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Abstract

A Rouse model for polymer chains is incorporated into the linear continuous stick-
slip molecular-based tube reptation ideas of Doi-Edwards and Johnson-Stacer. This
treats the physically constrained (PC) molecular stretches as internal strain variables
for the overall PC/chemically cross-linked (CC) system. It yields an explicit system of
stress-strain equations for the system permitting simple calculations of complex stress-
strain relations. The model that is developed here treats PC molecule as entrapped
within a constraining tube, which is comprised of both CC and PC molecules. The
model is compared with experimental data sets from the literature.

1 Introduction

One of the most widely used empirical models for viscoelasticity in materials is the Boltzmann
convolution law [15, 19, 20, 39]; for a nice summary and further references see Chapter 2
of [20]. In recent literature [5, 8, 9], models for hysteretic damping in elastomers entail a
phenomenological Boltzmann-type constitutive law of the form

σ(t) = ge(ε(t)) + CD ε̇(t) +

∫ t

−∞
Y (t− s)

d

ds
gv (ε(s), ε̇(s)) ds (1)

where Y is the convolution memory kernel, and ge and gv are nonlinear functions accounting
for the elastic and viscoelastic responses of the elastomers, respectively. Previous efforts
summarized in [6] have shown, through comparison with experimental data, that the best
fit to filled elastomer data occurs when ge and gv are cubic, along with Y as a distribution of
exponentials. Banks, et al., [7, 2] subsequently developed nonlinear models based on stick-slip
“molecular” ideas of Johnson and Stacer [26] and Doi and Edwards [10] which resulted in a
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form for ge, gv and Y that matched the empirical findings reported in [8, 9, 6]. These models
allow for multiple relaxation times present in polymer strands of composite materials within
a virtual compartmental model of entangled chemically cross-linked/physically constrained
system of long chain “molecules”. While accounting for multiple relaxation parameters, the
models do not include physically or chemically based parameters in the polymer strands.

In the present paper a new model is developed which combines the virtual stick-slip con-
tinuum “molecular-based” ideas of Johnson and Stacer [26] with the Rouse molecular-bead
ideas as described in Doi and Edwards [10]. This new model, in which polymer chains are
treated as strings of interconnected beads, permits the incorporation of many important
physical parameters (such as temperature, segment bond length, internal friction, and seg-
ment density) in the overall hysteretic constitutive relationship. Our goal here is to present
development of this model based upon physical considerations at the molecular level; its
form is similar to that developed in [6, 7] and does have the general form (1) of Boltzmann
type, even though the kernel is not of convolution type,.

2 Description of the Rouse Model

For our summary of the Rouse model for free polymer strands and subsequent stress cal-
culations, we follow for the most part the development in Doi and Edwards [10], modi-
fying somewhat the random noise assumptions and the particular series used in order to
insure convergence. We first assume a material composed of free polymer strands with each
strand consisting of a finite set of beads connected in a string with elastic springs. Let
(~R1, ~R2, ..., ~RN) be the position vectors relative to a fixed coordinate system of the beads
comprising an interconnected chain as depicted schematically in Figure 1. Moreover, let the
equation of motion of the beads be described by the Langevin equation [10]

∂

∂t
~Rn(t) =

∑
m

Hnm

(
− ∂U

∂ ~Rm

+ ~fm(t)

)
+

1

2
kBT

∑
m

∂

∂ ~Rm

Hnm, (2)

where ~fm(t) is a random force term, kB is Boltzmann’s constant, and T is the temperature.
The mobility tensor and the interaction potential are chosen to be

Hnm =
δnm

ζ
I,

U =
k

2

N∑
n=2

‖(~Rn − ~Rn−1)‖2,

respectively, with

k =
3kBT

b2
, (3)

where b is the segment bond length at equilibrium and ζ is the friction constant of the
polymer sample.
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Figure 1: Representation of vectors for a bead-spring polymer molecule.

If we use the parameters defined above for the mobility tensor, Hnm, and for the inter-
action potential, U , then equation (2), for the cases when n = 2, 3, ..., N − 1, can be written
as

ζ
d~Rn

dt
= −k(2~Rn − ~Rn+1 − ~Rn−1) + ~fn. (4)

For the special cases of the ends of the polymer, i.e., the cases when n = 1 and n = N , we
see that (respectively)

ζ
d~R1

dt
= −k(~R1 − ~R2) + ~f1,

ζ
d~RN

dt
= −k(~RN − ~RN−1) + ~fN .

We define 〈A〉 to be the configurational average of the beads, i.e.,

〈A〉 =

∫
Aψ(~R; t)d~R,

where ψ(~R; t) is the configurational distribution [10] of the beads. The configurational dis-
tribution is a probability distribution which represents the probability that particles exist at
the points (~R1, ..., ~RN) at the given time t.

The term ~fn = (f 1
n, f 2

n, f 3
n) is a randomly distributed force which accounts for the Brow-

nian motion of the beads. We assume therefore that the random force ~fn is distributed
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according to a Gaussian distribution which is determined by the following moments

〈~fn(t)〉 = 0,

〈fα
n (t)fβ

m(t′)〉 = 2ζkBTδnmδαβδ(t− t′), (5)

where δij = 1 if i = j and 0 otherwise, and δ(t) is the usual Dirac function.
To obtain the equation of a typical polymer strand from the finite bead strings, we

conceptually take a continuum limit, replacing the system (4) with an equation on the
interval 0 ≤ n ≤ N, where now N is the length of the strand. In the limit we obtain a
partial differential equation in n for the position ~R(t, n) of particles along the strand given
by

ζ
∂ ~R(t, n)

∂t
= k

∂2 ~R(t, n)

∂n2
+ ~f(t, n), for 0 ≤ n ≤ N (6)

∂ ~R(t, n)

∂n

∣∣
n=0

=
∂ ~R(t, n)

∂n

∣∣
n=N

= 0. (7)

This is obtained under the assumption that ~R0 = ~R1 and ~RN+1 = ~RN and results from
viewing the first term in the right side of (4) as a difference quotient for the second derivative.

The generalized random force ~f(t, n) is now assumed to satisfy

〈~f(t, n)〉 = 0,

〈fα(t, n)fβ(t′,m)〉 = 2ζkBTδ(n−m)δαβδ(t− t′). (8)

A standard method for analyzing systems such as (6)-(7) is via Fourier series with
“modal” coordinates corresponding to the time dependent Fourier coefficients. A system
of decoupled ordinary differential equations is obtained through separation of variables tech-
niques. That is, we assume that ~R(t, n) can be expanded as

~R(t, n) = ~X0(t) +

√
2

N

∞∑
p=1

~Xp(t) cos(
pπn

N
)

in terms of the normalized Fourier elements ϕp(n) =
√

2
N

cos(pπn
N

). We further assume that

the random noise has the form

~f(t, n) =
∞∑

p=1

~gp(t)

√
2

N
cos(

pπn

N
)

=
∞∑

p=1

µp
~Wp(t)

√
2

N
cos(

pπn

N
), (9)

where the ~Wp(t) are Gaussian processes satisfying

〈 ~Wp(t)〉 = 0,
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〈W α
p (t)W β

q (t′)〉 = δpqδαβδ(t− t′). (10)

The coefficients {µp} are chosen as

µ2
p =

12ζkBTN

π2p2
, p = 1, 2, . . . , (11)

so that all the infinite series in our subsequent discussions below converge and so that the
relationship in (8) is satisfied. We then find that the modal coordinates ~Xp(t) are given by

~Xp(t) =

√
2

N

∫ N

0

cos
(pπn

N

)
~R(t, n)dn, p = 1, 2, ...,

and satisfy

ζ
∂

∂t
~Xp = −kp

~Xp + ~gp, (12)

where

kp =
3π2kBT

N2b2
p2, p = 1, 2, ... (13)

〈gα
p (t)〉 = 0

〈gα
p (t)gβ

q (t′)〉 = δpqδαβδ(t− t′)µ2
p.

3 Stress Calculations

Once the modal coordinates ~Xp have been found for the Rouse model for free polymer
strands, it is possible to use them to determine a formula to approximate the stress tensor
for a viscoelastic polymer undergoing deformations. We use the equation for the polymer
dependent stress as given by equation (7.81) in [10], which is

σαβ(t) =
c

N

∞∑
p=1

kp〈Xα
p (t)Xβ

p (t)〉, (14)

where c is the segment “density” (and thus c
N

represents the number per unit volume of
polymer strands in the solid).

We define ~R(−0, n) to be the position of the polymer segment before deformation, and
~R(+0, n) to be the position of the segment immediately after deformation. Thus under the
affine deformation assumption (e.g., see p. 241, [10]) which is a linearization approximation
( see p. 112, [10])

~R(+0, n) = E(0) · ~R(−0, n), (15)

or in terms of the modal coordinates,

~Xp(+0) = E(0) · ~Xp(−0), (16)
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where the tensor E(0) = {Eαµ(0)} is the usual configuration gradient ∂ ~R(+0)

∂ ~R(−0)
at time t = 0.

The matrix E is sometimes called the deformation gradient (in a misnomer) but the actual
deformation gradient is D = E− I (see for example [4, 5, 8, 29, 31]). We recall that E can
be used to define the Green-St. Venant strain E = 1

2
(ETE− I) = 1

2
(DTD + D + DT ) as well

as the left Cauchy-Green strain EL = EET which is the same as the Finger strain defined
below. The equation (12) for Xµ

p (t) can be solved to obtain

Xµ
p (t) = Xµ

p (0)e
− p2

τR
t
+

1

ζ

∫ t

0

gµ
p (s)e

p2

τR
(s−t)

ds, (17)

where

τR =
ζN2b2

3π2kBT

is the Rouse relaxation time (p. 96, 196 of [10]). If we multiply Eαµ on both sides of (17),
we have

EαµX
µ
p (t) = EαµX

µ
p (0)e

− p2

τR
t
+ Eαµ

1

ζ

∫ t

0

gµ
p (s)e

p2

τR
(s−t)

ds.

In a similar manner we see that

〈EαµX
µ
p (t)EβνX

ν
p (t)〉 = EαµEβν〈Xµ

p (t)Xν
p (t)〉. (18)

Noting from (9) that ~gp(t) = µp
~Wp(t) and using (10), we find that the equation for the

autocorrelation function is given by

〈Xα
p (t)Xβ

p (t)〉 = 〈Xα
p (0+)Xβ

p (0+)〉e−2 p2

τR
t
+

µ2
p

2ζkp

δαβ

(
1− e

−2 p2

τR
t

)
. (19)

We assume that the system is at equilibrium before the initial deformation at time t = 0. We
further assume that as t approaches infinity, the system will return to its initial configuration
(the equilibrium state). That is,

lim
t→∞

Xα
p (t) = Xα

p (0−),

which implies
〈
Xµ

p (0−)Xν
p (0−)

〉
=

µ2
p

2ζkp

δµν .

If the linearization approximation (16) is used, we find

〈Xα
p (0+)Xβ

p (0+)〉 = Bαβ(E(0))
µ2

p

2ζkp

, (20)

where

Bαβ(E(0)) =
3∑

µ=1

Eαµ(0)Eβµ(0) = (E(0)ET (0))αβ (21)
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is the Finger strain (see p. 242, [10]). We note that the Finger strain is related to the
Green-St. Venant strains through Bαβ(ET ) = 2Eαβ + δαβ.

We may now substitute equation (20) into Equation (19), and we find that

〈Xα
p (t)Xβ

p (t)〉 = Bαβ(E(0)))
µ2

p

2ζkp

e
−2 p2

τR
t
+

µ2
p

2ζkp

δαβ

(
1− e

−2 p2

τR
t

)
. (22)

From this expression we may note that without the µp terms as defined in (11), the resulting
series for the stress tensor given by (14) does not converge! Also note equation (22) holds
for t > 0 small (see [10]).

4 Connection with “Stick-Slip”

Equation (22) coupled with (14) describes the contribution of each node of a free long chain
polymer molecule to the molecule’s overall stress. The goal of this work, however, is not to
simply reproduce a stress-strain law based on a molecule in free space (i.e., based on the
Langevin equation), but rather to describe the stress of a system composed of physically
constrained (PC) molecules entangled with chemically cross-linked (CC) molecules and ex-
periencing the stick-slip mechanisms. More precisely, we will view conceptually the material
undergoing deformation as composed of two virtual compartments as depicted in Figure 2.
One compartment will consist of a constraining tube which is a macroscopic compartment

Figure 2: PC molecule entrapped by the surrounding constraining tube.

containing both CC and PC molecules. The other compartment will be microscopic in na-
ture and consist of those PC molecules aligned with the direction of the deformation. These
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molecules will at first “stick” to the constraining tube and be carried along with its motion,
but will very quickly “slip” and begin to “relax” back to a configuration of lower strain
energy. We wish to compute the contributions of both “compartments” to the overall stress
of a polymer material undergoing deformations.

To accomplish this goal we must consider the contribution from the constraining tube
composed of both non-aligned physically constrained molecules and chemically cross-linked
molecules, and that of PC molecules aligned in the direction of the deformation that are
initially entangled with molecules of the tube. These aligned molecules will in time escape
entanglement and become “free” molecules and will thus contribute to the overall stress in
two distinct phases: when entrapped and after “leaking” free. Therefore, there are three
contributions to the stress of the system σ

(P )
αβ (t): the PC chain in entanglement, the portion

of the PC chain that has escaped entanglement, and the contribution due to the constraining
tube. The constraining tube will be treated as elastic while we use the Rouse formulation to
treat the aligned PC molecules. We will denote the stress of the portion of the polymer chain
that is constrained by the surrounding molecules as σ

(1)
αβ (t), and the stress of the portion of

the polymer chain that has leaked out of the constraint tube as σ
(2)
αβ (t). The total stress

contribution of the entangled PC molecules will be denoted as

σ
(ve)
αβ (t) = σ

(1)
αβ (t) + σ

(2)
αβ (t).

We will denote the stress of the constraining tube, assumed to be elastic, by σ
(elas)
αβ . Thus,

the total polymer dependent stress will be formulated as

σ
(P )
αβ (t) = σ

(ve)
αβ (t) + σ

(elas)
αβ (t). (23)

We will use the Rouse model (14) in conjunction with a step-strain process (similar to the
stick-slip molecular formulation of Johnson and Stacer [26]) to arrive at an appropriate form

for σ
(ve)
αβ (t). This will result in a hysteretic term as in a Boltzmann-type stress-strain law.

To calculate the contribution of the entangled portion of the molecule to the stress we will
subject the molecule to a series of instantaneous step-strains at times 0 = t0, t1, . . . , tn with
∆t = ti − ti−1 very small and investigate the behavior of the component < Xα

p (t)Xβ
p (t) >

after each step-strain, where the PC molecules remaining in the tube are momentarily free
and thus subject to the Rouse dynamics. We make, of course, the additional assumption
that during the successive deformations some of the entrapped molecules will ”leak” and
escape entrapment (this ”leaked” portion of the molecules will then be considered free, so
we will therefore also assume the Rouse-like expression (22) to describe their motion). To
treat the entrapped molecules we will let the time between each succeeding step-strain go
to zero in order to obtain a constitutive law that describes each node’s contribution to the
stress after an instantaneous step-strain is applied to the molecules. To arrive at that point,
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first note in (22) that

∆
〈
Xα

p (0)Xβ
p (0)

〉
〈
Xα

p (0+)Xβ
p (0+)

〉 =

〈
Xα

p (0+)Xβ
p (0+)

〉− 〈
Xα

p (0−)Xβ
p (0−)

〉
〈
Xα

p (0+)Xβ
p (0+)

〉

=
Bαβ(E(0))

µ2
p

2ζkp
− µ2

p

2ζkp
δαβ

Bαβ(E(0))
µ2

p

2ζkp

=
Bαβ(E(0))− δαβ

Bαβ(E(0))

=
∆ (Bαβ(E(0)))

Bαβ(E(0))
(24)

where ∆Bαβ(E(0)) ≡ Bαβ(E(0))− δαβ with δαβ representing the Finger strain in the unde-
formed state. A simple manipulation yields

〈
Xα

p (0+)Xβ
p (0+)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉
+

〈
Xα

p (0+)Xβ
p (0+)

〉

(Bαβ(E(0)))
∆ (Bαβ(E(0))) .

Since the PC molecule behaves according to Rouse’s model momentarily after an instanta-
neous deformation (when it is still considered free), (19) implies

∂

∂t

〈
Xα

p (t)Xβ
p (t)

〉
=

−2p2

τR

(〈
Xα

p (t)Xβ
p (t)

〉− µ2
p

2ζkp

δαβ

)
,

or, equivalently,

∂

∂t

(〈
Xα

p (t)Xβ
p (t)

〉− µ2
p

2ζkp

δαβ

)
=

−2p2

τR

(〈
Xα

p (t)Xβ
p (t)

〉− µ2
p

2ζkp

δαβ

)

and we determine on a short time interval 0 = t0 ≤ t ≤ t1

〈
Xα

p (t)Xβ
p (t)

〉
=

µ2
p

2ζkp

δαβ + Ce
−2p2

τR
t

=
〈
Xα

p (0−)Xβ
p (0−)

〉
+ Ce

−2p2

τR
t
. (25)

According to (25) just after the step strain at t = 0+

〈
Xα

p (0+)Xβ
p (0+)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉
+ Ce

−2p2

τR
0+

=
〈
Xα

p (0−)Xβ
p (0−)

〉
+ C, (26)

which, according to (24) implies

C =

〈
Xα

p (0+)Xβ
p (0+)

〉

(Bαβ(E(0)))
∆ (Bαβ(E(0)))
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and

〈
Xα

p (t)Xβ
p (t)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉

+

〈
Xα

p (0+)Xβ
p (0+)

〉

(Bαβ(E(0)))
∆ (Bαβ(E(0))) e

−2p2

τR
(t−0)

(27)

for 0 = t0 ≤ t ≤ t1. The above procedure will serve as a basis for imitating Johnson and
Stacer’s step-strain procedure. In order to do so, we now need to make an assumption similar
to (24) at t1. That is, we would expect

∆
〈
Xα

p (t1)X
β
p (t1)

〉
〈
Xα

p (t+1 )Xβ
p (t+1 )

〉 =

〈
Xα

p (t+1 )Xβ
p (t+1 )

〉− 〈
Xα

p (t−1 )Xβ
p (t−1 )

〉
〈
Xα

p (t+1 )Xβ
p (t+1 )

〉

≈ ∆Bαβ(E(t1))

Bαβ(E(t1))
, (28)

or

〈
Xα

p (t+1 )Xβ
p (t+1 )

〉
=

〈
Xα

p (t−1 )Xβ
p (t−1 )

〉

+
∆Bαβ(E(t1))

Bαβ(E(t1))

〈
Xα

p (t+1 )Xβ
p (t+1 )

〉
, (29)

where
∆Bαβ(E(t1)) = Bαβ(E(t1 + ∆t))−Bαβ(E(t−1 )).

Thus, it is necessary to understand what the quantity

〈
Xα

p (t+i )Xβ
p (t+i )

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

in general represents. To investigate this quantity we compute

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

for ∆t > 0 and then let ∆t tend to zero from above. This procedure leads to the conclusion

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉
〈
Xα

p (t+i )Xβ
p (t+i )

〉 ≈ [∆Bαβ(E(ti))/∆t] ∆t

Bαβ(E(t+i ))
, (30)

where
∆Bαβ(E(ti)) = Bαβ(E(ti + ∆t))−Bαβ(E(ti)).

We remark that

lim
∆t→0+

∆Bαβ(E(ti))

∆t
≈ d

dt
Bαβ(E(t))

∣∣∣
t=ti
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may either exist in the ordinary sense or may provide a jump at t = ti. Arguments for this
approximation and further details on the quantity

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

are found in the appendix.
Continuing with our arguments based on the Johnson and Stacer step-strain procedure,

we recall from (29) and (30) that

〈
Xα

p (t+1 )Xβ
p (t+1 )

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉
+

1∑
i=0

〈
Xα

p (t+i )Xβ
p (t+i )

〉

(Bαβ(E(ti)))
∆ (Bαβ(E(ti))) e

−2p2

τR
(t−1 −ti).

Since Rouse’s model requires
〈
Xα

p (t)Xβ
p (t)

〉 t→∞−→ 〈
Xα

p (0−)Xβ
p (0−)

〉
exponentially, we find

〈
Xα

p (t)Xβ
p (t)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉
+

(
1∑

i=0

〈
Xα

p (t+i )Xβ
p (t+i )

〉

(Bαβ(E(ti)))
·

∆ (Bαβ(E(ti))) e
−2p2

τR
(t1−ti)

)
e
−2p2

τR
(t−t1)

for t1 ≤ t ≤ t2. If this process is repeated indefinitely, we find that

〈
Xα

p (t)Xβ
p (t)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉

+
k∑

i=0

〈
Xα

p (t+i )Xβ
p (t+i )

〉

(Bαβ(E(ti)))
∆ (Bαβ(E(ti))) e

−2p2

τR
(t−ti) (31)

for t > tk.
As mentioned above, we assume that some portion of the entrapped molecule can escape

and behave as a free molecule. To account for these dynamics, we define γ(t) to be the
fraction of the molecule that is still entrapped at time t (so that γ(0) = 1). Recalling that
N is the length of the molecule, we define Ne(t) = γ(t)N as the length of the molecule still
entrapped at time t. Thus for the entrapped portion we have that

µ2
p

2ζkp

=
2b2N3

e

π4p4
=

2b2N3

π4p4
γ3(t).

Returning to (22) we find if we let N = Ne then the entrapped molecule contributes

〈
Xα

p (t)Xβ
p (t)

〉
=

2b2N3

π4p4
γ3(t)Bαβ(E(t0))e

−2p2

τR
(t−t0)

+δαβ
2b2N3

π4p4
γ3(t)

(
1− e

−2p2

τR
(t−t0)

)
(32)
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to the stress for 0 = t0 ≤ t ≤ t1, which leads to the approximation
〈
Xα

p (t+0 )Xβ
p (t+0 )

〉

Bαβ(E(t0))
≈ 2b2N3

π4p4
γ3(t0). (33)

Since the relaxation of the PC molecules obeys Rouses’s model for a very short time after
the instantaneous step-strain, it follows that on ti ≤ t ≤ ti+1, (32) holds with t0 replaced by
ti. This leads immediately to

〈
Xα

p (t+i )Xβ
p (t+i )

〉

Bαβ(E(ti))
≈ 2b2N3

π4p4
γ3(ti) (34)

for ti ≤ t ≤ ti+1. Doi and Edwards (p. 196, [10] or [21]) calculate

γ(t) =
∑

p odd

8

π2p2
e
−p2t

τd

where

τd =
ζN3b4

π2kBTa2

is the disengagement time. If (34) is substituted into (31) we find
〈
Xα

p (t)Xβ
p (t)

〉 ≈ 〈
Xα

p (0−)Xβ
p (0−)

〉

+
k∑

i=0

2b2N3

π4p4
γ3(ti)

∆Bαβ(E(ti))

∆t
e
−2p2

τR
(t−ti)∆t,

for t > tk. Taking the limit as ∆t = t− ti goes to zero, we obtain
〈
Xα

p (t)Xβ
p (t)

〉
=

〈
Xα

p (0−)Xβ
p (0−)

〉

+
2b2N3

π4p4

∫ t

0

γ3(s)
d

ds
(Bαβ(E(s))) e

−2p2

τR
(t−s)

ds.

Therefore, the contribution to the stress of the constrained molecule is given by

σ
(1)
αβ (t) =

c

N

∞∑
p=1

kp

〈
Xα

p (t)Xβ
p (t)

〉

=
c

N

∞∑
p=1

kp

µ2
p

2ζkp

δαβ

+
c

N

∞∑
p=1

kp
2b2N3

π4p4

∫ t

0

γ3(s)
d

ds
(Bαβ(E(s))) e

−2p2

τR
(t−s)

ds

=
∞∑

p=1

6ckBT

π2p2

(
δαβ +

∫ t

0

γ3(s)
d

ds
(Bαβ(E(s))) e

−2p2

τR
(t−s)

ds

)

=
∞∑

p=1

6ckBT

π2p2
δαβ +

∫ t

0

Y (t, s)
d

ds
(Bαβ(E(s))) ds
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where Y (t, s) ≡ γ3(s)Y (t− s) with

Y (t− s) =
6ckBT

π2

∞∑
p=1

1

p2
e
−2p2

τR
(t−s)

=
∞∑

p=1

cpe
− 1

τp
(t−s)

(35)

for

cp =
6ckBT

π2p2
and τp =

τR

2p2
.

We note that this stress term can be written in terms of the left Cauchy-Green strain EL as

σ
(1)
αβ (t) =

∞∑
p=1

6ckBT

π2p2
δαβ +

∫ t

0

Y (t, s)
d

ds

(EL
αβ(s)

)
ds. (36)

Observe that the form of σ(1)(t) is the similar to that of the Boltzmann-type stress-strain
law (1) except that the kernel Y is no longer in simple convolution form as in (35).

The contribution to the stress due to the portion of each polymer chain that has leaked
out of the constraint tube is given by a modification of (22) similar to the one used in (32)
above

σ
(2)
αβ (t) =

c

N

∞∑
p=1

kp

µ2
p

2ζkp

Bαβ(E(0))e
−2p2

τR
t

+
c

N

∞∑
p=1

kp

µ2
p

2ζkp

δαβ

(
1− e

−2p2

τR
t

)

=
∞∑

p=1

6ckBT

π2p2
(1− γ(t))3 Bαβ(E(0))e

−2p2

τR
t

+
∞∑

p=1

6ckBT

π2p2
(1− γ(t))3 δαβ

(
1− e

−2p2

τR
t

)
.

Finally, for the contribution σ
(elas)
αβ (t) of the elastic constraining tube to the overall stress

in (23) we choose the Finger strain Hookean form

σ
(elas)
αβ (t) = µY Bαβ(E(t)) (37)

where µY is a generalized Young’s modulus of elasticity.

5 Uniaxial Deformation

In this section we consider uniaxial deformations and examine the equation for the macro-
scopic stress [10], which is of the form

σαβ(t) = σ
(P )
αβ (t) + Pδαβ. (38)

13



Here the term σ
(P )
αβ represents the contribution from the polymer molecules (the polymer

dependent stress, as defined in equation (23)) and P is the hydrostatic pressure.
We proceed by assuming that we are applying a tensile deformation, i.e., a deformation

strictly in one of the three principle directions (specifically, we will consider a stretch in the
z = x3 direction). To determine the stress for such a deformation, first the appropriate
Finger strain is required. If we consider a unit cube, and apply a small deformation in the
z direction, then it attains a length of

λ = 1 + ε,

where the strain, ε, is the ratio of the change in length, ∆L, to the original length, L, or
in other words, ε = ∆L

L
. If the material is assumed incompressible, the volume must be

maintained. Thus the sides in the x = x1 and y = x2 direction must both necessarily be of
length 1√

λ
.

We choose a random point within the solid denoted by R̂ = (R̂1, R̂2, R̂3). The point’s
change in position after deformation from R̂ to the new location, denoted by R̃, can be
described, to first order, by the equations (p. 241, [10])

R̃1 =
1√
λ

R̂1, R̃2 =
1√
λ

R̂2, R̃3 = λR̂3.

These equations give a configuration gradient E of the form

E =




1√
λ

0 0

0 1√
λ

0

0 0 λ


 ,

which provides a Finger strain of the form

B(E) =




1
λ

0 0
0 1

λ
0

0 0 λ2


 .

We define the tensile stress Σα in the principle direction using the macroscopic stress
given by equation (38)

Σα = σ(P )
αα + P,

where P is a finite hydrostatic pressure term [11, 31]. For our case of deformation in the z
direction, we consider the equation

Σz = σ(P )
zz + P,

in which we must determine the hydrostatic pressure term P . This is done by noting that
since the deformation is uniaxial in the z-direction, no force acts in the x- or y-directions.

14



Thus, the stress in the x- and y-directions vanishes, i.e., Σx = Σy = 0, and from the equation

Σx = σ
(P )
xx + P for the tensile stress in the x direction, it is seen that P = −σ

(P )
xx .

Thus, if a tensile deformation is performed on the elastomer along the z axis then the
stress is given by

Σz(t) = σ(P )
zz (t) + P

= σ(P )
zz (t)− σ(P )

xx (t)

= σ(ve)
zz (t)− σ(ve)

xx (t) + σ(elas)
zz (t)− σ(elas)

xx (t)

= σ(1)
zz (t)− σ(1)

xx (t) + σ(2)
zz (t)− σ(2)

xx (t) + σ(elas)
zz (t)− σ(elas)

xx (t)

=
6ckBT

π2

∞∑
p=1

(
1

p2

∫ t

0

γ3(s)e
− 2p2

τR
(t−s)

[
2λ(s)λ′(s) +

λ′(s)
λ2(s)

]
ds

+
(1− γ(t))3

p2

(
λ2(0)− 1

λ(0)

)
e
−2p2

τR
t

)
+ µY

(
λ2(t)− 1

λ(t)

)
. (39)

The term µY
(
λ2 − 1

λ

)
, where µY is the Young’s modulus of elasticity, accounts for the stress

contribution of the elastic constraining tube. We observe that this corresponds to the Cauchy
or true stress for an incompressible neo-Hookean material undergoing uniaxial elongation.
This can be derived in a pseudo-phenomenological approach [4, 5, 8] using the Mooney strain
energy function (SEF) in the context of a nonlinear elasticity approach [29, 31, 34, 38, 39].

6 Parameter Estimation and Simulation Results

6.1 Articular cartilage results

In this subsection, we report on calculations performed with the stress-strain relationship
(39) using parameters determined from a set of data from experiments on articular cartilage
(a material of significant scientific interest which is widely viewed as a viscoelastic material–
see [21] and the references therein). This will provide a first test of our stress models
in reproducing results from other models and physical experiments. First the appropriate
parameters used in the model are estimated in inverse problems incorporating the data. Then
stress calculations which are based on the results of experimental work will be presented.
The stress-strain relation will be evaluated by calculating the stress and comparing it to
experiments for various input strain functions. Finally, simulations are conducted to repeat
the results of Johnson and Stacer’s paper [26] on which the model is partially based.

6.1.1 Estimating parameters and corresponding stress-strain simulations

The experiments conducted by Huang, et.al., [24] involved applying a tensile strain (defor-
mation) to a sample of articular cartilage and then measuring the stress within the cartilage.
Two such experiments were conducted in which two different input strains were used. These
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strains were ramp strains starting at zero and increasing at a constant rate until a cessation
time (ts). The material was then held at a fixed strain εmax until the experiment terminates
at time tf = 2000 seconds. For both experiments εmax was taken to be 0.05, while the first
had a cessation time of t1s = .126 seconds and the second had a cessation time of t2s = 400
seconds. Thus the equation for the strain functions is given by

εi(t) =

{ εmax

tis
t t ≤ tis

εmax t > tis
, (40)

for i = 1, 2. The chosen parameters used in the strain function for these experiments are
presented in Table 1 while the graphs of the strain functions are given in Figure 3.

Table 1: Parameters used for ramp input strain function for cartilage stress experiments.
Parameter Abbreviation Value
Cessation Time 1 t1s .126 seconds
Cessation Time 2 t2s 400 seconds
Maximum Strain εmax 0.05
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Figure 3: Input strains used for stress calculations in cartilage stress simulation.

It is assumed that the experiments were conducted at room temperature which is taken
to be T = 300◦ K. For the length of the polymer chain we chose N = 1000. A sensitivity
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analysis of the model (39) with respect to parameters such as the step length a, bond length
b, segment density c, the frictional constant ζ and the constraining tube’s elastic constant
µ = µY was carried out to determine possible correlations. Based on these investigations the
model was re-parameterized by defining ã = b4ζ

a2 (the parameter characterizing τD), b̃ = b2ζ

(the parameter characterizing τR), and µ̃ = µY

c
(a normalized Young’s constant). (We remark

that in view of (43) and (44) below, we could have included N2 and N3 in the scaled variables
b̃ and ã, respectively, but the estimation results would have ultimately produced the same
fits to data in the efforts with experimental data reported on below.) To obtain values for
the parameters ã, b̃, c, and µ̃, parameter estimation methods using the experimental data
with the model were employed .

To perform the parameter estimation, data was extracted from the graphs presented in
Figure 7 of [24]. These graphs depict the stress on articular cartilage for applied ramp strains
as described above. (Graphs of the extracted data are presented as solid lines in Figure 4.)
The data was extracted using the MatLab tool Grabit, written by Jiro Doke [12]. Two sets
of data were obtained, one from each of the experiments performed, and these are referred
to as {y1j

d }100
j=1 and {y2j

d }100
j=1, where yij

d is the stress value for the strain function εi(tj) as
described by equation (40)) at time tj.

The data is then used in a weighted least-squares cost function to determine the optimal
values for the desired parameters in a vector

~θ =




θ1

θ2

θ3

θ4


 =




ã

b̃
c
µ̃


 . (41)

The weighted least squares (WLS) function is given by

C(~θ) =
2∑

i=1

(
1

max{yi
d}

)2
[

100∑
j=1

∣∣∣Σz(tj; ~θ, i)− yij
d

∣∣∣
2
]

, (42)

with which we employed a Nelder-Mead method (fminsearch in MatLab) to determine the

optimal value of the parameter vector ~θ. In this case all of the parameters we seek are
uniquely defined. The response function Σz is defined by letting

Λi(s) = 2λi(s)λ
′
i(s) +

λ′i(s)
λ2

i (s)
,

and then defining the function

Σz(tj; ~θ, i) = θ3

[
6kBT

π2

M∑
p=1

1

p2

{∫ tj

0

γ(s; θ1)
3Λi(s)e

− 6p2π2kBT

θ2N2 (tj−s)
ds

+ (1− γ(s; θ1))
3

(
λ2

i (0)− 1

λi(0)

)
e
− 6p2π2kBT

θ2N2 tj

}
(43)

+θ4

(
λ2

i (tj)−
1

λi(tj)

)]
.
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The summation limit M was chosen to be 10 since it was found that the total sum would
change by less than 1% if M were increased. In computing the integrals in (43), an approx-
imation was made using the MatLab quad routine, which utilizes a Simpson’s quadrature
method to approximate the integral. We also used

γ(t; θ1) =
M ′∑

p odd

8

p2π2
exp

(−p2π2kBT

θ1N3
t

)
, (44)

where the limit of summation was chosen to be M ′ = 21 (for a larger M ′ value, the increase in
the sum is not sufficient to justify the increased computation time). The term λi(t) = 1+εi(t)
is defined for εi(t), as given above. The derivative of λi(t) was taken for i = 1, 2, as

ε̇i(t) =

{ εmax

tis
t ≤ tis

0 t > tis
.

The cost function was calculated using equation (43) in the minimization algorithms. These

calculations require an initial guess, denoted by ~θ0, for the value of ~θ. Since little can be found
in the literature for these parameters in the case of cartilage, in this section we obtained
initial values ~θ0 by simulating with the model with numerous parameter values over a wide
range and comparing the corresponding graphs visibly with the data. A physically-based
method for determining initial estimates in the case where one knows rough parameter ranges
for a material is described for the case of polyisoprene data in the next section.

In addition to calculating the optimal values of the parameters in ~θ we will determine the
standard errors for ã, b̃ and µ̃. The process to calculate the standard errors depends upon
the form of the cost functional. If the ordinary least squares (OLS) cost functional is used
(as it will later in (45)) then the kth standard error is approximated as

SEk(θ̂
n) =

√
Ckk(θ̂n).

The term Ckk is the kth diagonal element of the M ×M covariance matrix

C(θ̂n) = σ̂2
[
χT (θ̂n)χ(θ̂n)

]−1

,

where

χjk(θ) =
∂fj(θ)

∂θk

is the (j, k) element of the sensitivity matrix χ ∈ <n×M , θ̂n ∈ <M is the parameter estimate
obtained in the optimization process, and

σ̂2 =
1

n−M

n∑
j=1

∣∣∣fj(θ̂
n)− yj

∣∣∣
2
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with fj(θ̂
n) = Σz(tj; θ̂

n) denoting the model’s value at time tj and parameter estimate

θ̂n. More details regarding large sample size approximation statistics can be found in the
standard nonlinear regression approximation theory ([13, 22, 25], and Chapter 12 of [35]).
For a brief summary also see Section 3 of [3].

If, on the other hand, a weighted least squares cost functional is used (as in (42)) a matrix
that accounts for the individual weights must be included in the formation of the covariance
matrix

C(θ̂n) = σ̂2
[
χT (θ̂n)W (θ̂n)χ(θ̂n)

]−1

.

The weights used in (42) produce the weighting matrix

W−1(θ) = diag
(
max{y1

d}, . . . , max{y1
d}, max{y2

d}, . . . , max{y2
d}

)

We note that the segment density c acts as a scaling parameter for the model and hence
requires a single data point to set its value. Therefore, analysis reveals that the model is
relatively insensitive to changes in c, making a standard error calculation involving multiple
observations irrelevant.

For the case when ~θ0 is taken to be

~θ0 =




7× 10−6

9× 10−4

10−3

102


 ,

the optimal value returned by the MatLab program is

~θopt =




3.4592× 10−5 ± 1.1828× 10−25

4.0786× 10−3 ± 3.3634× 10−24

5.7831× 10−4

1.5587× 102 ± 1.1383× 10−23


 .

These optimal values, along with the other important values associated with the calcu-
lation of the stress function, are presented in Table 2.

Table 2: Fixed and optimal parameter values used for cartilage stress simulations
Parameter Abbreviation Value
Temperature T 300◦ K
Segments/Chain N 1000
Boltzmann’s Constant kB 1.3806505× 10−23 J/K
Disengagement constant ãopt 3.4592× 10−5 Å2kg/s

Rouse constant b̃opt 4.0786× 10−3 Å2kg/s
Segments/Volume copt 5.7831× 10−4 1/Å3

Young’s constant µ̃opt 1.5587× 102 MPa Å3

19



Once we have determined a set of parameters which provide an optimal fit to the data
obtained from the paper by Huang, et al., we now can perform calculations which will
simulate the experiments.

The resulting simulations are presented in Figure 4 in a comparison with the data ob-
tained from [24].
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Figure 4: Stress calculation with optimal fit parameters versus experimental data for cartilage
with ramp strain inputs.

Instead of using both sets of data to obtain ~θopt as we did in minimizing (42), we could
also obtain a set of optimal parameters for each experiment separately. That is, we could
use

Ci(~θ) =
100∑
j=1

∣∣∣Σz(tj; ~θ, i)− yij
d

∣∣∣
2

, (45)

to obtain separate optimal parameters ~θi
opt, i = 1, 2, for each experiment. When the experi-

ments are considered separately, the corresponding solutions with ~θi
opt might better approx-

imate the data from experiment i than those with ~θopt obtained using (42).
For the data from the first experiment we set

~θ1
0 =




1× 10−5

8× 10−4

2× 10−3

4




and after optimization obtained

~θ1
opt =




3.6712× 10−8 ± 1.3978× 10−27

7.3624× 10−4 ± 5.8073× 10−25

3.3313× 10−3

4.4014× 101 ± 3.5449× 10−24


 .
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With the second data set, we used ~θ2
0 = ~θ1

0 and obtained

~θ2
opt =




3.6955× 10−4 ± 1.6159× 10−24

4.0242× 10−3 ± 8.4251× 10−25

4.6266× 10−4

1.9261× 102 ± 2.7588× 10−24


 .

A comparison of corresponding stresses with ~θi
opt with the data for each experiment is pre-

sented in Figure 5. It is obvious from the second experiment that optimizing with its data
set separately produces parameters that yield a model that more closely agrees with the
data; the results from the first data set reflect the model’s improved ability to achieve the
data’s peak, but in doing so a portion of the tail of the data is missed.
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Figure 5: Stress calculations and experimental data for cartilage with ramp strains using
separate cost functions (45).

6.1.2 Stress versus strain model simulations

Having estimated parameters for the stress-strain model (39), one can then use this model in
simulations with various input strains to investigate the possible presence of features such as
hysteresis. For example, when a stress-strain relation appears to possess a simple one-to-one
graph in response to periodically oscillatory strain inputs, this indicates that there is little
strain rate dependence in the system, i.e., no hysteresis is present. However, one expects
that the graph of the stress-strain relation will appear as loops in response to such inputs
when the system contains hysteresis.

In a series of simulations, various strain functions were input to the stress function of
(39), and the stress-strain relations for each were graphed. For each of these simulations
in this subsection, the parameter values used were those given in Table 2; the strain input
functions vs. time, the resulting stress vs. time and the stress vs. strain relation are plotted
below. For each simulation, the input strain function is taken on the interval from t = 0
seconds to tf = 200 seconds.
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For the first simulation a sinusoidal input strain function given by

ε1(t) = εmax(−1

2
cos(

10π

tf
t) + 1) (46)

is used to test the response of the system to cyclical input. This particular sinusoid was
designed so that it is never negative and it ranges between 0 and εmax = 0.05. It can be seen
from the results presented in Figure 6 that the stress exhibits hysteresis.
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Figure 6: Graph of input strain ε1(t) = εmax(−1
2
cos(10π

tf
t) + 1), model stress vs. time, and

model stress vs. strain relations for ε1 and Σz.
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In the next simulation we used sinusoidal strain function with increasing amplitude given
by

ε2(t) = εmax(−1

2
cos(

10π

tf
t) + 1)

t

tf
. (47)

This simulation was performed in an attempt to see if the stress of the system would vary
in a way other than linearly with increasingly greater strain cycles. The results are depicted
in Figure 7.
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Figure 7: Graph of input strain ε2(t) = εmax(−1
2
cos(10π

tf
t)+1) t

tf
, model stress vs. time, and

model stress vs. strain relations for ε2 and Σz.

For a third simulation, a simple bell curve for the strain input is employed. This particular
strain function is chosen because of its simplicity. The function used to describe this strain
is defined by

ε3(t) =
εmax

2
(− cos(

2π

tf
t) + 1), (48)

which is a single period of a cosine function. Results for this input strain function are
presented in Figure 8, in which it may be seen that the stress-strain relation is a simple loop.
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Figure 8: Graph of input strain ε3(t) = εmax

2
(− cos(2π

tf
t) + 1), model stress vs. time, and

model stress vs. strain relations for ε3 and Σz.
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6.2 Results for Polyisoprene

We next investigated use of the model (39), or equivalently (43), with experimental data
for polyisoprene. For the model calculations of the stress for polyisoprene, it is, of course,
necessary to determine the particular parameters associated with that polymer (specifically
the parameters ã, b̃, c, N , and µ̃ must be estimated).

We will choose the temperature to be at 298◦K which is roughly room temperature.
There have been many experiments conducted for polyisoprene at this temperature, and
thus the amount of data from which we may derive first estimates of some of the parameters,
especially the density parameter c and the friction parameter ζ (a factor in both ã and b̃)
which are affected by temperature, is substantial.

Using knowledge of the monomer chemical structure (see Figure 9) of polyisoprene, we
can first calculate a parameter xp referred to as the degree of polymerization which is simply
the number of monomers per single molecule. The degree of polymerization can be calculated
using the equation

xp =
M

M0

,

with molecular weight M and the monomer weight M0 (also referred to as the mass of the
repeat unit). We can calculate the monomer weight using values observed in the monomer
structure. We have that per monomer there are 5 carbon atoms and 8 hydrogen atoms.

Figure 9: Chemical structure of polyisoprene polymer.

Thus, if we obtain the atomic weight for carbon (which is 12.01) and for hydrogen (which is
1.08) from any standard periodic table, we have that

M0 = 5(12.01) + 8(1.008)

= 68.114.

For the molecular weight M , we use the value presented by Stille (Table 10.2, [36]) which is
M = 350, 000. We are then able to calculate the degree of polymerization xp to be

xp =
350, 000

68.114
≈ 5138,

where we have rounded to the nearest whole monomer. The bond length b is determined
by segmentation of the polymer where the polymer chain is segmented into N segments of
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length b. These are related to the contour length L by L = Nb. As argued in [23], b can
be approximated by b ≈ 8.415 Å while L = xpbm where bm is the average monomer length
given approximately [37] by 4.602 Å so that L ≈ 23647.25 Å. It then follows from N = L/b
that N ≈ 2810.

We also need to determine an approximate value for the segment density c of the sample.
This is calculated using the formula (see equation (2) in [27]),

c =
ρNA

M0

,

where ρ is the polymer density, NA is Avogadro’s number, and M0 is the monomer molecular
weight. The value of M0 was given above as M0 = 68.114. For the polymer density we use
the value given by Abdel-Goad, et al., [1], as ρ = 0.90 × 10−24 g/Å3 at T = 298 K (values
range from 0.9× 10−24 to 1× 10−24 g/Å3, [14],[16],[17],[18], but most commonly 0.9× 10−24

g/Å3). The segment density is then

c =
ρNA

M0

=
0.90× 10−24(6.02× 1023)

68.114
≈ 0.007954 segments/Å3.

We consider next the friction constant ζ. In the Ferry text ([15]), the friction coefficient
ζ is shown to be equal to the product of the number xp of monomers per molecule (the
degree of polymerization), and the monomeric friction coefficient ζm (the friction provided
by a single monomer). In Table 12-III on page 258 of [15], the monomer friction coefficient
for polyisoprene (listed as unvulcanized Hevea rubber) at room temperature, T = 298◦ K, is
given in log form to be

log(ζm) = −6.74 dynes s/cm.

When converted to our units we obtain

ζm = 1.18265× 10−6 kg/s.

Then when we apply the formula for ζ we find that

ζ = 5138ζm

≈ 0.006076 kg/s

is the friction present in a single strand of the polymer.
All that remains is the step-length a. Doi and Edwards [10] define a in their equation

(6.4) by

L =
Nb2

a
,
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where L is the contour length (which was calculated earlier to be approximately 23647.25
Å) and N is the number of segments of length b. (We note that Nb2 is the mean square
end-to-end distance 〈r2〉0 of the chain [10]). We thus find a = 8.415 Å. We can then use
these values of a, b and ζ to provide initial estimates for ã and b̃. We collect these and other
pertinent parameters used for the polyisoprene estimation procedures in Table 3.

Table 3: Fixed parameters along with initial values used for polyisoprene stress versus strain
estimation.

Parameter Abbreviation Value
Temperature T 298◦K
Segments/Chain N 2810
Boltzmann’s Constant kB 1.3806505× 10−23 J/K
Disengagement constant ã0 4.3026× 10−1 Å2kg/s

Rouse constant b̃0 4.3026× 10−1 Å2kg/s
Segments/Volume c0 7.9540× 10−3 1/Å3

Young’s constant µ̃0 1.2572× 10−5 MPa Å3

6.2.1 Polyisoprene parameter estimation results

Having determined a set of approximate parameters related to natural rubber (polyisoprene),
we then used these as an initial guess in an OLS estimation procedure for the “best” param-
eters in (39). The data used in the OLS was provided by a graph from the text by Riande,
et al., [33]. We used this data to define an input strain function in the form of a simple hat
function

ε(t) =

{
4
tf

t t ≤ tf
2

− 4
tf

(t− tf ) t >
tf
2

, (49)

as graphed in Figure 10, with a maximum value of εmax = 2 and tf = 500 seconds. We used
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Figure 10: Strain function from which the stress for the polyisoprene simulations are carried
out.

27



this hat function as input for stick-slip model (39) and computed the corresponding stress
to use as the model in an OLS cost functional

C(~θ) =
100∑
j=1

∣∣∣Σz(tj; ~θ)− yj
∣∣∣
2

, (50)

where the stress data points obtained from the graph from [33] are referred to as {yj}100
j=1,

with each yj representing the stress for ε(tj) for tj the uniformly spaced time points on the

interval from t = 0 to t = 500 seconds. This stress function Σz(tj; ~θ) = Σz(tj; ~θ, i) of (43)
and the stress data was used to estimate the parameters in the model. In (43) we used
λi(t) = λ(t) = 1+ ε(t) for ε given in (49), and we again choose the limits of summation to be
M = 10 and M ′ = 21. We carried out estimation of the parameters using the initial values
for ã, b̃, c and µ̃ given in Table 3. The optimal values (with standard errors) found are

~θopt =




2.9746× 10−1 ± 4.2663× 10−17

5.7572× 10−1 ± 1.6687× 10−18

5.2495× 10−5

2.2017× 10−2 ± 1.0104× 10−18


 .

A graph of the corresponding model stress-strain curve using the optimal parameter values
is compared to the experimental data in Figure 11. We note that while the basic scale
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Figure 11: Model stress versus strain simulation using optimal parameters compared to data
for polyisoprene.

and trends of the two graphs are qualitatively similar, it is interesting to note that there is
little to no hysteresis exhibited by pure natural rubber, both in our simulations and in the
comparative data. Moreover, there are nonlinear aspects of the data that clearly are not
captured by the model. We recall the linearization assumption of (15) which might suggest
difficulties for the model when used with nonlinear materials.
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6.3 Polyisoprene with carbon black reinforcement

Natural rubber (polyisoprene), as seen in the graph of Figure 11, exhibits mild nonlinear
behavior but very little hysteresis. However, most rubber-based products contain rubber
composites (or filled rubber) and it has been known for a long time that various properties
of the composite are affected by incorporating substances (a common practice for industrial
products) such as carbon black or colloidal carbon into the polyisoprene (i.e., by vulcanizing
it). In the paper by Parkinson [32], it is noted that carbon black particles are typically
spherical and range in diameter from roughly 50 to 5000 Å, although other sources have it as
being between 10 to 10000 Å. When introduced into the raw polymer, the polymer strands
attach to these spheres, restricting the flow of the polymers.

One side effect of the addition of carbon black to polyisoprene is the production of
significant hysteresis in the stress-strain relation of the material. In addition, other, more
desirable, effects including an increase in the stiffness of the material, resistance to absorption
of other fluids, abrasion resistance and heat resistance in the composite may be produced.
These effects can often be tailored to the desired levels by varying the amount and type of
carbon black introduced to the raw polymer. For example, carbon black reinforced rubbers
are used in both car tires and in rubber stoppers. At first glance, these items may appear
to be made of different material, because tire rubber is so much stiffer than a typical rubber
stopper; however they only differ in their carbon black content.

In the text by Riande, et al., [33], there is an experimental data set for rubber reinforced
with carbon black (graphed here as the solid curve in Figure 13 below) undergoing deforma-
tions. While the concentration of the carbon black within the sample used in the experiment
presented in that graph is not known, it is possible, if we use the same inverse problem
methods as those of subsections 6.1.1, to estimate the parameters in our model (43).

The data was first extracted from the graph of [33], in a manner similar to that used in
section 6.1.1. It was assumed that the experiment takes place on the interval 0 ≤ t ≤ 500
and that the strain function (which is not known to us) was approximately piecewise linear.
Under this assumption an approximate strain function, obtained from the data set, was
found by determining the lines which contain the maximum and minimum points of the
strain and defining the strain piecewise. The strain function is then of the form

εRCB(t) =





(2.07051/165)t 0 ≤ t ≤ 170
−(1.9257/165)(t− 330) + 0.1448 170 < t < 330
(1.98671/170)(t− 330) + 0.1448 t ≥ 330

. (51)

The graph of this strain function is given in Figure 12.
The stress data points obtained from the graph from [33] are referred to as {yj}100

j=1,
where each yj is represents the stress for εRCB(tj) for tj the uniformly spaced time points
on the interval [0, 500]. This strain function and the stress data were used to estimate the
parameters in the model (43). We assume that we are working with approximately the same
number of segments as from Section 6.2.1 and take N = 2000; we use the same temperature,
T = 298◦ K.
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Figure 12: Strain function from which the stress for the polyisoprene with carbon black
reinforcement simulations are carried out.

As we did earlier, we need to find the parameters ã, b̃, c, and µ̃. We again define the
vector ~θ of parameters to be

~θ =




ã

b̃
c
µ̃


 .

The function λ is given by λ(t) = 1 + εRCB(t), where εRCB(t) is defined as above, with a
corresponding piecewise constant derivative λ′. The cost function used in the Nelder-Mead
algorithm was the same as that given in (50).

If the initial guess is taken to be

~θ0 =




1.0× 10−3

1.0× 10−3

1.0× 10−1

10


 ,

then the optimal value found is

~θopt =




1.5556× 10−4 ± 4.9263× 10−24

6.5350× 10−4 ± 9.2709× 10−25

3.4526× 10−4

2.2248× 102 ± 1.1351× 10−22


 .

The fixed and optimal parameter values used in the model simulation for the polyiso-
prene with carbon black reinforcement are collected in Table 4. The model simulations are
compared to the experimental data from [33] in Figure 13.

As can be seen from the graph, the model does exhibit hysteresis in the polyisoprene
simulations (as evidenced by the presence of loops in the stress-strain curve). However,
the model does not capture very well the nonlinearities in the data. We recall that our
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Table 4: Optimal parameters used for polyisoprene with carbon black reinforcement stress
versus strain simulation.

Parameter Abbreviation Value
Temperature T 298◦ K
Segments/Chain N 2000
Boltzmann’s Constant kB 1.3806505× 10−23 J/K
Disengagement constant ãopt 1.5556× 10−4 Å2kg/s

Rouse constant b̃opt 6.5350× 10−4 Å2kg/s
Segments/Volume copt 3.4526× 10−4 1/Å3

Young’s constant µ̃opt 2.2248× 102 MPa Å3

model is based on the linear Rouse model (4) (which is linear due to the assumptions on
the underlying potentials) and the linearization assumption (15). Moreover, both (24) and
(28) are assumptions that are linear in nature (as opposed to the nonlinear Johnson-Stacer
type ratio assumptions of [6, 7] which led to full nonlinear models for hysteretic constitutive
laws there). To provide a better fit to the carbon-black filled polyisoprene data, one may
require nonlinear assumptions in the model development similar to those in [6, 7], or the
more appropriate assumption in (2) of a Lennard-Jones type higher order potential [28, 30]
which permits repulsive forces as “beads” in the molecular chain become close. On a more
positive note, it is clear that it is possible to portray the qualitative trends in hysteretic and
non-hysteretic materials with the present model.
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Figure 13: Stress versus strain calculation and comparative data for polyisoprene with carbon
black reinforcement simulation.
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7 Conclusions

In this paper we have derived a new molecular based model to describe hysteresis in polymers
and polymer-like materials. The models, based on a linear stick-slip assumption, while
capturing some of the hysteresis in several types of materials, do not capture especially well
the shapes of the nonlinearities in the hysteresis loops. While these models are a useful
initial effort, further development along the lines of the nonlinear stick-slip assumptions of
[6, 7] is needed.

8 Appendix

In this section Einstein notation (summation over repeated indices) will be used, so the
expression

∑
µ Eαµ(ti)Eβµ(ti) (our previous notation) is the same as Eαµ(ti)Eβµ(ti) .

We have claimed that the quantity
〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

can be approximated by
d

dt
[Bαβ(E(t))]

∣∣∣
t=ti

∆t.

To verify this claim, we will consider two cases: the configuration gradient Eαµ(ti) is discon-
tinuous (case 1) and the configuration gradient Eαµ(ti) is continuous (case 2).

Let Eαµ(ti) = δαµ + ∆αµ(t+i ) and let δαµ be the current configuration of the polymer.
Case 1 can be resolved by observing that

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

can be written, using arguments based on those presented in Section 3 and grouping higher
order terms (H.O.T.), as

= C
{
∆βα(t+i ) + ∆αβ(t+i )

}
+ H.O.T.

= C
1

∆t

{
[δαµ + H(∆t)∆αµ(t+i )][δβµ + H(∆t)∆βµ(t+i )]

−[δαµ + H(0)∆αµ(t+i )][δβµ + H(0)∆βµ(t+i )
}

∆t + H.O.T.

= C
1

∆t
{Eαµ(ti + ∆t)Eβµ(ti + ∆t)− Eαµ(ti)Eβµ(ti)}∆t + H.O.T.

≈ C
1

∆t
{Eαµ(ti + ∆t)Eβµ(ti + ∆t)− Eαµ(ti)Eβµ(ti)}∆t (52)

where C is a constant and the function H(x) is the Heaviside function H(x) = 0 for x ≤ 0
and H(x) = 1 for x > 0. Observe in (52) that

lim
∆t→0+

{Eαµ(ti + ∆t)Eβµ(ti + ∆t)− Eαµ(ti)Eβµ(ti)}
∆t

= lim
∆t→0+

(Bαβ(E(ti + ∆t))−Bαβ(E(ti)))

∆t

=
d

dt
(Bαβ(E(t)))

∣∣∣
t=ti

.

32



This implies

〈
Xα

p (t+i )Xβ
p (t+i )

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉 ≈ C
d

dt
Bαβ(E(t))

∣∣∣
t=ti

∆t.

For case 2 we will suppose Eαµ(t) is differentiable from the right at t = ti. Thus E ′
αµ(t+i )

exists, Eαµ(t+i ) = lim∆t→0+ Eαµ(ti + ∆t) and Eαµ(ti + ∆t) ≈ δαµ + E ′
αµ(ti)∆t (δαµ denotes

the configuration before the deformation). Again, if arguments based on those presented in
Section 3 are used, then

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉

can be approximated by

C
(
E ′

αβ(ti) + E ′
βα(ti)

)
∆t + H.O.T. = C

(
E ′

αµ(ti)Eβµ(ti) + E ′
βν(ti)Eαν(ti)

)
∆t + H.O.T.

= C
d

dt
(EαµEβµ)

∣∣∣
t=ti

∆t + H.O.T.

≈ C
d

dt
Bαβ(E(t))

∣∣∣
t=ti

∆t.

The above arguments justify the approximation

〈
Xα

p (ti + ∆t)Xβ
p (ti + ∆t)

〉− 〈
Xα

p (t−i )Xβ
p (t−i )

〉 ≈ C
d

dt
Bαβ(E(t))

∣∣∣
t=ti

∆t

in both the continuous and discontinuous cases.
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