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Although jammed granular systems are athermal, several thermodynamiclike descriptions have been

proposed which make quantitative predictions about the distribution of volume and stress within a system

and provide a corresponding temperaturelike variable. We perform experiments with an apparatus

designed to generate a large number of independent, jammed, two-dimensional configurations. Each

configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New

configurations are generated by cyclically dilating, mixing, and then recompacting the system through a

series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller

subsystem of particles with a different interparticle friction coefficient than the bath. The use of

photoelastic particles permits us to find all particle positions as well as the vector forces at each

interparticle contact. By comparing the temperaturelike quantities in both systems, we find compactivity

(conjugate to the volume) does not equilibrate between the systems, while the angoricity (conjugate to the

stress) does. Both independent components of the angoricity are linearly dependent on the hydrostatic

pressure, in agreement with predictions of the stress ensemble.

DOI: 10.1103/PhysRevLett.110.058001 PACS numbers: 45.70.Cc, 81.05.Rm

Granular materials are a collection of discrete, athermal
particles. In the absence of an external driving force, these
materials relax into a mechanically stable jammed state
and cannot move into another configuration since thermal
fluctuations are negligible [1]. While these materials are
therefore inherently nonequilibrium, preparing a configu-
ration with a strict protocol nonetheless yields different
microscopic states with the same, reproducible volume [2].
Edwards proposed that the system volume (a conserved
quantity) could be used to write a granular density of states,
a corresponding entropy, and a temperaturelike variable
conjugate to the volume [3]. However, a complete granular
statistical mechanics should describe the distribution of
contact forces as well as the volumes. Subsequent theoreti-
cal advances have proposed that a stress-based ensemble
[4–11] is likely required for a full treatment.

In the Edwards ensemble, the volume V plays a role
analogous to that of energy in equilibrium statistical me-
chanics. A granular temperature, dubbed the compactivity,
is defined as X � ð@S=@VÞ�1, and has been successfully
measured in models [12,13], simulations [14,15], and
experiments [16–21]. Similarly, the stress ensemble con-
siders force and torque constraints on individual particles,
and writes the density of states as a function of the stress

tensor �̂ ¼ P
~rij ~fij, where the ~rij are the vectors pointing

from the center of each particle to its contacts, and ~fij is the

corresponding contact force. The conjugate variable is then
a tensorial temperature known as the angoricity, and is

defined to be Â ¼ ð@S=@�̂Þ�1.
A minimal test of such temperaturelike variables, which

are not guaranteed to be well defined in an inherently
nonequilibrium system, is to consider whether they obey

the zeroth law of thermodynamics. In experiments and
simulations, the compactivity [20] has previously been
shown to be equal in different parts of the same packing,
and in different packings generated with the same particles
under identical conditions. Simulations show this is also
satisfied by the angoricity [7,8]. However, no test has been
made of whether two dissimilar systems can equilibrate

either X or Â. We provide such a test in a real granular
system subject to isotropic compression, and find that
while the compactivity fails this simple test, the angoricity
equilibrates in a temperaturelike way.
Our experiments are conducted on a bidisperse granular

monolayer of photoelastic disks resting on a nearly fric-
tionless surface provided by a thin layer of pressurized air.
The assembly of particles is composed of an inner sub-
system and a larger bath which differ only in the interpar-
ticle friction coefficient (see Fig. 1). Starting from a dilute
state, the monolayer is biaxially compressed by outer walls
in a series of short steps. At some global volume fraction
�, the system jams and for all further steps the pressure on
the system increases. Finally, the walls redilate to permit
large scale rearrangements before the next series begins.
By repeating this protocol many times, we generate an
ensemble of configurations for which we record particle
positions to find local volumes and use photoelastic analy-
sis to calculate contact forces using methods similar to
[22,23]. With this information, we calculate the compac-
tivity and angoricity for both the bath and the inner
subsystem.
In the Edwards ensemble [3], assuming equiprobability

and the entropy maximization principle, the probability of
finding a system with volume V and compactivity X to be
given by a Boltzmann-like distribution

PRL 110, 058001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

1 FEBRUARY 2013

0031-9007=13=110(5)=058001(5) 058001-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.058001


P ðVÞ ¼ �ðVÞ
ZðXÞ e

�V=X; (1)

where the density of states is �ðVÞ is defined for an
ensemble of jammed configurations, and the partition func-
tion is ZðXÞ. As originally proposed by Edwards, the
volume V referred to the global volume of the system,
which exchanged volume with its surroundings. Recently,
attention has focused on the local (particle-scale, Voronoı̈)
volumes, which exchange volume with other parts of the
same system [20,24]; this local ensemble will be the focus
of our investigations. The stress ensemble, using conser-

vation of the local force-moment tensor �̂, similarly
proposes a local Boltzmann-like distribution

P ð�̂Þ ¼ �ð�̂Þ
ZðÂÞ e

�Trð�̂=ÂÞ; (2)

where the angoricity Â is a tensor. The temperaturelike

variables X and Â describe the size of the fluctuations of V

and �̂, respectively.

To calculate either X or Â, we use two methods:
the method of overlapping histograms [7,20,25] and
the fluctuation-dissipation theorem (FDT) [16,17,21].

The ratio of P ðVÞ between two systems is exponential in
V and is given by

P 1ðVÞ
P 2ðVÞ

¼ ZðX2Þ
ZðX1Þ e

ð1=X2�1=X1ÞV: (3)

By taking the logarithm of this ratio, one obtains a term
linear in V, where the coefficient is the difference in the
inverse temperatures. The success of using this approach
supports the assumptions of the Edwards ensemble and the
Boltzmann-like distribution of V [20]. This method deter-
mines 1=X up to an additive constant: 1=X ! 1=X þ CX.
The FDT method also provides a relative measurement.
Using the measured variance h�V2i of P ðVÞ, we compute

1

X1

� 1

X2

¼
Z V2

V1

dV

h�V2i (4)

to obtain values of X, also up to a constant. The calculation

of Â utilizes equations analogous to Eqs. (3) and (4); the
tensorial aspects will be discussed in more detail below.
Each of these methods is used separately on both the
subsystem and the bath, in order to test for equilibration.
Our experimental apparatus is shown to scale in Fig. 1.

The granular monolayer consists of 1004 bidisperse
photoelastic (Vishay PhotoStress PSM-4) disks with a
thickness �3:1 mm and diameters dS ¼ 11:0 mm and
dL ¼ 15:4 mm, in equal concentrations. The particles are
supported on a thin layer of air provided by a steady flow of
pressurized air through a porous polypropylene sheet with
a nominal pore size of 120 �m. This minimizes the effect
of friction between the particles and the surface, but does
not otherwise cause significant dynamics once the system
is jammed. The sheet is leveled (particles do not drift to one
side) and flat (particles do not cluster). The system consists
of an outer bath NB ¼ 904 and an inner subsystem NS ¼
100. Particles in the bath have a friction coefficient
�B � 0:8, while particles in the inner subsystem are
wrapped with a thin layer of polytetrafluoroethylene
(Teflon) tape with a �S < 0:1.
Images of the particle positions, photoelastic images for

measuring vector contact forces, and identification of the
subsystem particles are recorded with three separate im-
ages captured by a single CCD camera located above the
apparatus [see Fig. 1(b)]. Particle positions are identified
using a white light image [see Fig. 1(c)], from which the
centers are detected with an accuracy of � 0:01dS using a
Hough transform. The photoelastic images [see Fig. 1(d)]
are captured using reflective photoelasticity, in which the
silvered back side of each particle reflects polarized light
back to the camera. Photoelasticity allows for the numeri-
cal determination of the normal and tangential forces at

each contact point, as required to measure �̂. Similar to the
methods pioneered by [22,23], we minimize the error
between the observed and fitted image of the particle using
a nonlinear least-squares optimization. Details and source
code are available for download at [26]. The third image is
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FIG. 1 (color online). Schematic of apparatus showing (a) two
walls biaxially compressing an array of disk-shaped particles
composed of an outer subsystem (black, high �) and an inner
subsystem (red, low �) and (b) reflective photoelasticity on air-
floated particles. Light shines from green LEDs through a linear
polarizer (P) a wavelength-matched quarter wave plate (Q)
before entering the photoelastic material. A mirrored surface
on the bottom of each particle reflects light back through the
particle. A second quarter-wave plate and linear polarizer are
mounted on the camera to resolve the photoelasticity. Three
images of each configuration are recorded: (c) unpolarized white
light for locating particle positions, (d) polarized green light
showing isochromatic fringes for calculating contact forces, and
(e) an ultraviolet light for identifying the low-� particles.
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taken using black-light illumination to identify the subsys-
tem particles, which are tagged with ultraviolet-sensitive
ink [see Fig. 1(e)]. The subsystem comprises all low-�
particles which are Voronoı̈ neighbors with at least one
other particle in the subsystem.

The particles are confined within a square region
(maximally 50� 50 cm) imposed by two stationary walls
positioned by stepper motors, as shown in Fig. 1(a). The
system is initially in a dilute, well-mixed, unjammed state,
with the global volume fraction � & 0:6. The two walls
biaxially compress the system by a series of small steps of
constant size (�� ¼ 0:0009, equivalently �x ¼ 0:3 mm
or 0:02rL). With each step of the wall, the three images are
recorded, and data are collected over a series of volumes
corresponding to 0:775<�< 0:805, giving 30 different
volumes for each compression cycle. Steps continue until
the gradient squared of the force image [27] indicates a
pressure threshold has been reached; this reduces the risk
of particles buckling out of plane. Thewalls then redilate to
the dilute state, and the particles are then mixed while
maintaining subsystem continuity; this protocol is repeated
100 times.

During the compression phase of each quasistatic cycle,
we observe the percolation of force chains throughout both
the bath and the subsystem at a value �perc. As the system

is further compressed beyond this point, the contact forces
grow in strength and the average number of contacts per
particle increases. For the set of 100 cycles, this threshold
occurs over a range 0:782<�perc < 0:792, where the

width of the distribution is indicative of finite size effects
[28,29]. The ratio of unjammed to jammed systems at a
given � is shown in Fig. 2(d). We define random loose
packing as �RLP ¼ h�perci � 0:787 as the center of this

distribution.
We calculate the distribution of local volumes P ðVmÞ

over clusters of size m, using the sum of individual radical
Voronoı̈ volumes obtained from the Voroþþ software
[30]. Each cluster is defined as them� 1 nearest neighbors
surrounding a central particle. For m ¼ 1, P ðVmÞ has two
distinct peaks which correspond to small and large parti-
cles [18]. With increasing cluster size, the bimodal aspect
of P ðVmÞ disappears, but even for large cluster sizes
(m> 100), the distribution remains asymmetric and non-
Gaussian [18]. In Fig. 2(a), we show P ðVmÞ for three
values of � with m ¼ 48; the value of m is large enough
so that P ðVmÞ does not show any features arising from
bidispersity.

In Fig. 2(b), we show the ratio P iðVÞ=P jðVÞ where the
reference system j is � ¼ 0:784. In practice this can be
done with any two systems so long as there is sufficient
overlap between their histograms. As the ratio of
P iðVÞ=P jðVÞ is well approximated by an exponential in

V, the compactivity can be calculated using Eq. (3). The
inverse compactivity 1=X is also calculated using FDT
using Eq. (4), where the integrand is approximated using

a third order polynomial. Each method determines 1=X
only up to an additive constant, which is adjusted so that
XRLP ¼ 1. In Fig. 2(c), the inverse compactivity is shown
for both the bath (1=XB) and the subsystem (1=XS). We find
good agreement between Xð�Þ given by the overlapping
histogram method and by the fluctuation dissipation theo-
rem. In addition, for 4<m< 50, we observe X to be
approximately independent of m. However, we find that
the compactivity of the bath is not equal to that of the
subsystem [XBð�Þ � XSð�Þ]. Because the slopes of the
two curves differ, this observation cannot be accounted for
by adjusting the additive constant (effectively, adjusting
�RLP) for the two particle types. This represents a failure
of the zeroth law for X. However, it is possible that
equilibration would occur under alternative preparation
protocols, for instance those in which particle rearrange-
ments were more prevalent (e.g., tapping or shearing).
We can take further advantage of the accessibility of

both jammed and unjammed states within in the center of
the range of explored �. While the Edwards ensemble is
not defined for unjammed systems, we can, nonetheless,
carry out the histogram analysis as performed on the
jammed systems. In this regime, we find that the P ðVmÞ
histograms cannot distinguish between the jammed and
unjammed states. Furthermore, the measured values of X
decrease continuously from above�RLP to below; this is an
undesirable characteristic.
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FIG. 2 (color online). (a) Volume histograms P ðVÞ for � ¼
0:776 (filled upward triangle), 0.784 (filled square), and 0.802
(filled circle) with m ¼ 48. (b) A semilogarithmic plot of the
ratio each histogram with respect to the � ¼ 0:784 distribution,
i.e., P iðVÞ=P i¼2ðVÞ. (c) The inverse compactivity given by
Eq. (3) plotted as a function of the inverse volume fraction
where �B are shown as black filled circle and �S are red filled
diamond. Large (small) symbols denote jammed (unjammed)
configurations, respectively. Error bars shown are uncertainties
in P ðVÞ and propagated through the calculation. The inverse
compactivity given by the FDT method [Eq. (4)], is shown with
the solid line for comparison. (d) The ratio of the number of
jammed (unjammed) configurations recorded at each �.
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The stress ensemble also provides a Boltzmann-like
distribution in the stress, as given in Eq. (2). In the case

of frictionless grains, the angoricity Â is a scalar due to the

off-diagonal components in �̂ being zero. In any real
granular system, friction is present and a shear-free state

is not readily obtained. Therefore, �̂ is a symmetric tensor
with nonzero off-diagonal components and can be reduced
to two independent components related to the pressure and
shear stress. The pressure angoricity Ap and the shear

angoricity A� are conjugate to �p ¼ ð�1 þ �2Þ=2 and

the �� ¼ ð�1 � �2Þ=2, respectively [8], where �1;2 are

the principal stresses. The average hydrostatic pressure

per particle in the system is given by � ¼ Tr�̂=N. Both
Ap and A� are obtained using the method of overlapping

histograms [analogous to Eq. (3)] and the FDT [analogous
to Eq. (4)]. With each method, A is calculated up to an
additive constant so that 1=A ! 1=Aþ CA, where CA

satisfies A ! 1 as � ! 1.
In Fig. 3(a), the local distribution of pressure P ð�pÞ is

shown for m ¼ 8 on configurations over a range 0:0006<
�< 0:0025 Nm. The ratio P ið�pÞ=P jð�pÞ is exponential
in �p [see Fig. 3(b), similar results for �� not shown], as

required by the stress ensemble analogue of Eq. (3). In
addition, we observe that the variance of �p is proportional

tom, which is consistent with S being an extensive entropy

[see Fig. 3(c)]. We are therefore able to measure both the
pressure angoricity Ap and the shear angoricity A� using

their corresponding distributions, shown in Fig. 3(c) as a
function of �. We find that Ap;� are independent of m for

m> 3, as also observed in simulations [7,8], and that
values obtained from the histogram method (points) and
the FDT method (solid line) are in approximate agreement.
Finally, we find that for either the shear or compressional
angoricity, the values measured in the bath and in the
subsystem are equivalent, signifying the angoricity is
equilibrating between the subsystems.
Nonetheless, the values of A� and Ap do not match each

other, with the shear angoricity growing faster as a function
of �. We find the angoricity is given by A ¼ b� for both
pressure angoricity and shear angoricity, where bp ¼
0:153� 0:004 and b� ¼ 0:450� 0:020, respectively. For
a two-dimensional frictionless shear-free system, the stress
ensemble predicts bp ¼ 0:5 at the isostatic point [7,8].

Above the isostatic point, the stress ensemble predicts bp
to be a function of the average contact number. The dis-
agreement between the frictional and frictionless values of
bp implies friction significantly affects the density of states.

We have measured both compactivity X (conjugate to

volume in the Edwards ensemble), and angoricity Â
(conjugate to the stress tensor in the stress ensemble), in
a laboratory granular system using particle-scale character-
izations. While we found that while the value of X
calculated using the overlapping histogram method was
consistent with the value found using the fluctuation-
dissipation theorem, it failed to equilibrate between non-
identical systems, making it a poor state variable. A similar
failure is likely behind previous measurements by Schröter
et al. [17], in which two granular materials with different
frictional properties, prepared using the same protocol, were
found to have different globally measured values of X. In

contrast, we observed that the temperaturelike variable Â
does successfully equilibrate between a subsystem and bath
with dissimilar interparticle friction coefficients, as would
be required in order to have a valid zeroth law. Moreover,
we find agreement with the prediction that angoricity should
scale linearly the hydrostatic pressure [8]. These successes
make angoricity a promising state variable for frictional
granular systems.
One downside to using angoricity as a state variable,

particularly in experiments, is that its calculation requires
the determination of both normal and tangential forces.
While there has been a long history of measuring normal
forces at the boundaries of granular systems [31–35],
particle-scale measurements have seen more limited devel-
opment. Outside of photoelastic particles such as those
used here, measurements typically exist only for normal
forces, whether the systems are frictional (tangential forces
are neglected) [36,37] or frictionless [38–40].
It is possible to understand the success of the stress

ensemble over the Edwards (volume) ensemble by
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FIG. 3 (color online). (a) Distribution of �p where m ¼ 8 and
� ¼ 0:0007 (filled downward triangle), 0.0010 (filled square),
0.0015 (filled circle), 0.0020 (filled diamond), and 0:0024 Nm
(filled upward triangle). A semilogarithmic plot of the (b) ratio
P ið�pÞ=P jð�pÞ where the reference system j is � ¼
0:0015 Nm. The pressure angoricity AP and shear angoricity
A� are shown as a function of � where the results using over-
lapping histograms for�B and�S are shown as black open circle
and are red open triangle, respectively. The solid line is the
angoricity calculated using FDT. The gray dashed lines provide a
visual reference of the slopes 0.15 and 0.45, respectively. Inset:
The scaled variance h��2

pi of the P jð�pÞ distribution, as a

function of the cluster size m.
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considering the underlying physics behind the conserved
quantities in each. Under Newton’s third law, forces and
torques must be strictly balanced at each force contact,
while volume is merely constrained globally. As a result,
our subsystem differed from the bath not only in the
measured X, but more conventionally in the mean local
volume fraction.

In fact, the full canonical Edwards ensemble [6] unifies
the volume and stress ensembles, where the density of

states depends on both V and �̂, and it has recently been
argued [41,42] that the two should not be considered
separately. The classic phenomenon of Reynolds dilatancy
[43] under which shear induces a bulk expansion similarly
suggests that such a coupling is important. Nonetheless, we
observed here that angoricity can be independently equili-
brated, and future experiments should more fully investi-
gate the relationship between ensembles, the relative
importance of shear and compression, and the role of
friction on the density of states.
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Tighe, Matthias Schröter, and Song-Chuan Zhao.

[1] H. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996).

[2] J. B. Knight, C. G. Fandrich, C.N. Lau, H.M. Jaeger, and
S. R. Nagel, Phys. Rev. E 51, 3957 (1995).

[3] S. F. Edwards and R. B. S. Oakeshott, Physica
(Amsterdam) 157A, 1080 (1989).

[4] R. C. Ball and R. Blumenfeld, Phys. Rev. Lett. 88, 115505
(2002).

[5] J. Goddard, Int. J. Solids Struct. 41, 5851 (2004).
[6] S. F. Edwards, in Proceedings of the International

Conference on Powders and Grains Stuttgart, Germany,
2005, edited by R. Garcia-Rojo, H. J. Herrmann, and
S. McNamara (A.A. Balkema Publishers, Leiden, 2005),
Vol. 1, p. 3.

[7] S. Henkes, C. S. O’Hern, and B. Chakraborty, Phys. Rev.
Lett. 99, 038002 (2007).

[8] S. Henkes and B. Chakraborty, Phys. Rev. E 79, 061301
(2009).

[9] R. Blumenfeld and S. F. Edwards, J. Phys. Chem. B 113,
3981 (2009).

[10] G. Lois, J. Zhang, T. S. Majmudar, S. Henkes, B.
Chakraborty, C. S. O’Hern, and R. P. Behringer, Phys.
Rev. E 80, 060303 (2009).

[11] B. P. Tighe and T. J. H. Vlugt, J. Stat. Mech. (2011)
P04002.

[12] Y. Srebro and D. Levine, Phys. Rev. E 68, 061301 (2003).
[13] R. K. Bowles and S. S. Ashwin, Phys. Rev. E 83, 031302

(2011).

[14] C. Song, P. Wang, and H.A. Makse, Nature (London) 453,
629 (2008).

[15] C. Briscoe, C. Song, P. Wang, and H.A. Makse, Phys. Rev.

Lett. 101, 188001 (2008).
[16] E. R. Nowak, J. B. Knight, E. Ben-Naim, H.M. Jaeger, and

S. R. Nagel, Phys. Rev. E 57, 1971 (1998).
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