(t)), sign

(
1

M

M∑
m=1

sto-sign(g(t)
m )

)
> +

L

2

∣∣∣∣∣
∣∣∣∣∣ηsign

(
1

M

M∑
m=1

sto-sign(g(t)
m )

)∣∣∣∣∣
∣∣∣∣∣
2

= −η < ∇F (w(t)), sign

(
1

M

M∑
m=1

sto-sign(g(t)
m )

)
> +

Lη2d

2

= −η||∇F (w(t))||1 +
Lη2d

2
+ 2η

d∑
i=1

|∇F (w(t))i|1sign( 1
M

∑M
m=1 sto-sign(g

(t)
m )i) 6=sign(∇F (w(t))i)

,

(D.23)

where ∇F (w(t))i is the i-th entry of the vector ∇F (w(t)) and η is the learning rate. Taking

expectation on both sides yeilds

E[F (w(t+1))− F (w(t))] ≤ −η||∇F (w(t))||1 +
Lη2d

2

+ 2η
d∑
i=1

|∇F (w(t))i|P
(
sign

(
1

M

M∑
m=1

sto-sign(g(t)
m )i

)
6= sign(∇F (w(t))i)

)
.

(D.24)

Let ∆(M) denote the solution to
[(

1− x
)
ex
]M

2
= 1−c

2 . Since
[(

1− x
)
ex
]

is a decreasing

function of x for x < 1, it can be verified that
[(

1 − x
)
ex
]M

2
< 1−c

2 when x > ∆(M) and[(
1− x

)
ex
]M

2 ≥ 1−c
2 otherwise. According to Theorem 13, we have two possible scenarios as

follows.

P

(
sign

(
1

M

M∑
m=1

sto-sign(g(t)
m )i

)
6= sign(∇F (w(t))i)

)≤
1−c

2 , if |∇F (w(t))i|
b > ∆(M),

≤ 1, if |∇F (w(t))i|
b ≤ ∆(M).

(D.25)
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Plugging (D.25) into (D.24), we can obtain

E[F (w(t+1))− F (w(t))]

≤ −η||∇F (w(t))||1 +
Lη2d

2

+ η

[
(1− c)

d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

>∆(M)
+ (1− c)

d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

≤∆(M)

]

+ 2η
d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

≤∆(M)

≤ −η||∇F (w(t))||1 +
Lη2d

2
+ η(1− c)||∇F (w(t))||1 + 2η

d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

≤∆(M)

= −ηc||∇F (w(t))||1 +
Lη2d

2
+ 2η

d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

≤∆(M)
,

(D.26)

Adjusting the above inequality and averaging both sides over t = 1, 2, · · · , T , we can obtain

1

T

T∑
t=1

ηc||∇F (w(t))||1 ≤
E[F (w(0))− F (w(T+1))]

T
+
Lη2d

2

+
2η

T

T∑
t=1

d∑
i=1

|∇F (w(t))i|1 |∇F (w(t))i|
b

≤∆(M)

≤ E[F (w(0))− F (w(T+1))]

T
+
Lη2d

2
+ 2ηdb∆(M).

(D.27)

Letting η = 1√
dT

and dividing both sides by η gives

1

T

T∑
t=1

c||∇F (w(t))||1 ≤
E[F (w(0))− F (w(T+1))]

√
d√

T
+
L
√
d

2
√
T

+ 2db∆(M)

≤ (F (w(0))− F ∗)
√
d√

T
+
L
√
d

2
√
T

+ 2db∆(M),

(D.28)

which completes the proof.
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D.1.4 Proof of Theorem 16

Proof. We start from the one-dimension scenario and consider any a, b that satisfy ||a−b||2 ≤ ∆2.

Without loss of generality, assume that dp-sign(a, ε, δ) = dp-sign(b, ε, δ) = 1. Then we have

P (dp-sign(a, ε, δ) = 1) = Φ

(
a

σ

)
=

∫ a

−∞

1√
2πσ

e−
x2

2σ2 dx,

P (dp-sign(b, ε, δ) = 1) = Φ

(
b

σ

)
=

∫ b

−∞

1√
2πσ

e−
x2

2σ2 dx.

(D.29)

Furthermore,

P (dp-sign(a, ε, δ) = 1)

P (dp-sign(b, ε, δ) = 1)
=

∫ a
−∞ e

− x2

2σ2 dx∫ b
−∞ e

− x2

2σ2 dx
=

∫∞
0 e−

(x−a)2

2σ2 dx∫∞
0 e−

(x−b)2
2σ2 dx

. (D.30)

According to Theorem A.1 in [117], given the parameters ε, δ and σ, it can be verified that

e−ε ≤
∣∣∣P (dp-sign(a,ε,δ)=1)
P (dp-sign(b,ε,δ)=1)

∣∣∣ ≤ eε with probability at least 1− δ.
For the multi-dimension scenario, consider any vector a and b such that ||a− b||2 ≤ ∆2 and

v ∈ {−1, 1}d, we have

P (dp-sign(a, ε, δ) = v)

P (dp-sign(b, ε, δ) = v)
=

∫
D e
− ||x−a||22

2σ2 dx∫
D e
−
||x−b||22

2σ2 dx

, (D.31)

where D is some integral area depending on v. Similarly, it can be shown that

e−ε ≤
∣∣∣P (dp-sign(a,ε,δ)=v)
P (dp-sign(b,ε,δ)=v)

∣∣∣ ≤ eε with probability at least 1− δ.

D.1.5 Proof of Theorem 17

Proof. Without loss of generality, assume u1 ≤ u2 ≤ · · · ≤ uK < 0 ≤ uK+1 ≤ · · · ≤ uM and
1
M

∑M
i=1 ui < 0. Note that similar analysis can be done when 1

M

∑M
i=1 ui > 0. Further define a

series of random variables {Xi}Mi=1 given by

Xi =


1, if ûi 6= sign

(
1
M

∑M
i=1 ui

)
,

0, if ûi = sign
(

1
M

∑M
i=1 ui

)
.

(D.32)

In particular, Xi can be considered as the outcome of one Bernoulli trial with successful
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probability P (Xi = 1). Let Z =
∑M

i=1Xi and we have

P

(
sign

(
1

M

M∑
m=1

ûi

)
6= sign

(
1

M

M∑
m=1

ui

))
= P

(
Z ≥ M

2

)
. (D.33)

In addition,

P (Xm = 1) = Φ

(
um
σ

)
. (D.34)

Then, Z follows the Poisson binomial distribution with mean and variance given by

µ =

M∑
m=1

P (Xm = 1) =

M∑
m=1

Φ

(
um
σ

)
,

σ2 =

M∑
m=1

Φ

(
um
σ

)(
1− Φ

(
um
σ

))
.

(D.35)

Let n denote a zero-mean Gaussian noise with variance σ, according to the assumption that

u1 ≤ u2 ≤ · · · ≤ uK < 0 ≤ uK+1 ≤ · · · ≤ uM , we have

Φ

(
um
σ

)
=

1

2
− P (um < n < 0), ∀1 ≤ m ≤ K,

Φ

(
um
σ

)
=

1

2
+ P (0 < n < um), ∀K + 1 ≤ m ≤M.

(D.36)

Therefore,

µ =

M∑
m=1

Φ

(
um
σ

)
=
M

2
−
[

K∑
m=1

P (um < n < 0)−
M∑

m=K+1

P (0 < n < um)

]
. (D.37)

Note that for any Gaussian noise, P (a1 < n < 0) + P (a2 < n < 0) ≥ P (a1 + a2 < n < 0) for

any a1 < 0, a2 < 0. Therefore, we consider the worst case scenario such that
∑K

m=1 P (um < n <
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0)−∑M
m=K+1 P (0 < n < um) is minimized, i.e., K = 1. In this case,

K∑
m=1

P (um < n < 0)−
M∑

m=K+1

P (0 < n < um)

= P

(
u1 < n ≤ −

M∑
m=2

um

)
+ P

(
−

M∑
m=2

um < n < 0

)
−

M∑
m=2

P (0 < n < um)

>

∣∣∣∣∣
M∑
m=1

um

∣∣∣∣∣
[

1√
2πσ

e−
u21
2σ2

]
+ P

(
−

M∑
m=2

um < n < 0

)
−

M∑
m=2

P (0 < n < um)

>

∣∣∣∣∣
M∑
m=1

um

∣∣∣∣∣
[

1√
2πσ

e−
u21
2σ2

]
−
∣∣∣∣∣
M∑
m=2

um

∣∣∣∣∣ 1√
2πσ

[
1− e−

(
∑M
m=2 um)2

2σ2

]

=
1√
2πσ

[∣∣∣∣∣
M∑
m=1

um

∣∣∣∣∣e− u21
2σ2 +

∣∣∣∣∣
M∑
m=2

um

∣∣∣∣∣
[
e−

(
∑M
m=2 um)2

2σ2 − 1

]]
,

(D.38)

where the first inequality is due to f(a) > f(u1) for a ∈ (u1,
∑M

m=1 um] and the second inequality

is due to f(a) < 1√
2πσ

for any a > 0, where f(·) is the probability density function of the normal

distribution.

In particular, as σ → ∞, |∑M
m=1 um|e

− u21
2σ2 increases and converges to |∑M

m=1 um| while

|∑M
m=2 um|

[
e−

(
∑M
m=2 um)2

2σ2 − 1

]
increases and converges to 0. Therefore, we have

1√
2πσ

[∣∣∣∣∣
M∑
m=1

um

∣∣∣∣∣e− u21
2σ2 +

∣∣∣∣∣
M∑
m=2

um

∣∣∣∣∣
[
e−

(
∑M
m=2 um)2

2σ2 − 1

]]
σ→∞−−−→ −

∑M
m=1 um√

2πσ
. (D.39)

As a result, there exists a σ0 such that when σ ≥ σ0, we have

µ =
M∑
m=1

Φ

(
um
σ

)
≤ M

2
+

∑M
m=1 um
2σ

. (D.40)

Following the same analysis as that in the proof of Theorem 13, we can show that

P

(
sign

(
1

M

M∑
m=1

ûi

)
6= sign

(
1

M

M∑
m=1

ui

))
<
[(

1− x
)
ex
]M

2
, (D.41)

where x =
|
∑M
m=1 um|
σM .
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D.1.6 Proof of Theorem 18

Proof. By replacing M with M − ki in (D.8), we can obtain

P

(
Z ≥ M − ki

2

)
≤ e(ea−1)µ

e
(M−ki)a

2

, (D.42)

where µ = E[Z]. It is shown in the proof of Theorem 13 and Theorem 16 that there exists a

positive constant s0 such that when s > s0, µ ≤ M
2 −

|
∑M
m=1∇fm(w(t))i|

2s . Let a = ln(M−ki2µ ), we

have

P

(
Z ≥ M − ki

2

)
≤ e

M−ki
2
−µ

(M−ki2µ )
M−ki

2

=

(
e
M−2µ−ki
M−ki

(M−ki2µ )

)M−ki
2

≤
[(

1− x
)
ex
]M−ki

2
, (D.43)

where x =
|
∑M
m=1∇fm(w(t))i|

s
−ki

M−ki . In addition, the above inequality requires ln(M−ki2µ ) > 0 and

therefore ki <
|
∑M
m=1∇fm(w(t))i|

s .

D.1.7 Proof of Theorem 19

Proof. Note that in the proof of Theorem 15, we obtain

E[F (wt+1)− F (wt)] ≤ −η||∇F (wt)||1 +
Lη2d

2

+ 2η
d∑
i=1

|∇F (wt)i|P
(
sign

(
1

M

M∑
m=1

q(gtm)i

)
6= sign

(
1

M

M∑
m=1

∇fm(wt)i

))
,

(D.44)

where q(gtm) = sto-sign(gtm). For the ease of notation, let

pi,1 = P

(
sign

(
1

M

M∑
m=1

q(gtm)i

)
6= sign

(
1

M

M∑
m=1

(gtm)i

))
,

pi,2 = P

(
sign

(
1

M

M∑
m=1

∇fm(wt)i

)
6= sign

(
1

M

M∑
m=1

(gtm)i

))
<

1

2
,

pi = P

(
sign

(
1

M

M∑
m=1

q(gtm)i

)
6= sign

(
1

M

M∑
m=1

∇fm(wt)i

))
.

(D.45)

Then

pi = pi,1(1− pi,2) + pi,2(1− pi,1) = pi,1 + pi,2 − 2pi,1pi,2. (D.46)

We first prove the convergence under the first condition. According to Theorem 14, we have
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pi,1 <
1
2 . In this case, it can be verified that pi is an increasing function of both pi,1 and pi,2 and

therefore pi <
1
2 + 1

2 − 1
2 = 1

2 . Following similar analysis to that in the proof of Theorem 15, it

can be shown that Sto-SIGNSGD converges to the (local) optimum with a rate of O(
√
d√
T

).

Then, we prove the convergence under the second condition. According to (D.46), it is

obvious that pi ≤ pi,1 + pi,2. Therefore, we have

d∑
i=1

|∇F (wt)i|pi ≤
d∑
i=1

|∇F (wt)i|pi,1 +
d∑
i=1

|∇F (wt)i|pi,2. (D.47)

In particular,

pi,2 = P

(
sign
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1

M

M∑
m=1

∇fm(wt)i

)
6= sign
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1

M

M∑
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(gtm)i
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≤ P
(∣∣∣∣∣ 1

M
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∇fm(wt)i −
1

M

M∑
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(gtm)i

∣∣∣∣∣ ≥
∣∣∣∣∣ 1

M

M∑
m=1

∇fm(wt)i

∣∣∣∣∣
)

≤ E[| 1
M

∑M
m=1∇fm(wt)i − 1

M

∑M
m=1(gtm)i|]

| 1
M

∑M
m=1∇fm(wt)i|

≤

√
E[( 1

M

∑M
m=1∇fm(wt)i − 1

M

∑M
m=1(gtm)i)2]

| 1
M

∑M
m=1∇fm(wt)i|

≤ σi√
MT |∇F (wt)i|

.

(D.48)

As a result, the second term in (D.47) is bounded by O( ||σ̄||1√
MT

). Following the same analysis

as that in the proof of Theorem 15, it can be shown that Sto-SIGNSGD converges with a rate of

O( 1√
T

).

D.1.8 Proof of Theorem 20

The proof of Theorem 20 follows the strategy of taking y(t) = w(t) − η̃ẽ(t) such that y(t) is

updated in the same way as w(t) in the non error-feedback scenario. A key technical challenge

is to bound the norm of the residual error ||ẽ(t)||22. Utilizing the fact that the output of the

compressor q(·) ∈ {−1, 1}, we upper bound it by first proving that in this case, the server’s

compressor is an α-approximate compressor [122] for some α < 1. Therefore, before proving

Theorem 20, we first prove the following lemmas.

Lemma 8. Let y(t) = w(t) − ηM ẽ(t), we have

y(t+1) = y(t) − η
M∑
m=1

dp-sign(g(t)
m ; ε, δ). (D.49)
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Proof.

y(t+1) = w(t+1) − ηM ẽ(t+1)

= w(t) − ηg̃(t) − ηM ẽ(t+1)

= w(t) − η
(

M∑
m=1

dp-sign(g(t)
m ; ε, δ) +M ẽ(t) −M ẽ(t+1)

)
− ηM ẽ(t+1)

= w(t) − η
M∑
m=1

dp-sign(g(t)
m ; ε, δ)− ηM ẽ(t)

= y(t) − η
M∑
m=1

dp-sign(g(t)
m ; ε, δ).

(D.50)

Lemma 9. There exists a positive constant β > 0 such that E[||ẽ(t)||22] ≤ βd,∀t.

Proof. We first prove that for the 1-bit compressor q(g
(t)
m ), there exists some constant α such

that the following inequality always holds.∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

q(g(t)
m ) + ẽ(t) − 1

M
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(
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M
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q(g(t)
m ) + ẽ(t)

)∣∣∣∣∣
∣∣∣∣∣
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2

≤ (1− α)
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∣∣∣∣∣ 1

M

M∑
m=1

q(g(t)
m ) + ẽ(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

,
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where α < 1 is some positive constant.

For the ease of presentation, we let r
(t)
i denote the i-th entry of 1

M

∑M
m=1 q(g

(t)
m ) + ẽ(t). Then,

we can rewrite the left hand side of (D.51) as follows,∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

q(g(t)
m )+ẽ(t)− 1

M
sign

(
1

M

M∑
m=1

q(g(t)
m )+ẽ(t)

)∣∣∣∣∣
∣∣∣∣∣
2

2

=
d∑
i=1

(
r

(t)
i −

1

M
sign(r

(t)
i )

)2

. (D.52)

In particular, we have(
r

(t)
i −

1

M
sign(r

(t)
i )

)2

=

(
(r

(t)
i )2 +

1

M2
− 2|r(t)

i |
M

)
=

[
1− 1

M(r
(t)
i )2

(
2|r(t)

i | −
1

M

)]
(r

(t)
i )2.

(D.53)

If 2|r(t)
i | − 1

M > 0,∀i, then there exist a positive constant α such that

d∑
i=1

(
r

(t)
i −

1

M
sign(r

(t)
i )

)2

≤
d∑
i=1

(1− α)(r
(t)
i )2 = (1− α)

∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

q(g(t)
m ) + ẽ(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

. (D.54)

In order to prove that 2|r(t)
i |− 1

M > 0,∀i, we first show that M(ẽ(t))i is an even number for any t
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by induction. In particular, according to Assumption 4 and (ẽ(0))i = 0, Mr
(0)
i =

∑M
m=1 q(g

(0)
m )i is

an odd number. Therefore, M(ẽ(1))i =
∑M

m=1 q(g
(0)
m )i − sign(

∑M
m=1 q(g

(t)
m )i) is an even number.

In addition,

M(ẽ(t+1))i =
M∑
m=1

q(g(t)
m )i +M(ẽ(t))i − sign

(
M∑
m=1

q(g(t)
m )i +M(ẽ(t))i

)
. (D.55)

Given that M(ẽ(t))i is even, we can show that M(ẽ(t+1))i is even as well. Therefore, Mr
(t)
i =∑M

m=1 q(g
(t)
m )i +M(ẽ(t))i is odd and 2|r(t)

i | ≥ 2
M > 1

M , ∀t, i.
Given (D.51), we can show that

E||ẽ(t+1)||22 ≤ (1− α)
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d

1− (1− α)(1 + ρ)
,

(D.56)

where we invoke Young’s inequality recurrently and ρ can be any positive constant. Therefore,

there exists some constant β > 0 such that E[||ẽ(t)||22] ≤ βd,∀t.

Now, we are ready to prove Theorem 20.
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Proof. Let y(t) = w(t) − ηM ẽ(t), and η̃ = Mη, according to Lemma 8, we have

E[F (y(t+1))− F (y(t))]

≤ −η̃E
[
< ∇F (y(t)),

1

M
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]
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2
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∣∣∣∣∣η̃ 1

M

M∑
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dp-sign(g(t)
m ; ε, δ)

∣∣∣∣∣
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]
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[
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M
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M
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M
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dp-sign(g(t)
m ; ε, δ) >

]
.

(D.57)

We first bound the first term, in particular, we have

< ∇F (w(t))−∇F (y(t)),
1

M

M∑
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dp-sign(g(t)
m ; ε, δ) >

≤ η̃

2
|| 1

M

M∑
m=1

dp-sign(g(t)
m ; ε, δ)||22 +

1

2η̃
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M
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2
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M
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2
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L2η̃βd

2
,

(D.58)

where the second inequality is due to the L-smoothness of F .
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Then, we can bound the last term as follows.

− E

[
< ∇F (w(t)),

1

M
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dp-sign(g(t)
m ; ε, δ) >
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= −E
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1

M
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dp-sign((g(t)
m )i; ε, δ)
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= −
d∑
i=1

∇F (w(t))i
1

M
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(
2Φ

(
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σ

= −||∇F (w(t))||22
σ

,

(D.59)

where the inequality is due to (D.40) in the proof of Theorem 17.

Plugging (D.58) and (D.59) into (D.57) yields

E[F (y(t+1))− F (y(t))]

≤ η̃2 + Lη̃2

2
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σ
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Rewriting (D.60) and taking average over t = 0, 1, 2, · · · , T − 1 on both sides yields

1

T

T−1∑
t=0

||∇F (w(t))||22
σ

≤
T−1∑
t=0

E[F (y(t))− F (y(t+1))]
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(η̃ + Lη̃ + L2η̃β)d

2
.

(D.61)

Taking η̃ = 1√
Td

and w(0) = y(0) yields

1

T

T−1∑
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||∇F (w(t))||22
σ

≤ (F (w(0))− F ∗)
√
d√

T
+

(1 + L+ L2β)
√
d√

T
. (D.62)
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D.1.9 Proof of Theorem 21

Proof. Without loss of generality, assume that the first M workers are normal and the last B

are Byzantine. Following a similar procedure to the proof of Theorem 20, we can show that
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For the first term, we have
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For the third term, if B <
|
∑M
m=1(g

(t)
m )i|

σ , we have
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(D.65)

where c is some positive constant.

Following the same analysis as that in the proof of Theorem 20, the convergence of Algorithm

10 can be established.

D.2 Discussions about dp-sign with δ = 0

In this section, we present the differentially private compressor dp-sign with δ = 0.

Definition 12. For any given gradient gtm, the compressor dp-sign outputs dp-sign(gtm, ε, 0).

In particular, the i-th entry of dp-sign(gtm, ε, 0) is given by

dp-sign(gtm, ε, 0)i =


1, with probability 1

2 + 1
2sign((gtm)i)

(
1− e−

|(gtm)i|
λ

)
,

−1, with probability 1
2 − 1

2sign((gtm)i)
(

1− e−
|(gtm)i|

λ

)
,

(D.66)

where λ = ∆1
ε and ∆1 is the sensitivity measures defined in (5.11).

Theorem 24. The proposed compressor dp-sign(·, ε, 0) is (ε, 0)-differentially private.

Proof. Consider any vector a and b such that ||a− b||1 ≤ ∆1 and v ∈ {−1, 1}d, we have

P (dp-sign(a, ε, 0) = v)

P (dp-sign(b, ε, 0) = v)
=

∫
D e
− ||x−a||

λ dx∫
D e
− ||x−b||

λ dx
, (D.67)

where D is some integral area depending on v. It can be verified that e−ε ≤ | e−
||x−a||

λ

e−
||x−b||
λ

| ≤ eε

always holds, which indicates that e−ε ≤ |P (dp-sign(a,ε,0)=v)
P (dp-sign(b,ε,0)=v) | ≤ eε.
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Theorem 25. Let u1, u2, · · · , uM be M known and fixed real numbers. Further define random

variables ûi = dp-sign(ui, ε, δ),∀1 ≤ i ≤ M . Then there always exist a constant σ0 such that

when σ ≥ σ0, P (sign( 1
M

∑M
m=1 ûi) 6= sign( 1

M

∑M
m=1 ui)) <

[(
1−x

)
ex
]M

2
, where x =

|
∑M
m=1 um|
γλM

and γ is some positive constant.

Proof. Without loss of generality, assume u1 ≤ u2 ≤ · · · ≤ uK < 0 ≤ uK+1 ≤ · · · ≤ uM and
1
M

∑M
i=1 ui < 0. Note that similar analysis can be done when 1

M

∑M
i=1 ui > 0. Further define a

series of random variables {Xi}Mi=1 given by

Xi =


1, if ûi 6= sign

(
1
M

∑M
i=1 ui

)
,

0, if ûi = sign
(

1
M

∑M
i=1 ui

)
.

(D.68)

In particular, Xi can be considered as the outcome of one Bernoulli trial with successful

probability P (Xi = 1). Let Z =
∑M

i=1Xi and we have

P

(
sign

(
1

M

M∑
m=1

ûi

)
6= sign

(
1

M

M∑
m=1

ui

))
= P

(
Z ≥ M

2

)
. (D.69)

Z follows the Poisson binomial distribution with mean and variance given by

µ =

M∑
m=1

P (Xm = 1) =
M

2
−
[

K∑
m=1

P (um < n < 0)−
M∑

i=K+1

P (0 < n < um)

]
,

σ2 =
M∑
m=1

P (n > −um)(1− P (n > −um)),

(D.70)

where n ∼ Laplace(0, λ). Similar to the analysis for dp-sign with δ > 0, we can show that

K∑
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M∑
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As a result, there exists a λ0 such that when λ ≥ λ0, we have

µ =
M∑
m=1

P (Xm = 1) ≤ M

2
+

∑M
m=1 um
2λγ

, (D.72)

where γ is some constant larger than 1.

Following the same analysis as that in the proof of Theorem 13, we can show that there

exists a positive constant M0 such that when M ≥M0

P

(
sign

(
1

M

M∑
m=1

ûm

)
6= sign

(
1

M

M∑
m=1

um

))
= P

(
Z ≥ M

2

)
<
[(

1− x
)
ex
]M

2
, (D.73)

where x =
|
∑M
m=1 um|
γλM and γ is some positive constant.

D.3 Discussions about the server’s compressor 1
M sign(·) in Al-

gorithm 10

Recall that the update rule of the residual error is given by

ẽt+1 =
1

M

M∑
m=1

q(gtm) + ẽt − a

M
sign

(
1

M

M∑
m=1

q(gtm) + ẽt

)
, (D.74)

where a = 1 in the proposed Algorithm.

Theorem 26. In Algorithm 10, when the total number of workers is odd and a = 1
2k+1 for any

non-negative integer k, the server’s compressor a
M sign(·) is an α-approximate compressor for

some α > 0.

Proof. The goal is to show that a
M sign(·) is an α-approximate compressor, i.e., for rt =

1
M

∑M
m=1 q(g

t
m) + ẽt,

∣∣∣∣∣∣rt − a

M
sign(rt)

∣∣∣∣∣∣2
2

=

d∑
i=1

(
rti −

a

M
sign(rti)

)2

≤ (1− α)||rt||22 = (1− α)

d∑
i=1

(rti)
2, (D.75)

where rti is the i-th entry of rt. In addition,(
rti −

a

M
sign(rti)

)2

=

(
(rti)

2 − 2a|rti|
M

+
a2

M2

)
=

(
1− a

M(rti)
2

(
2|rti| −

a

M

))
(rti)

2. (D.76)
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It can be seen that a sufficient condition for (D.75) with some α > 0 is given by

2|rti| −
a

M
> 0,∀1 ≤ i ≤ d. (D.77)

Given that the total number of workers is odd, it is obvious that (2k + 1)Mr0
i is an odd

number. As a result, (2k + 1)M(ẽ(1))i = (2k + 1)Mr0
i − sign(r0

i ) is an even number. Similar

to the proof of Lemma 9, it can be shown by induction that (2k + 1)Mrti is odd for any t.

Therefore,

2|rti| ≥
2

(2k + 1)M
>

a

M
. (D.78)

For a 6= 1
2k+1 , we consider four cases as follows.

Case 1: a ≥ 2. In this case, since (ẽ0)i = 0, then if 1
M

∑M
m=1 q(g

0
m)i = 1

M , (D.77) is not

satisfied.

Case 2: 1 < a < 2. In this case, we consider a sequence of { 1
M

∑M
m=1 q(g

t
m)i}nt=0, given by

1

M

M∑
m=1

q(gtm)i =
1

M
, ∀0 ≤ t ≤ n. (D.79)

Then

(ẽ(1))i =
1− a
M

, r
(1)
i =

2− a
M

. (D.80)

Suppose that 2|rti| > a
M ,∀t. Now we show that given (ẽt)i = t−ta

M , rti = t+1−ta
M , and a < t+1

t ,

we have (ẽt+1)i = t+1−t+1a
M , rt+1

i = t+2−t+1a
M and a < t+2

t+1 . To satisfy 2|rti| > a
M , we have

a < 2t+2
2t+1 <

t+2
t+1 . In addition, according to (D.74), (ẽt+1)i = rti − a

M sign(rti) = t+1−t+1a
M . Then,

rt+1
i = t+2−t+1a

M . As a result, by induction, we can show that a < n+1
n . As n increases, a

decreases and approaches 1.

Case 3: 1
2 < a < 1. Again, we consider the sequence of { 1

M

∑M
m=1 q(g

t
m)i}nt=0 given by

(D.79). Then similarly, it can be shown that

(ẽt)i =
t− ta
M

, ∀1 ≤ t ≤ n+ 1. (D.81)

Let 1
M

∑M
m=1 q(g

(n+1)
m )i = − 1

M , we have

r
(n+1)
i =

1

M

M∑
m=1

q(g(n+1)
m )i + (ẽ(n+1))i =

n− (n+ 1)a

M
. (D.82)
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Taking 2|r(n+1)
i | > a

M yields

a

>
2n

2n+1 ≥ n+1
n+2 , if a > n

n+1 ,

< 2n
2n+3 , if a < n

n+1 .
(D.83)

When n = 1, n
n+1 = 1

2 . According to (D.83), a > n
n+1 is a sufficient condition of a > n+1

n+2 .

Therefore, as n increases, a increases and approaches 1.

Case 4: 1
2k+2 < a ≤ 1

2k , for any positive integer k. Again, we consider the sequence of

{ 1
M

∑M
m=1 q(g

t
m)i}nt=0 given by (D.79). Similarly,

(ẽt)i =
t− ta
M

, ∀1 ≤ t ≤ n+ 1. (D.84)

Let 1
M

∑M
m=1 q(g

(n+1)
m )i = − s

M , then we have

r
(n+1)
i =

1

M

M∑
m=1

q(g(n+1)
m )i + (ẽ(n+1))i =

(n+ 1− s)− (n+ 1)a

M
. (D.85)

First of all, let n = s = 2k − 1, we have r
(n+1)
i = 1−2ka

M . Therefore, if a = 1
2k , it is possible that

2|r(n+1)
i | = 0 ≤ a

M .

When a < n+1−s
n+1 , 2|r(n+1)

i | > a
M yields

a <
2(n+ 1− s)

2n+ 3
. (D.86)

Let n = (2k + 1) × 2y − 2 and s = 2k × 2y − 1, where y is some non-negative integer, we

have n+1−s
n+1 = 2y

(2k+1)×2y−1 . According to (D.86), a < 2y+1

(2k+1)×2y+1−1
. When y = 0, n+1−s

n+1 =
2y

(2k+1)×2y−1 = 1
2k . As y (and therefore n and s) increases, a decreases and approaches 1

2k+1 .

When a > n+1−s
n+1 , 2|r(n+1)

i | > a
M yields

a >
2(n+ 1− s)

2n+ 1
. (D.87)

Let n = (2k+1)×2y and s = 2k×2y+1, where y is some non-negative integer, we have n+1−s
n+1 =

2y

(2k+1)×2y+1 . According to (D.87), a > 2y+1

(2k+1)×2y+1+1
. When y = 0, n+1−s

n+1 = 2y

(2k+1)×2y+1 = 1
2k+2 .

As y (and therefore n and s) increases, a increases and approaches 1
2k+1 .

Remark 32. By assuming that the total number of workers is odd, it is guaranteed that there

is always a winner in the majority vote. When the number of workers is even, it is possible that

rti = 0 and therefore (D.77) does not hold. This issue can be addressed if the server ignores the
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communication rounds (e.g., does not transmit anything) during which there is no winner in the

majority vote.

D.4 Details of the Implementation

Our experiments are mainly implemented using Python 3.7.4 with packages tensorflow 2.0 and

numpy 1.16.5. One Intel i7-9700 CPU with 32 GB of memory and one NVIDIA GeForce RTX

2070 SUPER GPU are used in the experiments.

D.4.1 Dataset and Pre-processing

We perform experiments on the standard MNIST dataset for handwritten digit recognition

consisting of 60,000 training samples and 10,000 testing samples.1 Each sample is a 28×28 size

gray-level image. We normalize the data by dividing it with the max RGB value (i.e., 255.0).

D.4.2 Dataset Assignment

In our experiments, we consider 31 normal workers and measure the data heterogeneity by

the number of labels of data that each worker stores. We first partition the training dataset

according to the labels. For each worker, we randomly generate a set of size n which indicates

the labels of training data that should be assigned to this worker. Then, a subset of training

data from the corresponding labels is randomly sampled and assigned to the worker without

replacement. The size of the subset depends on n and the size of the training data for each

label. More specifically, we set the size of the subset as b60000/(31n)c in the beginning. When

there are not enough training data for a label, we reduce the size of the subset accordingly. We

consider the scenarios that all the workers have the same n. For the results in the third figure in

Fig. 2, we set n = 1, 2, 4 for “1 LABEL”, “2 LABELS”, “4 LABELS”, respectively. For the rest

of the results, we set n = 1.

D.4.3 Neural Network Setting

We implement a two-layer fully connected neural network with softmax of classes with cross-

entropy loss. The hidden layer has 128 hidden ReLU units.

D.4.4 Learning Rate Tuning

We use a constant learning rate η and tune the parameters from the set {1, 0.1, 0.01, 0.005, 0.001, 0.0001}.
In particular, for Sto-SIGNSGD and EF-Sto-SIGNSGD, we set η = 0.005; for DP-SIGNSGD and

1Avaiable at http://yann.lecun.com/exdb/mnist/
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EF-DP-SIGNSGD, we set η = 0.01. For FedAvg [1], we tune the learning rate from the set

{2, 1.5, 1, 0.1, 0.01, 0.005, 0.001, 0.0001}, the number of local epochs from the set {1, 10, 20, 30}
and present the best result.
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Appendix E

E.1 Proof of Theorem 22

Proof. According to Assumption 8, we have

F (w(t+1))− F (w(t))

≤< ∇F (w(t)), w(t+1) − w(t) > +
L

2
||w(t+1) − w(t)||2

= −η < ∇F (w(t)), sign(
M∑
m=1

ĝ(t)
m ) > +

L

2
||ηsign(

M∑
m=1

ĝ(t)
m )||2

= −η < ∇F (w(t)), sign(
M∑
m=1

ĝ(t)
m ) > +

Lη2d

2

= η||∇F (w(t))||1 +
Lη2d

2
− 2η

d∑
i=1

|∇F (w(t))i|×

1
sign(

∑M
m=1 ĝ

(t)
m )i=sign(∇F (w(t))i)

,

(E.1)

in which ∇F (w(t))i is the i-th entry of the vector ∇F (w(t)). Taking expectation on both sides

yields

E[F (w(t))− F (w(t+1))] ≥ −η||∇F (w(t))||1 −
Lη2d

2
+ 2η×

d∑
i=1

|∇F (w(t))i|P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
.

(E.2)
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E.2 Proof of Lemma 5

Proof. According to the constraint

1− e−
(2rm−1)N0Bm

Pm ≤ pout,m, (E.3)

when max{r(1)
m , r

(3)
m } ≤ rm ≤ r(2)

m , it can be obtained that

Pm ≥ −
N0Bm(2rm − 1)

ln(1− pout,m)
. (E.4)

Since the objective function αm
2 cmDmf

2
m + Pmsm

rmBm
is an increasing function of Pm, we have

P ∗m = −N0Bm(2rm − 1)

ln(1− pout,m)
. (E.5)

According to the constraint
cmDm

fm
+

sm
rmBm

≤ Tl, (E.6)

we have

fm ≥
cmDm

Tl − sm
rmBm

. (E.7)

In addition, the objective function is an increasing function of fm. Therefore,

f∗m = max

{
cmDm

Tl − sm
rmBm

, fmin,m

}
(E.8)

E.3 Proof of Lemma 6

Proof. According to the constraint

αm
2
cmDmf

2
m +

Pmsm
rmBm

≤ Em, (E.9)

we have

rm ≥
Pmsm

Bm(Em − αm
2 cmDmf2

m)
. (E.10)

According to the constraint
cmDm

fm
+

sm
rmBm

≤ Tl, (E.11)
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we have

rm ≥
smfm

BmfmTl −BmcmDm
. (E.12)

In addition, it can be shown that the objective function
M−2

∑M
m=1 pout(rm)√
Tl

is a decreasing function

of rm. Therefore,

r∗m = max

{
Pmsm

Bm(Em − αm

2 cmDmf2m)
,

smfm
BmfmTl −BmcmDm

}
. (E.13)

E.4 Proof of Lemma 7

Proof. Define a series of random variables {X̂m}Mm=1 given by

X̂m =

1, if sign(ĝ
(t)
m )i 6= sign(∇Fm(w(t)))i,

0, if sign(ĝ
(t)
m )i = sign(∇Fm(w(t)))i.

(E.14)

It can be verified that

P (X̂m = 1) = pimpout(rm) + (1− pim)(1− pout(rm)) =
1

2
− b|∇Fm(w(t))i|. (E.15)

sign(ĝ(t)
m )i =


1, with probability 1+b∇Fm(w(t))i

2 ,

−1,with probability 1−b∇Fm(w(t))i
2 ,

(E.16)

Further define a series of random variables {Ẑm}Mm=1 given by

Ẑm =

1, if sign(ĝ
(t)
m )i = 1,

0, if sign(ĝ
(t)
m )i = −1.

(E.17)

Let Ẑ =
∑M

m=1 Ẑm, then

P

(
sign

(
1

M

M∑
m=1

sign(ĝ(t)
m )i

)
= 1

)
= P

(
Ẑ ≥ M

2

)
=

M∑
H=dM+1

2
e

P (Ẑ = H). (E.18)
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In addition, let um = ∇Fm(w(t))i, we have

P (Ẑ = H) =

∑
A∈FH

∏
i∈A(1 + bui)

∏
j∈Ac(1− buj)

2M
=
aM,Hb

M + aM−1,Hb
M−1 + · · ·+ a0,Hb

0

2M
,

(E.19)

in which FH is the set of all subsets of H integers that can be selected from {1, 2, 3, ...,M};
am,H ,∀0 ≤ m ≤M is some constant. It can be easily verified that a0,H =

(
M
H

)
.

When b is sufficiently small, P (Ẑ = H) is dominated by the last two terms in (E.19). In

particular, ∀m, we have∑
A∈FH

∏
i∈A

(1 + bui)
∏
j∈Ac

(1− buj) = (1 + bum)
∑

A∈FH ,m∈A

∏
i∈A/{m}

(1 + bui)
∏
j∈Ac

(1− buj)

+ (1− bum)
∑

A∈FH ,m/∈A

∏
i∈A

(1 + bui)
∏

j∈Ac/{m}

(1− buj).
(E.20)

As a result, when dM+1
2 e ≤ H ≤M − 1, the um related term in a1,H is given by[(

M − 1

H − 1

)
−
(
M − 1

H

)]
um. (E.21)

When H = M , the um related term in aM−1,H is given by[(
M − 1

H − 1

)]
um. (E.22)

By summing over m, we have

a1,H =

[(
M − 1

H − 1

)
−
(
M − 1

H

)] M∑
m=1

um, (E.23)

and

a1,H =

[(
M − 1

H − 1

)] M∑
m=1

um, (E.24)

when dM+1
2 e ≤ H ≤M − 1 and H = M , respectively.

By summing over H, we have

M∑
H=dM+1

2
e

a0,H =
M∑

H=dM+1
2
e

(
M

H

)
= 2M−1, (E.25)
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M∑
H=dM+1

2
e

a1,H =

(
M − 1

dM+1
2 e − 1

) M∑
m=1

um (E.26)

As a result,

P

(
Ẑ ≥ M

2

)
=

M∑
H=dM+1

2
e

P (Ẑ = H) =
2M−1 +

( M−1
dM+1

2
e−1

)∑M
m=1 umb

2M
+O

(
b2

2M

)

=
1

2
+

( M−1
dM+1

2
e−1

)
2M

M∑
m=1

umb+O

(
b2

2M

)
,

(E.27)

which completes the proof.

E.5 Proof of Theorem 23

Proof. It is shown in Theorem 22,

E[F (w(t))− F (w(t+1))] ≥− η||∇F (w(t))||1 −
Lη2d

2

+ 2η
d∑
i=1

|∇F (w(t))i|P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
.

(E.28)

According to Lemma 7 and Remark 31, P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
> 1/2. Therefore, there

always exists a positive constant c such that

P
(
g̃

(t)
i = sign(∇F (w(t)))i

)
≥ 1/2 + c. (E.29)

Plugging (E.29) into (E.28) yields

E[F (w(t))− F (w(t+1))] ≥ −η||∇F (w(t))||1 −
Lη2d

2
+ 2η

d∑
i=1

|∇F (w(t))i|
(

1

2
+ c

)

= 2ηc||∇F (w(t))||1 −
Lη2d

2
.

(E.30)

Adjusting the above inequality and averaging both sides over t = 1, 2, · · · , T , we can obtain

1

T

T∑
t=1

ηc||∇F (w(t))||1 ≤
E[F (w(0))− F (w(T+1))]

T
+
Lη2d

2
. (E.31)
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Letting η = 1√
dT

and dividing both sides by η gives

1

T

T∑
t=1

c||∇F (w(t))||1 ≤
E[F (w(0))− F (w(T+1))]

√
d√

T
, (E.32)

which completes the proof.
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