
ABSTRACT

OH, YOUNG HYUN. Channel Detecting Jamming Attacks on Rendezvous Algorithms for Cognitive

Radio Networks. (Under the direction of Dr. David J. Thuente.)

Traditional spread spectrum techniques such as Frequency Hopping Spread Spectrum (FHSS) and

Direct Sequence Spread Spectrum (DSSS) have been used for anti-jamming solutions in wireless broad-

cast communication. However, these systems generally have the fundamental limitation of a prior key

sharing between a sender and receiver. If a jammer is a compromised receiver, then it uses the se-

cret key to jam the entire wireless communication. To address this problem, new enhancements allow

a sender and receiver to independently generate random channel hopping (CH) or frequency hopping

(FH) sequences so that it is unfeasible for a jammer to compute the same sequences. These schemes can

provide fast rendezvous or key exchange methods for Cognitive Radio Networks (CRNs) called blind

rendezvous algorithms in which a sender and receiver have no prior knowledge of a shared key, time

synchronization information, or common control channels (CCCs).

However, we present new channel detecting jamming attacks (CDJAs) against these enhancements

for CRNs. For most rendezvous algorithms, our channel detecting jammer can compute the same se-

quences as the sender’s by utilizing the properties of blind rendezvous schemes. We investigated the

state-of-the-art blind rendezvous algorithms for CRNs to demonstrate the effectiveness of our CDJAs.

Through simulations, we show that CDJAs can significantly reduce their rendezvous probability for both

the symmetric and asymmetric rendezvous systems. Thus, our CDJAs are a major security problem for

most blind rendezvous algorithms since any secondary user or even group of users in CRNs can easily

be denied access to the network with high probability. To mitigate this problem, we revisit the Ran-

dom rendezvous scheme to increase the rendezvous probability against CDJAs. Overall, the Random

scheme vastly outperforms these representative blind rendezvous algorithms for both the symmetric and

asymmetric models when there are security concerns about a channel detecting jammer. A new partially

random algorithm is shown to outperform all others for the asymmetric system.
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Chapter 1

Introduction

Recently, wireless technology has been widely used and promoted by new wireless devices such as

wireless sensors and smart phones. The emergence of these newer technologies in wireless networks

has generated a serious problem of spectrum availability due to the lack of the freely available spectrum

resources for wireless data communication. Moreover, managing the free spectrum resources (i.e., un-

licensed spectrum) is challenging due to the limited resources compared to the growing demand. For

example, since many researchers have intensively studied and developed wireless applications using the

2.4GHz spectrum, the band is now saturated by industry, scientific and medical (ISM) users. Thus, it

can be difficult to implement wireless applications on this spectrum band without having interference

with other users.

On the other hand, the licensed spectrum is assigned by the Federal Communications Commis-

sion (FCC) to the long-term licensed users (i.e., primary users) but the majority of the spectrum is

under-utilized most of the time. (e.g., the occupancy of the licensed spectrum is less than 6% [1]). This

inefficient usage of the licensed spectrum has motivated the FCC [8] to allow the unlicensed users (i.e.,

secondary users) to temporarily access the unused spectrum to alleviate the problem of the limited un-

licensed spectrum left to assign. That is, the secondary users (SUs) are able to opportunistically access

the unused licensed spectrum using Dynamic Spectrum Access (DSA) techniques without interfering

with the primary users (PUs) [8]. Cognitive Radios (CRs) are the key devices for the DSA techniques
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to dynamically and autonomously adjust their parameters to access the unused channels based on the

spectrum sensing results.

In Cognitive Radio Networks (CRNs), however, a problem occurs when SUs try to exchange data

and information with each other. Since the SUs are required to find a common channel from a large

number of sensed open channels to establish the common control channel, the rendezvous problem

occurs between SUs. The rendezvous problem occurs when two or more radios (i.e., secondary users)

try to opportunistically find one another under the presence of the multiple PUs in a DSA network [6].

To solve this rendezvous problem in CRNs, many rendezvous algorithms have been proposed that

can be categorized based on the presence of an assisted controller; aided rendezvous or unaided ren-

dezvous [6]. Under the aided rendezvous, a centralized server controls the SUs’ access to set up a

common transmission link [5]. The SUs can also use dedicated common control channels to establish

the transmission links [9,20,32,39]. The advantages of these algorithms are the simple implementation

and management of establishing the transmission links for the SUs. However, these algorithms have

limitations such as reliability issues due to bottlenecks and single point failure on the control channel,

and low flexibility and scalability issues. Moreover, security attacks on the control channel such as jam-

ming and denial of service attacks can hinder the entire wireless communication. For example, suppose

that traditional spread spectrum techniques, such as Frequency Hopping Spread Spectrum (FHSS) and

Direct Sequence Spread Spectrum (DSSS) [18], are used for wireless communication to decrease jam-

ming attacks. Spread spectrum techniques require a shared secret key between a sender and a receiver

before the communication starts. Thus, it is unfeasible for a jammer to compute the same sequences or

frequencies as the sender’s without knowledge of the key. However, a compromised receiver can be a

jammer in reactive jamming attacks where it uses the secret key to generate the same code sequences or

frequencies to jam the wireless communication.

To avoid jamming attacks and other limitations on control channel(s), CRNs can use blind ren-

dezvous algorithms which allow a sender and receiver to independently generate random channel hop-

ping (CH) or frequency hopping (FH) sequences without the knowledge of time synchronization or

CCCs. Thus, it is difficult for a jammer to compute the same code sequences or frequencies of the

2



sender due to the randomness of channel selection. Many blind rendezvous channel hopping (CH) or

frequency hopping (FH) algorithms have been proposed but we investigated the state-of-the-art for blind

rendezvous schemes for CRNs [4, 6, 10, 12–14, 25, 26, 43].

Yang D. et al. proposed two rendezvous algorithms called the Deterministic Rendezvous Sequence

(DRSEQ) [12] and the Channel Rendezvous Sequence (CRSEQ) [43]. In DRSEQ, each user generates

the same CH sequence of M available channels and it is guaranteed to rendezvous in at most 2M + 1

time slots. This is called the maximum time to rendezvous (MTTR). When each user has the same set of

M available channels, we say this is the symmetric model. When the set of available channels is not the

same for each user, we say we have an asymmetric model. The DRSEQ is only applicable to a symmetric

model. In CRSEQ, each user constructs the CH sequences by using the properties of triangle numbers

and Chinese Remainder Theorem (CRT). The CRSEQ provides the MTTR of the symmetric case at

least (P − 1)(3P − 1). However, both DRSEQ and CRSEQ sequences are completely deterministic

and, we will see, can be easily jammed.

In [13], Luiz A. DaSilva et al. proposed a sequence-based CH rendezvous scheme in which all radios

can generate the same CH sequences using the pre-defined sequence generators. The scheme supported

the asynchronous systems (i.e., no time synchronization) and was referred to as Generated Orthogonal

Sequence (GOS) algorithm in [6]. One fundamental limitation of GOS is that it is applicable only to the

symmetric scenario.

In [6], Nick C. Theis et al. proposed the Modular-based Clock (MC) and Modified Modular-based

Clock (MMC) CH rendezvous schemes to provide blind rendezvous for both symmetric and asymmetric

scenarios respectively. Under the assumption that a distinct forward-hop is chosen by each user, MC

and MMC can guarantee upper bounds on rendezvous time. The MC schemes do not require time

synchronization between SUs. Using the MC algorithm, the sender and receiver can independently

generate CH sequences among the same or different number of available channels. Then the sender and

the receiver, with no time synchronization, can rendezvous in bounded time only if their forward-hops

are different.

In [25], Lin Zhiyong et al. proposed the Jump-Stay (JS) based CH rendezvous schemes to pro-
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vide guaranteed rendezvous for both symmetric and asymmetric scenarios. The JS rendezvous scheme

solved limitations of other blind rendezvous schemes such as unbounded time for rendezvous, time

synchronization requirements, not being applicable for multi-users, and working only for symmetric

models. The JS schemes do not require time synchronization between the SUs. That is, in the JS sys-

tem, the sender and receiver can rendezvous any time even though they independently generate the CH

sequences among the same or different number of available channels and have hop sequences with dif-

ferent starting times. In [26], Lin Zhiyong proposed the Enhanced JS (EJS) rendezvous algorithms [25]

by redesigning the hoping sequences. The EJS can reduce the expected time to rendezvous (ETTR) for

the asymmetric model from O(P 3) to O(P 2) where P is the smallest prime number greater than the

total number of available channels.

In addition to the above rendezvous schemes for CRNs, we also exploited the Frequency Quorum-

based Rendezvous (FQR) scheme for wireless networks [17] because it provides the lowest maximum

time to rendezvous compared to other schemes. Moreover, it can be applicable to CRNs without dif-

ficulty [22]. In [17], Eun-Kyu Lee et al. proposed the FQR algorithm to provide fast rendezvous and

secure key establishment under the various jamming attacks. The FQR scheme utilizes the non-empty

property of cyclic quorum sets [19, 44]. Thus, the sender and receiver can select independent random

FH sequences but they are guaranteed to rendezvous within a bounded time.

Moreover, we also investigated a general random spread spectrum technique called a delayed ran-

dom seed disclosure DSSS (DSD-DSSS) scheme for broadcast wireless communications [28] because

it is one of the most secure DSSS algorithms due to its unpredictable random spreading codes. The

DSD-DSSS scheme removes the pre-shared key dependency of traditional DSSS techniques and allows

a sender to randomly generate spread code sequences for each message using random seeds. Then the

sender spreads each message using different code sequences and discloses the seeds at the end of each

message. Therefore, without the knowledge of the seeds, the jammer cannot generate the same code

sequences before the receiver receives the entire message.

However, we found that these blind rendezvous schemes are vulnerable to a new type of jamming at-

tacks named channel detecting jamming attacks (CDJAs) in which a jammer can compute the same CH
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or FH sequences by utilizing the properties of rendezvous schemes. We exploit the effectiveness of CD-

JAs for representative symmetric rendezvous algorithms that are derived from Modular-based channel

hopping algorithms such as Modular Clock (MC), Jump-Stay (JS), Enhanced Jump-Stay (EJS) channel

hopping rendezvous algorithms [6, 25], and quorum-based frequency hopping algorithms named FQR

algorithms [17], respectively. In addition, we will expand our CDJA to the remaining state-of-the-art

blind rendezvous algorithms such as Generated Orthogonal Sequence (GOS) [6,13], Deterministic Ren-

dezvous Sequence (DRSEQ) [12], and Channel Rendezvous Sequence (CRSEQ) [43]. In our CDJAs,

the channel detecting jammer can compute the channel hopping rates using one or two listening chan-

nel. Using this information, the jammer can compute the sender’s entire hopping sequences within a

short period and then jam the remaining channel or frequency sequences. For the asymmetric models,

we focus on the asymmetric EJS scheme because many of the rendezvous algorithms are not applicable

for the asymmetric models and the asymmetric EJS scheme provides a fast guaranteed rendezvous com-

pared to others. Our simulation results show that the rendezvous probability of these blind rendezvous

schemes for both symmetric and asymmetric models will be dramatically decreased under the CDJA.

The contributions of this thesis are as follows:

1. We introduced a novel channel detecting jamming attacks (CDJAs) against the blind rendezvous

algorithms for CRNs in which a jammer, with capabilities similar to a normal user, can find the

sender’s channel hopping sequences by utilizing the properties of their rendezvous algorithms.

2. We investigated the state-of-the-art blind rendezvous algorithms [6,13,24–26] to demonstrate the

effectiveness of our CDJAs. The channel detecting jammer uses one or two listening channels to

find the sender’s CH sequence within a short period and computes the senders’ CH sequences.

Then it jams the remailing sequences so that the rendezvous probability of the state-of-the-art

blind rendezvous algorithms will be significantly decreased under our CDJAs. Our simulation

results demonstrate that the state-of-the-art blind rendezvous schemes are extremely vulnerable

to the CDJAs.

3. We revisited the Random CH schemes to evaluate the rendezvous probability against CDJAs. This
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completely defeats any predictability for the channel detecting jammer. In this thesis, we presented

the theoretical expected time to rendezvous (ETTR) for the asymmetric Random system based on

the number of common channels G between a sender and receiver. The ETTR for the asymmetric

Random is
|m1|·|m2|

|G| where |m1| and |m2| is the number of available channels out of the total

number of available channels M for the sender and receiver, respectively. Through simulations

and theoretical analysis, we demonstrate that the symmetric and asymmetric Random schemes

for CRNs can be an effective, efficient and robust rendezvous scheme against CDJAs.

4. We investigated a Frequency Quorum-based Rendezvous (FQR) algorithm [24] and then we pre-

sented a sophisticated jamming attack in which a jammer can find the sender’s quorum set within

the second frame (i.e., 2k time slots where k is the number of elements from a minimal difference

set) [36]. Then the jammer can completely jam the sender’s frequency hopping sequence after 2k

time slots. Our simulation results show that the rendezvous probability of the FQR system un-

der the sophisticated jamming attack dramatically decreased as the number of available channel

increases.

5. We investigated a delayed random seed disclosure DSSS (DSD-DSSS) scheme [28] and then

we presented a new type of jamming attack called a seed jamming attack in which an attacker

particularly focuses on jamming the random seed(s) in fixed-size messages Thus, the receiver

cannot despread received messages because it cannot find the seed and hence cannot regenerate

the correct spread code sequences. To mitigate this jamming attack, we propose an advanced

random seed DSSS (ARS-DSSS) scheme which strengthens the previous algorithm called DSD-

DSSS by using an additional location seed. Our security analysis and implementation results

demonstrate how to defeat the seed jamming attacks and how to reduce the computation overhead

of the DSD-DSSS scheme.

The rest of the thesis is organized as follows. In Chapter 2, we presented Channel Detecting Jam-

ming Attacks (CDJAs) against modular-based channel hopping (CH) rendezvous algorithms for the

symmetric CRNs. In Chapter 3, we presented CDJAs against Jump-Stay based CH rendezvous algo-
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rithms for the symmetric CRNs. in Chapter 4, we presented CDJAs on symmetric blind rendezvous

algorithms for CRNs. In Chapter 5, we presented CDJAs on Enhanced Jump-Stay (EJS) and counter-

measures. In Chapter 6, we presented limitations of quorum-based rendezvous and key establishment

schemes against sophisticated jamming attacks. In Chapter 7, we presented enhanced security of random

seed DSSS algorithms against seed jamming attacks. Finally, in Chapter 8, we conclude this thesis.
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Chapter 2

Channel Detecting Jamming Attacks

against Modular-Based Channel Hopping

Rendezvous Algorithms for Cognitive

Ratio Networks

Efficient utilization of wireless bandwidth is a critical, if not the key, component of the wireless network

architectures that balance availability and access. Cognitive Radio Networks (CRNs) are an important

part of the solution to this problem. Common control channels (CCCs) for rendezvous in CRNs have

limitations such as single point of failure, low scalability, and susceptibility to jamming attacks. Several

rendezvous algorithms have recently been proposed that remove the need for CCCs. In particular, the

Modular Clock (MC) channel hopping rendezvous algorithms provide extremely efficient rendezvous

times for CRNs without using time synchronization and CCCs (i.e., blind rendezvous). In this chapter,

however, we present new Channel Detecting Jamming Attacks (CDJAs) in which the jammer can es-

timate the channel hopping sequences within the first-half period of the MC algorithm. Using a single

jammer and two listening channels, we show how to compute the entire MC Channel Hopping (CH)
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sequence and thus reduce the rendezvous success rate from around 95% to around 15% for the basic

period. We show this is a major security problem for CRNs utilizing the MC algorithm since any sec-

ondary user or even group of users can easily be denied access to the network with high probability. We

also compare these results to the Random rendezvous algorithm and show it vastly outperforms the MC

algorithm when there are security concerns about a channel detecting jammer.

2.1 Introduction

In cognitive radio networks (CRNs), the rendezvous problem is difficult because of the dynamically

changing of available channels at any given time. To address this problem, many different rendezvous

algorithms have been proposed and categorized based on the presence of the assisted controller, aided

rendezvous, and unaided rendezvous [6]. Under the aided rendezvous, a centralized server can control

the access from the secondary users to set up a common transmission link [5]. The secondary users can

also use dedicated common control channels to establish the transmission links [9, 20, 32, 39]. The ad-

vantages of these algorithms are the simple implementation and management of establishing the trans-

mission links for the secondary users. However, these algorithms have limitations such as reliability

issues due to bottleneck and single point of failure on the control channel, low flexibility and scalability

issues, and security attacks on the control channel (e.g., jamming and denial of service attacks).

For the unaided rendezvous, secondary users can establish one or multiple common control chan-

nels by finding each other on one of the available channels. The secondary users can also blind ren-

dezvous without having any centralized controller or dedicated CCCs. To achieve blind rendezvous,

several channel hopping (CH) algorithms [4, 6, 10, 14] have been proposed but they have limitations

such as unbounded time for rendezvous, time synchronization (TS) requirements, not being applica-

ble for multi-users, and working only for symmetric models. To address these limitations, the Modular

based clock CH rendezvous schemes [6] have been proposed to provide guaranteed rendezvous for both

symmetric and asymmetric scenarios provided each node uses a distinct forward-hop. The MC schemes

do not require time synchronization between the secondary users. That is, in the MC system, the sender

and receiver can rendezvous any time even though they independently generate the CH sequences among
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the same or different number of available channels and have hop sequences with different starting times.

However, the MC systems are still vulnerable to the CDJAs where a jammer has the capability of

listening on one or two channels and jamming one channel at a time (here the jammer’s capabilities are

close to normal secondary users). In this chapter, we focus on the symmetric MC scheme in which two

secondary users have the same number of available channels since it more clearly illustrates the charac-

teristics of our jamming attack. The asymmetric MC scheme is more complicated but the techniques we

develop can be effectively be used on it as well. Under the CDJA, the jammer can take advantage of the

MC scheme to determine the sender’s CH sequences within P time slots (here P is the smallest prime

number greater than or equal to the number of available channels M ) by using two listening channels.

Then the jammer jams the remaining time slots after an average of ⌊ (P+1)
2 ⌋ time slots. Therefore, the

rendezvous probability of the MC scheme will be decreased dramatically because the sender and re-

ceiver must rendezvous within the first-half of one P period or less on average out of the MC period of

2P.

In this chapter, we present the CDJA and evaluate its effectiveness particularly on the MC schemes [6].

Moreover, we revisit the Random rendezvous scheme [6] where the sender and receiver generate their

CH sequences by randomly selecting from the M available channels for each time slot. Since the

sender’s CH sequences are totally random, it is unfeasible for the channel detecting jammer to esti-

mate the sender’s CH sequences.

The contributions of this chapter are: first, we introduce a novel CDJA model which can detect the

sender’s CH sequence within the P time slots while using two listening channels. This can dramatically

decrease the rendezvous probability of the MC schemes [6]. Second, we revisit the Random CH scheme

to evaluate the rendezvous probability against CDJAs. This completely defeats any predictability for

the channel detecting jammer. Our simulation results demonstrate that the MC scheme is extremely

vulnerable to the CDJAs. On the other hand, the Random scheme for CRNs can be an effective, efficient

and robust rendezvous scheme against CDJAs.

The rest of the chapter is organized as follows. Section 2.2 presents the MC scheme and the CDJA.

Section 2.3 provides the simulations of our jamming attacks for both MC and Random schemes and
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discusses their results. Finally, Section 2.4 concludes the chapter.

2.2 Proposed Schemes

We propose a novel CDJA in which the jammer can dramatically decrease the probability of rendezvous

for the MC scheme [6] by utilizing the characteristics of the modular-based CH algorithm in the MC

scheme. In [6], the authors proposed both the symmetric and asymmetric scheme named Modified MC

(MMC) but we only consider the symmetric model in this chapter. The expansion of the CDJA to the

MMC scheme will be shown in a later chapter. In our CDJA, the jammer has capabilities close to the

normal user with one transmitting channel but two listening channels. However, as we will show, the

jammer can find the sender’s CH sequences within P time slots using two listening channels. Then it can

jam the sender’s remaining CH sequences after an average ⌊ (P+1)
2 ⌋ time slots. Therefore, the probability

of rendezvous for the MC scheme will be dramatically decreased under the CDJA.

We first present the MC algorithm and show how the channel detecting jammer can find the sender’s

CH sequences in the MC scheme within such a short period of time. Then we analyze its effectiveness

on the MC scheme in detail. We also revisit the Random CH rendezvous scheme to address jamming

attacks. Finally, we compare the effectiveness of the CDJA on MC and Random schemes.

2.2.1 Modular Clock Algorithm

Theis et al. [6] proposed the MC schemes for both symmetric and asymmetric models (MMC) to provide

fast rendezvous in CRNs. However, we present only the MC scheme because our jamming scheme is

most clearly presented for the symmetric case.

In the MC scheme, each secondary user runs the Modular Clock (MC) CH algorithm to generate

its CH sequences for the next 2P times slots. For example, consider the number of available channels,

M which is the same for all secondary users. Then each secondary user (e.g., unique user identification

i) finds the smallest prime number P ≥ M and selects random channel j0i and increment r0i (i.e.,

0 ≤ j0i < M and 0 ≤ r0i < P ) for the initial channel and the forward-hop rate of the user i, respectively.
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Figure 2.1: A rendezvous example of the MC scheme

Then the channel in the MC scheme [6] is determined by

cti = (j0i + t× r0i )mod P (2.1)

where cti is the channel of user i at t-th time slot. Furthermore, the modular clock algorithm constantly

remaps the channels in [M,P ) into channels [0,M). Using this MC algorithm, each user generates

CH sequences for a round of 2P time slots. Theis et al. [6] have shown that if two users run the CH

sequences, without synchronization, from the MC scheme, the time to rendezvous (TTR) is guaranteed

in 2P time slots only if the two forward-hops are different.

Figure 2.1 illustrates a rendezvous example of the MC scheme where M = 6 and P = 7. Since

there is no time synchronization, users can start at any time slots within the 2P time slots of another

user but the overlap between two CH sequences is not less than P time slots. In this example, one user

(e.g., i = 1) starts with the channel 4 at t = 1 when it randomly selects the initial channel j01 = 1 and it

jumps with the forward-hop r01 = 3. The other user (e.g., i = 2) starts with the channel 4 at t = 5 when

it randomly selects the initial channel j02 = 2 and it hops with the forward-hop r02 = 2. Then the two

user rendezvous on channel 1 at time slot t = 7.
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2.2.2 The channel detecting Jamming Attacks

In this subsection, we present a novel CDJA against the MC scheme. Here we consider one sender and

one receiver in the CRNs trying to rendezvous under the CDJA. In the MC scheme, each secondary user

uses the MC algorithm to generate its CH sequences. This guarantees that the sender and receiver can

rendezvous within the maximum 2P time slots when there are no jamming attacks and their forward-

hops are different. However, our channel detecting jammer takes advantage of the modular-based CH

properties to find the sender’s CH sequences. With two listening channels, it takes an average ⌊ (P+1)
2 ⌋

times slots for the jammer to find the sender’s CH sequences and begins jamming in the first period.

Moreover, it takes an average ⌊ (P+1)
4 ⌋ time slots for the next and all subsequent periods. Consequently,

the jamming attack can dramatically decrease the rendezvous probability of the MC system.

Assumptions: We assume that the channel detecting jammer resides in the network before the be-

ginning of the sender’s communication and waits for the sender’s signals with two listening channels.

The sender is a secondary user who starts the communication first. Without loss of generality, we as-

sume that the jammer can use spectrum sensing techniques to determine whether channels are used by

other secondary users or not. Since we consider one sender and one receiver in this scenario, the jammer

can observe the time when one user occupies one of the many available channels at a given time. Tra-

ditionally, the spectrum sensing techniques can determine whether a spectrum is used by primary users

or not [11, 15] We assume that these techniques can be extended to spectrum sensing for the secondary

users by sensing the pilots or energy of the secondary users.

For ease of presentation, we also assume the channel detecting jammer can detect the beginning of

the sender’s communication time. This assumption can be removed with only a very slight decrease in

jamming effectiveness and no change in the first 2P jamming time slots for CDJA. The essential step to

removing this assumption is to determine the end of the sender’s first 2P time slots. A key part of the

algorithm is the fact that j0i is the last slot in the first 2P slots and the base for the first slot in the second

2P slots. Using the two increments of r0i , which we determine below, from the first and the second 2P

slots allow us to determine j0i . The algorithm is more complex and we do not have space to develop it

here.
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Finding the forward-hop: Now we describe the algorithm the jammer uses to find the sender’s

CH sequences in the MC scheme [6]. In the CDJA, the fundamental goal for the jammer is to find the

sender’s CH sequences before the sender can rendezvous. Then it is easy to jam all of the sender’s

subsequent channel hops. Thus, it is critical for the jammer to find the sender’s forward-hop r0i quickly,

since the forward-hop is the key value to generate the CH sequences in the MC scheme. If the channel

detecting jammer can find the forward-hop of the sender, then the jammer can exactly generate the

subsequent CH sequences of the sender so that it can jam the remaining channels in the CH sequences

with a single jammer. We first give an example of the sender and receiver rendezvousing and show how

the jammer determines the sender’s CH sequences by hearing two different sender’s signals using two

listening channels. Then we analyze how the channel detecting jammer uses this information to interrupt

the rendezvous in the MC system.

As we described the above, in the MC scheme [6], the channel cti is determined by Equation (2.1).

Using the property of the modular clock in the MC algorithm, the channel detecting jammer can find

the forward-hop r0i by detecting the sender’s signals from two different channels. Indeed, suppose that

the jammer selects two distinct listening channels and receives the sender’s signals on ct1i at time t1 and

on ct2i at time t2. If the jammer is not detecting the beginning of the sender’s CH sequences, then the

time t1 and t2 are the jammer’s time. We see below the important part is (ct2i − ct1i ). In either case, the

jammer can calculate the sender’s forward-hop ri by:

ct1i = (j0i + t1 × r0i )mod P (2.2)

ct2i = (j0i + t2 × r0i )mod P (2.3)

and then Equation (2.3) − (2.2) gives,

((t2 − t1)× r0i )mod P = (ct2i − ct1i ).

Thus, from properties of the mod function, the forward-hop r0i is

r0i = ⌈
(P × k + (ct2i − ct1i ))

(t2 − t1)
⌉ (2.4)
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Figure 2.2: An example of finding the forward-hop in the MC scheme

where i is the node’s identification, cti is the channel at t-th time slot, j0i is the initial channel for the

node i, r0i is the forward-hop rate for the node i, and the k is the constant that satisfies the property

of 0 ≤ r0i < P . Once the jammer computes the forward-hop r0i , then it computes the initial channel

j0i from Equation (2.2) and exactly generates the sender’s CH sequences from Equation (2.1). If the

jammer does not know the beginning of the sender’s communication, it can still compute the sender’s

next hop by just adding r0i to the last hop and hence get every forward-hop. It is not necessary to get j0i

in this case.

Figure 2.2 describes how the channel detecting jammer finds the sender’s forward-hop in the MC

scheme using two listening channels for the first period. The channel detecting jammer selects the ran-

dom listening channels to hear the sender’s signals before the sender’s communication starts. In this

example, the partial CH sequence of the sender (e.g., i = 1) for the first P time slots is
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5, 7, 1(9), 0(11), 2, 4, 6, 0(8), 2(10), 1, 3

where M = 8, r01 = 2, j01 = 3, and P = 11. The CH sequences of the first P time slots repeat for

the next P time slots. For the first period, the jammer needs to randomly selects two distinct listening

channels to find the sender’s forward-hop. In Figure 2.2, the jammer randomly selects distinct channels

4 and 7 and receives the signals on the channel 7 (ct11 ) at time t1 = 2 and channel 4 (ct22 ) at time t2 = 6

for the first and second time listening times. From the listening channels and time slot information, the

jammer can compute the r01 from Equation (5.4),

r01 = ⌈
(P × k + (ct22 − ct11 ))

(t2 − t1)
⌉

= ⌈
(11 × k + (4− 7))

(6− 2)
⌉ = ⌈

(11 × k − 3)

4
⌉

0 ≤ ⌈
(11 × k − 3)

4
⌉ < 11, ∵ 0 ≤ r01 < P

then the constant k is,

3 ≤ ⌈11k⌉ < 47, 0.27 . ⌈k⌉ . 4.27.

where ct11 = 7 at t1 = 2 and ct22 = 4 at t2 = 6. The possible values of k are 1, 2, 3, and 4. Now the

forward-hop r01 is clearly constant so only one value of k can be chosen. The proof of Lemma 2 in [25]

actually shows that the k value is unique when ct11 and ct22 are not duplicate channels. We can easily see

that only k = 1 and the corresponding value of r01 = 2 satisfies the CH sequences. From Equation (2.2),

we easily see j01 = 3.

Using two listening channels, the jammer can find the sender’s CH sequences within a maximum P

time slots and an average ⌊ (P+1)
2 ⌋ time slots. To find the sender’s forward-hop within P time slots, it is

necessary for the jammer to use two listening channels for the first time period. However, the jammer

can find the forward-hop after hearing only one signal channel for the next and subsequent periods.

Since the jammer learned j0i from the first period, it can compute the new forward-hop r0i ’ when it

detects one sender’s signals at time t. That is, the jammer can find the new r0i ’ from known t, cti, P , and
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Figure 2.3: An example of finding the initial channel

j0i using Equation (2.2). Therefore, the jammer can find the sender’s CH sequence within an average

⌊ (P+1)
4 ⌋ time slots for the second and subsequent periods.

Finding the beginning of the next period: In the CDJA, the jammer has no information about the

beginning of the sender’s communication. Thus, it is important for the jammer to find the beginning

of the next period because the sender randomly chooses a new forward-hop for every 2P period. The

jammer needs to know the beginning of the next 2P period to determine when to find and use the new

forward-hop using channel listening. We should stop using the current sequence to jam at 2P . In other

words, the jammer has heard the sender’s signals from two listening channels but does not know their

positions in the sender’s sequence without the knowledge of the initial channel information.

However, our channel detecting jammer can find the exact positions of the detected channels in

the sender’s CH sequence when the forward-hops r0i and r1i change for the first 2P period and the

next 2P period. Figure 2.3 describes how the jammer can find the both r0i and r1i using two listening

channels (LCs) when the two forward-hops are different (i.e., r0i 6= r1i ). Using this detected information,

the jammer can find the initial channel j0 which is the last time slot of each period. In this example,

the jammer selects two random channels LC1 = 4 and LC2 = 7 and listens to signals before the

communication starts. Then the jammer receives two signals from ct1i = 7 at time t1 and ct2i = 4 at

time t2 in the first P period. Since the CH sequence repeats for the second P period, the ct1i and ct2i

17



will appear again at time T1 = t1 + P and time T2 = t2 + P , respectively. When the jammer detects

ct2i = 4 at time t2, it can compute both the forward-hop r0i and the sender’s CH sequence for the next

2P −max{t1, t2} period. Then the jammer starts to jam the channels in the order of the sequence from

the time t2. The jammer also starts to listen on the same LCs after the time T2 to find the new forward-

hop r1i for the next 2P period. The jammer will detect two channels cT3

i = 4 at time T3 and cT4

i = 7 at

time T4 in the 3P period as illustrated in Figure 2.3. The time slots will reset from 1 to 2P for every

2P + 1 time slots. ∆1 is the gap between the time T2 to the end of the second P period and ∆2 is the

gap between the time T2 and the time T4. Then the jammer can compute the new forward-hop r1i at time

T4. All those time slots in this example are the sender’s time slots. The jammer does not know their

corresponding positions in the sender’s sequence before it finds the initial channel j0. But the jammer

knows the gap ∆2 = |T4 − T2|. Also, (T2 + ∆1) is the time slot for the initial channel j0. Now the

jammer knows all the information except the gap ∆1. Once it computes the ∆1, it can find the initial

channel j0. The ∆1 can be computed by using the two detected channel’s information cT2

i and cT4

i . From

Equation (2.1), cT2

i at time T2 = 2P −∆1 and cT4

i at time T4 = ∆2 −∆1 are

cT2

i = (j0i + T2 × r0i )mod P

= (j0i + (t2 + P )× r0i )mod P

= (j0i + (2P −∆1)× r0i )mod P (2.5)

cT4

i = (j0i + T4 × r1i )mod P

= (j0i + (∆2 −∆1)× r1i )mod P (2.6)

where j0 is the initial channel, P is the smallest prime number greater than or equal to the number of

available channels M , r0i is the forward-hop for the first 2P period, and r1i is the forward-hop for the

next 2P period, ∆1 is the gap between the T2 and the last time slot of the second P period, and ∆2 is

the time slots between the cT2

i and the cT4

i . Thus, if r0i 6= r1i , the ∆1 can be derived from Equation (2.5)

18



− Equation (2.6),

cT2

i − cT4

i = ((j0i + (2P −∆1)× r0i )− (j0i + (∆2 −∆1)× r1i )) mod P

= (2P × r0i +∆1(r
1
i − r0i )−∆2 × r1i )mod P

∆1 = ⌈
(cT2

i − cT4

i ) + P × k +∆2 × r1i − 2P × r0i )

r1i − r0i
⌉, for 0 ≤ ∆1 ≤ P − 2 (2.7)

where r0i 6= r1i and k is the constant that satisfies the property for 0 ≤ ∆1 ≤ P − 2. From the example,

we can compute the ∆1 using Equation (2.7),

∆1 = ⌈
(cT2

i − cT4

i ) + P × k +∆2 × r1i − 2P × r0i
r1i − r0i

⌉, for 0 ≤ ∆1 ≤ P − 2

= ⌈
(4− 7) + 11× k + 9× 1− 2× 11× 2

1− 2
⌉,

0 ≤ ⌈38− 11× k⌉ ≤ 9,∵ 0 ≤ ∆1 ≤ 9

then the const k is,

27 < ⌈11 × k⌉ < 38

Thus, only the constant k = 3 satisfies the property and the corresponding value of ∆1 is 5. Therefore,

the jammer can compute the initial channel j0 = 3 that is the channel of T2+∆1 time slot in the second

P period. The beginning of the next period is T2+∆1+1. However, if the forward-hop r0i and r1i are the

same, the jammer cannot find the initial channel from Equation (2.7). The jammer needs to repeat the

same procedure for the next 2P period and to wait until it finds a different forward-hop (e.g., r1i 6= r2i )

to compute the initial channel j0.

For both cases of the same forward-hop or different forward-hop, the jammer can keep jamming

from the time t2. The jammer avoids jamming on the two LCs for the next 2P period because it needs

to compute the new forward-hop r1i . If the jammer detects the cT1

i at the T1 and T1 + P time slots and

cT2

i at the T2 and T2 + P time slots, the jammer knows r0i and r1i are the same. The jammer cannot find

the initial channel j0 in this case but it can keep jamming the channels. The jammer repeats this process
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of finding the j0 until it finds a different forward-hop. If two forward-hops are different, the jammer can

compute the initial channel j0 and then knows the beginning of the next 2P period. Once the jammer

knows the initial channel j0, the jammer only needs to know one channel information (i.e., either LC1

or LC2) to compute the new forward-hop for every 2P period after the 4P time slot. For example, as

illustrated in Figure 2.3, the jammer heard the channel cT5

i at time T5 which is the ∆3 time slots after

the time slot of the j0 in the 4P period. ∆3 is the gap between the time slot of j0 in the 4P period and

the time T5. Since cT5

i is mapped onto only once by Equation (2.1), there exists a unique r2i such that

c∆3

i = cT5

i = (j0i +∆3 × r2i )mod P .

where c∆3

i is the ∆3-th time slot of the sender’s CH sequence and the r2i is in 1 ≤ r2i < P . From the

above the example,

c∆3

i = 7 = (3 + 2× r2i )mod 11.

where cT5

i = 7, j0i = 3, ∆3 = 2, and P = 11. Then the unique value of r2i is 2 in 1 ≤ r2i < P . There

are possible rendezvous on an average of ⌈P2 ⌉ time slots between the 2P +1 and 4P time slots. But the

rendezvous probability is on an average ⌈P4 ⌉ for every 2P period after the 4P time slot once j0 is found.

Listening channel selection: The channel detecting jammer can randomly choose two listening

channels from all the available channels. Obviously, the jammer must select distinct listening channels

for the first period. It is expedient (makes the algorithm and its analysis simpler) but not necessary

for the jammer to avoid selecting channels from [0, P − M) as these are duplicate channels in the

MC algorithm [6] that are mapped onto by channels [M,P ). If the jammer selects the channels from

[0, P − M), then it is possible that the forward-hop computation allows multiple or no integer value

for k since the MC algorithm maps [M,P ) onto them. For example, suppose that the jammer selects 0

and 1 for listening channels of the sender (e.g., i = 1) from the above example. Then, the jammer can

detect the signals on the channel ct11 = 1 (9) at time t1 = 3 and the channel ct21 = 0 at time t2 = 4. The
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forward-hop r01 from Equation (5.4) is

r01 = ⌈
(P × k + (ct21 − ct11 ))

(t2 − t1)
⌉

= ⌈
(11× k + (0− 1))

(4− 3)
⌉ = ⌈11 × k − 1⌉

0 ≤ ⌈11 × k − 1⌉ < 11, ∵ 0 ≤ r01 < P

then the constant k is,

1 ≤ ⌈11k⌉ < 12, 0.09 . ⌈k⌉ . 1.09

We can easily see that only k = 1 and the corresponding value of r01 = 10. However, the r01 does not

satisfied the channel sequence in this case.

To solve this problem, the jammer computes the forward-hop r01 using ct11 = 9 instead of ct11 = 1.

Then the jammer can correctly compute the forward-hop r01 = 2. However, the jammer cannot immedi-

ately determine whether the ct11 is the channel 1 or the channel 9 (1). Thus the jammer needs to compute

the forward-hop for both ct11 = 1 and ct11 = 9 and generates the sender’s next CH for both forward-

hops. Then the jammer listens on one channel and jams the other for one slot. This clearly determines

which CH sequence is correct. To remove this ambiguity, we assume that the jammer avoids selecting

duplicated channels. The number of duplicated channels is also relatively small compared to M (e.g.,

the maximum number of duplicated channels is 7 for M = 89, where 3 ≤ M ≤ 100). We can, in fact,

improve our channel finding algorithm by choosing one or two channels in [0, P −M) since it doubles

the number of possible ”hits” and it will further degrade the MC scheme Our simulation results listen

for channels not in [0, P −M).

2.2.3 Random Channel Hopping Rendezvous

The rendezvous probability of the MC scheme can be dramatically decreased under the CDJA. To mit-

igate this jamming attack, we consider Random CH rendezvous algorithms. There are no guaranteed
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rendezvous algorithms under any jamming attacks. The Random CH rendezvous algorithm is a robust

CH algorithm against jamming attacks. In the Random system, a sender and receiver randomly select one

channel out of the M available channels for each time slot. The formula
∑

(1/M)(1−1/M)k−1∗k = M

shows the expected TTR for the Random scheme is M time slots when there are no jamming attacks.

However, it is unfeasible for any jammer to estimate when the Random sender and receiver might ren-

dezvous. That is, the expected TTR for the Random scheme would be almost the same as M time

slots under the CDJAs. Hence, the Random scheme for CRNs can be an effective, efficient and secure

rendezvous scheme against CDJAs.

2.3 Simulation results

We implemented the CDJA on Matlab 2010b to evaluate its effectiveness against the MC scheme. We

implement the natural scenario where the jammer resides in the network and is listening on two distinct

channels before the communication starts. The jammer has one jamming channel for the MC scheme.

We also implemented the Random rendezvous scheme to demonstrate that it is more robust against the

CDJA compared to the MC scheme. The jamming attack for the Random scheme jams two random

channels for the entire rendezvous time.

First we compare the probability of rendezvous for both MC and Random schemes when there

are no jamming attacks. The rendezvous time is always measured from the start time of the receiver.

Figure 2.4 depicts the rendezvous probability for both schemes within P time slots where the number of

available channels M varies from 3 to 100. We ran 1000 simulations for each available channel M and

calculated the average probability of rendezvous for both schemes. In this case, the sender and receiver

start to rendezvous at the same time so we can compare these results with the theoretical probability

of MC rendezvous described in [6]. Our simulation results are close to the theoretical values. This

simultaneous start of sender and receiver is the most optimistic, but very unrealistic, scenario for the

MC algorithm. The MC scheme does not required time synchronization (TS) between the sender and

receiver. Figure 2.5 depicts the probability of rendezvous for both MC and Random without TS. That is,

the receiver can start at any time slot after the sender starts. The probabilities of rendezvous for the MC
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Figure 2.4: The rendezvous probability for the MC and Random schemes with time synchronization

(TS) for ≤ P time slots

23



0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of available channels

T
h

e
 p

ro
b

a
b

ili
ty

 o
f 

re
n

d
e

z
v
o

u
s

 

 

MC

Random

Figure 2.5: The rendezvous probability for the MC and Random schemes without time synchronization

(TS) for ≤ P time slots
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Figure 2.6: The average time to rendezvous (TTRs) for the MC and Random without time synchro-

nization (TS) (100% success rate)

scheme decrease around 5% for no start synchronization case but the probability of rendezvous for the

Random scheme is essentially unchanged.

Next we compare the average TTRs for both MC and Random schemes without jamming attacks.

Since both MC and Random schemes cannot guarantee the rendezvous, the sender and receiver must

continue their algorithms until rendezvous occurs. Thus the rendezvous success rates is 100% for both

schemes. Figure 2.6 gives the average TTRs for MC and Random schemes with no TS between the

sender and receiver. This figure shows that the average TTRs for both schemes increase steadily as the

number of available channels increases. For the MC scheme, the maximum expected TTR is bound by

2P 2

P−1 ; see [6]. The average TTR from our implementation is slightly over half the available channels M
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Figure 2.7: The probability of rendezvous for the MC and Random with TS under the CDJA (≤ 2P
time slots)

which is an extension of but consistent with the results from [6]. The sender and receiver frequently

rendezvous during the first overlap of P
2 time slots. The average TTR for the Random scheme is close

to M time slots.

Now we compare the probability of a rendezvous for both MC and Random schemes under the

CDJA. We implemented both TS and no TS cases between the sender and receiver for both schemes.

Since the channel detecting jammer always resides in the network before the communication, the jam-

mer can detect the sender’s CH sequence in an average ⌊ (P+1)
2 ⌋ time slots with two listening channels.

Then the jammer can jam the remaining CH sequence with a single jammer. Figure 2.7 shows the

probability of rendezvous for both systems with TS until the end of 2P time slots. The probability
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Figure 2.8: The probability of rendezvous for the MC and Random without TS under the CDJA (≤ 2P
time slots)
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of rendezvous for the MC scheme decreases from around 95% to around 65%. Figure 2.8 shows the

probability of rendezvous for both systems without sender/receiver start time synchronization (normal

situation). In this case, the probability of rendezvous for the MC scheme is dramatically decreased under

the CDJA. The rendezvous probability is less than 15% for almost all available channels numbers. How-

ever, the Random scheme rendezvous probabilities for both cases are almost the same as when there are

no jamming attacks. It is over 90% for most M .
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Figure 2.9: The average TTRs for the MC and Random under CDJAs (100% success rate)
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Finally, we compute the average TTRs for MC and Random schemes under the CDJAs. We calcu-

lated the average TTRs by running the algorithms until rendezvous occurred (i.e., success rendezvous

rates are 100% for both schemes with TS and without TS cases). Figure 2.9 gives the average TTRs for

MC and Random schemes. This figure shows that the average TTRs for the Random scheme are ap-

proximately M time slots for both TS and no TS cases which are close to the TTR for the no jamming

attack case. However, for most M , the expected TTRs for the MC scheme are close to 3P time slots and

5P time slots for the TS and no TS respectively. Therefore, the CDJA with a single jammer is extremely

effective for the MC scheme but is minimally so for the Random scheme. The MC algorithm itself can

be very modestly improved against CDJA by selecting a new channel j0i every 2P time slots.

2.4 Conclusion

In this chapter, we presented a novel jamming attack called CDJA and demonstrated its effectiveness

against the MC scheme [6]. The channel detecting jammer is able to take advantage of the MC algorithm

(its method of generating its CH sequence) to find the sender’s CH sequence within the first P time

slots using two listening channels. Then the jammer can completely jam the sender after an average

⌊ (P+1)
2 ⌋ time slots using just a single channel jammer. To remedy this jamming problem, we revisited

the Random CH rendezvous scheme. Our simulation results demonstrate that the rendezvous probability

of the MC system under the CDJA is dramatically decreased for all available channels M (e.g., to

around 15% for most M ). On the other hand, the rendezvous probability of the Random scheme is

almost steady for all M (nearly 90%). Therefore, the Random scheme can be an effective, efficient and

robust rendezvous scheme against CDJAs. Since MC does not guarantee TTR and it is very susceptible

to jamming attacks and the Random scheme provides shorter expected TTR, it appears that the Random

scheme provides more security when timely rendezvous for CNRs are required.
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Chapter 3

Channel Detecting Jamming Attacks

against Jump-Stay Based Channel

Hopping Rendezvous Algorithms for

Cognitive Radio Networks

In this chapter, we exploited the Jump-Stay (JS) based channel hopping rendezvous algorithms because

it can provide guaranteed rendezvous for CRNs with no time synchronization or CCCs (i.e., blind ren-

dezvous). However, the JS algorithms are still vulnerable to Channel Detecting Jamming Attacks (CD-

JAs) in which the jammer can estimate the channel hopping sequences within the first jump-pattern. The

jammer can compute the entire JS channel hopping sequence and thus reduce the rendezvous success

rate from 100% to less than 20% and 10% using one and two listening channels respectively. To mitigate

this problem, we revisit both the Random rendezvous scheme and the Role-based Channel Rendezvous

(RCR) scheme extended from role-based rendezvous algorithms to increase the probability of the ren-

dezvous against the CDJAs. We also compare the JS algorithm to both the Random and RCR algorithms

and show the Random and RCR vastly outperform the JS algorithm when there are security concerns
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about a channel detecting jammer. Especially, the effectiveness of CDJA is negligible for the Random

and RCR schemes but their expected time to rendezvous (TTR) is close to the JS’s expected TTR.

3.1 Introduction

In the unaided rendezvous [6], the secondary users (SUs) can establish one or multiple common control

channels by finding each other on one of the available channels. The SUs can also blind rendezvous with-

out having any centralized controller or dedicated CCCs. To achieve blind rendezvous, several channel

hopping (CH) algorithms [4, 6, 10, 14] have been proposed but they have the limitations such as un-

bounded time for rendezvous, time synchronization requirements, not being applicable for multi-users,

and working only for symmetric models. To address these limitations, the Jump-Stay (JS) based chan-

nel hopping rendezvous schemes [25] have been proposed to provide guaranteed rendezvous for both

symmetric and asymmetric scenarios. The JS schemes does not require time synchronization between

the SUs. That is, in the JS system, the sender and receiver can rendezvous any time even though they

independently generate the CH sequences among the same or different number of available channels

and have hop sequences with different starting times.

However, the JS algorithms are still vulnerable to channel detecting jamming attacks (CDJAs) where

a jammer has the capability of listening on one or two channels and jamming one channel at a time (e.g.,

the jammer’s capabilities are close to normal SUs). We first focus on the symmetric JS scheme in which

two SUs have the same number of available channels because it is easier to present the CDJA in this

setting. The asymmetric JS scheme is solved after the basic techniques are set. Under the CDJAs, the

jammer can take advantage of the JS scheme so that it can determine the sender’s channel hopping

sequences within 2P time slots or P time slots (here P is the smallest prime number greater than the

available channels M ) using one listening or two listening channels respectively. Then the jammer jams

the remaining time slots after an average P time slots for one listening channel and an average ⌊ (P+1)
2 ⌋

time slots for two listening channels. Therefore, the rendezvous probability of the JS scheme will be

decreased dramatically because the sender and receiver must rendezvous within the first period or less

on average.
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In this chapter, we present the CDJA and evaluate its effectiveness on the JS schemes. Moreover, we

revisit both the Random rendezvous scheme and the Role-based Channel Rendezvous (RCR) scheme

extended from the role-based rendezvous algorithm [16]. For example, the sender and receiver in the

Random scheme randomly select one of the available channels M for each time slot. However, in the

RCR scheme, the sender generates its channel hopping sequences by permuting the M slots for each

period and the receiver selects one random channel from M and waits there until the end of 2P slots.

The main difference between the Random and RCR schemes is that the RCR scheme can guarantee

the rendezvous when there are no jamming attacks but requires the roles of sender and receiver. Since

the sender’s channel hopping sequences are random for both schemes, it is unfeasible for the channel

detecting jammer to estimate the sender’s sequences.

The primary contribution of this chapter is that we show how to mount a debilitating jamming

attack against the JS rendezvous scheme. We introduce a novel CDJA model which can detect the

sender’s channel hopping sequence within the 2P time slots or P time slots while using one or two

listening channels respectively. This can dramatically decrease the rendezvous probability of the JS

schemes. As an alternative to the JS scheme, we revisit the Random and RCR schemes to increase

the rendezvous probability against the CDJAs. They effectively decrease predictability for the jammer

to find the sender’s CH sequence in CRNs. Our simulation results demonstrate that the JS scheme is

extremely vulnerable to the CDJAs. On the other hand, the Random and RCR schemes for CRNs can

be an effective, efficient and robust rendezvous scheme against CDJAs. In a benign environment, the

expected TTR of the RCR and JS schemes are almost the same.

The rest of the chapter is organized as follows. Section 3.2 describes relevant background for the JS

scheme. Section 3.3 presents the CDJAs and Random and RCR schemes. CDJA extensions follow in

Section 3.4. Section 3.5 provides the simulations of our jamming attacks on the JS, Random, and RCR

schemes and discusses their results. Finally, Section 3.6 concludes the chapter.
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3.2 Preliminary

Lin Zhiyong et al. [25] proposed the JS schemes for both symmetric and asymmetric models to provide

guaranteed rendezvous in CRNs [25]. We present the JS scheme for the symmetric model in this section

since it clearly illustrates the characteristics of our jamming attack. Moreover, our attack is extended in

Section 3.4 to the asymmetric JS scheme.

In the JS scheme, each SU runs the JSHopping algorithm to generate its CH sequences that consists

of a jump-pattern and a stay-pattern. Each SU first performs the jump-pattern twice to jump on available

channels and then performs the stay-pattern to stay on a specific channel. Let the number of available

channel to be M and that is the same for all the SUs in the symmetric JS scheme. Then each SU finds

the smallest prime number P ≥ M and selects random channels i0 and r0 (i.e., 1 ≤ {i0, r0} ≤ M ) for

the starting channel and the step-length, respectively. Using this channel information, the user generates

CH sequences for a round of 3P time slots that consists of two jump-patterns for 2P time slots and one

stay-pattern for P time slots. Then Lin Zhiyong et al. [25] have shown that if two users runs the JS CH

sequences, rendezvous is guaranteed in 3P time slots.

In this section, we briefly introduce the properties of the JS algorithm. We borrow the terminologies

as defined in [25].

Lemma 1 Given a positive integer P , if r ∈ [1, P ) is relatively prime to P , (i.e., the only common

factor between them is 1), then for any x ∈ [0, P ) the sequence S =< x%P + 1, (x + r)%P +

1, · · · , (x+ (P − 1)r)%P + 1 > is a permutation of < 1, 2, · · · , P >.

Lemma 2 Given a prime number P , if r1 and r2 are two different numbers in (0, P ), then for any x1 ∈

[0, P ) and x2 ∈ [0, P ), there must be an integer k ∈ [0, P ) such that (x1 + kr1)%P = (x2 + kr2)%P .

Theorem 1 Under the symmetric model, any two users performing JS 2 SM (where JS 2 SM is as

described above) achieve rendezvous in at most 3P time slots, where P is the smallest prime number

greater than M .
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Figure 3.1: An example of the symmetric JS scheme

The two lemmas guarantee not only that the JSHopping algorithm visits all available the channels

in any consecutive P time slots of the jump-pattern but also two users will rendezvous if the overlap

of two jump-patterns is not less than P time slots with different step-lengths. Figure 3.1 illustrates a

rendezvous example of the JS scheme where M = 4 and P = 5. Since there is no time synchronization,

users can start at any time slots within the 3P time slots of another user but the overlap between two

jump-patterns is not less than P time slots. For example, one user starts with i1 = 2 at t = 1 and jumps

with the step-length r1 = 1. The other user starts with i2 = 3 at t = 5 and jumps with the step-length

r2 = 2. Then the two users rendezvous on channel 4 at time slot t = 8 which then satisfies the Lemmas.

In the JS scheme, the authors also proved that the maximum time to rendezvous (MTTR) is at most 3P

time slots as described in the Theorem 1.

3.3 Proposed Schemes

We propose a novel CDJA in which the jammer can dramatically decrease the probability of rendezvous

for the JS scheme [25] by utilizing the characteristics of the jump and stay-patterns in the JS scheme. In

our CDJA, the jammer has capabilities close to the normal user such as listening on one or two channels
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at the same time but jamming one channel at a time. However, as we will show, the jammer can find the

sender’s CH sequences within 2P or P time slots using one or two listening channel respectively. Then

it can jam the sender’s remaining CH sequences after an average P or ⌊ (P+1)
2 ⌋ time slots for one or

two listening channels. Therefore, the probability of rendezvous for the JS scheme will be dramatically

decreased under the CDJAs.

We first present algorithms showing how the channel detecting jammer can find the sender’s CH

sequences in the JS scheme [25] within such a short period of time. Then we analyze its effectiveness

on the JS scheme. We also revisit the Random rendezvous algorithm and the RCR scheme to address

jamming attacks.

3.3.1 The Channel Detecting Jamming Attacks

In this subsection, we present a CDJA. Here we consider one sender and one receiver in the CRNs

trying to rendezvous under the CDJA. In the JS scheme, each SU uses the jump-stay channel hopping

algorithm to generate its CH sequences described in the preliminary section. This guarantees that the

sender and receiver can rendezvous within the maximum 3P time slots when there are no jamming

attacks. However, our channel detecting jammer takes the advantage of the jump-stay channel hopping

properties to find the sender’s CH sequences.

Now we describe how the channel detecting jammer finds the sender’s CH sequences in the JS

scheme. In CDJA, the fundamental goal for the jammer is to find the sender’s CH sequences before the

sender can rendezvous. The step-length is the key value to generating the JS CH sequences so that it

is critical for the jammer to find the sender’s step-length r0 as fast as possible. We also need the initial

channel selection i0 but that is easy to determine once the step-length is found. Using the step-length, the

jammer can exactly generate the entire CH sequences of the sender. Therefore, the jammer can jam the

remaining channels in the CH sequences with a single jammer. We first give an example of the sender

and receiver rendezvousing and how the jammer determines the sender’s CH sequences by hearing the

sender’s signals with one or two listening channels. Then we analyze how the channel detecting jammer

uses this information to defeat the rendezvous in the JS system.
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We consider two different scenarios for the CDJA on the JS scheme depending on whether the

jammer has knowledge of the sender’s communication time or not. The first scenario is that the jammer

can determine the beginning time of the sender’s communication while the second scenario assumes the

jammer cannot find this beginning time. Without loss of generality, we assume in the first scenario that

the jammer can use spectrum sensing techniques to determine whether channels are used by other SUs

or not. Since we consider one sender and one receiver in this scenario, the jammer can observe the time

when one user occupies one of the many available channels at any given time. This is not a specific

channel though. The jammer keeps spectrum sensing to check whether any new channels are occupied

by other SUs or not. Initially we implement the first scenario since CDJA is clearer there and we solve

the second scenario in Section 3.4.

For both scenarios, the jammer’s capabilities are close to the legitimate SUs. We consider one or two

listening channels. First, we describe the first scenario of the CDJA on the JS scheme when the jammer

uses one listening channel. In this case, the jammer randomly selects one of the available channels and

waits there until it receives signals from the sender. When the jammer receives signals, it then randomly

selects another different channel and wait there until it receives the sender’s signals on that channel.

Since the jammer knows the beginning of the sender’s communication, the jammer can receive two

signals from different channels within the first or second jump-pattern of the JS scheme. We show the

jammer can calculate the step-length of the sender’s CH sequences from two channel hits and then it

can exactly generate the sender’s CH sequences. In the JS scheme, the channel c in the jump-pattern is

determined by

ci = (i0 + ti × r0 − 1) % P + 1

where ci is the channel at ith time slot and remapped ci = ci % M + 1 for ci > M , i0 is the initial

channel, r0 is the step-length, and P is the smallest prime number greater than the number of available

channels. Suppose that the jammer receives the sender’s signals on c1 at time t1 and on c2 at time t2.

Assume we have chosen c1 and c2 as discussed in Section 3.4-B so that they are not mapped onto by the
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Figure 3.2: An example of finding the step-length with one listening channel

M remapping. Then the jammer can calculate the sender’s step-length r0 using

c1 = (i0 + t1 × r0 − 1)%P + 1 (3.1)

c2 = (i0 + t2 × r0 − 1)%P + 1 (3.2)

and then equation (5.3) − (5.2) gives,

((t2 − t1)× r0)%P = (c2 − c1).

Thus, the step-length r0 is

r0 = ⌈
(P × k + (c2 − c1))

(t2 − t1)
⌉ (3.3)
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where the k is the constant that satisfies the property of 1 ≤ r0 ≤ M and matches the jump-pattern.

Once the jammer can compute the step-length r0, then the jammer computes the initial channel i0 from

equation (1) and exactly generates the sender’s CH sequences.

Figure 3.2 describes how the channel detecting jammer finds the sender’s step-length in the JS

scheme using one listening channel. The channel detecting jammer selects the random listening channels

to hear the sender’s signals where M = 4, r0 = 1, i0 = 3, and P = 5. In this example, the complete

channel hopping sequences of the sender is

3, 4, 5(1), 1, 2, 3, 4, 5(1), 1, 2, 1, 1, 1, 1, 1

where the total 3P time slots consists of the first 2P time slots for the jump-patterns and the last P time

slots for the stay-pattern. The stay-pattern is just the step size r0. To detect two sender’s signals, the

jammer randomly selects channel 4 for the first listening channel and channel 2 for the second listening

channel. Then the jammer receives the signals on the channel 4 (c1) at time t1 = 2 and channel 2 (c2)

at time t2 = 5. From the listening channels and time slot information, the jammer can compute the r0

from the equation (5.4),

r0 = ⌈
(P × k + (c2 − c1))

(t2 − t1)
⌉

= ⌈
(5 × k + (2− 4))

(5− 2)
⌉ = ⌈

(5 × k − 2)

3
⌉

1 ≤ ⌈
(5× k − 2)

3
⌉ ≤ 4, ∵ 1 ≤ r0 ≤ M

then the constant k is,

5 ≤ ⌈5k⌉ ≤ 14, 1 ≤ ⌈k⌉ ≤ 2.8

where c1 = 4 at t1 = 2 and c2 = 2 at t2 = 5. The possible values of k are 1 or 2 . Now the step-length

r0 is clearly constant so one value of k can be chosen. The proof of Lemma 2 in [25] actually shows

that the k value is unique. We can easily see that k = 1 and the corresponding value of r0 satisfies the
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Figure 3.3: An example of finding the step-length with two listening channels

jump-pattern. Hence we choose k = 1 and reject k = 2. Thus, the step-length r0 should be 1 for k = 1.

With one listening channel, the jammer might not receive the sender’s signals within the first jump-

pattern. Since the jammer uses one listening channel, the time to detect two sender’s signals depends on

the order of listening channels described in Figure 3.2(a) and (b). Thus, the channel detecting jammer

can detect the sender’s signals from two different channels within two jump patterns (2P ) and an average

of P time slots. However, for two listening channels, the jammer can always detect the sender’s two

signals within the first jump-pattern (P time slots). In Figure 3.2 (b), the jammer with one listening

channel cannot detect channels 4 then 3 within the first jump-pattern (i.e., P time slots). But Figure 3.3

shows that the jammer with two listening channels can detect both channel 3 and 4 within the first

jump-pattern because there is no order of listening channels. Thus, the jammer can find the sender’s CH

sequences within a maximum P time slots and an average ⌊ (P+1)
2 ⌋ time slots. Therefore, the jammer

in the first scenario can jam the remaining channels for an average 2P time slots and an average 2P +

⌊ (P+1)
2 ⌋ time slots for one and two listening channels respectively. The probability of rendezvous will

be dramatically decreased under the CDJA.

3.3.2 Role-based Channel Rendezvous

The rendezvous probability of the JS scheme can be dramatically decreased under the CDJA. To mitigate

this jamming attack, we consider Anderson and Weber’s algorithm [16] called role-based rendezvous
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Figure 3.4: An example of rendezvous in the RCR Symmetric scheme

scheme [6] and extend it to the Role-based Channel Rendezvous (RCR) scheme as a countermeasure

against the CDJAs. In the RCR system, a sender generates a randomized permutation of the M available

channels for every frame. The receiver randomly selects one channel out of M channels stays there until

the end of two frames (i.e., 2M time slots). Thus it is unfeasible for the channel detecting jammer to

estimate when the sender and receiver might rendezvous. Figure 3.4 illustrates the example of RCR

scheme where M = 5. One user generates the CH sequences by permuting {1, ...,M} for every frame.

The other user randomly selects channel 4 and waits on the channel until rendezvous. The two users

rendezvous on the channel 4 at time t = 8. In the RCR scheme, if there is no time synchronization

between users, then there must be an overlap between the two users of 2M time slots to rendezvous.

Thus the maximum time to rendezvous (TTR) of the RCR scheme is 2M time slots but its expected

TTR is between ⌊ (M+1)
2 ⌋ and M time slots.

However, the RCR scheme has limitations such as the requirement of predefined roles for users and

an impersonated attack to find the receiver’s channel. When a user acts as a sender, it generates the

permutated sequence of M channels. When it plays a receiver’s role, it randomly selects one random

channel out of M and stays that channel for 2M time slots. These roles are predefined before the system

starts. Moreover, a jammer in the RCR system can impersonate the sender and send signals using a
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random permutation sequence. If the receiver receives the jammer’s signals before the sender’s, then the

receiver will first response to the jammer to rendezvous. Therefore, the jammer can find the receiver’s

random channel and jam the channel in the remaining time slots to prevent the possible rendezvous be-

tween the sender and receiver. One possible solution to this attack has the receiver immediately choosing

another random channel when it fails the authentication of the jammer or receives no response from it.

For example, suppose that a receiver randomly selects a channel from M available channel for every

2M time slots. The jammer sends a random M permutation sequence to the receiver. When the receiver

and the jammer rendezvous, the receiver will respond to the jammer to exchange information or data.

When the jammer receives the response, the jammer knows the receiver’s random channel so that it can

jam the remaining channels of the sequence. However, it is difficult for the jammer to establish a con-

nection to the receiver without passing authentication process. Thus, the receiver immediately choose a

another random channel for 2M time slots when it knows there is a failure. The jammer never receives

more channel information.

3.3.3 Random Channel Rendezvous

We also revisit the Random CH rendezvous algorithm [6] to mitigate the CDJAs. In fact, there are

no guaranteed rendezvous algorithms under any jamming attacks so that the Random CH rendezvous

algorithm could be the most robust CH algorithm against jamming attacks. In the Random system, a

sender and receiver randomly select one channel out of the M available channels for each time slot. The

formula
∑

(1/M)(1 − 1/M)k−1 ∗ k = M shows the expected TTR for the Random scheme is M time

slots when there are no jamming attacks. However, it is unfeasible for any jammer to estimate when

the Random sender and receiver might rendezvous in the Random scheme Thus the expected TTR for

the Random scheme would be almost the same as M under the CDJAs. Hence, the Random scheme for

CRNs can be an effective, efficient and secure rendezvous scheme against CDJAs.
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3.4 Extensions of CDJA

In this section, we describe how to remove time synchronization restriction for the second scenario,

the efficiencies in selecting listening channels, and the effectiveness of CDJAs on the asymmetric JS

scheme.

3.4.1 No Time Synchronization

In the second CDJA scenario for the JS scheme, the channel detecting jammer cannot estimate the

beginning of the sender’s communication by using spectrum sensing techniques. In this scenario, we

assume only that the jammer resides in the network before the communication starts. Moreover, we

only consider the case of a jammer with two listening channels because it simplifies the presentation

and is significantly more efficient. However, this can be done with one listening channel. The cost of a

second listening channel is modest.

The jammer can always hear two sender’s signals within the first pattern (i.e., P time slots) of

the JS scheme. When the jammer detects two sender’s signals, the jammer can find the step-length r0

from equation (3), generate the sender’s CH sequences from the time of the second signal, and jam all

remaining time slots using cnext = (clast + r0)%P + 1.

However, the jammer cannot immediately compute the initial channel i0 because it has no knowl-

edge about the beginning of the sender’s communication. The initial channel information is important

for the jammer to determine the beginning of the stay-pattern and the next period so that the jammer can

jam all the r0 channels. For example, the first channel of the second period in the JS scheme is

ci = (i0 + ti × (r
′

0)− 1) % P + 1

where the new step-length is r
′

0 = r0 + 1. Thus the jammer can generate the sender’s sequences for

the consecutive periods from known r0 and i0 information and jam all slots continuously with a single

jammer.

To find the initial channel i0, the jammer needs to add an additional step to find the beginning of

the stay-pattern. Figure 3.5 describes how to find the step-length r0 and the initial channel i0 using
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Figure 3.5: Cases for detecting the sender’s channels in the second scenario

two listening channels. When the jammer detects the sender’s second signal on a channel at time t, the

jammer can compute r0 from equation (3) and jam the remaining time slots using cnext = clast + r0.

Note that t is in the first jump-pattern. After P + t time slots, the jammer listens on the channel r0

to find the beginning of the stay-pattern. That is, if the jammer hears two consecutively signals on the

channel r0 between P + t and 2P + 2 time slots, then the jammer knows that the first time slot is the

beginning of the stay pattern. There is another possibility that the jammer detects a signal on r0 between

P + t and 2P time slots because the channel r0 is a channel in the sender’s sequence of the second

jump-pattern. In this case, the jammer waits to detecting another signal on the channel r0. That time

slot is the beginning of the stay pattern. In either case, the jammer does not jam r0 for at most two time

slots because the jammer cannot listen and jam a channel at the same time. When the jammer finds the

beginning of the stay pattern, it can compute the initial channel i0 from the channel information of the

last time slot in the second jump-pattern using equation (1). Therefore, the jammer can still effectively

jam the JS scheme when there is no time synchronization. Simulation results will confirm this.
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3.4.2 Listening Channel Selection

Jammer selection of the listening channels in CDJA can improve performance. Most of time the jammer

can randomly select listening channels but the jammer should avoid selecting channels from (M,P ]

because the JS algorithm maps these channels back onto [1,M ] channels which are then duplicated.

That is, if the jammer selects the channels that are mapped onto by (M,P ], then it is possible that the

step-length can be ambiguous because the channels from (M,P ] are duplicated with other channels in

the JS algorithm.

From the above example, suppose that the jammer selects 1 and 3 for listening channels and detects

signals from the following CH sequence

3, 4, 5(1), 1, 2, 3, 4, 5(1), 1, 2, 1, 1, 1, 1, 1.

Then the jammer can detect the signals on the channel c1 = 1 (5) at time t1 = 3 and the channel c2 = 3

at time t2 = 6 for the first time and second time, respectively. The step-length r0 from the equation (5.4)

is

r0 = ⌈
(P × k + (c2 − c1))

(t2 − t1)
⌉

= ⌈
(5 × k + (3− 1))

(6− 3)
⌉ = ⌈

(5 × k + 2)

3
⌉

1 ≤ ⌈
(5× k + 2)

3
⌉ ≤ 4, ∵ 1 ≤ r0 ≤ M

then the constant k is,

1 ≤ ⌈5k⌉ ≤ 10, 0.2 ≤ ⌈k⌉ ≤ 2

Therefore, the step-length r0 = 2, 4 for the constant k = 1, 2 respectively. Neither of which satisfies the

jump-pattern.

On the other hand, if the jammer computes the step-length r0 using c1 = 5 instead of c1 = 1, then

it can correctly compute the step-length r0 = 1. However, the jammer cannot immediately determine
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whether the c1 is the channel 1 or the channel 5. Thus, in this case, the jammer needs to compute the

step-lengths for both c1 = 1 and c1 = 5 cases and generates all possible the sender’s CH sequences for

all the step-lengths. Then the jammer listens on the next channel for one of the possible CH sequences

to determine whether the CH sequence is correct or not. In this chapter, we assume that the jammer

avoid selecting the duplicated channels because this removes the ambiguity of the step-lengths. The

number of duplicated channels is relatively small compared to the number of available channels (e.g.,

the maximum number of duplicated channels for 4 ≤ M ≤ 100 is 7 for M = 89). Hence it is expedient

to avoid, for the channel selection, those channels that are mapped onto by (M,P ] channel selection but

it is not required.

3.4.3 CDJA for the Asymmetric JS Scheme

The asymmetric model for CH rendezvous assumes two users have different available channels sets

and they are not known to each other. The basic idea of JS for the asymmetric model is to expand the

set of possible channels to the union of the available channels and let G denote the intersection of the

available channels. As in [25], we let M denote the set of all channels under possible consideration and

we make exactly the same assumptions here as in [25]. Their basic algorithm for asymmetric CH, which

we denote AJS, does not guarantee rendezvous in 3P time slots but does so in 6MP (P −G) time slots.

AJS is the same as JS except it increments the step-length every 3P times slots and the starting-index

every 6MP time slots.

Here we assume CDJA does not have time synchronization with the sender but uses two listening

channels. Our CDJA then applies as above with the modification that we need to increment the i0 as

needed. Hence CDJA is effective against the AJS. In [25], the authors subsequently integrate a random-

replace operation into AJS that replaces unavailable channels in their CH sequence with random avail-

able channels. The guaranteed rendezvous was not proven for this case. However we can modify our

CDJA so that it applies effectively here as well.

Suppose we hear c1 at t1 and c2 at t2 as before. We compute r0 as before but c1 or c2 may be a

random channels and hence r0 is not certain. We jam on cnext = clast + r0 as before but we continue to
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listen on two other channels for up to P slots beyond max{t1, t2}. When we hear c3 at t3 (guaranteed

to happen) we compute two new r0s based on each pair of the three data points. If two of the r0s match

we use it; otherwise we use the r0 based on the most recent channels heard. We continue to listen and

compute all possible r0s and use the majority r0 to compute the CH sequence on which to jam. It has the

highest probability of being correct. Once we get beyond max{t1, t2} + P , then we listen on the two

most probable r0s for the stay-pattern as was done above since time is not synchronized here either. Then

we know with high probability both r0 and i0 and can jam every subsequent channel (except of course

the random-replace channels) until we complete 6MP time slots. Since r0 and i0 are just incremented,

we can trivially compute all subsequent CH sequences and jam them as well.

Both Random and RCR extend easily to the asymmetric case by just choosing randomly or random

permutations from their own set of available channels. Future work will examine their performance for

various percentages of common channels between users and also under various jamming scenarios.

3.5 Evaluation

We implemented the CDJA on Matlab 2010b to evaluate its effectiveness against the JS scheme. We first

implemented the jamming attacks for the first scenario in which the jammer knows the beginning of the

sender’s communication time. This implementation includes the cases that the jammer uses both one and

two listening channels. We also implemented the CDJA for the second scenario where the jammer has

no knowledge of the beginning of the sender’s communication time. In this scenario, the jammer uses

two listening channels because it simplifies the presentation and is significantly more efficient without

increasing cost much. We then implemented both the Random and the RCR schemes to demonstrate

that they are more robust against the CDJA compared to the JS scheme. The jamming attack for both

the Random and RCR schemes are random channel jamming that continues for the entire rendezvous

time. Because of the permutation in the RCR scheme, a very modest increase in jamming effectiveness

can be gained by looking at the end of each period which can limit the possible channels to jam.

First we compare the expected TTR for the JS, Random, and RCR schemes when there are no

jamming attacks. Figure 3.6 gives the average TTRs for the JS, Random, and RCR schemes where
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Figure 3.6: The average time to rendezvous (TTRs) for the JS, Random, and RCR schemes

the number of available channels M varies from 4 to 100. We ran 1000 simulations for each available

channel and calculated the average TTR for them. This figure shows that the average TTRs for all

schemes increase steadily as the number of available channel increases. For the Random scheme, the

expected TTR is M . However, the expected TTR for the RCR scheme is between ⌊ (M+1)
2 ⌋ and M and

the average TTR from the implementation is slightly over half the available channels M . The main

reason for better performance is that the sender and receiver usually rendezvous during the first overlap

of M time slots. Overall, the average TTR for the Random scheme is almost twice that of the other

schemes. The average TTR for the RCR scheme is slightly better than the JS scheme.

Next we compare the expected time for finding the step-length in the JS scheme with the expected
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TTR of the JS scheme. We implemented finding the sender’s step-length algorithms using both one and

two listening channels (LCs). If the jammer uses one listening channel, the upper bound of finding the

sender’s step-length is 2P time slots and the average time is approximately P time slots. However, using

two listening channels, the jammer can find the sender’s step-length within the first P time slots and it

can find the step-length in an average of ⌊ (P+1)
2 ⌋ time slots. Figure 3.7 shows the expected time for

finding the sender’s step-length using both one and two listening channels. The expected time for two

listening channels is slightly higher than ⌊ (P+1)
2 ⌋ time slots because of the duplicated channels from

(M,P ] channels. The average time for finding the step-length with two listening channels is close to

the expected TTR for the JS scheme. In the CDJA, if the jammer finds the sender’s step-length, then the

jammer can exactly generate the sender’s CH sequences to jam. This means that the sender and receiver

must rendezvous in an average ⌊ (P+1)
2 ⌋ time slots under the CDJA or they will fail to rendezvous.

But [25] shows the expected TTR for the JS is 5P
3 + 11

3 + 1
M−1 . Hence theory says CDJA will severely

limit the JS chances to rendezvous.

Now we compare the rendezvous probability for the JS, Random, and RCR schemes under the

CDJA. In this experiment, the channel detecting jammer uses one or two listening channels but it uses a

single jammer. Since the jammer can determine the sender’s CH sequences from our finding step-length

algorithm, a single jammer jams the remaining channels. Figure 3.8 shows the probability of rendezvous

for all systems until the end of 3P time slots. The probability of rendezvous for the JS scheme is

dramatically decreased under the CDJA. The rendezvous probability is less than 20% for the almost all

available channels numbers when the jammer uses one listening channel. Moreover, the probability of

rendezvous decreases to generally under 10% when the jammer uses two listening channels. However,

the rendezvous probability for both the Random and the RCR schemes are almost steady and more than

90% and close to 100% for most numbers of available channels M , respectively.

Next we implement the cumulative rendezvous probability for all schemes where the channel de-

tecting jammer uses a single jammer. Figure 3.9 displays the cumulative probability of rendezvous for

the three systems until the end of 3P time slots. We selected two M as the number of available channels

(M = {25, 75}). For the JS scheme and CDJA with one listening channel, the cumulative rendezvous
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Figure 3.10: The probability of JS rendezvous for the second scenario under the CDJA (the jammer

with two listening channels and no time synchronization)

probabilities increased to approximately 20% until 2P time slots and holds steady for the remaining

time slots. For the JS scheme with two listening channels, the cumulative rendezvous probabilities in-

creased to approximately 10% until 2P time slots and holds steady for the remaining time slots. On the

other hand, the cumulative rendezvous probabilities for both the Random and the RCR scheme increases

linearly up to the its original period (M time slots) and slowly increased from M to 3P time slots. In

both the Random and the RCR system, we extend the period from 2M to 3P time slots to more accu-

rately compare with the JS scheme. The sender in the RCR system permutates the CH sequences again

at 2M + 1 time slots. This increases the probability of rendezvous to nearly 100% for most available

channels M . Therefore, the effectiveness of CDJA is minimal for both the Random and RCR schemes
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but it is extremely strong for the JS scheme.

Finally, we implemented the second scenario model under the CDJA. In this experiment, the channel

detecting jammer uses two listening channels and does not have the knowledge of the beginning of the

sender’s communication. Since the jammer resides in the network before the sender’s communication,

the jammer can hear two sender’s signals within the first-pattern. Then the jammer computes the step-

length r0 and jam all remaining time slots. As we discussed in 3.4.1, for the second scenario, there are at

most two possible slots after r0 is determined where CDJA does not jam the JS CH sequence. Hence the

JS rendezvous probability could be slightly higher than the probability of the first scenario particularly

for small M . Figure 3.10 shows the probability rendezvous for the second scenario under CDJA. The JS

rendezvous probability is slightly higher than the first scenario’s one when the number of channels M is

small. However, the rendezvous probability is less than 10% for M ≥ 6 and that is almost the same as

the first scenario’s. Therefore, the CDJA is still extremely strong for the JS scheme even if the jammer

does not have any information about the sender’s communication.

3.6 Conclusion

In this chapter, we presented a novel jamming attack called CDJA and demonstrated its effectiveness

against the JS scheme [25]. The channel detecting jammer is able to take advantage of JS algorithm

(its method of generating its CH sequence) to find the sender’s CH sequence within the first 2P or P

time slots for using one or two listening channels respectively. Then the jammer can completely jam the

sender after an average P time slots for one listening channel and an average ⌊ (P+1)
2 ⌋ time slots for two

listening channels using just a single channel jammer. To remedy this jamming problem, we revisited

both the Random scheme and the RCR scheme extended from role-based rendezvous algorithm. Our

simulation results demonstrate that the rendezvous probability of the JS system under the CDJA is

dramatically decreased for all available channels M (e.g., around 20% for one listening channel and 10%

for two listening channels for all M ). On the other hand, the rendezvous probability of both Random

and the RCR scheme is almost steady for all available channels M (e.g., more than 90% for the Random

and nearly 100% for the RCR). Therefore, the Random and RCR schemes can be an effective, efficient
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and robust rendezvous scheme against CDJAs.
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Chapter 4

Channel Detecting Jamming Attacks on

Symmetric Blind Rendezvous Algorithms

for Cognitive Radio Networks

We have demonstrated in Chapter 2 and 3 that CDJAs, with capabilities similar to normal users, can

significantly reduce rendezvous success rates for the Modular Clock and Jump Stay symmetric blind

rendezvous algorithms. In this chapter, we extend our CDJAs to the Generated Orthogonal Sequence

(GOS) [6] algorithms. Our CDJAs, with one/two listening channels, quickly determine the channel hop-

ping sequence for the GOS algorithm. Corresponding simulation results show the rendezvous success

rates of GOS and two other efficient blind rendezvous algorithms, DRSEQ [12] and CRSEQ [43], are

dramatically decreased under CDJAs. We compare these results to the Random rendezvous algorithm

and show Random vastly outperforms five efficient blind algorithms under CDJAs and in other mea-

sures as well. Our CDJA is a major security concern for the state-of-the-art symmetric blind rendezvous

algorithms for cognitive radio networks.
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4.1 Introduction

We have previously investigated state-of-the-art symmetric blind rendezvous algorithms for CRNs and

found them susceptible to new types of jamming attacks. In Chapter 2 and 3, we presented new jamming

attacks named channel detecting jamming attacks (CDJAs) for symmetric blind rendezvous algorithms

for CRNs that are derived from Modular-based channel hopping algorithms [6,25]. The channel detect-

ing jammer, with capabilities similar to normal users, takes advantage of rendezvous algorithm prop-

erties to compute their channel hopping steps. Using these steps, the jammer computes and jams the

remaining channel hopping (CH) sequences. Our previous work demonstrated that CDJA dramatically

decreases the rendezvous success.

In this chapter, we substantially modify our CDJA for the remaining representative CRN blind ren-

dezvous algorithms and demonstrate its effectiveness against them. The remaining state-of-the-art sym-

metric blind rendezvous algorithms not previously considered are the Generated Orthogonal Sequence

(GOS) [6] and the deterministic rendezvous algorithms (DRSEQ) [12] and (CRSEQ) [43]. Since both

DRSEQ and CRSEQ are deterministic, they are trivial to jam using one listening and one jamming

channels and are included here only for completeness.

The primary work here shows how to execute a debilitating jamming attack against the GOS ren-

dezvous scheme. Using our previous results (see Chapter 2.3 and Chapter 3.4) on CDJAs on Modular

Clock (MC) and Jump Stay (JS), Figure 4.1 shows the probability of rendezvous for the MC and JS

schemes under our CDJAs within 3P time slots. P is the smallest prime number greater than or equal

to the number of available channels M . 3P is the maximum time to rendezvous (MTTR) for JS. MC

does not guarantee a rendezvous but it does have a TTR of 2P if it does indeed rendezvous. The MTTR

for GOS is M(1 + M) so we see MC and JS are generally more efficient than GOS. However, from

Figure 4.1, we see GOS has a much better probability of rendezvousing within 3P slots than MC or JS

under CDJAs. If we go beyond 3P slots, GOS totally dominates both MC and JS under CDJA attacks.

If we cannot jam the random permutation algorithm of GOS, then it would appear to be the best blind

rendezvous algorithm against CDJAs. Hence we need to determine if our modified CDJA does or does

not work against the GOS scheme. If not, GOS would be a recommended rendezvous algorithm when
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Figure 4.1: The probability rendezvous for the GOS scheme without jamming attacks and for the MC

and JS schemes under CDJAs (≤ 3P time slots)

our CDJAs cripple the MC and JS schemes.

We will show our modified CDJA, using two listening channels, can detect the GOS sender’s chan-

nel hopping sequence within (M2 + 1) × (1 +M) time slots out of the total M × (1 +M) time slots.

Critically, we also jam channels as soon as they are determined and we jam only known sender channels.

This maximizes the jamming effectiveness and minimizes the jamming footprint. As an alternative to the

GOS scheme, we revisit the Random scheme where the sender and receiver generate their CH sequences

by randomly selecting from the M available channels for each time slot. Obviously, the Random scheme

keeps the jammer from finding the sender’s channel hopping sequence. Our simulation results demon-

strate that the GOS scheme is extremely vulnerable to the modified CDJA but the Random scheme is
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an effective, efficient and robust rendezvous scheme against CDJAs. The primary contribution of this

chapter is the CDJA on GOS and hence our CDJA poses a major security problem for the state-of-the-art

symmetric blind rendezvous algorithms in CRNs.

The rest of the chapter is organized as follows. Section 4.2 presents the GOS scheme and its CDJA.

Section 4.3 provides the simulations of our jamming attacks for both GOS and Random schemes, com-

pares the results with our previous work on jamming MC and JS schemes, and provides analysis. Finally,

Section 4.4 concludes the chapter.

4.2 Proposed Schemes

In this section, we present the Generated Orthogonal Sequence (GOS) scheme [6] and our CDJA

on it which uses the characteristics of the GOS channel hopping algorithm to dramatically decreases

the probability of rendezvous.We also present two other state-of-the-art blind CRN rendezvous algo-

rithms: Deterministic Rendezvous Sequence (DRSEQ), Channel Rendezvous Sequence(CRSEQ) and

their jamming attacks. We will show the jammer can find the GOS sender’s CH sequences within

(M2 + 1) × (1 + M) time slots using two listening channels. Simultaneously, the jammer jams the

detected channels at most (M + 1) time slots after first detected. We also revisit the Random CH ren-

dezvous scheme to address jamming attacks. Finally, we compare the effectiveness of the CDJA on GOS

and Random schemes.

4.2.1 Generated Orthogonal Sequence (GOS)

L. DaSilva et. al. proposed the GOS technique for blind rendezvous in which all radios use the same

random pre-defined sequences [6]. The radios use pre-defined sequence generators to create the CH

sequences. Any two radios generate the same sequences and follow the same order to rendezvous. The

radios can have different start times but they will eventually occupy the same channel and rendezvous.

However, most sequences will not work for the GOS scheme. For example, consider two radios that

follow the ascending order of channels from 0 to M − 1, where M is the number of available channels.
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Figure 4.2: An example of the GOS Rendezvous [13]

If two radios are not synchronized and start at different times, then the two radios would never meet.

Thus, selecting an appropriate sequence is critical for the GOS scheme. Moreover, the sequence cannot

be deterministic or it is easy to jam (see section 4.2.4).

Figure 4.2 illustrates how the GOS scheme generates a sequence with M = 3 available channels.

The radios first select a permutation of the M channels from M ! permutations. Then it generates a

sequence in which the selected permutation appears contiguously M times and once interspersed with

the other M permutations. That is, the GOS sequence consists of M rounds and each round is composed

of one interspersed slot followed by the M permuted slots for 1 + M channels for each round. Thus,

the total number slots in the GOS sequence is M × (1 +M). In Figure 4.2, the secondary users (SUs)

A and B use the same GOS sequence,

1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 2, 3.

The underlined channels are the channels for interspersed time slots, and B starts 3 time slots after A

starts. Then A and B rendezvous at channel 3.
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4.2.2 CDJA on GOS scheme

We now demonstrate that GOS is vulnerable to CDJAs where the jammer uses two listening channels

and jams one channel at a time. These CDJAs can still be effective with one listening channel but we do

not have the space to pursue it here. We assume the normal situation where the jammer resides in the

network before the communication starts. Here we consider one sender and one receiver in the CRNs

trying to rendezvous under the CDJA. With GOS scheme, each secondary user uses the same pre-defined

sequence generator to build its channel hopping sequences. This guarantees that the sender and receiver

can rendezvous in at most M × (1 +M) time slots [6] when there are no jamming attacks. However,

our channel detecting jammer takes the advantage of the GOS properties to find the sender’s sequences.

Now we describe the GOS jamming attack. We use an example, see Figure 4.3, of the sender and

receiver rendezvousing to show how the jammer determines the sender’s CH sequences but provide the

theoretical basis as well. We consider the secondary user A with M = 5 available channels and initial

permutation {3, 2, 5, 1, 4}. The GOS sequence is

3, 3, 2, 5, 1, 4, 2, 3, 2, 5, 1, 4, ..., 4, 3, 2, 5, 1, 4.

The jammer randomly selects two distinct listening channels and detects at least two distinct signals

in the first round, 1 + M time slots. As soon as the jammer hears a signal on one listening channel,

it chooses another channel (not previously tried) for that listening channel. Thus, the jammer hears at

least two distinct channels and, on average, expects to hear four of the random channels in each round.

Hence, the jammer expects to hear, on average, all M channels in ⌈M4 ⌉ rounds.

We may need additional time to determine the location of the interspersed time slot before finding the

entire GOS channel hopping sequence because the channel for the interspersed time slot is changed for

each round in the GOS scheme. There are two cases for detected channel information: (1) the detected

channel is on a non-interspersed time slot or (2) it is on an interspersed time slot. For both cases,

the jammer needs to listen for the detected channel after (1 + M) time slots to verify whether the

detected time slot is an interspersed time slot or not. If the jammer hears the detected channel again after

(1 +M) time slots, then the jammer knows the detected time slot is a non-interspersed time slot. Then
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Figure 4.3: An example of CDJA for the GOS scheme

the detected channel on the non-interspersed time slot will appear in the same time slot or position for

the remaining rounds in the GOS channel hopping sequence. Thus, every (1+M) time slot the jammer

jams the detected channel after determining it is a non-interspersed time slot. On the other hand, if the

jammer does not hear the detected channel after (1+M) time slots, the jammer knows the time slot is an

interspersed time slot. Once the jammer determines one interspersed slot, then it knows all interspersed

slots and it can jam every channel immediately and forever after it has been detected. The jammer can

expect to determine the interspersed channel position before the ⌈M4 ⌉ round with probability
(M−4)

M .

However, there is one exception that the jammer might not determine the interspersed slot until the ⌈M4 ⌉

round. That is, it hears all channels in ⌈M4 ⌉ rounds but needs to listen one more round to determine

the interspersed slot. Therefore, the expected number of time slots to find the entire GOS sequence is

⌈(M4 +1)⌉× (1+M) time slots. As discussed in the next paragraph, we actually implemented a slightly

more efficient algorithm but it does not have a computationally trackable performance analysis.

We can find the interspersed slot more quickly as follows. Suppose c1 is the first channel detected
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in round 1. Then we listens again on c1 for the next time slot. If the c1 is heard again, then the first c1

was the first interspersed slot and the jammer knows the position of every interspersed slot and every

c1. Then the jammer knows all other detected channels are non-interspersed time slots so that it can

immediately jam them for the remaining rounds in the GOS sequence. If the jammer does not hear c1

again then it resumes the listening pattern described below.

In Figure 4.3, the jammer resides in the network before the communication starts. It selects two

random channels, 2 and 5, for its listening channels and listens. The jammer changes its listening chan-

nels as soon as it detects channel 2 and channel 5 as illustrated in Figure 4.3. When the jammer hears

channel 2 at time t1, it needs to listen on channel 2 again at time t1 +(1+M) to determine whether the

t1 time slot is an interspersed time slot or not. In this example, the jammer knows the t1 time slot is a

non-interspersed slot because it detects channel 2 again at time t1 + (1 +M). Thus, the jammer knows

all channel 2 positions in the GOS sequence (e.g., t1, t1 + (1 + M), t1 + 2(1 + M), and so on) and

jams them. However, if the jammer hears channel 2 at t2, it would fail to hear channel 2 again at time

t2 + (1 +M) because the t2 time slot is an interspersed time slot. Once it determines the interspersed

time slot, the jammer stops verifying (listening (1+M) slots later) for all detected channels on all other

time slots. Since all other time slots are non-interspersed time slots, the jammer immediately knows

the detected channel positions in the GOS sequence. For all detected channels on non-interspersed time

slots, the jammer immediately and exactly jams them for the rest of the GOS channel hopping sequence.

Moreover, the jammer can compute the entire GOS sequence in a maximum (M2 +1)(1+M) time slots

and, on average, ⌈(M4 +1)⌉× (1+M) time slots and then it can completely jam the remaining channels

with a single jammer. Therefore, our CDJAs should decrease the rendezvous probability of the GOS

scheme.

4.2.3 Random Channel Rendezvous

We now revisit the Random CH rendezvous algorithm [6] to mitigate the CDJAs. In fact, there are

no guaranteed rendezvous algorithms under any jamming attacks so that the Random CH rendezvous

algorithm could be the most robust CH algorithm against jamming attacks. In the Random system, a
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sender and receiver randomly select one channel out of the M available channels for each time slot. We

will see it is the ”best” against the CDJAs. The formula
∑

(1/M)(1 − 1/M)k−1 ∗ k = M shows the

expected TTR for the Random scheme is M time slots when there are no jamming attacks. However,

it is unfeasible for any jammer to estimate the CH sequence for either the sender or receiver or where

the Random sender and receiver might rendezvous in the Random scheme. Thus, the expected TTR for

the Random scheme would be almost the same as M under the CDJAs. Hence, the Random scheme for

CRNs can be an effective, efficient and secure rendezvous scheme against jamming attacks.

4.2.4 Jamming Attacks on DRSEQ and CRSEQ

DRSEQ and CRSEQ are included here just to complete the jamming attacks on the blind rendezvous

algorithms given in [29]. Deterministic Rendezvous Sequence (DRSEQ) [12] generates a rendezvous

sequence for a multichannel access network that is k-shift-invariant for all k. A rendezvous sequence

for M available channels can be generated as follows:

ai =























i+ 1 for 0 ≤ i ≤ M − 1

e for i = M

2M − i+ 1 for M + 1 ≤ i ≤ 2M

where e denotes empty slot and the number of elements is 2M + 1. For example, the two nodes, A and

B with M = 5 available channels generate the DRSEQ sequence

1, 2, 3, 4, 5, e, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, e, 5, 4, 3, 2, 1, ...

Node A starts at slot 0 and B start at any non-negative integer slot k. Then the nodes, A and B ren-

dezvous within 2M + 1 time slots after node B starts.

Jongmin Shin et. al. proposed Channel Rendezvous Sequence (CRSEQ) algorithm [43] to generate a

rendezvous sequence for CRNs. This algorithm has the k-shift-rendezvous property for all k as described

in [43]. The CH algorithm generates the rendezvous sequence based on properties of triangular numbers

and the Chinese Remainder Theorem (CRT). Triangular numbers are given by Tn = n(n+1)
2 where n is
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Figure 4.4: A jamming example on both DRSEQ and CRSEQ

an integer. Then the rendezvous sequence consists of M subsequences as seen in Figure 4.4. The CH

algorithm for all M ≥ 2 channels is given by the following:

ai =











z MOD M + 1 for 0 ≤ y < 2P − 1

x MOD M + 1 for 2P − 1 ≤ y < 3P − 1

where (z = x(x+1)
2 + y) mod P , x = ⌊ i

3P−1⌋, y = i mod (3P − 1), 0 ≤ i < P (3P − 1), and P is

the smallest prime number greater than or equal to M . Using the CRSEQ CH algorithm, two nodes can

rendezvous in S = P (3P − 1) slots and S is the number of elements of the sequence.

Both DRSEQ and CRSEQ schemes provide the shortest MTTR for symmetric and asymmetric

cases, respectively. However, both are deterministic and hence easily jammed with one listening channel

and one jamming channel as illustrated in Figure 4.4. We assume that the jammer resides in the network

before the communication starts. Then jammer listens on channel a0, the first channel for both schemes,

and jams the remaining channels after hearing a0. Therefore, DRSEQ and CRSEQ are excellent in a

benign environment but are not practical under jamming attacks due to their completely deterministic

sequences.
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Figure 4.5: The average time of finding the GOS sequence using two listening channels

4.3 Evaluation

We implemented the CDJA on Matlab 2010b to evaluate its effectiveness against the GOS scheme.

We implemented the natural scenario where the jammer resides in the network and is listening on two

distinct channels before the communication starts. The jammer has one jamming channel. We also im-

plemented the Random rendezvous scheme to demonstrate that it is more robust against the CDJA

compared to the GOS scheme. The jamming attack for the Random scheme jams two random channels,

different for each slot, for the entire rendezvous time.

First, we compare the expected time to find the entire GOS sequence with the expected TTR of the

GOS scheme where the number of available channels M varies from 4 to 100. In this implementation,
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we used the more efficient sequence location algorithm given in section 4.2.2. Figure 4.5 shows the

expected TTR of the GOS scheme and the expected time for finding the GOS channel hopping sequence.

We ran 1000 simulations for each number of available channels and calculated the average TTR of the

GOS scheme and expected time for finding the GOS sequence. Our simulation results show that the

average time for finding the GOS sequence is close to ⌈M4 ⌉ rounds (i.e.,⌈M4 (1 +M)⌉ time slots). Since

we used the more efficient channel location algorithm, this time should be slightly less than the bound

⌈(M4 + 1)⌉ × (1 + M) and it is. In the CDJA, if the jammer detects the interspersed time slot or

verifies the non-interspersed time slot, the jammer immediately starts to jam the detected channels for

the remaining rounds of the GOS sequence. Moreover, the jammer can compute the entire GOS sequence

in the maximum ⌈M2 ⌉ rounds and, on average, less than ⌈M4 ⌉ rounds. This means that the sender and

receiver cannot rendezvous after, on average, at most ⌈M4 (1 + M)⌉ time slots under the CDJA. But

the jammer also jams the verified channels, which are detected as non-interspersed time slots, from

the second to the ⌈M4 ⌉ rounds. From [6], the overall expected TTR for the GOS is M4+2M2+6M−3
3M(M+1)

time slots. The expected time to determine the GOS sequence, ⌈(M4 + 1)⌉ × (1 + M), is less than

the expected time to rendezvous for all M (actually close for small values of M) as, indeed, seen in

Figure 4.5. But we have jammed earlier slots as soon as they are determined to further decrease the

probability of rendezvous. Hence, the theoretical results on the expected TTR and the expected time to

jam shows CDJA will severely limit the GOS chances to rendezvous. This is clearly seen in Figure 4.6

and the rendezvous probability is higher for small values of M as predicted.

Next we compare the rendezvous probability for the MC, JS, GOS, and Random schemes under the

CDJA. We make the usual assumption that there is no start time synchronization between sender and

receiver and the jammer resides in the network before the sender starts. Figure 4.6 shows the proba-

bility of rendezvous for all systems under the CDJA. In [37, 38], we have shown theoretically that a

channel detecting jammer for MC and JS schemes can compute their step-lengths and generate their

CH sequences early in their attempted rendezvous period. Thus, we consider only the number of slots

equal to the MTTR for this implementation. Since the MTTR of the MC and JS schemes are 2P and

3P time slots respectively (see details in [37, 38]), the simulations in Figure 4.6 are run for 3P time
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Figure 4.6: The probability of rendezvous for the GOS, MC, JS, and Random schemes under jamming

attacks

slots. The probabilities of rendezvous for the MC, JS, and GOS schemes are all dramatically decreased

under CDJAs. The rendezvous probability of the MC scheme is less than 20% for any M available

channels. For the JS and GOS scheme, the probability of rendezvous decreases to under 10% for almost

all M channels. However, the rendezvous probability for the Random is almost steady and more than

90% for most M channels. Therefore, CDJA is extremely effective for the MC, JS, GOS schemes but is

minimally so for the Random scheme.
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4.4 Conclusion

In this chapter, we presented our modified CDJA and demonstrated its effectiveness against the GOS

scheme [6, 13]. The channel detecting jammer is able to take advantage of the GOS algorithm to find

the sender’s CH sequence within the maximum time slots of (M2 + 1) × (1 +M) and an upper bound

expected time slots of (M4 +1)× (1+M). Significantly, the jammer can immediately jam the detected

channels and can completely jam the sender after the maximum of (M2 + 1) × (1 +M) time slots. To

remedy this, we revisited the Random CH rendezvous scheme. Our simulation results demonstrate that

the rendezvous probability of the GOS, JS, and MC systems under the CDJA is dramatically decreased

to less than 10%, 10% and 20% respectively for most available channels M .

In addition, since upper bounds of the expected time to rendezvous for GOS, JS, MC, DRSEQ,

CRSEQ and Random are M4+2M2+6M−3
3M(M+1) , 5P/3+3, 2P 2/(P −1), unknown, unknown, and M respec-

tively (see [6, 29] and results in this chapter), Random could be the most effective, efficient and robust

rendezvous but it does sacrifice the guaranteed rendezvous time some others have. We should note that

DRSEQ and CRSEQ have MTTR of 2M +1 and P (3P − 1) respectively but that does not change that

Random could have the best ETTR.

We have shown that MC, JS, GOS, DRSEQ, and CRSEQ are all very susceptible to debilitating

jamming attacks and the Random scheme is almost impervious to such attacks. Hence, it appears that

the Random scheme provides more security when timely rendezvous for CNRs are required.

The results in this chapter complete the jamming of the symmetric state-of-the-art blind rendezvous

algorithms as presented in [29].
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Chapter 5

Channel Detecting Jamming Attacks on

Enhanced Jump Stay and

Countermeasures

In our previous work (see Chapter 3.3), we demonstrated that our Channel Detecting Jamming Attacks

(CDJAs) can dramatically decrease the probability of rendezvous for the symmetric JS algorithms. In

this chapter, we expand our CDJA to the Enhanced Jump Stay (EJS) algorithm [26] to demonstrate its

effectiveness for both the symmetric and asymmetric EJS models. Our simulation results show that a

channel detecting jammer can compute the entire symmetric EJS channel hopping sequence and thus re-

duce the rendezvous success rate from 100% to less than 10% using two listening channels. In addition,

our CDJA can significantly reduce the rendezvous probability of the asymmetric EJS system (e.g., less

than 15% for ratios of
|m1|
|M | = 0.5 where m1 is the number of sender’s available channels and the total

number of available channel is M = 40). To mitigate this problem, we revisit the Random rendezvous

scheme for the symmetric model and extend it to the asymmetric model to increase the probability of the

rendezvous against the CDJAs. Overall, the Random scheme vastly outperforms the EJS algorithm for

both the symmetric and asymmetric cases when there are security concerns about a channel detecting

jammer. Finally, we show for asymmetric rendezvous, the Random scheme is superior to the Modified
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Modular Clock (MMC) [6].

5.1 Introduction

In previous chapters, we demonstrated that the CDJA can dramatically decrease the rendezvous success

probabilities of the state-of-the-art symmetric blind rendezvous algorithms. In this chapter, we investi-

gate on the Enhanced Jump Stay (EJS) scheme [26] that enhances the previous JS scheme [25] to de-

crease the expected time to rendezvous for the asymmetric model from O(P 3) to O(P 2) where P is the

smallest prime number greater than the number of available channels M . It appears the EJS algorithm is

one of the best blind rendezvous algorithms for CRNs based on the non-deterministic CH sequence and

the guaranteed rendezvous with reasonable upper bounds for both symmetric and asymmetric models.

Thus, this chapter expands our CDJA to the Enhanced Jump Stay (EJS) [26] blind rendezvous algo-

rithm for CRNs to demonstrate its effectiveness for both symmetric and asymmetric models of the EJS

scheme. We first present our novel CDJA model against the symmetric EJS using two listening channels

which can detect the EJS sender’s CH sequence within the first (P2 ) time slots out of the total 4P time

slots. Then it jams the remaining channels so that it can dramatically decrease the rendezvous probabil-

ity of the symmetric EJS. In addition, we show how to mount a debilitating jamming attack against the

asymmetric EJS rendezvous scheme. Since the number of available channels might be different for each

participant, the effectiveness of our CDJA can vary based on the number of common channels between

them.

As an alternative to the EJS scheme, we revisit the Random scheme where the sender and receiver

generate their CH sequences by randomly selecting from the M available channels for each time slot.

The Random scheme keeps the jammer from finding the sender’s CH sequence in CRNs. Our simula-

tion results demonstrate that the symmetric EJS scheme is extremely vulnerable to the CDJAs and even

more so than the CDJAs on JS (see Chapter 3.3). On the other hand, the Random scheme for CRNs

can be an effective, efficient and robust rendezvous scheme against CDJAs. Moreover, we present the

theoretical expected time to rendezvous (ETTR) for the asymmetric Random system based on the num-

ber of common channels G between a sender and receiver. The ETTR for the asymmetric Random
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is
|m1|·|m2|

|G| where |m1| and |m2| are the number of available channels for the sender and receiver,

respectively out of the total number of available channels M . The ETTR of the asymmetric EJS is

4P (P + 1 − G) − [4PG(P − G) + G/2]/(|m1| · |m2|). Since there are no guaranteed rendezvous

algorithms under any jamming attacks, the asymmetric Random outperforms the asymmetric EJS in the

ETTR even when there are no jamming attacks.

The primary contributions of this chapter are to first demonstrate that our CDJA poses a major secu-

rity problem for the remaining state-of-the-art symmetric and asymmetric blind rendezvous algorithms,

EJS and MMC, in CRNs since any secondary user or even group of users can be denied access to the

network with high probability. Second, our simulation results and theoretical analysis demonstrate that

the symmetric and asymmetric Random CH rendezvous algorithms are the most robust CH algorithm

against jamming attacks. Third, the Random CH rendezvous algorithm has the best ETTR for any of the

asymmetric algorithms.

The rest of the chapter is organized as follows. Section 5.2 describes relevant background for the

EJS scheme for both symmetric and asymmetric models. Section 5.3 presents the CDJAs on EJS and

Random schemes. Section 5.4 provides the simulations of our jamming attacks for both symmetric and

asymmetric EJS and Random schemes. Section 5.5 describes the related work, and finally Section 5.6

concludes the chapter.

5.2 Preliminary

Zhiyong Lin et. al. [26] proposes the enhanced jump-stay rendezvous (EJS) algorithm for CRNs that

reduces the maximum time to rendezvous (MTTR) and the expected time to rendezvous (ETTR) from

O(P 3) to O(P 2) for the asymmetric model with the same order of rendezvous times for the symmetric

model, where the number of available channels is M and the P is the smallest prime number greater

than M [25]. Both the EJS and JS [25] schemes use the jump and stay patterns but the EJS generates a

new sequence structure and a new hopping sequence. First, the EJS scheme increases the length of each

round from 3P in the JS scheme to 4P . Second, the EJS scheme re-designs the CH sequence by using

a new sequence structure. It uses the fixed step-length r for all rounds while the JS scheme changes the
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Figure 5.1: An example of the symmetric EJS Rendezvous

step-length r for each round. The EJS scheme uses only the index of available channels for the step-

length r rather than using the index of available or unavailable channels for the step-length r in the JS

scheme. In addition, the EJS scheme changes the starting index i every 4P time slots instead of using

3MP time slots in the JS scheme.

In the EJS system, each user uses the EJS CH algorithm to generate a CH sequence in rounds that

consists of one jump pattern and one stay pattern. The total time slots of the sequence is 4P time slots

composed of the first 3P time slots for the jump pattern and the subsequent P time slots for the stay

pattern. In jump pattern, the user starts from the initial channel i and jumps with the step-length r for

1 ≤ i ≤ P and 1 ≤ r ≤ M . Then the user stays on the channel r for the entire stay pattern. In the EJS

scheme, the channel c in the jump-pattern is determined by

c = ((i+ t× r − 1) mod P ) + 1, (5.1)

where c is the channel at time t = t mod 4P . If c is greater than M , then it is re-mapped into [1,M ]

(i.e., c = ((c − 1)mod M) + 1 for c > M ).

The EJS system has slightly different channel hopping algorithms for the symmetric model and

the asymmetric model. In the symmetric model, the number of available channels is the same for all

participants. For example, Figure 5.1 describes a rendezvous of the symmetric EJS scheme where M =

4 and P = 5. Since there is no time synchronization, users can start at any time slot within the 4P time
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Figure 5.2: An example of the asymmetric EJS Rendezvous

slots of another user but the overlap between two jump-patterns is not less than P time slots. Here we

have one user starting with i1 = 2 at t = 0 and jumps with the step-length r1 = 1. The other user starts

with i2 = 3 at t = 4 and jumps with the step-length r2 = 2. Then the two users rendezvous on channel

4 at time slot t = 7. In the symmetric EJS scheme, the maximum time to rendezvous (MTTR) is at most

4P time slots.

In the asymmetric model, the number of available channels might be different for each participant

but there must exist at least one common channel on which to rendezvous. Figure 5.2 illustrates the CH

sequences of two users performing asymmetric EJS scheme where M = 2 and P = 3. Two channels

{c1, c2} are available for the user 1 but only the channel {c2} is available for the user 2. User 1 can

select different step-lengths with the same initial channels but user 1 and user 2 rendezvous for both

cases within the maximum 4P (P + 1−G) time slots.
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5.3 Proposed Schemes

Previously (see Chapter 3.3), we proposed a novel CDJA in which the jammer dramatically decreases

the probability of rendezvous for the symmetric JS scheme [25] by utilizing the characteristics of the JS

jump and stay-patterns. In this section, we extend our CDJA to Enhanced Jump Stay (EJS) algorithm

for both symmetric and asymmetric models [26]. We assume that a jammer has capabilities close to

a normal user but can listen on two channels at the same time. We first present algorithms showing

how a channel detecting jammer with two listening channels can find the sender’s CH sequences for

the symmetric EJS scheme within P time slots. Then it can jam the sender’s remaining CH sequences

after an average ⌊ (P+1)
2 ⌋ time slots using one jamming channel. For the asymmetric EJS scheme, we

assume that a jammer can determine the available channels of the sender. For example, if a sender has

available channels m1 out of M , then the jammer knows m1 and selects two random listening channels

from m1 instead of selecting them from M . Using this information, the jammer can find the sender’s CH

sequence for the asymmetric EJS scheme with high probability. The probability of finding the sender’s

CH sequence before the sender and receiver rendezvous depends on the number of common channels

between the sender and receiver. To mitigate these jamming attacks, we revisit the Random rendezvous

algorithm for the symmetric blind rendezvous model and extend the Random to the asymmetric model.

We also present the theoretical expected time to rendezvous (ETTR) for the asymmetric Random system,

which vastly outperforms the ETTR of the asymmetric EJS system even when there is no jamming.

Finally, we compare the effectiveness of the CDJAs on EJS and Random schemes for both symmetric

and asymmetric models.

5.3.1 CDJA on Symmetric EJS

We consider one sender and one receiver in the CRNs trying to rendezvous under the CDJA. In the

symmetric EJS scheme, each SU uses the jump-stay channel hopping algorithm to generate its CH

sequences described in Section 5.2. This guarantees that the sender and receiver can rendezvous within

the maximum 4P time slots when there are no jamming attacks. However, our channel detecting jammer

takes the advantage of the jump-stay channel hopping properties to find the sender’s CH sequences.
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Figure 5.3: The CDJA example on the symmetric EJS

In our CDJA, we assume the normal situation where the jammer resides in the network before the

communication starts. Then the jammer waits for the sender’s signals with two listening channels (LCs).

The sender is the secondary user who starts the communication first. Using two listening channels,

the jammer is guaranteed to find the sender’s CH sequence within P time slots and within ⌊ (P+1)
2 ⌋

time slots on average. Then it can jam the sender’s remaining CH sequences after an average ⌊ (P+1)
2 ⌋

time slots using one jamming channel. In the most optimistic rendezvous case, the sender and receiver

are synchronized and even then they must rendezvous within an average ⌊ (P+1)
2 ⌋ time slots or the

rendezvous will be jammed. Moreover, the probability of rendezvous will be significantly less because

the sender and receiver are generally not synchronized. Thus, the probability of rendezvous for the

symmetric EJS will be decreased dramatically under the CDJA since EJS guarantees rendezvous in 4P

time slots but CDJA jams EJS after only ⌊ (P+1)
2 ⌋ time slots on average.

Now we describe how the channel detecting jammer finds the sender’s CH sequences in the sym-

metric EJS scheme. As we illustrated in our previous work (see Chapter 3.3), it is important for the

jammer to find the step-length of the sender as fast as possible because the step-length is the key value

to generating the EJS CH sequence (see Equation 5.1). Using the step-length, the jammer can exactly

generate the entire CH sequences of the sender. Therefore, the jammer can jam the remaining channels

in the CH sequences with a single jammer. Figure 5.3 describes how the channel detecting jammer finds
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the sender’s step-length in the symmetric EJS scheme using two listening channels. In our previous

work (see Chapter 3.3), we described how the jammer can calculate the step-length of the sender’s CH

sequences for the JS scheme from two channel hits and then it can exactly generate the sender’s CH

sequences. For example, if the jammer receives the sender’s signals on a channel c1 at time t1 and on

the another channel c2 at time t2, then the jammer can calculate the sender’s step-length r0 using

c1 = (i0 + t1 × r0 − 1)%P + 1 (5.2)

c2 = (i0 + t2 × r0 − 1)%P + 1 (5.3)

and then equation (5.3) − (5.2) gives,

((t2 − t1)× r0)%P = (c2 − c1).

Thus, the step-length r0 is

r0 = ⌈
(P × k + (c2 − c1))

(t2 − t1)
⌉ (5.4)

where the i0 is the initial channel, the P is the smallest prime number greater than the number of

available channels M , and the k is the constant that satisfies the property of 1 ≤ r0 ≤ M and matches the

jump-pattern. Most of time, the jammer can randomly select listening channels but the jammer should

avoid selecting channels from the [1, P − M ] because the EJS algorithm maps the (M,P ] channels

back onto the [1, P −M ] channels which are then duplicated. That is, if the jammer selects the channels

that are mapped onto by (M,P ], then it is possible that the step-length can be ambiguous because the

channels from [1, P − M ] are duplicated with other channels in the EJS algorithm. Once the jammer

computes the step-length r0 using Equation 5.4, it can compute the sender’s CH sequences from the

time of the second detected signal and jam the remaining time slots until the stay pattern using cnext =

((clast + r0 − 1)%P ) + 1.

However, the jammer cannot immediately compute the initial channel i0 because it has no knowl-

edge about the beginning of the sender’s communication. To find the initial channel i0, the jammer needs

to add an additional step to find the beginning of the stay-pattern. In Figure 5.3, the jammer detects the
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second channels at time t is in the first jump-pattern. After 2P + t time slots, the jammer listens on the

channel r0 to find the beginning of the stay-pattern. This clearly must occur in the first jump-pattern.

That is, if the jammer hears two consecutively signals on the channel r0 between 2P + t and 3P + 2

time slots, then the jammer knows that the first time slot is the beginning of the stay pattern. When the

jammer finds the beginning of the stay pattern, it can compute the initial channel i0 and find the begin-

ning of the communication. Thus, the jammer can generate the sender’s sequences for the consecutive

periods from known r0 and i0 information and jam all slots continuously with a single jammer. There-

fore, the probability of rendezvous for the symmetric EJS system will be dramatically decreased under

the CDJA.

5.3.2 CDJA on Asymmetric EJS

The asymmetric model for the EJS CH rendezvous algorithm assumes that a sender and receiver might

have different available channels but they must have at least one common channel between them for

rendezvous [26]. The basic model of the asymmetric EJS system is to expand the set of possible channels

to the union of the available channels (e.g., m1 for a sender and m2 for a receiver) and let G denote the

intersection of the available channels (i.e., G = m1∩m2). We let M denote the set of all channels under

possible consideration and we make exactly the same assumptions here as in [26]. Then the asymmetric

EJS system guarantees rendezvous in 4P (1 + P −G) time slots.

Here we assume CDJA does not have time synchronization with the sender but uses two listening

channels (LCs). In addition, we assume that our channel detecting jammer resides in the sender’s net-

work before the communication starts. Thus, the jammer can detect or sense the same available channels

as the sender’s. This is important for the jammer to select two random LCs from m1 in order to guar-

antee that it can hear two channels within P time slots. The probability of hearing two channels early

in the first P time slots increases as the number of unavailable channels (i.e., |M −m1|) increases due

to the re-mapping of EJS. However, if the jammer uses the total available channels M from which to

select two LCs, it may never hear those channels. This means that the jammer might not find the correct

step-length r0 within P time slots. Thus, the jammer must choose its listening channels from m1.
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Figure 5.4: The CDJA on the asymmetric EJS without replacement

To compute the sender’s CH sequences, we consider two cases: the asymmetric EJS without re-

placement algorithms and the asymmetric EJS with replacement algorithms for unavailable channels.

We include the asymmetric EJS without replacement algorithms because Lin et. al. in [26] used it as a

basis to compare EJS with other algorithms. In our CDJA, the jammer computes the sender’s CH se-

quence from detected channel information. However, if a detected channel is a replaced channel, then

the jammer might not find the correct r0 so that it needs additional steps to verify whether the step-length

is correct or not. This is addressed in the next paragraph. But our CDJA in the asymmetric EJS without

replacement algorithm works similar to the CDJA on the symmetric EJS. Figure 5.4 shows how the

jammer selects two LCs for the asymmetric EJS without replacement channels for unavailable channels

(i.e., in c ∈ M − m1). Suppose that the total number of available channels M is 8 and the number of

available channel for the sender m1 is 5. The sender randomly selects the step-length r0 to be 2 from

m1 = {2, 3, 4, 5, 7} and the initial channel i0 to be 3. Since the jammer resides in the sender’s network,

the jammer knows m1 and it can select two random LCs {4, 7} from m1. Thus, the jammer hears two

channels within the P time slots and computes the correct step-length r0. Therefore, our CDJA deter-

mines the sender’s r0 and i0 for the asymmetric EJS without replacement algorithms in exactly the same

method as for the symmetric EJS. Hence, its asymmetric rendezvous probability decreases dramatically
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Figure 5.5: The CDJA on the asymmetric EJS with replacement

under the CDJA.

However, Lin et. al. subsequently integrates a replacement operation into the asymmetric EJS that

replaces unavailable channels in their CH sequence with available channels in m1 by

cj = ((j − 1) mod |m1|) + 1)th channel in m1. (5.5)

Thus, we need to modify our CDJA so that it applies effectively here as well. Figure 5.5 shows how the

jammer finds the correct r0 with high probability for the asymmetric EJS with replacement channels.

Suppose we hear c1 at t1 and c2 at t2 as before. We compute the step-length r0 as before but c1 or c2

may be a replaced channel and hence r0 is not certain. Without loss of generality assume t1 < t2 and let

clast = c2 and clast be the index of c2 in the [1,M ] channels. We let clast and cnext be both the channel

in [1,M ] and the index of the channel in [1,M ] depending on whether it is a channel or an integer. To

verify the step-length r0, we need to listen on the next channel

cnext = ((clast + r0 − 1)%P ) + 1
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If cnext /∈ [1,M ], then cnext = ((cnext− 1)%M)+1. If cnext /∈ m1, cnext = ((cnext− 1)%|m1|+1)th

channel in m1 from Equation 5.5. For example, suppose that M = 10, P = 11, m1 = {1, 3, 7, 8, 9},

|m1| = 5, i0 = 7, and r0 = 1. Then the CH sequence for the first P time slots is

8, 9, 9{R}, 1, 1, 3{R}, 3, 8{R}, 9{R}, 1{R}, 7

where {R} means a replaced channel for an unavailable channel. If the two listening channels L1 = 8

and L2 = 9, then the jammer can compute r0 = 1 at time t = 2. So, clast = L2 = 9 and clast is a

non-replaced channel in this case. Thus, cnext is

cnext = (clast + r0 − 1)%P + 1 = (9 + 1− 1)%11 + 1 = 10.

However, cnext = 10 is not in m1. Thus, the cnext is

cnext = ((cnext − 1)%|m1|+ 1)th = ((10 − 1)%5 + 1)th = 5th channel in m1,

which is cnext = 9. The cnext is the same as the channel C at t = 3 from the EJS CH algorithm [26].

That is, the channel C at t = 3 is

C = (i0 + t ∗ r0 − 1)%P + 1 = (7 + 3 ∗ 1− 1)%11 + 1 = 10.

Since the channel C is not in m1, the EJS scheme replaces C with 5th channel in m1 that is the same as

cnext = 9. And the consequent channel cnext+1 is

cnext+1 = (clast + 2 ∗ r0 − 1)%P + 1 = (9 + 2− 1)%11 + 1 = 11.

Since cnext+1 = 11 > M , cnext+1 is

cnext+1 = (cnext+1 − 1)%M + 1 = (11 − 1)%10 + 1 = 1.

The cnext+1 is the same as the channel C at t = 4 from the EJS CH algorithm. That is, the channel C at

t = 4 is

C = (i0 + t ∗ r0 − 1)%P + 1 = (7 + 4 ∗ 1− 1)%11 + 1 = 11.
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Since C > M , the channel C at t = 4 is re-mapped into [1,M ] that is the same as cnext+1 = 1. Hence

we see that the next two actual channels match our detecting algorithm and we start to jam. This means

that if the clast is a non-replace channel, cnext is the same channel as the channel computed by using

the index j, t, r0, and i0. But if the clast is a replaced channel, we might not find the correct r0 and also

cnext may be wrong even when we use the correct r0. If we detect the channel cnext, then, with high

probability, the r0 might be the correct step-length. However, if the clast is a replaced channel, then the

cnext is based on a replaced channel clast and a probably wrong r0. This clast could be the same channel

as the cnext from a non-replaced channel clast and the correct r0. Thus, we need to listen on one more

channel on cnext+1 = ((clast + 2 ∗ r0 − 1)%P ) + 1 to increase the probability of finding the correct

r0. That is, we can determine that the step-length r0 would be correct with higher probability when we

detect two consecutive channels cnext and cnext+1 that are correct immediately following the t2 time

slot. Then, we start to jam on cnext+2 = (((clast + 3 ∗ r0 − 1)%P ) + 1 as before. We could continue to

listen on c1 here and if r0 was not confirmed, use (c2, t2) and the new (c1, t3) to repeat the procedure.

We did not do this as the simpler r0 finding algorithm worked well. If we do not detect the next two

consecutive channels with the possible r0, then we continue to listen on the same channels c1 and c2 for

up to P slots beyond min{t1, t2}. When we hear c1 or c2 at t3, we compute two new r0s based on each

pair of the three data points. The new r0 for the old pair of same data points would be incorrect. Since

we avoid selecting listening channels from re-mapped channels (M,P ], each channel of m1 exists only

one time as a non-replaced channel within P time slots. We do not repeat the computation with the

original two data points c1 at t1 and c2 at t2. Thus, with high probability, we can compute all possible

r0s including the correct step-length within P + min{t1, t2} time slots. However, we might not select

the correct r0 from all possible r0s on proper time slot because we only have two listening channels to

verify all the possible r0. To increase the probability of selecting correct r0, we first use the majority r0

from all possible r0s because it has the highest probability of being correct. Then we revisits all possible

r0s to find the correct step-length up to max{t1, t2}+ 2P time slots.

Alteratively, we can switching channels whenever the jammer hears the signals on its listening chan-

nels instead of staying on the same channels. Suppose we hear c1 at t1 and c2 at t2 as before. We compute
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r0 and generate the next channel cnext to verify whether it is the correct r0 or not. If the possible r0 is not

the correct one, we continue to listen immediately after t2 on two other channels. When we hear c3 at t3,

we compute two new r0s based on each pair of the three data points. We do not repeat the computation

with the original two data points c1 at t1 and c2 at t2. Then we use only new r0s to determine whether it

is the correct r0 or not.

For both cases, we continue to listen and compute all possible r0s up to t2+2P time slots. If we find

the correct r0, we compute the CH sequence on which to jam. Once we get beyond max{t1, t2}+ 2P ,

then we listen on the two most frequent r0s to find the beginning of the stay-pattern as was discussed

in 5.3.1. Through these steps, we know with high probability both r0 and i0 and can jam every subse-

quent channel until we complete 4 ∗ P ∗ (1 + P − G) time slots. Since i0 is just incremented for the

consecutive rounds and r0 is unchanged, we can trivially compute all subsequent CH sequences and

jam them as well. We do not claim that the above jamming attack is optimal but we will show it is very

effective.

5.3.3 Jamming Attacks on Random CH Rendezvous

We revisit the Random CH rendezvous algorithm used for the symmetric model to mitigate the CDJAs

and extend it to the asymmetric model. In fact, there are no guaranteed rendezvous algorithms under

any jamming attacks and our CDJA can cripple the symmetric and asymmetric EJS systems so that the

symmetric and asymmetric Random CH rendezvous algorithms could be the most robust CH algorithms

against jamming attacks.

In the symmetric Random system, a sender and receiver randomly select one channel for each time

slot out of the M available channels. As we discussed in Chapter 3.3, the symmetric Random scheme is

the ”best” against the CDJAs. The formula
∑

(1/M)(1 − 1/M)k−1 ∗ k = M shows the expected time

to rendezvous (ETTR) for the symmetric Random scheme is M time slots when there are no jamming

attacks. However, it is unfeasible for any jammer to estimate the CH sequence for either the sender or

receiver or where the symmetric Random sender and receiver might rendezvous in the Random scheme.

Thus, the ETTR for the symmetric Random scheme would be almost the same as M under the CDJAs.
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In the asymmetric Random system, a sender and receiver randomly select one channel out of the

number of available channels m1 and m2 for each time slot, respectively. However, the ETTR for the

asymmetric Random system is not M time slots because it depends on the number of common channels

G between them. Suppose we have the number of available channels m1 for the sender and m2 for the

receiver out of the total number of available channels M . Define random variables X as sample drawn

from m1 and Y as sample drawn from m2. We assume that the samples are drawn completely randomly

from each set, and they are independent of each other. Let G be the number of common channels of m1

and m2, i.e., G = m1 ∩m2. Then the probability of selecting same channel P{X = Y } is

P{X = Y } =
∑

x∈m1

P{Y = x|X = x} · P{X = x}

=
∑

x∈m1

P{X = x} · P{Y = x}

=
∑

x∈m1\G

P{X = x} · P{Y = x}+
∑

x∈G

P{X = x} · P{Y = x}

=
∑

x∈G

P{X = x} · P{Y = x}

=
∑

x∈G

1

(|m1| · |m2|)

=
|G|

|m1| · |m2|

where the first equality is from the law of total probability, the second equality is from the independence

of X and Y , the third equality is due to P{Y = x} = 0 if x ∈ m1\G. Since X and Y are uniformly

distributed, P{Y = x} = 1
|m2|

, and P{X = x} = 1
|m1|

for any x ∈ G. Hence the fourth and the last

equality follow. Now let R be the number of trials until the first rendezvous. Then the probability of

rendezvous P{R = k} is

P{R = k} = (1− p)k−1p

where k is the k-th independent trial and the probability of success p is P{X = Y } = |G|
|m1|·|m2|

. Thus,
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the expected value E{R} is

E{R} = 1 ∗ p+ 2(1 − p)p+ 3(1− p)2p+ · · ·

=
∞
∑

k=1

k(1− p)k−1p =
1

p

=
|m1| · |m2|

|G|

Therefore, the ETTR for the asymmetric Random system is E{R} = |m1|·|m2|
|G| . Since it is also unfeasible

for any jammer to estimate the CH sequence of either the sender or receiver for the asymmetric Random

system, the ETTR would be the almost same as E{R} under CDJAs. Hence, both the symmetric and

asymmetric Random schemes for CRNs can be an effective, efficient and secure rendezvous scheme

against jamming attacks.

5.4 Evaluation

We implemented the CDJA on Matlab 2010b to evaluate its effectiveness against the EJS scheme. We

first implemented the jamming attacks for both the symmetric and asymmetric EJS systems using two

listening channels. We then implemented Random schemes to demonstrate that they are more robust

against the CDJA compared to EJS schemes. The jamming attack for the Random scheme is jamming

two random channels for each time period and that continues for the entire rendezvous time.

First, we compare the expected time to rendezvous (ETTR) for the symmetric JS, EJS, and Ran-

dom schemes when there are no jamming attacks. Figure 5.6 gives the average TTRs for the JS, EJS

and Random schemes where the number of available channels M varies from 4 to 100. We ran 1000

simulations for each available channel and calculated the average TTR for them. This figure shows that

the average TTRs for all schemes increase steadily as the number of available channel increases. Since

there is no time synchronization, the receiver can start at any time between 1 to 4P time slots for both

Random and EJS schemes and at any time between 1 to 3P time slots for the JS scheme. The expected

TTR for the Random is close to M as expected. However, the average TTR of the EJS scheme from
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Figure 5.6: The average time to rendezvous (TTR) for the symmetric JS, EJS, and Random schemes

without time synchronization

the implementation is around half the available channels M and is slightly better than the average TTR

of the JS scheme. Overall, the average TTR for the Random scheme is almost twice that of the other

schemes. These results are consistent with the expected time of M for Random and the upper-bound on

ETTR of 5P/3 + 3 and 3P/2 + 3 for JS and EJS respectively [25, 26].

Next, we compare the rendezvous probability for the symmetric JS, EJS and Random schemes under

the CDJA. In this experiment, the channel detecting jammer uses two listening channels but it uses a

single jammer (actually two jammers for Random). Since the jammer can determine the sender’s CH

sequences completely within at most P time slots for JS and EJS, a single jammer jams the remaining

channels. Figure 5.7 shows the probability of rendezvous for all systems until the end of 3P time slots
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for the JS scheme and 4P time slots for the EJS and Random schemes. The probability of rendezvous

for both the JS and EJS schemes is dramatically decreased under the CDJA. The rendezvous probability

for both JS and EJS schemes decreases to generally under 10% when the jammer uses two listening

channels. The probability of rendezvous for the EJS scheme is even slightly less than the JS’s rendezvous

probability. However, the rendezvous probability for the Random is almost steady and more than 90%

and close to 100% for most numbers of available channels M .

Next, we compare the expected TTR for the asymmetric EJS and Random schemes when there are

no jamming attacks. Figure 5.8 gives the average TTRs for the asymmetric EJS and Random schemes

where the number of available channels M is 40 but the number of available channels for both the sender

and the receiver is 20 (|m1| = |m2| = 20). The number of common channels G varies from 2 to 20. In

the asymmetric EJS [26], authors use a replacement algorithm for unavailable channel to replace c 6∈ m1

by ((c−1)mod|m1|)+1)th channel in m1 where |m1| is the number of available channels for the sender.

The asymmetric EJS with replacement algorithm can guarantee rendezvous within the maximum time

to rendezvous (MTTR) of 4 ∗ P ∗ (1 + P − G) time slots. However, the distribution of replacement

channel selection for the asymmetric EJS replacement algorithm is not uniformly distributed. Based

on our investigation, we conclude that the biased channel selection of the asymmetric EJS replacement

algorithm decreases the performance of the asymmetric EJS rendezvous algorithm. To demonstrate this

investigation, we implement the EJS with a random replacement algorithm (i.e., uniform distribution

of channel selections) for unavailable channels to compare it with the asymmetric EJS replacement

algorithm. We also implemented the asymmetric EJS without replacement algorithms for comparison.

As shown in Figure 5.8, the average TTR of the asymmetric EJS with random replacement algorithm is

approximately half of the asymmetric EJS replacement algorithm and almost three times faster than the

symmetric EJS without replacement algorithm. In addition, the average TTRs for both the asymmetric

EJS and Random schemes decrease as the number of common channel G increases. For the asymmetric

Random scheme, we randomly select a channel from the available channel set m1 for each time slot.

Overall, the average TTR for the asymmetric Random scheme is much faster than the asymmetric EJS

scheme especially when G is small (e.g., 4 times faster when G = 2).
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Figure 5.10: The average TTR for the asymmetric EJS, EJS without replacements, EJS with random

replacement, and Random schemes for |m1| = |m2| = 0.5M , M=[20, 30, .., 100], and G=10
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Figure 5.11: The probability of rendezvous for the asymmetric EJS without replacement algorithm

under CDJAs for |m1| = |m2| = 20, M=40, and G = [2 20]

Now, we compare the average time to rendezvous for both the asymmetric EJS with replacement

and Random algorithms. We consider the number of available channels for the sender m1 to be half of

the total number of available channels M (i.e., |m1|/|M | = 0.5). We implement two cases based on

the number of common channels G = {2} and G = {10} for various M = {10, 20, · · · , 90, 100}.

Figure 5.9 and Figure 5.10 show the average TTR for both the asymmetric EJS replacement algorithms

and Random when the number of common channels G = 2 and G = 10, respectively. For both cases,

the average TTRs increase as the number of available channels M increases but decrease rapidly as

the number of common channels G increases. The asymmetric Random scheme is the best for the both

cases but it does not guarantee rendezvous. However, the asymmetric EJS scheme and, in fact no blind

rendezvous scheme, can guarantee rendezvous under jamming attacks or when any of the inputs m1,

m2 or G are changing. This last case is probably the most common situation in actual practice.

Next, we compare the rendezvous probability for the asymmetric EJS without replacement algorithm

under the CDJA. Figure 5.11 shows the probability of rendezvous for 4P time slots of the asymmetric
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Figure 5.12: The probability of rendezvous for the asymmetric EJS with replacement under CDJAs

with M = 40, |m1| = |m2| = 0.2M , and G=[1-8]

EJS scheme. It shows that the probability of rendezvous for the asymmetric EJS scheme is dramatically

decreased under the CDJA when there are no replacement algorithms for unavailable channels. The

rendezvous probability increases as the number of common channels G = [2, .., 20] increases but it

is less than 4% for all G when the jammer uses two listening channels. Moreover, the probability of

rendezvous for the EJS scheme is even less than 1% when the number of common channels is less than

7. Therefore, without a replacement algorithm, the asymmetric EJS scheme is extremely vulnerable

under our CDJA.

Next, we compare the rendezvous probability for the asymmetric EJS with replacement algorithm

under the CDJA. Figure [5.12-5.14] show the probability of rendezvous for the asymmetric EJS scheme
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Figure 5.13: The probability of rendezvous for the asymmetric EJS with replacement under CDJAs

with M = 40, |m1| = |m2| = 0.5M , and G=[1-20]
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Figure 5.14: The probability of rendezvous for the asymmetric EJS with replacement under CDJAs

with M = 40, |m1| = |m2| = 0.8M , and G=[24-32]

for the ratios |m1|/|M | = {0.2, 0.5, 0.8}. They show that the probability of rendezvous for the asym-

metric EJS scheme with standard replacement is dramatically decreased under the CDJA. The ren-

dezvous probability for all ratios is less than 10% except for the ratio |m1|/|M | = 0.5 when the jammer

uses two listening channels. For the ratio |m1|/|M | = 0.5, the probability of rendezvous is the highest

compared to other ratios and increases as the number of common channels G = [1, .., 20] increases.

As we can see, the rendezvous probability depends on the ratio |m1|/|M |. If the ratio is low, then it

is difficult for the jammer to find the correct step-length r0. But the probability of rendezvous for the

sender and receiver is also decreased dramatically even though there are no jamming attacks. On the

other hand, if the ratio |m1|/|M | is high, the probability of rendezvous for the sender and receiver will
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Figure 5.15: The expected time to rendezvous for the MMC and Random schemes with G =
{1, 3, 5, 7, 9}

increase. But the jammer can find the correct step-length r0 in close to P/2 times slots as the ratio

increases to 1. Therefore, with a replacement algorithm, the asymmetric EJS scheme is also extremely

vulnerable under our CDJA.

Finally, we implement the average time to rendezvous for both the Modified Modular Clock (MMC)

(i.e., the asymmetric MC) and the asymmetric Random algorithms. In the MMC scheme [6], the sender

uses both the random replacement in m1 for the channels (M,P ] and also uses a random P from

[m1, 2m1] where m1 is the number of available channel for the sender, M is the total number of available

channels, and P is a random prime number between m1 and 2m1. The initial channel for the MMC

is fixed for the entire rendezvous and the step-length r0 is invariant for 2P 2 steps. It is possible to
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effectively jam the MMC even with the random P from [m1, 2m1] and it involves using checking for the

correct r0 and changing listening channels. This jamming is not as effective for the asymmetric MMC,

as it was for the symmetric MC case. There is no need to elaborate on this since Random is more efficient

than MMC in the asymmetric scenario as seen in Figure 5.15 and is discussed in the next paragraph.

Please see the results in Chapter 2.3 because the asymmetric MMC uses random replacements for the

channels (M,P ] and P is random as well.

We now show Random is superior to MMC for the asymmetric case. Both Random and MMC

systems can not guarantee rendezvous. We have shown in section 5.3.3, that the average time to ren-

dezvous for Random is E{R} = |m1|·|m2|
|G| and for MMC is E{MMC}= |p1|·|p2|

|G| [6]. Hence we see that

the average time to rendezvous for Random is always less than or equal to that for MMC. Also Ran-

dom is impossible to jam. It should be noted that MMC is largely a random scheme when |m1|/|M |

is small. We now experimentally compare the average time to rendezvous of asymmetric Random and

MMC when the number of common channels is small. Figure 5.15 shows the ETTRs for both the MMC

and Random schemes when the number of common channels is G = {1, 3, 5, 7, 9} and the number

of available channels is same for each participant (i.e., |m1| = |m2|). The average time to rendezvous

for Random is less that for MMC system except for G = {1} which is the result of our running only

1000 experiments and the low probability of rendezvousing. For all other Gs, the asymmetric Random

scheme vastly outperforms the MMC. The average time to rendezvous for the asymmetric Random is

close to the theoretical probability of rendezvous ETTR = |m1|∗|m2|
|G| .

5.5 Related Work

In [29], Hai Liu et al. reviewed the existing blind rendezvous algorithms for CRNs that are categorized

into centralized systems and decentralized systems. Under the centralized rendezvous algorithms [5,

9, 20, 32, 39], the centralized server or the dedicated CCCs control the available channels in CRNs to

manage the rendezvous for cognitive radios. For example, the server can set up the common link and

schedule transmissions for the SUs. However, these algorithms have limitations discussed earlier.

The decentralized rendezvous algorithms remove the centralized server or the dedicated CCCs but
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it can still establish one or multiple common control channels from the common spectrum. The blind

rendezvous occurs where there is no control channel so that the SUs need to find each other blindly. To

achieve blind rendezvous, several channel hopping (CH) algorithms [6, 25] have been proposed. Theis

et al. [6] proposed several CH algorithms including modular clock algorithm (MC) for the symmetric

system and modified MC (MMC) for the asymmetric model. However, these algorithms only guarantee

the rendezvous of two users when the users select the different step-lengths for their CH sequences.

Hai Liu et. al. in [25] proposed the Jump-Stay based channel hopping (JS) algorithms to provide

guaranteed rendezvous for both symmetric and asymmetric rendezvous in CRNs. The sender and re-

ceiver independently generate their own CH sequences through the JSHopping algorithms and they can

rendezvous within a favorable amount of time compared to other schemes.

Hai Liu et. al. in [26] enhanced the JS algorithm (EJS) to not only provide the same level of ren-

dezvous time for the symmetric model but also reduce the rendezvous time for the asymmetric model

from O(P 3) to O(P 2). Again, the EJS scheme is vulnerable to our CDJA in which the jammer takes

advantage of the EJSHopping algorithms to find the sender’s step-length and thereby the CH sequences

by using two listening channels but a single jammer.

We revisited the Random rendezvous [6] for the symmetric model to mitigate the CDJA and extend

it to the asymmetric model. Due to the random features of the Random scheme, it is unfeasible for the

channel detecting jammer to estimate the sender’s CH sequences. Thus, the effectiveness of the CDJA

is negligible for the symmetric and asymmetric Random schemes.

5.6 Conclusion

In this chapter, we presented our modified CDJA and demonstrated its effectiveness against the EJS

scheme. The channel detecting jammer is able to take advantage of the EJS algorithm (its method of

generating its channel hopping sequence) to find the sender’s CH sequence. It can find the sequence

of the symmetric EJS within first P time slots using two listening channels. Then the jammer can

completely jam the sender’s CH sequence after an average ⌊ (P+1)
2 ⌋ time slots using just a single channel

jammer. For the asymmetric EJS system, the jammer could find the sender’s CH sequence with high
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probability within P time slots and jam the remaining channels. To remedy this jamming problem, we

revisited the Random scheme for the symmetric model and extend it to the asymmetric model. Our

simulation results demonstrate that the rendezvous probability of the symmetric EJS system under the

CDJA is dramatically decreased for all available channels M (e.g., less than 10% for all M ). Moreover,

the rendezvous probability of the asymmetric EJS system under the CDJA is less than 15% for all ratios

of
|m1|
|M | with M = 40. On the other hand, the rendezvous probability of the symmetric Random is

almost steady for all available channels M (e.g., more than 90% for all M ). Moreover, we present the

theoretical expected time to rendezvous (ETTR) for the asymmetric Random system (i.e.,
|m1|·|m2|

|G| ) and

the ETTR would be almost the same under the CDJA because of the random channel selections in the CH

sequence. This vastly outperforms the ETTR of the asymmetric EJS system. Therefore, the symmetric

and asymmetric Random schemes can be an effective, efficient and robust rendezvous scheme against

CDJAs. Finally we have shown that the Random scheme is superior to MMC for the asymmetric model.
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Chapter 6

Limitations of Quorum-based Rendezvous

and Key Establishment Schemes against

Sophisticated Jamming Attacks

Recently Quorum-based frequency hopping schemes have been studied to increase rendezvous proba-

bilities and to provide fast key establishment techniques in RF communication under jamming attacks.

However, these schemes are still vulnerable to sophisticated jamming attacks in which a jammer has

the capability of listening and jamming multiple frequencies. In this chapter, we present a sophisti-

cated jamming attack and evaluate its effectiveness on Frequency Quorum-based Rendezvous (FQR)

schemes [17]. The sophisticated jammer can find the sender’s quorum set within the second frame (i.e.,

2k time slots) in the FQR system when it has the capability of listening on k frequencies from the

minimal (N, k) difference sets. The jammer can completely jam the sender after 2k time slots using an

average of ⌊k+1
2 ⌋ and a maximum of k frequencies. To remedy this jamming problem, we revisit the

role-based rendezvous scheme and extend it to the Role-based Frequency Rendezvous (RFR) scheme.

Our simulation results demonstrate that the rendezvous probability of the FQR system under the sophis-

ticated jamming attack dramatically decreased as the number of available channel N increases (e.g.,

≤ 35% for N ≥ 30 in k2 time slots). On the other hand, the rendezvous probability of our RFR scheme
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is almost steady for all available frequencies N (e.g., ≥ 90% for N ≥ 20). Therefore, the RFR scheme

can be an effective, efficient and robust rendezvous and key establishment scheme against sophisticated

jamming attacks.

6.1 Introduction

Recently many researchers have proposed different approaches to provide secure key establishment

schemes in RF communication under various jamming attacks. Traditional spread spectrum techniques

such as Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence Spread Spectrum (DSSS)

can be countermeasures to such jamming attacks. However, FHSS and DSSS are required to share a

secret key a priori which is the fundamental limitation of these techniques against the reactive jamming

attacks [40].

To address this limitation, Quorum-based frequency hopping schemes have been studied to elim-

inate the dependency on pre-shared keys [17, 22]. In this chapter, we primarily focus on Frequency

Quorum-based Rendezvous (FQR) algorithms [17] because these algorithms consider rendezvous and

key establishment schemes under various jamming attacks without using common control channels in

Cognitive Radio [22]. In [17], the authors utilize the quorum system to avoid a pre-shared frequency

hopping sequence. For example, the sender and receiver can select independent random frequency hop-

ping sequences but they can rendezvous within a bounded time because of the non-empty intersection

property of cyclic quorum sets [19, 44]. Thus, it can increase the rendezvous probability and decrease

the time latency for key establishment under various jamming attacks.

However, FQR systems are still vulnerable to sophisticated jamming attacks in which a jammer has

the capability of listening on up to k frequencies and jamming on an average ⌊k+1
2 ⌋ frequencies out

of N available frequencies (e.g., k = 4 and k = 12 for N = 13 and N = 100, respectively). The

sophisticated jammer can find the sender’s quorum set within the second frame (i.e., 2k out of k2 time

slots) and jam the remaining k − 2 frames. Thus, the rendezvous probability of the FQR scheme will

be decreased dramatically because the sender and the receiver must rendezvous within the first two of k

frames.
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In this chapter, we present the sophisticated jamming attack and particularly evaluate its effective-

ness on FQR schemes [17,24]. Moreover, we revisit the role-based rendezvous scheme [16] and extend

it to a Role-based Frequency Rendezvous (RFR) where the sender generates its frequency hopping se-

quences by permuting N frequencies and the receiver selects one random frequency from N and stays

on that frequency until the end of the period (N slots). The sender and receiver generate the frequency

hopping sequences every period to defeat replay attacks. Since the sender’s frequency sequences are

totally random, it is unfeasible for any jammer to estimate the sender’s sequences.

The contributions of this chapter are: first, we introduce a novel sophisticated jamming attack model

which can detect the sender’s frequency quorum set within the second frame. This can dramatically

decrease the rendezvous probability of FQR schemes [23, 24]. Second, we propose the RFR scheme to

increase the rendezvous probability against sophisticated jamming attacks. This can effectively decrease

predictability for the sophisticated jammer to the same level as random frequency hopping selection

for the sender’s quorum set. Our simulation results demonstrate that FQR schemes are vulnerable to

sophisticated jamming attacks. On the other hand, the RFR scheme can be an effective, efficient and

robust rendezvous and key establishment scheme against jamming attacks.

The rest of the chapter is organized as follows. Section 6.2 describes relevant background about

Quorum systems and FQR schemes. Section 6.3 presents the proposed schemes. Section 6.4 provides

the simulations of sophisticated jamming attacks on both FQR and RFR schemes and their results.

Section 6.5 describes the related work, and finally Section 6.6 concludes the chapter.

6.2 Preliminary

A quorum system is a group of sets that ensure the non-empty intersection property between any two

sets. Thus, any pair of quorum sets has at least one common entry in the quorum system. In [17], the

authors exploits a cyclic quorum system [44] to generate frequency quorum sequences for FQR systems.

In this section, we briefly introduce the properties of the cyclic quorum system and the FQR system. We

borrow all the terminologies defined in [17, 19, 34, 44]
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Figure 6.1: FQR with (7, 3) difference set example

Definition 1 Given a finite universal set U = ZN = {0, 1, . . . , N − 1} of N elements, a subset D =

{a1, . . . , ak} ⊂ ZN , ai ∈ {0, . . . , N−1} and k ≤ N , is called a cyclic (N, k) difference set if for every

d 6≡ 0 (mod N ) there exist at least one ordered pair of elements (ai, aj) such that ai - aj ≡ d (mod N ).

Definition 2 Given a (N, k) difference set D = {a1, . . . , ak} ⊂ ZN , a cyclic quorum system constructed

by D is Q = {C0, . . . , CN−1}, where Ci = {a1 + i, a2 + i, . . . , ak + i} (mod N ), i = 0, . . . , N − 1.

In [17], the authors apply these properties of quorum systems to develop a FQR system. They pro-

posed a FQR system construction algorithm to construct FQR systems by assigning frequencies to

time slots. For example, consider that a sender and a receiver use a (N = 7, k = 3) difference set.

Then, the cyclic quorum system is Q = {C0, . . . , C6}, where C0={1, 2, 4}, C1={2, 3, 5}, C2={3,

4, 6}, C3={4, 5, 0}, C4={5, 6, 1},C5={6, 0, 2} and C6={0, 1, 3}. Thus, the sender and receiver

can select a random number and obtain a quorum S = Ci and R = Cj (e.g., S = C0 = {1, 2, 4},

R = C4 = {5, 6, 1}), respectively. For the sender, it assigns a channel to the time slot i using C0 =

{c0, c1, c2} = {1, 2, 4}: xi = (i, cm), where 0 ≤ i ≤ k2 − 1 and m = i mod k. Then it obtains

X = {x0, x1, . . . , xk2−1} = {1, 2, 4, 1, 2, 4, 1, 2, 4}. For the receiver, it also assigns a channel to the

time slot i using C4 = {c0, c1, c2} = {5, 6, 1}: yi = (i, cn), where 0 ≤ i ≤ k2 − 1 and n = i - (j mod

k). Then it obtains Y = {y0, y1, . . . , yk2−1} = {5, 5, 5, 6, 6, 6, 1, 1, 1}.

Figure 6.1 shows how the FQR system assigns the frequencies to time slots. It also shows that the

sender and receiver rendezvous on frequency 1 at time T6 and the upper bound of the FQR system is k2
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time slots due to the non-empty intersection property of the quorum system.

6.3 Proposed Schemes

In this section, we propose sophisticated jamming attacks that are different than intelligent jamming

attacks described in FQR schemes [23, 24]. The sophisticated jammer has capabilities similar to the

intelligent jammer such as listening and jamming multiple frequencies but it utilizes the characteristics

of quorum systems to select listening frequencies instead of selecting random frequencies used in intel-

ligent jamming attacks. Thus, the probability of rendezvousing for FQR schemes can be dramatically

decreased using sophisticated jamming attacks.

We validate the effectiveness of sophisticated jamming attacks on both FQR base [17] and FQR

advanced schemes [23]. The difference between two schemes is that the advanced FQR scheme scram-

bles the sender’s frequency quorum sequences for every frame. Thus, it is unfeasible for a jammer to

estimate the order of sender’s frequency quorum sequences. However, for the FQR base scheme, the so-

phisticated jammer can find the sender’s quorum set in the first ⌊k+1
2 ⌋ slots of the first frame on average

and jam the remaining frequency quorum sequences for k2 − ⌊k+1
2 ⌋ time slots using only one jammer.

For the FQR advanced scheme, our sophisticated jammer can find the quorum set in the second frame

and jam the remaining sequences in k − 2 frames with ⌊k+1
2 ⌋ jammers on average. We describe the

algorithms for finding the sender’s frequency quorum set for both FQR systems. Then we analyze the

effectiveness of sophisticated jamming attacks for the two FQR schemes. We also revisit the role-based

rendezvous scheme [16] and extend it to the RFR scheme to address these jamming attacks. Finally, we

compare the effectiveness of sophisticated jamming attacks on the FQR and RFR schemes.

6.3.1 FQR Base Scheme (No Sequence Permutation)

In the FQR base system [17], there are no permutations of frequency quorum sequences for either the

sender’s or receiver’s quorum sets until the end of k2 slots/period. Here we consider one sender and one

receiver in RF communication trying to rendezvous under sophisticated jamming attacks. The FQR base
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scheme uses the minimal (N, k) difference sets to generate the frequency quorum sequences described

in [44]. This guarantees that the sender and receiver can rendezvous within k2 time slots. In [23], the

authors proposed an advanced scheme for the FQR base system by permuting the sequences for each

frame to reduce the jamming effectiveness. The intelligent jammer described in [23] selects random

frequencies for listening and jamming. However, our sophisticated jammer takes advantage of quorum

system properties to select our frequency sequences. This guarantees that the sophisticated jammer can

decrease the rendezvous probability of the FQR base system much more than the intelligent jammer.

Now we describe the algorithm for finding the sender’s frequency quorum set and analyze how the

sophisticated jammer uses it to attack the rendezvous in the FQR base system. We first give an example

of the sender and receiver rendezvousing and how the jammer determines the sender’s quorum set. Then

the algorithm for finding the sender’s frequency quorum set in the FQR base scheme is given.

For our example, suppose that the sender and receiver use the minimal (N, k) difference set when

N = 7 and k = 3. Then all the cyclic quorum sets are

Q = {C0, . . . , C6}

where C0={1, 2, 4}, C1={2, 3, 5}, C2={3, 4, 6}, C3={4, 5, 0}, C4={5, 6, 1},C5={6, 0, 2} and C6={0,

1, 3}. The sender and receiver can independently select a random frequency quorum set from Q. If

the sender and receiver randomly select quorum sets S = C2 = {3, 4, 6} and R = C4 = {5, 6, 1}

respectively, then their frequency quorum sequences on the time slots Tl are

(Si, Tl) = {(3, T0), (4, T1), (6, T2), (3, T3), (4, T4), (6, T5), (3, T6), (4, T7), (6, T8)}

(Ri, Tl) = {(5, T0), (5, T1), (5, T2), (6, T3), (6, T4), (6, T5), (1, T6), (1, T7), (1, T8)}

where 0 ≤ i ≤ k − 1, 0 ≤ l ≤ k2 − 1. The sender and receiver rendezvous on the frequency 6 at time

T5.

The sophisticated jammer has the same minimal (N, k) difference set and generates the same quo-

rum system Q′ = Q as the sender’s. Then it also randomly selects one quorum set J = C0 = {1, 2, 4}

and listens to the sender’s signals on three frequencies for the first frame:

(Si, Tl) = {(3, T0), (4, T1), (6, T2)}
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(Ji, Tl) = {({1, 2, 4}, T0), ({1, 2, 4}, T1), ({1, 2, 4}, T2)}

where 0 ≤ i, l ≤ k − 1. The jammer detects the frequency 4 at time T1. Once it detects one of sender’s

frequencies, then it can find the frequency quorum set Ci which contains the sender’s frequency 4 at time

T1 or F1 = 4. That is, the Ci is the sender’s frequency set and the frequency quorum set C3 = {3, 4, 6}

is the unique set (F1 = 4) from Q′ in this case. Thus, the sophisticated jammer can exactly generate the

same frequency sequences as the sender’s so that it can jam the remaining sequences in k − 1 frames

using only one jammer. Therefore, the sender and receiver can not rendezvous.

As illustrated above, the sophisticated jammer can use the algorithm, given below, to find the

sender’s quorum set in the first frame.

1. Generate the quorum system Q = {C0, . . . , CN−1} from (N, k) difference sets, where Ci =

{F0, . . . , Fk−1} and i ∈ U = {0, . . . , N − 1}.

2. The sender selects a random quorum set S = Ci and generates the frequency quorum sequences

(e.g., S′ = {S0, ..., Sk−1}, k frames and k2 time slots).

3. The jammer generates Q′ = Q and selects a random quorum set J = Cj for its listening frequency

quorum set (i.e., k frequencies). J may be the same as S.

4. The jammer listens on k frequencies and detects the sender’s frequency for the first frame (i.e., k

time slots).

5. Once it detects a sender’s frequency Fi at time slot Tl, where i,l ∈ {0, . . . , k − 1}, it finds the

sender’s quorum set Cj which lth frequency is Fi (i.e., Ci(l) = Fi).

6. The Ci quorum set is the sender’s quorum set.

In fact, the average time to find the sender’s frequency quorum set is ⌊k+1
2 ⌋ because the expected

time to find the the sender’s quorum set is E[X] = Σk
x=1x

1
k = ⌊k+1

2 ⌋. Thus, the jammer can detect the

sender’s frequency quorum set within ⌊k+1
2 ⌋ time slots in the first frame and jam the remaining quorum

sequences in k2−⌊k+1
2 ⌋ time slots. This means that the sender and the receiver must rendezvous within
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Figure 6.2: The sophisticated jamming attack on FQR base system

the first ⌊k+1
2 ⌋ time slots of frame 1 on average. Figure 6.2 depicts how fast the sophisticated jammer can

find the sender’s frequency quorum set for the FQR base scheme. Therefore, the sophisticated jamming

attacks can dramatically decrease the rendezvous probability of the FQR base system.

6.3.2 FQR Advanced Scheme (Sequence Permutation)

The authors proposed the advanced scheme for the FQR base system by scrambling the sequences

for each frame to reduce the jamming probability [23, 24]. Due to the random permutation of quorum

sequences for each frame, it is unfeasible for the jammer to estimate the entire sequences. However, it is

still vulnerable against sophisticated jamming attacks where the jammer has the capability of listening

on k frequencies and jamming an average of ⌊k+1
2 ⌋ frequencies.

In this subsection, we briefly describe the algorithm for finding the sender’s frequency quorum set

in the FQR advanced scheme.

1. Step (1) - (4) are the same as the FQR base system except that the sender permutes the frequency

quorum sequences for each frame for step (2).

2. Once the jammer detects the sender’s frequency(or frequencies), it excludes the quorum sets from

Q′ which do not contain this frequency. If more than one jammer frequency is heard, then only
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Figure 6.3: Finding the sender’s quorum set within the second frame

quorum sets with both or all these frequencies are kept. The number remaining in quorum set Q′′

is at most k − 1 and may be unique.

3. Find the unique frequency from each quorum set in Q′′ and generate new listening set J ′. It can

be easily shown such unique frequencies always exist; see Figure 6.3.

4. Listen on k frequencies in time slots from k to 2k − 1.

5. Once the jammer detects a sender’s frequency Fi, then it finds the quorum set Cj which contains

Fi.

6. The Cj quorum set is the sender’s quorum set.

As illustrated in the example below, using this algorithm, the sophisticated jammer can find the sender’s

quorum set in the second frame. Figure 6.3 illustrates finding the sender’s quorum set. In this example,
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we use the same minimal (N, k) difference sets as the FQR base scheme’s. The minimal difference set

is (7, 3) and the cyclic quorum sets are Q = {C0, . . . , C6}. The sender and receiver can independently

select a random frequency quorum set from Q. Then the sender generates the frequency quorum se-

quences by scrambling sequences for each frame. If the sender and receiver randomly select quorum

sets S = C1 = {2, 3, 5} and R = C5 = {6, 0, 2}, respectively, then their frequency quorum sequences

can be

(Si, Tl) = {(2, T0), (3, T1), (5, T2), (3, T3), (5, T4), (2, T5), (5, T6), (3, T7), (2, T8)}

(Ri, Tl) = {(6, T0), (6, T1), (6, T2), (0, T3), (0, T4), (0, T5), (2, T6), (2, T7), (2, T8)}

where 0 ≤ i ≤ k − 1, 0 ≤ l ≤ k2 − 1. The sender and receiver can rendezvous on the frequency 2 at

time T7.

The sophisticated jammer also randomly selects one quorum set J = C3 = {4, 5, 0} and listens for

the sender’s frequencies for the first frame:

(Si, Tl) = {(2, T0), (3, T1), (5, T2)}

(Ji, Tl) = {({4, 5, 0}, T0), ({4, 5, 0}, T1), ({4, 5, 0}, T2)}

where 0 ≤ i, l ≤ k − 1. The jammer detects the frequency 5 at time T2 but it cannot find the sender’s

quorum set immediately because the number of quorum sets containing the frequency 5 is more than

one set (i.e., k − 1 = 2). Thus, the jammer needs to regenerate the new listening set J ′ = {3, 6}

from the remaining sets in Q′′ = {C1 = {2, 3, 5}, C4 = {5, 6, 1}} and then wait another frame to

determine the sender’s quorum set. The jammer detects the frequency 3 at time T4 and determines that

the sender’s quorum set to be C1 = {2, 3, 5}. That is, the sophisticated jammer can find the sender’s

frequency quorum set for the second frame. Then it can jam the remaining quorum sequences for k − 2

frames using an average of ⌊k+1
2 ⌋ jamming frequencies. The jammer hears a frequency in each slot

so it need not jam that frequency in any subsequent slots in that frame and hence the ⌊k+1
2 ⌋. Thus, the

sophisticated jamming attack can dramatically decrease the rendezvous probability of the FQR advanced

system because it knows the sender’s quorum set exactly but it cannot estimate the order of the sender’s

quorum sequences.
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6.3.3 Role-based Frequency Rendezvous

The advanced FQR scheme can increase the rendezvous probability under various jamming attacks

but the sophisticated jamming attack can dramatically decrease the rendezvous probability. To mitigate

this jamming attack, we consider Anderson and Weber’s algorithm [16] called role-based rendezvous

scheme [6] and extends it to Role-based Frequency Rendezvous (RFR) scheme as a countermeasure

against the sophisticated jamming attack. In the RFR system, a sender generates a randomized per-

mutation of N frequencies for every period. The receiver randomly selects one frequency out of N

frequencies for every period and stays on the frequency until the end of the period. Hence, it is un-

feasible for the sophisticated jammer to estimate when the sender and receiver might rendezvous. For

example, when N = 8 and 0 ≤ i ≤ 7, the sender’s and the receiver’s frequency sequences can be

(S, Ti) = {(4, T0), (3, T1), (0, T2), (5, T3), (7, T4), (2, T5), (6, T6), (1, T7)}

(R,Ti) = {(5, T0), (5, T1), (5, T2), (5, T3), (5, T4), (5, T5), (5, T6), (5, T7)}

. The sender and receiver rendezvous on frequency 5 at T3. In the RFR scheme, the upper bound for a

rendezvous is N and the expected Time To Rendezvous (TTR) is ⌊ (N+1)
2 ⌋ [16].

6.4 Evaluation

We implement the sophisticated jamming attack on the FQR advanced scheme [23] to evaluate its ef-

fectiveness. We exclude the implementation of the FQR base scheme because it is trivial for the sophis-

ticated jammer to find the sender’s frequency quorum set. For the FQR advanced system, we use the

same optimal cyclic quorum sets [44] and generate the frequency quorum sets from the minimal (N, k)

difference sets as the FQR system [17]. We also implement the RFR scheme to demonstrate how it is

more robust against these jamming attacks compared to the FQR advanced scheme.

First, we compare the expected TTR for both FQR advanced and RFR schemes. Figure 6.4 gives the

average TTRs for FQR and RFR schemes where the number of available frequencies N varies from 4 to

100 and there are no jamming attacks. We ran 1000 simulations for each frequency and calculated the

average TTR for them. This figure shows that the average TTR for RFR scheme increases steadily as the
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Figure 6.4: TTR for both FQR and RFR without jamming attacks
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Figure 6.5: The probability of rendezvous within ≤ 2k time slots

number of available frequencies increases. Since the expected TTR for the RFR scheme is ⌊ (N+1)
2 ⌋, the

average TTR is approximately half of the available channels time slots. The average TTR for the FQR

system depends on the quorum sets. One quorum set can take less time than another with a larger number

of available frequencies. Overall, the average TTR for the RFR system is lower than FQR system’s TTR

for all N .

Now we compare the probability of a rendezvous by 2k time slots for the FQR advanced and RFR

schemes. This is important for the FQR advanced system because, using our sophisticated jammer, the

sender and receiver can only rendezvous by the end of the second frame (≤ 2k). The sophisticated
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jammer can find the sender’s quorum set within the second frame and jam the remaining frequency

quorum sequences for (k − 2) frames. Figure 6.5 provides the probability distribution of a rendezvous

for FQR and RFR schemes. This figure shows that the rendezvous success rates for both schemes are

close each other and it dramatically decreases as the number of available frequencies increases. Overall,

the rendezvous probability of the RFR scheme is slightly higher than that of FQR advanced. For the

FQR advanced scheme, the success rate is less than 40% when the number of frequencies is more than

20 and it is around 21% when N = 100. Note this is only the probability of a rendezvous in 2k time

slots and when N is large, 2k is much smaller than both N and k2.

Now we compare the probability of a rendezvous for both schemes under the sophisticated jamming

attack. In this experiment, the sophisticated jammer uses ⌊k+1
2 ⌋ jamming frequencies on average. Since

the sender’s frequencies are not repeated in any frame, it is redundant to keep jamming any frequencies

detected by the jammer in that frame. Thus the number of jammed frequencies decreases with the time

slot and therefore the average number of jamming frequencies is the ⌊k+1
2 ⌋. The jamming attack on

FQR begins only after the first 2k slots while the random jamming attack of ⌊k+1
2 ⌋ frequencies starts

immediately for RFR. Figure 6.6 shows the probability of rendezvous for both systems until the end

of k2 time slots. The probability of rendezvous for the FQR advanced scheme dramatically decreased

as the number of frequencies increases. When the minimal difference set is (100, 12), the rendezvous

probability is less than 20%. However, the rendezvous probability for the RFR scheme is almost steady

and more than 80% for all the available frequencies N . In the RFR system, we extend the period for the

RFR scheme from N to k2 time slots to compare with the FQR advanced scheme. Thus, the RFR sender

can permutate the frequency sequences again at N + 1 and thus increase the rendezvous probability

slightly more but this is not critical. When N is 100, the probability for RFR is close to 95% (i.e.,

949 rendezvous out of 1000 times). The FQR average TTR is much larger than RFR’s as seen from

Figure 6.5 and Figure 6.6.

Lastly, we implement the cumulative rendezvous probability for both schemes under ⌊k+1
2 ⌋ jamming

frequencies on average. Figure 6.7 describes the cumulative probability of rendezvous for both systems

until the end of k2 time slots. We select 5 different N as the number of available frequencies. For the
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Figure 6.6: The probability of rendezvous under an average ⌊k+1
2 ⌋ jammers in k2 time slots

FQR advanced scheme, the cumulative probability of rendezvous is almost 50% when N = 10 but it

decreases to 15% for N = 100. On the other hand, the cumulative rendezvous probability of the RFR

scheme linearly increases up to the its original period (N time slots) and slowly increases from N to

k2 time slots. This means that the effectiveness of sophisticated jamming attack is not critical in RFR

scheme but it is critical for the FQR advanced scheme.
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Figure 6.7: The cumulative probability of rendezvous under an average ⌊k+1
2 ⌋ jammers in k2 time slots

6.5 Related Work

The traditional spread spectrum techniques are vulnerable to the reactive jamming attacks [21,40] where

the jammer can be a compromised receiver and it can learn the pre-shared key between the sender and

receivers.

To address the limitation, several approaches have been studied to eliminate the dependency on

pre-shared keys and establishing a random shared secret before the communication starts [17, 27, 35].

The Uncoordinated FHSS (UHSS) approach [35] proposes a scheme by using the Diffie-Hellman (DH)

protocol to establish a shared key between the sender and receivers. The sender sends the same message

with a randomly selected frequency from the known pool of frequency sequences. The receiver can

decode if any correct message is received. The USD-FH approach [27] also provides an efficient Diffie-

Hellman (DH) key establishment method under jamming attacks by transmitting a one-time pseudo-

random hopping pattern message and disclosing the relevant seed in an uncoordinated manner before
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the actual message. In [17], the authors proposed the FQR system which elaborates the Quorum-based

rendezvous scheme. Since the time latency for rendezvous and key establishment is not trivial for previ-

ous schemes [27,35], the FQR scheme focuses on decreasing time latency by using cyclic quorum sets.

Using this advantage, FQR schemes can provide relatively fast and robust key establishment methods

under various attacks.

However, the FQR system is still vulnerable to the sophisticated jamming attacks in which the

jammer has the capability of listening and jamming multiple frequencies. To address this problem, we

revisit the role-based Rendezvous scheme [16] and present the RFR scheme which extends the scheme

to key establishment. Since the role-based rendezvous scheme uses the random rendezvous scheme, it is

unfeasible for the sophisticated jammer to estimate the sender’s quorum set by using the sophisticated

jammer channel selection algorithm. Therefore, the RFR scheme is more robust against sophisticated

jamming attacks.

6.6 Conclusion

In this chapter, we presented an advanced jamming attack called sophisticated jamming attack and

demonstrate its effectiveness on both FQR base and FQR advanced systems [17, 23]. Since the sophis-

ticated jammer takes the advantage of the quorum system property to select the listening and jamming

frequencies, it can find the sender’s quorum set within the second frame in the FQR system. Then, the

jammer can completely jam the sender after 2k time slots using an average of ⌊k+1
2 ⌋ and a maximum of k

frequencies. To remedy this jamming problem, we revisit the role-based rendezvous scheme and extend

it to the RFR scheme. Our simulation results demonstrate that the rendezvous probability of FQR system

under the sophisticated jamming attack is dramatically decreased as the number of available channel N

increases (e.g., ≤ 35% for N ≥ 30 in k2 time slots). On the other hand, the rendezvous probability of

our RFR scheme is almost steady for all available frequencies N (e.g., ≥ 90% for N ≥ 20). Therefore,

RFR scheme can be an effective, efficient and robust rendezvous and key establishment scheme against

sophisticated jamming attacks.
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Chapter 7

Enhanced Security of Random Seed DSSS

Algorithms against Seed Jamming Attacks

Researchers have recently studied random spread spectrum techniques to protect the wireless broadcast

communications from reactive jamming attacks in traditional Direct Sequence Spread Spectrum (DSSS)

networks. They proposed mechanisms to eliminate the pre-shared key vulnerability by generating dif-

ferent code sequences for each message using random seeds and disclosing the seeds at the end of the

message. In this chapter, we present a new type of jamming attack called a seed jamming attack for

the fixed message size and these seed disclosure schemes are vulnerable to it. The seed jamming attack

focuses on jamming any part of the random seeds of the messages. Their sizes are relatively small and

their position in messages is known to the public a priori. Thus, the receivers cannot despread any part of

the messages due to the failure of regenerating proper code sequences with the corrupted seed. Jamming

the seed precludes the use of any possible FEC since the receiver cannot decode any bits in the mes-

sage. To overcome the seed attack, we propose an advanced random seed DSSS (ARS-DSSS) scheme

which strengthens the previous algorithm called DSD-DSSS [28] by using an additional location seed.

The new seed avoids the seed jamming attack by using variable message sizes instead of using known

fixed message sizes while incurring almost no additional performance overhead. Our security analysis

and implementation results demonstrate how to defeat the seed jamming attacks and how to reduce the
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computation overhead of DSD-DSSS from the cardinality of seed code set Ce to 1.

7.1 Introduction

Recently, spread spectrum techniques have been emphasized in wireless broadcast communication due

to its anti-jamming characteristics. Frequency Hopping Spread Spectrum (FHSS) and Direct Sequence

Spread Spectrum (DSSS) are the most common spread spectrum techniques [18]. However, traditional

spread spectrum systems have the fundamental limitation of prior sharing of a secret key between the

sender and receivers. This sharing creates a vulnerability to insider jamming attacks (e.g., a reactive

jamming attack [40]) when the jammer is a compromised receiver since she can use the pre-shared key

to jam the wireless communications.

Many researchers have proposed different approaches to eliminate the dependency on pre-shared

keys. The Uncoordinated DSSS(UDSSS) approach [7, 35] randomly selects frequency hopping se-

quences or the spreading code subsequences from a public pool of code sequences for each message

instead of using the pre-shared keys for all messages. However, if a reactive jammer has sufficient

computation power, she can find the correct code sequence before the communication ends. The RD-

DSSS [45] employs the encoding method for each bit (i.e., 0 or 1) of data by using the correlation of

unpredictable spreading codes. The RD-DSSS uses multiple spreading code sequences to spread each

message to avoid the dependency seen in UDSSS. It is almost infeasible for the reactive jammer to com-

pute the next code sequence in real time. The recently proposed Delayed Seed-Disclosure DSSS(DSD-

DSSS) [28] uses random seeds to generate random code sequences for each message. Using the random

seed, the sender and receivers can generate the same code sequences. To address the reactive jamming

attack, the DSD-DSSS discloses the random seed at the end of each message. Thus, it is infeasible for

the jammer to generate the code sequences before all receivers receive the entire message.

However, they are still vulnerable to a new type of jamming attacks called a seed jamming attack

in which an attacker particularly focuses on jamming the random seed(s) in messages. For example,

since the insider jammer learns the beginning of the messages with the sender using a synchronization

method, she can also compute the starting chip of the seed in messages. The jammer can simply jam the
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entire spectrum for a very short duration when the sender sends even one bit of the random seed. This

type of jamming attacks is clearly possible under the premise that an attacker is a sophisticated jammer

who is one of compromised receivers and has sufficient transmission power. The jammer can broadcast

enough noise (e.g., beyond the jamming margin [21]) for a short period time to jam the entire spectrum

for only the last bit of the seed in the transmission. Therefore, the receivers cannot despread the entire

messages due to the failure of regenerating correct code sequences from the corrupted seeds. Jamming

the seed instead of the bits in the message precludes using FEC while jamming the message bits can be

reversible using FEC [31].

In this chapter, we propose an advanced random seed DSSS (ARS-DSSS) technique as a coun-

termeasure to the seed jamming attack. In particular, we chose the DSD-DSSS SUBSET scheme [28]

because it is arguably the best algorithm except for its efficiency for variable size messages. However,

we show it is clearly vulnerable to the seed jamming attacks for the fixed size messages. Moreover, if

it uses the variable size messages, the computational overhead to find the random seed increases by the

cardinality of the seed spreading code set Ce. Our ARS-DSSS aims to reduce the performance overhead

for variable size messages and to provide security against the seed jamming attacks. Our ARS-DSSS

introduces the new random location seed to help receivers efficiently find the random seed in variable

sized messages.

The contributions of this chapter are: first, we introduce a novel seed jamming attack model which

can make previous approaches fail to provide guaranteed security against jamming attacks. The seed

jamming attack is fundamentally more effective than jamming any other bits in the message. This is

because FEC can be used to recover jammed message bits while jammed seed bits preclude reading

any of the message and FEC is not applicable. Second, we propose the advanced random seed DSSS

scheme to protect the wireless broadcast communication against the seed jamming attacks. Moreover,

our implementation results demonstrate that our ARS-DSSS reduces the performance overhead of the

DSD-DSSS SUBSET scheme from cardinality of Ce to 1 for the variable message sizes. In DSD-DSSS

SUBSET, the size of the code set Ce is generally at least 56 bits.

The rest of the chapter is organized as follows. Section 7.2 discusses the assumptions and context.
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Section 7.3 presents the proposed schemes. Section 7.4 provides the implementation of our scheme and

its results. Section 7.5 describes related work, and Section 7.6 concludes this chapter.

7.2 Assumptions and Context

We consider mission-critical applications that use wireless broadcast communication mediums. In our

system model, the sender broadcasts messages to unknown receivers with the existence of jamming at-

tacks. We assume that there is a sophisticated jammer who has both strong computation power and trans-

mission power. Actually, only minimal computational power is required for the seed jamming attacker.

We also assume that the jammer can synchronize with the sender and she can immediately compute the

beginning position of the random seed in messages during the synchronization process. We assume that

the sophisticated jammer has sufficient power to jam the entire spread spectrum for very short duration

(e.g., 1 bit) in DSSS systems. However, we assume that the jammer cannot continuously or extensvely

jam the entire spectrum.

As discussed, we introduce the new type of jamming attacks called seed jamming attacks. Most

previous schemes [7], [45], [28] provide a high level of security against the reactive jamming attack but

they are still vulnerable to the seed jamming attacks. In this section, we will define the seed jamming

attack and describe its effectiveness against the DSD-DSSS SUBSET scheme [28] in detail.

7.2.1 Seed Jamming Attacks

In wireless broadcast communication, a reactive jammer can learn the secret key between the sender

and receivers if she is a compromised receiver. Most previous research focuses on eliminating the de-

pendency on the pre-shared key by using randomized code sequences or a random seed for generating

code sequences at the receivers. For example, in DSD-DSSS SUBSET [28], the random seed is attached

at the end of the message and all receivers can receive the entire message before the seed arrives. Using

the seed, all receivers can generate the same code sequences the sender used. However, it is infeasible

for a reactive jammer to compute the codes sequences in real-time without knowing the correct random
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Figure 7.1: A seed jamming attack against DSD-DSSS SUBSET

seed.

Most of these approaches have a premise that it is difficult or impossible for a jammer to con-

tinuously jam the entire spread spectrum. However, it is possible, in practice, to jam the entire spread

spectrum for a short duration using a commodity system. The continuous jammer would be immediately

detected but a single bit jammer much less so. Under this premise, we present the seed jamming attacks

in which a sophisticated jammer mainly focuses on jamming part of the random seed in the message.

Figure 7.1 describes the seed jamming attack against the DSD-DSSS SUBSET approach. The seed jam-

ming attack is applicable to the scheme only if the message size is fixed. When the message size is fixed,

the jammer can compute the starting chip of the random seed in messages during the synchronization

(e.g., Barker Code [3]). Then, when the sender sends the random seed, the jammer transmits noises that

are beyond the jamming margin [21]. Therefore, the receivers can not despread the received message

because they cannot regenerate the same code sequences from the corrupted seed. The following section

describes finding the position of the random seed in messages.

7.2.2 Finding Random Seeds in Messages

In general, the seed jamming attack is different than other types of jamming attacks such as continuous,

periodical, or random jamming attacks because it focuses only on the random seed in the message.

Also, as mentioned previously, it is dramatically more effective. It clearly is necessary for the seed
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jammer to find the position of the random seed during the synchronization process or at least before

the seed transmission. This is possible if the message sizes are fixed and known to the public a priori.

For example, one of the typical synchronization techniques in DSSS system is the Barker Code [3]

that both the sender and receivers know in advance. As we indicate in Figure 7.1, the receiver can find

the maximum correlation by comparing the Barker Code and its signals in the received buffer using a

sliding window approach. Thus, the sophisticated jammer knows the message begins immediately after

the maximum correlation of the signal and can also compute the beginning chip of the random seed in

the message. If the message sizes are variable, the jammer is required to continuously jam or estimate

the position of the random seed to jam the wireless communications.

802.11 Family: We first describe the wireless communication in the 802.11 networks. From 802.11

DSSS PHY specification, the message sizes are fixed and the DSSS PHY contains the LENGTH field

in the TXVECTOR [2]. It is in octets and the receiver can convert it to microseconds to calculate

the message length. In our system model, once a sophisticated jammer can synchronize the received

messages with the sender, she can compute the starting chip of the random seed to jam. Therefore, the

wireless communications in the 802.11 protocol family are vulnerable in our system model.

None-802.11 Family: Many jamming countermeasures use their own communication protocol in

DSSS systems instead of using the 802.11 family. In [28], the authors propose a generic DSSS protocol

for the wireless broadcast communication. The protocol does not include any header information which

can contain length fields. Thus, we can consider two scenarios for the message sizes. First, the messages

sizes are fixed and known to the public a priori. In this scenario, the sophisticated jammer can know the

beginning of the seed in the message immediately after synchronization.

Figure 7.2 describes finding the seed in DSD-DSSS SUBSET [28] when the message sizes are

fixed. After the synchronization, the jammer can compute the position of the last bit of the random seed

in the message. The position is

((m× lc) + ((s− 1)× lc))

where m is the message size in bits, s is the seed size, and the lc is the code length.

The other scenario is that the message sizes can be variable so that the receivers are required to
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Figure 7.2: Finding the random seed in DSD-DSSS SUBSET

find the maximum correlation of the random seed in messages using sliding window techniques. The

receiver buffers all the messages in the circulation queues and moves the sliding windows with the size

of chip duration over time. When the receiver finds the highest correlation with the code sequence of

the seed, it can then find the entire seed and then the beginning of the messages from that position using

backward computation.

As discussed above, if the message sizes are fixed, the receiver can easily compute the beginning and

the end of the seed but then it is vulnerable to seed jamming attacks. On the other hand, if the message

sizes are variable and change each time, it is difficult or impossible for the sophisticated jammer to

find the beginning of the seed in the message until the seed is complete. Moreover, for the receiver, the

computation overhead is prohibitive because it must compare the entire message to find the maximum

correlation with every element in the seed code set Ce. Our proposed solution reduces the computation

overhead by a factor of |Ce|.

7.3 Proposed Schemes

In this section, we propose an Advanced Random Seed DSSS (ARS-DSSS) scheme to improve the DSD-

DSSS SUBSET scheme [28]. The DSD-DSSS scheme provides a high level of security against reactive

122



jamming attacks. However, this scheme is vulnerable to seed jamming attacks when the message sizes

are fixed. In addition, the performance overhead of finding the seed increases dramatically when the

message sizes are variable. To address these shortcomings, we strengthen the DSD-DSSS SUBSET

scheme and propose the ARS-DSSS scheme by introducing the new random location seed. We will

describe our ARS-DSSS scheme and its security analysis in the following sections.

7.3.1 An Advanced Random Seed DSSS (ARS-DSSS)

The DSD-DSSS SUBSET scheme is vulnerable to the seed jamming attacks for the fixed message size.

Since the seed size is relatively small compared to the message size and the position of the seed in

messages is known to the public, the jammer can corrupt the seed so that the receivers cannot despread

entire messages. Moreover, the computation overhead for DSD-DSSS SUBSET of locating the seed in

variable sized messages is prohibitively large. In this section, we describe the computation overhead. In

DSD-DSSS [28], the computation time of locating the seed in messages is

Ts = ((m× lc) + (s× lc))× n

where Ts is the computation overhead, m is the length of message, lc is the length of the chips, s is

the length of the seed, and the n is the number of the code sequences in the seed code set Ce. The

DSD-DSSS SUBSET scheme uses the Ce code set to spread the last bit of the random seed. The n code

sequences in Ce are known to the public. But the seed is randomly selected for each message and is not

known to the public. The total time for despreading messages is

T = Ts + Tg + Td

where T is the total time for despreading received messages, Ts is the time for finding the seed, Tg is the

time for generating code sequences from the seed, and Td is the time for despreading messages using

the code sequence.

Thus, the total time T in DSD-DSSS SUBSET scheme mainly depends on the time Ts for finding

the seed. If the message sizes are fixed, the receivers can skip the time for finding the seed. On the other

hand, if the message sizes are variable, the receiver is required to compare the entire message, one chip
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Figure 7.3: Finding the seed in ARS-DSSS

at a time, to the code set Ce to find the maximum correlation with the last seed bit. Please see Figure 2

in [28] for the diagram of the required sliding window scheme. To address this problem, we extend the

DSD-DSSS SUBSET scheme and propose ARS-DSSS by introducing the new random location seed.

The seed is one bit (e.g., 0 or 1) and it is spreaded

and despreaded by one random code sequence in Cx which replaces the finding the last seed bit al-

gorithm of the DSD-DSSS SUBSET scheme. Figure 7.3 describes the new location seed of our scheme.

In ARS-DSSS, the total time for despreading the message is

T = Tx + Tg + Td

where Tx is the new time for finding the location seed in messages. The computation time Tx is

Tx = ((m× lc) + (s× lc) + (1× lc))× 1.

That is, our ARS-DSSS can reduce the time for finding the random seed from the cardinality |Ce| to 1.

As the security demands increase, the number of code sequences (n) in Ce must increase. Therefore,

our ARS-DSSS is more scalable as the size of Ce increases.

7.3.2 Security Analysis

In this chapter, we improve the DSD-DSSS SUBSET scheme [28] so our ARS-DSSS scheme provides

the same level of security against the reactive jamming attacks and the same effectiveness against DoS

attacks. We now describe the DoS attacks against the new location seed Cx and present a solution.
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Figure 7.4: The seed jamming attacks in ARS-DSSS

Figure 7.4 indicates how a sophisticated jammer can transmit bogus location seeds Cx. As long as

these bogus location seeds satisfy for the following condition, the receivers cannot filter them immedi-

ately. The condition is that the phase offset between the carriers of the seed jammer and the legitimate

sender must be within a fraction η of the chip period [33]. Otherwise, the receivers can easily differen-

tiate between the jamming signals and the legitimate sender’s signals using DSSS techniques.

When the bogus location seed is within this fraction, the receiver is required to compare the maxi-

mum correlation with the Cx code sequence first. Then, the receiver computes the correlation using Ce

code set of the previous bit (thinking it is the last bit of the random seed). This is exactly the same as

for the DSD-DSSS SUBSET scheme. Our ARS-DSSS scheme provides the same level of the security

against the DoS attacks as if the jammer had transmitted bits using Ce instead of Cx.

However, there may be a trivial increase in the computation overhead. Let Cp be the code set for

the messages and the subset of seeds in the DSD-DSSS SUBSET scheme. It can be shown that the ”in-

creased” computation is just the decoding of one bit by Ce for our ARS-DSSS scheme versus decoding

of one bit by a subset of Cp for the DSD-DSSS SUBSET scheme. For most cases, Ce is minimally larger

than the appropriate subset of Cp but may not be as well. This does occur for each bogus location seed

transmitted. Therefore, our scheme is as DoS resistant as the DSD-DSSS SUBSET scheme with little or

no increase in computation overhead.

In addition, the DoS attack against ARS-DSSS can be largely mitigated by increasing the size of

Cx. The fundamental idea here is that each receiver chooses a random member of Cx on which it will
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synchronize while the sender, after sending the last seed bit of the message, transmits a bit using every

member of Cx chosen in random order. The set Cx may be taken as a subset of Ce and |Cx| is given by

m. Thus the probability that a transmitted DoS bogus position seed will be recognized and have to be

handled in the above fashion is now 1
m . This decreases the cost of the bogus seed attacks by a factor of

m over the singleton Cx. It can be shown that the bogus code attack from Ce for DSD-DSSS SUBSET

scheme for the fixed message size has a cost that is the cardinality of a subset of Cp times |Ce| more

costly than ARS-DSSS scheme.

If the code set Cx is a singleton and if the sophisticated jammer is able to jam continuously with

the Cx code, then it may be possible that our ARS-DSSS scheme will miss the bit sent using Cx which

immediately follows the final seed bit. Fortunately, increasing the size of Cx largely mitigates this attack

too. Now the sender transmits m bits using every member of Cx chosen in random order and it repeats

this four times. Each receiver chooses a random member of Cx and attempts to synchronize using it

for 2m bits. Then it chooses another random member of Cx and synchronizes with it for 2m bits. It

continues to repeat this until it synchronizes with a code from Cx. It can be shown that in the absence

of a jammer this generates at least two synchronization with members of Cx. Since the jammer can jam

any code in Cx, there cannot be a guarantee of synchronization.

However, the probability for the continuous jammer to successfully jam the codes from Cx or equiv-

alently the location seeds is approximately 1
m2 or 1% when |Cx| = 10. We could further improve this

efficiently if we configure this synchronization with the codes from Cx as a rendezvous problem and

apply techniques from that domain. The cost for increasing the size of Cx is that we have to transmits

4m additional bits and then use the codes in Cx to back into the last seed bit. In the same fashion as

given above, a continuous jammer using codes from Ce can jam the last seed bit for the DSD-DSSS

SUBSET scheme. This bit can be jammed with a probability of 1
|Ce|

which is likely to be a little larger

than 1
m2 (the jamming probability for the ARS-DSSS scheme). Our approach above may not be optimal

but it is still much more efficient and effective than the DSD-DSSS SUBSET scheme.

The actual implementation can keep the size of Cx small (10 or so) but still provide effective and

efficient DoS and jamming protection with the cost being the additional bits transmitted. We have not
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tried to optimize on the size of Cx. The results in this chapter stand by themselves and enlarging Cx is

just one additional feature. This feature make our ARS-DSSS scheme even more efficient and resilient

to DoS and jamming attacks than the DSD-DSSS SUBSET scheme.

7.4 Experimental Evaluation

We implemented our ARS-DSSS scheme on GNU Radios [30,42] in the same environment as the DSD-

DSSS SUBSET scheme [28]. We used two USRPs with XCVR2450 daughter boards for one sender and

one receiver, respectively. Each USRP was connected to a desktop computer (Intel (R) Core (TM) Quad

CPU Q6600 @ 2.40 GHz), both through 480 Mbps USB 2.0 links. The operating system is Ubuntu 9.04

and Gnuradio 3.2 softwares for both systems. The code base of the DSD-DSSS SUBSET scheme was

used to implement our ARS-DSSS scheme.

In our implementation, we consider two scenarios for the receivers based on fixed and variable

message sizes. Since we extend the DSD-DSSS SUBSET, we evaluate DSD-DSSS SUBSET for the

computation overhead of despreading messages and compare it with our ARS-DSSS scheme for both

scenarios. For both scenarios, we assume there are already synchronization methods between the sender

and receivers. That is, the receivers know the beginning of the message during the synchronization even

for the variable message size scenario. However, they cannot estimate the end of messages during the

synchronization for the variable message size. We will not discuss the synchronization techniques which

are not in the scope of this chapter.

For the fixed message size scenario, the receiver takes the advantage of the known position informa-

tion of the random seed in messages. After the synchronization, the receivers know the position of the

last bit of the random seed so that they can directly compare the last bit with the code sequences of the

code set Ce. Figure 7.5 shows the average time of despreading messages for DSD-DSSS SUBSET and

ARS-DSSS schemes when using different message sizes. The average despreading time of the ARS-

DSSS scheme is almost the same as the DSD-DSS SUBSET. Since our ARS-DSSS scheme introduces

only one code sequence of Cx, the additional computation overhead for comparing one code sequence

for one bit is trivial.
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Figure 7.5: Implemented decoding time for the fixed message size scenario

The other scenario is that the receiver has no information about the starting chip of the last bit of

the random seeds. Thus, the receiver is required to find the maximum correlation from the beginning bit

to the last bit of the message for every code in Ce. Recall the sliding window diagram. For DSD-DSSS

SUBSET, the computation time for finding the beginning of the last random seed bit in messages (Ts) is

Ts = ((m× lc) + ((s − 1)× lc) + (1× lc))× |Ce|

where m is the message size, s is the length of the seed, |Ce| is the number of code sequences in Ce,

and lc is the code length (chip length). In our experiments, the number of code sequence Ce is 56 (i.e.,

⌈ (N∗N)+N+3
2 ⌉, where N=10), the seed size is 64, and the chip length is 32. Thus, the time for finding

the seed in the DSD-DSSS SUBSET is Ts(DSD −DSSS) = (m ∗ 32 + 64 ∗ 32) ∗ 56 with different

message sizes. For ARS-DSSS, the time is Ts(ARS − DSSS) = (m ∗ 32 + 64 ∗ 32) ∗ 1, where the

cardinality of the code sequence of Cx is 1.

Figure 7.6 shows the average time (implemented) for despreading messages for both the DSD-
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Figure 7.6: Implemented decoding time for the variable message size scenario. The DSD-DSSS re-

ceivers could not decode 512 bits or longer messages.

DSSS SUBSET and ARS-DSSS schemes when the receiver has no information about the starting chip

of the last bit of the random seed. Without loss of generality, we use fixed message sizes but receivers

compare the correlation of the seed from the starting of the messages to the end of the messages. For

the DSD-DSSS SUBSET scheme, the receiver can despread an average of only 70 messages out of 790

messages for the 256-bit message size. The average time for despreading a message is around 0.2 ms.

However, the receiver cannot despread any 512-bit and 1024-bit messages due to the dramatic increase

of computation overhead for finding the starting chip of the seed. On the other hand, our ARS-DSSS

scheme can despread messages for all three message sizes without a significant computational increase

compared to the fixed message size case. The time for despreading a message is around 0.005 ms for

256-bit messages. Therefore, our ARS-DSSS scheme is a practical solution against the seed jamming

attack.
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7.5 Related Work

The traditional DSSS techniques are vulnerable to reactive jamming attacks due to the requirement

of pre-shared keys between the sender and receivers in wireless broadcast communications. Many

researchers have been proposed schemes to eliminate the pre-shared keys by using random code se-

quences [7, 28, 45].

These approaches provide methods for both the sender to randomly generate codes sequences for

each message and the receivers to regenerate the same code sequences without sharing the secret keys

a priori. In [7], the authors propose the Uncoordinated DSSS scheme (UDSSS) in which the sender

and receivers have a set of codes sequences, known to the public, used for spreading and despreading

messages, respectively. The key idea is that the communication is the same as the traditional DSSS

but the requirement of shared secret keys are randomly released. Then, the sender repeatedly sends the

same message with randomly selected codes sequences so that the receivers can decode the message if

any unjammed messages arrived. In [45], the sender and receivers also share the spreading code but the

authors use the correlation between two codes to find the transmit bit (i.e., high correlation is 1 and low

correlation is 0). Moreover, they proposed a set of pre-defined spreading code sequences and its indices

to reduce the communication overhead. In [28], the authors proposed the DSD-DSSS SUBSET scheme

where they used random seeds for each message to generate code sequences and seeds are disclosed at

the end of each message. Thus, it is essentially infeasible for a reactive jammer to generate the same

codes sequences before the receivers receive entire messages.

However, all these approaches are vulnerable to the seed jamming attacks. Since all the information

is known to the public, a sophisticated jammer can find the position information of seeds or indexes dur-

ing the synchronization. During the synchronization between the sender and receivers, the sophisticated

jammer can also synchronize with them. For example, UDSSS can be optimized by using UDSSS to

transmit the spreading key only [41]. RD-DSSS also uses the small number of random code sequences

to reduce the communication overhead. The size of the random seeds is small and their positions are

known for the fixed message size in DSD-DSSS. Therefore, a sophisticated jammer can take advantage

of this information and jam even one bit or small number of the spreading keys, indices, or seeds for
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these algorithms.

In particular, the point of maximum vulnerability of these techniques is the seed itself since the

receivers cannot despread arrived messages correctly from the jammed seeds. Moreover, no error cor-

rection techniques can be used to recover the seed or the message in this case. FEC [31] can be used

to recover from jamming messages directly. To address these issues, we particularly investigated the

DSD-DSSS SUBSET scheme [28] and proposed the ARS-DSS scheme by using an additional location

seed. Using this location seed, the sender can hide information to the unknown receivers such as the

message size and random seed. Therefore, the sophisticated jammer cannot compute the position of the

random seed in messages during the synchronization.

7.6 Conclusion

In this chapter, we presented a new type of jamming attack called seed jamming attack and particularly

chose the DSD-DSSS SUBSET scheme [28] to demonstrate the effectiveness of the attacks. In the

scheme, if the message size is fixed, the sophisticated jammer can simply jam the last bit of the random

seed in messages to disable the wireless communication. To address these attacks, we proposed the

ARS-DSSS scheme by introducing the new random location seed to the DSD-DSSS SUBSET scheme.

Using the new location scheme seed, the receivers can find the position of the random seed in messages

even for the variable message sizes without incurring a huge performance overhead as required in DSD-

DSSS SUBSET. However, it is infeasible for the jammer to find the location seed and then jam the

communication in real time. We evaluate the effectiveness of our scheme through our security analysis

and its implementation. Our implementation results demonstrate that the ARS-DSSS scheme is effective

against the seed jamming attacks and also reduces the computation overhead from |Ce| for the DSD-

DSSS SUBSET scheme to 1 for ARS-DSSS in the variable message size scenario.
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Chapter 8

Conclusion

In this thesis, we presented three new jamming attacks with primary emphasis on Channel Detecting

Jamming Attacks (CDJAs) in which a jammer is able to find the sender’s channel hopping sequences

by taking advantage of properties of blind rendezvous algorithms in CRNs. We investigated their ef-

fectiveness on the rendezvous algorithms for wireless networks [24, 28] and the state-of-the-art blind

rendezvous algorithms for CRNs as presented in [29].

First, we exploited modular-based symmetric blind rendezvous schemes such as Modular Clock

(MC) rendezvous and Jump-Stay (JS) rendezvous algorithms since these algorithms provide fast blind

rendezvous methods for CRNs [6, 25]. These schemes utilize prime number modular arithmetic to gen-

erate random CH sequence for each user. However, the channel detecting jammer can compute the same

CH sequence as the senders’ by taking advantage of their modular properties (see Chapter 2.2 and Chap-

ter 3.3) . The jammer is a standard node with possible but not required additional listening capabilities

(e.g., two listening channels). It can then find the forward-hop rate within a short period. Using this

information, the jammer can generate the CH sequence and jam the remaining CH sequences. Thus, the

probability of rendezvous will be dramatically decreased under CDJAs. Our simulation results demon-

strate that the rendezvous probability of both the symmetric MC and symmetric JS systems under the

CDJA is dramatically decreased for all available channels M (e.g., around 15% for almost all M in the

MC system and less than 10% for all M in the JS system).
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Second, we expanded our CDJAs to the remaining representative blind rendezvous algorithms for

symmetric models; Generated Orthogonal Sequence (GOS) [6], Deterministic Channel Rendezvous Se-

quence (DRSEQ) [12], and Channel Rendezvous Sequence (CRSEQ) [43]. However, both DRSEQ and

CRSEQ schemes are deterministic so they are trivial to jam using one listening and one jamming chan-

nel. For the GOS scheme, the channel detecting jammer is able to take advantage of the GOS algorithm

to find the sender’s CH sequence within the maximum of (M2 + 1) × (1 + M) time slots and an up-

per bound of (M4 + 1) × (1 + M) expected time slots (see Chapter 4.2). Significantly, the jammer

can immediately jam the detected channels and can completely jam the sender after the maximum of

(M2 + 1) × (1 +M) time slots. Our simulation results demonstrate that the rendezvous probability of

the GOS system under the CDJA is dramatically decreased to less than 10% for most available channels

M .

Third, we presented our modified CDJA and demonstrated its effectiveness against the EJS scheme

for both symmetric and asymmetric models [26]. The channel detecting jammer is able to find the CH

sequence of the symmetric EJS within the first P time slots using two listening channels (see Chapter

5.3). Then the jammer can completely jam the sender’s CH sequence after an average ⌊ (P+1)
2 ⌋ time

slots using a single channel jammer. For the asymmetric EJS system, the jammer can find the sender’s

CH sequence with high probability within P time slots and jam the remaining channels. Our simulation

results demonstrate that the rendezvous probability of the symmetric EJS system under the CDJA is

dramatically decreased for all available channels M (e.g., less than 10% for all M ). The rendezvous

probability for the asymmetric EJS under the CEJA depends on the ratio |m1|/|M | where |m1| is the

number of available channels for the sender. For most of ratios, the probability of rendezvous for the

asymmetric EJS system under the CDJA is less than 10% except for where the |m1|/|M | is near 0.5

(here less than 15%) when the jammer uses two listening channels.

Fourth, we investigated a quorum-based frequency hopping scheme in which a sender and receiver

can generate their own frequency hopping sequences using the cyclic quorum properties [24]. This

algorithm provides a Frequency Quorum-based Rendezvous (FQR) algorithm to a general rendezvous

scheme for wireless networks but it can be extended to synchronized CRNs without difficulty. The
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sender and the receiver randomly select its quorum set from the minimal (N, k) difference sets and

generate frequency sequences. However, the sophisticated jammer can find the sender’s quorum set

within the second frame (i.e., 2k time slots) in the FQR system when it has the capability of listening

on k frequencies (see Chapter 6.3). Thus, the jammer can completely jam the sender after 2k time slots

using an average of ⌊k+1
2 ⌋ and a maximum of k frequencies. Our simulation results demonstrate that

the rendezvous probability of the FQR system under the sophisticated jamming attack decreased as the

number of available channel N increases (e.g., ≤ 35% for N ≥ 30 in k2 time slots). We must note that

jamming here requires k listening channels and k jamming channels.

Fifth and finally, we investigated a more general random spread spectrum technique called a delayed

random seed disclosure DSSS (DSD-DSSS) scheme for broadcast wireless communications [28]. The

DSD-DSSS scheme removes the pre-shared key dependency and allows a sender to randomly generate

spread code sequences for each message using random seeds. Then the sender discloses the seeds at the

end of each message so that the jammer cannot generate the same code sequences without the knowledge

of the seeds. However, we present a new type of jamming attack called a seed jamming attack in which

an attacker particularly focuses on jamming the random seed(s) in fixed-size messages (see Chapter 7.3).

Thus, the receiver cannot despread received messages because it cannot find the seed and hence cannot

regenerate the correct spread code sequences. To mitigate this jamming attack, we propose an advanced

Table 8.1: The upper-bound of MTTR

Algorithms Symmetric model Asymmetric model

Jump-Stay [25] 3P 3MP (P −G) + 3P
GOS [14] M(M + 1) not applicable

MC [6] 2P (not gurantteed) not applicable

MMC [6] unknown unknown

DRSEQ [12] 2M + 1 not applicable

CRSEQ [43] ≥ (P − 1)(3P − 1) P (3P − 1)
Random unbounded unbounded

EJS [26] 4P 4P (P + 1−G)
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Table 8.2: The upper-bound of ETTR

Algorithms Symmetric model Asymmetric model

Jump-Stay [25] 5P/3 + 3 2MP (P −G) + (M+5−P−(2G−1)
M )P

GOS [14] M4+2M2+6M−3
3(M2+M)

not applicable

MC [6] 2P 2

(P−1) not applicable

MMC [6] unknown unknown

DRSEQ [12] unknown not applicable

CRSEQ [43] unknown unknown

Random[Chapter 5] M |m1|·|m2|
|G|

EJS [26] 3P/2 + 3 4P (P + 1−G) − [4PG(P−G)+G/2]
(|m1|·|m2|)

random seed DSSS (ARS-DSSS) scheme which strengthens the previous algorithm called DSD-DSSS

by using an additional location seed. Our security analysis and implementation results demonstrate how

to defeat the seed jamming attacks and how to reduce the computation overhead of the DSD-DSSS

scheme.

To remedy CDJAs, we revisited the Random CH rendezvous schemes for both symmetric and asym-

metric models. Table 8.1 and Table 8.2 show that the maximum time to rendezvous (MTTR) and the

expected time to rendezvous (ETTR) for the state-of-the-art blind rendezvous algorithms presented

in [6, 26, 29], respectively. Since upper bounds of the expected time to rendezvous for the symmet-

ric GOS, JS, MC, DRSEQ, CRSEQ, EJS, and Random schemes are M4+2M2+6M−3
3M(M+1) , 5P

3 + 3, 2P 2

(P−1) ,

unknown, unknown, 3P
2 + 3, and M respectively, Random could be the most effective, efficient and

robust rendezvous but it does sacrifice the guaranteed rendezvous time of some of these rendezvous

schemes. We should note that DRSEQ and CRSEQ have MTTR of 2M +1 and P (3P −1) respectively

but that does not change the fact that Random could have the best ETTR. In addition, we present the

theoretical expected time to rendezvous (ETTR) for the asymmetric Random system of
|m1|·|m2|

|G| and the

ETTR would be almost the same under the CDJA because of the random channel selections in the CH

sequence. Since upper bounds of the expected time to rendezvous for the asymmetric GOS, JS, MMC,

DRSEQ, CRSEQ, EJS, and Random schemes are; not applicable, 2MP (P −G)+(M+5−P−(2G−1)
M )P ,

unknown, not applicable, unknown, 4P (P +1−G), 4P (P +1−G)− [4PG(P−G)+G/2]
(|m1|·|m2|)

, and
|m1|·|m2|

|G|
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respectively, Random vastly outperforms for ETTR all of the asymmetric blind rendezvous schemes

with known ETTR. Therefore, the symmetric and asymmetric Random schemes can be an effective,

efficient and robust rendezvous scheme against CDJAs and in most circumstances.

In this thesis, we exploited the state-of-the-art blind rendezvous algorithms for CRNs and then we

demonstrated the effectiveness of CDJAs against them. These rendezvous algorithms can be catego-

rized by the existence of jamming attacks in CRNs. If there are no jamming attacks, then DRSEQ [12]

and CRSEQ [43] would be the best algorithms based on the MTTR for the symmetric model and the

asymmetric model, respectively. On the other hand, if there are jamming attacks, then our CDJAs can

significantly decrease the rendezvous probability for most of blind rendezvous algorithms so that Ran-

dom scheme can be the more reliable rendezvous scheme for the symmetric model. However, for the

asymmetric model, the Random scheme can be the best algorithm with occasional jamming attacks

when the ratio
|m1|
|M | is less than a certain threshold. If the ratio is greater than the threshold, EJS with

random replacement algorithms (see Chapter 5.3.2) would be better than Random scheme. For example,

Random scheme is better than EJS with random replacement algorithm for where the
|m1|
|M | ratio is near

0.5 when there is no jamming attacks. This means that if the ratio
|m1|
|M | is high (e.g., close to 1), then

the asymmetric EJS with replacement algorithms would be the best algorithm with occasional jamming

attacks. On the other hand, if the ratio
|m1|
|M | is low (e.g., lower than say a 0.5 threshold), then the asym-

metric Random scheme is the best algorithm with occasional jamming attacks. However, the threshold

would be effective only if the sender and receiver use the same blind rendezvous algorithm. Therefore,

it would be worthwhile to investigate on a hybrid approach in which a sender and receiver use different

blind rendezvous algorithms based on their ratios
|m1|
|M | or

|m2|
|M | . For low ratios, Random scheme will

always work well but as one of the ratios approaches 1, EJS and Random schemes may work very well

together.
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