ASYMPTOTIC RISK OF MAXIMUM
LIXELTHOOD ESTIMATES

by

} V. M. Joshi
University of North Carolina, Chapel Hill
(on leave from Maharashtra Government,
Bombay) '

Institute of Statistics Mimeo Series No. 471

Mey 1966

This research was supported by the Mathematics Division
of the Air Force Office of Scientific Research Contract

No. AF-AFOSR-760-65.

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
Chapel Hill, N. C.



- R N SN A AR BN GE Gn B A BE A BE 0w BN s e

1, Introduction,

The main result proved in this paper is a hypothesis conjectured by Cher-
noff (1956), that with increase in sample size, the risk, 'suita.bly normalized,
of a meximm likelihood estimate (m.l.e.) converges to & limit equal to the var-
iance of the asymptotic distribution of the estimate, The hypothesis is shown
to hold generally subject to mild conditions. As the asymptotic variance is a
lower bound for the risk function for all estimates, the result establishes a
new optimum propety of the rﬁ.l.e. viz that it is asymptotically of minimum risk.

Chernoff's sbove menf.ioned hypothesis has also been briefly referred to in
a recent paper of Yu. V., Linnik and N. M. Mitro Fanova (1965).

The efficiency of estimates in general is condidered in the last section
in connection with superefficient estimates and a revised definition of asymptotic

-efficiency suggested.

2, Main Result.
We first reproduce the relevant formulae from the above mentioned paper
of Chernoff (1956). X is a random variable with a frequency function f(x,6),
with one unknown parameter 9 We consider a sequence of estimates of 6,
T, = Tn(Xl, Xps eees xn)
where

(1) rn-e=%ﬁz)

A sequence of loss functions is assumed, given by

2
(2) L (t,8) = cg (6) + c, (t-6)
where Con > o,
and of normalized loss functions,

t,0) - c_ (6
) L;l('(t,e)an[Ln( )c %on'®) ',

en

where we assume,



(1) I%(t,0) = n[(t-6)% + o(t-6)]
in which o is asgumed to hold uniformly in nas t — 6.
Then, c being an arbitrary constant > O,

E L¥T , )
n‘'n’ ’ o 21
—=1)}
’ n

lim inf -
n—e n E{min[(Tn-G)

so that,
E L;;(Tn, 6)
(5) lim  lim inf >1

2
°o® P2 npminl(r-e), < 1)

If Vn (Tn-e) has a limiting distribution with second moment o (6), then

2
(6) lim lim n E{min[('l‘n-e)a, —fl— 1} = 02(9)

S C e N o

so that 0'2(9) is a lower bound for the risk function
(7) Rn(Tn’ 8) = E[L;{(Tn, 8)}
On the other hand if,
1

(8) P{|T -6]> c} = o(-)
for each ¢, it is possible to show that

2
n E{(T_-6)")}

(9) lim inf

—_ > 1
n —e E{L*n(Tn, 6)}

so that the normalized risk is sandwiched between the real variance 'and the
asymptotic variance.

Chernoff remarks that in sccordance with the axioms of Neumann and Morgen-
stein the loss function requires to be bounded sbove and (8) indicates that he
assumes an upper bound C for the loss function in (2) and hence an upper bound
n C for the normalized loss function in (3), so that

(10) L;;(t, 8) <ncC

Chernoff's conjecture then is that if Tn is the maximum likelihood estimate,

the standard derivations of the asymptotic normal distribution of T » can, with- ' ‘

out unreasonalle modifications be used to show that
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(11) 1im E{L;:(Tn, 0)} = asymptotic variance of Ty
. n-e

We now give a proof of this conjecture. We assume tha the frequency func-

tion f(x,6) satisfies the following conditions, sufficient for asymptotic nor-

melity, as stated in Cramers Mathematical Statistics, (1946, §.33.2)., Writing
f for £(x, ). | , '
2
(1) For almost all (Iebesgue measure) x the derivates Q.%_O%_L , a._.}_al" %5

3 R .
and g lo exist for every 0 belonging to a non-degenerate inter-
o : :

val Aj

2
(ii) For every 6 in A, we have —g—% < Fl(x), I: L 1< Fp(x) and | _:.3_]££.£..| < H(x)

the functions'rl and F,, being (Lebesgue) integrable over ( - , «)
while
L4
f H(x) £(x,0) dx < M

where M is independent of 6,

[ ]
: 2
cas . s dlog £ .
(iii) For every 6 in A, the integral f (—ﬁL) f dx is finite and
-80

positive.
These conditions are sufficient for asymptotic normality of Tn" For
proving our result, we assume that f satisfies the following further condition.
2
FURTHER CONDITION; (iv) For every @ in A, the integrals f .(oé—@fai)a £ ax
w0
© 2
and I (H(x))“ax are finite, or in other words the random variables

2 .
@_}_O_E,éi and H(x) have finite variances.
d 8

We now use the same nots.tﬁ.qn as in Cramer (1946) except that we denote the

parameter by 6, instead of @ and the maximum likelihood estimate by Tn=Tn(X1,X2,. ..

instead of . ‘o denotes the unknown true value of the parameter 8, and 60

3

5 X

)



is assumed to be an interior point of A. We write f, in place of f(xi, #) and

uge the subscript o to indicate that @ is to be put equal to .o' Then putting

1 L B log f, 1 2 aalog fi
I s >o:31=TZ(——;z—a o
i=1 im] :

- n
(12) Bp = ‘zla—y H(x;)

i=1
and
2
E(B logf)s_E(blogf)aa_ka
3¢ ° 36
it is shown as in Cramer (1946), that
1 n (Blo f)
—  F +
Wn 3=l $ o

(13) wn(r, - 0) = ="

1 1 2
© BT e %R (T - )k

where 0 < Ial <1l.
The asymptotic normslity of (Tn - @) follows from (13).

In (13), we now put for brevity

w = »/n (Tn -9)
(1%) and
B
v = --;%- 1 "%‘T“Bz (r_ - oo)/k"'

so that the denominator in the r.h.s. of (13) is 1+v . Hence from (13), and

(14)

n 2
ui(l + "'n)2 = 21 [ Z (é-%_o%_f)o]

k' n {1 -
so that ) n 7
2 2 . 1l dlog £ ‘r
(15) u, +2uy, 'nf;?" [ Z (T-%_)o
. ol = |

Let F = Fn(xl, Xps cvos xn) denote the d.f. of the X,1=1,2 ..., n We

now integrate both sides of (15), with respect to the probability measure



determined by Fn’ 6n the subset D of the sample space Rn, given by

(16) D= {x: lTn - GOI‘S 5)

vhere x = (xl, b

2 "

oy xh) denotes a point in Rn and & is some positive con-

stant, whose value shall be determined later. We thus have from (15),

(16) [ uﬁ aF

o d log £,
+2[un VnanS [[ ——3_)

Now in the r.h.s. of (16), for each i, 1 = 1, 2, ..., n,

B—g5—), = ©
and by (12) 5 |
) log T
E( " i )5 _ k2

Hence since the variables X ) i=1,2, ..., nj are independently distributed,

{ ] J1E ]

and hence
(17) r.h.s. of

Now by the assumed c¢

(18)  E (H(x)),
Then using (14) and
(19) 1.h.s. of

where 8;s i=1,2,..

of (19).

i=]

(16) <1

ondition (iii) E{H(x)}o exists and is finite. Let

= u(8,)
(18)
2 2, By
(16) -L][undF -e[un(-;-z-+1)an
(r -9 (T -8
-fuﬁ a u(e,) “k2 °)an-fu§a[32-Meo)H‘;g-aF
D D

=sey g tRey eyt g,
.» 4 is written for brevity for the ith term in the r.h s.



We now derive upper bounds for |32] , |33| and Ighl , by applying Schwarz'

inequality and using the fact that for xeD, by (14) and (16)
lu, |< Wn 8.

Vle have by Schwarz' inequality

B
2 L 1 2
(20) gzsﬁunanﬁ(I;2+1) dF

Now in (20), using (12),

+1=J§§nv[(82;08;1)+k2-’

nk “—i

where by (12), for each i, i=1, 2, ..., n

o { o 1og f 2] Y

3 92

and by the assumed further condition (iv)

3 10g £,
E [( - =) + K2 jf = i(bo) say

(21)

t&‘ml th

Hence since the X, are distributed independently

P e TS, T e,
Rn i=]

2
=n o] (Oo)
so that,

(22) f{y[ alogf) +k2-’} <nr(9)

i=l
Hence in (20), by (21) and (22),
(e )

n k-

(23) [(1+1) aF, <

Again in the first integral in the r.hes. of (20), since by (16) and (1k)




uﬁ < k2 n 82

(24) fu 4F <K nsfidF =k2nb2gl
D
Combining (23) and (24) with (20), we have

2 2
2 5 9 (00)
g L

2 S
so that ( )
5 o,(0
(25) lggl s ——2— (gl)%

Next in & in (19),

le| <1,
by assumed condition (ii), Iu(96)| <M,
and by (16) |Tn -6]<s8

and hence

M5 g
(26) le, | < M8 Par = 1
312 2 N

) D

Lestly in g, since |a| <1 and ITn - o< &
(27) lg, I< 5 ue B, - u(0 )] aF
L 1= k§ n "2 () n

D

etting

2
g = f u |32 - u(eo)l dF

D

we again apply Schwarz' inequality, and have

(28) gs fu aF f [32‘“(‘0)]2an
D

In the second integral in the r.h.s. of (28), by (12)



n
(29) B, - u(e) = = }Z [H(x,) - u(e))]

i=1
where for each i, 1 =1, 2, ..., n
by (14) E[H(x,) - w(6,)] = o
and by assumed further condition (iv)
2 . 2
E[H(xi) - “(’o)] is finite = o (oo) say.

Hence since the x; are distriButed independently, in (29)-

2 % (6)
E[B, - ne)]" = ——=
so that in (28),
» 2
c. (0)
Go) [ - we)far, <2

D

Now in the first integeal in the r.h.s. of (28), since by (12) and (16)

ui <n k282
4 2 2 2.2
(31) funanSnksfunanznkb &,
- D
(28

so that combining (27)“ (30) and (31)

2

8 o, (0)
(32) lg, | < ka 2 (sl)%

Now in the r.h.s. of (19), obviously

(35.) gl+232+ 85+g)+2gl'2|82l = IgB' - lSuI v

and hence collecting together the results in (25), (26), and (32), we have from
(16), (17) and (19) using (33),

-, 28 @, (0) ‘26'(9)
(31) g1<1-M§>-g-%[ A —2- <1

and denoting the coefficient of g, in (34) by 2 k, where Kk > o we write (34)

as




B M8 %
(35) g, (1 - -;5) -2cgi <1

We now assume that « is sufficiently small wo that the coéfficient of gl in
the 1l.h.s. of (35) is positive; say,

k2

(36) 82 7w

Then solving the quadratic in g%'

M8 i _
g, (1 - ke) -2cgf = 1

(35) is seen to imply

ke - 2248y
/ 2K

8] < — TR

1- =2
i 2
i

v /70 + BB a 2
o <

=
o

so that substituting the value of x from (34), we have

2

’ 2e0(0) 3 0,(0)
g%<—-——]-'——{l+8[ 1]{'°+ 220+2}rf?.]}

M8

k2~

1

which using (36), can be reduced to the form

- (37) g, <1+A(8) 8

. where A(eo) is independent of B



Returning to the loss function in (4), we now write it in the form

(38)  1x(t, ) = n(t-0)°[1 + n(t, 0)]

where by assumption, given any arbitrary sumber € > 0, we can find a 50,

such that
(39) In(t,0)| < € for all t, such that [t - 0 | < 8
2
Ve now teke & = min[6_, 5 ], 80 that © satisfies both (36) and (39)
Now
- *
(k0) E{LI'){', (Tn, eo)] f Ln(Tn, eo) a4 F
R
n
= f L”nF(Tn, Oo)d F, + f L;:(Tn, lo)d F
D R_-D

n
D being the subset of R defined by (16)

Now the first integral in the r.h.s. of (40)
= [n(r -0 )%aF + [n(T -6)2n(r,e)drF
n o n n o n’ o n
D

which by (39)

<(1+¢€) fn(Tn - 60)26. F
D

Hence noting the definitions of g, and u_in (19) and (14)
(1 + C)gl
(k1) fLK(Tn’ Qa oS — 3
D k
Then consider the second integral in the r.h.s. of (40). Here we note that
since the distribution of Tn is asymptotically normal, by a well known
property of the Normal frequency function (8) holds for T . Hence for given

8, and ¢, by making n sufficiently large, we can make

(42) p[|r -6,] >8] = P[R -D] < =

10




where C is the upper bound in (10). Then from (10) and (42)

(43) ,ng (Tn,oo) dF <e
R, -D

Now collecting the results in (%0), (4f), and (43) and using (37), we have

) B (r,e)) = [, yaw,

R
n

<(1+A(e)s) ALt el

for all sufficiently large n.

Since ¢ and & can be made arbitrarily small, it followsvthat

, 1
(45) lim sup E{Lﬁ(Tn’ao)ls'___E_
n —e k
But —55 is the asymptotic variance of T , and hence from (5) and (6)
k
. : 1
(46) lim inf E{L;(Tn, eo)) > —;2-

n —e
(45) and (46) together imply

(B7)  E(x (T, 0)) = —11?

which was to be proved.
3, Asymptotic Efficiency.
Here we incidentally point out another optimum property of a m.l.e.,

which is implied by a relation given in Cheroff (1956), but which has a

special gignificance ih relation to superefficient estimates, which is stressed

here. According to Fisher's original concept of asymptetic efficiency (A.E.

for short); the A.E. of any estimate T is given by

11



1

1lim {n I(6) E[Tn-OF}
n ->e

(48) A. E. =

where I(@) is Fisher's measure of imformation; evaluated at o,

B9) a0 =z (3 G

It was assumed that this A. E. has an upper bound of 1. Tl"lis aéaumption has
however turned out to be false, and in fact the A. E. in (48) nas no upper bound,
so that given any estimate we can construct another uniformly superior to it and
there exists no most efficient estimate. The Figherian concept of A. E is
thus void.

A superefficient estimate is one whose A. E. is not less than 1 for any
O and exce#dis 1 for at least one 6. An example of such an estimate was first
presented by J. L Hodges, Jr. in 1951. The example relates to a Normae

population N(@,1), and is

- 1
Tn =X if lxnl < -nju—
(50)
P o=x if [X>
n ‘n n'” ng
whereq is some constant, such that 0 < x| <1 and X is the sample mean.

n

- 1 Sﬁ
X m e——— X,
n /. 1

=}

Further examples of superefficient estimates were later given by Le Cam
(1953) who constructed an example where the set of superefficiency, i.e. the
set of values of @ for which the A. E. excedds 1, is non-denumerable and
everywhere dense, It was &lso proved by him that the set of superefficiency
must necessarily be of Lebesgue measure zero.

12




It should be noted here, that though the A. E. of the superefficient
estimate T in (48) is for all @ higher than that of m.l.e. ;n’ T, is not
'superior' tb En’ even if we take the M.S.E. (mean squared error) as the sole
criterion. While T has & lower M,8.E. at ¢ = 0, for every n, however large,
there exist values of 6 (in fact an interval of values) in which En has a
lower M.S.E. The observation made sometimes, that according to a 'behaviourisf
viewﬁoint' the superefficient estimate Tn has to be prefeffed to Eﬁ is thus
not correct. As pointed out by Le Cam (1953) the same thing occurs in the
case of all other superefficient estimates. |

The author considers that this revedls a defect in the definition (48) as
the possession Bf a higher A. E. Boes not imply the possession of a higher _
degree of some desirsble property. The defect in this definition (48) arises
from the fact that ik takes into consideration the performance of theAestimate
Tn for each value of n at some single point @ = ‘o’ The true value of €
is however not known, though as n increases we can locate € more and more
closel& with a given degree confidence. This suppests that a revised definition
of E. E. should take into account the performance of Tn’ not at a single point
Go but in some meighbourhood of it, With these considerations a modified
definition of A. E. is proposed below.

Let , be a sequence of positiuevnumbers such that

c =0
n

(51)

'J—nc -
n

Then the suggested revised definition is

(52) A.E. = lim inf L 5
n - sup [n I(6) Es(Tn-e)
@ -¢c <@ +c
o n o n
The following result is proved in Chernoff(1956, Theorem 1)

13



2 ‘
(53) lim 1lim inf sup {nI(6) Eo(min[fr -0)2,_1‘_ Ni>1 .
' k‘?“ n—e k << X n _ n
INE Wwn

From the proof of the theorem, it is seen that the following conditions are
assumed, |
(a) that the frequency function 2(x,6) and the estimate T, satisfy the Yregularity'
conditions sufficient for the Cramer-Rao inequality, suchfaﬁ those gi&en by
Wolfourtz
(b) I(6) is bounded away from zero in some neighbourhood of8 = 0.
For (52) we now replace condition (b) by the condition
(e) I(8) bounded away from zero in some neighborhood of every point o, in Fhe
range of values assumed by 8. ‘

It is then easily seen to be a conséquence of (53), that the A. E defined
by (52), has an upper bound of 1, It is further seen that this upper bound
is attained for a m.l.e, while for the superefficient estimate Tn the A. E.
by the revised definifion is nil.
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