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DETECTION OF FAULTY INSPECTION

by
Norman L. Johnson Samuel Kotz
University of North Carolina University of Maryland
at Chapel Hill
ABSTRACT

Some heuristic tests for detection of existence of errors in
inspection are proposed. Some of these tests are only effective
if the sampling function ((sample size)/(lot size)) is rather large,
and in all cases their application predicates special experiments to
provide the requisite data. Feasibility of these experiments will vary
according to specific circumstances.

Estimation of the probability of detection is discussed.
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1. INTRODUCTION

Recent papers (Johnson et al.)(1980), Johnson & Kotz (1981), Kotz &
Johnson (1982) have developed distributions of observed numbers of apparently
defective items when sample inspection is imperfect, resulting in
some defectives not being observed as such, while possibly some non-defectives
are described as 'defective' ("false positives"). Although these results
are of interest, some more practical problems arise when it is desired to
test whether inspection is faulty or to estimate the degree of imperfection.
It is the object of this paper to discuss some aspects of these problems,

keeping in mind possible practical constraints on availability of data.

2. SCOPE OF THE PROBLEM

It is clear that detection of faulty inspection will usually call for

special investigation; the possible forms of such investigation can be Timited

by practical constraints. We will give a few possible modes of attack, but

will deal here with the very simple case in which random samples of size n
are taken from a lot of size N, containing X (unknown) defective items,
with constant probability, p for each defective item, that it will indeed be
classified as 'defective' on inspection, and with zero probability of false
positives. Even with these simplifying assumptions, detection of faulty
inspection will often be difficult; and there are clearly many possibilities
of complication. For example it may well be that the class 'defectives' is
not homogeneous; some may be more, and some less easily detected. (Sampling
from such stratified populations is discussed in Johnson & Kotz (1981).)

If sampling is with replacement, it will not be possible to distinguish
faulty from perfect inspection merely on the basis of a succession of values
Z]’ZZ"" of the total number (Z) of apparently defective items in routine

samples of size n. This is because in this case each Z will have a binomial
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distribution with parameters n, pX/N and it will not be possible to separate
the unknowns p and X, and so not possible to test the hypothesis p = 1. Some
discrimination is possible if sampling is without replacement, but this will
naturally be weak especially if the sampling fraction (f=n/N) or the propor-
tion (8=X/N) of defective items is small. This problem is discussed in
Section 3. Further possibilities of specially designed experiments are
described and discussed in Section 4. Estimation of p, and yet more possible

special designs or discussed in Section 5.

3. AN EXPERIMENT TO TEST FOR FAULTY INSPECTION

We will suppose Z]’ZZ””Zm (the number of items declared defectives in
successive samples) mutually independent. This would require the return to
the population of all n items in each sample before the next sample is chosen

i ‘ (even though for each sample, selection is without replacement) but does not
call for identification of previously chosen items. We will suppose this
done, but note that it is evident that it will not always be possible - for
example, if testing is destructive. In such cases we would have dependence
among the Z's, arising from dependence among the corresponding numbers (Y) of

actual defective items in the samples - in fact

Pr[ A (Y7y5) [X]

j=1
X N -X N
X - -Zfﬁ’y1""’ym N-X-mn + 'Z]yj,n-y],...,n-ym N-mn,n,...,n
J= J=
a m
where =al/( T b,!). Ue will not discuss this case further here.
bo,b-l,...,bm j:o J

The distribution of each Z is the hypergeometric-binomial
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YNy ()p2(1-p) Y (1)

prz=z|X,0] = (7' 1 (G

y>z
(max(0,n-N+X) < z = min(n,X))

(Johnson et al. (1980)). The mean (u) and variance (02) of Z are

p = np X/N(= npé = Npfo) (2.1)
o = nBR- BYy AL X o D)
= n{p6(1- po)- %{%—p26(1—6)}
- N s IR [H0-0uen T F(ph] (2:2)

More generally the r-th factorial moment of Z is

NG 127 = erz(z-1). (z-r#1)T = a0k (T () (2.3)
Formally our problem is that of testing the hypothesis HO:p =1, with X
as nuisance parameter. It is clear that H0 cannot be tested on the basis of a

single observed Z value. Even with a set of independent values Z]’ZZ”"Zm’

(obtainable if each sample of m items is returned to the lot after inspection)

construction of a test, which is optimal in some reasonable way, presents

technical difficulties.
m
! ) Z;, and o by 5% -
M -2 i=]
(m-1)"" % (Zi-Z) , it is natural to seek for some function of u and o
i=1
depends only on p (and not on X) and then replace u by Z and 02 by SZ. From

Since u is estimated unbiasedly by Z = m’

2 which

(2.2)
0= %l T D) T (N = 1-(8-1) T (n-1)p (2.4)
is such a function and so we consider using
W= 527 e -1 N ven)Z (3)

as a test criterion. The hypothesis Ho(p=1) corresponds to Q = (N-])"](N-n);

for alternative hypotheses (p < 1), @ > (N-])'](N-n) .
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. Using standard approximate ("statistical differentials") formulae, we have

EDW|X,p] = E[SZZ ~Vx,p] + NTT(N-1) 7T (N=n)p X

. o2 2 5
: %_ a - cov(S éZ|X,p) N var(Zlé,p)i}+ n” (N N ](N-n)u

oy ou

. o Va0 (0y2 Vyry-]
T'ﬁ'[] -m {“B1ﬁ" (ﬁ) }] + n”H(N=-1)" (N-n)u (see Neyman (1926))

: -1
- O(u) (VB 2) (4.1)

Also

2 -1

var(W|X,p) = var(Szf']|X,p)+2n'](N—1)_](N-n)cov(S Z ,Z|X,p)

n"2(N-1)"2(N-n)2var(Z]X,p)

04[var(52[X,E) 2cov(52,71x,p) , var (ZIX, ]
2 4 - 2 2
u

. u Y o M
¢ :

2 T DT e R S+ a1 ey - Y]

22

+ m—]n—z(N-l)'z(N-n) o

-—~{62 13 g0, + (D% + 207 (N1 T () (BB 1)

2<N-1>’2(N—n)2(§)21 (2.2)

where /B], 8, are the moment ratios

By = 0 E[(Z-u)X,p]5 By = 0 Yerz-wtxel (5)

1
of the distribution (1).

When the null hypothesis (p = 1) is valid, this distribution is hyper-

geometric with parameters (n,X,N); the appropriate formulae for /B] and 62 are

given in Johnson & Kotz (1969, p. 144). 1If N is large, so that

'. (N-an)/(N+b) = 1 - af, then
By %nzg%p@z?) 3By T3 e rg](ﬁe')[1-6{f(1—f)+e(1—a)}] (6)



where n' = n(1-f). We also have
u=n'o 7.1)
%= n'6(1-6) 7.2)
Inserting these values in (4.1) and (4.2) with p = 1, we obtain
. (1-0)(2f + 6 - 4f0)
ELW|X,1] = 0 + L (8.1)
var(W|X,1) = “‘9)2 20, 1 f2(f0 + 20-2)2-2F(1-F)-26(1-6)
> m m-1  n'6(1-6)
- 16f(1-f)o(1-0)}]
2
B 2(;-$) ¥ ﬁhé% 9(f.6) (8.2)
where g(f,0) is a number of magnitude about 1 (for example if f = % ,
11,2 2 1 1 1,_ 9 55.
) =qlgrz-2"-g-7-06x 5) = g -2=-Tg)

Standard

OTHER APPROACHES
As we have already noted the most straightforward way of testing the
1 would be by inspection of items known to be defective

g(f,

- @ :.
methods could then be used - in this case the hypothesis would be rejected
The level of significance

hypothesis p
as soon as any item was ‘found' to be nondefective
and its power function (1-p™) where m is the number

of the test would be zero
of items to be inspected.

Such an inquiry may not be possible (for example when determination

. If

of defectiveness entails destruction) but we may approach it by repeated

inspection of the same item (not knowing whether it is defective or not)

any two inspections give different results, then we know that p # 1 (since

we are here assuming that a nondefective item will always be classified
Of course, if the item is really nondefective this test will have

correctly).
no discriminating power, since every inspection will result in a carrect

decision.
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Sometimes it may be possible to repeat inspection of the same sample
(of size n) m times, but to be able to record only the total numbers
(T]’TZ""’Tm) of items deemed 'defective' at each inspection. This increases
the chance of including at least one truly defective item among those
inspected.

Here, again, if any two T's are unequal, then we know that HO is not
true (i.e. p < 1) since decision in regard to at least one item must differ
in the two corresponding inspections. If there are really y defective items
among the n subjeéted to inspection, the probability that departure of p from
1 will be detected, as a consequence of at least two of the T's differing is

-3 (et-p)’ "
t=0

The overall probability, if the sample is chosen without replacement from a
population of size N containing just X defectives is

Y
1 EL T CRE ) M

where Y has a hypergeometric distribution with parameters (n,X,N).

5. ESTIMATION OF THE PROBABILITY OF DETECTION (p)

So far we have considered only testing for the existence of errors in
inspection which lead to nondetection of defective items. If the existence of
such errors is established, it is natural to attempt to estimate p. With
data of the kind used in the test statistic W (Section 3) a natural estimator
would be (in view of (4.1)) (n-1)(N-1)'](1-w), possibly with a bias correction.
For reasonable accuracy however, we need data of the kind described towards
the end of Section 4.

If we were in the fortunate position of having a number of items known to

be defective we could obtain a simple estimator (of p) by testing them repeatedly

and estimating p by the proportion of times a 'defective' decision is obtained.
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If this is not the case at the beginning of the investigation we might,
however, be in a position to exploit the fact that an item declared 'defective’
at any time must (according to our assumptions) be defective. Denoting by

Nj the number of items declared defective just j times in m trials (so that

N, + N]+...+ Nm =n, and if p =1, NO = n-y, Nm = y) a plausible but

0
specious argument might run as follows:

"For each item, we discard the first 'defective' decision and observe
m

the proportion of defective decision in the remaining ~Z]Nj sets of
(m-1) trials. Since these are independent, the total %;mber of

defectives in the trials has a binomial ((m-])'? N.,p) distribution,
and our estimate of p is unbiased, with an easg{; computed standard

deviation."
(It is not difficult to see that this will produce a negatively biased esti-

mator of p, because in all the trials which are thrown away a decision of

'defective' is reached. In fact the estimation is

1 13
1 T§ ('—])N = __]_ .\i;lJNj_ 1 (9)
m = J J m-1 m
(m-1) ) N, J ) N
=1 =1
and its expected value is
{mh g } . ) (10)
1-(1-p)

We could take notice of only those trials following the first 'defective'
decision; although this will not use all the information available, it does
lead to simple formulae. The observed proportion of 'defective' decisions fis
no an unbiased estimator of p; the (conditional) distribution of the number

of 'defective decision counted is binomial with parameters (total number of

inspections included in count, p).
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Suppose, now, that we have m repeated inspections of a set of n items
(among which an unknown number y are defective) and have been able to record
the results of individual inspections (and not just total number of decisions
of 'defective' for each inspection of the set of n items). The likelihood

function is

y
n . AN
[y-n+N MNosonnsN J(]-p)”‘(y'”*NO) m (e (1-p)" I
0’ m j=1 J
m
. m
: \ (5 b ™ ()
_ T (Mfp “(1-p 1
_y n+NosN'l 9'-'3Nm J'_-:'l J

(n—NO <y <n)

m
where Ny = n - N Nj is the number of items which are not declared defective
j=1

m
is any of the m inspections. Note that (NO, Z ij) is a sufficient

) j=1 ‘
statistic for (y,p): Xan is the total number of 'defective' decisions. If

y were known, the maximum 1ikelihood estimator of p would be
R 4m
p(y) = (my)™" ]

N, (12)
P

1

The corresponding maximized log likelihood would be

n-Ngtl m m
Tog L(y) =k + ) Tlog (y-i) + (my- ij)1og(my—.Z iN;)-my Tog my (13)

i=0 J=1 =1
where K does not depend on y. We then seek to minimize (13) with respect to
y, subject ton -y >n - NO' Note that we are not primarily interested in
the value of y itself, but we need the value, y, maximizing (13) to calculate

the maximum likelihood estimator, p(y), of p.
m
A useful practical method is obtained by noting that for the |} Nj items
j=1
which we know to be defective, the numbers of times each item is declared

'defective' can be regarded as observed values of independent random variables
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each having a binomial (m,p) distribution, truncated by omission of zero

values. Equating sample means and expected values gives the equation
~ ~ m _'I _‘l _] m
p{1-(1-p) 17" =m (n-Ny) " } JN. (14)
0 391 J

for an estimator of p. This estimator is, in fact, the conditional maximum

Tikelihood estimator of p, given Nj.

If we do require to get a estimator of y, we note that, with

m
p =5, E[L YN, =n - Nyly,p] = y{1-(1-p)".
=1
Replacing expected by actual values, we get the the estimator
~ =Tl c-1 Mo
y= min(n, (n-NO){1-(1—p) } )= min(n, | (mp) ) JNj ) (15)
3=

where [ ] denotes 'nearest integer to'.

As a numerical example suppose we test each of 50 (=n) items three (=m)

times and obtain

0 1 2
so that

3

) JNj = 1+2+15 = 18. Equation (14) gives

j=1
B3 - 2+ 50 = (3« )8 = 6/7

where 52 - 3p + %} =0
leading to p = 0.8545

Y = mi 18
From (15) , y = min{50, T 08545 7.

Note that the same values of P and ¥ would be obtained, whatever the value

of n (= 7).
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