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Abstract—Broken rotor bars in an induction motor create
asymmetries and result in abnormal amplitude of the sidebands
around the fundamental supply frequency and its harmonics.
Motor current signature analysis (MCSA) techniques are applied
to inspect the spectrum amplitudes at the broken rotor bar specific
frequencies for abnormality and to decide about broken rotor
bar fault detection and diagnosis. In this paper, we have demon-
strated with experimental results that the use of a lower sampling
rate with a digital notch filter is feasible for MCSA in broken
rotor bar detection with discrete-time Fourier transform and
autoregressive-based spectrum methods. The use of the lower sam-
pling rate does not affect the performance of the fault detection,
while requiring much less computation and low cost in imple-
mentation, which would make it easier to implement in embedded
systems for motor condition monitoring.

Index Terms—Broken rotor bar, fault diagnosis, induction
motors, motor current signature analysis (MCSA), spectral
analysis.

I. INTRODUCTION

INDUCTION motors have dominated in the field of electro-
mechanical energy conversion by having 80% of the motors

in use [1]. The applications of induction motors are widespread.
Some are key elements in assuring the continuity of the process
and production chains of many industries. The list of the indus-
tries and applications that they take place in is rather long. A
majority are used in electric utility industries, mining industries,
petrochemical industries, and domestic appliance industries.
Induction motors are often used in critical applications such as
nuclear plants, aerospace, and military applications, where the
reliability must be at high standards.

The failure of induction motors can result in a total loss of
the machine itself, in addition to a likely costly downtime of
the whole plant. More important, these failures may even result
in the loss of lives, which cannot be tolerated. Thus, health
monitoring techniques to prevent induction motor failures are
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of great concern in industry and are gaining increasing attention
[2]–[7].

Induction motors often operate in hostile environments such
as corrosive and dusty places. They are also exposed to a variety
of undesirable conditions and situations such as misoperations.
These unwanted conditions can cause the induction motor to
go into a failure period, which may result in an unserviceable
condition of the motor, if not detected at its early stages of the
failure period. The early detection of the incipient motor fault is
thus of great concern. Rotor failures are among these failures,
and they now account for the 5%–10% of total induction motor
failures [8]. Since 1980, the broken rotor bar fault detection
problem has created substantial interest among researchers
[9]. Several monitoring techniques have been developed, most
of which are based on vibration, thermal, and motor current
signature analysis (MCSA) monitoring [11]. MCSA techniques
are gaining more attention because of their easiness to use since
they do not require access to the motor [12]. In recent years,
several advanced signal processing techniques have been ap-
plied for MCSA. Some of these techniques are high-resolution
spectral analysis, higher order statistics, and wavelet analysis
[1], [10], [12], [13].

In general, MCSA techniques include parametric, nonpara-
metric, and high-resolution spectrum analysis methods. In the
parametric methods, autoregressive (AR) models have been
fitted with time series of the signal, and model parameters have
been used to compute the frequency spectrum. Nonparametric
methods, on the other hand, are based on Fourier transform
and search for periodicities of the signal. High-resolution
spectrum methods correspond to an eigenvalue analysis of
the autocorrelation matrix of the motor current time series
signal.

One of the classical and widely used nonparametric spectrum
methods as a MCSA technique is the well-known fast Fourier
transform (FFT) [1]. The FFT is an algorithm to compute
the discrete Fourier transform (DFT) of a discrete-time series
function with minimum computational effort. FFT yields com-
putationally efficient results, which makes it a powerful and
conceptually simple MCSA technique. Power spectral density
(PSD) analysis of motor current is another widely used MCSA
technique [1]. There are several approaches to calculate PSD.
The periodogram method, which is known as the classical
way to estimate PSD, is one of the nonparametric spectrum
methods [24]. Welch’s periodogram is another nonparametric
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spectrum method to calculate the PSD estimate [24]. This
method differs from the classical periodogram by splitting
the data into overlapping segments. It then calculates the
periodogram of each windowed segment and takes the av-
erage of the periodograms to find the final PSD estimate.
The eigenvalue-based techniques, such as the multiple signal
classification (MUSIC), are reported to deal with resolution
problems, but, on the other hand, are computationally intensive
[12]. The parametric spectrum methods are used for sensorless
speed estimation of induction machines [14], and there are
only a few reported applications of them in the condition
monitoring area [15]. Burg, Yule AR, covariance, and modi-
fied covariance are well-known parametric spectrum methods.
Among these methods, Yule AR provides a stable model, and
its autocorrelation matrix is guaranteed to be nonsingular [23].

The spectral estimation techniques form the core of the
MCSA techniques. These techniques are extensively elaborated
in the signal processing media considering their pros and cons.
However, there are only a few published works that have re-
cently initiated the discussion of some of the spectral estimation
techniques’ feature extraction performance for the condition
monitoring of rotating machinery applications [12], [15]. In
[12], Benbouzid et al. have investigated high-resolution spectral
analysis methods for motor condition monitoring. In [15],
Cupertino has presented a performance comparison of several
spectral estimation techniques on their proposed diagnostic test,
which is based on the analysis of the current space vector.
However, there is much need to be investigated with these
techniques regarding the discipline of condition monitoring of
rotating machinery systems. One important aspect is related
to the selection of signal processing and filtering techniques
to enhance the feature extraction performance and lessen the
computational cost in implementation. The contribution of this
paper is to show by experimental results that a lower sampling
rate with a digital notch filter is feasible with discrete-time
Fourier transform (DTFT) and AR-based spectrum methods for
MCSA in broken rotor bar detection.

The broken rotor bar specific frequencies, which are also
called the sideband frequencies, are located around the main
line frequency. The difference (in frequency) between the clos-
est sideband and the main line frequency depends on the motor
slip factor. The motor slip factor is found using the motor
rotor speed, where higher slip values indicate higher motor load
conditions and lower slip values correspond to lower load con-
ditions. The difference (in frequency) between the closest side-
band and the main line frequency narrows down as the motor
goes to a lower load condition. Thus, the frequency resolution
must be selected higher than the difference between the closest
sideband and the main line frequency; otherwise, the computed
spectrum amplitudes at the sideband frequencies will not be
detected since the resolution would not be adequate enough to
show the sidebands. In spectral analysis, in addition to the type
of the windowing function and the length of the window, the
sampling rate determines the frequency resolution. Thus, the
selection of the sampling rate is important. In previous works
regarding the spectrum analysis of the broken rotor bar fault,
in [20], 2 kHz is applied, in [15], 1.5 kHz is used, and in [12],
1 kHz is applied as the sampling rate. However, there is not

much discussion specific to the selection of the sampling rate.
The use of notch filters has also been discussed in some previ-
ous works for enhancing the capture of sideband components.
In [12], an analog 50-Hz notch filter has been used to reduce the
fundamental component (50 Hz). In [25], an analog 50/60-Hz
notch filter is introduced to mainly cope with resolution prob-
lems related to magnitude differences between fundamental and
sideband components. Because the magnitudes of the sideband
components are considerably smaller than the magnitude of the
fundamental component, the dynamic range of 12-bit analog-
to-digital (A/D) converters is not sufficient to cope with this
issue. In [25], it is demonstrated that by using an analog notch
filter, 12-bit A/D converters can be used for proper capture
of the sideband components. In this paper, we have applied
a lower sampling rate of 200 Hz. One of the reasons that we
select 200 Hz is that the sidebands of interest are in the region
of 0–100 Hz; thus, higher frequency regions will not provide
any information, and a sampling rate of 200 Hz is believed
to provide a good performance without any aliasing effects.
With the applied 200-Hz sampling rate and different windowing
functions used with the nonparametric spectrum methods, the
frequency resolution in this paper takes a value between 1 and
6 Hz, where the difference between the closest sideband and
the main line frequency is 9.30 ± 0.77 Hz. Another reason is
that a digital notch filter, which will not cause any significant
suppression at the sidebands, can be designed efficiently at a
lower sampling rate of 200 Hz when compared with digital
notch filter designs made at higher sampling rates. In addition
to these reasons, from a general point of view, the use of a lower
sampling rate results in much less computation and low cost in
implementation. Thus, it would be easier to design embedded
systems with respect to software and hardware implementation
for motor condition monitoring applications.

In this paper, the induction motor current data used are
collected from an actual experiment setup in a laboratory
environment. The experiments have been carried out under the
full-load condition of the motor. The healthy and one broken
rotor bar motor current data are sampled at 10 kHz to allow a
wide range of study with the sampling rate. The detection of
the faults is performed at this rate. Then, the data are decimated
to decrease the original sampling rate that is applied in the
experiments to a lower value of 200 Hz and show that the use
of the lower sampling rate does not affect the performance of
the fault detection. Two nonparametric spectrum methods (i.e.,
DTFT and Welch’s periodogram) and the Yule AR parametric
method have been applied with the higher and lower sampling
rates. Throughout the spectrum computation, only the spectrum
amplitudes at the lower and upper sideband broken rotor bar
fault specific frequencies are computed, rather than computing
the overall spectrum. In this way, exact spectrum amplitudes
are obtained, which improves the healthy–faulty discrimina-
tion performance and considerably decreases the computational
cost. The results indicate that the sidebands can be clearly seen
with the nonparametric-based methods, whereas the sidebands
cannot be detected with the Yule AR method. Thus, a second-
order digital notch filter is designed to suppress the main
line frequency and isolate the broken rotor bar specific
sideband frequencies for the Yule AR method. This allows
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the identification of the characteristic sidebands. The spectrum
amplitudes of the healthy and one broken rotor bar motor data
resulting from each technique are evaluated using a statistical
measure based on a hypothesis test with respect to determining
the feature extraction performance. Experimental results affirm
that a lower sampling rate with a notch filter can be used with
DTFT and AR-based spectrum methods for broken rotor bar
detection, and a significant discrimination is obtained between
the healthy and faulty data sets.

This paper is organized as follows: Section II discusses
the frequencies of interest to detect the broken rotor bar
fault. Section III describes the fundamental properties of the
three MCSA techniques. Section IV presents the experiment
setup and motor data specifications. Section V introduces the
decimation and digital notch filter design process. The ex-
perimental results and statistical analysis are also described
in Section V. Finally, Section VI concludes the findings of
this paper.

II. MOTOR CURRENT SPECTRAL COMPONENTS

FOR THE BROKEN ROTOR BAR

Kliman [16], Thomson and Stewart [17], Filipetti [18], and
Elkasabgy et al. [19] used MCSA methods to detect the bro-
ken rotor bar faults by investigating the sideband components
around the supplied current fundamental frequency fo (i.e., the
line frequency). Thus

fb = (1 ± 2s)fo (1)

where fb are the sideband frequencies associated with the
broken rotor bar, and s is the per-unit motor slip. The slip s is
defined as the relative mechanical speed of the motor nm with
respect to the motor synchronous speed ns, i.e.,

s =
ns − nm

ns
. (2)

The motor synchronous speed ns is related to the line fre-
quency fo, as follows:

ns =
120 fo

P
(3)

where P is the number of poles of the motor, and the constant
“120” is used to express the motor synchronous speed ns in
revolutions per minute (r/min) unit.

The broken rotor bars also give rise to a sequence of other
sidebands, which is given by [18]

fb = (1 ± 2ks)fo, where fb > 0 (4)

and is conceptually depicted in Fig. 1.
Fig. 1 shows the frequency components specific to a broken

rotor bar fault, which is given in (4) for k = 1 and 2. These
frequencies are located around the fundamental line frequency
and called lower sideband and upper sideband components, as
indicated in Fig. 1.

Fig. 1. Sideband frequencies around the fundamental line frequency.

III. MCSA TECHNIQUES FOR BROKEN ROTOR

BAR FAULT DETECTION

MCSA techniques, in general, include nonparametric, para-
metric, and high-resolution spectrum analysis methods. In this
section, the general principles of the three investigated MCSA
techniques are briefly discussed. Two of the techniques are
among the nonparametric spectrum methods, i.e., DTFT and
Welch’s periodogram. The third technique is a parametric
spectrum-based method, i.e., Yule AR.

A. DTFT

To review the basics of the DTFT, consider a sequence of
N equispaced samples of a finite discrete-time series signal
x[n], which is defined for 0 ≤ n ≤ N − 1. The DTFT of x[n]
is a representation of this sequence in terms of a complex
exponential sequence {e−jωn}, where ω is the real frequency
variable (0 ≤ ω ≤ 2π). The DTFT of x[n] is depicted as
X(ejω). X(ejω) is defined as

X(ejω) =
N−1∑
n=0

x[n]w[n]e−jωn (5)

where w[n] is the window function. In this paper, ω needs to
be evaluated only at two frequencies, i.e., (1 ± 2s)fo; thus, the
entire DFT need not to be computed. In the fault analysis with
respect to the DTFT method, |X(ejω)| is used as the feature.

The selection of w[n] is important and affects the resolution.
The resolution of the nonparametric-based methods such as
DTFT and Welch’s periodogram depends on the sampling rate
Fs and the window length Nw, i.e.,

∆f = β
Fs
Nw

(6)

where ∆f is the resolution, and β depends on the applied
window function w[n]. For the windows used in this paper,
1 ≤ β ≤ 3.

B. Welch’s Periodogram Method

In Welch’s periodogram method, the data sequence x[n],
{x[0], x[1], . . . , x[N − 1]}, is first partitioned into Z segments.
The length of each segment consists of L samples, and these
segments can be overlapping on each other with (L − S)
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overlapping samples, where S is the number of points to shift
between segments. Thus

Segment 1 : x[0], x[1], . . . , x[L − 1]
Segment 2 : x[S], x[S + 1], . . . , x[L + S − 1]

...
Segment Z : x[N − L], x[N − L + 1], . . . , x[N − 1].

The weighted zth segment will consist of the following
samples:

xz[n]=w[n]x[n+zS], for 0≤n≤L−1; 0≤z≤Z−1.
(7)

The window function w[n] is applied to the data at each
segment before the computation of the segment periodogram.

The sample spectrum of the weighted zth segment is depicted
for the real frequency value ω, as follows:

P z
xx(ejω) =

1
UL

Xz(ejω)
[
Xz(ejω)

]∗ =
1

UL

∣∣Xz(ejω)
∣∣2

(8)

where U is the discrete-time window energy, i.e.,

U =
L−1∑
n=0

w2[n] (9)

and Xz(ejω) is the DTFT of the zth segment, i.e.,

Xz(ejω) =
L−1∑
n=0

x(z)[n]e−jωn. (10)

Finally, Welch’s PSD estimate P̂W has been found by aver-
aging the periodogram values of the Z segments, i.e.,

P̂W (ejω) =
1
Z

Z−1∑
z=0

P z
xx(ejω)

=
1
Z

Z−1∑
z=0

1
UL

∣∣∣∣∣
L−1∑
n=0

x(z)[n]e−jωn

∣∣∣∣∣
2

. (11)

The factor U is used to remove the effect of the window energy
bias in the Welch’s PSD estimator [22].

C. Yule AR Method

Yule AR is a parametric spectrum method based on the
AR model. To compute the spectrum of x[n], {x[0], x[1],
. . . , x[N − 1]}, which is given over a finite interval 0 ≤ n ≤
N − 1, first, x[n] is modeled with an AR model. Then, the AR
model parameters of x[n] are estimated by using the autocorre-
lation estimates of x[n] in the autocorrelation normal equation.
Finally, the power spectrum is computed using the AR model
parameters by a technique derived from the Wiener–Khintchine
theorem [22].

In the following, the Yule AR spectrum method will be
briefly introduced without going into further details. For further
information, please see [21] and [22]. Suppose x[n] is modeled
with a p-order AR model, i.e., AR(p). The AR parameter

TABLE I
INDUCTION MOTOR CHARACTERISTICS USED IN THE EXPERIMENT

estimates âp(m) and ρ are computed by solving the following
autocorrelation normal equation:




r̂x(0) r̂∗x(1) . . . r̂∗x(p)
r̂x(1) r̂x(0) . . . r̂∗x(p − 1)

...
...

...
...

r̂x(p) r̂x(p − 1) . . . r̂x(0)







1
âp(1)

...
âp(p)


 = −




ρ
0
...
0




(12)

where 1 ≤ m ≤ p.
In (12), r̂x(h) denotes the autocorrelation estimate and is

mathematically expressed as follows:

r̂x(h) =
1
N

N−1−h∑
n=0

x(n + h)x∗(n) (13)

where 0 ≤ h ≤ p. Note that the autocorrelation matrix in (12) is
Hermitian Toeplitz and positive definite [22], and r̂∗x(h) denotes
the complex conjugate of r̂x(h), and thus, r̂x(−h) = r̂∗xx(h) is
satisfied.

After solving the autocorrelation normal equation in (12),
the AR model-order estimates âp(m) and ρ are found and put
in (14) to find the Yule AR power spectrum P̂AR at the real
frequency value ω, i.e.,

P̂AR(ejω) =
ρ∣∣∣∣1 +

p∑
m=1

âp(m)e−jωm

∣∣∣∣
2 . (14)

IV. EXPERIMENT SETUP AND MOTOR

DATA SPECIFICATIONS

To investigate the feature extraction performance of the
three investigated MCSA techniques for the broken rotor bar
detection problem under a lower sampling rate, we performed
experiments on an actual induction motor. The characteristics
of the three-phase induction motor used in our experiment are
listed in Table I. The motor was tested with a healthy rotor and
with a faulty rotor that had one broken rotor bar. The broken
rotor bar fault was induced by filling a small crack-size piece
in one of the rotor bars full with anchoring cement before the
die-casting process. Anchoring cement is a high-strength fast-
setting gypsum cement with low conductivity. The overall data
collection scheme and the actual experiment setup picture are
depicted in Figs. 2 and 3, respectively.

The induction motor was fed through a three-phase ABB,
ACS 501 inverter. A Tektronix TM 5003 current amplifier
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Fig. 2. Motor data collection scheme.

Fig. 3. Actual experiment setup to collect healthy and faulty motor data.

Fig. 4. DTFT of healthy and faulty motor current data with Hanning window
(no filtering applied, Fs = 10 kHz). Vertical lines indicate the location of the
fault specific sidebands.

amplifies the induction motor stator currents before being sent
to the interfacing Pentium PC through the oscilloscope. The
needed load condition of the induction motor was established
by connecting the test motor to a dc motor, which is used
as a generator and is capable of simulating any desired load

Fig. 5. DTFT of healthy and faulty motor current data with Hanning window
(no filtering applied, Fs = 200 Hz).

Fig. 6. Yule AR spectrum of the decimated data (Fs = 200 Hz,
model order = 30).

condition. The speed of the induction motor was measured by a
digital stroboscope.

The experiments involved collecting three-phase stator in-
duction motor current and speed data for the full-load condition
of the motor both with one broken rotor bar fault and without
any fault. The motor load condition is determined according
to the motor nameplate information given in Table I. Thus,
there are two different experiment cases: 1) healthy motor
(no broken bar) under full load and 2) motor with one broken
rotor bar under full load. For each individual case, 20 sets
of motor current data were collected with a sampling rate of
10 kHz, i.e., Fs = 10 kHz. Thus, each motor current data set
contains 10 000 samples for a duration of 1 s.

V. EXPERIMENTAL RESULTS AND ANALYSIS

As described in Section II, broken rotor bar fault specific
frequencies depend on motor’s slip, which is a function of
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Fig. 7. Notch filter designs with Fs = 10 kHz. (a) rp = 0.85. (b) rp = 0.99.

motor’s synchronous speed and motor’s actual speed. In this
paper, the spectrum amplitudes of the motor current (phase a)
at the two frequencies specific to the broken rotor bar fault are
investigated. These two frequencies are the first lower and upper
sidebands, i.e., (1 − 2s)fo and (1 + 2s)fo, respectively, which
are derived from (4).

Finding the spectrum amplitudes at the actual frequency
components fb, which are specific to the broken rotor bar
fault, is important to make an accurate decision about the
existence of a fault. These frequency components are com-
puted by first incorporating the actual motor speed data
values into (2) to find the slip values. The computed slip
values are then used in (1) to find the frequency components.
According to the experimental data, the motor speed under
the full-load condition varies between 1649 and 1672 r/min.
Thus, using (1), the lower sideband frequency location is
found to vary between 49.93 and 51.47 Hz, whereas the
upper sideband frequency location varies between 68.53 and
70.07 Hz.

Fig. 4 depicts the DTFT spectrum of healthy and one broken
rotor bar motor current data at the original sampling rate of
Fs = 10 kHz, with Hanning window applied. The lower and
upper sidebands should be examined at 51.07 and 68.93 Hz
according to the corresponding speed data. These frequency
locations are marked with vertical lines in Fig. 4. The solid line
represents the spectrum of the healthy motor data, whereas the
dashed line corresponds to the spectrum of the broken rotor bar
data. The motor current data are decimated with a decimation
rate of 50. In this way, the sampling rate is reduced by a factor
of 50, i.e., Fs = 200 Hz. In Fig. 5, the DTFT spectra of the
decimated healthy and faulty motor current data with Hanning
window are depicted. From Figs. 4 and 5, it can be clearly seen
that the sidebands of interest can be detected with the DTFT
method both with the higher sampling rate of Fs = 10 kHz and
the lower sampling rate of Fs = 200 Hz. For the feature ex-
traction performance analysis of the three investigated methods,
the DTFT at only the two sideband frequencies (1 ± 2s)fo are
computed, which are indicated by the vertical lines in Figs. 4
and 5. Fig. 6 depicts the Yule AR spectrum of the decimated
healthy and faulty motor current data with a model order

of 30. Unlike the DTFT method, the two sidebands cannot be
seen since the dominance of the main line frequency does not
allow the sidebands to appear with the Yule AR method. Thus, a
filtering process is needed to suppress the main line frequency.
In Section V-A, the filter design process is introduced, which
will enable the Yule AR method to be applicable for broken
rotor bar detection.

A. Notch Filter Design

The motivation behind applying a notch filter is to isolate
the two sidebands of interest by suppressing the dominance
of the main line frequency, such that Yule AR method can be
successfully applied for broken rotor bar detection.

The transfer function of a second-order notch filter N(z) can
be mathematically expressed as

N(z) = Ngain

(
z − rze

jωc
) (

z − rze
−jωc

)
(z − rpejωc) (z − rpe−jωc)

(15)

where ωc denotes the notch frequency (0 < ωc < 2π), rz de-
notes the zero radius (0 � rz ≤ 1), rp denotes the pole radius
(0 � rp < 1), and Ngain denotes the gain.

We have set rz and Ngain to 1 and considered several
different values for rp, i.e., in the range 0.85 < rp < 0.99.
It is observed that the 60-Hz (fo) second-order notch filter
design for the higher sampling rate of Fs = 10 kHz causes
high attenuations at the two sidebands. Fig. 7 depicts the
magnitude responses of the notch filters for Fs = 10 kHz, with
rp = 0.85 and 0.99, respectively. From Fig. 7, it can be seen
that the sidebands (1 − 2s)fo and (1 + 2s)fo are significantly
attenuated, in addition to the attenuation of fo. To obtain a lower
attenuation at this sampling rate, the poles would have to be
much closer to the unit circle. This will produce unacceptable
instabilities caused by numerical roundoff. Thus, we do not
further consider this case.

At the lower sampling rate of Fs = 200 Hz, the notch filter
can be effectively implemented for reasonable pole radii. We
have evaluated the magnitude responses of the filter designs
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Fig. 8. Notch filter magnitude responses with different pole radii and output data after filtering. (a) rp = 0.99. (b) rp = 0.91. (c) rp = 0.85.

and considered their transient response when applied to motor
current data. Fig. 8 depicts notch filter magnitude responses
and their application to motor current data for rp = 0.85, 0.91,
and 0.99. From the magnitude responses of the investigated
notch filter designs, it is observed that as the rp value ap-
proaches 1, a sharper filter magnitude response is obtained.
However, a notch filter with a sharp magnitude response pro-

duces a long transient response in the output data. Thus, there
is a tradeoff between designing a sharp notch filter and ob-
taining enough number of steady samples needed for motor
current spectrum computation. Since steady-state responses of
the notch filtered data are needed to compute the spectrum, the
sharpest filter could not be used since its transient response is
longer than the window. The notch filter design with rp = 0.99,
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Fig. 9. Yule AR spectrum of the notch filtered data with Fs = 200 Hz.

Fig. 10. DTFT of the notch filtered data with Fs = 200 Hz.

which is depicted in Fig. 8(a), demonstrates this case. As can
be seen from the magnitude responses, although the notch
filter provides a sharp response, the output data consist of only
transient response but no steady-state response.

The spectra in Fig. 9 correspond to the same healthy and bro-
ken rotor motor current data pairs that were used in Figs. 4–6.
A model order of 30 has been applied in the Yule AR method.
Before applying Yule AR, the decimated motor current data
are filtered with a second-order notch filter with an rp value
of 0.91. Thus, Fig. 9 verifies that the lower and upper side-
bands can be successfully detected after notch filtering with the
Yule AR method with a lower sampling rate of Fs = 200 Hz.
From Figs. 4 and 5, it is seen that the DTFT method (with
Hanning window) reveals the sidebands of interest without
applying filtering both with the higher and lower sampling
rates. Fig. 10 illustrates that the sidebands can also be seen
with the notch filtered data using DTFT (with Hanning window)
under Fs = 200 Hz.

To illustrate that the lower sampling rate with a notch filter
can be successfully applied for broken rotor bar detection with
the three investigated spectrum methods, we have incorpo-

Fig. 11. DTFT amplitudes of the notch filtered healthy and faulty data sets at
the lower sideband.

rated a performance measure in our analyses. The performance
measure is based on a hypothesis test that statistically shows
the difference among the observed spectrum estimates of the
healthy and broken rotor bar data sets. The hypotheses are
stated in the list that follows.
H0: The mean of healthy motor spectrum estimates is the

same as the mean of faulty motor spectrum estimates at
the inspected frequency.

H1: The mean of healthy motor spectrum estimates is not
the same as the mean of faulty motor spectrum
estimates at the inspected frequency.

We apply these hypotheses on the two specific frequencies
under investigation for the three spectrum methods. We then
use t-test p-value results to determine if the hypothesis test is
significant with the spectrum data under investigation [23].

In general, the t-test allows us to assess whether the means
of two groups are statistically different from each other. The
t-test evaluates the means of the compared groups relative to
the variability of their samples. In our case, the two groups
under comparison are healthy and faulty spectrum estimates
under the full-load condition of the motor. The numerical value
that the p-value yields is a probability value, which gives
information on whether the two groups differ from each other
and at what degree. If the p-value is smaller than a predefined
significance level, then the null hypothesis H0 is rejected. This
implies that the difference between the means of the compared
groups is statistically significant. Otherwise H1 is rejected. In
other words, as the p-values become smaller, the discrimination
between the two groups becomes more significant. A signifi-
cance level value of 0.05, which is also interpreted as a 95%
confidence interval, is the most commonly used significance
level in statistics for classification problems [23].

To give a visual insight to the reader about the relation
between the p-value and the discrimination rate, the DTFT
amplitudes of the notch filtered healthy and faulty data sets with
Fs = 200 Hz for the lower and upper sidebands are depicted in
Figs. 11 and 12, respectively. In Figs. 11 and 12, the applied
second-order notch filter has an rp value of 0.91, and the DTFT
amplitudes are computed with a Hamming window that has



AYHAN et al.: LOWER SAMPLING RATE FOR BROKEN ROTOR BAR DETECTION WITH DTFT AND AR METHODS 1429

Fig. 12. DTFT amplitudes of the notch filtered healthy and faulty data sets at
the upper sideband.

a window size of 150. From Figs. 11 and 12, it can be seen
that as the p-values become smaller, the discrimination of the
two groups becomes more significant (a p-value of 5.11e−24
has no overlapping samples, whereas a p-value of 1.01e−08
has a few).

In the remaining parts of this section, we will show the
feature extraction performance of the three investigated meth-
ods. For DTFT and Welch’s periodogram, we will consider
three cases: 1) higher sampling rate with no filtering; 2) lower
sampling rate (after decimation) with no filtering; and 3) lower
sampling rate with notch filter. For the Yule AR method, we
will only consider the lower sampling rate with no filtering and
lower sampling rate with notch filter cases. This is because with
the Yule AR method, the sidebands of interest cannot be seen
without filtering. Thus, the case of higher sampling rate with
no filtering is of no use.

B. Feature Extraction Performance of DTFT

In this paper, we have considered several windowing tech-
niques when applying the DTFT and Welch’s periodogram
methods since the type of the windowing technique is a signif-
icant factor that affects the feature extraction performance. We
have applied eight different windows with the DTFT method:
1) rectangular; 2) triangular; 3) Hamming; 4) Gaussian;
5) Hanning; 6) Parzen; 7) Nuttall; and 8) Chebyschev (100 dB).
Figs. 13 and 14 depict four of these windows and their mag-
nitude responses, respectively. In Fig. 13, the x-axis represents
the width of the discrete-time window function in samples. In
this particular demonstration, the window functions consist of
64 samples. In Fig. 14, the magnitude responses of the four
windows are depicted. The x-axis in Fig. 14 corresponds to
the frequency and is scaled with respect to the sampling fre-
quency (digital frequency), which is common in digital signal
processing. Fig. 14 provides an illustration about how a signal,
whose frequency is actually located at zero, “leaks” into the
neighboring frequency bins.

Tables II and III depict the p-values for the DTFT method
with eight windows for the three cases at the lower and upper

Fig. 13. Four of the windows used in the DTFT method.

Fig. 14. Magnitude responses of the four windows.

sidebands, respectively. According to Tables II and III, for
the higher sampling rate with no filtering and lower sampling
rate with no filtering cases, the Hanning, Parzen, Nuttall, and
Chebyschev (100 dB) windows are observed to provide high
healthy–faulty discrimination performance (because of low
p-values), whereas the rectangular, triangular, Gaussian, and
Hamming windows are not satisfactory. This is caused by the
leakage of the main line frequency. The rectangular, triangular,
Hamming, and Gaussian windows barely suppress the main
line frequency and are not adequate for suppression of 50 dB
and above. On the other hand, Hanning, Parzen, Nuttall, and
Chebyschev (100 dB) provide adequate suppression. Regarding
the lower sampling rate with notch filter case results, all win-
dows are observed to provide satisfactory results by providing
low p-values. In addition, the p-values in Table III were lower
than the p-values in Table II, indicating that the upper sideband
(1 + 2s)fo has more discriminative information than the lower
sideband (1 − 2s)fo.
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TABLE II
p-VALUES FOR DTFT WITH DIFFERENT WINDOWS FOR THE LOWER SIDEBAND FOR THE THREE CASES

TABLE III
p-VALUES FOR DTFT WITH DIFFERENT WINDOWS FOR THE UPPER SIDEBAND FOR THE THREE CASES

TABLE IV
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NO FILTERING AND Fs = 10 kHz

TABLE V
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NO FILTERING AND Fs = 200 Hz

C. Feature Extraction Performance of Welch’s Periodogram

The rectangular, Hamming, Hanning, and Chebyschev win-
dows are applied in Welch’s periodogram. Tables IV–VI depict
the p-values for the Welch’s periodogram method at the lower

sideband for the three cases. In Tables IV–VI, it is seen that for
some combinations of overlapping samples and window sizes,
the Welch’s periodogram method has generated lower p-values
for the lower sideband when compared with DTFT, e.g., for the
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TABLE VI
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE LOWER SIDEBAND WITH NOTCH FILTERING AND Fs = 200 Hz

TABLE VII
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND

OVERLAPPING SAMPLES FOR THE UPPER SIDEBAND WITH NO FILTERING

TABLE VIII
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE UPPER SIDEBAND WITH NO FILTERING AND Fs = 200 Hz

10-kHz case, a Chebyschev (100 dB) window size of 5000 and
an overlap of 4000 data samples generated a p-value of 2.81e−9
(see Table IV); for the 200 Hz with notch filtering case, a
Hanning window size of 100 and an overlap of 50 data samples
generated a p-value of 2.39e−9 (see Table VI). In addition, it
is observed that for the lower sampling rate with notch filter
case, all applied windows provided satisfactory results, whereas
for the other two cases, the rectangular and Hamming windows
were not adequate enough to suppress the main line frequency
and thus decrease the spectral leakage.

Tables VII–IX depict the p-values for the Welch’s peri-
odogram method at the upper sideband for the three cases.
Different from the lower sideband results, there was no obser-
vation showing that Welch’s periodogram method improved the
healthy–faulty discrimination when compared with the DTFT
method in terms of yielding lower p-values. It is also seen that
for the lower sampling rate with notch filter case, all applied
windows worked well, providing lower p-values.

In Tables IV and VII, it is noticed that a Hanning window
with a window size of 5000 and less generates poor p-values
when compared with a Chebyschev (100 dB) window with the
same window size. The p-values in Tables IV and VII corre-
spond to the Welch’s periodogram method with respect to the
higher sampling rate with no filtering case. Fig. 15 illustrates
the Welch’s periodogram spectrum estimates for window sizes
of 5000 and 10 000 with the Hanning and Chebyschev (100 dB)
windows. From Fig. 15, it is seen that as the window size
decreases to 5000, some significant distortions occur around
the main lobe with the Hanning window, which results from
spectral leakage. The leakage problem has not been observed
with the Chebyschev (100 dB) window at this window size.

D. Feature Extraction Performance of Yule AR

Table X depicts the p-values with respect to the Yule AR
method at the lower and upper sidebands for the lower sampling
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TABLE IX
p-VALUES FOR WELCH’S PERIODOGRAM METHOD UNDER DIFFERENT WINDOW SIZES AND OVERLAPPING

SAMPLES FOR THE UPPER SIDEBAND WITH NOTCH FILTERING AND Fs = 200 Hz

Fig. 15. Hanning and Chebyschev windows applied to Welch’s periodogram method (Fs = 10 kHz). (a) Window size = 10 000. (b) Window size = 5000.

TABLE X
p-VALUES WITH RESPECT TO YULE AR FOR THE LOWER AND UPPER SIDEBANDS (NO FILTERING, Fs = 200 Hz)

TABLE XI
p-VALUES WITH RESPECT TO YULE AR FOR THE LOWER SIDEBAND (NOTCH FILTERING, Fs = 200 Hz)

rate with no filtering case. From Table X, it is seen that no use-
ful classification is possible without suppressing the dominant
main line frequency because all the yielded p-values had large
values, indicating a poor classification performance.

Table XI depicts the p-values with respect to the Yule AR
method at the lower sideband for the lower sampling rate
with notch filtering case. In Table XI, the p-values correspond
to different combinations of model orders and pole radius of

notch filters. It is observed that a p-value as low as 3.26e−9
is obtained with rp = 0.91 and model order = 30 (highlighted
in Table XI). Similarly, Table XII depicts the p-values with
respect to the Yule AR method at the upper sideband for the
lower sampling rate with notch filtering case. It is examined that
a p-value of 5.70e−22 has been obtained with rp = 0.85 and
model order = 90 (highlighted in Table XII). The “X” marks in
Tables XI and XII indicate that the Yule AR spectrum cannot
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TABLE XII
p-VALUES WITH RESPECT TO YULE AR FOR THE UPPER SIDEBAND (NOTCH FILTERING, Fs = 200 Hz)

be computed since the data length is smaller than the applied
model order for these cases. With respect to Tables XI and XII,
as the poles of the notch filter become closer to the unit circle,
the impulse response of the filter becomes longer, and the length
of the usable data becomes smaller. Thus, we obtain no results
or poor p-values for these cases.

Before applying filtering, Yule AR results are useless be-
cause of not providing any information in terms of healthy–
faulty discrimination, as can be seen from the large p-values
depicted in Table X. After filtering, the dominance of the main
line frequency is suppressed, and the sidebands are significantly
isolated.

The decimation results indicate that a lower initial sampling
rate can be used for broken rotor bar fault detection with DTFT
and Welch’s periodogram methods. It is the applied window
function that makes a deep impact on the feature extraction
performance with the nonparametric spectrum methods. For
example, applying a rectangular window without notch filtering
of the motor current data generates misleading results both
for the DTFT and Welch’s periodogram methods. There is no
need for filtering with the DTFT and Welch’s periodogram
methods if a window function that can significantly reduce
the spectral leakage effects is applied. To apply the Yule
AR method for broken rotor bar detection, the dominance of
the main line frequency must be suppressed. Otherwise, the
sidebands of interest cannot be extracted, even if high model
orders are used. The suppression of the main line frequency
and isolation of the sidebands can be performed by applying
a second-order notch filter. After notch filtering, Yule AR can
be successfully applied and provide accurate healthy–faulty
discrimination as the DTFT and Welch’s periodogram
methods.

In this paper, the digital notch filter design is performed
under the assumption that the induction motor runs under a
fixed main line frequency (60 Hz). For inverter-driven induc-
tion motors, where the fundamental frequency is not fixed
but varies according to the variable-frequency drive to yield
the desired motor torque or motor speed, the fixed-frequency
notch filter is not applicable since the fundamental frequency
is not anymore constant at 60 Hz. To cope with the vary-
ing fundamental frequency, the digital notch filter parameters
need to be adjusted according to the varying fundamental
frequency. The digital filter has an advantage to be used in
this case since it is easy to detect the fundamental frequency
and change the notch filter parameters accordingly with digital
filters.

VI. CONCLUSION

This paper has used experimental results to illustrate that
a digital notch filter design combined with a lower sampling
rate can be successfully applied with the DTFT and AR-based
spectrum methods for the broken bar detection problem. The
utilization of a lower sampling rate is significantly important
because a lower sampling rate means less computation and
low cost in implementation, which could lead to more effective
and less costly embedded system designs for motor condition
monitoring applications.
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