
ABSTRACT 

AGHDASHI, SEYEDBEHZAD. Traffic Flow Optimization in a Freeway with Stochastic 

Segments Capacity. (Under the direction of committee Dr. Yahya Fathi and Dr. Nagui M. 

Rouphail). 

  

In this dissertation, a linear mathematical model is developed to model the traffic flow across 

a freeway facility. This mathematical model is capable of addressing the optimization of any 

strategy that has some effects on the facility demand or capacity such as ramp metering. In 

this research, the mathematical model is configured and used to optimize ramp metering 

operations across a freeway facility, which is one of the Active Traffic Demand Management 

(ATDM) strategies that is utilized to optimize demand across a freeway facility to avoid 

congestion. However, with appropriate changes, the proposed model can optimize other 

facility demand or capacity strategies such as hard shoulder running. The model is a 

planning-level method for analyzing and determining the time varying metering rates 

appropriate to be used and implemented on freeway facilities. The stochastic nature of the 

freeway segments capacity has been incorporated in the proposed mathematical model, 

which leads to reliability evaluations. The linkage between time and space enables the 

proposed mathematical model to account for vehicle travel time on the facility that leads to 

adjust the start and end time of the metering operation. Feasibility studies on the proposed 

mathematical model lead to evaluation of applicability of ramp metering in the freeway 

facilities and estimation of freeway reliability. West bound Highway I-580 in California is 

used to implement the optimal ramp metering rates as a case study. The results of the 

proposed algorithm are compared to the results of ALINEA, a widely used ramp metering 

algorithm in the literature. The comparison of the two approaches indicates that the proposed 

method can perform at least as well as ALINEA. Thus, not only the proposed mathematical 

model gives optimal ramp metering rates compared to ALINEA, but it also can provide the 

option of adjusting the level of performance reliability of the freeway system. 
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1. INTRODUCTION  

 

1.1. Problem Statement and Motivation 

Ramp metering is a strategy for regulating entry traffic flow to freeway facilities. A 

traffic light is installed at the very end of the merging ramp. The traffic light typically 

consists of two lights, red and green. A breakdown can be prevented by metering the entry 

traffic from upstream on-ramps. Ramp metering is one of the main tools for Ramp 

Management. The Federal Highway Administration (FHWA) defines Ramp Management as 

ñapplication of control devices, such as traffic signals, signing, and gates to regulate the 

number of vehicles entering or leaving the freeway, in order to achieve operational 

objectivesò [1]. Ramp metering performs best in cases where demand is not significantly 

higher than the freeway capacity. Specifically, it applies to situations where the ratio of 

mainline demand to capacity is slightly higher than 1. In severe congestions however, ramp 

metering is not effective in prevention of freeway breakdowns.  

Figure 1 shows an on ramp in the United Kingdom that utilizes ramp metering.  
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Figure 1: Ramp Metering In M6, Birmingham, UK [2]  

Ramp metering is proven to be one of the efficient and viable ramp control techniques for 

managing freeway operations [3]. In the United States, ramp metering facilities have been in 

place since 1960s in Chicago, Detroit, and Los Angeles [3].  By the 1990s more than twenty 

metropolitan areas were utilizing ramp metering [3]. Nowadays ramp metering falls under 

the umbrella of Advanced Traffic Management Systems (ATMS), and Active Traffic 

Demand Management (ATDM). The use of ramp metering allows freeway mainline delays to 

migrate to the on-ramps thus allowing traffic flow in the freeway system to operate more 

optimally.  

The primary goal of this dissertation is to determine optimal ramp metering rates. Ramp 

metering is one of the strategies used by ATDM to manage traffic on freeway facilities. 
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Different ramp metering policies and rates can impact traffic on the freeway mainline thus 

resulting in variations in the average travel time. 

The challenge of this research is to present an optimal ramp metering policy to optimize a 

desired criterion. Various objective criteria have been investigated along with different 

dynamics of traffic on freeway facilities.  By imposing some simplifications a linear 

mathematical model has been developed and utilized to identify the optimal policy. 

This dissertation defines and employs necessary inputs in the framework of the Highway 

Capacity Manual (HCM) 2010 [4]. Which will enable analysts to use solutions and apply 

methods readily in practice. Moreover this leads to the results being implemented in HCM 

transportation macro simulation packages such as FREEVAL
1
 [5]. This research also 

proposes methods for accounting and addressing more complex traffic dynamics such as 

incorporating time lag between freeway segments along with and the stochastic nature of 

segment capacity. 

Although the model provided in this dissertation is specifically applicable to determining 

optimal ramp metering policies under fixed capacity condition, it also incorporates the 

concept of stochastic segment capacity evaluation of the reliability of freeway facilities.  

While the main use of the proposed mathematical model is to estimate the optimal ramp 

metering policies on the freeway facilities, there are other ATDM strategies such as Hard 

Shoulder Running, or Dynamic Tolling that could be modeled and optimized using similar 

                                                 
1
 Freeway Evaluation 
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mathematical models. The mathematical model, provided here, is designed in a flexible 

framework such that, given minor revisions, they can be formulated and analyzed.  

In the context of ramp metering, it is necessary to evaluate and investigate the appropriate 

objective functions for the defined problems. Minimizing system delay, including delays on 

the mainline and on-ramps, is an appropriate objective function. Minimizing system delay is 

equivalent to minimizing total travel time in the system.  

Total travel time is another viable candidate to be considered as an objective function.  In 

ramp-metered freeway facilities, a mathematical approach can be utilized to model waiting 

times behind the traffic signal on the on-ramps. This model can then perform simulations 

with the objective of minimizing system delay comprising of mainline and on-ramp delays. 

The delays could be weighted by the number of vehicles traveling on different paths on the 

freeway facilities.  

Moreover, traffic breakdown has a significant impact on the mainline delay which this 

objective function addresses. Due to complex dynamics of the traffic on a freeway facility 

(such as oversaturated flow conditions), this objective function might not be possible to 

model. Thus, beside the mentioned objective functions that are ideal for the purpose of 

optimizing ramp metering, other objective functions could be employed for generating more 

simplified models.  

A related objective function is the maximization of the total metered on ramp flows 

followed by a capacity constraint to ensure that no breakdown occurs on the mainline. 
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Predefined coefficients could be employed for ramp metering rates to specify a weighted 

average of ramp flows [6] [7]. Then, high priority ramps will have higher weights in the 

mathematical model. Another objective function could be the minimization of total ramp 

queue lengths in the study period. 

Minimization of the breakdown probability across the facility could also be considered as 

objective function. This objective function will result in a Non-Linear model. It could be 

used simultaneously along with one of the discussed objective functions resulting in multi 

criteria mathematical optimization model. An easy way to incorporate two objective 

functions could be adding one of them in the constraint set. By changing the right hand side 

(RHS) of the constraint, the second objective function could be optimized. 
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1.2. Related Works 

The earliest versions of ramp metering algorithms utilize historic traffic data to update 

their policies based on the demand variation. These are called ñPre-Timed Ramp Metering 

Algorithmsò [8]. Other algorithms use sensor data to evaluate traffic conditions in specified 

segments of freeway facility named ñTraffic Responsive Ramp Metering Algorithmsò [8]. 

Some algorithms use their previous output rate to compute the next iteration rate, and are 

called óClosed Loop Algorithmsô. Otherwise they are called óOpen Loop Algorithmsô. 

Moreover, some ramp metering algorithms which are focused on a single ramp called 

ñLocal Ramp Metering Algorithmsò. They do not consider the traffic conditions on the 

other parts of the freeway facility. On the other hand, another set of algorithms consider a 

multi-section of a freeway facility, and are ñArea-Wide Ramp Metering Algorithmsò. 

Area-Wide ramp metering algorithms are divided into three main categories which are 

óCooperative or Incrementalô, óBottleneck or Competitiveô, and óIntegralô [9]. The 

Cooperative or Incremental algorithms are similar to local algorithms. However, they get 

assistance from metering of upstream on-ramps to avoid congestion or breakdown. In other 

words the metered on-ramps are cooperating with each other to manage and control the flow 

in the desired sections of a freeway which makes them more efficient [10]. On the other hand 

Bottleneck or Competitive algorithms focus on local and bottlenecks metering rates. They try 

to maintain the flow below the capacity of the bottleneck. Eventually the more restrictive 

metering rate of the two is chosen for each ramp [10]. This algorithm does not account for 
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on-ramp queue up behind the metering signal. The third class of coordinated ramp metering 

algorithms is integral algorithms which optimizes a well-defined objective function. These 

algorithms are more theoretical and complex to calibrate and operate [11]. 

Demand-Capacity Algorithm:  

Demand-Capacity is an open loop local traffic responsive ramp metering algorithm [12]. 

It measures the occupancy in the downstream section of an on-ramp and if it is higher than a 

critical occupancy, then it tries to set the ramp metering rate to a predefined minimum 

metering rate value. Otherwise, this algorithm sets the metering rate to be the difference 

between the downstream capacity and upstream occupancy. A modified version of this 

algorithm was developed [12] to avoid using the capacity calculations, which is called 

ñPercent-Occupancy Algorithmò. 

Simplicity of this algorithm limits its usage to be only on one on-ramp, and it cannot 

benefit from the multi on-ramp metering advantage in cases where breakdown is not possible 

to be avoided by one on-ramp. This algorithm does not account for on-ramp queue up behind 

the metering signal. 

These algorithms use occupancy as its measure for ramp metering rate control, which is 

tight to use of sensors on the freeway facility. Thus, it cannot be used in planning level 

analysis. 
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Asservissement Lin®aire dôEntr®e Autorouti¯re (ALINEA ) 

The most widely used closed-loop local ramp metering algorithm is known as ALINEA 

[13] introduced by Papageorgiou in 1991. A linear feedback law is used to calculate the ramp 

metering rate. The following equation demonstrates the law used by this algorithm to 

compute the metering rates. 

ὶὯ ὶὯ ρ ὑ ὕ ὕ Ὧ ρ  

Where ὶὯ is the metering rate in iteration k. ὕ is the target occupancy, and ὕ  is the 

measured occupancy at a certain point downstream of an on-ramp on the freeway facility. ὑ  

is the regulatory parameter. Since the metering rate is a function of previous metering rate, 

ALINEA is a closed-loop algorithm 

This algorithm does not account for the congestion in the upstream of the metered on-

ramps, Also the determination of the optimal detector location is difficult. Based on ALINEA 

equation, when ὕ  increases, then ὑ ὕ ὕ Ὧ ρ  decreases, which results in 

reduction of metering rate  ὶὯ. This algorithm does not account for on-ramp queue up 

behind the metering signal. Moreover, since it uses occupancy, there is no chance to use this 

algorithm in planning level analysis. 
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Modified ALINEA  (MALINEA)  

MALINEA is an enhanced version of ALINEA algorithm. Basically it addresses the 

disadvantages of the ALINEA algorithm [14]. MALINEA measures the upstream occupancy, 

and considers the time-lag between upstream and downstream occupancy of the on-ramp.  

Two other versions of ALINEA algorithms are FL-ALINEA, and UP-ALINEA.  FL-

ALINEA measures the flow in the downstream section rather than the occupancy. UP-

ALINEA measures the upstream occupancy, and estimates the downstream occupancy. 

These algorithms are local, they do not account for entire length of freeway, and they 

cannot take advantage of the multi on-ramp metering capacity to avoid breakdown. This 

algorithm does not account for on-ramp queue up behind the metering signal. 

Although this algorithm is widely used for metering on-ramps, it does not have a flexible 

objective to achieve. In cases where ramp metering should be adjusted for certain purposes, 

such as prioritizing on-ramps, this algorithm doesnôt provide much flexibility rather than 

changing the regulatory factor which adjusts the speed of metering to its desired metering 

rates. 

METALINE:  

METALINE is an integral coordinated algorithm version of ALINEA [15] [16]. The 

equation which METALINE uses is a vectored format of the one that ALINEA uses. Thus, it 

can account for a set of on-ramps in certain segments of the freeway. The Equation which 

METALINE uses is: 
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ὶὯ  ὶὯ  ρ  ὑ έὯ  έὯ  ρ   ὑ ὕὯ  ὕǴ Ὧ   

Where, r = [r1 . . . rm]
T
 is the vector of ómô controllable on-ramp volumes. o = [o1 . . . on]

T
 

is the vector of ónô measured occupancies along the motorway. O = [O1 . . . Om]
T
 is the vector 

of ómô measured occupancies, typically measured immediately downstream of the controlled 

ramps. Ô = [Ô1 . . . Ôm] is the vector of m corresponding set values. Note that O is a subset of 

o. ὑ ᶰὙ  and ὑ ᶰὙ  are called gain matrices. 

Based on a research in Paris [15] [13] following conclusion is made: ñCoordinated on-

ramp control (METALINE) is superior to local feedback control (ALINEA) in case of 

unexpected incidents. Both feedback control strategies lead to roughly the same results under 

normal conditionsò 

This algorithm does not account for time lag between on-ramps, and the bottleneck. Also, 

it does not account for rampôs storage size, where vehicles will queue up behind the on-ramp 

metering signal. This algorithm uses occupancy, and is applicable in operational mode rather 

than a planning level analysis tool. 

Zone Algorithm:  

This algorithm was first used in 1970 along I-35 in Minneapolis Minnesota. It controls 

the traffic over defined zones of freeway which are between 3 to 6 miles. The upstream of the 

first zone is a free flow speed not subject to incident. The downstream of the zone is usually 

the bottleneck where the demand to capacity ratio is higher than 1. The zone contains several 

metered on-ramps.  
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The basic concept of the algorithm is to balance the volume of traffic entering and 

leaving each zone. The equation used in this algorithm is expressed as: 

ὃ Ὗ ὓ Ὂ ὢ ὄ Ὓ 

óAô represents the upstream mainline, and óUô is the sum of unmetered on-ramps volume. 

óMô is the sum of metered on-ramps volume, and óFô is the freeway to freeway on-ramp entry 

volume. óXô represents the exit ramp volumes, and óBô is downstream bottleneck capacity. 

óSô is the space available between the zones. Overall use of this algorithm showed 

improvement in the freeway traffic operations [17]. This algorithm does not account for time 

lag inside the zones, and the ramps capacity limit. 

Linear Programming Algorithm s: 

First linear programming algorithm used for ramp metering is by Wattleworth in 1965 

[18]. The goal was to minimize the travel time by changing the on-ramps flow. He uses an 

OD matrix and assigned traffic flow for different points. In this study travel time is 

minimized by maximizing off-ramp flow. His mathematical model has following form: 

ὓὥὼ ὶ 

ίȢὸȢ     ύ ὶ ὦ Ὢέὶ ὥὰὰ ὦέὸὸὰὩὲὩὧὯί Ὦ 

π ὶ Ὠ   Ὢέὶ ὥὰὰ έὲ ὶὥάὴί Ὥ 



 

12 

Where, i and j are set of on-ramps, and bottlenecks respectively. ύ  is the proportion of 

flow of bottleneck j through on-ramp i. ὦ is the capacity of bottleneck j. ὶ is the decision 

variable, and shows the flow of vehicles in the i-th on-ramp. 

There are some improvements to the Wattleworthôs model by changing the objective 

function to minimize the squared difference of metered rates, and demand. This yields to a 

non-linear mathematical model [19].  

Linear Programming algorithm was also used in Hanshin expressway in Japan, and 

evaluations showed improvement in the performance of the expressway [6] [7]. This 

algorithm is based on a linear programming (LP) formulation, and it requires a very 

comprehensive data collection system with detectors closely spaced on the mainline and 

ramps. The LP formulation used by this algorithm is expressed as: 

ὓὥὼ ὤ ὃὟ

ᶰ

 

ίȢὸȢ                              ὗ Ὗ ὗ Ὗ ὅ          Ὢέὶ ὥὰὰ ίὩὫάὩὲὸί Ὤ 

π Ὗ ὔ Ὀ 

ὔ Ὀ Ὗ ὒ 

Ὗ Ὗ Ὗ  
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Where Ὗ is the i-th ramp flow and ὃ is its priority. ὒ is maximum allowable queue 

lengths for each ramp. ὔ is ramp detection determines queue length. Ὀ is pre-define ramp 

demand. ὅ is the real time capacity. ὗ  is tuneable influence factor. This factor is a weight 

that scales the amount of traffic from ramp (i) remaining on the mainline at a downstream 

segment (h). The roadway is divided into segments (h) between ramps (i). This linear 

programming model is used in FREQ traffic analysis tool [20]. 

Detection of speed for each section is used to calculate the real-time capacity reduction 

due to congestion, and thus to find the real-time capacity (Ch) for each roadway section. This 

LP equation is solved simultaneously for all metered locations within an area of influence. 

None of above LP algorithms account for time lag between the metered on-ramps and the 

bottleneck. But the advantage of this algorithm is its objective function comparing to 

ALINEA and other ramp metering algorithms.  

Summary 

There are several algorithms developed for metering on-ramps. Each of them has its own 

pros and cons. All of them assume the freeway segments capacities are deterministic values. 

In reality, the stochasticity of the capacity may decrease the performance of freeway facilities 

metered by above algorithms. Some of them like ñDemand-Capacityò are simple to be 

implemented, but they lack of following a predefined objective function. The effort of this 

research is to incorporate all efficiencies and benefits of a metering algorithm. 

 



 

14 

1.3. Contributions 

The main contribution of this dissertation is the development of a mathematical model to 

optimize ramp metering rates for different reliability performance levels. Previous algorithms 

and models do not account for the probability of breakdown in the facility. The optimal ramp 

metering rates are associated with certain value of probability of breakdown in the facility. 

For a certain condition, the proposed mathematical model gives different optimal ramp 

metering rates for different probability of breakdown in the facility. The model gets desired 

reliability level as an input and generates the optimal ramp metering rates. 

The second contribution of this dissertation is the flexibility and generality of the 

proposed linear mathematical model that is capable to model any other strategy used for 

controlling demand or capacity across freeways. This generalized and flexible mathematical 

model could be used to optimize most demand and capacity management strategies such as 

óHard Shoulder Runningô or óManaged Lanesô to optimize freeways performance.  

The third contribution is the use of stochastic nature of freeway segments capacity. Since 

in reality the capacity is stochastic, it is expected to have better ramp metering outcome by 

modeling this stochasticity in the algorithms and models. Moreover, it enables the capability 

to evaluate the reliability of the freeway facility or the effect of ramp metering on the 

reliability. Most planning level algorithms such as previous linear programming algorithms 

assume the freeway capacity is a deterministic value in which they assume breakdown even 

if the demand is only one unit higher than the capacity. 
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The deterministic capacity assumption avoids the mathematical algorithms to be close to 

the reality. In reality slight over-capacity occurs without resulting in breakdown. This 

characteristic is incorporated in the proposed mathematical model using Weibull Distribution 

of the capacity based on recent literature. 

The fourth contribution is the link between time and space. This is based on the fact that 

vehicles are moving on the freeway facility and the flow and demand variation in one point 

has impact on other downstream freeway points with certain time lag or delay. Using this 

relationship, appropriate strategies should start earlier or later to become more effective in 

downstream segments. In the proposed mathematical model in this research this relationship 

enables the ramps to meter their entry more realistic, and be effective in the appropriate time 

at the bottlenecks. 

1.4. Dissertation Outline 

In chapter 2, some preliminary concepts of traffic dynamics on freeway facilities along 

with definitions are provided. Chapter 3 covers the proposed mathematical model with 

detailed discussion on assumptions, and the forming of the objective function and constraints. 

Chapter 4 provides an example of implementing the proposed mathematical model to a real 

freeway facility along with description of results and outcomes of the optimal solutions. In 

chapter 5, simulations of the results are discussed. Chapter 6 reviews the conclusion and 

future works related to this dissertation. 
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2. PRELIMINARIES  

In this chapter, terms and definitions along with four traffic dynamics and concepts are 

discussed. These are taken from HCM 2010 and most recent literature. This dissertation tries 

to be consistent with these dynamics and concepts. Although some of concepts are not easy 

(or possible) to model, but appropriate approximations, and simplifications are considered. 

1.5. Definitions 

¶ Highway Capacity Manual (HCM):   

The purpose of the HCM is to provide a set of methodologies, and associated 

application procedures, for evaluating the multimodal performance of highway and 

street facilities in terms of operational measures and one or more quality of service 

indicators. The objectives of the HCM are to: 

1. Define performance measures and describe survey methods for key traffic 

characteristics 

2. Provide methodologies for estimating and predicting performance measures 

3. Explain methodologies at a level of detail that readers can understand the factors 

that have an effect on multimodal operation. 

The Highway Capacity Manualôs last edition is published in 2010. HCM analysis and 

computations on freeway facilities are done in one direction. 
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¶ Freeway Segments:  

A segment is the length of roadway between two points. Traffic volumes and physical 

characteristics generally remain the same over the length of the segments, although 

small variations may occur. For freeway facilities three types of segments are 

defined:  

1. Basic Freeway Segments: All segments that are not merge, diverge, or weaving 

segments. 

2. Freeway Merge and Diverge Segments: Segments where two or more traffic 

streams combine to form a single traffic stream (merge), or where a single traffic 

stream divides to form two or more separate traffic streams (diverge).  

3. Freeway Weaving Segments: Segments in which two or more traffic streams 

traveling in the same general direction cross paths along a significant length of 

freeway without the aid of traffic control devices. Weaving segments are formed 

when a diverge segment closely follows a merge segment, or when a oneȤlane offȤ

ramp closely follows a oneȤlane onȤramp and the two are connected by a 

continuous auxiliary lane.  

Figure 2 presents different segment defined by HCM 2010. 
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Figure 2: Standard Segments based on Highway Capacity Manual (2010) 

¶ Undersaturated Traffic Flow:  

Traffic flow during the analysis period is specified as ñundersaturatedò when the 

following conditions are satisfied: (1) the arrival flow rate is lower than the capacity 

of a segment, (2) no residual queue remains from a prior breakdown of the facility, 

and (3) traffic flow is unaffected by downstream conditions.  

¶ Oversaturated Traffic Flow:  

Traffic flow during an analysis period is characterized as ñoversaturatedò when the 

following conditions are satisfied: (1) the arrival flow rate exceeds the capacity of a 

point or segment, or (2) a queue created from a prior breakdown of a facility has not 

yet dissipated. 
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¶ Volume:  

The total number of vehicles that pass over a given point or section of a lane or 

roadway during a given time interval; any time interval can be used, but volumes are 

typically expressed in terms of annual, daily, hourly, or subȤhourly periods.  

¶ Flow rate:  

The equivalent hourly rate at which vehicles pass over a given point or section of a 

lane or roadway during a given time interval of less than 1 hour (usually 15 minutes).  

¶ Capacity:  

Vehicle capacity is the maximum number of vehicles that can pass a given point 

during a specified period under prevailing roadway, traffic, and control conditions. 

This assumes that there is no influence from downstream traffic operation, such as 

queues backing into the analysis point.  

¶ 15 min Time Periods: 

All  freeway analysis based on the HCM is done in 15 min time period intervals. In 

this dissertation, this resolution is considered in order to be compatible with HCM 

and simulation software packages. Also, data available for the case study in this 

dissertation is in 15 min time periods. 

¶ Macro Simulation: 

Macro simulation models evaluate traffic flow as a whole without consideration of 

the characteristics and features of individual vehicles in the traffic stream. 
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¶ FREEVAL:  

The computational engine, FREEVAL (FREeway EVALuation) 2010 is a 

computerized, worksheetȤbased environment designed to faithfully implement the 

operational analysis computations for undersaturated and oversaturated directional 

freeway facilities. FREEVALȤ2010 is executed in Microsoft Excel, with most 

computations embedded in Visual Basic modules. The environment allows the user to 

analyze a freeway facility of up to 70 analysis segments (to be defined) and for up to 

twentyȤfour 15Ȥmin time intervals (6 hours). 

In addition to characterizing oversaturated conditions, the most significant difference 

from the segmentȤbased chapters is that FREEVAL carries out all calculations using 

15 min flow rates 

¶ Free Flow Speed 

Free Flow Speed is the average speed of traffic measured under conditions of low 

volume, when vehicles can move freely at their desired speed. 

¶ Density 

Traffic density is defined as the number of vehicles occupying a length of roadway 

[21]. 

¶ Occupancy 

Occupancy is defined as the percent of time a point or short section of roadway is 

occupied by vehicles [21]. 
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1.6. Non-Linear Behavior of Speed as a Function of Flow Rate 

The speed of vehicles in each HCM segment is a function of its flow rate. Figure 3 

presents the speed of vehicles as a function of flow rate in Basic segments. Other segment 

types have their own speed-flow curves, which are not just a function of flow rate of the main 

line. These segments have more complex functions for mainline speed, in other words they 

are not just a function of flow rate. For instance, in Merge segments, the amount of entry 

traffic has effect on the speed of vehicles in freewayôs mainline due to vehicleôs frictional 

effect. As a simplification in this dissertation we will not use those complex functions, and 

we will assume the speed-flow curves for other segments are similar to Basic segments. 

 

 
Figure 3: Speed as a function of flow rate [4]  
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The speed-flow curve in Figure 3 shows the undersaturated situation in the freeways. 

However if demand exceeds capacity this relationship will be estimated based on other 

appropriate methodologies. Oversaturated situation on freeway facilities is difficult to model 

mathematically. When there is breakdown, there will be some queue formed behind the 

bottleneck. So mathematical model should consider queues on the freeway as well. 

Sensor data are available in most of freeways in US. These data give the speed and 

volume of the vehicles passing at certain points in the freeways. The optimal policy for ramp 

metering can be updated at each period based on the realized sensor data.  

1.7. Capacity Drop on the Freeway Segments 

Freeway facilities are similar to production systems. One direction of a freeway facility is 

similar to a linear assembly line in manufacturing systems. Each segment could be equal to 

each working or production station. On the other hand, there are some differences between 

these two. On the freeway segments, there is some reduction in capacity (called Capacity 

Drop) when breakdown occurs [25] [23]. This dynamic is shown in Figure 4. 

In the regular production systems, when a machine reaches its capacity the output rate of 

the machine will be equal to its capacity. This situation remains until the demand level of the 

machine become lower than the capacity. The interesting fact about freeways is that they 

behave differently. When demand exceeds capacity, there will be some reduction in the 

capacity of the freeway segments. This reduction normally is between %3 to %10 [27] [25] 

[29] and some have measured up to 24% [30] of segments capacity. Once the demand 
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become lower than the capacity, capacity will not switch back immediately to its original 

value. Queues formed from congestion needs to be cleared in order to go back to 

undersaturated situation. 

 

 
Figure 4: Capacity Drop due to congestion 

The existence of the capacity drop is one difference between freeway facilities, and 

production systems. From an Operations Research and Industrial Engineering point of view 

this problem become interesting since it follows the mentioned capacity dynamics. 

1.8. Over-Saturated Modeling 

Basically there are two states of operation on freeway facilities, undersaturated, and 

oversaturated. Undersaturated is the state where all demands in the freewayôs different 

segments are lower than their individual capacity. Then, there will not be any breakdown in 

the freeway. Dynamics of the freeway in this environment are easy to model mathematically. 

If the demand becomes larger than the capacity in a segment, the freeway facility will operate 
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in an oversaturated state. Traffic equations are not linear, and basically the dynamic is 

difficult to model. Figure 5 presents flow as a function of vehicleôs density on the freeway. 

This relationship between flow and density is the base of calculation in FREEVAL macro-

simulation software. In reality this relationship could be different. The right side of Figure 5 

presents the oversaturated, and left side is undersaturated state. Based on the density of the 

vehicles in the freeway, we can pick a point in the presented curve. The slope of the line 

connecting origin to this point shows the speed of the vehicles on the freeways segment.  

 

 
Figure 5: Flow rate as a function of density 

Another challenge regarding oversaturated state is that we need to keep track of the 

vehicleôs queues formed upstream of the facility bottleneck, where demand is higher than 

capacity. Once the demand become lower than the capacity, freeway facility will not return 

to undersaturated state immediately. All queues should be clear up as well. So there is some 

time lag after decrease in demand that freeway comes back to undersaturated situation. 
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1.9. Stochastic Nature of Capacity 

All  HCM calculations and analysis are based on the assumption that the capacity of 

different segments on the freeway facilities is a deterministic value. Recent studies showed 

the capacities of the freeway segments follow a probabilistic nature [23] [30] [31]. Moreover 

the nominal capacity of freeway segments usually follows a Weibull distribution [23]. The 

parameters of Weibull distribution are determined by geometry of the segments on the 

freeway such as number of lanes, etc. 

A study in Germany showed when a flow passing a freeway section is equal to the capacity 

of that segment; there is a 3% chance of breakdown at that point on the freeway in a 5-minute 

time interval. In other words, on average the nominal capacity corresponds to the 3
rd
 

percentile of the capacity distribution function in a 5-minute intervals [31]. CDF of the 

Weibull Distribution is:          

Ὂὼ ρ Ὡ  

 

In spite of the fact that this research has been done in Germany, and nominal capacity of 

the freeway could be different than HCM, but in the studies [31] it is assumed that it is equal 

to the nominal capacity of the freeway in HCM. 

To estimate the parameters of the Weibull capacity distribution, the following procedures 

should be followed. According to Figure 6, scale parameter ‍ should be estimated based on 
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nominal capacity of the freeway facility. More specifically, using the nominal capacity that 

we have, we can estimate the scale parameter ‍ according to regressed curve.   

 
Figure 6: Scale parameter ‍ of the capacity distribution as a function of nominal capacity [31]  

After finding ‍ from Figure 6, ‌ should be determined in a way that the nominal capacity of 

the freeway represents 3% probability of traffic breakdown in a 5-minute interval. In chapter 

3 more detailed discussion is provided for estimating the parameters of Weibull distribution. 

The mean and variance of the Weibull distribution is calculated based on following 

questions: 
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3. THE PROPOSED MATHEMATICAL MODEL  

Figure 7 shows an example of a freeway facility with its HCM segmentation. This facility 

consists of two on-ramps, two off-ramps and nine HCM segments. Later in this dissertation, 

the artificial segmentation is proposed to increase the accuracy, and precision of 

mathematical model. Clearly, if total flow in any segment exceeds its capacity, breakdown 

and congestion occur.  

 

 
Figure 7: Schematic of a Typical Freeway Facility 

As shown later in this dissertation, the original problem due to number of complexities 

such as non-Linear equations and stochasticity is difficult to model and solve. The 

mathematical model considers some simplifications and assumptions. Having these 

simplifications the proposed mathematical model is developed. It is a linear programming 

mathematical model, which optimizes the ramp metering rates across a freeway facility. This 

mathematical model, assumes an upper bound for probability of breakdown in each artificial 

segment and time step. The mathematical model is based on the concept of cell transmission 

models. [32] 
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Essentially the proposed mathematical model characterizes the traffic flow on a freeway 

facility based on HCM 2010. There are several assumptions, and simplifications that are 

applied to problem of interest, so that it could be modeled in the context of Linear 

Programming (LP). The target of this mathematical model is to come up with the optimal 

ramp metering rates for freeway facilities that are not highly congested. In later parts of this 

dissertation maximum limits of congestion where this model maintains its feasibility are 

discussed. 

The model assumes there is no breakdown in the freeway system, so the model becomes 

feasible and gives optimal solution for ramp metering rates. The link to breakdown in this 

model is made in a way that it tries to avoid breakdown with certain probability. Basically, 

breakdown occurs when demand to capacity ratio exceeds 1. Figure 8 shows the scope of the 

mathematical model. As shown in Figure 8, the model can sustain its feasibility where the 

demand to capacity ratio is not a large number. In this situation, with the aid of ramp 

metering, demand can be decreased on the bottleneck segments. Clearly, ramp metering is 

not able to decrease very high demand levels to desired capacity. In other words, if this 

model becomes infeasible it means that there is no opportunity to avoid breakdown through 

the application of ramp metering. 
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Figure 8: Domain and Scope of Feasibility of the Proposed Mathematical Model 

The assumption of inserting an equal lower bound on the probability of breakdown in 

each artificial segment and time step results in a linear programming (LP) model. This 

assumption may increase the difference between the breakdown probability and its lower 

bound, but its transformation into a LP model makes it possible to solve. 

1.10. Simplifications, Assumptions and Justifications: 

I. The mathematical model considers only one direction of a freeway facility. Since 

most of the HCM based analysis on the freeway facilities are done in one direction of 

the freeways, in this research focus is to model traffic flow in one direction of the 

freeway facility. 

II.  Capacities of the segments are considered to be stochastic with Weibull distribution. 

Parameters of the distribution are function of geometric properties in the segments 

such as number of lanes [26]. 

III.  Having the assumption of stochastic capacity this model uses percentile capacities 

according to Weibull distribution to come up with an upper bound on probability of 
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breakdown in the freeway segments. In spite of the fact that the capacity percentile 

will be employed in the mathematical model, it fits and lies in the Linear 

Programming (LP) context. 

IV.  All on-ramp and off-ramp variables and parameters have value of zero if they are 

defined in the other segment types. For instance entry and exit demand values for 

Basic segments are assumed to be zero. 

V. Segments should be divided into ñartificial segmentsò. The size of artificial segments 

could vary based on accuracy and resolution of the solution. The artificial 

segmentation imposes smaller analysis time units which is called ñtime stepsò for 

operational evaluation of the freeway. Later in this section these two concepts are 

defined and the method for generating them is discussed. 

VI.  It is assumed that the probability of breakdown is independent of time periods (or 

time steps), and segments (or artificial segments) [23]. 

VII.  For the purpose of defining distances between two segments, the distance between 

middle points of each segment is measured. Moreover, by dividing the freeway into 

equal sized artificial segments, the distance between each artificial segments, is 

defined by artificial segment length times number of artificial segments between the 

two points. 

VIII.  Stochastic capacities are defined for each HCM segment. Since the Weibull 

distribution is sensitive to segmentôs lengths; the probability of breakdown could vary 

by changing the segmentôs lengths. Appropriate equations are used to estimate the 
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probability of breakdown for artificial segments based on the probability of 

breakdown for HCM segments. 

IX.  It is assumed that capacities and upper bounds on breakdown probability of each 

segment could vary in different time steps. This enables the model to analyze freeway 

facilitiesô performance according to demand variation and prioritize the peak periods 

in the analysis. 

X. It is assumed that the number of vehicles and the flow rates are real numbers. In fact 

they are integers, but since the values of these variables are large enough, it is 

reasonable and justifiable for this assumption. Giving this assumption, the proposed 

mathematical model simplifies from Integer Programming (IP) into Linear 

Programming (LP) model. 

1.11. Parameters of the Mathematical Model 

The parameters of the mathematical model are presented in Table 1. These parameters are 

used in the remaining discussion of the proposed mathematical model and its application in 

this dissertation. 
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Table 1: Parameters of the Proposed Mathematical Model 

 

1.12. Linking Time and Space 

All vehicle flows across the freeway should be balanced. Based on HCM 2010 most of 

the freeway analysis calculations are done independently in 15 minutes time periods. 

Therefore demands in different 15 minute time periods should theoretically be independent 

of each other. This fact imposes a limitation on the length of facility for analysis. All vehicles 

entering the facility should exit the facility within 15 minute. If not then, the correlation 

Parameter Description 

 Total number of 15 min time periods in the study period 

 Total number of HCM segments on the freeway facility 

Ὕ Total Number of time steps in the study period 

ὑ Total Number of artificial segments  

ὸ Duration of the time step 

— Number of time steps in a 15 min time period 

ᶫ Capacity of artificial segment k in time step t (Veh/Hour) 

ὒ Upper bound for number of vehicles in the queue in on-ramp k (Veh) 

ὶὒὄ Lower bound for ramp metering rate in artificial segment k (Veh/Hour) 

ὶὟὄ Upper bound for ramp metering rate in artificial segment k (Veh/Hour) 

‰ 
Upper bound on the probability of breakdown occurrence in the facility in the entire study 

period 

‰ Upper bound on the probability of breakdown occurrence in time step t 

‫  
Upper bound on the probability of breakdown occurrence in artificial segment k in time step 

t 

Ὧᶻ Set of on ramp artificial segments 

Ὥ The on-ramp entrance demand rate in the artificial segment k in the time step t (Veh/Hour) 

Ὡ The off-ramp exiting demand rate in the artificial segment k in the time step t (Veh/Hour) 

Ὗ  Main line entering demand rate in the time step t (Veh/Hour) 

Ὗ  Flow rate of the artificial segment k in the time step t (Veh/Hour) 

ὶ Ramp metering rate (entering flow) in the on-ramp k in the time step t (Veh/Hour) 

ὔ  Number of vehicles in the on-ramp queue in the artificial segment k in the time step t (Veh)  

 Length of study period (Hours) כ

‗ Priority coefficient for prioritizing ramps 

‐ The maximum difference between segment and artificial segments incremental lengths 
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between demand levels between two consecutive 15 minute time period should be 

established. 

On the other hand, in this dissertation another correlation between flows of vehicles is 

investigated. Assume that on the freeway facility there is a breakdown at a certain location 

and time. There will be a time difference between the upstream on-ramps entry flow and 

volume in the specified segment. For example if there is a breakdown in segment 14 at 5:00 

pm, then ramp metering rate should meter entering traffic in segment 3 earlier than 5:00 pm 

in order to effect breakdown occurrence. 

At the on-ramp located far upstream of breakdown point, there will be larger time lag for 

operation of on-ramp considering the breakdown point. Thus there should be a connection, 

and relation between the time and the distance. This relation is a function of speed of 

vehicles in the freeway. Assuming the distance between a metered on-ramp and a bottleneck 

is 5 miles. If the average speed of vehicles between these two points is 60 mph, then the time 

lag will be 5 minutes. So, the metering in the on-ramp will affect the bottleneck 5 minutes 

later. 
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Figure 9 ï Flow of Traffic In Time and Space Domain (Artificial Segments and Time Steps) 

Figure 9 shows time and space domain for a section of freeway facility. The freeway 

facility is divided into seven artificial segments with equal lengths. The size of time step is 

defined in a way that vehicles can go from one artificial segment to another within each time 

step. The circles in the Figure 9 demonstrate a traffic stream which is in artificial segment 1 

at time step 1. Clearly they move from one artificial segment to another within one time step. 

Consider, there will be an expectation of a breakdown in artificial segment 6 at time step 6, 

and there is an on-ramp in artificial segment 1. Then, to avoid breakdown in artificial 

segment 6 at time step 6, the ramp metering system on artificial segment 1 should start the 

operation in time step 1. 
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Based on the discussion, apparently the linking between time and space is valid by 

considering a constant speed for vehicles moving in the freeway system. As it is discussed in 

more detail in next section, the length of artificial segments are usually smaller comparing to 

HCM segmentation. This results in smaller time steps. The data exists for freeway facilities 

are usually in larger resolution, which requires appropriate conversion. 

Figure 10, shows the data conversion process flow required for agencies that use HCM 

2010 format for geometric and demand information. As discussed, according to the 15 

minute analysis, based on HCM 2010 the length of the facility is usually shorter than 15 

miles. This is due to the fact that all vehicles that are entering the facility, should exit within 

15 minutes time interval. This 15 minute time interval is larger than the time unit needed for 

mathematical modeling to connect time and space together. Since usually the distance 

between on-ramps and bottlenecks are shorter than 15 miles, in the HCM 2010, there is no 

need to model the correlation between any two points in the facility. 
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Figure 10 : Data Conversion Process Flow for Using Proposed Mathematical Model 

Therefore smaller units of time and length should be defined for freeway analysis. The 

ñTime Stepò is the time unit in the proposed mathematical model. The HCM 2010 segments 

should be subdivided into smaller ones called ñArtificial Segmentsò. Existence of ñArtificial 

Segmentò justifies with similar clue used for justifying limitation of facility length for each 

15 minutes time periods of HCM analysis. 

The proposed mathematical model is based on the time steps resolution, and the artificial 

segments. This will impose certain procedures for employing the artificial segments, and the 

time steps. Prior to develop the model, artificial segments for the case study are defined. 

Eventually there might be some conversion needed for optimal solutions to present it back in 

the HCM framework. 
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1.13. Defining Artificial Segments and Time Steps 

Based on the cell transmission theory, freeway segments could be divided into smaller 

sections. Due to the need for defining capacity for each segment, all geometric characteristics 

should remain the same across each segment. More specifically, as discussed in the 

stochastic capacity section of this dissertation, the distribution of capacity is a function of 

geometric characteristic of freeway. In order to define the capacity for each segment, the 

geometric characteristics such as the number of lanes should not change within each 

segment. 

As discussed, in order to model the time lag between ramp metering operation, and 

occurrence of breakdown downstream of the ramp, smaller segmentation and time steps are 

required. HCM uses 15 minute time periods to analyze the freeway, this resolution can 

account for the delay between two points which are located more than 10 miles in the 

freeways (Considering 60 to 75 mph speed). In order to account for the delay between 

nearest on-ramp to the bottleneck smaller time steps are needed. For example if the upstream 

on-ramp is located within a half a mile from the bottleneck, then the time step required for 

analysis should be less than 30 seconds (assuming 60mph traveling speed). 

The 30 seconds travelling speed, imposes half mile segmentation for the freeway. 

Considering the fact that geometric characteristics should remain equal across each segment, 

and the HCM segmentation for a real freeway, it could be challenging to come up with 

feasible exact matching between artificial and HCM segmentation. 
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Figure 11 ï Errors Caused by Artificial Segmentation 

Figure 11 shows the HCM and artificial segmentation of a freeway section. The dashed 

lines show the artificial segmentation. Although by picking very small length for artificial 

segmentation the error decreases the dimensions of the problem increases dramatically, this 

results in larger required computational time. 

Following procedure is proposed for finding a desirable length for artificial segments. 

Letôs assume ‐ is the highest error between HCM and artificial segmentation which is 

affordable to take. Then, for any resolution for artificial segmentation, all errors should be 

less than ‐. The objective is to minimize total number of artificial segments to improve 

computation time. The mathematical scheme of the artificial segmentation has following 

form: 
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ὓὭὲὭάὭᾀὩ Ὕέὸὥὰ ὔόάὦὩὶ έὪ ὃὶὸὭὪὭὧὭὥὰ ὛὩὫάὩὲὸί 

ίȢὸȢ       ὃὰὰ Ὡὶὶέὶί ὥὶὩ ὰὩίί ὸὬὥὲ ‐ 

To reduce complexity, following procedure is proposed to find the optimal solution for 

the artificial segment lengths. Following are the steps of the algorithm: 

Step 0: Start 

Step 1: Slice the freeway by equal sized artificial segments with the length of smallest 

sized segment in the facility. 

Step 2: Check if the errors are less than ‐ value. If they are larger proceed to step 3, 

otherwise proceed to step 4. 

Step 3: Increase number of artificial segments by one unit, and then go to step 2. 

Step 4: End 
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Figure 12 ï Process Flow for Generating Artificial Segments 

Figure 12 shows the flow chart of proposed procedure for generating artificial segments. 

This procedure is used for creating the artificial segments in this dissertation. More optimized 

methods could be employed to address this slicing. 
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1.14. Relaxation of Non-Linearity between Speed and Flow  

Relaxation of Non-Linear relationship between the traveling speed of vehicles and the 

flow rate of vehicles in the segments is the main simplification. According to Figure 3, the 

relationship is closer to be linear in smaller Free Flow Speeds (FFS). Usually ramp metering 

strategy is used in metropolitan and congested areas. This means the vehicleôs speeds are 

usually low. Moreover, the Speed Limits in metropolitan areas are lower comparing to rural 

freeways. These two facts justify the low FFS expectation in freeways that are operating 

under ramp metering. As presented in Figure 3, consideration of low FFSs, justifies 

approximating the speed of vehicles in the segments by their FFSs. 

Therefore, all speeds are assumed to be approximately 55 mph in the proposed 

mathematical model in this dissertation. Reason for this speed approximation is to link the 

space (length) and the time together. Thus if  two points have 1 mile distance, the traveling 

time between these two points will be 1.1 minute. Consider ὺ is the speed of the vehicles in 

the freeway, Ὠ is the distance between two points and ὸ is the travel time between these two 

points. Then following equations demonstrates the relationships between the traveling time 

and the distance. 

Ὠ ὺὸ 

ρ άὭὰὩυυάὴὬ ὸ 

ὸ
ρ
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The result implies, whatever happens in the upstream point, the effect exposes 1.1 minute 

later in downstream point. In the mathematical model, ramp metering should be scheduled in 

a way to account for this delay. 

1.15. Modeling Stochasticity of the Segmentôs Capacity: 

The way stochastic capacity has been defined and measured [23] imposes a limitation in 

its implementation. For measuring the capacity of the freeways, previous studies in Germany 

have been done in only one critical segments of freeway [23], which is called freeway 

section. 

 
Figure 13: Two cases of freeway sections under investigation for measuring the reliability [23]  

There is not any sign of segmentsô definition in the stochastic capacity studies [23] [25]. 

A reasonable approach to employ stochastic capacity is to define it in every HCM segment. 

Another approach could be to define it in the critical segment. Another challenge is that the 

literature [23] [23] has not provide any information on the length of sections. Eventually as 

an assumption in this research the concept of stochastic capacity are implemented on the 

HCM segments. 
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Stochastic nature of capacity is incorporated in the proposed model as a chance constraint 

set. More specifically, with the aid of capacity probability percentiles, capacity chance 

constraints become deterministic and linear. In another word although capacity of each 

segment is stochastic in all time steps, the proposed mathematical model uses upper bound 

on the probability of breakdowns which translates into capacity percentile probabilities. Use 

of upper bound is due to long run evaluation of the freeway. On the other hand if simulation 

is considered to be used, then randomly generated capacities of each segment should be 

determined for analysis, and long run simulation of the freeway system yields similar 

performance measures. 

Based on the studies on freeways in Germany, the capacity of each freeway segment 

follows Weibull distribution with parameters ‌ and ‍. The Weibull distribution parameters 

are function of the geometry of the freewayôs segments [23]. So: 

ᶫ ͯ ὡὩὭὦόὰὰ‌ȟ‍ 

CDF of the Weibull Distribution is:          

Ὂὼ ρ Ὡ  

So, the appropriate constraint for limiting probability of breakdown is: 

ὖὶέὦὟ ᶫ ‫  

ρ ὊὟ ‫  
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Ὡ ‫  

Ὗ

‍
ÌÎ ‫  

Ὗ

‍
ÌÎ ‫  

Ὗ ‍ ÌÎ ‫  

The last term is a deterministic linear function that is embedded in the proposed 

mathematical model. Note that, although ‫  or ʟ  depend on t, but it does not mean that they 

could necessarily vary by time. Since, it is assumed ʟ  is stochastic with Weibull 

distribution, it does not imply that they have different values in different time steps. The 

rational beyond using t is to generalize the model, and make it capable of modeling time 

based capacity changes such as sun set effect on drives eyes. 
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1.16. The Proposed Mathematical Model 

3.7.1. Objective Function: 

Several objective functions could be incorporated to optimize ramp metering rates, and 

use of them could vary the optimal ramp metering solutions. Applicable objective functions 

could be: 

1. Minimizing В ὔ‗ȟ  : 

This objective function minimizes total number of vehicles that are queued in the 

metered on-ramp. Since blocking the on-ramp avoids entry traffic, this number is 

associated with the on-ramp delay. Considering, proposed mathematical model does 

not model traffic congestion in the freeway facility, and fairly stabilized mainline 

traffic speed, the only contributor to the travel time delay is on-ramp delay. This 

linear objective function makes the model simple, and very quick to solve. This 

functionality enables the proposed model to be incorporated in the online system wide 

ramp metering optimization using traffic sensors in the freeway facilities easily. 

Incorporating priority coefficients ‗  in the objective function, some important 

ramps could get more priority in the freeway system. The proposed mathematical 

model could shift the delay behind the ramp into other on-ramps if desired by analyst. 

2. Maximizing total traffic flow on the On-Ramps В ὶȟ  

This objective is easy to model. In previous studies, each ὶ has a coefficient which 

will lead to a weighted average objective function [6] [6]. Because some on-ramp 
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flows are more important than others. Similar discussions about the priority of the on-

ramps are valid in this objective function term. Considering second constraint in the 

proposed mathematical model, maximization of total traffic flow on the metered on-

ramps is equal to minimization of the queued vehicles behind metered on-ramps. By 

use of priority coefficients ‗  in the objective function, some ramp flows can get 

more priority. 

3. Maximizing the reliability of the freeway facility from breakdown point of view: 

There are two possible ways to incorporate this objective function. If specified term is 

used as only objective, then appropriate constraints should be used to put limits on the 

on-ramps metering rates. The other way is to use this objective function along with 

one of the two earlier objective functions. This way more than one objective function 

is employed, which will create a Multi Objective Mathematical Model. For reducing 

complexity of the problem one of objective functions could be incorporated in the 

constraint sets, and leave the other one as the objective function.  

Since this objective function is non-linear, assuming all ‫  equal to each other results 

in a linear model. In the second proposed mathematical model this simplification is 

considered to evaluate the reliability of the freeway facility. 

In this research first objective function is incorporated in the first mathematical model. 

Main reason for choosing first objective function comparing to the second one is the 

translation and envision of the optimal value of objective function. The optimal objective 
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function value represents total number of vehicles that are queued up in the metered on-

ramps.  

Second proposed mathematical model uses third objective function which makes it a non-

linear programming problem. As discussed, as an assumption by putting a constraint set that 

make all values of ‫  equal to each other, the problem become linear. This simplification 

results in lower ólower boundô estimated by the objective function. 

There are several other objective functions used in the literature. Yuan and Kreer 

minimized the sum of the squared difference between the metering rate and the demand, 

claiming that this would lead to a better distribution of the queuing times. 

3.7.2. Constraints 

Six constraints are introduced in order to model the freeway facilities dynamics. These 

constraints are provided in a flexible manner in which could be used for other demand 

management systems such as different ATDM strategies. Along with the generality of the 

mathematical terms they are customized to reflect the ramp metering dynamics on the 

freeway systems. 

1. Vehicle Flow Balancing Constraint: The flow balancing constraint makes sure all 

entering traffic will leave the segment in next time step. As presented in the 

mathematical model, definition of artificial segments, and time steps have lead into 

one time unit gap in two consecutive artificial segments. This is one of core 

constraints that need to be in any mathematical model in which models traffic 
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dynamic in the facility. Note that this constraint is based on the assumption of having 

constant speed across the facility, otherwise the non-linearity of the speed-flow 

relationship causes the first term in the constraint to have more complex form. In 

order to reflect the speed-flow relationship more accurate, peace-wise linear modeling 

of the curves are recommended. This way, still this equation will be valid along with 

another set of constraint which reflects the characteristics of the piece-wise linearity. 

This constraint is shown below: 

 

Ὗ ὶ Ὡ Ὗ                                         Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 

It should be noted that this equation is only valid at a certain point in each artificial 

segment. For simplicity we assume that the point in which this equation is valid is the 

middle point of each artificial segment. 

 

2. On-Ramp Flow Constraint: The ramp metering rates could not exceed demand at 

the ramp in addition to the queue left from previous time period. Since most of the 

computations in HCM are based on 15 minute time intervals, we assume on-ramp 

entry flow variable, and the demand are hourly basis. This requires to be matched 

with number of vehicles in the queue in each 15 minute analysis period. The term τ— 

makes the unit of the last term in the second constraint to be in hourly basis. 

ὶ Ὥ τ—ὔ                                               Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 
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3. Queue Balancing Constraint: The number of vehicles in the queue between 

different time steps should be balanced. The difference between the demand rate at 

the metered on-ramp and allowed metered entry should be added to the previous 

queue length in the succeeding constraint. 

τ—ὔ Ὥ ὶ τ—ὔ                               Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

 

4. Queue Length Upper bound Constraint: The queue lengths cannot exceed 

maximum allowable space in each time step and each segment. This is due to 

geometric limitation that some on-ramp on the freeway facility could have. Typical 

upper bound is 30 vehicles. 

 ὔ ὒ                                                                 Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

5. Ramp Metering Rates Bounds Constraints: The ramp metering rate should vary 

between its lower and upper bounds. The reason for having the lower bound is that 

the green time of the light installed at the metered on-ramp cannot be less than the 

necessary time for passing one vehicle. The metering rate typically is between 180 to 

240 vpvhpl and up to 900 vpvhpl. 

ὶὒὄ ὶ ὶὟὄ                                           Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

6. Stochastic Capacity Constraint: The probability of congestion in a specific time 

period and segment should not be more than a specific value. Basically this is the 
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capacity constraint used in the literature. The only change is the incorporation of the 

stochastic capacity as opposed to deterministic. The discussion of the terms used in 

this constraint has been discussed earlier in this dissertation.  

Ὗ ‍ ÌÎ ‫                                      Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 

7. Scope of the Variables Constraints: All Variables in this model are real positive 

numbers. Fundamentally these variables are positive integer numbers. Since the 

values of these constraints are usually high, in this dissertation it is assumed that they 

are positive real numbers. 

Ὗ  , ὶ, ὔ π                                                    Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 
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3.7.3. Mathematical Model Formulation  

Based on the discussion provided in last two sections, the mathematical model with its 

objective function and constraints are presented below. 

-ÉÎ : ‗ὔ

ᶰ ᶻ

 

St. 

ρ         Ὗ ὶ Ὡ Ὗ                                         Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 

ς         ὶ Ὥ τ—ὔ                                               Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧɴ Ὧᶻ 

σ         τ—ὔ Ὥ ὶ τ—ὔ                               Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

τ         ὔ ὒ                                                                 Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

υ          ὶὒὄ ὶ ὶὟὄ                                           Ὢέὶ ὥὰὰ ὸ ὥὲὨ ὯᶰὯᶻ 

φ          Ὗ ‍ ÌÎ ‫                                      Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 

χ          Ὗ  , ὶ, ὔ π                                                    Ὢέὶ ὥὰὰ ὸ ὥὲὨ Ὧ 

 

Although proposed first mathematical model has three variables, Ò, 5 , and .  only Ò 

is the decision variable. 
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3.7.4. Feasibility of the Model 

The proposed mathematical model could become infeasible due to capacity constraint. 

One of binding constraints in the mathematical model is the capacity constraint (constraint 6) 

If this situation occurs, then it means that in some artificial segments and time steps it is 

impossible to hold volume smaller than capacity associated with probability of congestion. 

In other word, it means that by using ramp metering we cannot hold the reliability of the 

facility at the level of ρ ‰ . An interesting investigation would be to evaluate maximum 

level of reliability that this problem could hold while itôs feasible. This equally means what is 

the maximum reliability of the facility that could be achieved.  
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4. CASE STUDY AND NUMERICAL RESULTS:  

This chapter discusses the implementation of the proposed mathematical model for a 

selected case study. Data preparation and conversions along with solving the mathematical 

model is presented in detail. Data conversion consists of generation of artificial segments, 

and time steps for I-580 and aggregation of ramp metering rates in 15 minutes analysis 

periods. The results of the mathematical model consisted of optimal ramp metering rates and 

sensitivity analysis are driven. At the end of this chapter the output of mathematical model is 

provided and argued. Implementing the results of mathematical model in the real situation 

using simulation software is provided in the next chapter. 

All mainline and rampsô demand should be identified to implement the proposed 

mathematical model. In the real world all required data for this model is challenging to 

collect. Basically, most of the data available from freeway facilities are from sensors, or 

probe based data gatherings tools. These data require processing since the sensors collect 

only volumes instead of demands. Access to Californiaôs I-580 interstate freewayôs demand 

and geometric data, enables the evaluation of the proposed mathematical model. Moreover, 

the use of proposed mathematical model is viable to an online sensor system that is able to 

collect and estimate the demand and speed data. 

4.1. I -580 Case Study 

The freeway facility used as an example in this dissertation is interstate WB 580 in 

California from mile post 50 to 45. This 6 miles section of I-580 covers three interchanges 
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depicted in Figure 14. The main reason for selecting this facility is the availability of data. 

Required data includes geometric, traffic demand and its variation information. I-580 data is 

available from SHRP2-L08 project [28]. Figure 14 shows I-580 in California, the scope of 

the facility is shown by the rectangle. 

As mentioned, required data consist of all demands in different segments and analysis 

periods along with freewayôs geometric information. Figure 15 presents the geometric 

information and HCM segmentation of the I-580 case study.  

 
Figure 14:  I-580 Interstate in California [34]  



 

55 

 
Figure 15: Geometry and HCM segmentation of I-580 West Bound in California 

The demand data available for the I-580 case study has 15 minute resolution. Table 2 lists 

the demand values in vehicle per hour for the study period (5am to 10am). In this case study, 

it is assumed that the demand level remains unchanged within each analysis period. Thus, 

demands in all time steps which fall into one analysis period are same. 
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Table 2 - Demand Data for I-580 Case Study (Veh/Hour) 

Analysis 

Period 

Mainline 

Entry  

HCM 

Segment 

2  

(OFR) 

HCM 

Segment 

4  

(ONR) 

HCM 

Segment 

6  

(OFR) 

HCM 

Segment 

8  

(ONR) 

HCM 

Segment 

9  

(ONR) 

HCM 

Segment 

11  

(OFR) 

HCM 

Segment 

13  

(ONR) 

HCM 

Segment 

15  

(ONR) 

t=1 7994 89 135 358 139 151 468 55 92 

t=2 8037 90 135 360 139 152 470 55 93 

t=3 8080 90 136 362 140 153 473 56 93 

t=4 8123 91 137 364 141 154 476 56 94 

t=5 8166 111 159 415 196 218 524 69 125 

t=6 8209 130 182 467 250 281 573 82 155 

t=7 8252 150 204 518 305 345 621 95 186 

t=8 8295 169 226 569 359 408 669 108 216 

t=9 8329 158 233 626 427 483 693 142 259 

t=10 8363 147 239 683 495 558 718 175 302 

t=11 8397 136 246 740 563 633 742 209 345 

t=12 8181 125 252 797 631 708 766 242 388 

t=13 8087 120 260 811 611 716 765 241 380 

t=14 7994 116 268 825 592 724 764 240 371 

t=15 7900 111 276 839 572 731 762 239 363 

t=16 7706 106 284 853 552 739 761 238 354 

t=17 7597 103 276 829 536 718 739 231 344 

t=18 7388 100 268 804 520 697 717 224 334 

t=19 7329 97 260 780 505 676 696 218 324 

t=20 6969 94 251 755 489 654 674 211 313 

 

Time frame of the study or the study period consists of 20 analysis periods, which is 

equal to five hours (כ υ Ὄέόὶί). This time frame which is from 5AM to 10AM, covers 

AM peak periodôs congestion between Tassajara Road and Hacienda Drive.  

4.2. Artificial Segmentation and Time Steps 

As discussed earlier, longer segments should be sliced into smaller ones in order to have 

equal travel times between segments. So, the first step is to define artificial segments. Figure 
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15 shows the HCM segmentation of the case study. Some segments are short and some are 

long. Considering cell transmission model, we can use any desired length for artificial 

segment. But, all geometric characteristics of the roadway should be equal within each 

segment such as number of lanes, and capacity. 

The proposed procedure in section 3.4 of this dissertation is used to generate artificial 

segments for I-580 case study. We assume ‐ φπ Ὢὸ is the level of threshold for the 

difference of HCM and artificial segmentsô length sustainable for this case study. ‐ φπ Ὢὸ 

is considered reasonable threshold since most of GPS devices used in segmentôs lengths 

estimation has 30 ft accuracy that results in 60 ft variation ( 30ft). Moreover, Google Maps 

[30] used for most of this dissertationôs segmentôs lengths verification has same accuracy.  

Figure 16 shows the behavior of maximum and mean value of ‐ based on different 

number of artificial segments defined for I-580 case study. The minimum number of artificial 

segments that is needed for sustaining to the ‐ φπ Ὢὸ is 169 artificial segments. More 

studying on the number of artificial segments and the value of ‐ proposed another close 

threshold for ‐ which is 67ft. If ‐ φχὪὸ is selected as desired threshold, then number of 

artificial segments will reduce significantly to 107 artificial segments. 

Only 7 feet increasing the ‐ value will reduce number of artificial segments by 57%. 

Reducing number of artificial segments will result in longer length for artificial segments, 

and longer time steps. Modeling fewer time steps will result in decreasing the size of the 

problem significantly as shown in the section 3.7 of this dissertation. 
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Assuming ‐ =67 ft and following the proposed procedure, 107 artificial segments should 

be defined for this facility. If the entire facility is divided by 107 equal sized artificial 

segments, the maximum error between HCM segments and Artificial segments will be less 

than 67 ft. With 107 Artificial segments, the ‐ between all HCM segments and artificial 

segments is 11.9 ft. Having 107 artificial segments gives the minimum number of cuts where 

the difference between the HCM and artificial segmentation falls below ‐ threshold.  

 
Figure 16 ï Mean and Max ‐ Value for Different Number of Artificial Segments 
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The discussed behavior of the ‐ threshold and number of artificial segments are 

completely dependent to the geometry of the freeway facility. Thus, for any freeway system 

this segmentation should be developed separately. 

Since the total number of artificial segments ὑ is 107, and the length of the facility is 

32,539 ft, then length of each artificial segment is 304.1 ft.  Table 3 shows the artificial 

segmentation and their type for I-580 case study considering 107 artificial segments.  

 

Table 3: Artificial Segments Proposed for I-580 Case Study 

Artificial Segment 

Number 

Artificial Segment Type 

1-45 Basic 

46 Off-Ramp 

46-54 Basic 

55 On-Ramp 

56-66 Basic 

67 Off-Ramp 

68-73 Basic 

74 On-Ramp 

75-77 Basic 

78 On-Ramp 

79-84 Basic 

85 Off-Ramp 

86-90 Basic 

91 On-Ramp 

92-95 Basic 

96 On-Ramp 

97-107 Basic 
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This case study has five on-ramps, the set of on-ramps is: 

Ὧᶻ υυȟχτȟχψȟωρȟωφ 

HCM 2010 FREEVAL is a macro-simulation software used in this dissertation for 

measuring the performance of freeways. By coding this facility in the HCM 2010 FREEVAL 

macro simulation software, the average speed of the facility is estimated to be 40 mph. 

However, the average speed has the effect of congestion, and intend of this research is to 

avoid congestion, thus the average speed that should be used in the analysis is higher than 40 

mph. (Appendix B) In order to measure the average speed of freeway facility in 

undersaturated condition, the demand level is decreased to turn the state of freeway operation 

into undersaturated. The minimum reduction in demand level across the facility is measured 

to be 1 %. More discussion on the demand variability and level of congestion is provided in 

section 4.4 of this dissertation. The computation searched for minimum reduction in demand 

value where all Demand to Capacity ratios for each HCM segment and Analysis Period 

become less than 1. So, all I-580 demand values are reduced by 1% and freeway is modeled 

in HCM 2010 FREEVAL. The average speed measured for freeway facility is 58.4 mph. The 

average speed of 58.4 mph is an estimation of the average speed across the facility. For the 

rest of calculations the average speed of 60 mph is chosen to be incorporated in this model. 

The reason for rounding up the 58.4 mph value computed by simulator is to make sure that 

the on-ramps metering rates are operating earlier. More specifically, when slightly higher 

speed is considered in the linking time and space, then vehicles will travel two points in the 

facility in a slightly shorter time that we are estimating by simulator softwares (FREEVAL). 

This enables us to assure that when a ramp metering starts its operation, the effect (which are 
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the vehicles) will effective a slightly sooner than the time that breakdown is expected. The 

number of 15 minutes time periods for I-580 case study is: 

ςπ 

Assuming an average speed of 58.4 mph for this facility, and length of each artificial 

segment to be 304.1 ft, the size of time step will be: 

ὸ
σπτȢρ

φπυςψπ
σφππσȢτυφ ίὩὧέὲὨί 

More precisely, for example if two points are located with 100 artificial segments from 

each other, then the travel time is estimated to be σȢτυρππστυ seconds. Considering — 

is number of time steps in the analysis period. Then: 

—
ρυφπ

σȢτυφ
ςφπ 

Total number of time steps in study period is calculated as: 

Ὕ ςπςφπυςππ 

 

4.3. The Upper bound on the Probability of Breakdown: 

To characterize the capacity constraint (Constraint number 6 in the proposed model) ‌  

and ‍ values should be determined. Previous studies [26] have shown that the nominal 
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capacity of the freeways represents 3% probability of traffic breakdown in a 5-minute time 

interval. These studies are done in Germany, which uses peak hourly flow rate in freeway 

analysis computations as opposed to US that uses peak 15 min flow rates. Based on HBS 

[31] the capacity for a two lane freeway segment is 3900 vehicles which is equal to 7800 

vehicles per hour for a four lane segment. A flow equal to 7800 vehicles per hour will result 

in 3% chance of breakdown in a 5 minute time interval. However the capacity of each HCM 

segments of I-580 case study based on HCM is 8910 vehicles per hour (APPENDIX 1).  

Next step is to determine the probability of breakdown associated with HCM nominal 

capacity. The relationship between scale parameter ‍ and nominal HBS capacity of freeway 

is presented in Figure 17. If ὼ represents the nominal capacity of the freeway segment then 

approximated relationship with scale parameter based on Figure 17 will be: 

‍ ρȢςφὼ 

Thus, for determining ‌ which is the shape parameter of Weibull distribution, following 

equation should be solved. This equation represents the cumulative Weibull distribution 

function of HBS capacity equal to 3%. 

Ὂὼ ρ Ὡ πȢπσ 

So, 

ρ Ὡ Ȣ πȢπσ 
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Ὡ Ȣ πȢωχ 

ρ

ρȢςφ
ὒὲπȢωχ 

‌
ὒὲ ὒὲπȢωχ

ὒὲ
ρ
ρȢςφ

ρυȢρ 

 

 
Figure 17 ï Relationship between the scale parameter ‍ and nominal capacity 

So, the capacity distribution of each 4 lanes segment has following distribution function: 

ᶫ ͯ ὡὩὭὦόὰὰρυȢρȟρȢςφχψππ 

Figure 18 presents the distribution of the capacity of a four lane facility segment along 

with nominal HCM capacity of 8910 vehicles per hour based on HCM which uses 15 minute 

peak period traffic count. 



 

64 

 

 
Figure 18: Distribution of Capacity in a Four Lane Freeway Segment 

The nominal capacity of each HCM segment is 8910 (APPENDIX A) vehicles per hour 

which corresponds to 20% chance of breakdown in a 5 minute time interval. The capacity for 

other percentages should be calculated based on the Weibull distribution which is: 

ᶫ ͯ ὡὩὭὦόὰὰρυȢρȟρȢςφχψππ 

ᶫ ρȢςφχψππ ÌÎ ‫
Ȣ

 

Where .denotes the desired percentile capacity ‫ 

In this section the conversion of HCM and HBS capacity distribution function is discussed. 

Based on the calculations the nominal HCM capacity is equal to 20% chance of breakdown 

in a 5 minute time interval. 
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4.4. Some Insights on Congestion of the I-580 Case Study 

The ratio of demand to capacity identifies the level of congestion in a freeway facility. 

We chose nominal capacity of freeway segments for this representation. Resolution of 

demand data is based on analysis periods. Since our mathematical model consider 3.45 

second time steps, conversion of demand from 15 minute analysis periods into 3.45 second 

time steps are necessary. It is assumed that the demand in each analysis period is constant 

and all 3.45 second time steps will have same demand in that time period. Table 4 shows 

demand to capacity values. Clearly the only congestion will start in time period 11 and 

artificial segments 78 through 84. 

 

Table 4: Demand to Capacity Ratio for All Artificial Segments in All Time Periods 

  
1-45 46 

46-

54 
55 

56-

66 
67 68-73 74 75-77 78 79-84 85 86-90 91 92-95 96 

97-

107 

t=1 0.90 0.89 0.89 0.90 0.90 0.86 0.86 0.88 0.88 0.89 0.89 0.84 0.84 0.85 0.85 0.86 0.86 

t=2 0.90 0.89 0.89 0.91 0.91 0.87 0.87 0.88 0.88 0.90 0.90 0.85 0.85 0.85 0.85 0.86 0.86 

t=3 0.91 0.90 0.90 0.91 0.91 0.87 0.87 0.89 0.89 0.90 0.90 0.85 0.85 0.86 0.86 0.87 0.87 

t=4 0.91 0.90 0.90 0.92 0.92 0.88 0.88 0.89 0.89 0.91 0.91 0.86 0.86 0.86 0.86 0.87 0.87 

t=5 0.92 0.90 0.90 0.92 0.92 0.88 0.88 0.90 0.90 0.92 0.92 0.86 0.86 0.87 0.87 0.88 0.88 

t=6 0.92 0.91 0.91 0.93 0.93 0.87 0.87 0.90 0.90 0.93 0.93 0.87 0.87 0.88 0.88 0.90 0.90 

t=7 0.93 0.91 0.91 0.93 0.93 0.87 0.87 0.91 0.91 0.95 0.95 0.88 0.88 0.89 0.89 0.91 0.91 

t=8 0.93 0.91 0.91 0.94 0.94 0.87 0.87 0.91 0.91 0.96 0.96 0.88 0.88 0.90 0.90 0.92 0.92 

t=9 0.93 0.92 0.92 0.94 0.94 0.87 0.87 0.92 0.92 0.98 0.98 0.90 0.90 0.91 0.91 0.94 0.94 

t=10 0.94 0.92 0.92 0.95 0.95 0.87 0.87 0.93 0.93 0.99 0.99 0.91 0.91 0.93 0.93 0.96 0.96 

t=11 0.94 0.93 0.93 0.95 0.95 0.87 0.87 0.93 0.93 1.01 1.01 0.92 0.92 0.95 0.95 0.98 0.98 

t=12 0.92 0.90 0.90 0.93 0.93 0.84 0.84 0.91 0.91 0.99 0.99 0.91 0.91 0.93 0.93 0.98 0.98 

t=13 0.91 0.89 0.89 0.92 0.92 0.83 0.83 0.90 0.90 0.98 0.98 0.90 0.90 0.92 0.92 0.97 0.97 

t=14 0.90 0.88 0.88 0.91 0.91 0.82 0.82 0.89 0.89 0.97 0.97 0.88 0.88 0.91 0.91 0.95 0.95 

t=15 0.89 0.87 0.87 0.91 0.91 0.81 0.81 0.88 0.88 0.96 0.96 0.87 0.87 0.90 0.90 0.94 0.94 

t=16 0.86 0.85 0.85 0.88 0.88 0.79 0.79 0.85 0.85 0.93 0.93 0.85 0.85 0.88 0.88 0.92 0.92 

t=17 0.85 0.84 0.84 0.87 0.87 0.78 0.78 0.84 0.84 0.92 0.92 0.84 0.84 0.86 0.86 0.90 0.90 

t=18 0.83 0.82 0.82 0.85 0.85 0.76 0.76 0.82 0.82 0.89 0.89 0.81 0.81 0.84 0.84 0.88 0.88 

t=19 0.82 0.81 0.81 0.84 0.84 0.75 0.75 0.81 0.81 0.89 0.89 0.81 0.81 0.83 0.83 0.87 0.87 

t=20 0.78 0.77 0.77 0.80 0.80 0.72 0.72 0.77 0.77 0.84 0.84 0.77 0.77 0.79 0.79 0.83 0.83 

 

As Table 4 demonstrates, the scope of the analysis covers the peak period as well as 

congestion queue. 
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4.5. Model Implementation 

The upper bound of ramp metering rates cannot exceed 900 vehicles per hour. One 

vehicle per green metering has a capacity of 900 vehicles per hour [1]. In this case study we 

assume Ò," υυȟ   Ò5" ωππ and , Њ. The reason for setting queue capacity at each 

on-ramp to the infinite is to measure the maximum effect of ramp metering. All on-ramps are 

considered to be metered. Since, the demand for the first couple of 15 minute analysis 

periods are 55 vph (Table 2), the lower bound on the metering rate is set to 55 vph to avoid 

the infeasibility of the mathematical model. 

When demand increases (By adjustment factor), the low ὒ value makes the model 

infeasible. It is assumed that the priority of each on-ramp is equal to all others, thus: 

‗ ρ      ὯᶰὯᶻȟὸ ρ ὸέ υςππ 

Ὧᶻ υυȟχτȟχψȟωρȟωφ 

The initial portion of data preparation is carried out in Excel which includes demand 

categorization for each artificial segment and time step. Demand values are put in matrixes 

with the size of number of time steps, and artificial segments. SAS/OR 9.2 [31] was used for 

solving the mathematical model. Thus, all required data for the model are converted to SAS 

Data Sets. 
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Appropriate code has been developed to solve the mathematical programs. Appendix A 

includes the SAS code for model 1 I-580 example. The formulation used for finding optimal 

ramp metering rates is: 

-ÉÎ : ὔ

ᶰ ᶻ

 

St. 

ρ         Ὗ ὶ Ὡ Ὗ                     Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ Ὧ ρ ὸέ ρπχ 

ς         ὶ Ὥ τ—ὔ                                         Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ ὯᶰὯᶻ 

σ         τ—ὔ Ὥ ὶ τ—ὔ                        Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ ὯᶰὯᶻ 

τ         ὔ ὒ                                                          Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ ὯᶰὯᶻ 

υ          ὶὒὄ ὶ ὶὟὄ                                    Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ ὯᶰὯᶻ 

φ          Ὗ ‍ ÌÎ ‫                               Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ ὯᶰὯᶻ 

χ          Ὗ  , ὶ, ὔ π                                Ὢέὶ ὸ ρ ὸέ υςππ ὥὲὨ Ὧ ρ ὸέ ρπχ 

Ὧᶻ υυȟχτȟχψȟωρȟωφ 
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The Optimal Solution and Its Interpretation:  

This problem has 1,674,400 variables, and 2,808,000 constraints. It takes 31 seconds to 

solve in a Intel Zeon 2.67 Ghz with 4GB RAM. The objective value becomes 6246 vehicles 

in a 3 second time steps. This means that if maximum breakdown probability becomes 3% in 

each HCM segment in a 5 minute period, then 6246 vehicles in total time steps should stand 

in queue. Considering there are 5200 time steps in the study period, and 5 on-ramps, then the 

average number of vehicles in the on-ramp queue is: 

ὃὺὩὶὥὫὩ ὔόάὦὩὶ έὪ ὠὩὬὭὧὰὩί Ὥὲ ὸὬὩ ὗόὩόὩ
φςτφ

υςππυ
πȢςτ 

The optimal solution for mathematical model is stored in an array of size υςππρπχ  in 

the SAS data set. Table 5 shows a piece of this array from time step 3700 to 3729 and the 

metering rates variation. 
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Table 5 ï Optimal Solution from Time step 3700 to 3729 

Time 

Step 

Artificial 

Segment 55 

(Veh/H) 

Artificial 

Segment 74 

(Veh/H) 

Artificial 

Segment 78 

(Veh/H) 

Artificial 

Segment 91 

(Veh/H) 

Artificial 

Segment 96 

(Veh/H) 

3700 55 418.4757 418.4757 239 363 

3701 55 900 418.4757 239 363 

3702 55 900 418.4757 239 363 

3703 55 900 55 239 363 

3704 55 900 900 239 363 

3705 55 900 418.4757 239 363 

3706 55 900 418.4757 239 363 

3707 55 900 418.4757 239 363 

3708 55 900 418.4757 239 363 

3709 512.4757 900 418.4757 239 363 

3710 55 900 418.4757 239 363 

3711 512.4757 900 418.4757 239 363 

3712 512.4757 900 418.4757 239 363 

3713 55 900 418.4757 239 363 

3714 55 572 418.4757 239 363 

3715 55 512.4757 418.4757 239 363 

3716 55 631.5243 418.4757 239 363 

3717 55 572 418.4757 239 363 

3718 55 512.4757 840.4757 239 363 

3719 512.4757 512.4757 900 239 363 

3720 55 691.0485 780.9515 239 363 

3721 55 512.4757 840.4757 239 363 

3722 55 512.4757 900 239 363 

3723 512.4757 512.4757 900 239 363 

3724 55 512.4757 721.4272 239 363 

3725 55 512.4757 900 239 363 

3726 55 512.4757 900 239 363 

3727 55 512.4757 900 239 363 

3728 55 55 900 239 363 

3729 55 512.4757 900 239 363 

3730 55 55 900 239 363 

3731 294.3301 55 900 239 363 

3732 55 900 900 239 363 

3733 55 512.4757 900 239 363 

3734 55 789.8155 900 239 363 

3735 55 512.4757 900 239 363 

3736 55 512.4757 512.4757 239 363 

3737 55 512.4757 900 239 363 
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Appropriate SAS procedure used for transferring this optimal values to Excel to do 

further analysis (Appendix A). Optimal Solution shows ramp metering only in the first three 

on-ramp segments. Table 6 shows the aggregated optimal ramp metering rates in each 

analysis period for first three segments. The analysis periods which ramp metering is 

enforced are shaded. 

 

Table 6 ï Aggregated Ramp Metering Rates for I-580 Case Study (Vehicles per Hour) 

Analysis 

Period 

Metered 

Artificial 

Segment 55 

Artificial 

Segment 

55 

Demand 

Metered 

Artificial 

Segment 

74 

Artificial 

Segment 

74 

Demand 

Metered 

Artificial 

Segment 

78 

Artificial 

Segment 

78 

Demand 

t=1 135 135 139 139 151 151 

t=2 135 135 139 139 152 152 

t=3 136 136 140 140 153 153 

t=4 137 137 141 141 154 154 

t=5 159 159 196 196 218 218 

t=6 182 182 250 250 281 281 

t=7 204 204 305 305 345 345 

t=8 226 226 359 359 408 408 

t=9 233 233 427 427 483 483 

t=10 238 239 495 495 558 558 

t=11 209.7 246 561.8 563 631.9 633 

t=12 289.3 252 613.7 631 709.1 708 

t=13 260 260 629.6 611 716 716 

t=14 268 268 592 592 724 724 

t=15 276 276 572 572 731 731 

t=16 284 284 552 552 739 739 

t=17 276 276 536 536 718 718 

t=18 268 268 520 520 697 697 

t=19 260 260 505 505 676 676 

t=20 251 251 489 489 654 654 
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To make the optimal solution usable by HCM 2010 FREEVAL macro-simulation 

software, all optimal metered rates are aggregated over 15 minute time periods.  The 

metering rates which are shown in Table 6 can be entered in HCM 2010 FREEVAL. In 

Chapter 5 of this dissertation the application of the proposed model is investigated, and the 

results of simulation models are discussed. Table 7 shows the average number of vehicles 

that are in the queue behind the metering traffic light. 

 

Table 7 ï Average Number of Vehicles behind Metered On-Ramp (Vehicles) 

Analysis 

Period 

Artificial 

Segment 55 

Artificial 

Segment 74 

Artificial 

Segment 78 

Artificial 

Segment 91 

Artificial 

Segment 96 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0 0 0 0 0 

8 0 0 0 0 0 

9 0 0 0 0 0 

10 0.01 0 0 0 0 

11 2.53 1.62 1.17 0 0 

12 6.76 2.40 6.80 0 0 

13 0.86 1.72 0.15 0 0 

14 0 0 0 0 0 

15 0 0 0 0 0 

16 0 0 0 0 0 

17 0 0 0 0 0 

18 0 0 0 0 0 

19 0 0 0 0 0 

20 0 0 0 0 0 
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In Table 7, the first on-ramp starts its metering one analysis period earlier than other two 

on-ramps. This is due to linking time and space together in the mathematical modelôs 

formulation. More detail analysis on the start time of the metering between on-ramps is 

shown in Table 8.  

Table 8 presents the start and end time step which metered on-ramps do metering. As 

presented, the artificial segment 55 starts and ends its metering earlier than other two. The 

difference between start and end time of artificial segment 74 and 78 is lower since, they are 

located closer comparing to artificial segment 55. Artificial segment 74 and 78 only have 

four segments distance, while the segment 55 has about 20 segments. This describes the 

difference rate of their operation. 

 

Table 8 ï Start and End Time Step for Operation of Metered On-Ramps 

Operation 

Status 

Artificial 

Segment 55 

Artificial 

Segment 74 

Artificial 

Segment 78 

Start Metering 

Time Step 
2584 2601 2606 

End Metering 

Time Step 
3210 3231 3237 

 

In Figure 19 demand versus metered entry rate is depicted. Apparently ramp metering has 

small effect in entering traffic. Thus the delay behind the on-ramps is not expected to be very 

large. As presented in Figure 19, the curves demonstrate that the metering first tries to avoid 

all demand entry. This causes the queues to form behind the on-ramp. Then, after a while, it 
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tries to enter all the demand, and queue left overs into mainline, this causes the entry level to 

be higher than demand level. 

 
Figure 19: Metering Rate vs On-Ramp Demand 

 
Figure 20: Difference between Demand and Metering Rates 
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It can be seen in Figure 20 artificial segment 55 starts metering one time period earlier 

than artificial segment 74 and 78. The reason is time lag between the bottlenecks and 

segments. Clearly bottleneck is after artificial segment 78, since artificial segment 15 has 

more distance than artificial segment 19 and 20, it needs to start metering earlier. Moreover, 

the other two on-ramps downstream of the freeway will not do any ramp metering based on 

the optimal solution of this problem.  

4.6. Sensitivity Analysis 

In this section sensitivity of objective function has been investigated for different levels 

of Demand, and Upper Bound on the Probability of Breakdown.  

4.6.1. Sensitivity to Demand 

All demands including mainline entry in the first segment, and all ramp demands are 

changed by a coefficient called Demand Adjustment Factor (DAF) to investigate the 

sensitivity of first mathematical model. Table 9 presents different objective function values 

for different DAFs. 
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Table 9: Demand Sensitivity Analysis 

Demand Adjustment 

Factor 

Optimal Objective 

Function Value 

Average Number of Vehicles Behind 

Queues in any On-Ramp 

0.98 0.439 0.00 

0.99 258 0.01 

1 =(Real Data) 6246 0.24 

1.01 37977 1.46 

1.02 138135 5.31 

1.03 313636 12.06 

1.04 589378 22.67 

1.05 984173 37.85 

1.06 1478278 56.86 

1.07 Infeasible Infeasible 

 

As Table 9 shows, it is clear that ramp metering could improve performance of freeway 

facilities in low congested facilities. In I-580 case study, ramp metering could be beneficial if 

demand become at most 6.105% higher than capacity of critical segment. Although this 

model deals with undersaturated case, but ramp metering could have improvement effect 

even in oversaturated situations. Figure 21 shows the rate of increase in queue lengths will 

grow when demand increases. 
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Figure 21: Demand Sensitivity Analysis 
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Table 10: Sensitivity Analysis by Varying Upper Bound of Probability of Breakdown 

Upper Bound on 

Probability of Congestion 

in Each Segment 

Capacity of 

Each Segment 

(veh/hr) 

Objective 

Function 

Value 

Average Number of 

Vehicles Behind Queues 

in any On-Ramp 

7.3% 8280 Infeasible Infeasible 

10.8% 8505 837726 32.22 

14% 8670 255627 9.83 

20% 8910 6246 0.24 

26.4% 9084 0.84 0.00 

32% 9222 0 0.00 

 

A conclusion would be that in I-580 case study, probability of congestion in each 

segment is less than 4.1% in 5 minute time periods. Because, when it goes beyond that point, 

proposed mathematical model return 0 as optimal objective value. Figure 22 shows discussed 

behavior. 

 

 
Figure 22: Sensitivity Analysis by Varying Upper Bound of Probability of Congestion 
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5. SIMULATION ANALYSIS AND RESULTS 

This chapter discusses the application of the proposed mathematical model, and its effect 

in a macro-simulation modeling environment. HCM 2010 FREEVAL macro simulation 

software is used to evaluate the effect of ramp metering. For this purpose all I-580 geometric 

and demand information is coded in FREEVAL. FREEVAL is fed with ramp metering rates, 

which are available from the mathematical model instead of green and red light durations on 

the metered on-ramps. Later in this chapter, the conversion of metering rates into red and 

green times is discussed. 

This chapter focuses on the transportation aspect of ramp metering implementation. 

Details of all optimization computations are discussed in chapter 4. In the examples provided 

in this chapter the results of mathematical model are fed into simulation model. 

5.1. Modeling I-580 in HCM 2010 FREEVAL 

The maximum demand to capacity ratio (Max D/C) for I-580 case study is 1.01 that 

shows the freeway facility is not very congested. Usually demand to capacity ratio is higher 

in the facilities with ramp metering. Thus, a demand adjustment factor of 1.06 is used to 

increase congestion level of the I-580 freeway. The maximum increase in demand in which 

model keeps its feasibility is 1.06105 (Table 9). Otherwise, larger upper bound for 

probability of breakdown should be chosen to increase the associated level of capacity that 

results in feasibility of the mathematical model. 
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This increase in the demand level is carried out in FREEVAL by using the Demand 

Adjustment Factor (DAF) input. The rest of inputs for FREEVAL simulation such as 

geometric information are actual I-580 data (Appendix B). 

As the baseline for evaluations, I-580 case study (with 6% demand increase) is modeled 

in FREEVAL with no ramp metering. Since, demand to capacity ratio is more than 1; we 

expect to have breakdown in the study period. Appendix B contains all geometric 

information along with demand information for the first analysis period entered in 

FREEVAL along with summary and detailed analysis outputs of FREEVAL for the base 

case. 

For the analysis Jam density of 190 pc/mi/ln, and default capacity drop in the queue 

discharge mode equal to 7% is used for computations. Average travel time for all vehicles 

that are travelling in the study period across facility and sum of all delays for each vehicle 

(VHD) are computed. The average travel time is equal to 9.21 minutes, and the total hours of 

delay are 2,324.8 hours.  

As shown summary Results in Appendix B, the maximum demand to capacity (D/C) ratio 

is 1.07, which is the base case increased by 6%. The Summary results (Appendix B) 

worksheet in FREEVAL does not report total on-ramp delay that is important to be 

computed. Based on manual computations, the on-ramp delay is zero that means all the delay 

belongs to the mainline. This zero on-ramp delay was expected since there is no ramp 

metering implemented for this example. 
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The increased-demand version of I-580 becomes a good candidate for ramp metering. In 

the next sections ramp metering based our proposed mathematical model and one other 

selected algorithm is presented. 

 

5.2. Mathematical Model Outcome on I-580 Performance  

 

Since, we had an increase in the demand level of the case study we are unable to use the 

optimal metering rates generated in chapter 4. The mathematical model should be re-solved 

for new demand values. Table 11 shows the optimal ramp metering rates aggregated for each 

analysis period, and HCM segment. Note that, when demand and metering rates are equal, 

the ramp metering should be disabled on the on-ramp in the entire 15 minute analysis period. 

For this purpose in FREEVAL the maximum rampôs capacity equal to 2100 vehicles per hour 

per lane is entered as ramp metering rate. 
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Table 11 ï FREEVAL Ramp Metering Rates (Vehicles per Hour) 

Analysis 

Period 

HCM segment 

4 

HCM segment 

8 

HCM Segment 

9 

HCM Segment 

13 

HCM Segment 

15 

1 2100 2100 2100 2100 2100 

2 2100 2100 2100 2100 2100 

3 2100 2100 2100 2100 2100 

4 2100 2100 2100 2100 2100 

5 2100 2100 2100 2100 2100 

6 181 2100 2100 2100 2100 

7 166 2100 342 2100 2100 

8 77 2100 410 2100 2100 

9 55 324 482 2100 2100 

10 55 378 444 2100 2100 

11 55 552 267 2100 2100 

12 55 728 303 2100 2100 

13 55 719 436 2100 2100 

14 62 543 705 2100 2100 

15 219 635 614 2100 2100 

16 217 559 784 2100 2100 

17 319 488 900 2100 2100 

18 638 499 757 2100 2100 

19 722 526 684 2100 2100 

20 845 536 740 2100 2100 

 

In Table 11, the analysis period with ramp metering are shown by gray background. 

Except for the ramp metering values, all other FREEVAL inputs are same with respect to 

base case (Section 5.1). The average travel time after incorporating the ramp metering 

becomes 6.589 minutes. This shows 28% reduction in the average travel time. System delay 

is sum of the delay on the on-ramps and mainline. The system delay is equal to 2461.1 

vehicle hours. The mainline delay is 631.5 hours which is decreased significantly comparing 

to the base case. This reduction in the mainline delay is due to ramp metering incorporation. 

The on-ramp delay becomes 1829.6 hours. Totally, the system delay is increased by 6%. 

Appendix C contains all summary and detail simulation output of I-580 case study with 

proposed modelôs ramp metering rates. 
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5.3. Ramp Metering using ALINEA Algorithm  

In this reseach, ALINEA algorithm is selected to be modeled in FREEVAL and to be 

compared to our proposed ramp metering rates. ALINEA is the local version of METALINE 

algorithm. METALINE algorithm is coordinated traffic responsive algorithm discussed in the 

first chapter. Based on the findings in literature [15], METALINE best performs when there 

is an incident on the roadway, otherwise for recurring congestion both of these algorithms 

work similarly. To avoid complexity, and due to the fact that in our simulation we do not 

model any incident on the freeway, ALINEA is selected. 

As discussed in the literature review section of this dissertation, the algorithm uses 

following recursive equation to find the ramp metering rates. 

ὶὯ ὶὯ ρ ὑ ὕ ὕ Ὧ ρ  

Based on the field results, the value of regulatory coefficient ὑ  is set to 70 [14]. This 

algorithm needs sensor data to read the occupancy in the downstream of the on-ramp that 

usually gets updated every 40 seconds. Since in FREEVAL all computations are in 15 

minutes basis, and there is no occupancy output for the downstream of the on-ramp, we have 

used the density of the downstream segment of the on-ramp to estimate the occupancy. The 

traffic density is defined as the number of vehicles occupying a length of roadway [21], and 

the occupancy is defined as the percent of time a point or short section of roadway is 

occupied by vehicles [21]. The iteration period then becomes 15 minutes. Occupancy is 

estimated based on density using following equation: 
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ὕϷ ρππ
ὒ ὒ

υςψπ
 ὈὩὲίὭὸώ  

Where ὒ  and ὒ is the length of sensor and average vehicle in feet. Assuming average 

length of sensor to be 6 ft and average length of vehicles to be 20 ft, then Percent Occupancy 

is Density (Vehicle per Line per Mile) divided by 2.04. If maximum under-saturated density 

is 45 vplpm, then maximum occupancy will be 22.5%. Based on previous field 

implementation [14] of ALINEA target occupancy, ὕ is also selected to be a little less than 

maximum occupancy. Thus target occupancy is set to be equal to 21%. 

This recursive computation is carried out in VBA/Excel with the limitation of upper and 

lower bound equal to the values that is used in the proposed mathematical model. The upper 

bound of 900 and lower bound of 55 vehicles per hour is deployed. 

The recursive process starts with no ramp metering case. Based on the results of the 

analysis all densities for all analysis periods are available. Then the ALINEA algorithm is 

used to generate the ramp metering rates. FREEVAL is called again to analyze the facility 

with the first set of ramp metering rates. 

Based on the metering rates, we update FREEVAL and then based on updated densities 

affected by the ramp metering in previous iteration, new ramp metering values are calculated. 

We have followed this recursive iteration until ramp-metering values merge together along 

with other simulation outputs such as travel time and hours of delay on the freeway. Figure 

23 and 24 shows the metering rates computed in any iteration for HCM segment 4 and 9 

respectively. In Figure 23 and 24 the average travel time is shown by dashed line. As shown 
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in Figure 23 and 24, the metering rates and average travel time values merges. More detail 

analysis in each iteration shows once the facility goes into undersaturated mode, the metering 

rates doesnôt change much. The merge occurs in 27
th
 iteration.  

 

 
Figure 23 ï HCM Segment 4 Ramp Metering Rates (Veh/Hour) 
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Figure 24 ï HCM Segment 9 Ramp Metering Rates (Veh/Hour) 

 

Table 12 presents the ramp metering rates generated by specified recursive process. As 

presented, ALINEA does not meter the second on-ramp. These metering rates are fed into 
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Table 12 ï Metering Rates based on ALINEA algorithm (Vehicles per Hour) 

Analysis 

Period 

HCM 

segment 4 

HCM 

segment 8 

HCM Segment 

9 

HCM Segment 

13 

HCM Segment 

15 

1 2100 2100 2100 2100 2100 

2 2100 2100 2100 2100 2100 

3 2100 2100 2100 2100 2100 

4 2100 2100 2100 2100 2100 

5 2100 2100 2100 2100 2100 

6 2100 2100 843 2100 2100 

7 2100 2100 242 2100 2100 

8 355 2100 190 2100 2100 

9 159 2100 205 2100 2100 

10 111 2100 188 2100 2100 

11 80 2100 170 2100 2100 

12 265 2100 176 2100 2100 

13 376 2100 224 2100 2100 

14 471 2100 267 2100 2100 

15 2100 2100 435 2100 2100 

16 2100 2100 782 2100 2100 

17 2100 2100 896 2100 2100 

18 2100 2100 2100 2100 2100 

19 2100 2100 2100 2100 2100 

20 2100 2100 2100 2100 2100 

 

Appendix D contains the summary and detailed output of the last iteration, where the 

ramp-metering rates are merged to constant values.  
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5.4. Evaluation of Proposed Modelôs Performance 

Based on the served volumes in all analysis periods, the probability of having breakdown 

in each analysis period is computed. Since, the formula provided in section 4.3 of this 

dissertation gives the cumulative probability of breakdown in a 5 minute time interval; we 

need to assume that each analysis period is consisted of three independent 5 minute time 

intervals. By multiplication of complementary probabilities of breakdown, the analysis 

periodôs probability of breakdown is computed. Moreover, we have assumed that the 

stochastic capacity of freeway segment is defined on the HCM segments (Section 3.1 of this 

document). Consider, ὴ represents the probability of breakdown in HCM segment j, then for 

each 5 minute time intervals we can compute the probability of breakdown across the 

facility. Suppose, ὖ  is the probability of having breakdown on the facility in a 5 

minute time interval, then: 

ὖ 

ụ
Ụ
Ụ
Ụ
ợ

ρ ρ ὴ

   
 

Ứ
ủ
ủ
ủ
Ủ

 

Since, each analysis period is consisted of three 5-minute time intervals, the probability 

of breakdown across the facility in any 15 minute analysis period is computed based on: 

ὖ  ρ ρ ὖ  
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Where, ὖ   is the probability of breakdown across the facility in a 15 minute 

analysis period. 

Table 13 ï Probability of Breakdown across I-580 Facility in a 5 Minute Time Interval  

Analysis Period 
Probability of Breakdown Across Facility 

ALINEA  Proposed Mathematical Model 

1 0.7371 0.7371 

2 0.7643 0.7643 

3 0.7917 0.7917 

4 0.8172 0.8172 

5 0.8539 0.8539 

6 0.8873 0.8873 

7 0.8950 0.8982 

8 0.9036 0.8958 

9 0.9057 0.9004 

10 0.9122 0.9132 

11 0.9228 0.9242 

12 0.8984 0.8738 

13 0.8934 0.8535 

14 0.8843 0.8259 

15 0.8501 0.8347 

16 0.7913 0.7452 

17 0.7680 0.7475 

18 0.7734 0.7320 

19 0.7664 0.7312 

20 0.7313 0.5961 

 

Figure 25 shows the superior of proposed algorithm compared to ALINEA where the 

probability of breakdown across facility is lower in most of second half of study period. 

Table 14 and 15 provides the probability of breakdown in a 5 minute time interval for each 

HCM segment and Analysis Period using Proposed and ALINEA algorithm. 
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Table 14 ï Probability of Breakdown (In a 5 minute time interval) for each HCM Segment and 15 

Minute Analysis Period Using Proposed Modelôs Ramp Metering Algorithm 

Analysis Period 
HCM Segment 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

t=1 0.10 0.10 0.09 0.11 0.11 0.11 0.06 0.07 0.10 0.10 0.10 0.04 0.04 0.04 0.05 0.05 

t=2 0.11 0.11 0.09 0.12 0.12 0.12 0.06 0.08 0.10 0.10 0.10 0.04 0.05 0.05 0.06 0.06 

t=3 0.12 0.12 0.10 0.13 0.13 0.13 0.07 0.09 0.11 0.11 0.11 0.05 0.05 0.05 0.06 0.06 

t=4 0.13 0.13 0.11 0.14 0.14 0.14 0.07 0.09 0.12 0.12 0.12 0.05 0.06 0.06 0.07 0.07 

t=5 0.14 0.14 0.11 0.15 0.15 0.15 0.07 0.10 0.15 0.15 0.15 0.06 0.07 0.07 0.08 0.08 

t=6 0.15 0.15 0.12 0.16 0.16 0.16 0.07 0.11 0.18 0.18 0.18 0.06 0.08 0.08 0.10 0.10 

t=7 0.16 0.16 0.12 0.16 0.16 0.16 0.06 0.11 0.19 0.19 0.19 0.07 0.08 0.08 0.11 0.11 

t=8 0.17 0.17 0.13 0.14 0.14 0.14 0.05 0.10 0.20 0.20 0.20 0.06 0.08 0.08 0.11 0.11 

t=9 0.18 0.18 0.14 0.15 0.15 0.15 0.05 0.09 0.19 0.19 0.19 0.06 0.08 0.08 0.12 0.12 

t=10 0.19 0.19 0.15 0.16 0.16 0.16 0.05 0.10 0.20 0.20 0.20 0.06 0.08 0.08 0.14 0.14 

t=11 0.20 0.20 0.16 0.18 0.18 0.18 0.05 0.12 0.19 0.19 0.19 0.06 0.08 0.08 0.15 0.15 

t=12 0.14 0.14 0.11 0.12 0.12 0.12 0.03 0.11 0.17 0.17 0.17 0.05 0.08 0.08 0.15 0.15 

t=13 0.12 0.12 0.10 0.11 0.11 0.11 0.02 0.09 0.18 0.18 0.18 0.05 0.08 0.08 0.15 0.15 

t=14 0.10 0.10 0.08 0.09 0.09 0.09 0.02 0.05 0.18 0.18 0.18 0.05 0.07 0.07 0.14 0.14 

t=15 0.09 0.09 0.07 0.10 0.10 0.10 0.02 0.07 0.18 0.18 0.18 0.05 0.08 0.08 0.15 0.15 

t=16 0.06 0.06 0.05 0.07 0.07 0.07 0.01 0.04 0.15 0.15 0.15 0.04 0.06 0.06 0.12 0.12 

t=17 0.05 0.05 0.04 0.07 0.07 0.07 0.01 0.03 0.16 0.16 0.16 0.04 0.06 0.06 0.12 0.12 

t=18 0.03 0.03 0.03 0.08 0.08 0.08 0.02 0.04 0.15 0.15 0.15 0.04 0.06 0.06 0.11 0.11 

t=19 0.03 0.03 0.02 0.09 0.09 0.09 0.02 0.05 0.15 0.15 0.15 0.04 0.06 0.06 0.11 0.11 

t=20 0.01 0.01 0.01 0.06 0.06 0.06 0.01 0.03 0.11 0.11 0.11 0.03 0.04 0.04 0.08 0.08 

 

Table 15ï Probability of Breakdown (In a 5 minute time interval) for each HCM Segment and 15 

Minute Analysis Period Using ALINEA Ramp Metering Algorithm 

Analysis Period 
HCM Segment 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

t=1 0.10 0.10 0.09 0.11 0.11 0.11 0.06 0.07 0.10 0.10 0.10 0.04 0.04 0.04 0.05 0.05 

t=2 0.11 0.11 0.09 0.12 0.12 0.12 0.06 0.08 0.10 0.10 0.10 0.04 0.05 0.05 0.06 0.06 

t=3 0.12 0.12 0.10 0.13 0.13 0.13 0.07 0.09 0.11 0.11 0.11 0.05 0.05 0.05 0.06 0.06 

t=4 0.13 0.13 0.11 0.14 0.14 0.14 0.07 0.09 0.12 0.12 0.12 0.05 0.06 0.06 0.07 0.07 

t=5 0.14 0.14 0.11 0.15 0.15 0.15 0.07 0.10 0.15 0.15 0.15 0.06 0.07 0.07 0.08 0.08 

t=6 0.15 0.15 0.12 0.16 0.16 0.16 0.07 0.11 0.18 0.18 0.18 0.06 0.08 0.08 0.10 0.10 

t=7 0.16 0.16 0.12 0.17 0.17 0.17 0.07 0.12 0.18 0.18 0.18 0.06 0.07 0.07 0.10 0.10 

t=8 0.17 0.17 0.13 0.19 0.19 0.19 0.07 0.13 0.18 0.18 0.18 0.06 0.07 0.07 0.10 0.10 

t=9 0.18 0.18 0.14 0.18 0.18 0.18 0.06 0.13 0.18 0.18 0.18 0.05 0.07 0.07 0.11 0.11 

t=10 0.19 0.19 0.15 0.18 0.18 0.18 0.05 0.13 0.18 0.18 0.18 0.05 0.07 0.07 0.13 0.13 

t=11 0.20 0.20 0.16 0.18 0.18 0.18 0.05 0.14 0.18 0.18 0.18 0.05 0.08 0.08 0.15 0.15 

t=12 0.14 0.14 0.11 0.17 0.17 0.17 0.04 0.13 0.17 0.17 0.17 0.05 0.08 0.08 0.15 0.15 

t=13 0.12 0.12 0.10 0.18 0.18 0.18 0.04 0.12 0.18 0.18 0.18 0.05 0.08 0.08 0.15 0.15 

t=14 0.10 0.10 0.08 0.18 0.18 0.18 0.04 0.12 0.18 0.18 0.18 0.05 0.08 0.08 0.15 0.15 

t=15 0.09 0.09 0.07 0.14 0.14 0.14 0.03 0.09 0.18 0.18 0.18 0.05 0.07 0.07 0.14 0.14 

t=16 0.06 0.06 0.05 0.08 0.08 0.08 0.02 0.05 0.18 0.18 0.18 0.05 0.07 0.07 0.14 0.14 

t=17 0.05 0.05 0.04 0.07 0.07 0.07 0.01 0.04 0.18 0.18 0.18 0.05 0.07 0.07 0.13 0.13 

t=18 0.03 0.03 0.03 0.04 0.04 0.04 0.01 0.03 0.20 0.20 0.20 0.05 0.08 0.08 0.15 0.15 

t=19 0.03 0.03 0.02 0.04 0.04 0.04 0.01 0.02 0.20 0.20 0.20 0.05 0.08 0.08 0.15 0.15 

t=20 0.01 0.01 0.01 0.02 0.02 0.02 0.00 0.01 0.20 0.20 0.20 0.05 0.08 0.08 0.14 0.14 
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Figure 25 ï Probability of Breakdown across I-580 Freeway Facility 

 

Our proposed mathematical model is evaluated and compared to ALINEA algorithm, and 

to the base case where there is no ramp metering. Table 16 summarizes several statistics of 

the model. VMTV (Vehicle Miles Traveled Volume) is multiplication of traffic served in 

each HCM segment by length HCM segment and itôs a measure of performance for freeway 

facilities. Percent VMT(Vehicle Miles Traveled) served is the ratio of Vehicle Mile of 

Served Volume to Vehicles Miles of Demand. VHD stand for Vehicles Hours of Delay and it 

is sum of all delays that each vehicle has on the freeway facility. VHD can be estimated on 

the mainline which reflects the sum of all delay on the mainline, and on the on-ramps which 

reflect the delay that vehicles have for entering to the freeway. VHD Total is the sum of 

VHD mainline, and VHD on-ramps. The ñAverage Travel Timeò is the average of each 
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vehicles travel time across the facility in all analysis periods. All of these performance 

measure used in this document are defined for entire study period. 

 

Table 16 ï Comparison of Performance of Ramp Metering Algorithms 

Alpha= 7% DAF= 1.06 Max D/C= 1.07 

Statistics 
Value without 

Ramp Metering 

Proposed Model ALINEA  

Actual 

Value 

Percent 

Change 

Actual 

Value 

Percent 

Change 

Average Travel Time 

(min) 
9.2096 6.5893 -28.45% 6.5959 -28.38% 

VMTV  245,721 259,025 5.41% 259,348 5.55% 

Percent VMT Served 94.54% 99.66% 5.41% 99.78% 5.55% 

VHD On-Ramps 0.0 1,826.6 NA 1,862.3 NA 

VHD Mainline 2,324.8 634.5 -72.71% 636.9 -72.60% 

VHD Total 2,324.8 2,461.1 5.86% 2,499.2 7.50% 

 

Results show the performance of the proposed mathematical model is very close to 

ALINEA. The proposed modelôs outcome demonstrate superior in travel time, and system 

delay. On the other hand ALINEA serves more vehicles in the freeway system based on 

VMTV (Vehicles Mile Travel Volume). 

Analysis of queue lengths formed behind on-ramps revealed that the proposed 

mathematical model has lower maximum and average queue lengths comparing to ALINEA 

algorithms. Tbale 17 and 18 presents queue length for metered on-ramps using proposed 

mathematical model and ALINEA respectively. 
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Table 17 ï Queue Length of On-Ramps using Proposed Mathematical Model (feet) 
Analysis Period HCM Segment 4 HCM Segment 8 HCM Segment 9 

t=1 0 0 0 

t=2 0 0 0 

t=3 0 0 0 

t=4 0 0 0 

t=5 0 0 0 

t=6 0 0 0 

t=7 389 0 197 

t=8 1598 0 389 

t=9 3021 1078 664 

t=10 4504 2366 1936 

t=11 6043 2999 5072 

t=12 7630 2684 8831 

t=13 9279 1927 12150 

t=14 10966 2541 14360 

t=15 12229 2380 15265 

t=16 12887 2526 16573 

t=17 13205 3162 16090 

t=18 11815 3657 14750 

t=19 7864 3793 14541 

t=20 2243 3640 14475 

Average 5184 1637 6764 

Max 13205 3793 16573 

 

Table 18 ï Queue Length on the On-Ramp Using ALINEA Algorithm (feet) 
Analysis Period HCM Segment 4 HCM Segment 9 

t=1 0 0 

t=2 0 0 

t=3 0 0 

t=4 0 0 

t=5 0 0 

t=6 0 0 

t=7 0 988 

t=8 0 2871 

t=9 680 5315 

t=10 1749 8449 

t=11 3092 12300 

t=12 3336 16826 

t=13 2638 21414 

t=14 1095 25846 

t=15 0 30677 

t=16 0 36094 

t=17 0 36832 

t=18 0 38062 

t=19 0 32204 

t=20 0 26028 

Average 629 14695 

Max 3336 38062 
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5.5. Modeling More Congested Freeways and Evaluation of Ramp 

Metering 

As discussed in chapter 3, the proposed mathematical model is able to model 

undersaturated traffic flow in the freeway facilities. If  with the aid of ramp metering, 

breakdown and congestion on the freeway remains, then the proposed mathematical model 

becomes infeasible. For modeling such cases and compute the ramp metering rates, we have 

to increase the capacity of the freeway segments in the mathematical model and associate it 

with higher upper bound on the probability of the breakdown. 

To evaluate the performance of the proposed mathematical model, demand adjustment 

factor (DAF) equal to 1.1 is applied to the I-580 base case. This makes the freeway more 

congested. This increase in demand is applied to the proposed mathematical model and it 

becomes infeasible considering 20% upper bound (in 5 minute interval) on the probability of 

breakdown in each segment.  The upper bound on the probability of breakdown is increased 

to 31%. This increases the capacities of the segments by amount of 3.7%. If we model the 

increased demand I-580 in FREEVAL using a capacity adjustment factor (CAF) of 1.037, 

then there will be no congestion and the outcome would be similar to the example provided 

in section 5.2 of this dissertation. 
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5.6. Sensitivity to Capacity Drop and Demand Increase  

The goal of proposed mathematical model is to prevent the breakdown. What is modeled 

in the FREEVAL assumed the equal upper bound on the probability of the breakdown. Thus, 

by imposing the ramp metering rates no breakdown occurs. This results in the independence 

of performance respect to capacity drop level.  

However, change in the capacity drop level will increase the percent improvement of 

ramp metering due to increase in the average travel time without ramp metering. To show 

this relationship three levels of demand are selected. The travel time for capacity drop equal 

to 0%, 5%, 7%, and 9% is computed for the metering and no metering cases. Table 19 shows 

percent decrease in the travel time by imposing proposed optimal metering rates. 

 

Table 19 ï Percent Decrease in Average Travel Time 

Demand 

Increase 

Capacity Drop 

0 5% 7% 9% 

0% 0.63% 11.72% 20.88% 25.53% 

3% 5.97% 23.09% 25.93% 28.69% 

6% 18.03% 25.79% 28.25% 31.85% 
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Figure 26 ï Percent Decrease in Average Travel Time for Different Demand Levels 

5.7. Increasing the Reliability of Metering Rates: 

The proposed mathematical model can change the metering rates and patterns for 

different levels of breakdown likelihood. This is done by changing the upper bound on the 

probability of breakdown in the proposed mathematical model. More explanation is carried 

out using an example. The example in this section of this dissertation is I-580 with 3% 

increase in demand (DAF=1.03). 

The increased level of demand is used by mathematical model to compute the optimal 

ramp metering rates. Two sets of runs are designed. One is with nominal capacity of freeway 

segments which is equal to have 20% chance of breakdown in a 5 minute time interval. The 

second set, is with 14% chance of breakdown. Decrease in the upper bound of probability of 
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breakdown (from 20% to 14%) results in decrease in capacity for amount of 2.69%. This is 

equal to have capacity equal to 8670 vehicles per hour for each HCM segment. 

 

Figure 27 ï Probability of Breakdown across Facility 

 

Figure 27 shows the probability of breakdown across facility for three sets of ramp 

metering rates. When nominal upper bound on the probability of breakdown is selected equal 

to associated nominal capacity by the proposed mathematical model, it returns better 

reliability close to ALINEA. However, when the upper bound on the probability of the 

breakdown is decreased by six percent, then the metering rates increase the reliability of the 

freeway facility. 
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Table 16 shows the ramp metering rates for 14% and 20% upper bound of probability of 

breakdown in each segment. Lower upper bound has increased the scope of ramp metering 

across the analysis periods to keep the volume in each segment lower comparing to 20% 

reliability level. 

 

Table 20 ï Ramp Metering Rated and Pattern for different Upper Bound of Probability of Breakdown 

(Veh/Hour) 

Analysis 

Period 

HCM 

Segment 4 

(14%) 

HCM 

Segment 8 

(14%) 

HCM 

Segment 9 

(14%) 

HCM 

Segment 4 

(20%) 

HCM 

Segment 8 

(20%) 

HCM 

Segment 9 

(20%) 

1 
      

2 
      

3 
      

4 
      

5 
      

6 
      

7 195 303 331 
   

8 83 361 421 
   

9 55 342 482 215 425 478 

10 55 532 303 143 494 471 

11 55 467 394 55 455 622 

12 55 770 264 111 731 501 

13 55 564 610 88 602 763 

14 68 572 710 114 569 894 

15 67 626 734 401 505 766 

16 162 564 900 445 646 782 

17 431 527 813 703 548 727 

18 556 526 800 324 521 697 

19 857 458 630 
   

20 845 540 754 
   

 

The effect of the change in the upper bound on the reliability of the breakdown 

probability on the average travel time and delay is summarized in table 21. 
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Table 21 ï Performance Comparison for Different Reliability Level 

Statistics Upper Bound 20% Upper Bound 14% 

Average Travel Time(min) 6.4831 6.4678 

On-Ramp Delay (hours) 427.7 1338.8 

Mainline Delay (hours) 543.3 531.9 

Total Delay (VHD) 971.0 1870.7 

 

As presented in table 21, the increase in reliability of the facility does not change the 

average travel time and mainline delay. It affects the on-ramp delay significantly. So, having 

higher reliability level in the freeway facilities using ramp metering will increase the on-

ramp delays significantly. 

5.8. Conversion of Metering Rates into Red/Green Traffic Lights 

The metering rates could be converted into red and green portion of traffic signal lights. 

The metering rates are in vehicle per hour rate, so first it should be converted into number of 

vehicles needed to be served in 1 minute interval (ὲ). Assuming each vehicle needs 2 

seconds to pass the ramp meter, green time (Ὃ), and red time (Ὑ) of the traffic signal is 

calculated. Assuming allowing one vehicle per cycle, the cycle length (ᴇ) of traffic signal 

will be: 

Ὃ ς ὲ 

Ὑ φπ Ὃ 

ᴇ φπȾὲ 
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Table 22 demonstrates the signal timing of the three ramp meters in the case study. 

Table 22 ï Signal Timing for HCM Segment 4 

Time Step 

Segment 15 

(Metering Rate) 

Veh/Hour 

Number of 

Vehicles Needs to 

serve in 1 minute 

Green 

Time (Sec) 

Red Time 

(Sec) 

Cycle 

Length 

(Sec) 

1745 55 

2.5 5.0 55.0 23.8 

1746 295 

1746 295 

1747 55 

1747 55 

1748 55 

1748 55 

1749 295 

1749 295 

1750 294 

1750 55 

1751 55 

1751 55 

1752 295 

1752 295 

1753 295 

1753 55 

1754 55 

1754 55 

1755 55 

1755 55 

3.0 6.0 54.0 19.9 

1756 55 

1756 55 

1757 55 

1757 295 

1758 55 

1758 55 

1759 55 

1759 295 

1760 295 

1760 295 

1761 295 

1761 55 

1762 295 

1762 203 

1763 295 

1763 259 

1764 295 

1764 55 

1765 295 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK  

In this dissertation, a linear mathematical model is developed to model traffic flow across 

a freeway facility. This mathematical model is capable of addressing the optimization of any 

strategy that has some effects on the facility demand or capacity such as ramp metering. In 

this research, the mathematical model is configured and used to optimize ramp metering 

operations across a freeway facility. However, with appropriate changes, the proposed model 

can optimize other facility demand or capacity strategies such as hard shoulder running. 

The proposed model maintains a deterministic framework, meaning that all entry and exit 

traffic demands are deterministic. A chance constraint is used to account for the stochasticity 

in segment capacity in a deterministic linear format. The model can be considered a 

planning-level method for analyzing and determining the time varying metering rates 

appropriate to be used and implemented on freeway facilities. 

By incorporating the stochasticity of freeway segment capacity, the analyst enables the 

model to generate optimal solutions for oversaturated conditions by modeling traffic flow in 

an undersaturated condition. This is done by increasing the upper bound on the breakdown 

probability on freeway segments, resulting in preventing breakdown and congestion. 

Therefore, the mathematical model provides on-rampsô optimal metering rates for any 

condition. In addition, incorporation of stochastic segments capacity results in a capability to 

measure the reliability of the facility from a congestion perspective. 
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The objective function employed in the model gives the total number of vehicles that will 

queue behind the traffic light on the metered on ramps in the entire study period. The 

proposed model tries to minimize this objective function by altering the metering rates. 

Moreover, the proposed model is able to generate optimal ramp metering rates for 

different breakdown probabilities associated with the freeway segments. More specifically, 

the proposed model can vary the ramp metering rates (as presented in Table 20) to avoid 

instances of time when the freeway facility has a higher chance of breakdown. In other 

words, by changing the metering ratesô pattern, the mathematical model can achieve a more 

reliable freeway operation resulting in decreasing the probability of breakdown. This is a 

unique characteristic and feature of the proposed model compared to existing models found 

in the literature.  

The linkage between time and space enables the proposed mathematical model to account 

for vehicle travel time on the facility. It adjusts the start and end time of the metering 

operation. The more distant the on-ramp and the bottleneck on the facility are, the earlier the 

on-ramp will begin metering. For this purpose, the model defined ñArtificial Segmentsò and 

ñTime Stepsò as the resolution for its mathematical modeling. This feature, makes the model 

more realistic to actual operations. 

A six mile section of westbound Interstate I-580 in California was selected to test the 

model and its performance. The example resulted in 1,674,400 variables, and 2,808,000 

constraints and took 31 seconds to be solved on a computer with Intel Zeon 2.67 GHz CPU 

and 4GB RAM. The proposed ramp metering rates are modeled in FREEVAL 2010, a 
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macroscopic traffic model based on the HCM 2010. Modeling the 5 hours AM peak period 

with a 20% level of breakdown probability for each HCM segment in any 5 minute time 

interval was shown to decrease the average travel time by 28% using the proposed ramp 

metering rates. FREEVAL uses a 15 minute analysis period resolution for its computation. 

Therefore, the results of the mathematical model are aggregated over 15 minute periods to be 

implemented and analyzed in the FREEVAL. 

The results of the proposed algorithm are compared to the results of ALINEA, a widely 

used ramp metering algorithm in the literature. While ALINEA is an operational method as 

opposed to the proposed mathematical model which is a planning-level approach, both can be 

implemented in a macro-simulation model. The ALINEA algorithm is modeled in its steady 

state condition with respect to the prevailing traffic demand levels. More specifically, the 

facility is modeled and analyzed in consecutive time periods in an iterative fashion to 

generate the appropriate metering rates by ALINEA.  

The comparison of the two approaches indicates that the proposed method can perform at 

least as well as ALINEA. Thus, not only the proposed mathematical model gives optimal 

ramp metering rates compared to ALINEA , but it also can provide the option of adjusting the 

level of performance reliability of the freeway system. The comparison is done for different 

demand levels (increased and decreased compared with empirical data) to ensure the widely 

applicability of the proposed method. The solutions of the proposed model and ALINEA 

both reduced the average travel time on the facility mainline by 28%. ALINEAôs solution 

increased Vehicle Hours of Delay (VHD) on the entire system (i.e. mainline plus on-ramp 
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segments) by 7.5% while the proposed modelôs solution increased VHD by 5.9%. This delay 

reduction is mainly from vehicles that are on the on-ramps. Both algorithms reduced  average 

delay on the mainline by 73% compared to the case with no ramp metering. 

Based on detailed observations of the solution quality, the probability of breakdown 

across the facility using the proposed method is lower than ALINEA in the second half of the 

study period. This shows that the proposed mathematical model operates with the same effect 

until the breakdown point, and then it more effectively discharges vehicles onto the freeway 

in a manner that results in more reliable operations of the freeway facility. 

In another trial, the upper bound on the breakdown probability was decreased by 6% 

(from 20% to 14%) for each segment in a 5 minute time interval. As was shown in chapter 5, 

the increase in the reliability of the facility does not impact the mainline average travel time 

and delay while significantly impacting on-ramp delay. Thus ensuring a higher reliability 

level on the freeway mainline using ramp metering will tend to increase the on-ramp delays. 
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The following summarize the conclusions of this study: 

1. The link between time and space enables the proposed mathematical model to 

consider more realistic traffic flow characteristics that results in better performance of 

the metered freeway facilities in the simulation. The model adjusts the start and end 

time of metering operations on the on-ramps based on the relative distance between 

the on-ramps and downstream bottlenecks. 

2. The incorporation of the stochasticity of the segmentsô capacity enables the analyst to 

guarantee a reliability level of the freeway system. The capacity of each segment in 

the proposed mathematical model is associated with a certain probability of 

breakdown. The product of these probabilities across all freeway segments gives the 

reliability of the entire facility.  

3. The incorporation of the stochasticity of the segments capacity also enables the 

proposed mathematical model to model traffic flow on freeways in undersaturated 

conditions. This results in a great simplification of the traffic modeling, this feature 

also enables the model to optimize facilities that may never avoid congestion, with 

higher reliability levels. 

4. The flexibility of the proposed mathematical model provides the opportunity to 

optimize any other objective function along with modeling other strategies that have 

impacts on the demand or capacity of freeway. The implementation of any other 

strategy requires only adding appropriate objective function and a set of constraints to 

address the change in the traffic flow behavior. 
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Further enhancement to the proposed research include: 

1. The oversaturated traffic flow could be modeled and incorporated in the proposed 

mathematical model. It will enable the proposed mathematical model to analyze 

freeways in both undersaturated and oversaturated conditions, considering the reality 

that a complete prevention of congestion on urban freeways is impossible. In the 

current formalization by increasing the upper bound on the breakdown probability, 

the segments capacity increases. Thus the freeway facility avoids breakdown and 

congestion, and the model does not account for queues formed on the freeway 

system. 

2. Since the concept of stochastic capacity has been defined over freeway sections in 

Germany, it is recommended to aggregate HCM segments and compute the upper 

bounds of breakdown on the entire facility. In this research, it is assumed that the 

stochastic capacity is defined over each HCM segment. This results in a lower upper 

bound on the reliability of the entire facility. Further research is needed to distinguish 

the bottlenecks and determine the scope of facility in which the stochastic capacity is 

defined. 

3. There could be differences in the parameters of the Weibull distribution, when 

different segment types are used. By converting to section definition as implemented 

in Germany into HCM segment definition, it is necessary to convert the Weibull 

distribution parameters. In this research conversion of German capacity to US 

practice is done by multiplication of nominal capacity values by a constant ratio. 
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4. Updating optimal ramp metering rates based on sensor data on freeway facilities can 

have a significant impact on the applicability of the proposed models. Methods and 

procedures should be developed and included in the proposed model to account for 

real time demand data availability. 

5. As discussed in the dissertation, under lower Free Flow Speeds (e.g. 55 mph) the 

speed-flow curve is more or less linear. For higher values linearization introduces 

bias and error in the linkage between time and space. Incorporating a set of piecewise 

linear speed-flow curves could increase the accuracy. Even using a step function 

could add more accuracy into the model. 
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Appendix A 

The input data for modelôs parameters are not completely presented. 

 

proc  optmodel ;  

 

set  Roww; 

set  Coll= 1..107 ;  

number  i{Roww, Coll};  

read  data  sasuser.I580_i into  Roww=[TimeStep] {j in Coll} 

<i[TimeStep,j]=col( "Seg" ||j)>;  

number  e{Roww, Coll};  

read  data  sasuser.I580_e into  Roww=[TimeStep] {j in Coll} 

<e[TimeStep,j]=col( "Seg" ||j)>;  

number  C{Roww, Coll};  

read  data  sasuser.I580_c into  Roww=[TimeStep] {j in Coll} 

<c[TimeStep,j]=col( "Seg" ||j)>;  

number  l{coll};  

read  data  sasuser.I580_l into   {j in Coll} <l[j]=col( "Seg" ||j)>;  

number  N0{coll};  

read  data  sasuser.I580_n0 into   {j in Co ll} <n0[j]=col( "Seg" ||j)>;  

number  U0{Roww};  

read  data  sasuser.I580_u0 into  Roww=[TimeStep]  u0[TimeStep]=col( "Seg1" );  

number  ADJ=1.06105 ; /* DAF */  

number  CAF=1;  

var  r{ 1..5200 , 1..107 } >= 0;  

var  U{ 1..5200 , 1..107 } >= 0;  

var  N{ 1..5200 , 1..107 } >= 0;  

var  N1{ 1..5200 }>= 0;  

/* MEMSIZE 4500M; */   

min  TOTAL_Queue=sum{atp in  1..5200 , aseg in 1..107 }N[atp,aseg];  

/* Cons 1 */  

constraint  cons1prime1{atp in 1..1 , aseg in 2..107 }:U[atp,aseg -

1]+adj*r[atp,aseg] - adj*e[atp,aseg]=u[atp,aseg];  
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constraint  cost1prime{atp in 1..5200 }:adj*u0[atp]+adj*r[atp, 1] -

adj*e[atp, 1]=u[atp, 1];  

constraint  cons1{atp in 2..5200 , aseg in 2..107 }:U[atp - 1,aseg -

1]+adj*r[atp,aseg] - adj*e[atp,aseg]=u[atp,aseg];  

/* Cons 2 */  

constraint  cons2{atp in 2..5200 , aseg in 1..107 }:adj*r[atp,aseg]<= 

adj*i[atp ,aseg]+ 1040 *n[atp - 1,aseg];  

constraint  cons2prime{aseg in 

1..107 }:adj*r[ 1,aseg]<=adj*i[ 1,aseg]+n0[aseg];  

/* cons 3 */  

constraint  cons3{atp in 2..5200 , aseg in 1..107 }: 1040 *n[atp -

1,aseg]+adj*i[atp,aseg] - adj*r[atp,aseg]= 1040 *n[atp,aseg];  

constraint  cons3prime{aseg in 1..107 }: 1040 *n0[aseg]+adj*i[ 1,aseg] -

adj*r[ 1,aseg]= 1040 *n[ 1,aseg];  

/* Cons 4 */  

/*constraint cons4{atp in 1..5200, aseg in 1..107}:N[atp,aseg]<=150000;*/  

/* Cons 5 */  

constraint  cons5{atp in 1..5200 , aseg in 1..107 }:r[atp,aseg]<= 900 ;  

constraint  cons51{atp in 1..5200 }:r[atp, 55 ]>= 55 ;  

constraint  cons52{atp in 1..5200 }:r[atp, 74 ]>= 55 ;  

constraint  cons53{atp in 1..5200 }:r[atp, 78 ]>= 55 ;  

constraint  cons54{atp in 1..5200 }:r[atp, 91 ]>= 55 ;  

constraint  cons55{atp in 1..5200 }:r[atp, 96 ]>= 55 ;  

/* Cons 6 * /  

constraint  cons6{atp in 1..5200 , aseg in 

1..107 }:U[atp,aseg]<=caf*C[atp,aseg];  

solve ;  

create  data  sasuser.opt_r from  [TimeStep]=roww {j in Coll} 

<col( "Seg" ||j)=r[timestep,j]>;  

create  data  sasuser.opt_N from  [TimeStep]=roww {j in Coll} 

<col( "Seg" ||j)=N[ timestep,j]>;  

quit ;  
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Appendix B 

FREEVAL Input Sheet for First Analysis Period 

 

 

Summary Results for Simulating I-580 in FREEVAL (Without Ramp Metering) 
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Detailed Output of Analysis Period 7 (Without Ramp Metering) 
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Analysis Period 5: 
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Analysis Period 7: 
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Analysis Period 9: 
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Analysis Period 11: 
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Analysis Period 13: 
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Analysis Period 15: 

 
 

Analysis Period 16: 
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Analysis Period 17: 

 

 
 

 

Analysis Period 18: 
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Analysis Period 19: 

 

 
 

Analysis Period 20: 
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Appendix C 

FREEVAL Output for I-580 Case Study with Proposed Modelôs Ramp Metering 

Incorporation 
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Analysis Period 1: 
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Analysis Period 3: 
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Analysis Period 5: 
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Analysis Period 7: 
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Analysis Period 9: 
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Analysis Period 13: 
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Analysis Period 15: 
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Analysis Period 17: 
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Analysis Period 19: 
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Appendix D 

Summary Output for ALINEA Ramp Metered Example 
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Analysis Period 3: 

 

Analysis Period 4: 

 

  



 

138 

Analysis Period 5: 
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Analysis Period 17: 
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