
ABSTRACT

LIN, ZHEN. Architectural Support for Efficient GPU Multiprogramming. (Under the direction of Dr.
Huiyang Zhou).

Graphics processing units (GPUs) have become the most prevalent accelerator in high-performance

computing. Since more and more applications are leveraging GPUs to accelerate their performance,

the concurrent applications can potentially share the same GPUs. Therefore, there is an increasing

demand to enable efficient GPU multiprogramming. In this paper, we study the GPU multiprogram-

ming from two main aspects. First, we study efficient context switching techniques to enable kernel

preemption on GPUs. Second, we study how to co-run multiple kernels on the same GPU so that

the GPU resources can be optimally utilized. Specifically, this paper includes the following contents.

First, this paper presents an efficient support to enable fast context switching on GPUs. Con-

text switching is a key technique enabling preemption and time-multiplexing for CPUs. However,

for GPUs, it is challenging to support context switching due to the huge amount of architectural

states to be swapped during context switching. The architectural state of GPUs includes registers,

shared memory, single-instruction multiple-thread stacks and barrier states. Recent works present

thread-block-level preemption on GPUs to avoid context switching overhead. However, because the

execution time of a thread block (TB) is highly dependent on the kernel program. The response time

of preemption cannot be guaranteed and some TB-level preemption techniques cannot be applied

to all kernel functions. In this paper, we propose three complementary ways to reduce and compress

the architectural states to achieve lightweight context switching on GPUs. Experiments show that

our approaches can reduce the register context size by 91.5% on average. Based on lightweight

context switching, we enable fast instruction-level preemption on GPUs with compiler and hardware

co-design. With our proposed schemes, the preemption latency is reduced by 59.7% on average

compared to the naive approach.

Second, we leverage the lightweight context switching approach to improve the performance of

the single kernel execution. GPUs leverage massive thread-level parallelism (TLP) to achieve high



computation throughput and hide long memory latency. In our work, we characterize the kernels

that are limited by their TLP levels. To improve TLP for such applications efficiently, we propose to

use a fast context switching approach. When a warp/TB is stalled by a long latency operation, the

context of the warp/TB is spilled to spare on-chip resource so that a new warp/TB can be launched.

The switched-out warp/TB is switched back when another warp/TB is completed or switched out.

With this fine-grain fast context switching, higher TLP can be supported without increasing the

sizes of critical resources like the register file. Our experiment shows that the performance can be

improved by up to 47% and a geometric mean of 22% for a set of applications.

Third, in the scenario of multiple kernels co-running on the same GPU, we propose to coordi-

nately partition the TB and bandwidth resources for concurrent kernel execution (CKE). Contempo-

rary GPUs support multiple kernels to run concurrently on the same streaming multiprocessors

(SMs). Recent studies have demonstrated that CKE improves both resource utilization and com-

putational throughput. Most of the prior works focus on partitioning the GPU resources at the

TB level or the warp scheduler level to improve CKE. However, significant performance slowdown

and unfairness are observed when latency-sensitive kernels co-run with bandwidth-intensive ones.

The reason is that bandwidth over-subscription from bandwidth-intensive kernels leads to much

aggravated memory access latency, which is highly detrimental to latency-sensitive kernels. In our

work, we observe that such problems cannot be sufficiently solved by managing TB combinations

alone. Then, we propose a coordinated approach for TB combination and bandwidth partitioning.

Our approach partitions both bandwidth resources coordinately along with selecting proper TB

combinations. The key objective is to allocate more TB resources for latency-sensitive kernels and

more bandwidth resources to bandwidth-intensive kernels. Compared with two state-of-the-art

CKE optimization schemes, SMK [Wan16] and [Xu16], our approach improves the average harmonic

speedup by 78% and 39%, respectively. Even compared to the best possible CTA combinations,

which are obtained from an exhaustive search among all possible CTA combinations, our approach

improves the harmonic speedup by up to 51% and 11% on average.
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CHAPTER

1

INTRODUCTION

Nowadays, graphics processing units (GPUs) have become the most prevalent accelerator in high

performance computing. GPUs have been widely used in various application �elds, such as machine

learning, computer vision, computational �uid dynamics, medical imaging, etc. Recently, companies

such as IBM, Google, Amazon and NVIDIA are providing GPU clouds so that applications from

different users / applications may potentially share one physical GPU card. Therefore, we see a strong

demand for multiprogramming supports on GPUs.

The workload that is of�oaded to a GPU is referred to as a kernel. Programmers use the CUDA

[Cuda] or OpenCL [Ope] programming models to de�ne the behavior of each thread in a kernel. A

number of threads constitute a thread block (TB) and threads in a TB can communicate through

the on-chip shared memory. There are two perspectives to support multiple kernels sharing one

physical GPU. One is to enable preemption so that different GPU kernel can share the GPU in a

time-multiplexing manner. The other perspective is to spatially partition the GPU resources and
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allow multiple kernels running on the same GPU simultaneously. This dissertation presents our

works on supporting the GPU multiprogramming from both perspectives.

In the �rst work , we propose a lightweight context switching approach to enable ef�cient

preemption on GPUs. Similar to the CPUs, context switching requires the GPU to save all the

architectural states of the running kernel to the memory so that the GPU can be take over by another

kernel. The states will be restored to the GPU when the �rst kernel is scheduled to continue running.

The challenge of supporting context switching on GPUs is that GPUs feature high amount of on-chip

resources to accommodate a large amount of concurrent threads. For example, in the NVIDIA GK110

(Kepler) architecture, each stream multiprocessor (SM) has a 256KB register �le and up to 48KB

shared memory. Such large contexts result in long latency for context switching.

In our work, we propose novel ways to reduce and compress GPU contexts to enable lightweight

context switching. Three approaches are proposed. First, based on the observation that for some

applications, the on-chip resource is signi�cantly underutilized, we propose in-place context switch-

ing, which means that not all resources need to be released / spilled to accommodate a new kernel.

Second, liveness analysis is used to exclude dead registers so as to reduce the register context sizes.

In this work, we observe the liveness of a vector register is dependent on the thread divergence. So

the traditional liveness analysis algorithm is augmented for the GPU architecture. Third, based on

register pattern analysis, register contexts can be further compressed. These techniques can greatly

reduce the context size that needs to be swapped to / from off-chip memory.

Based on the lightweight context switching support, in our second work , we leverage the context

switching to improve the performance of a single kernel. To achieve high computation throughput

and memory bandwidth, GPUs exploit high degrees of thread-level parallelism (TLP). The GPU

hardware aggregates multiple threads into a warp as the basic execution unit. The warp scheduler

seeks for one ready instruction among multiple warps every cycle. Such �ne-grain multithreading

is the key to hide memory latency. As a result, GPUs feature high amounts of on-chip resources to

accommodate the contexts of large numbers of concurrent warps.

We �nd that the number of concurrent warps is limited by the context capacity, such as the regis-
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ter �le capacity or warp scheduler capacity, of the GPU. We also noticed that, for many benchmarks,

resource usage is unbalanced. Often, shared memory is underutilized and / or the L1 D-cache perfor-

mance is low. For these benchmarks, shared memory or the L1 D-cache can be used to accommodate

more warp contexts. In this work, we propose a novel approach using context switching as another

level of multithreading for GPU architecture. The key idea is to switch out stalled warps / TBs to

realize much higher degrees of TLP without increasing the size of critical physical resources. In order

to achieve fast context switching, we only use on-chip memory to store the switched out contexts.

Our experiment shows that the performance of single kernels can be signi�cantly improved by our

approach.

In the third work , we study the case of concurrent kernel execution (CKE), i.e. multiple kernels

co-running on the same GPU. To deliver high throughput, GPUs incorporate a large amount of

computational resources and support high memory bandwidth. However, the resource demands

across different GPU kernels vary signi�cantly, which may lead to saturation of certain resources

and underutilization in others. Some prior works [Wan16; Xu16; Par17] have been proposed to solve

the unbalanced resource utilization problem through concurrently executing multiple kernels with

complementary characteristics. In their approaches, different methods are proposed to determine

the TB combinations of different co-running kernels.

In our work, we highlight that memory interference can signi�cantly affect the throughput and

fairness of CKE. And we make a case that even the optimal TB combination does not eliminate the

negative memory interference impact. To address this problem effectively, we propose a coordinated

approach for TB combination and bandwidth partitioning. In our approach, we �rst dynamically

detect the kernels as latency sensitive or bandwidth intensive. Then it effectively allocates the TB

number and bandwidth resources for each co-running kernel based on their resource requirements.

In our experiments, we observe that our approach achieves higher performance than the state-of-

the-art CKE approaches and the oracle TB combination, which is the result of an exhaustive search

of all possible TB combinations.
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CHAPTER

2

ENABLING EFFICIENT PREEMPTION

FOR GPUS WITH LIGHTWEIGHT

CONTEXT SWITCHING

2.1 Introduction

State-of-the-art GPUs exploit high degrees of thread-level parallelism (TLP). As a side effect, GPUs

feature high amounts of on-chip resources to accommodate the contexts of the large numbers of

concurrent threads. For example, in the NVIDIA GK110 (Kepler) architecture, each stream multipro-

cessor (SM) has a 256KB register �le and up to 48KB shared memory. Such large contexts result in

long latency for context switching (meaning switching in a new kernel rather than switching among
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the running threads / warps, which GPUs support natively). To reduce the overhead, TB-level context

switching techniques, SM-draining [Tan14] and SM-�ushing [Par15a] have been proposed. The key

idea of SM-draining is to wait for all running TBs on an SM to �nish, then to launch the TBs from

the new incoming kernel to the SM. The drawback of this solution is that the preemption latency

can be very high. In the worst scenario, a TB can have a lifetime as long as the kernel [Gup12] [KB14],

and the kernel may not be preempted at all. SM-�ushing �ushes the running TBs and then launches

the new kernel. The limitation is that only kernels which conform the idempotent (re-executable)

condition [KS11] can be preempted in this way. Also, the useful work is wasted when a running TB is

�ushed. To overcome such limitations, an integrated solution [Par15a] is proposed based on the

progress of a TB. If it is close to the end, TB draining is used. If it just begins execution, TB �ushing

is employed instead. In other scenarios, the baseline context switching, i.e., swapping the thread

contexts, is performed.

In this paper, we propose novel ways to reduce and compress GPU contexts to enable lightweight

context switching. Three approaches are proposed. First, based on the observation that for some

applications, the on-chip resource is signi�cantly underutilized, we propose in-place context switch-

ing, which means that not all resources need to be released / spilled to accommodate a new kernel.

Second, liveness analysis is used to exclude dead registers so as to reduce the register context sizes.

In this paper, we observe the liveness of a vector register is dependent on the thread divergence.

So the traditional liveness analysis algorithm is augmented for the SIMT architecture. Third, based

on register pattern analysis, register contexts can be further compressed. The register pattern is

explored in both warp-level and TB-level. These techniques can greatly reduce the context size that

needs to be swapped to / from off-chip memory.

Based on the lightweight context switching, we use compiler and hardware co-design to enable

instruction-level preemption for GPUs. The compiler analyzes the native assembly code to �gure out

the appropriate points for preemption. We introduce two new preemption instructions to annotate

the preemption points, meaning that preemption is only enabled at this point. The preemption

instruction checks the interruption signal and becomes a nop if there is no such a signal. If there
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is an interrupt signal, the context switching is handled by a special hardware pipeline to reduce

and compress the architectural states. At last, the compressed states are saved to global memory.

To restore the kernel, the context will be loaded from global memory. After decompressing, the

architectural states are restored on the processor.

Besides preemption, our proposed lightweight context switching can also be used for long

running applications on supercomputers. The reason is that long running applications on super-

computers are error prone. Therefore, checkpointing mechanisms are commonly used such that the

supercomputer can resume from a prior checkpoint in the case of an error. Our proposed scheme

enables ef�cient context saving, i.e., ef�cient checkpointing of GPU contexts.

We evaluate our context switching enabled preemption approach with the Rodinia [Che09a]

benchmarks. Our experiments show that the register context size can be reduced by 91.5% and the

preemption latency can be reduced by 59.7% on average with our proposed lightweight context

switching.

In summary, this paper makes the following contributions.

• We propose three techniques, in-place context switching, register liveness analysis, and regis-

ter value compression to achieve lightweight context switching.

• A compiler and hardware co-design is proposed to enable instruction-level preemption for

GPUs.

• We show that our proposed approach achieves low preemption latency.

The rest of the paper is organized as follows. Section 3.2 describes the SIMT architecture and

motivates the proposed ideas. Section 2.3 presents the techniques for lightweight context switching.

Section 2.4 makes use of lightweight context switching for ef�cient instructional-level preemption.

Section 2.5 reports the methodology and experiment results. Section 2.6 discusses the related work

and Section 2.7 concludes.
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Figure 2.1 Baseline GPU architecture.

2.2 Background and Motivation

2.2.1 Baseline Architecture

Figure 2.1 shows the baseline GPU or GPU architecture. A GPU is composed of a number of streaming

multiprocessors (SMs). The SMs share a multi-banked L2 cache. Typically, one or more L2 banks are

backed up with a memory controller to communicate with off-chip memory. The SMs and multiple

L2 banks communicate through a crossbar or an interconnect network. The on-chip memory in

each SM includes shared memory, the register �le and L1 D-cache. The basic execution unit in GPUs

is a warp. A warp is a collection of threads that run in the single-instruction multiple-data (SIMD)

style. Each warp has a private space in the register �le. A per-warp SIMT stack keeps track of the

program counters (PCs) of the threads when a divergent branch is encountered [Fun09]. One or

more warps constitute a thread block (TB). All threads in one TB can synchronize and share data

through shared memory. The threads in the same TB must be executed on the same SM and one SM

can accommodate one or more TBs depending on the resource requirement of a TB.

When a kernel is launched, the resource requirement of a TB is provided to the GPU. Based on

its available resource, an SM decides whether one more TB can be dispatched to it. There are four
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void kernel ( f l o a t A , f l o a t B ,
i n t Ahead , i n t Bhead , i n t N) {

i n t in_id , out_id ;
while ( ( in_ id = atomic_inc ( Ahead ) ) < N) {

f l o a t in_data = A[ in_ id ] ;
f l o a t out_data = do_work ( in_data ) ;
out_index = atomic_inc ( Bhead )
B[ out_index ] = out_data ;

} }

Figure 2.2 Kernel code of persistent threads.

types of resources that can limit the number of concurrent TBs on an SM: the register �le, shared

memory, the warp scheduler, and the TB slots. For example, in the NVIDIA GT200 architecture, the

register �le size is 128KB, the shared memory size is 48KB, and there are 48 warp scheduler slots

(i.e., up to 48 warps can run concurrently) and 8 TB slots on each SM. For a kernel with 8 warps

(i.e., 256 threads) in each TB, if each warp takes 3KB register space and each TB takes 8KB shared

memory space, the maximum TB per SM is 5 as limited by the register �le size. A warp / TB will hold

the resources during its whole lifetime. The resources will be released only after it �nishes execution.

2.2.2 Prior Preemption Techniques for GPUs

The large context size on GPUs leads to high preemption overhead. To avoid the overhead, Tanasic

et al. [Tan14] proposed the SM-draining technique, in which all current running TBs need to �nish

before releasing the SM for the new kernel. However, the SM-draining technique can cause long

preemption latency. In the experiments from Park et al. [Par15a], the preemption latency of SM-

draining can be as high as tens of milliseconds. A more extreme case, as shown in Figure 2.2, is

a persistent kernel [Gup12] [KB14]. In this kernel, TBs only exit when all the input elements are

processed. In other words, TBs may have the lifetime as long as the overall kernel execution time.

Such kernels cannot be preempted with the SM-draining technique.

To address the long preemption latency, Park et al. [Par15a] proposed SM-�ushing. Taking

advantage of idempotent regions, the execution of the kernel can be stopped immediately and all
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intermediate results can be �ushed. The kernel can be resumed by relaunching the �ushed TBs.

SM-�ushing only works on idempotent kernels, which means each TB can be re-executed multiple

times without affecting the results. This is a strict limitation. Although Park et al. [Par15a] also

proposed relaxed idempotent conditions, the scheme does not work on certain cases. For example,

for the kernel shown in Figure 2.2, in each iteration, the variables Ahead, Bhead and an element in B

will be modi�ed. So it cannot be safely �ushed. Moreover, when �ushed, all the progress made on

the TB is wasted.

Because the SM-draining latency may be too long and SM-�ushing wastes useful work, Park

et al. [Par15a] also used context switching for preemption. But the naive approach to swap all the

occupied registers and shared memory incurs high overhead. For example, in the benchmark HS, the

context size for each SM is about 140KB. For GTX480 with 15 SMs and the global memory bandwidth

of 177GB/ s, even if the global memory bandwidth is fully utilized, it would take at least 12 us to store

such a large context. As pointed out in prior works [Tan14], the SMs are completely underutilized

during context save and restore.

2.3 Ef�cient Context Switching

For context switching, in order to properly restore a warp or TB, its architectural states must be

preserved. For a warp, the architectural state includes its registers and SIMT stack. The SIMT stack

contains thread execution information in the case of divergent branches and also includes the

program counters (PCs). For a TB, besides the contexts of all its warps, the architectural state also

includes shared memory and barrier states, keeping the information on which warps have reached a

barrier and are waiting for others. The SIMT stack and barrier states tend to be very small compared

to registers and shared memory. For the SIMT stack, each entry has three 32-bit registers, which are

the next PC, active mask and reconvergent PC [Fun09]. Based on the observation by Rhu et al. [RE13],

the maximum stack depth is limited (11). So the maximum stack size is relatively small (132B). For

barrier states, each barrier only needs 1 bit for each warp to record whether it has reached the barrier.

Therefore, we focus on the context of registers and shared memory in this work. Using the BP_1
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Figure 2.3 Occupancy of the register �le and shared memory.

benchmark as an example, each thread has 13 registers (4B each) and each TB has 256 threads and

1128B shared memory. So the context size is 1664B per warp and 14440B per TB. Our goal is to make

such context sizes much more manageable.

Next, we propose three complementary schemes, (a) in-place context switching to leverage

unused resource, (b) register liveness analysis for architectural state reduction, and (c) value locality

detection for architectural state compression.

2.3.1 In-Place Context Switching

As different applications exhibit different resource requirements, the �xed-size resources on GPUs

are commonly underutilized. In Figure 3.7, we report the occupancy of both the register �le and

shared memory for different benchmarks. We can see that for most benchmarks, either (or both)

type(s) of the resources is under-utilized. Take BP_1 as an example, the register �le occupancy is

60.9% and shared memory occupancy is 13.7% as the occupancy is limited by the number of threads

(or the maximal number of warps). Such resource under-utilization have also been observed in prior

works [AMA13] [Geb12]. In this paper, we make use of such unused resource to store the context of

the warps / TBs to be switched out.

On the baseline SIMT architecture, when the warps of a thread block are dispatched to an SM,

their logic registers are mapped to physical registers. In this paper, an allocation table is used for

managing the register allocation. Each launched TB reserves one entry in the table to denote the start
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Figure 2.4 Register and shared memory allocation tables before and after K1 is preempted by K2. (a) Before.
(b) After.

address and allocation size of the register �le. When preemption occurs, the old kernel de-allocates

the minimum number of TBs to make enough space for the new kernel. The remained TBs will keep

reserving the register �le. Such in-place context switching reduces the amount of data to be spilled

and restored and enables fast preemption between two kernels. A similar but separate allocation

table is used to manage the shared memory allocation.

Figure 2.4 (a) shows the register and shared memory allocation table when kernel K1 is running.

K1 has 3 TBs on one SM, each TB allocates 300 vector registers and 8KB shared memory. In Figure

2.4 (b), K1 is preempted by K2, which launches 2 TBs per SM and each TB occupies 200 vector

registers and 10KB shared memory. There are 1024 vector registers and 48KB shared memory in

each SM on our baseline architecture. In this case, the register �le deallocates and spills 2 TBs of K1

to accommodate K2, whereas none of shared memory needs to be deallocated.

In our implementation, each entry of register / shared memory table is 5B and the capacity for

each of the tables is 16 entries. So the total overhead for the allocation tables is 160B.

A more aggressive option is to reallocate the dead register for the new kernel as proposed by

H. Jeon et al. [Jeo15]. But such mechanism will increase the hardware complexity by introducing a

register renaming table.
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Figure 2.5 Possible thread locations when a preemption point is reached.

2.3.2 Architectural State Reduction

We propose to use liveness analysis to reduce architectural register states. Liveness analysis reports

that at any program point, which registers are de�ned and may be potentially used before the next

re-de�ne. Only the values in live registers need to be saved during context switching. At compile

time, the compiler identi�es live vector registers at each instruction and saves the results into a

liveness table. Each entry in the liveness table corresponds to one static instruction and the register

liveness information is encoded into a bit vector.

One option to provide the liveness bit vector at runtime is to load the liveness table to the GPU

when the kernel is launched. At any point of execution, liveness registers can be looked up by the PC

of a thread. The problem of such �ne-granularity approach is that to store liveness table may take

huge hardware resource. In our baseline architecture, the maximum register number is 64, meaning

each liveness entry is 8B. For a program with 1K instructions, liveness table will take 8KB storage on

hardware. To avoid the overhead of liveness table, we choose selective points to enable preemption.

In other words, instead of enabling preemption for each instruction, we only enable preemption at

certain selected program points. At each preemption point, a preemption instruction is inserted

with encoded liveness bit vector. At runtime, the liveness bit vector is fetched to the instruction

buffer. The details of selective preemption is discussed in Section 2.4.1.
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Figure 2.6 Normalized register context sizes after liveness analysis and compression.

In our approach, an entire warp will be stopped and handled by the preemption handler if any

thread has reached the preemption point. In the case of thread divergence, the liveness of a whole

warp may be different with the threads which reached the preemption point. As shown in Figure 2.5

are the possible thread locations when a preemption point is reached. For example, one warp has

two threads, T1 and T2. Assume that T1 and T2 diverge at basic block A, T1 executes path B and T2

executes path C. When T2 reaches the preemption point at path C, T1 can be either at the divergence

point (end of A) or the reconvergence point (start of D). In this case, the live vector register for the

preemption point should be the union of all these 3 possible thread locations.

In our compiler, we �rstly perform the traditional liveness analysis without considering thread

divergence. Then the divergence and reconvergence points are analyzed based on immediate post-

dominator [Fun09]. At last, the compiler calculates the union of liveness at the original preemption

point, the divergence point and recovergence point. Because the thread divergence can only be

determined at runtime, both liveness vector versions are saved. When handling the preemption of

a warp, the SIMT stack will be checked to determine whether there is a divergence. If there is, the

union version is used. Otherwise, the original version is used.

To evaluate the effectiveness of liveness analysis, we count the number of live registers in the

Rodinia benchmarks at runtime. When a warp reaches a preemption point, the total liveness number

is accumulated. Then, the sum is divided by the number of warps. The result is shown in Figure

2.6. Take BP_1 as an example, only 39.6% of occupied registers are live ones. Therefore, the average
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f o r ( i = 1 ; i <= LOG_H; i ++ ) {
i n t pow = __powf (2 , i ) ;
i f ( ty % pow == 0) {

f l o a t tmp = s_weight [ ty+pow / 2 ] [ t x ] ;
s_weight [ ty ] [ t x ] += tmp ;

}
__syncthreads ( ) ;

}

Figure 2.7 A kernel code snippet of BP_1.

Figure 2.8 Warp-Level register value locality analysis.

per-warp context size is reduced from 1664B to 656B. On average across all the kernels, 34.3% of the

register context size can be reduced with liveness analysis.

2.3.3 Architectural State Compression

Register state compression is based on the observation that many register values in GPU programs

conform certain patterns. S. Collange et al. [Col10] reports that uniform and strided are common

patterns for GPU vector registers. A uniform register is de�ned as all scalar registers in a vector

register have the save value, i.e. Vi = a . A strided register is de�ned as the scalar registers in a

vector register conform arithmetic progression, i.e. Vi = a i + b . In this paper, we show that the

TB dimension is an important factor for analyzing GPU register pattern. Also, we explore TB-level

register compression to further exploit inter-warp data locality.

Warp-Level Compression

Warp-level register compression is used to leverage intra-warp value locality to compress vector
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registers. Take the kernel code snippet of BP in Figure 2.7 as an example. BP_1 has 16x16 TB dimen-

sion, tx and ty are the thread ids in the X and Y dimension, respectively. The variable i is uniform

across all threads in a warp, and so are the variable pow and the base addresses of array s_weight.

However, for a warp with 32 threads, the values of ty for warp 0 is “0, 0, ..., 0, 1, 1, ..., 1”. The uniform

pattern occurs for 16 scalar registers instead of the whole vector register. A similar situation happens

for tx, which has the values “0, 1, ..., 15, 0, 1, ..., 15” for a warp. So, in this paper, the register pattern

analysis is performed at the granularity of a pattern analyzing group (PAG). PAG is the minimum

between the vector register width and the lowest TB dimension. In our baseline architecture, the

vector register width is 32. So the maximum value of PAG is 32. When one of the TB dimensions is

less than 32, PAG is the lowest TB dimension.

For vector registers containing uniform values, we can compress it into 1 scalar register. A strided

vector register can be compressed to 2 scalar ones, i.e. a base and a stride. We refer to other registers

as random ones, such as tmp in Figure 2.7.

To analyze the warp-level register value locality, we also take samples in the Rodinia benchmarks

at runtime. For each sample, we count how many vector registers are uniform, strided or random

in each warp. We only analyze the live registers. After execution, the average of all the samples is

calculated. Figure 2.8 shows the result. For BP, 47.4% of its live registers are uniform and 52.6%

live registers are strided. Therefore, the per-warp context size can be further reduced to 64B on

average. From Figure 2.6, we can see that on average 91.5% register context size can be reduced with

combined liveness analysis and warp-level register compression.

In our benchmark, BP, HS and LUD has two-dimensional TBs and the PAG is different with the

vector register width. In Figure 2.8 we use two approaches for warp-level register pattern analysis.

The default approach is to use PAG as the analysis width whereas the BP_vec, HS_vec and LUD_vec

use the vector register width, i.e., the warp size, as the analysis width. From the result we can see

that our approach can exploit uniform and strided registers more effectively.

Figure 2.10 shows the logic design for register state compression. The inputs are PAG scalar

registers. There are PAG-1 subtractors to calculate the differences between two adjacent values. The
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Figure 2.9 TB-Level register value locality analysis.

�rst subtraction result will be converted to a Boolean signal a, showing whether the difference is

0. The comparator takes the results of all subtractors and outputs 1 if all the results are equal, 0

otherwise. The output of the comparator is marked as signal b. This way, the signals a and b encode

the value pattern, 01: uniform, 11: stride, 10 / 00: random. This logic is fully pipelined. Because the

vector register width is 32 in our baseline architecture, the maximum of PAG is 32. In our experiments,

the compression latency is assumed as 2 cycles. Such assumption is also used in a similar design for

register compression [Lee15a].

The decompression process is relatively straightforward. For uniform registers, the value is

duplicated PAG times for PAG registers in one warp. For strided registers, the �rst register takes the

base value, and every following register adds the stride value to the former one.

TB-Level Compression

TB-level compression leverages inter-warp locality for vector registers. For example, in Figure

2.7, all threads across a TB has the same value of i when they are in the same dynamic program point.

Such registers are de�ned as global uniform. A local uniform register is the registers that have the

same value for PAG threads, e.g. variable ty. Similarly, global strided registers are the registers that are

strided across all threads in a TB. For example, the index of s_weight, which equals to t y � 16+ t x ,

is global strided. Local strided registers are the registers that are strided for PAG threads but are not

global strided, e.g. variable tx.
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For local uniform / strided registers, the compression is the same as the warp-level compression.

For a global uniform register, only one scalar register will be saved for the whole TB. Only two

scalar registers, base and stride, in a TB will be saved for a global strided register. So, for global

uniform / strided registers, the compression ratio is higher than warp-level compression.

Figure 2.11 illustrates the TB-level compression logic. For each logic register, the physical registers

of all warps in a TB are analyzed by the warp-level compressor. The registers will be identi�ed as

random if any physical vector register is random. Then the random registers bypass the compressor

and spill to the global memory. If all the registers are not random, the base and stride are stored in

the base or stride vector buffer. After all warps in the TB �nished compressing, the pattern of base

vector and stride vector are analyzed. The registers are global uniform if the base vector is uniform

and the stride vector is zero-uniform, meaning the scalar registers are all zeros. The registers are

local uniform if the stride vector is zero-uniform and the stride vector is not uniform. The registers

are global strided if the base vector is strided, the stride vector is non-zero uniform, and the stride in

the base vector is the same as the stride in the stride vector. Otherwise, the registers are local strided.

In this analysis, the base vector and stride vector width equal to T B_s i z e=PAG.The maximum TB

size is 1024, the minimum PAG we support is 8, and the N in Figure 2.11 is 32 in our implementation.

The TB-level register pattern is shown in Figure 2.9. The approach we use to analysis TB-level

register pattern is similar to warp-level register patterns except that TB-level is only enabled when the

preemption point is a barrier. If the preemption point is not at a barrier, the liveness of different warps

may be different and the register pattern becomes dif�cult to analysis. So only the benchmarks with

barriers are shown in the result. In Figure 2.6, we apply TB-level compression at barrier preemption

points and warp-level compression for other preemption points. From the result, we can see that

TB-level compression can further reduce register context size by 36.1% on average. However, because

TB-level compression may be worse on some benchmarks, e.g. PF, and it can only be applied on

barriers, we choose not to use TB-level compression for our preemption design.
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Figure 2.10 Warp-level register state compression logic.

Figure 2.11 TB-level register state compression logic.
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2.4 Context Switching for Preemption

2.4.1 Selective Preemption

As long execution time of a TB mainly results from loops with large numbers of iterations, we insert

one preemption point for each loop. For nested loops, only the innermost loop is considered. For

loops with one barrier, the barrier will be selected as the preemption point. If any other point is

selected as a preemption point, deadlocks may occur when some warps are waiting at the barrier

while other warps reach the preemption points and wait for preemption. The barrier with minimum

liveness is selected by the compiler if there are more than one barrier in the loop. For loops without

barriers, the point with minimum liveness is selected. Outside the loops, we insert one preemption

point every K instructions. Similar to the loops, either the minimum liveness point or the barrier is

selected. If a kernel does not have a loop or a barrier and the kernel is smaller than K instructions,

the execution time of a TB is small and our approach is essentially the same as SM-draining [Tan14].

In our experiment, because the execution time of all benchmarks is dominated by loops, the value

of K does not have a great impact on the evaluation results when it varies from 100 to 1000.

We introduce two preemption point (pp) instructions, bar.pp and pp, to annotate the preemp-

tion points. After analyzing the preemption points, one preemption instruction is inserted to one

point. For preemption point at barriers, bar.pp instruction is inserted to replace the original barrier

instruction. bar.pp is a barrier instruction when the preemption signal is off. For the other preemp-

tion points, pp instructions are inserted into the program. The pp instruction becomes a nop when

the preemption signal is off. When a preemption signal is on, warps keep running until a preemption

point is reached. Then the warp stops and waits for preemption.

Both preemption instructions have one operand to provide the liveness bit vector for the program

points at which the instructions are inserted. To follow the Fermi ISA format [Asf] [NVI], 10 bits are

reserved as opcode. The remaining 54 bits are used as liveness bit vector. Because the architecture

may support more than 54 registers, the highest bit is used to denote there are live registers that have

higher register number than 53. All higher registers will be saved if such bit is set. In out benchmarks,
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Figure 2.12 Kernel context format.

we observe that a 53-bit vector is typically enough for representing the liveness. To provide the

liveness for thread divergence, a dummy instruction is introduced and it follows the pp instruction.

It also encodes 54 bits for the liveness bit vector. At runtime, if thread divergence is detected at the

preemption point, the liveness which is encoded in the dummy instruction is used for preemption.

The bar.pp instruction doesn't need to be followed by the dummy instruction because the barrier

ensures that there should be no divergence [NVI15].

2.4.2 Context Format

Due to the in-place context switching as we discussed in Section 2.3.1, register �le and shared

memory can either be reserved on SM or dumped to global memory. In this paper, the context

switching granularity is TB, meaning that the register �le or shared memory of one TB cannot be

partly spilled. But shared memory and that register �le of one TB can reside in different locations,

one in SM and the other in global memory, as illustrated in Figure 2.4.

As shown in Figure 2.12 is the context format of a kernel. The context control block (CCB) contains

an array of TB context. The array size M is the maximum number of TBs that can be launched on

the processor. Each entry contains the global memory pointers for the context of the register �le,

shared memory and SIMT stack. The pointer is NULL if the register �le or shared memory is in-place

reserved. Otherwise, a global memory space is allocated. The shared memory size on global memory

is the same as the occupied size on GPU. The register �le context on global memory has N entries,
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Figure 2.13 Saving and restoring pipelines for preemption.

N equals to the warp number in one TB. The register context size for each warp is the maximum

liveness number times vector register width. To maximize the bandwidth usage, the compressed

register values are stored continuously. For decompressing, a pattern vector is used to store the

register pattern and liveness of a warp. Two bits are used to represent the four states of each register.

The four states are uniform, strided, random and dead. Because the maximum register number is

64, so the pattern vector length is 128 bits. In our paper, the whole SIMT stack will be saved to global

memory. Because the SIMT stack includes the PC for each thread, the PCs are not separately saved.

The warp is waiting at a barrier if the PC points to a barrier instruction, so the barrier state of each

TB can also be derived from the SIMT stack.

2.4.3 Preemption Pipeline

Because the executions on different SMs are independent, a new kernel may preempt all SMs or

only some of them. Here, we focus on preemption in one SM. When an SM receives an interrupt

signal for preemption, the active warps keep executing until a preemption point is reached. Then

the reached warp is set as inactive so that they will not fetch or issue new instructions. In order to

preserve precise states, a warp must be drained before being switched out. A drained warp means

that it has no issued instructions in the pipeline and has no pending updates to the register �le.

As shown in Figure 2.13 is the spilling and restoring pipeline for preemption. For saving the

context, the context saving logic looks up the register and shared memory allocation table, shown

in Figure 2.4, to calculates how much resources (i.e. registers and / or shared memory) to be spilled
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Table 2.1 Baseline architecture con�guration

Num. of SMs 15
SIMT core freq. 700MHz
Warp size 32
SIMD width 32

Resources per SM
8 TB slots, 48 warp slots (1536 threads), 128KB register �le,
48KB shared memory

Warp scheduler 2 schedulers, RR policy
L1 D-cache 16KB per SM, 128B block size
L2 cache 128KB per channel, 6 channels

DRAM
924MHz, QDR, 384-bit bus, peak bandwidth = 0.924*4*384/ 8
= 177GB/ s

to global memory in order to accommodate the new kernel. Such information is converted to how

many resident TBs to be spilled. To save the register of a warp, the liveness vector is fetched from the

instruction buffer. Then the live vector registers are compressed and pushed into a buffer. Because

the most ef�cient way to access global memory is by a width of 128B, the compressed data form

data segments with the size of 128B through the buffer. After the register states of all warps from

one TB are drained, shared memory used by this TB starts to be spilled to global memory.

To restore a TB, the restoring logic waits for there is enough on-chip resource to launch the TB.

Then the context control block, shown in Figure 2.12, is accessed to �nd the TB context. To restore

the registers of a warp, the pattern vector is �rstly loaded. Then each vector register is decompressed

based on its pattern.

2.5 Experiments

2.5.1 Methodology

We implemented our lightweight context switching on GPGPU-sim [Bak09] v3.2.2. Our baseline

architecture models the NVIDIA GTX480 GPU, and its con�guration is shown in Table 2.1. GPGPU-

sim supports both the PTX and GT200 instruction set architecture (ISA). PTX is for a virtual machine

with unlimited registers. Therefore, in order to collect the accurate architectural register information,

all benchmarks are compiled to the GT200 ISA. We evaluate our techniques on the Rodinia [Che09a]
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Table 2.2 Benchmark speci�cation

Kernel (Label) Benchmark (Label)
Warps/
TB

TBs/ SM
Regs/
Warp

Smem/ TB
(bytes)

Limiting Factor

layerforward (BP_1) backprop (BP) 8 6 13 1128 warp
adjust_weight (BP_2) backprop (BP) 8 6 18 40 warp, reg
Kernel1 (BFS_1) bfs (BFS) 16 3 7 44 warp
Kernel2 (BFS_2) bfs (BFS) 16 3 4 36 warp
�ndRangeK (BT_1) b+tree (BT) 8 6 10 48 warp
�ndK (BT_2) b+tree (BT) 8 6 9 60 warp
initialize_variable (CFD_1) cfd (CFD) 6 8 6 32 warp
compute_step_factor (CFD_2) cfd (CFD) 6 8 8 48 warp, TB
compute_�ux (CFD_3) cfd (CFD) 6 4 39 36 reg
copySrcToComponets (DWT_1) dwt2d (DWT) 8 6 4 804 warp
fdwt53Kernel (DWT_2) dwt2d (DWT) 6 5 32 8668 reg, smem
kernel (HW_1) heartwall (HW) 8 4 23 11888 smem
calculate_temp (HS_1) hotspot (HS) 8 4 31 3144 reg
histogram1024 (HG_1) hybridsort (HG) 3 3 10 12324 smem
invert_mapping (KM_1) kmeans (KM) 8 6 9 32 warp
GICOV_kernel (LK_1) leukocyte (LK) 6 8 18 24 warp, TB
lud_diagonal (LUD_1) lud (LUD) 1 8 8 2076 TB
lud_perimeter (LUD_2) lud (LUD) 1 8 16 3104 TB
lud_internal (LUD_3) lud (LUD) 8 6 9 1056 warp
reduce (SR_1) srad_v1 (SR) 16 3 14 4132 warp
srad (SR_2) srad_v1 (SR) 16 3 16 128 warp
dynproc_kernel (PF_1) path�nder (PF) 8 6 12 2096 warp
kernel_compute_cost (SC_1) streamcluster (SC) 16 3 8 56 warp

benchmarks. Table 4.2 lists all the benchmarks. Each entry in Table 4.2 shows the information of

a kernel. Because some benchmarks (e.g., BP) contain multiple kernels, (e.g., BP_1 and BP_2), we

combine the results of these kernels in our evaluation.

We model the potential traf�c contention due to context switching at register read / write ports,

shared memory read / write ports, the interconnect to memory controllers, and memory read / write

bandwidth. For preemption, we found that the contention is limited as the SM essentially stops

execution and all the ports are used for context swapping. The context switching requests have

lower priority than regular requests from instruction execution.

To evaluate the preemption performance, we add periodic preemption signals (every 10000

cycles) when running the benchmarks. We run each benchmark for at most 200 million cycles or

until it exits. When a preemption signal is received, one SM stops running and spill its architectural

states to global memory while other SMs keeps running, the same method as used in prior works

[Par15a].
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Figure 2.14 Normalized spilling latency.

Figure 2.15 Normalized preemption latency.

2.5.2 Spilling Latency

In Figure 2.14, we evaluate the normalized latency for spilling the architectural states to global

memory. Three approaches are compared to show the effectiveness of liveness analysis and register

compression. `Occup' shows the latency to spill all the occupied architectural states. The spilling

latency is measured from interrupt signal is issued to all the states are spilled. `Live' is to spill only

the live registers and `live +cp' is to spill the live registers with warp-level register compression. For

`live' and `live +cp', the latency for the spilling registers of a warp starts from the preemption point is

reached. Then the latencies of all warps are accumulated. For each mechanism, the normalized

latency to spill register �le, shared memory and SIMT stack are evaluated.

If we see the results of 'Occup', the spilling latency of most benchmarks (except for HG) is

dominated by spilling the registers. This is because the register �le is the largest on-chip memory

that stores the architectural states and it has relatively high occupancy (Figure 3.7). For DWT, HW and

HG, shared memory accounts for more than 20% of spilling latency because the shared occupancy
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for these benchmarks is high (Figure 3.7). For most benchmarks, the SIMT stack spilling latency is

too small to be observed. The SIMT stack latency appears for BFS because its live register number is

very small.

From the results, we can see that liveness analysis and register compression drastically reduce the

latency to dump the register state. Since shared memory size is not reduced by these two mechanisms,

the latency for saving shared memory states is similar for different approaches. The geometric mean

for spilling total architectural states is reduced to 17.7%. With the GPU core frequency of 700Hz,

the average spilling latency is reduced from 9.9us to 1.8us. In the special case of BFS, the spilling

latency is increased with `live +cp' compared to `live'. The reason is that no live registers can be

compressed at the preemption points and our preemption mechanism needs to store metadata for

the compression patterns of the registers. Therefore, the data to be saved become larger for BFS

when compression is enabled.

2.5.3 Preemption Latency

The preemption latency evaluation is shown in Figure 2.15. The results are normalized with spilling

all occupied architectural states to global memory. `Select' shows the selective preemption latency

with register liveness analysis and compression. The total preemption latency is measured from

the start of preemption signal to the architectural states are spilled. The latency labeled as `spill' is

the context spilling latency. With selective preemption, the warps keep executing until preemption

points are reached. So, for some time the spilling pipeline is idle to wait for warps reaching the

preemption points. Such latency is called draining latency and labeled as `drain'. Because SM-

draining lets all current TBs to �nish, it doesn't need to save any architectural states for these

TBs.

Compared with the baseline, the preemption latency is reduced to 40.3% on average (geometric

mean). With the GPU core frequency of 700Hz, the preemption latency is reduced from 9.9us to

4.0us. The draining latency accounts for 55.8% of the selective preemption latency. Note that during

draining, some (if not all) warps are still doing useful work.
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Figure 2.16 Normalized worst case preemption latency

For SM-draining, although the SM keeps doing useful work during preemption, the latency

becomes unbearable for many benchmarks. For example, the average preemption latency for LK

is 1431.1us. The newly incoming kernel would have to wait for such long TBs. As a result, fairness

cannot be guaranteed with SM-draining because it favors kernels with long TBs. With selective

preemption, because the preemption is guaranteed to be done in every loop iteration or every 1000

instructions, the draining latency is much more manageable.

2.5.4 Worst Case Preemption Latency

Because selective preemption has to wait for the warps to execute some instructions before being

spilled, the latency variation may become higher than naive approach. To evaluate the preemption

latency in the worst case scenario, we select 12 kernels which can run long enough to generate 15

times preemption signals. As shown in Figure 2.16, for each mechanism, the worst case preemption

latency is normalized to its average latency. From the results, we can see that the naive approach,

which is saving all occupied states, has 0.4x difference between average and worst case scenario. The

difference may result from the different instructions to drain before preemption or the difference of

memory traf�c. For selective preemption, the difference between average and worst case scenario

is 0.6x, which is slightly higher than the naive approach. The worst case latency for SM-draining

is 2.4x compared with the average. For SM-draining, the worst case happens when an interrupt is

signaled when a new TB has just being launched.
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Figure 2.17 Normalized preemption latency with in-place context switching

2.5.5 Impact of In-Place Context Switching

To evaluate in-place context switching, we randomly pick 8 pairs of kernels which are labeled as

`kernel1-kernel2' in Figure 2.17. We assume that `kernel1' is preempted by `kernel2' and measure the

switching out latency for 'kernel1'. The baseline, which is labeled as `complete', is the preemption

latency of the approach using both liveness analysis and compression. For in-place context switched

warps, they still have to reach the preemption point until being handled by preemption pipeline.

As a result, the warps still need to be drained even if there is no register to spill, e.g. BT_1-HG_1.

From the �gure, we can see that the latency for spilling the register and shared memory states can

be further reduced with our proposed in-place context switching, by 21.5% on average. On some

benchmarks, e.g. BT_1-HG, The draining latency is higher on in-place context switching. This is

because spilling can hide the latency for some warps to drain.

2.6 Related Work

On CPUs, there are many works focusing on context reduction to reduce the preemption overhead

and improve processor utilization. Some works [Sny95] [ZP06] propose to seek program points

with small numbers of live registers for context switching, thereby reducing the context switching

latency. Register relocation [WW93] is used to partition the register �le into variable-size contexts.

The more-often resident contexts are allowed to stay on the processor. Switching between resident

27



contexts is very fast, and multiple contexts can tolerate long latencies from cache misses.

To enable fast context switching and exception handling on GPUs, iGPU [Men12] partitions

kernel code into idempotent regions and each region is a recovery point. iGPU also leverages liveness

analysis when formatting recovery points for context reduction. Register liveness is also used for

dynamic register �le management [Jeo15]. Lee et al. [Lee15a] leverage register compression for

reducing GPU power. They use the base-delta-immediate (BDI) compression algorithm [Pek12]

for register �le compression. BDI separates a vector register into several trunks and stores the

value of �rst chunk and the delta between adjacent chunks. As delta values tend to be very small,

they can be stored in small bins. The compression technique is used for the register �le and every

each register read/ write needs to be decompressed / compressed. In comparison, we only perform

compression / decompression when a context is spilled / restored.

Some recent works aim to enable the preemption on GPU. RGEM [Kat11] is a user-space solution

to reduce the response time of high priority kernels. It splits the input data into multiple chunks

so that a kernel can be preempted at a chunk boundary. PKM [BK12] partitions the overall TBs

of a kernel into multiple sets where each set has a speci�c number of TBs. Softshell [Ste12] is a

GPU programming model which supports a kernel being preempted at the boundary of TBs. In

comparison, our proposed approaches enable ef�cient preemption at the instruction granularity.

Concurrent kernel execution is another option to support GPU sharing by multiple kernels.

KernelMerge [Gre12] and Spacial Multiplexing [Adr12b] study how to use concurrent kernels to

better utilize GPU resources and improve overall throughput. Elastic kernel [Pai13] increases GPU

utilization by issuing concurrent kernels on one SM. After TBs from one kernel are issued to the

SM, the spare resources are distributed to another kernel. In [Lee14], Lee et al. also leverage mixed

concurrent kernels to improve GPU utilization.

Compared to these prior works, the novelty of our work includes (a) fast context switching

through context reduction and compression (b) ef�cient instruction-level GPU preemption.
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2.7 Conclusions

In this paper, we present lightweight context switching for GPUs and compiler-hardware co-design

to enable ef�cient preemption. We propose three schemes, in-place context switching, liveness

analysis and register compression, to address the problem of the large kernel context on GPUs.

Our results show that with register liveness analysis and compression, the register context can

be reduced drastically by 91.5%. With selective preemption enabling instructions, we can achieve

ef�cient instruction-level preemption with an average preemption latency of 4.0us (with the 700MHz

GPU core frequency).
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CHAPTER

3

GPU PERFORMANCE VS. THREAD-LEVEL

PARALLELISM: SCALABILITY ANALYSIS

AND A NOVEL WAY TO IMPROVE TLP

3.1 Introduction

State-of-the-art throughput-oriented processors, like GPUs, have become the dominant accelerator

for data-parallel workloads. To achieve high computation throughput and memory bandwidth,

GPUs exploit high degrees of thread-level parallelism (TLP). Programmers use the CUDA [Cuda]

or OpenCL [Ope] programming models to de�ne the behavior of each thread. The GPU hardware

aggregates multiple threads into a warp as the basic execution unit. The warp scheduler seeks for
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Figure 3.1 Instruction per cycle (IPC), L1 D-cache hit rate and DRAM bandwidth utilization with different
numbers of active warps for the SPMV benchmark.

one ready instruction among multiple warps every cycle. Such �ne-grain multithreading is the

key to hide the memory latency. As a result, GPUs feature high amounts of on-chip resources to

accommodate the contexts of large numbers of concurrent warps. For example, in the NVIDIA

GP100 (Pascal) architecture [Pas], each stream multiprocessor (SM) has a 256KB register �le and

accommodates up to 64 warps.

The inclusion of multiple levels of caches complicates the relationship between TLP and the

overall performance. As studied in prior works [Rog12] [Kay13] [Li15], high degrees of TLP cause

the cache to suffer from the contention problem, which may lead to performance degradation. For

example, Figure 3.1 shows the impact of cache thrashing with various degrees of TLP. The experi-

ment setup is presented in Section 4.3. The �gure shows that the L1 D-cache hit rate dramatically

decreases when the number of concurrent warps increases from 1 to 24. Cache thrashing causes the

performance to drop when the warp number is larger than 16. T. Rogers et al. [Rog12] propose to

limit the number of active / concurrent warps to alleviate the cache thrashing problem. However, as

the warp number increases from 32 to 64, more TLP should have hidden more latency for accessing

memory since the cache performance does not signi�cantly drop. But why isn't the performance

improved? Some may conjecture that it is because the off-chip DRAM bandwidth is fully utilized

but Figure 3.1 shows that the DRAM bandwidth is fairly underutilized.

In order to �nd this mysterious performance limitation, we conduct a novel and detailed analysis

from the perspective of throughput utilization of GPU components. The result shows that 8 out of
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22 benchmarks are actually bounded by the interconnect bandwidth in the baseline architecture.

The performance starts to drop when the interconnect throughput is saturated so that higher TLP

cannot compensate the loss in cache throughput.

In our experiments, we �nd that some benchmarks do not fully utilize the throughput of any

computation or memory bandwidth resource. These benchmarks would bene�t from a higher

degree of TLP. However, the number of concurrent warps is limited by the context capacity, such

as the register �le capacity or warp scheduler capacity, of the GPU. We also noticed that, for many

benchmarks, resource usage is unbalanced. Often, shared memory is underutilized and / or the L1

D-cache performance is low. For these benchmarks, shared memory or the L1 D-cache can be used

to accommodate more warp contexts.

In this paper, we propose GPUDuet, a novel approach using context switching as another level of

multithreading for GPU architecture. The key idea is to switch out stalled warps / thread blocks (TBs)

to realize much higher degrees of TLP without increasing the size of critical physical resources. In

order to achieve fast context switching, we only use on-chip memory to store the switched-out con-

texts. Through monitoring the throughput resource utilization, GPUDuet dynamically determines

the best TLP degrees.

We evaluate our GPUDuet approach with 10 throughput-unsaturated benchmarks and 5 throughput-

saturated ones. We �nd that it can signi�cantly improve the performance for benchmarks without

saturated resources. Compared to the baseline, our technique achieves up to 47% and an average

(geometric mean) of 22% performance gain. Compared to the state-of-the-art TLP improvement

scheme, Virtual Thread (VT) [Yoo16], our proposed scheme achieves 12% higher performance on

average and 16% for unsaturated benchmarks.

In summary, this paper makes the following contributions:

• We present a novel bottleneck analysis on GPU workloads from a resource utilization perspec-

tive. It reveals that the interconnect can be a critical bound in GPU performance and provides

a detailed categorization of GPU workloads.

• Based on the resource utilization analysis, we reveal insights on GPU performance scalability.
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Figure 3.2 GPU architecture.

We also characterize the features of GPU workloads, whose performance can scale well with

TLP.

• For the benchmarks whose performance scales with TLP, we propose lightweight context

switching as another level of multithreading support to improve TLP and our experiments show

that our proposed TLP improvement technique can signi�cantly enhance the performance.

The rest of the paper is organized as follows. Section 3.2 provides the background. Section 4.3

describes our experimental methodology. Section 3.4 presents the throughput utilization study and

performance scalability analysis. Section 3.5 motivates our context switching approach to improve

TLP. Section 3.6 details our GPUDuet approach. Section 3.7 reports the experiment results. Section

3.8 addresses the related work. Section 3.9 concludes the paper.

3.2 Background

3.2.1 GPU Architecture

Contemporary GPU architecture, as illustrated in Figure 4.1, consists of multiple stream multiproces-

sors (SMs). Each SM has a private L1 D-cache, which uses an array of miss status handling registers

(MSHRs) to support multiple outstanding cache misses. All SMs share a multi-banked L2 cache,

which also uses MSHRs to send memory requests to the off-chip DRAM. The L1 D-caches and L2

cache banks communicate through a crossbar interconnect network [AMD12][Onl ].
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Figure 3.3 A crossbar with queueing on inputs, assuming that the input number equals with the output
number [Kar87].

Each SM hosts a number of warps, each of which is a collection of threads that run in the single-

instruction multiple-data (SIMD) manner. Each warp has its private space in the register �le and

some meta-data, such as the program counter and active thread bit mask, in the warp scheduler

to keep track of its execution status. Multiple warps constitute a thread block (TB), within which

all warps can communicate and synchronize through shared memory. One SM can accommodate

one or more TBs depending on their resource requirement. There are four types of resources that

can limit the number of concurrent / active TBs on an SM: register �le, shared memory, the warp

scheduler slots and the TB slots. The warp / TB slots include some meta data to keep track of the

warp / TB execution status. The warp / TB slot size is much smaller than register �le or shared memory

[Yoo16]. A warp/ TB will hold the resources during its whole lifetime. The resources will be released

after it �nishes execution.

3.2.2 Crossbar Interconnect Network

State-of-the-art GPUs use crossbars as the interconnect network to connect the SMs and L2 partitions

to provide the tremendous data communication demand between them [AMD12][Onl ]. The crossbar

is a non-blocking interconnect network, which means a connection can be established if both input

and output are idle. In this paper, queueing on inputs (Figure 3.3a) is assumed for simplicity. If more

than one packet needs to arrive at the same output at the same time, only one packet can be accepted
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Table 3.1 Baseline architecture con�guration

Overall con�g. 16 SMs, 32 threads/ warp, 16 L2 banks, 16 DRAM chips
SM con�g. 1000MHz, 4 schedulers, GTO policy
Context resources/ SM 32 TB slots, 64 warp slots, 256KB register �le, 98KB shared memory
L1 D-cache/ SM 32KB, 32 sets, 8 way, 128B block, 256 MSHRs
Interconnect 16*16 crossbar per direction, 32B wire width, 1200MHz, 614GB / s
L2 cache/ partition 128KB, 8 way, 256 MSHRs, 200 cycles latency
DRAM 1200MHz, 307GB/ s, 450 cycles latency

by the network and other packets have to be queued on their inputs. Due to such output contention,

the sustainable throughput of the crossbar can hardly achieve the peak bandwidth. Based on the

assumption that the destinations of packets are independent and uniformly distributed, M. Karol

et al. [Kar87] quanti�ed the ratio of sustainable throughput and the peak bandwidth, as shown in

Figure 3.3b. As we can see from Figure 3.3b, the ratio drops sharply as the number of inputs / outputs

increases and saturates around 60% quickly.

3.3 Methodology

3.3.1 Simulation Infrastructure

We use GPGPU-sim v3.2.2 to investigate the GPU throughput utilization and evaluate our context

switching approach. Our baseline architecture models the NVIDIA Maxwell architecture and its

con�guration is shown in Table 4.1. To get the register and shared memory usage based on Maxwell

architecture, we use the nvcc compiler with `- -ptxas-options =-v -arch =sm_50' option. We observe

that nvcc typically allocates more registers for the Maxwell architecture than for the older architec-

tures, such as Fermi. This con�guration is important as it affects how the TLP of a kernel is limited. If

we keep using the code generated for the old architecture, e.g., Fermi, the register usage of a kernel

is smaller than it would be for the Maxwell architecture. In this case, the kernel is more likely to be

scheduling limited (due to the limited warp slots) although it should be capacity limited (due to the

limited register �le size) if we compile the code for the Maxwell architecture.

We implement the crossbar interconnect based on Section 3.2.2. The crossbar port width can
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Table 3.2 Benchmark speci�cation

Benchmark Source Description Data Set
BFS bfs [Che09b] Breath �rst search 16 million nodes
BP_1 backprop [Che09b] Machine learning 65536 nodes
BP_2 backprop [Che09b] Machine learning 65536 nodes
BT b+tree [Che09b] Graph traversal 1 million nodes

CFD cfd [Che09b] Fluid dynamics 0.2 million nodes
CONV 2DCONV [GG12] 2-D convolution 4096*4096 matrix

CP cutcp [Str12] Coulombic potential large (96602 nodes)
DWT_1 dwt2d [Che09b] Image/ video compression 1024*1024 rgb image
DWT_2 dwt2d [Che09b] Image/ video compression 1024*1024 rgb image
FDTD_1 FDTD-2D [GG12] 2-D stencil operation 2048*2048 nodes
FDTD_2 FDTD-2D [GG12] 2-D stencil operation 2048*2048 nodes
GEMM GEMM [GG12] Linear algebra 512*512 matrices

HG hybridsort [Che09b] Sorting algorithms 4 million elements
HS hotspot [Che09b] Physics simulation 512*512 nodes
KM kmeans [Che09b] Data mining 494020 nodes
LBM lbm [Str12] Fluid dynamics long
MM 2MM [GG12] Linear algebra 2048*2048 matrices
MMS matrixMul [Cudb] Matrix multiplication 1024*1024 matrices

SAD_1 sad [Str12] Sum of absolute differences default
SAD_2 sad [Str12] Sum of absolute differences default
SPMV spmv [Str12] Sparse matrix vector multiply large

ST stencil [Str12] 3-D stencil operation default

be con�gured as 16B, 32B or 64B. We use 16B wire width (307 GB / s bandwidth) in Figure 3.1 and

32B wire width (614 GB / s bandwidth) if not speci�ed. When multiple inputs are trying to send to

the same output, the crossbar randomly selects one input to connect with the output and the other

ones wait for the selected one to �nish. Our experiment shows that, for interconnect-intensive

benchmarks, the attainable throughput saturates close to 60% of peak bandwidth, con�rming the

study by M. Karol et al. [Kar87].

3.3.2 Benchmarks

We choose 22 GPU kernels from various benchmark suites, including Rodinia [Che09b], Parboil

[Str12], Polybench [GG12] and CUDA SDK [Cudb], to investigate the throughput utilization on GPU

components. Table 4.2 lists the details of the benchmarks along with their sources and input data

sets.
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Figure 3.4 Benchmark categorization based on throughput utilization of GPU resources.

3.4 Dynamic Resource Utilization

3.4.1 Experiment Description

In this section, we investigate the utilization of six GPU components, including the warp scheduler

throughput, L1 D-cache bandwidth, interconnect sustainable throughput along both directions, L2

cache bandwidth, and DRAM bandwidth. In our experiments, the statistic counters are aggregated

until the kernel has run for 4 million cycles. The reason is that the variation of statistic counters

becomes very small after the kernel is simulated for 2 million cycles. Prior works [Adr12b] [Wan16]

[Xu16] made similar observations.

The scheduler utilization is the ratio of total instructions issued over the total cycles of all

schedulers (i.e., overall cycles X number of schedulers). It also re�ects the latency hiding effectiveness

for a benchmark.

The L1 D-cache and L2 cache throughput utilization is the ratio of achieved throughput over

the peak bandwidth of the cache data port. The data port is utilized when there is a cache hit. The

duration depends on the data port width and the requested data size.

The memory requests that miss the L1 D-cache, go through the interconnect along the SM-to-L2

direction. The corresponding replies go through the interconnect along the L2-to-SM direction.

Ideally, each input node can transmit a �it (32B) in one cycle so the peak bandwidth is 614 GB / s per
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direction (Table 4.1). However, due to the output contention as discussed in Section 3.2.2, at most

60% of the peak bandwidth can be achieved. So, we de�ne the interconnect utilization as the ratio of

the actual throughput over the sustainable throughput (i.e., 60% of the peak bandwidth) rather than

the ratio over the peak bandwidth. If we directly use the peak bandwidth, all benchmarks would

show low interconnect utilization overlooking the nature of the sustainable bandwidth of such a

crossbar interconnect network.

The DRAM throughput utilization is measured as the ratio of the achieved throughput of the

DRAM data transfer over the peak DRAM bandwidth.

The bandwidth utilization of the register �le and shared memory is also tested in our experiment.

We don't report the details in the paper because they are not the performance bound for any of our

benchmarks.

We also tested the instantaneous throughput utilization by collecting the statistic counters every

P cycles. We �nd that the instantaneous utilization is stable if P is large enough (e.g., 10000).

3.4.2 Overall Results

Figure 3.4 presents the overall results of throughput utilization. The Y-axis shows the ratio of achieved

utilization of the six components as discussed in Section 3.4.1. The benchmarks are classi�ed into 5

categories according to their most utilized component.

The �rst category is compute-intensive benchmarks, including SAD_1, BP_1 and ST. In this

category, the scheduler utilization is high (over 60%), which means they have enough computation

instructions to hide the memory latency such that instructions are issued without signi�cant pipeline

bubbles.

The second category is L2-to-SM interconnect-intensive benchmarks, including KM, CFD, SPMV,

FDTD_2, MMS and CONV. Those benchmarks have over 60% of the sustainable interconnect through-

put along the L2-to-SM direction. The memory replies from either the L2 cache (L2 hits) or DRAM

(L2 MSHRs for L2 misses) need to go through this interconnect. Note that neither L2 nor DRAM

throughput has been fully utilized for those benchmarks. It means the interconnect fails to provide
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the data to the SMs at the speed of L2 and DRAM replying the data. The bottleneck in the L2-to-SM

interconnect will cause the buffer between L2 and interconnect to become full, which slows down

the L2 and DRAM. The cascading effect will stuff all buffers along the data path and eventually cause

the pipeline to stall at the SM load store units (LSUs).

The third category is SM-to-L2 interconnect-intensive benchmarks, including GEMM and MM.

The SM-to-L2 direction of interconnect is responsible for transferring the memory load and store

requests. And because load requests do not contain any payload data, the major consumption is

from the store requests. Both GEMM and MM have excessive global memory stores because they

store all intermediate results to global memory rather than registers.

The fourth category is DRAM-intensive benchmarks. Because the DRAM throughput may suffer

from row buffer misses, row activation or refreshing, the peak bandwidth is hard to achieve. X. Mei

et al. [MC16] observed that the maximum achievable throughput can be 20% – 30% lower than

the peak bandwidth. In this paper, we de�ne the benchmarks which consumed more than 50% of

DRAM peak bandwidth as DRAM-intensive, which includes SAD_2, LBM, FDTD_1, BP_2, DWT_1

and ST. Note that a common approach to categorizing the workloads on GPUs is based on the

ratio of the LSU stalls [Set15] [Wan16]. With this approach, both DRAM-intensive and interconnect-

intensive benchmarks are classi�ed as memory-intensive. However, such categorization can be

misleading as our results clearly show that the DRAM bandwidth is not highly utilized for many

interconnect-intensive benchmarks.

The �fth category, which includes BFS, BT, DWT_2, HG and HS, doesn't fully utilize the through-

put of any of the resources. Such benchmarks essentially lack active warps to fully utilize the through-

put of the computation or memory resources. In Section 3.5, we show that increasing the number of

active warps can signi�cantly increase the performance of the benchmarks in this category.

From Figure 3.4, we can see that the L1 D-cache bandwidth utilization is low for most bench-

marks, only 7 benchmarks have higher than 5% utilization. This is because the L1 D-cache size is too

small for so many concurrent warps [Rog12]. The L2 cache bandwidth utilization is relatively better

than L1. There are 13 benchmarks that achieve higher than 10% L2 cache bandwidth utilization.
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Figure 3.5 The impact of varied numbers of active warps for different interconnect bandwidth on SPMV.
The left Y-axis is the throughput of L1 D-cache and interconnect (icnt). The right Y-axis is the IPC. The
X-axis is the number of active warps.

Because L1 D-cache fails �ltering the memory traf�c effectively, L2 cache and DRAM become the

main resources to answer the memory accesses. When L2 cache �lters a large amount of memory

traf�c, the interconnect between L1 and L2 becomes very busy.

3.4.3 Scalability Analysis

In this section, we examine how and why the performance varies with increased TLP. In Figure

3.1, we have shown that the L1 D-cache performance is not enough to explain the performance

degradation for the increased TLP. Here we tackle the problem from the throughput perspective.

Figure 3.5 presents 3 diagrams with the interconnect bandwidth varies from 307 GB / s to 1228

GB/ s through varying the wire width from 16B to 64B. Each diagram shows the IPC (right Y-axis),

the throughput of L1 D-cache and interconnect (left Y-axis) with varied numbers of active warps

(x-axis). As shown in the �rst diagram, the L1 D-cache throughput reaches the peak when the

warp number is 16. Then the interconnect bandwidth is saturated. Because the interconnect is

saturated, the lost throughput from the L1 D-cache cannot be compensated by the interconnect.

So the performance keeps decreasing as increasing the warp number. In the second diagram,

the performance degradation rate becomes smaller because the interconnect can provide more

throughput. In the third diagram, the performance degradation disappears because the increased

interconnect throughput can entirely compensate the decreased throughput of L1 D-cache. From

the three diagrams, we can see that the performance reaches the peak when both L1 D-cache and
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Figure 3.6 Speedup for doubling the context resources per SM.

interconnect throughput reach the peak.

Figure 3.5 also con�rms that the interconnect becomes the bottleneck when the bandwidth

utilization is close to the sustainable bandwidth. As we double the interconnect bandwidth, the

performance increases accordingly.

3.5 Motivation for High TLP

3.5.1 Which Benchmarks Bene�t From Increased TLP

As shown in Section 3.4.3, when a dynamic resource has been saturated, a benchmark cannot bene�t

from a higher degree of TLP. Instead, increasing TLP for the benchmarks which have not saturated

any resource, should be helpful. To justify our hypothesis, we double the context resources per SM

(Table 4.1) to accommodate the doubled number of warps and test the performance gains.

In Figure 3.6, the benchmarks from `underutilized' category in Figure 3.4 achieve the highest

speedups. It means lacking active warps is the reason for their resource underutilization. For bench-

marks that have saturated a certain resource, increasing the number of active warps can lead to

either little improvement (e.g. SAD_1) or degradation (e.g. KM). For the other benchmarks, such

as BP_1 and FDTD_1, although they have achieved relatively high utilization of certain resources,

some improvement can still be achieved.
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3.5.2 Virtual Thread

Virtual Thread (VT) [Yoo16] is a recent work leveraging warp slot virtualization to improve TLP. VT

observes that the TLP of some benchmarks is limited by warp or TB slots while the register �le and

shared memory have some leftover space. VT refers to the benchmarks which are limited by warp

or TB slots as scheduling limited while the others are referred as capacity limited. For scheduling

limited benchmarks, VT accommodates extra TBs using the spare register �le and shared memory.

The extra TBs are in the inactive state initially. When an active TB is stalled by memory operations,

VT inactivates the stalled TB by moving the warp / TB slot data to shared memory. Then an inactive

TB can become active using the vacant warp / TB slots.

There are several limitations of VT to improve TLP.

First, VT only targets at warp / TB slots and it does not work for capacity limited benchmarks.

Figure 3.7 shows the occupancy of the context resources for the top 10 benchmarks that can bene�t

from increasing of TLP. Although 5 benchmarks are scheduling limited, the other 5 benchmarks are

capacity limited, either by the register �le or shared memory.

Second, VT only leverages TB-level context switching, which requires all warps of a TB to be

stalled by the memory operations. Thus, VT loses the latency hiding opportunities for TBs with

some but not all stalled warps.

Third, for some scheduling limited benchmarks, their TLP may become capacity limited after

removing the scheduling limit with VT. Take BT as an example. Its TLP is initially limited by the warp

slot. As its register �le occupancy is 88%, the spare register �le can only accommodate one more

inactive TB using VT. Shared memory, on the other hand, remains highly underutilized.

Fourth, VT does not consider the dynamic resource utilization for improving TLP. As we high-

lighted in Section 3.5.1, the performance does not necessarily scale with increased TLP. Especially,

for the benchmarks with saturated dynamic resources, increasing the TLP may even lead to perfor-

mance degradation.

To address these limitations, we propose a novel warp-level context switching scheme. It im-

proves TLP for both scheduling and capacity limited benchmarks, offers latency hiding at both warp
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Figure 3.7 Occupancy of GPU context resources.

and TB levels, and determines the proper degree of TLP based on dynamic resource utilization.

3.6 Improving TLP with Fast Context Switching

3.6.1 General Idea

As pointed out in Section 3.5, increasing TLP can improve the performance for those benchmarks

which have not saturated any resources. In this section, we describe our approach to taking advan-

tage of fast context switching for improving TLP. The basic idea is: when a warp / TB is stalled by a

long latency operation, the context of the warp / TB is switched out so that the vacant resource can

accommodate a new warp / TB. In order to achieve that, the context switching latency must be much

smaller than the latency which we want to hide.

In this paper, we consider two reasons that may cause a warp to experience long-latency stalls.

The �rst is global memory loads which miss or bypass the L1 D-cache. On GPUs, the latency to

access off-chip memory may take 400 – 800 cycles [Won10]. Barrier instructions are the second

reason that may cause a warp to stall. When a warp reaches a barrier, it has to wait for other warps

in the same TB to arrive. Y. Liu et al. [Liu16] report that the barrier latency can be as high as 3800

cycles. We discuss additional motivation to enable context switching at barriers in Section 3.6.3.

In order to minimize the latency overhead of context switching, we analyze the context resources'

occupancy in Figure 3.7. The number of active warps per SM is limited by 4 factors: the register �le
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Figure 3.8 Context switching to overlap long-latency stalls.

size, shared memory size, scheduler warp slots and TB slots. From Figure 3.7 we can see that not

all resources are fully occupied. So we only need to switch out the critical resource that limits the

number of active warps. Another key technique that enables fast context switching is that we use

spare fast on-chip resources to store the switched-out contexts. Notice that the utilization of register

�le and shared memory is unbalanced for most benchmarks. So we can use the spare resource to

spill the limited resource. Based on our discussion in Section 3.4.2, we also use the L1 D-cache as

another context buffer if its throughput is low. In addition, we leverage register liveness analysis

to reduce the register number which needs to be swapped during context switching. The detail of

resource management is described in Section 3.6.6. We refer to our approach as GPUDuet.

3.6.2 Latency Hiding with Two-Level Context Switching

We propose to use both warp-level and TB-level context switching for latency hiding. Let us use an

example to illustrate how such a scheme works.

As shown in Figure 3.8, we assume that a kernel has 2 TBs and each TB contains 2 warps. In the

baseline architecture, each SM can only accommodate 2 warps or 1 TB. As shown in Figure 3.8a, TB1

can only be launched after TB0 is �nished. There are several long-latency events during execution.

In Figure 3.8b, we assume that the kernel is either register limited or warp-slot limited (e.g., the
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warp scheduler only has two entries). In this case, we show that warp-level context switching can be

used to overlap the execution latency. When warp0 in TB0 is stalled, we save its architectural states

and release its register and warp slot. Then we can launch warp0 from TB1 into the SM. When warp1

in TB0 is stalled and dumped, depending on whether warp0 of TB0 is ready, we can switch warp0

of TB0 back or launch a new warp from TB1. In this way, long-latency gaps can be well hidden as

shown in Figure 3.8b.

When the kernel is shared memory limited and only one TB can be accommodated in the SM,

warp-level context switching does not work because no more TBs or their warps can be dispatched

onto the SM. So we propose to use TB-level context switching to hide latency in such cases. As

shown in Figure 3.8c, after warp0 in TB0 is stalled, we cannot launch warps from another TB. But

when both warps in TB0 are stalled, we can switch out the architectural states of TB0 such that TB1

can be launched. When both warps in TB1 are stalled, TB0 can be switched back.

Between TB-level and warp-level context switching, TB-level context switching has to wait for

all warps in a TB to stall before being switched out, thereby losing latency hiding opportunities

compared to warp-level context switching. Therefore, we use TB-level context switching only for

shared-memory limited benchmarks.

Note that our approach is not applicable for the benchmarks that are limited by both register

and shared memory. In such a scenario, the spare on-chip resource to spill the context is very limited.

Besides, the context switching overhead to switch in / out both register and shared memory would

be much higher.

3.6.3 Deadlock Avoidance

If we only enable context switching for memory operations, the warp-level context switching may

suffer from deadlocks in the scenario when all TBs are partially active, meaning that some warps

are active and some warps in the same TB are switched out. If all active warps have reached the

barriers, they will be waiting at the barriers forever. This is because the inactive warps may not have

enough resource to be switched back, they will never reach the barriers.
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The deadlock problem can be solved in two ways.

The �rst is to always maintain one TB as fully active, which means to disable the context switching

of one TB per SM. In this way, when the other TBs are deadlocked, the inactive warps can be switched

back when the fully active TB has �nished and deallocated all its resources. However, because there

is no guarantee of the TB execution time, other TBs may suffer a long period of idle time. Besides,

latency hiding effect is reduced as we need to maintain a fully active TB.

The second is to make all warps that wait at the barriers eligible to be switched out. Then, the

stalled inactive warps that have not reached the barrier will be able to switch back. Note that a barrier

does not require all warps in a TB to reach the barrier at the same time. As long as all warps reach

the barrier, even if some of them are switched out after reaching the barrier, the synchronization is

achieved and all the warps can continue execution past the barrier. In this paper, we use the second

way to avoid deadlocks.

3.6.4 Determining the Number of Extra TBs

To determine how many extra TBs to accommodate in an SM, we �rst introduce some terms. We

use MC to denote the maximum number of TBs that can be natively accommodated per SM. And

ME is used to denote the maximum number of TBs that can be launched without all their contexts

being active. In other words, (M C + M E ) is the maximum number of concurrent TBs per SM using

our proposed GPUDuet approach. However, only (N � M C ) warps can be scheduled to run in each

cycle, where N denotes the number of warps per TB. We refer to the type of context (e.g., register

�le) that needs to be switched out to accommodate the ME extra TBs as the limiting context.

As observed in Section 3.5, increasing the TLP is most helpful for benchmarks that have relatively

low throughput utilization. For benchmarks that have high throughput utilization, increasing TLP

can lead to little performance improvement or even performance degradation. To determine the

most bene�cial ME, we �rst compute its upper bound statically. Then, we initialize ME as 0 when a

kernel is launched and adjust it based on dynamic resource utilization. The upper-bound of ME is

set as the minimum among the following factors:
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Table 3.3 Throughput utilization classi�cation

Classi�cation Throughput Utilization Criteria
Underutilized Scheduler < 60% and Interconnect < 60% and DRAM < 50% and L1 < 60% and L2 < 60%
Saturated Scheduler > 80% or Interconnect > 90% or DRAM > 70% or L1 > 80% or L2 > 80%
Moderately Utilized Others

• The maximum number of concurrent warps, which are managed by the warp context table

(Section 3.6.6). The number used in this paper is 128, compared to the baseline number of

warp slots as 64.

• The maximum number of concurrent TBs, which are managed by TB context table (Section

3.6.6). The number used in this paper is 32, which equals to the maximum TB number in the

baseline architecture. This is because we observe that the TB number rarely becomes the

limitation (Table 3.7).

• The maximum number of TBs that can be supported considering the uni�ed resource of the

register �le, shared memory and L1 D-cache, i.e., (uni�ed resource size / TB context size). The

reason is that the total register, shared memory and warp slot usage cannot exceed the total

capacity of on-chip memories.

• The maximum number of TBs when the register and shared memory are not the limiting

context at the same time. When accommodating one extra TB would need both registers

and shared memory data to be switched out, the TB-level context switching overhead (solely

using the L1 D-cache) becomes too much. In other words, our approach does not work for

the benchmarks which are limited by both register �le and shared memory.

To collect dynamic resource utilization, GPUDuet implements a throughput monitor to collect

the utilization of the scheduler, L1 D-cache, interconnect, L2 cache and DRAM. The monitor skips

the �rst 10000 cycles to let the GPU warm up. Then the monitor collects the counters for 10000

cycles and updates the ME for the �rst time. As shown in Table 3.3, the benchmarks are categorized

into `underutilized', `moderately utilized' and `saturated'. Moderately utilized and underutilized
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Figure 3.9 Warp state transition diagram.

kernels are also referred as `unsaturated' in this paper. For underutilized kernels, the ME is set at

the upper-bound while the ME is set to zero, i.e., disabling GPUDuet, for saturated kernels. For

moderately utilized kernels, the ME is initialized to zero and GPUDuet increases the ME by 1 every

10000 cycles until it reaches the upper-bound or any resource becomes saturated. For unsaturated

benchmarks, if there is no extra space in the register �le or shared memory and the L1-D cache

bandwidth utilization is low (less than 3%), the L1-D cache is entirely bypassed and used to store

the spilled context.

3.6.5 Warp States

In GPUDuet, each warp can be in one of the following four states: running, stalled, absent and

ready. Figure 3.9 shows the state transition diagram. A running state means all contexts of a warp

are present and the warp is not stalled by a long latency operation. When a running warp is stalled

by a long latency operation, its state is changed to the stalled state. A stalled warp will wait to be

switched out. Before switching out, GPUDuet checks the switching out condition of the warp. If the

condition is not met, the warp state returns to running. Otherwise, the warp is switched out and its

state is changed to be absent. When the long operation is �nished, the absent warp becomes ready

and wait to be switched in. When there is enough context resource, the warp is switched in and the

warp state is changed to running.
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Figure 3.10 Block diagram of the GPUDuet architecture.

Figure 3.11 Warp and TB context table entry.

If the ME is 0, all warp states are initialized as running. If the ME is larger than 0, the state of

a newly launched warp is initialized as running if all contexts are present. Otherwise, the state is

initialized as ready.

3.6.6 GPUDuet Architecture

Our proposed GPUDuet architecture is shown in Figure 3.10. It manages all the on-chip storage and

determines when to switch the context of a warp or a TB. The context of a warp includes the registers

and meta-data which keeps track of its execution state. The meta-data includes the program counter,

the reconvergence stack entries [Fun09] and the score board entries. In Figure 3.10, the meta-data

Table 3.4 Storage overhead per SM

Component Entry size # Entries Total
Allocation bit map 3072 bits 1 3072 bits
Warp context table 27 bits 128 3456 bits
TB context table 45 bits 32 1440 bits
Stalled/ ready warp queues 7 bits 16/ 16 224 bits
Stalled/ ready TB queues 5 bits 8/ 8 80 bits
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structures are abstracted as a warp slot array indexed by the (physical) warp id. Besides the contexts

of its warps, the context of a TB includes its shared memory. In our context management policy, the

contexts can be either present in their original structure or switched out to the register �le / shared

memory / L1 D-cache. Only when all contexts of a warp and the context of its corresponding TB are

present, the warp can be scheduled by the warp scheduler. As discussed in Section 3.6.2, GPUDuet

performs TB-level context switching only when the TLP of a kernel is limited by shared memory.

The on-chip memory managed by GPUDuet includes the register �le, shared memory and L1

D-cache. To manage them, GPUDuet uni�es their logical address spaces. The addressable unit is

128B, the same as the vector register width. Note that these memory components remain as separate

physical components and there is no change in their hardware organizations. Because the total

capacity of the on-chip memory is 384KB (256KB +96KB+32KB), the address space for register �le is

set as 0x000-0x7ff; the address space for shared memory is set as 0x800-0xaff; and the address space

for the L1 D-cache is set as 0xb00-0xbff. A bit map is used to keep track of allocated context resource.

Each set bit represents whether a corresponding 128B is allocated. Because the total memory size is

384KB, the bit map has 3072 bits.

Warp Context Table and TB Context Table: In the GPUDuet architecture shown in Figure 3.10,

the warp context table and TB context table keep the states of the warps and TBs, respectively. The

warp context table (WCT) has 128 entries to support up to 128 active warps and is indexed by the

warp id. As shown in Figure 3.11a, each entry includes 4 �elds: a 1-bit `Valid' �eld, a 2-bit `State' �eld

indicating the warp state (Figure 3.9), a 12-bit `Regaddr' �eld representing the base address of the

warp, which can point to anywhere in the uni�ed on-chip memory space and the register context is

present only when it falls into the register �le address space, and a 12-bit `Metaaddr' �eld showing

where the meta data of the warp is maintained: the index to the warp-slot array if it is present or the

spilled address otherwise. The size of the WCT is 3456 bits ( =128x(1+2+12+12)).

The TB context table (TBCT) is indexed by the TB id. There are 16 entries in the TBCT and each

entry contains the following �elds as shown in Figure 3.11b. `Valid' indicate whether the TB has

been launched. Àbsmask' is a 32-bit mask indicating which warps in the TB are absent. `Smemaddr'

50



is a 12-bit �eld pointing to the base address of the shared memory context. The shared memory

context is present if the address falls into the shared memory address space. The size of the TBCT is

1440 bits =(32x(1+32+12)).

Context Switching Logic: The context switching logic (CSL) is used to spill or restore the limiting

context resource of warps / TBs. If the limiting context resource is registers and / or warp slots, warp-

level context switching is used. If the limiting resource is shared memory or both shared memory

and warp slots, TB-level context switching is used. When both registers and shared memory are

limiting resources, GPUDuet is disabled.

In warp-level context switching, the CSL switches out a stalled warp when there is enough space

in shared memory or the L1 D-cache. It switches in a ready warp when there is enough space in

the register �le and warp-slot array. When there is both a stalled warp and a ready warp, the CSL

will switch the context spaces of them. After switching out / in a warp, the CSL noti�es the WCT to

update the warp state and changes the address if necessary.

In TB-level context switching, if all warps of a TB have been stalled, the TB is considered as

stalled and being pushed to the stalled TB queue. Then the CSL spills shared memory and the warp

slots to the register �le or L1 D-cache if either has enough space. When all warps, except the ones

that are stalled by a barrier, in a TB are ready, the TB is ready to be switched back. Also, if there is a

TB in the stalled queue and a TB in the ready queue at the same time, the CSL swaps the context

space of them.

Register Context Reduction: We leverage register liveness and compression as proposed by

Z. Lin et al. [Lin16] to reduce register context size before context switching. Such liveness and

compression can be done either with additional architectural support at run-time or by static

analysis using the compiler. In our experiments, we use the compiler approach to simplify the

hardware complexity. In our approach, the switch out points can be either the �rst uses of registers

to be loaded from global memory or the barriers. The compiler analyzes the reduced register size

at such points with liveness and compression. Then, GPUDuet uses the maximum size among

those points as the register allocation size so that we can use the same �xed size to spill live and
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compressed registers during context switching. In our experiment, the register allocation size is 44%

of the original size on average.

3.6.7 Context Switching Latency

In this paper, we model the latency of context switching as follows:

La t e nc y = St a t e=BW (3.1)

In Equation 3.1, the St a t e represents the total size of the architectural states which are going to be

spilled or restored. We assume the bandwidth ( BW ) of the on-chip memory is 128 bytes / cycle for

the baseline architecture.

For warp-level context switching, the architectural state size for a warp is calculated as:

St a t e(w a r p ) = ST + LR � 128 (3.2)

ST denotes to the size of a warp slot, which includes the reconvergence stack entries and the score

board entries. Fung et al. [Fun09] discussed the details of the size of warp slots. Because GPUDuet

only saves live registers, LR is the number of live registers, each of which is 128 bytes.

For TB-level context switching, the kernel is limited by shared memory. So the architectural state

size for a TB is:

St a t e(T B) = N � ST + SS (3.3)

In Equation 3.3, N is the number of warps in a TB and SSis the size of shared memory per TB. As

discussed in Section 3.6.4, GPUDuet does not allow registers and shared memory to be spilled at

the same time. So the registers do not need to be saved for TB-level context switching.
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3.6.8 Hardware Overhead Comparing to Virtual Thread

The storage overhead of Virtual Thread (VT) [Yoo16] mainly includes the TB status table and the

virtual warp IDs in the scoreboard. The TB status table is used to keep track the number of stalled

warps in a TB. When all warps in a TB are stalled, the TB is marked as inactive and prepared to be

swapped out. In this paper, the TB status table size is 32(maximum TB number)x7(entry size) =224

bits. The active virtual warp ID storage is used to map the physical warp IDs to virtual warp IDs.

We use the following setup: 64(maximum number of physical warps)x7(size of each virtual warp

ID) =448 bits.

Table 3.4 summarizes the storage overhead per SM of GPUDuet architecture. Compared to VT,

GPUDuet requires higher storage overhead (1034 bytes per SM vs. 84 bytes per SM) and additional

logic to manage the register �le, shared memory, and L1 D-cache as a uni�ed logical memory region

and support both warp-level and TB-level context switching, whereas VT only supports TB-level

context switching. To justify such hardware overhead, the performance improvement of GPUDuet

compared to VT will be discussed in Section 3.7.2.

3.7 Evaluation

In this section, we evaluate the performance of GPUDuet compared to the baseline architecture

and a state-of-the-art approach, VT, to improve GPU TLP. As described in Section 3.6.4, GPUDuet

leverages a training phase to determine the number of extra TBs and the overall performance of

GPUDuet includes such training phases. In our evaluation, we run each benchmark for 4 million

cycles unless it �nishes within 4 million cycles. The same methodology is used for the baseline, VT,

and GPUDuet.

3.7.1 Impact of Maximum Extra TBs

In Figure 3.12, we select 15 benchmarks (5 from each category in Table 3.3) to evaluate the perfor-

mance speedups with a varied number of maximum extra TBs (ME). For each benchmark, the ME
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Figure 3.12 Normalized speedups of GPUDuet with varied numbers of maximum extra TBs (ME).

can be either dynamically adjusted using the algorithm as described in Section 3.6.4 or statically

selected. The upper-bound of the static ME for each benchmark depends on the context occupancy

and the reduction ratio of the registers.

For DWT_2, the L1 D-cache is bypassed and used to store the spilled context. Therefore, we

use the baseline architecture with the bypassed L1 D-cache for this benchmark to compute the

normalized performance. The performance of DWT_2 decreases by 5% with a bypassed L1 D-cache.

However, from Figure 3.12 we can see that the performance improvement is much higher than 5%

with higher TLP.

As shown in Table 3.3, the benchmarks are classi�ed into 3 categories. For underutilized bench-

marks, which have low utilization for any computation and memory bandwidth resources, GPUDuet

has the most signi�cant improvement. These benchmarks show good performance scalability as

their performance increases as ME increases and all 5 underutilized benchmarks achieve the best

performance at the upper-bound of ME. For benchmarks in this category, the dynamic ME algorithm

can effectively �nd the ME with the optimal performance. The performance improvement of the

underutilized benchmarks ranges from 23% to 47%.

For moderately utilized kernels, because the computation or bandwidth resources are not fully

utilized, increasing TLP with GPUDuet can still achieve better performance for most benchmarks.

For MMS, CONV, MM and ST, the performance speedups range from 7% to 25%. For SPMV, however,

the increasing of TLP aggravates the cache thrashing, which causes the interconnect bandwidth to

be saturated. So, increasing ME can only degrade the performance of SPMV. For MM, because the
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Figure 3.13 Performance comparison of GPUDUet with Virtual Thread (VT) and TB-level GPUDuet.

interconnect bandwidth is not saturated in the baseline architecture, increasing the ME from 1 to 3

improves the performance. However, the performance starts to drop when ME is larger than 3 due

to the cache thrashing and saturated interconnect bandwidth. In this category, the dynamic ME

selection algorithm searches for the optimal ME which can maximize the performance.

For saturated benchmarks, the computation or memory bandwidth cannot provide much room

for higher TLP. So, BP_1 have very small performance improvement. For CFD, KM, LBM and SAD_2,

the cache throughput suffers from higher TLP while the interconnect or DRAM cannot compensate

the loss. For KM, the performance degradation can be as high as 26%. Therefore, the algorithm in

Section 3.6.4 dynamically sets ME to 0, disabling GPUDuet for such benchmarks with saturated

throughput utilization.

3.7.2 Comparing with Virtual Thread

In Figure 3.13, we report the normalized IPC of VT [Yoo16] and GPUDuet compared to the baseline

GPU described in Table 1. To highlight the bene�t of warp-level context switching, we also show

GPUDuet with only TB-level context switching, which is labeled as `GPUDuet_TB'.

Because the TLP of CFD, LBM, ST, MMS, DWT_2, HG and HS is limited by the register �le, no extra

TBs can be accommodated by VT. However, by spilling registers to shared memory or L1 D-cache,

GPUDuet can achieve higher degrees of TLP for these benchmarks. Take DWT_2 as an example, the

baseline architecture can accommodate 10 TBs. With register size reduction, the register context

size can be reduced to 50%. So the L1-D cache can accommodate the registers of extra 2 TBs. The
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Figure 3.14 TLP improvement by Virtual Thread (VT) and GPUDuet over the baseline architecture.

shared memory of the extra 2 TBs can reside in the spare shared memory. As HG is limited by shared

memory, it is not supported by VT either. With GPUDuet, the shared memory data can be moved to

the register �le to accommodate 8 extra TBs.

Even for the scheduling-limited benchmarks, (i.e., their TLP is limited by the warp slots), GPUDuet

can achieve much higher degrees of TLP. Take BT as an example, the spare space of the register �le

can only accommodate 1 extra TBs. Whereas for GPUDuet, 6 extra TBs can be accommodated by

using shared memory to spill registers.

For KM, VT performs worse than the baseline. This is because KM saturates the interconnect

bandwidth, increasing the TLP will cause L1 D-cache thrashing and hurt the performance. By

leveraging dynamic resource utilization information, GPUDuet disables context switching for KM.

For benchmarks which are limited by registers or warp slots, such as HS and BFS, warp-level

context switching performs better than TB-level context switching. This is because warp-level

context switching takes advantage of more latency hiding opportunities, as discussed in Section

3.6.2.

Compared to VT, GPUDuet improves the overall performance by 12% and 16% for unsaturated

benchmarks.

3.7.3 TLP Improvement

In Figure 3.14, we compare the TLP improvement over the baseline architecture by VT and GPUDuet.

The TLP is evaluated as the maximum number of TBs which can be launched to each SM. For

the unsaturated benchmarks, such as HG and BT, GPUDuet achieves much higher TLP than VT.

56



Figure 3.15 Impact of context switching latency.

This is because VT only works for scheduling-limited benchmarks while GPUDuet also works for

capacity-limited ones. In this category, compared to the baseline architecture, the TLP improvement

by VT is 18% whereas 70% for GPUDuet. For the saturated benchmarks, such as BP_1 and KM,

GPUDuet disables the context switching, therefore VT has higher TLP. However, higher degrees of

TLP for these saturated benchmarks lead to little performance improvement or even performance

degradation.

3.7.4 Impact of Context Switching Latency

In Figure 3.15, we evaluate the impact of context switching bandwidth of GPUDuet. In the baseline

architecture, we assume the read / write port width of the register �le, shared memory and L1 D-cache

is 128 bytes. In Figure 3.15, we evaluate the performance of GPUDuet with 256-byte, 128-byte and

64-byte port width. In general, benchmarks with high register �le or shared memory utilization, such

as HG and BT, tend to be more sensitive to the swapping bandwidth. Because such benchmarks have

larger architectural states to move during context switching. Comparing to the baseline architecture,

the performance improvement of GPUDuet with 256-byte, 128-byte and 64-byte port width are 24%,

22% and 18% respectively.

3.8 Related Works

Prior studies on the impact of TLP on throughput-oriented processors, including [Rog12] [Kay13]

[Li15], are discussed in Section 3.4.

57



A few prior works focus on improving the utilization of GPU resources.In Section 3.5.2 and

3.7.2, we discussed Virtual Thread [Yoo16]. Warped-Slicer [Xu16] proposes an analytical model to

determine the optimal resource partition on one SM for concurrent kernels. Elastic kernel [Pai13]

increases register and shared memory occupancy by issuing concurrent kernels on one SM. SMK

[Wan16] proposes a dynamic sharing mechanism for concurrent kernels to improve the resource

utilization while maintaining the fairness. KernelMerge [Gre12] and Spacial Multiplexing [Adr12b]

study how to use concurrent kernels to better utilize GPU resources and improve overall throughput.

Lee et al. [Lee14] also leverage mixed concurrent kernels to improve GPU utilization. In this work,

we target at resource utilization for a single kernel.

Some works observe the GPU underutilization problem for particular scenarios. SAWS [Liu15]

and BAWS[Liu16] propose barrier-aware scheduling policies to avoid warps from waiting at barriers

for too long. CAWS [LW14] and CAWA [Lee15b] predict and accelerate the warps that lag behind

so that the TB can �nish faster. Warpman [Xia14] points out the spacial and temporal resource

underutilization due to TB-level resource allocation and propose warp-level resource utilization

to improve the GPU resource utilization. Although those works can improve the effective TLP at

barriers or TB terminations, they are limited by the maximum warp number that allowed being

issued to the GPU.

Zorua [Vij16] is a recent work which leveraging context virtualization on GPU to provide pro-

gramming portability and achieve higher levels of TLP. There are two key differences between Zorua

and our approach. First, Zorua allocates / deallocates on-chip resources at the phase boundaries.

Whereas our approach deallocates the resources when a warp / TB suffers from a long latency opera-

tion. Second, Zorua spills the oversubscribed register �le and shared memory to global memory

while our work leverages the spare on-chip resources to achieve much faster context switching.

Gebhart et al. [Geb12] propose to unify the L1 D-cache, shared memory and register �le to im-

prove GPU on-chip resource utilization. We have a similar bene�t in terms of increasing occupancy

for register- or shared memory-limited applications. But the uni�ed design requires extensive hard-

ware changes and also needs software support. Besides, they have to pay overhead for re-partitioning
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as different kernels have different resource requirements.

Some prior works [Par15b] [Lin16] leverage context switching for preemption on GPUs. Similar

to proposed by Lin et al. [Lin16], we leverage liveness analysis and register compression to reduce

the context size. However, in this work we use spare on-chip resources to store the spilled contexts

to enable much faster context switching.

Majumdar et al. [Maj15] study the scalability of the GPU kernels with computation units and

memory bandwidth. Dublish et al. [Dub16] perform bottleneck analysis on different levels of GPU

memory hierarchy, including L1 / L2 caches and DRAM. However, neither of them discusses the

performance impact of the interconnect between L1 and L2.

3.9 Conclusions

In this paper, we analyze the relationship between GPU performance and TLP through a novel

resource utilization perspective. The GPU performance can be bounded by the scheduler throughput,

L1 bandwidth, interconnect bandwidth, L2 bandwidth or DRAM bandwidth. We reveal that many

memory-intensive benchmarks are actually bounded by interconnect bandwidth. Then we highlight

that for benchmarks not saturating the throughput of any resources, increasing TLP can lead to

signi�cant performance improvement. We propose GPUDuet, a fast context switching approach, to

increase TLP to better hide the latency of memory load and barrier operations. GPUDuet leverages

spare on-chip resources to enable fast context switching. Liveness analysis and register compression

are used to reduce the spilled context size. The evaluation shows that GPUDuet achieves up to

47% performance improvement and 22% on average for a set of benchmarks with unsaturated

throughput utilization.
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CHAPTER

4

COORDINATED CTA COMBINATION AND

BANDWIDTH PARTITIONING FOR GPU

CONCURRENT KERNEL EXECUTION

4.1 Introduction

To deliver high throughput, GPUs incorporate a large amount of computational resources and

support high memory bandwidth. However, the resource demands across different GPU kernels vary

signi�cantly, which may lead to saturation of certain resources and underutilization in others. One

solution to such unbalanced resource utilization is to concurrently execute multiple kernels with

complementary characteristics. Prior works [Pai13] [Wan16; Xu16; Par17; Dai18] have shown that
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both the GPU utilization and throughput can be improved by co-running heterogeneous kernels.

Moreover, with GPUs being increasingly deployed in cloud servers, there is a strong need for GPU

resource to be shared among multiple users.

There are different ways to support concurrent kernel execution (CKE) on GPUs. A simple way

is to assign different kernels to different sets of streaming multiprocessors (SMs), such as Spatial

Multitasking [Adr12a]. However, as pointed out in prior works [Wan16; Xu16; Par17; Dai18], Spatial

Multitasking does not address resource underutilization within SMs. SMK [Wan16], WS, [Xu16]

and Maestro [Par17] are the recent works focusing on intra-SM sharing. They propose different

Cooperative Thread Array (CTA), aka thread block, combination algorithms to determine how many

CTAs from each kernel should be dispatched to the same SMs. To achieve fair partitioning, SMK

leverages a `Dominant Resource Fairness' metric to fairly partition the static resources (such as the

register �le and shared memory) to each kernel. To further ensure fair performance, SMK periodically

assigns each kernel a �xed time quota in the warp scheduler. The time quota partitioning is based on

pro�ling of the standalone execution of each individual kernel. In comparison, WS �rst determines

the scalability curves, i.e., the performance vs. the number of CTAs per SM, for each individual

kernels. Then WS uses the scalability curves to determine the CTA combination that generates the

minimum combined performance slowdown. Maestro proposes a dynamic search approach to

�nd the optimal CTA combination. In addition, Maestro argues for loose round-robin (LRR) as the

kernel-aware scheduling policy for CKE.

In this paper, we highlight that memory interference can signi�cantly affect the throughput and

fairness of CKE. And we make a case that even the optimal CTA combination does not eliminate the

negative memory interference impact. To address this problem effectively, we propose a coordinated

approach for CTA combination and bandwidth partitioning. Our proposed approach is based on

the following observations.

First, bandwidth over-subscription from the bandwidth-intensive kernels introduce high queu-

ing delay and drastically increase the memory latency, which may lead to severe performance

degradation for other co-running kernels. Although it is well-known that compute-intensive kernels
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leverage massive thread(warp)-level parallelism to hide the memory latency, the increased memory

latency is so high (up to 8.2x higher than the standalone execution) that it can hardly be fully hidden.

In this paper, we refer to the kernels which are sensitive to the increased memory latency as latency

sensitive.

Second, we observe that, besides the DRAM bandwidth, the L2-to-L1 NoC bandwidth can be

a critical resource in the GPU memory system. The reason is that all the data replied either from

the L2 cache or DRAM go through the L2-to-L1 NoC. As a result, the L2-to-L1 NoC can become

a bottleneck when the L2 cache �lters a substantial amount of memory requests and the DRAM

bandwidth is not saturated. Therefore, both the NoC bandwidth and the DRAM bandwidth need to

be managed carefully. In prior works, both DRAM-intensive and NoC-intensive kernels are both

considered memory intensive. In this work, we highlight the difference between them and show

that these two types of kernels can bene�t from CKE, i.e., running them together would improve

resource utilization, as they stress different parts of the memory system.

Third, we �nd that the above-mentioned issues cannot be addressed even with the oracle

CTA combination, which is the best CTA combination from an exhaustive search. There are three

fundamental reasons: (a) the bursty memory traf�c makes CTA-level control less effective; (b) the

lack of application-aware memory scheduling fails to prioritize requests from latency-sensitive

benchmarks to reduce their memory access latency; and (c) CTA-level management can be too

coarse-grained in controlling thread-level parallelism (TLP).

Forth, different kernels favor different GPU resources. The latency-sensitive kernels require high

levels of TLP to better hide the memory latency. On the other hand, the DRAM-intensive kernels

are more sensitive to the bandwidth utilization and reducing the CTA number from a bandwidth-

intensive kernel may not degrade its performance.

In our proposed coordinated approach for CTA combination and bandwidth partitioning (CCBP),

we �rst dynamically detect the kernels as latency sensitive or bandwidth intensive. Among bandwidth-

intensive benchmarks, CCBP further classi�es them as NoC intensive and DRAM intensive. Then it

effectively allocates the CTA number and bandwidth resources for each co-running kernel based
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on their resource requirements. We derive the bandwidth consumption of both NoC and DRAM as

functions of the memory request issue rate and achieve bandwidth allocation by controlling the

memory request issue rate according to a kernel's assigned bandwidth quota.

We compare CCBP with three state-of-the-art CKE approaches and the oracle CTA combination,

which is the result of an exhaustive search of all possible CTA combinations. Compared to SMK and

WS, our approach improves the average harmonic speedup by 78% and 39%, respectively, for 2-kernel

co-runs. Compared to a recently proposed approach [Dai18] combining WS and memory-instruction

scheduling, our approach improves the average harmonic speedup by 19%. Even compare to the

oracle CTA combinations, our approach improves the harmonic speedup by up to 51% and 11% on

average.

In this paper, we make the following contributions:

• This work reveals the memory interference problem in GPU CKE cannot be suf�ciently solved

using CTA-level management alone.

• We highlight that NoC and DRAM bandwidth are different bottlenecks in the GPU memory

subsystem. This is the �rst work that shows it is bene�cial to co-run NoC-intensive kernels

with DRAM-intensive kernels. To our knowledge, this is also the �rst work that uni�es the

management of both the NoC and DRAM bandwidth.

• We propose a dynamic approach to classify GPU kernels into three categories, latency sensitive,

NoC intensive or DRAM intensive. Based on the detected kernel types, our scheme selectively

assigns resources to the kernels which would bene�t the most from such resources.

• Our approach effectively reduces the memory latency for the latency-sensitive kernels. In the

meanwhile, the bandwidth utilization is also improved for the bandwidth-intensive kernels.
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Figure 4.1 GPU architecture.

4.2 Background on GPU Architecture

Contemporary GPU architecture, as illustrated in Figure 4.1, consists of multiple stream multipro-

cessors (SMs). Each SM has a private L1 D-cache and all SMs share a multi-banked L2 cache. The L1

caches and L2 cache banks communicate through an NoC (Network-on-Chip).

Each SM hosts a number of cooperative thread arrays (CTAs). Each CTA has a number of warps,

each of which is a collection of threads running in the single-instruction multiple-data (SIMD)

manner. Every cycle, a warp scheduler selects a ready instruction to issue to the execution pipeline.

Since the Hyper-Q [Hyp ] technology was introduced by NVIDA on the Kepler GPUs, recent GPUs

support concurrent kernel execution on the same GPUs. The state-of-the-art GPU partitioning

schemes [Wan16; Xu16; Par17] leverage intra-SM sharing, which allow warps / CTAs from different

kernels to reside on the same SMs. As shown in Figure 4.1, warps from different kernels contend for

the warp scheduler as well as the memory subsystem.

4.3 Methodology

4.3.1 Simulation Speci�cations

We use GPGPU-sim v3.2.2 to investigate GPU memory interference and evaluate our proposed

approach for CKE. The baseline architecture con�guration is shown in Table 4.1. In our experiments,

the loose round-robin (LRR) scheduling policy is used by default and the greedy-then-oldest (GTO)
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Table 4.1 Baseline architecture con�guration

Overall con�g. 16 SMs, 32 threads/ warp, 16 L2 banks, 16 DRAM chips
SM con�g. 1800MHz, 4 schedulers, LRR warp scheduler
Static resource per SM 32 CTAs, 2048 threads, 256KB register �le, 96KB shared memory

L1 D-cache
24KB, 128B block, 8-way associativity, 128 transaction queue entries, 16 store
buffer entries, 256 MSHRs

NoC Two 16*16 crossbars, 32B �it size, bandwidth = 16 ports * 1.2GHz * 32B = 614GB/ s
L2 cache per bank 128KB, 128B block, 8-way associativity, 256 MSHRs, WBWA policy
DRAM 1200MHz, 319GB/ s bandwidth, FR-FCFS policy, 128 transaction queue entries
Latency L2 cache latency: 200 cycles, DRAM latency: 380 cycles [MC16]

Table 4.2 Benchmark speci�cation

Bench. Source Thro.
NoC
BW

DRAM
BW

L2
Miss

Type

CFD cfd [Che09b] 7% 54% 14% 15% NBI
LAV lavaMD [Che09b] 5% 53% 1% 1% NBI
SMV spmv [Str12] 10% 52% 25% 30% NBI
KM kmeans [Che09b] 2% 52% 22% 17% NBI
LBM lbm [Str12] 17% 15% 61% 88% DBI
FTD FDTD-2D [GG12] 29% 32% 65% 66% DBI
SAD sad [Str12] 5% 17% 64% 78% DBI
SRT bucketsort [Che09b] 25% 37% 59% 69% DBI
BFS bfs [Che09b] 44% 14% 24% 100% LS
BP backprop [Che09b] 68% 19% 36% 51% LS
BT b+tree [Che09b] 24% 27% 19% 44% LS
HG histogram [Che09b] 28% 19% 25% 74% LS
PF path�nder [Che09b] 72% 28% 39% 90% LS

policy is used for standalone kernel running. The memory access latency is con�gured according to

the memory hierarchy study by Mei et al. [MC16]. In our GPU model, we use crossbars for the NoC

[AMD12]. Our crossbar is a non-blocking interconnect network, which means a connection can be

established if both the input and output are idle. If more than one packet needs to reach the same

output at the same time, only one packet can be accepted by the network and other packets have to

be queued at their inputs.

4.3.2 Benchmark Categorization

We studied a wide range of 42 GPU kernels from the Rodinia [Che09b], Parboil [Str12] and Polybench

[GG12] benchmark suites. Based on their NoC and DRAM bandwidth utilization, the benchmarks

are grouped into three categories: NoC intensive (labeled as `NBI'), DRAM intensive (labeled as
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`DBI') and latency sensitive (labeled as `LS'). To evaluate the mechanisms proposed in this paper,

as shown in Table 4.2, we selected a total of 13 benchmarks using the following criteria. For the

NoC-intensive kernels, we ranked the NoC bandwidth utilization of all the 42 kernels and selected

the highest 4 kernels. Similarly, for the DRAM-intensive kernels, we selected the top 4 kernels with

the highest DRAM bandwidth utilization. For the kernels with low bandwidth utilization, they

leverage a large amount of threads / warps to hide the memory latency. Note that even with a high

number of warps, their overall bandwidth usage is low since either they are compute intensive or

they are limited by other resources such as shared memory or branch divergence, which constrain

their memory requests. However, when such kernels co-run with bandwidth-intensive kernels, the

memory latency will be signi�cantly increased such that higher levels of TLP are required to fully

hide the latency. On the other hand, as the static resources are shared with all co-running kernels,

each kernel may have fewer threads / warps to run concurrently on each SM to hide the memory

latency. As a consequence, they become sensitive to increased latency and we refer to such kernels,

i.e., those with low bandwidth utilization, as latency sensitive. To select the 5 kernels which are most

sensitive to the increased memory latency, we doubled the access latency to L2 cache and DRAM

and selected the ones with the most performance slowdowns.

Table 4.2 lists the details of the selected 13 benchmarks along with their resource utilization

in standalone execution. The throughput (labeled `Thro.' in Table 4.2) utilization is de�ned as the

ratio of the achieved IPC (instruction per cycle) over the peak IPC. The NoC / DRAM bandwidth

utilization is the ratio of the achieved bandwidth over the corresponding peak bandwidth. For the

NoC-intensive kernels, we observe the NoC bandwidth utilization is saturated around 50% – 60% of

the peak bandwidth. This is because the sustainable bandwidth of the crossbar NoC is 60% as pointed

out in prior works [Kar87; Lin18]. For the DRAM-intensive kernels, the DRAM sustainable bandwidth

saturates around 60% – 70% of the peak bandwidth, which is consistent with the observation by X.

Mei et al. [MC16]. When a kernel has bandwidth utilization close to the sustainable bandwidth, the

memory system latency is signi�cantly increased due to queuing delays. For example, the DRAM

access latency in SAD becomes 6.8x higher than the idle latency, i.e., the access latency when the
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system is idle.

In the latency-sensitive category, BP and PF are compute intensive and they achieve high through-

put. BFS and BT are thread-divergent kernels. The dynamic resources of HG are low because it is

limited by the shared memory size. These kernels are latency-sensitive because they suffer from

higher than 1.7x performance slowdown when the L2 and DRAM latency is doubled. Because the

memory bandwidth is underutilized, the average L2 / DRAM latency for these kernels is close to the

idle latency.

In summary, we list the de�nitions of our kernel categorization as follows.

• Bandwidth-intensive (BI) kernels: kernels that are sensitive to the NoC or DRAM bandwidth.

BI kernels include both NoC-intensive and DRAM-intensive kernels.

• NoC-intensive (NBI) kernels: kernels that are sensitive to the NoC bandwidth.

• DRAM-intensive (DBI) kernels: kernels that are sensitive to the DRAM bandwidth.

• Latency-sensitive (LS) kernels: kernels that are sensitive to the increased memory latency or

the static resource capacity. LS kernels include both compute-intensive kernels and static-

resource-limited kernels.

• Compute-intensive kernels: kernels that are limited by the ALU resources.

• Static-resource-limited kernels: kernels that are limited by the static resources, including

register �le, shared memory and the number of threads.

4.3.3 Evaluation Metrics

We evaluate the performance of CKE using two metrics: harmonic speedup (HSpeedup) [Luo01]

and weighted speedup (WSpeedup) [EE08]. The HSpeedup is a balanced metric for both system

throughput and fairness [Luo01] whereas WSpeedup is a metric for system throughput. The higher

these metrics, the better performance is achieved. Because the goal of this paper is to improve

both system throughput and fairness, HSpeedup is used as our primary evaluation metric. We
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also observe that these two metrics correlate well. The reason is that when the co-running kernels

stress different resources, higher overall resource utilization means both higher and more balanced

utilization, thereby higher throughput and better fairness.

H Spe e d up =
N

P
k

I P C a l one
k

I P C sha r e
k

W Spe e d up=
X

k

I P C sha r e
k

I P C a l one
k

To ensure our simulation suf�ciently captures co-running kernels' dynamic behavior, we run

100 million cycles in each simulation experiment. If one kernel �nishes before the 100 million cycles,

it is re-executed. Because the IPCs of our benchmarks vary from 10s to 1000s. Therefore, the range

of simulated instructions is 1 to 100 billions.

4.4 Limitations of CTA Management

A common way to improve GPU CKE is to manage the CTA combination of co-running kernels

[Wan16; Xu16; Par17]. Although appropriate CTA combinations throttle the TLP of bandwidth-

intensive kernels and therefore their memory requests, such approaches are not suf�cient to address

the memory interference problem. The reasons include (1) the bursty nature of memory traf�c, (2)

the inability to prioritize memory requests from different kernels, and (3) coarse-grain TLP control

at the CTA level. Next we dissect these effects.

4.4.1 Effects of Bursty Memory Requests

High memory access latency First, we use a case study of the BP+CFD co-run to illustrate the

impact of bursty memory traf�c on the memory access latency. BP is latency sensitive and CFD

is NoC intensive. These two kernels are considered complementary as they stress different GPU

resources. Through an exhaustive search of all possible CTA combinations, we �nd (7,4), meaning 7

CTAs from BP and 4 CTAs from CFD co-running on each SM, achieves the highest weighted speedup
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Figure 4.2 Performance and latency impact for BP +CFD co-run using different CTA combinations.

and harmonic speedup. Figure 4.2(a) shows the slowdown of BP and CFD in the co-run, normalized

to their standalone execution using this CTA combination. Normalized slowdown is computed as

I P Ca l one =I P Csha r e d . Even though BP has higher CTA utilization than CFD, it suffers from higher

performance slowdown when the CTA combination (7,4) is used. Figure 4.2(b) shows the normalized

memory access latency, comparing to the BP standalone execution in this case. We can see that the

L1-L2 latency is much higher due to the NoC congestion caused by CFD. Because neither BP nor

CFD is DRAM intensive, the L2-DRAM latency is not signi�cantly increased. Regardless the high

latency, we notice that 4 CTAs of CFD only consume 62% NoC bandwidth on average.

To pinpoint the reason for the increased L1-L2 latency, Figure 4.3 shows the instantaneous

NoC bandwidth demand, which is normalized to the NoC sustainable bandwidth. To measure the

bandwidth demand, we count the number of memory requests in the L1 D-cache miss queue to be

sent to the NoC every 400 cycles. The request rate can be transformed to the bandwidth demands

using the derivations to be discussed in Section 4.5.3. We call the bandwidth as `over-subscribed'

when the demand is higher than 100% of sustainable bandwidth. In such scenarios, the requests

have to be lined up in the memory queues. In Figure 4.3(a), we can see the bursty memory traf�c of

CFD leads to frequent bandwidth over-subscription, resulting in very high queuing delays in the

memory system. As a result, the memory requests from BP suffer from the long access latency.

Reducing the CTA number of bandwidth-intensive kernels can improve the performance of
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Figure 4.3 The instantaneous NoC bandwidth demand of BP +CFD co-runs with different CTA combina-
tions.

the co-running latency-sensitive kernels. For example, as shown in Figure 4.2(b), the performance

of BP can be improved if we reduce the CTA number of CFD from 4 to 2. However, Figure 4.2(b)

shows that the memory access latency is still much higher than it when BP runs alone. The average

NoC bandwidth consumption is reduced to 44% with 2 CTAs from CFD. However, as seen in Figure

4.3(b), the bandwidth over-subscription problem remains due to the bursty behavior of the CTAs

from CFD. On the other hand, reducing the CTA number of CFD results in the overall bandwidth

being underutilized. Therefore, the combination of (7,2) shows worse weighted speedup than (7,4)

(weighted speedup of 1.2 vs. 1.3).

Resource underutilization When an NoC-intensive kernel co-runs with a DRAM-intensive

kernel, the GPU utilization is maximized when both NoC bandwidth and DRAM bandwidth are fully

utilized. However, the bursty behavior may cause the memory system being dominated by either

NoC or DRAM demands in a certain period, leading to underutilized bandwidth of the other. We

illustrate such a phenomenon by co-running an NoC-intensive kernel, CFD, and a DRAM-intensive

kernel, FTD. We �nd that the optimal CTA combination of CFD +FTD co-run is (4,7) through an

exhaustive search. Figure 4.4 shows the instantaneous DRAM bandwidth utilization for 7 CTAs of

FTD running alone and CFD +FTD co-run. The sampling period is 400 cycles. As we can see from the
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Figure 4.4 Instantaneous DRAM bandwidth utilization for CFD +FTD co-run and FTD standalone execu-
tion.

Figure 4.5 A snapshot of the L1 D-cache miss queue when a latency-sensitive kernel (kernel_1) co-runs
with a bandwidth-intensive one (kernel_2).

�gure, the co-run shows lower but more bursty DRAM bandwidth consumption than FTD running

alone. This is because CFD has a lot of L1 D-cache misses (which would hit in the L2 cache and

therefore stress the L2-to-L1 NoC) in certain periods. Those requests dominate the memory queues

between L1 and L2 caches so that FTD fails to issue requests. As a result, the DRAM bandwidth is

wasted/ underutilized in such periods even though FTD has DRAM bandwidth requests to be issued.

4.4.2 Prioritization of Memory Requests

We observe that the performance of CKE can be signi�cantly improved if we can prioritize the

memory requests from different kernels based on their different latency-hiding characteristics.

For example, Figure 4.5 shows a snapshot of the L1 D-cache miss queue in a 2-kernel co-running

case, where kernel_1 is latency sensitive and kernel_2 is bandwidth intensive. As kernel_2 typically

generates much more requests than kernel_1, in this snapshot, kernel_1 has 2 requests while kernel_-

2 has 6 requests waiting in the miss queue. We assume that the critical bandwidth resource can only

service 5 requests in a certain period. Given the FIFO policy of the miss queue, 1 request of kernel_1

and 4 requests of kernel_2 can be serviced in the �rst period. However, if we could change the
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policy to prioritize the latency-sensitive kernel, 2 requests of kernel_1 and 3 requests from kernel_2

would be serviced instead. The throughput improvement of kernel_1 could be as high as 100% while

the throughput of kernel_2 is only reduced by 25%. Such memory request prioritization is hard to

achieve with CTA-level TLP management.

4.4.3 Coarse Granularity of TLP Control

Another limitation of CTA combination is the coarse granularity of TLP management. For some

kernels, even one CTA can cause high bandwidth utilization and long memory access latency.

For example, a single CTA of the SAD kernel utilizes 89% DRAM bandwidth and causes 2.3x higher

memory access latency than the idle latency. More often, adding one CTA of the bandwidth-intensive

kernel may lead to congested memory systems while reducing one CTA may result in underutilized

bandwidth. Therefore, the CTA-level management alone is likely to be too coarse-grained to achieve

optimal system throughput or fairness.

4.4.4 Motivation of Our Approach

This section illustrates that, without considering the bandwidth impact of the co-running kernels,

the CTA management alone is insuf�cient to achieve the optimal performance. In order to solve

the bandwidth over-subscription problem due to the bursty memory traf�c, we propose to strictly

control the NoC and DRAM bandwidth consumption of each kernel. To determine the optimal CTA

combination and bandwidth partition, our approach detects the characteristics of each kernel and

allocates CTA and bandwidth resources accordingly.

4.5 Coordinated CTA Combination and Bandwidth Partitioning

4.5.1 Overview

In this paper, we propose a coordinated CTA combination and bandwidth partitioning (CCBP)

approach to improve the concurrent kernel execution on GPUs. Figure 4.6 presents the architecture
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Figure 4.6 An overview of the CCBP architecture.

of our CCBP approach. The CCBP logic executes the CCBP algorithm to determine the CTA combi-

nation and bandwidth partitioning for each kernel. It monitors the bandwidth consumption and

achieves bandwidth partition through the issue rate controllers (IRCs). The CTA combination is

controlled through the CTA dispatcher.

The issue rate controllers (IRCs) in Figure 4.6 determine the bandwidth consumption of both

NoC and DRAM. We manage the bandwidth demands by controlling the memory request issue

rate, i.e., how many memory requests to be issued per time unit (200 cycles in this paper), for each

kernel. Depending on the memory request type (load or store) and whether it hits the L2 cache, a

request may result in different consumption of NoC and DRAM bandwidth. As will be discussed

in Section 4.5.3, our approach collects some factors of a kernel to derive the average NoC and

DRAM consumption of a memory request and then achieve the overall NoC and DRAM bandwidth

partitioning by managing the request issue rate.

There are three possible locations to place the IRC in an SM: the warp scheduler, the load-

store unit, and the L1 D-cache miss queue. The warp scheduler cannot control the bandwidth

consumption accurately because it is not aware of the memory coalescing effect. For the option of

controlling the request rate at the load-store unit, the accesses, which turn out to be L1 D-cache

hits, can be affected even they have no impact on the NoC (or DRAM) bandwidth consumption.

Therefore, our choice is to control the issue rate of each L1D miss queue, i.e., how many L1D misses

are sent to the L1-to-L2 NoC per time unit.

Based on the kernel type detection and the feedback from the IRCs, the CCBP algorithm deter-
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mines the optimal CTA combination and bandwidth partitioning. Our key insight is that different

types of kernels have different `dominant' resources. The dominant resource of the latency-sensitive

kernels is the CTA number because they require higher levels of TLP to hide the memory latency.

For the NoC- or DRAM-intensive kernels, the dominant resource is the NoC or DRAM bandwidth,

respectively.

4.5.2 CCBP Algorithm

As observed in Section 4.4, if we let the co-running kernels freely compete for the memory resources,

the overall bandwidth demand may exceed the peak bandwidth. The resulting high queuing delays

will signi�cantly affect latency-sensitive kernels. However, if we evenly partition the bandwidth,

some CTA and bandwidth resources may be wasted. So, there are three objectives of CCBP: (1)

fully utilize both the CTA and bandwidth resources; (2) avoid bandwidth over-subscription by the

bandwidth-intensive kernels; (3) fairly distribute the resources among the co-running kernels based

on their dominant resources.

To achieve the objectives, our CCBP algorithm, as shown in Algorithm 1, leverages the `Dom-

inant Resource Fairness' (DRF) [Gho11] approach to assign the CTA and bandwidth resources to

different kernels. Compared to SMK [Wan16], which determines the CTA combination using the

DRF algorithm on static resources, our CCBP approach takes both static resources and dynamic

bandwidth resources into account. In Algorithm 1, the t y pe input contains the kernel type of each

kernel. In Section 4.5.4, we will describe how the CCBP approach classi�es the kernels into different

types, i.e., latency sensitive, NoC intensive and DRAM intensive. The nb w and d b w inputs contain

the NoC and DRAM bandwidth utilization and the computation of such utilization is described in

Section 4.5.4. The p r i o r LSK input is used to adjust the priority of the latency-sensitive kernels,

which will be discussed in Section 4.5.5.

The d om k value maintains the dominant resource utilization for kernel k . If the kernel is latency

sensitive, the dominant resource are the static resources (register �le, shared memory or thread

number) that limit the CTA number. On the other hand, the dominant resource is the NoC or DRAM
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Data: t y pe1..K : kernel types;
nb w 1..K [1..N ]: NoC BW util with varied CTA numbers;
d b w 1..K [1..N ]: DRAM BW util with varied CTA numbers;
p r i o r LSK : priority for latency-sensitive kernels;

Result: C T A1..K : number of CTAs for each kernel;
N BW1..K : NoC bandwidth quota;
D BW1..K : DRAM bandwidth quota;

1 C T A1..k  f 0g, N BW1..k  f 0g, D BW1..k  f 0g d om1..k  f 0g;
2 unF ini she d  f 1..K g;
3 while �nd k with lowest d om k in unFinished do

. Allocate resources tentatively
4 if t y pek = La t e nc y_Se ns i t i v e then
5 t mpC T A k  C T Ak + 1;
6 t mpN BW k  nb w k [t mpC T A k ];
7 t mpD BW k  d b w k [t mpC T A k ];
8 else if t y pek = N oC _I n t e ns i v e then
9 t mpN BW k  N BWk + 1;

10 if nb w k [C T Ak ] < t mpN BW k then
11 t mpC T A k  C T Ak + 1;
12 else
13 t mpC T A k  C T Ak ;

14 t mpD BW k  d b w k [t mpC T A k ] � t mpN BW k
nb w k [t mpC T A k ] ;

15 else
16 t mpD BW k  D BWk + 1;
17 if d b w k [C T Ak ] < t mpD BW k then
18 t mpC T A k  C T Ak + 1;
19 else
20 t mpC T A k  C T Ak ;

21 t mpN BW k  nb w k [t mpC T A k ] � t mpD BW k
d b w k [t mpC T A k ] ;

. Check if there are enough resources
22 if CanAlloc(tmpCTA, tmpNBW, tmpDBW) then
23 C T Ak  t mpC T A k ;
24 N BWk  t mpN BW k ;
25 D BWk  t mpD BW k ;
26 d om k  D omSha r e C a l (k ,C T Ak ,N BWk ,D BWk ,p r i o r LSK );
27 else
28 unF ini she d  unF ini she d � k ;
29 end

Algorithm 1: CCBP algorithm based on DRF.

bandwidth for NoC- and DRAM-intensive kernels, respectively.

Similar to previous GPU intra-SM sharing approaches [Pai13; Wan16; Xu16; Dai18], in CCBP,

all SMs share the same CTA combination. And the bandwidth allocation for each kernel is evenly

distributed to each SM. The reason is that the CTAs in the same kernel typically exhibit very similar
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