
ABSTRACT 

SIMS, ANDREW DWIGHT. Genetic Parameter Estimates from 3rd-Cycle Pollen Mix 
Progeny Tests in Loblolly Pine (Pinus taeda L.). (Under the direction of Dr. Steven E. 
McKeand and Dr. Fikret Isik) 
 
Breeding programs make genetic gain by iterative cycles of selection, breeding, and testing. 

Design of experiments and subsequent analysis of data yield information to make 

comparisons to previous cycles, assess the nature of genetic control of traits, and predict 

performance of progeny both for future breeding and for deployment. The North Carolina 

State University Cooperative Tree Improvement Program (NCSUCTIP) is the largest 

breeding program for loblolly pine (Pinus taeda L.), the most important commercial tree 

species in the southeast region of the United States.  The objectives of this study were to 

evaluate data from the Cooperative’s third-cycle testing program and compare genetic 

parameter estimates to previous studies and to evaluate genotype by environment (GxE) 

interactions. 

 

This study considers polymix (PMX) half-sib data from four test series from the Coastal 

breeding population and three test series in the Piedmont breeding population. These trials 

were established to estimate the heritability for height, volume, stem straightness, stem 

forking, and incidence of fusiform rust (caused by Cronartium quercuum f. sp.  fusiforme) in 

the population, determine genetic correlation among these traits, and to estimate genetic 

values of maternal parents.  

 

Heritability estimates for volume and height were higher in these trials compared to previous 

testing cycles, attributed to improved test design and analytical technique. The opposite result 

was found for straightness, where heritability was decreased, presumably related to intense 

selection in previous cycles. Family-mean heritability in rust and forking and ramicorn 

incidence was high, in agreement with previous studies. There was no evidence of a 

relationship between heritability and site means. Genetic correlations among traits were 

consistent with previous results, with height and volume being highly correlated with each 

other and not correlated with straightness. No genetic correlations were considered for binary 

traits.  



 

Several variance structures were evaluated in linear mixed models to evaluate GxE. We used 

the Factor Analytic (FA) covariance structure for the compound genetic model term, which is 

genotype nested within environments, to model GxE. This structure approximates the 

unstructured (US) covariance structure. The FA structure is favored over US structure 

because it is parsimonious.  The FA structure was found to be optimal for fitting the data.  

 

For the cross-classified model, GxE was found to be statistically significant at α = 0.001 

based on Likelihood Ratio Tests. However, genetic correlations were found to be high for all 

series, indicating that GxE is principally associated with differences in scale effects in each 

test series. We conclude that ranking of genotypes is largely consistent among environments. 

Heritability estimates were dramatically higher than those based on estimates from the cross-

classified model.  
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Chapter 1: Estimates of Genetic Parameters in Loblolly Pine Progeny 
Tests in the Coastal and Piedmont Regions 
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Abstract 

Breeding programs make genetic gain by iterative cycles of selection, breeding, and testing. 

Design of experiments and subsequent analysis of data yield information to make 

comparisons to previous cycles, assess the nature of genetic control of traits, and predict 

performance of progeny both for future breeding and for deployment. The North Carolina 

State University Cooperative Tree Improvement Program (NCSUCTIP) is the largest 

breeding program for loblolly pine (Pinus taeda L.), the most important commercial tree 

species on the southeast region of the United States.  

 

The Cooperative’s third-cycle testing program was designed as a group of multi-site test 

series with pollen mix (half-sibling) families. These trials were established to estimate the 

heritability in the population, determine genetic correlation of traits, and to estimate genetic 

values of maternal parents. This study uses data from four test series from the Coastal 

breeding population and three test series in the Piedmont breeding population.  

 

Heritability estimates for volume and height were higher in these trials compared to previous 

testing cycles, attributed to improved test design and analytical technique. The opposite result 

was found for straightness, where heritability was decreased, presumably related to intense 

selection in previous cycles. Family-mean heritability in fusiform rust incidence (caused by 

Cronartium quercuum f. sp.  fusiforme) and forking and ramicorn incidence was high, in 

agreement with previous studies. There was no evidence of a relationship between 

heritability and site means. Genetic correlation among traits was consistent with previous 
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results, with height and volume being highly correlated with each other and not correlated 

with straightness. No genetic correlations were considered for binary traits. 
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Introduction 

Loblolly pine (Pinus taeda L.) is the most important plantation crop tree in the Southeastern 

US, with more than one billion seedlings planted in past years over twelve southern states 

(McKeand et al. 2003). These southern states represent a large proportion of the overall 

number of acres planted; in 1998 representing as much as 79% of the total planted acres in 

the US (Moulton and Hernandez, 2000). Of this massive land base, 11 million hectares are in 

southern pine plantations – approximately 80% loblolly and 20% slash pine (Pinus elliottii 

var. elliottii Engelm.) (Li et al., 1999). Essentially every deployed seedling is a descendant of 

some sort of genetically improved germplasm: open-pollinated (OP) families or half-siblings, 

control-pollinated or full-sibling families, rooted cuttings, or somatic embryogenic (SE) 

clones (McKeand et al. 2003). All of this genetically improved planting stock is the product 

of some 60 years of dedicated southern pine breeding regimes housed both in private 

companies and in university-based industry cooperatives such as the North Carolina State 

University Cooperative Tree Improvement Program (NCSUCTIP), the Cooperative Forest 

Genetics Research Program (CFGRP) at the University of Florida, and the Western Gulf 

Forest Tree Improvement Program (WGFTIP) directed by the Texas A&M Forest Service.  

 

Producing estimates of genetic parameters is a vitally important step in the assessment of 

genetic gain in a breeding population. These statistics inform the breeder about the degree to 

which a trait might be inherited (heritability), and the degree to which any two traits are 

genetically correlated. Producing these statistics to characterize a breeding population is 

necessary for making decisions for a selection and testing regime and to make gain in 
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successive iterations of the breeding and testing process (Zobel and Talbert 1984; Falconer 

and Mackay 1996). 

 

Previous assessments of genetic parameters in pine, especially loblolly, have described a 

large number of traits and relationships among them. In a mainline breeding program, traits 

like stem volume, fusiform rust (caused by Cronartium quercuum f. sp.  fusiforme) 

resistance, and stem form are among the most important. Other traits like wood specific 

gravity, percent sugar yield for ethanol production, microfibril angle, and percent lignin 

content are considered secondary in importance, and are often more difficult to screen in 

progeny tests (Zobel and Talbert 1984; Atwood et al. 2002; Isik et al. 2011; Barker 2014).  

 

Estimates of narrow-sense heritability of growth traits, most importantly height and volume, 

have varied widely over breeding designs and field experimental designs (Isik et al. 2005). In 

NCSUCTIP’s 2nd-Cycle, with data from full-sib crosses from six-tree disconnected half-

diallels, the average heritability estimate was 0.19 and 0.16 for height and volume, 

respectively. With more than 3,000 selections tested, this is likely one of the most 

comprehensive testing efforts analyzed for a forest tree species (McKeand et al. 2008).  Other 

studies have given similar estimates for loblolly pine and other forest tree species. Across a 

large range of test ages, estimates have usually ranged from 0.05 to 0.30  (Svensson et al. 

1999; Sierra-Lucero et al. 2002; Xiang et al. 2003). In general, these estimates are relatively 

consistent across ages, studies, and species. In an analysis of results of many studies of a 

variety of forest tree species, Cornelius (Cornelius 1994) reported median heritabilities of 
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0.25 for height and 0.18 for volume and noted a band of 0.10 to 0.30 as the general trend of 

growth trait heritability.   

 

Heritability in straightness has not been studied as extensively in loblolly pine as height and 

volume, but it is considered to be the trait where the most gain has been made (Li et al. 

1999). Shelbourne and Stonecypher (Shelbourne and Stonecypher 1971) and Cornelius 

(Cornelius 1994) give estimates of narrow-sense individual tree heritability for straightness 

between 0.25 and 0.55, suggesting that this trait is more heritable than height and volume.  

 

Genetic control of binary traits is difficult to describe on an individual tree basis since there 

is no gradient for incidence across individual stems, but family mean incidences are 

repeatable for forking. Data from the previously mentioned diallel studies had half-sib family 

mean heritability of 0.74 – 0.81 across a wide range of sites for fork incidence (Xiong et al. 

2010). In a study of material from the spectrum of the geographic distribution, a half-sibling 

family mean heritability of 0.92 was reported for forking incidence (Cumbie et al. 2012). 

Forking is a complex trait influenced by nutrition, stem damage, disease, and many number 

of other genetic and environmental factors (Xiong et al. 2010). Nonetheless, family means of 

forking are expected to be highly repeatable. 

 

Resistance to fusiform rust is one of the most valuable traits in southern pine and is a primary 

factor influencing survival and stem quality (Schmidt 2003).  Fortunately, family mean 

heritability estimates indicate a high degree of genetic control (McKeand et al. 1999). 
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(Cumbie et al. 2012) reported a half-sib family mean heritability of 0.96 in a wide-cross 

study, suggesting that this repeatability is likely consistent among seed sources. In a study in 

which several regional provenances of fusiform rust inocula were applied to a seedlings from 

a variety of families, half-sib family-mean heritabilities were estimated to be 0.97 (Isik et al. 

2008). 

 

By virtue of the imprecision and different methodologies for producing some of these 

estimates, a 0.05 difference in h2 is considered to be incidental, especially on a site-to-site 

basis (Zobel and Talbert 1984). Ability to produce estimates largely depends on experimental 

field designs and mating designs. Issues like lack of replications of tests, disconnected 

treatment levels among sites, and varying degrees of relatedness are examples of 

complications of estimation and comparison. For example, in the 2nd-Cycle NCSUCTIP 

diallel tests, connection of genetic material was highly limited among test series (Isik et al. 

2005a). 

 

Estimates of genetic parameters, while dependent on the actual degree of additive allelic 

control on traits, are also dependent on the quality of the test site (environmental factors) and 

data collection (measurement errors). Poor site preparation techniques, lack of control of 

competing vegetation, and general lack of maintenance results in phenotypes that are mainly 

determined by the environment rather than genetic factors, meaning that differences among 

phenotypes have limited useful interpretation. Poor testing practices increase environmental 

noise and can cause low heritability estimates with large standard errors. This non-uniformity 



8 

 

of the experimental site can cause a high degree of variance associated with the experimental 

unit (single tree plot), thus inflating the overall variance estimate associated with 

environment (ߪ௘
ଶ). An increase in ߪ௘

ଶ (also called ‘error’ variance) increases the denominator 

value in the heritability calculation, resulting in lower estimates. Heritability estimates are 

maximized with uniform sites, well replicated tests, and proper analysis of data to account for 

heterogeneity of data using linear mixed models. 

 

This study summarizes the estimates of genetic parameters of loblolly pine poly-mixed 

progeny tests in the third cycle of the breeding program managed by the NCSUCTIP. The 

objectives of this study were to: 

 

1. Report estimates of genetic parameters of loblolly pine in the third cycle breeding in 

the Coastal and Piedmont regions for the NCSUCTIP. 

2. Compare estimates of genetic parameters, especially heritability, to previous 

estimates.  

 

Materials and Methods 

Data were collected from four test series in the Coastal breeding population and three test 

series in the Piedmont breeding population with varying number of test sites within each 

series. Each of these test sites was established and measured as part of the collective effort of 

the NCSUCTIP and its cooperating members in mainline 3rd-Cycle breeding.  
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Genetic Material 

The 3rd-Cycle mainline effort was focused on three breeding regions as described in 

Appendix Figure A-1. These regions represented a grouping of the 2nd-Cycle breeding and 

testing regions: the Northern region (Virginia and Northern North Carolina), the Coastal 

region (Atlantic Coastal Plains of southern NC, SC, GA, and the Lower Gulf Coast of AL 

and MS), and the Piedmont region (inland zones of South Carolina and Georgia and the 

Upper Gulf Coast of AL, MS, and TN). The mating scheme in each series was identical: 

poly-mix crossing to produce half-sibling families from a number of selections. Poly-mix, 

also known as pollen mix or PMX (henceforth called PMX), refers to crossing a specified 

mix of pollen from known male parents to known female parents. This strategy allowed for a 

common pollen source to be the male parent across a multitude of female parents and sites, 

reducing variation of genetic input of male parents within each provenance. Thus, each 

member of a PMX family has one parent in common and an average male parental value. For 

each breeding region, twenty well-characterized parents were selected to represent region-

wide average breeding values and were grafted into each member’s breeding orchard. Pollen 

was collected from ramets of each parent and blended with weight given to pollen 

germination percentage to impute equal genetic representation. For further explanation of the 

motivation for this strategy, see (McKeand and Bridgwater 1998). 

 

For comparisons among tests and series, a checklot was developed for each region to 

represent the average genetic performance. These checklots are henceforth noted as CCK, 

PCK, and NCK for the Coastal, Piedmont, and Northern regions, respectively. These 
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checklots were developed by crossing the pollen mix for each region onto a subset of ten of 

the twenty parents. That is, for the Coastal region, the parentage of CCK would be a subset of 

ten Coastal PMX (CPMX) parents crossed with a pollen blend of all 20 CPMX parents. 

Additionally, seven well-characterized parents were crossed with the pollen mix for each 

respective series and incorporated into the testing. Four of these families were PMX crosses 

with two high-performing and two poor-performing parents from 1st- and 2nd- Cycle testing.  

 

Experimental Design 

Each site was established as a randomized complete block design with 20 blocks at each site. 

Single tree plots were used as experimental units. This strategy was chosen to efficiently 

produce breeding values of parents. An additional advantage to this strategy was that a large 

number of families were tested - approximately 70 PMX families were included at each site, 

including the three 3rd-Cycle checklots appropriate for testing in that region (CCK, PCK, 

NCK) and the seven common family checks, totaling a number in the range of 1400 trees at 

each site at the time of establishment. 

 

Measurement Traits 

Tests were measured between ages four and seven years. Height and diameter at breast 

height (1.4 meters, henceforth DBH) were measured to the nearest 0.1 foot and 0.1 inch, 

respectively. These measurements were converted into meters and centimeters and used to 

calculate volume in cubic decimeters on the basis of the inside-bark total stem equation 

derived by Sherrill et al. ( 2011). Straightness was visually assessed on a 1-6 scale where ‘1’ 
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is straight and ‘6’ is the most crooked at each site, therefore straightness should be distributed 

normally ~(3.5, 1) at each site. Binary traits including survival, and incidence of fusiform 

rust galls, ramicorn branching, and stem forking were assessed. Fusiform rust galls are 

swelled stem tissue, often yellow from the fungal spores and seeping sap. Forks are exhibited 

by the emergence of two codominant apical meristems from the bole, especially in the lower 

portion of the crown. Forks are different from ramicorns in that ramicorns are branches of 

unexpectedly large size, enough to affect growth and form but not necessarily codominant. 

For further discussion on the nature of forking and ramicorns, see Xiong et al. (2010). A 

value of 1 is assigned to a tree in case of incidence (presence of forking, ramicorn branches, 

and stem gall). Because forking and ramicorns cause essentially the same stem defect, their 

incidence was analyzed together as a single trait, ‘forkram’ (e.g. a tree was assigned a value 

of 1 if it had a fork and/or a ramicorn branch). 

 

Statistical Analysis 

Data were analyzed on a site basis first and then for the entire series in each region. Summary 

statistics of sites and test series were generated (Table 1-1) using the MEANS procedure of 

SAS software and JMP (SAS Institute Inc. 2011). Summary statistics for individual sites can 

be found in Appendix Tables A-1 through A-7. Traits included in the summary statistics 

were height, volume, straightness, rust, and forkram. These summaries were produced with 

checklots (e.g. CCK, NCK, or PCK) removed, but common family checks are included. 

Pearson correlations for site means were produced using R (Venables and Smith 2014). 
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Using the mixed modeling software ASReml (Gilmour et al. 2014), linear mixed models 

were used to analyze height, volume, and straightness at each site using the following 

equation: 

࢑࢐࢏࢟  = ࣆ  + ࢏ࡾ  + ࢐ࡲ  +  (1-1)      ࢑࢐࢏ࢋ 

where ݕ௜௝௞ is the response variable, ߤ is the overall mean response, ܴ௜ is the random blocking 

effect of replication within a site ~N(0, ߪ௥
ଶ), ܨ௝ is the random effect of female parent ~N(0, 

௙ߪ
ଶ), and ݁௜௝௞ is the residual error ~N(0, ߪ௘

ଶ). All random effects and errors are assumed 

identically independently distributed (iid). 

 

The following linear mixed model was used to analyze the data across sites for each series.  

 

࢒࢑࢐࢏࢟  = ࣆ  + ࢏ࡿ  + (࢏)࢐(ࡿ)ࡾ  + ࢑ࡲ  ࢑࢏ࡲࡿ + +  (1-2)    ࢒࢑࢐࢏ࢋ 

where ݕ௜௝௞ is the response variable, ߤ is the overall mean response,  ௜ܵ is the fixed site effect, 

ܴ(ܵ)௝(௜) is the random blocking effect nested within site ~N(0, ߪ௥௕
ଶ  ௞ is the random effectܨ ,(

of female parent ~N(0, ߪ௙
ଶ), ܵܨ௜௞ is the site-female interaction term (GxE) ~N(0, ߪ௦௙

ଶ ), and 

݁௜௝௞௟ is the residual error ~N(0, ߪ௘
ଶ). All random effects and errors are assumed to be iid. 

 

For binary traits, a generalized linear mixed model was used to partition observed variance 

into its environmental and genetic components for rust incidence and forkram for each site 

and for the test series. For individual test site analyses, sites with incidence less than 20% 

were not analyzed because of environmental noise. Sites with less than 0.20 average 
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incidence level or heterogeneous survival among families were excluded from this analysis 

as these factors prevented model convergence. The model fit to individual test site data is as 

follows: 

࢑࢐࢏࢟ = ܖܔ ቀ
ૈ

૚ିૈ
ቁ = ࣆ  ࢏ࡾ + +  (1-3)    ࢐ࡲ 

where ݕ௜௝௞ is the response variable, ߨ represents the odds of trait incidence, ߤ is the mean, ܴ௜ 

is the random blocking effect ~N(0, ߪ௥
ଶ), and ܨ௝ is the random effect of female parent ~N(0, 

௙ߪ
ଶ). All random errors are assumed identically independently distributed (iid). This is the 

exact same model as Equation (1), except the response variable of interest is the log-odds of 

trait incidence, and error is defined outside of model evaluation. Note that generalized linear 

models do not consider an overall residual variance term. 

 

The model for evaluating data across sites for each series is defined as: 

࢑࢐࢏࢟ = ܖܔ ቀ
ૈ

૚ିૈ
ቁ = ࣆ  ࢏ࡿ + + (࢏)࢐(ࡿ)ࡾ  + ࢑ࡲ  +  (1-4)  ࢑࢏ࡲࡿ 

where ݕ௜௝௞ is the response variable, ߨ represents the odds of trait incidence, ߤ is the overall 

mean response,  ௜ܵ is the fixed site effect, ܴ(ܵ)௝(௜) is the random blocking effect nested 

within site ~N(0, ߪ௥௕
ଶ ௙ߪ ,௞ is the random effect of female parent ~N(0ܨ ,(

ଶ), and ܵܨ௜௞ is the 

site-female interaction term (GxE) ~N(0, ߪ௦௙
ଶ ). Again, random errors are assumed to be 

independent. This model was evaluated for each test series for both forkram and rust. 

Although overall trait incidence was not above 0.20 in each case, models converged with 

relatively few iterations. 
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Estimation of Genetic Parameters  

Using estimates of variance components, narrow-sense individual-tree heritability (ℎଶ) was 

estimated for height, volume, and straightness at each site using the following formula: 

૛ࢎ = ൫૝ ࢌ࣌
૛൯/ (ࢌ࣌

૛ ࢋ࣌ + 
૛)      (1-5) 

where ℎଶ is the narrow-sense individual heritability, ߪ௙
ଶ is the variance associated with the 

female parent, and ߪ௘
ଶ is the residual variance associated with environment. The genetic 

variance is multiplied by 4 to account for the proportion of relatedness among half-sibs. Any 

pair of half-sib progeny are each assumed to obtain 1/2 the genetic material of a common 

parent, and each sexual recombination event is assumed to be independent. Therefore, the 

expected value of the relatedness of two individuals is 1/2 * 1/2 = 1/4. Additive and residual 

variance components for each site are reported in Appendix Tables A-8 and A-9 and narrow-

sense heritabilities for sites are listed in Appendix Table A-10. 

 

For continuous traits, ℎଶ was calculated on a series basis as: 

૛ࢎ = ൫૝ ࢌ࣌
૛൯/ (ࢌ࣌

૛  + ࢌ࢙࣌
૛  + ࢋ࣌ 

૛)    (1-6) 

where ℎଶ is the narrow-sense individual-tree heritability, ߪ௙
ଶ is the multi-environment family 

variance, ߪ௦௙
ଶ  is the GxE (site-by-family) interaction term and ߪ௘

ଶ is the residual variance due 

to environment. The rationale for multiplying the numerator family variance is the same as in 

the case of individual sites. Variance components from each series are reported in Appendix 

Table A-10 and heritability estimates are reported in Table 1-2.  
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A separate estimate of ℎଶ was constructed for each series based by calculating the 

unweighted mean of heritability for all sites in a series. The formula for this estimate is: 

૛ࢎ =
૚

࢔
 ∑ ࢏ࢎ

૛࢔
ୀ ૚ ࢏       (1-7) 

where ݊ is the number of sites in a series and ℎ௜
ଶ is the narrow-sense individual-tree 

heritability at site i. This estimate is biased because GxE is ignored in the phenotype variance 

component; this estimate is constructed to compare to the unbiased estimate described in 

equation (5). These estimates are listed in Appendix Table A-17. 

 

For binary traits, family mean heritability estimates were produced for each site using 

variance component estimates from equation (3). These estimates were produced with the 

following equation: 

࢓ࢌࢎ
૛ = ࢌ࣌ 

૛ / (ࢌ࣌
૛  +  

ࢋ࣌
૛

࢔
)    (1-8) 

where ℎ௙௠
ଶ  is the narrow-sense family heritability, ߪ௙

ଶ  is the family variance, and ݊ is the 

average number of individuals per family per site, and ߪ௘
ଶ is the residual variance due to 

environment. Because we are estimating repeatability of family means rather than individual 

tree heritability, the numerator is not multiplied. Residual variance is divided by ݊ to account 

for the average number of data points associated with each family for a site. For binary traits 

the ߪ௘
ଶ is set as 3.29, or ߨଶ/3, as suggested by Gilmour (Gilmour et al. 1985). Variance 

components for each site are reported in Appendix Table A-12, and the ݊ for each site is 

reported in Appendix Table A-13. Estimates of family mean heritability for estimable sites 

are found in Appendix Table A-14. 
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Using variance components derived from results of equation (4), narrow sense family mean 

heritability was estimated for each series using the following equation: 

࢓ࢌࢎ
૛ = ࢌ࣌

૛/ (ࢌ࣌
૛  + ࢙ࢌ࣌

૛ +  
ࢋ࣌

૛

࢔
)     (1-9) 

where ℎ௙௠
ଶ  is the narrow-sense family heritability, ߪ௙

ଶ  is the family variance, ߪ௙௦
ଶ  is the GxE 

variance,  and ݊ is the average number of individuals per family per series, and ߪ௘
ଶ is the 

residual variance due to environment, again defined as 3.29. Variance components are 

reported in Appendix Table A-15, the n for each series is reported in Appendix Table A-16, 

and heritabilities are listed in Table 1-3. 

 

Scatter plots and Pearson correlations were produced between site incidence and site 

heritability for volume, height, forkram and rust using R (Venables and Smith 2014). These 

plots are displayed in Figure 1-1 for continuous traits and Figure 1-2 for binary traits. This 

type of correlation is useful for informing the relationship between trait performance at a site 

and amount of genetic control over performance exhibited at that site. 

 

Scatter plots and correlations were not produced for straightness. Straightness is assessed 

categorically on a site-by-site basis, and each site should have a symmetric distribution of 

scores with a mean of exactly 3.5. If straightness is measured correctly, there should be no 

variation among sites.  
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Genetic correlations of continuous traits were calculated for each series using the following 

formula:  

ࢍ࢘ =
(ࢅ)࢘ࢇ࢜(ࢄ)࢘ࢇ࢜

(ࢅ,ࢄ)࢜࢕ࢉ
      (1-10) 

where ݎ௚ is the genetic correlation, X is a trait of interest, and Y is another trait of interest. 

This statistic describes the correlation of genetic performances. Each of the estimators 

described above is detailed by Falconer and MacKay (Falconer and Mackay 1996). Genetic 

correlation was not considered for the forkram-rust relationship. 

 

Results and Discussion 

Summary Statistics and Trait Performance 

Height means ranged from 8.4 meters in Coastal Test Series 3 (CPMX3) to 4.9 meters in 

Piedmont Test Series 3 (PPMX3), both of which were the oldest and youngest series, 

respectively (Table 1-1). Volumes exhibited similar variation among test series ranging from 

54.6 to 20.1 dm3 in the same respective series. Performance of growth traits among sites was 

generally consistent within series except for occasional presence of a small number of poor-

performing test sites. An example can be found in Coastal Test Series (CPMX1), where mean 

site height was 7.7 meters, but site 11 (CPMX1-11) had a mean height of 3.9 meters 

(Appendix Table A-1). These poor-performing sites could be explained by site preparation 

and maintenance issues, nutrient or water deficiency, or any number of environmental issues. 

Summary statistics for individual test sites can be found in Appendix Tables A-1 through A-

7.  
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Straightness means were similarly consistent among series, with a range of 3.01 to 3.46 

(Table 1-1). This trait, not being physically measured but instead being categorically 

assessed, has the same expected value for each site. Scores range from 1 to 6 where a score 

of 1 indicates “most straight” a score of 6 indicates “least straight.” Ideally, these scores 

should be distributed approximately normally where ~70% are 3 or 4, ~95% are scored 2, 3, 

4,or 5, and 100% are scored between 1 and 6. For this reason, the expected straightness score 

mean at a site is 3.5. For the majority of test sites, mean straightness scores were close to this 

value; 38 out of 51 sites exhibited mean straightness scores between 3.30 and 3.70. Many 

sites had mean scores less than 2.00 and none were higher than 3.67, indicating that 

straightness was measured with bias toward lower, more favorable scores at these sites. Sites 

with aberrant means were retained in the analysis because a stratification of scores is 

expected in spite of skewness of the distribution of scored values; however, it would be 

inappropriate to consider differences in site means as informative. Some explanations for 

bias toward a lower, more favorable straightness value include error in measurement 

procedures or unrealistic assumptions about the distribution of stem straightness. Because of 

the high number of sites with values aligning with expectations, the former explanation 

seems more plausible. 

 

Mean rust incidence was higher in the Coastal region, a result that broadly falls in line with 

expectations according to rust hazard zones and rust incidence in sample plots (Randolph et 

al. 2015). Rust incidence at sites was highly variable within series, indicating that some sites 
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were more rust-prone than others during the trial period. This stratification among sites can 

be considered advantageous for multi-site analysis because the same families were exposed 

to a variety of rust incidence levels. Mean incidence levels of forking were relatively 

consistent among series, but highly variable among sites. There was no obvious explanation 

for differences in forkram incidence among sites; there was no apparent trend related with 

region, series, or age at measurement. 

 

Phenotypic correlations for pairs of traits across all sites were fairly predictable. Height and 

volume were correlated at r = 0.91, almost completely explained by the fact that height is a 

component of the equation used to calculate volume. Mean rust incidence was correlated 

with height mean and volume mean at r = 0.40 and 0.29, respectively. This is not a 

particularly strong correlation, and the degree to which it exists is likely explained by overall 

height site means and rust incidence levels being higher in Coastal test sites than in Piedmont 

test sites. Simply, Coastal test sites had both higher levels of height growth and rust 

incidence. Mean forkram incidence was correlated at r = -0.21 with height and -0.19 with 

volume. Because volume and height are strongly associated, the inversion of these 

correlations suggests that they are largely incidental. For reasons described above, 

straightness was not considered in any correlation-focused analysis. 

 

Heritability in Continuous Traits 

Narrow-sense heritability estimates for sites (Table A-10) ranged from 0.05 to 0.72 for 

height, from 0.10 to 0.70 for volume, and from 0.05 to 0.43 for straightness. Standard errors 
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were generally low for estimates of each trait, with a maximum of 0.140 for height, 0.130 for 

volume, and 0.114 for straightness. Overall means of trait heritability across sites were ℎത௦௜௧௘
ଶ   

= 0.35 for height, ℎത௦௜௧௘
ଶ  = 0.34 for volume, and ℎത௦௜௧௘

ଶ   = 0.22 for straightness. Estimates of 

multi-site (series) narrow sense heritability (Table 1-2) ranged from 0.16 to 0.38 (ℎത௦௘௥௜௘௦
ଶ =

 0.25) for height, 0.11 to 0.29 (ℎത௦௘௥௜௘௦
ଶ = 0.19) for volume, and 0.12 to 0.20 (ℎത௦௘௥௜௘௦

ଶ = 0.15) 

for straightness. Heritability on a series basis was consistently less than mean site heritability 

for the corresponding test series (Table A-17).  

 

The NCSUCTIP 2nd-Cycle testing effort summary reported average unbiased narrow-sense 

individual tree heritabilities of ℎത௦௘௥௜௘௦
ଶ  =  0.19 for height and ℎത௦௘௥௜௘௦

ଶ  = 0.16 for volume across 

seven geographic regions (McKeand et al. 2008). These estimates are averages of estimates 

of heritability for many disconnected series with a few sites in each series, so the most 

appropriate comparison is to the mean heritability of all of the series.  In the 3rd-cycle PMX 

tests, mean series heritability for was higher for both height (ℎത௦௘௥௜௘௦
ଶ  = 0.25) and volume 

(ℎത௦௘௥௜௘௦
ଶ  = 0.19). Possible explanations for different results from 2nd-Cycle results and 3rd-

Cycle results are differences in testing strategy, experiment design, and improvements in 

quality and maintenance of selected sites.  

 

Implementation of a randomized complete block experiment design with single-tree-plot 

experimental units could have resulted in more powerful tests. Each 3rd-Cycle series 

contained between 68 and 91 genetic entries in Coastal series and between 64 and 75 entries 

in Piedmont series. This scheme stands in contrast to the strategy executed in NCSUCTIP 
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2nd-Cycle mating, where two sets of six parents were mated in diallels to produce 30 full-sib 

crosses for each series (McKeand and Bridgwater 1998). While significantly fewer parents 

were tested in this study (~400 vs ~3000), more parents were tested in each series and at each 

site. The principle impact of this design is a change in experimental units and blocking 

factors. The 3rd-Cycle tests had 20 replications (repeated treatments in blocks) of ~75 plots 

per site with one tree in each plot. The 2nd-Cycle tests had six replications of six-tree row 

plots for 30 genetic entries (two, 6-parent diallels plus checklot plots) plus two entries of four 

checklots at each site (38 total plots), resulting in rep sizes of 228 trees. Therefore, blocking 

factors in the 3rd-Cycle tests required approximately one-third of the geographic space 

required in 2nd-Cycle tests (228 planted trees vs. ~75 planted trees), and individual 

experimental units decreased in size from six trees to a single tree. This decrease in the size 

of the blocking factor and the experimental unit result in increased replication of treatments, 

increased number of genetic entries, and smaller geographic area required for one test 

replication. This decreased experimental area required for a replication resulted in a better 

opportunity to identify contiguous plots with environmental homogeneity, allowing for 

reducing the residual variance. A reduction in environmental variance by virtue of smaller 

block sizes and better site selection, an increase in the number of tested families, more 

extensive replication of the genetic entries, and general improvement in test site maintenance 

are the likely causes for an increase in heritability.  

 

Unlike the heritability estimates for growth traits, the mean series straightness heritability 

(ℎത௦௘௥௜௘௦
ଶ = 0.15) is much lower than estimates from many early studies (Shelbourne and 
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Stonecypher 1971; Cornelius 1994). Assuming that a reduction in environmental variance or 

test design is the most important factor in heritability increase for this study, estimates of 

heritability in straightness were expected to be higher.  One possible explanation for these 

results would be to conclude that straightness has been improved enough that variation has 

been decreased in breeding populations after two iterations of intensive selection. That is, the 

difference between the most straight and the least straight genotype is much smaller than the 

difference between the most and least straight genotypes in previous cycles because only 

superior genotypes have been carried forward into new breeding populations. Straightness is 

generally heralded as one of the traits for pine for which the most improvement has been 

made (Li et al. 1999), so this interpretation seems to be the most plausible. 

 

Heritability is most informative when describing a large number of sites; repeatability of 

genetic performance across environments is the underpinning of predictive modelling of 

family performance. This study examines two methods for producing narrow-sense 

heritability estimates for continuous traits over multiple environments: an arithmetic mean of 

site heritabilities, and a singular estimate based on pooled variance terms across multiple 

sites. These two estimates are principally different in that the second accounts for GxE in the 

phenotypic variance pool, instead of ignoring it and declaring all sites homogeneous with 

respect to genetic performance. The first, in contrast, is biased because GxE is completely 

ignored. Because GxE is included as a term used in the models used to describe multiple-site 

(series) data, estimates of heritability should account for it as a component of the overall 

phenotypic variance. The percentage of deviation of the site means estimate (ℎത௦௜௧௘
ଶ ) relative to 
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the pooled variances estimate (ℎ௦௘௥௜௘௦
ଶ ) is a quantity that describes reduction in heritability 

associated with accounting for GxE. For the data presented in this study, reductions ranged 

from 11% to 82% for height, 43% to 182% in volume, and 8% to 76% in straightness.  

 

These large deviation percentages suggest that GxE is an important source of variation, but 

also motivates further investigation into genotype-environment assumptions. GxE variance 

can be a large variance component for a number of reasons, but not all of the reasons for its 

significance are interpreted in the same way. For instance, large GxE associated with scale 

differences in family performances among sites supports a different conclusion than 

differences in ranks of family performance. Previous studies such as (Roth et al. 2007) have 

indicated that GxE could be principally tied to scale differences. Analyzing these data using 

simple pooled variance terms assumes an unrealistic set of assumptions about genetic 

correlations of traits among sites and heterogeneity of site performance and quality. In order 

to account for GxE effects with the most realistic assumptions, variance structures useful for 

describing the genetic and GxE variance on a component basis would have to be employed. 

If these factors can be accounted for meaningfully, heritability could be increased 

dramatically. In-depth discussion of GxE, its components, and alternative calculation 

methods are also outside the scope of this discussion (it will be thoroughly described in 

Chapter 2), but relevant discussion can be found in (Isik et al. 2005b; Zapata-Valenzuela 

2012; Cullis et al. 2014; Ogut et al. 2014), and elsewhere. 

 



24 

 

Heritability in Binary Traits 

For analysis of binary traits, ideal mean incidence of traits is between 0.30 and 0.70; extreme 

levels of incidence often make estimation of variance components difficult to reliably 

compute, even using maximally efficient REML-based methods, because variance is 

maximized where incidence is 0.50. Reasons for varying levels of trait incidence are many 

for both rust and forking; some possible factors include rust hazard differences across a 

geographic gradient, tipmoth damage induced forking, or randomly occurring environmental 

factors (Xiong et al. 2010; Randolph et al. 2015). For NCSUCTIP, it is standard protocol to 

analyze binary traits between incidence levels of 0.20 and 0.80. Using this criterion, attempts 

were made to produce estimates of heritability at all sites where incidence was appropriate. 

For many tests, differences in mortality among families also prevented model convergence. 

After removing sites from analysis where models were unable to produce results, 19 sites for 

forkram and 29 sites for rust remained. For rust, ℎ௙௠
ଶ  estimates were relatively consistent 

across the 29 sites, ranging from 0.74 to 0.95. Site level estimates of family for forkram were 

widely variable, with a range of 0.19 to 0.83 across the 19 sites. Estimates of ℎ௙௠
ଶ  in forkram 

had standard errors as high as 0.950, suggesting that many site estimates are unreliable for 

interpretation. Overall, family mean heritability estimates for rust were clustered at the high 

end of the spectrum (ℎത௙௠
ଶ  = 0.86), and family mean heritability estimates for forkram were 

spread widely with mean ℎത௙௠
ଶ   = 0.58.  

 

Producing estimates of family mean heritability can be difficult for multi-site data because 

incidence levels are often extremely heterogeneous across sites, as is the case for many series 
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in this study. Further, incidence levels may be acceptable at several sites within a series but 

not acceptable for the pooled data. Although some series had incidence levels below this 

threshold, diagnostics of each model reported log likelihood convergence, indicating success 

in model evaluation. Estimates of multi-site (series) family-mean heritability were produced 

using equation (9); these estimates are reported in Appendix Table A-9. For rust, series ℎ௙௠
ଶ  

ranged from 0.13 to 0.90 (ℎത௙௠
ଶ  = 0.66). Piedmont Series 1 (PPMX1) exhibited very low 

incidence across all sites, with overall incidence at 0.12 (Tables A-5, 1-1), so we will not 

interpret its result. Piedmont Series 3 (PPMX3) consists of three sites with extremely 

heterogeneous site incidence levels, a low mean (0.23), and very large standard errors of 

variance components (Tables A-7, 1-1), so interpretation of this estimates is also likely less 

informative than for the other  test series. For forkram, ℎ௙௠
ଶ  ranged from 0.31 to 0.61 (ℎത௙௠

ଶ  = 

0.50). Because series-wide incidence levels are acceptable, there is no reasons to discard 

results for forkram as was in the case of PPMX1 and PPMX3 for rust. 

 

For the five series where interpretation is appropriate, rust ℎ௙௠
ଶ  estimates ranged from 0.72 to 

0.90. These estimates are lower than, but comparable to those reported in (Cumbie et al. 

2012), a report of similar-type field data (ℎ௙௠
ଶ  =  0.96). An explanation for discrepancy is 

found in the relationship of genetic material included in the study and testing strategy. 

Cumbie et al. (2012) describe progeny of parents from three geographically distinct zones 

(Florida, Western Gulf, and Atlantic Coastal Plain) tested at four sites close to one another in 

southern Georgia, southern Alabama, and northern Florida. The similarity of environments 

and assumed differences based on provenance would both explain high heritability. These 
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results compare similarly to one of the most comprehensive recent rust studies (Isik et al. 

2008), where half-sibling family mean heritability was greater than 0.95. In that experiment, 

figures were reported for data describing controlled inoculation of seedlings where all stems 

were exposed to a wide variety of regional strains from different rust zones. Because of the 

elimination of a number of environmental factors, it is an expected result that the heritability 

reported by Isik et al. (2008) would be higher than that for the data considered in this study. 

 

The data considered in this study represent a large number of families deployed at test sites 

ranging from the North Carolina Coastal Plain to the Alabama Piedmont. Differences among 

these environments could contribute to relatively large GxE, resulting in lower heritability. 

For example, exposure to different rust strains may affect different families unequally as 

endemic resistance to regional inocula may be expressed differently in different regions. 

However, it has been demonstrated that this is likely the case for a small number of families 

(McKeand et al. 1999). The conclusion from these trials is that while estimates from this 

study are lower than that of some previous ones, repeatability of family means for rust 

remains to be consistently high. 

 

Estimates of family mean heritability for forkram were lower than estimates of family mean 

heritability for forking observed in recent literature (Xiong et al. 2010; Cumbie et al. 2012). 

This could be attributable to many factors including GxE, difficulty in constructing 

meaningful estimates due to heterogeneous incidence among sites, or a genetic improvement 

of forking akin to the case of straightness. This study is likely not the decisive word on the 



27 

 

nature of genetic control of forking in loblolly pine, but the estimates derived from this 

analysis would imply that forking is primarily controlled by environment on a tree-to-tree 

basis, but there is meaningful stratification of family performance.  

 

Correlations of Heritability and Trait Performance 

For height and volume, site means were not significantly correlated with heritabilities at each 

site at r = 0.06 for height and r < 0.001 for volume (Figure 1-1). The lack of evidence of a 

strong correlation between site heritability and site performance indicates that site 

productivity does not exhibit any patterns of association with heritability. Because such a 

large number of sites were tested, and estimates of heritability were spread widely, it would 

be expected that an association between heritability and growth would be demonstrated if a 

meaningful trend existed. Differences in heritability for continuous traits among individual 

sites are most likely attributable to environmental heterogeneity and testing quality 

(maintenance). For this reason, heritability at a single site is perhaps more meaningfully 

interpreted as a diagnostic of site homogeneity and quality of test establishment and 

maintenance. Identification of specific components associated with differences in heritability, 

especially in growth traits, requires an analysis that is outside the scope of this study. 

  

For rust incidence, the scatter plot of family mean heritability versus site mean incidence 

appears to show that there is no meaningful correlation (r = 0.05, Figure 1-2). The most 

intuitive interpretation of this plot is that there is a high degree of genetic control across sites, 

independent of rust incidence or hazard at that site. Simply, the best families are the best 
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families in almost any environment. This is a direct complement to the above discussion of 

multi-site estimates of family mean heritability. For forkram (r = -0.22, Figure 1-2), it is 

unclear if these data are valid for interpretation. Only 19 of 51 total sites were considered 

appropriate for estimating variance components on a site basis. Since this is a small subset, 

limited by incidence level and not a random sample, it may not capture an adequate sample 

to describe the true relationship of family mean heritability and stem fork and ramicorn 

incidence. There is no apparent association between the two parameters, so it seems most 

appropriate to conclude that there is no evidence of a meaningful correlation based on these 

data. 

 

Genetic Correlation of Traits 

 Genetic correlations were strongly positive between height and volume, ranging from 0.76 

to 0.82 across series (Table 1-4).  Strong genetic correlations of height and volume is an 

expected result since height is a principal component in the volume equation; taller trees 

intuitively would have more volume. Genetic correlations between growth traits and 

straightness generally trended weakly negative; because straighter trees receive lower 

straightness scores, a negative relationship is favorable.  One explanation for the correlation 

is that taller trees may grow straighter in the service of competition for light against 

neighboring stems. Discussion of stem and crown form and relationship to light competition 

can be found in (Staudhammer et al. 2009) and elsewhere. Another possible explanation is 

related to the comments about a decrease in heritability for straightness: the spectrum of 

genetic values for straightness may be small in comparison to growth traits. There is no 
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definitive interpretation of these correlation estimates; however, any inference drawn would 

be favorable for breeding loblolly pine. Namely, selection of growth and stem form is 

independent, or selection for more straight genotypes also selects in a favorable direction for 

growth genotypes. 

 

Comments on Analytical Technique 

Additional improvements could be made in analysis by accounting for spatial and pedigree 

correlations. The analysis of these data were assumed no relatedness of genetic entries and 

independence of individual tree plots. Introduction of a spatial factor could result in different 

heritability estimates by explaining more residual variance, resulting in a smaller phenotypic 

variance term. Analysis including this type of information would require data to be 

associated with a row-column blocking factor at time of measurement. While the test layout 

at each site would accommodate introduction of these blocking factors in analysis, spatial 

information was not readily available for each test site, and was found to be implausible to 

interpolate. Pedigree information was not incorporated in this analysis, so genotypes were 

assumed to be unrelated. This is likely not the most realistic set of assumptions because some 

connections likely exist even though the selections from which they descend come from all 

over the Southeast.  

 

Conclusions 

The data presented in this study represent one of the most thorough and modern efforts of 

testing of family performance for advanced-generation loblolly pine. In comparison to 

previous testing cycles, narrow-sense heritabilities for height and volume are increased. 
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Heritability in straightness is lower than previous studies indicate, but this result could be the 

product of intense selection of this trait and reduction in genetic variation. Binary traits are 

under strong genetic control, agreeing with previous studies that repeatability of family 

means is high. This result is especially important for rust, where there is essentially no 

difference in heritability related to site incidence level or hazard. Correlation of site trait 

performance and site heritability did not indicate any relationship, and genetic correlations of 

growth traits with stem form also indicate no relationship.  
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Table 1-1: Means with standard errors in parentheses of traits for each test series. 
Straightness is assessed on a 1 to 6 scale where 1 is the straightest. Rust and forkram 
are binary traits where incidence is recorded as 1 and absence is 0. The number of trees 
for each test series is n. 

 

Series Height (m) 
Volume 
(dm3) 

Straightness Rust Forkram N 

CPMX1 
7.7 

 (0.013) 
51.3 

(0.205) 
3.01 

(0.010) 
0.31 

(0.004) 
0.18 

(0.003) 
15807 

CPMX2 
6.6 

 (0.019) 
38.8 

(0.287) 
3.23 

(0.015) 
0.33 

(0.005) 
0.31 

(0.005) 
8870 

CPMX3 
8.4 

 (0.020) 
54.6 

(0.320) 
3.25 

(0.012) 
0.37 

(0.005) 
0.28 

(0.004) 
10190 

CPMX4 
6.7 

 (0.021) 
41.5 

(0.266) 
3.27 

(0.016) 
0.39 

(0.005) 
0.17 

(0.005) 
7520 

PPMX1 
6.7 

 (0.013) 
39.3 

 (0.193) 
3.46 

(0.013) 
0.12 

(0.004) 
0.20 

(0.005) 
7100 

PPMX2 
7.0 

 (0.017) 
44.9 

 (0.235) 
3.37 

(0.011) 
0.31 

(0.005) 
0.35 

(0.005) 
9286 

PPMX3 
4.9 

 (0.019) 
20.2 

 (0.154) 
3.44 

(0.023) 
0.23 

(0.008) 
0.31 

(0.009) 
2851 
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Table 1-2: Narrow-sense individual-tree heritabilities for quantitative traits for each 
test series; standard errors of the estimates are in parentheses. 

 

Series Height Volume Straightness 

CPMX1 0.23 (0.041) 0.15 (0.029) 0.12 (0.024) 

CPMX2 0.20 (0.039) 0.11 (0.027) 0.20 (0.038) 

CPMX3 0.23 (0.041) 0.17 (0.033) 0.15 (0.029) 

CPMX4 0.20 (0.042) 0.22 (0.046) 0.17 (0.034) 

PPMX1 0.16 (0.037) 0.21 (0.046) 0.15 (0.035) 

PPMX2 0.36 (0.062) 0.29 (0.055) 0.15 (0.033) 

PPMX3 0.38 (0.093) 0.20 (0.065) 0.13 (0.042) 
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Table 1-3: Family-mean heritabilities on a series basis for binary traits; standard errors 
of the estimates are in parentheses. It is standard practice for analysis to be performed 
with trait incidence between 0.20 and 0.80 for binary traits, but models converged for 
evaluations of each series and trait even when this was not the case (forkram: CPMX1 
and CPMX4; rust: PPMX1). 

 

Series Forkram Rust 

CPMX1 0.51 (0.129) 0.74 (0.054) 

CPMX2 0.50 (0.166) 0.72 (0.068) 

CPMX3 0.50 (0.132) 0.90 (0.041) 

CPMX4 0.61 (0.221) 0.80 (0.064) 

PPMX1 0.49 (0.255) 0.54 (0.137) 

PPMX2 0.60 (0.127) 0.84 (0.056) 

PPMX3 0.31 (0.172) 0.13 (0.137) 
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Table 1-4: Genetic correlations between pairs of traits for each test series.   

 

Series 
(Height,    
Volume) 

(Height, 
Straightness*) 

(Volume, 
Straightness*) 

CPMX1 0.82 -0.13 -0.08 

CPMX2 0.78 -0.13 -0.09 

CPMX3 0.76 -0.19 -0.12 

CPMX4 0.82 -0.13 -0.07 

PPMX1 0.78 -0.09 -0.04 

PPMX2 0.78 -0.04 0.03 

PPMX3 0.84 -0.12 -0.06 

 
* A negative correlation with straightness is favorable since straighter trees have lower 

values. 
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Figure 1-1: Scatter plots of site means versus site narrow-sense individual-tree 
heritability for height and volume. No obvious trend exists for either trait (r = 0.06NS 
for height and r < 0.001 NS for volume). For 51 total sites, the lowest significant 
correlation would be r ≈ 0.28. 
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Figure 1-2: Scatter plots for family mean heritabilities for binary traits, rust incidence 
and forkram incidence. No obvious trend exists for either trait (r = 0.05 NS for rust and r 
= -0.22 NS for forkram). 

 
 
 
 
 

  



41 

 

Chapter 2: Estimates of Heritability and Genotype by Environment 
Interaction in Multi-Environmental Data Analysis in Loblolly Pine 
Progeny Tests 
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Abstract  

Loblolly pine is the most important and widely planted forest tree in the Southeast US, and 

essentially all the planting stock is progeny of genetically improved selections.  These 

selections have progeny that are tested in a large number of environments in order to produce 

predictions that apply across the entire deployment range. These multi-environmental trials 

can help to understand genotype by environment (GxE) interaction. The primary causes of 

statistical significance of GxE are commonly the scale differences in the performance of 

selections rather than rank changes of selections in different environments. Multi-

environmental trials also provide insight on the degree of additive and environmental 

variance for the traits important for breeding.  

 

In this study, a large number of polymix progeny tests in the Coastal and Piedmont breeding 

zones of loblolly pine (Pinus taeda L.) were analyzed to estimate variance components and 

to understand GxE interactions. We used the Factor Analytic (FA) covariance structure for 

the compound term, which is genotype nested within environments, to model GxE. This 

structure approximates the unstructured (US) covariance structure. The FA structure is 

favored over US structure because it is parsimonious. The FA structure model was compared 

to the scaled identity and uniform correlation structures using model fit statistics; model 

likelihood, AIC, and the average standard error of differences between pairs of predictions.  

 

From the standpoint of model fit, the FA structure was found to be optimal for fitting the 

data. For the cross-classified model, GxE was found to be statistically significant at α = 0.001 
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based on Likelihood Ratio Tests; however, genetic correlations were found to be high for all 

series, indicating that GxE is principally associated with differences in scale effect in each 

test series. For this reason, we conclude that ranking of genotypes is largely consistent among 

environments. Heritability estimates were obtained from the final model assuming complete 

balanced data. These estimates were dramatically higher than those based on estimates from 

the cross-classified model.  
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Introduction 

Loblolly pine (Pinus taeda L.) is the most important forest tree in the Southeast, representing 

the vast majority (80%) of regeneration in the southern US (Li et al. 1999). There are about 

11 million hectares of pine plantations in the south, 79% of which is established with loblolly 

pine (Moulton and Hernandez 2000). Today, all planted loblolly pine is genetically improved 

material (McKeand et al. 2003). This advanced genetic material is the product of many 

decades of breeding, testing, and selection efforts carried out by private companies and 

university-based industry cooperatives; North Carolina State University Cooperative Tree 

Improvement Program (NCSUCTIP), the Cooperative Forest Genetics Research Program 

(CFGRP) at the University of Florida, and the Western Gulf Forest Tree Improvement 

Program (WGFTIP) directed by the Texas A&M Forest Service. 

 

Estimation of genetic parameters is an important step in prediction of genetic gain in a 

breeding population. Genetic parameters inform the breeder about the degree to which a trait 

might be inherited (heritability), and the degree to which trait performances are correlated 

due to genetic effects. Producing these statistics to characterize a breeding population is 

necessary for making decisions for selection and defining breeding and deployment zones 

(Zobel and Talbert 1984; Falconer and Mackay 1996). In forest tree progeny testing, 

selections are usually tested in a range of environments to draw general conclusions for a 

deployment zone. Multi-environmental trials (METs) are useful for understanding the 

repeatability of genetic performances across sites in order to rank genotypes. 
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Because METs are intended to provide information about the performance of genotypes 

across many environments, it is of interest to test for the interaction of genetic effects across 

different environments. Statistical significance of the GxE term can occur because of rank 

changes of family performances among sites or because of scale differences among families. 

GxE has been found to be statistically significant in numerous studies of loblolly pine. (Li 

and McKeand 1989) and (Roth et al. 2007) both reported significant (0.01 > ߙ) GxE 

interactions. Li and McKeand concluded that GxE was principally caused by the scale effect 

and concluded that the highest performing genotypes tend to rank highly across all 

environments (Li and McKeand 1989). Roth et al. reported rank changes of genotypes, but 

only for eight genetic entries (Roth et al. 2007). These outcomes and others motivate further 

investigation into analytical methods available for assessment of genotype performance 

across multiple environments and its interpretation. 

 

Traditionally, this genotype by environment (GxE) interaction is evaluated in cross-classified 

models, where selections tested in different trials are assumed to have uniform correlation 

and that genetic variances among environments are homogeneous. It is also assumed that 

sites have the same residual variance. These residual errors are assumed to be independently 

and identically distributed (IID) at a given site (Cullis et al. 1998). Because forest tree 

progeny tests require large tracts of land and are replicated in multiple environments, data 

from METs in forest tree progeny testing is inherently noisy.  Issues often arise in analysis of 

METs with unrealistic assumptions about heterogeneity of test environments, unbalanced 

data, and potential of differing performance of genetic material at different sites (Piepho et al. 
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2007). Test sites vary widely in environmental factors, site quality, and test maintenance, and 

different genotypes may exhibit a non-homogeneous response to differences in 

environments.  

 

For the cross-classified model, the null hypothesis for GxE in these models is that variances 

are identically and independently distributed (IID) and imply an assumption of homogeneity 

of residual variances at sites and independence of genotype performance among sites. While 

this type of analysis was common for many years in plant and tree breeding, more complex 

variance structures are necessary to account for heterogeneity in the data  (Smith et al. 2005). 

The cross-classified model does not exploit the observed heterogeneity among sites, resulting 

in under-fit models in analysis of MET trials (Ogut et al. 2014).  Appropriate analysis of 

MET data requires choosing appropriate variance structures that account for heterogeneity 

among sites.  

 

The Factor Analytic (FAk) variance structure has been suggested to fully describe GxE, 

because it uses a smaller number of parameters than an unstructured (US) variance structure 

specification (Smith et al. 2005; Ogut et al. 2014) while accounting for genetic variances and 

covariances among sites (Piepho 1998). The FAk structure approximates the US structure, 

using the multivariate factor analysis approach to reduce the dimensions of the covariance 

matrix. It makes the model more parsimonious and thus more likely to converge the 

parameter estimates. By accounting for GxE, the FAk structure also allows for more accurate 

estimates of heritability compared to cross-classified models. Factor analytic variance 
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structures have been demonstrated to improve goodness-of-fit for linear models and produce 

increased estimates of heritability (Zapata-Valenzuela 2012; Cullis et al. 2014; Ogut et al. 

2014) for METs. 

 

The FAk variance structure estimates MET-wide “intercepts” for genetic families and 

“slopes” for individual sites based on the loading associated with that site. These components 

are used to produce Best Linear Unbiased Predictions (BLUPs), a linear combination that 

describes the genetic value of a selection at any given site. In this way, GxE can be 

accounted for and explained for each level of each factor (genotype and site) instead of being 

absorbed into a grouped variance component. More rigorous statistical justification and 

explanation of the FAk variance structure can be found in Meyer (Meyer 2009) and Cullis et 

al.  (Cullis et al. 2014).  

 

In this study, we investigate the FAk variance structure in generalized form, specifically the 

Extended Factor Analytic (XFAk) variance structure, compared to the traditional cross 

classified model. The XFAk structure is a different parameterization of the FA model that 

helps with model convergence by adding an additional (dummy variable) to the design 

matrix and fixing it to zero. The XFA model is also compared to the CORUV and the 

CORUH structures. The CORUV assumes constant genetic correlation among sites and 

homogeneity of genetic variances among sites, while CORUH assumes constant genetic 

correlation between sites with heterogeneous variances at sites.  
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Interpretation of GxE using the relaxed assumptions not only explains the heterogeneity in 

the data, but also aids interpretation of heritability for multiple sites. If GxE is important 

because of scale effect differences among genotypes, it can be assumed that heritability for a 

certain set of genotypes is a random variable from a sampling distribution, because GxE is 

caused by different additive variances among sites ((Isik et al. 2005a). In this way, 

heritability can be estimated by interpreting site additive and phenotypic variances as random 

samples. 

 

The data examined in this study represent one of the most geographically diverse testing 

efforts in the third cycle of the NCSUCTIP loblolly pine breeding program. The objectives of 

this study are: (1) Compare linear mixed models with different variance-covariance 

structures in multi-environmental models to explain GxE, and (2) Estimate genetic 

parameters (heritability and pair-site genetic correlations) based on the models.  

 

Materials and Methods 

Material  

Data were collected from four Coastal breeding population test series and three Piedmont 

breeding population test series with a variety of number of sites within each series. Each of 

these test sites was established and measured as part of the collective effort of NCSUCTIP 

and its cooperating members in mainline 3rd-Cycle breeding.  
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The 3rd-Cycle mainline effort was focused on three breeding regions as described in 

Appendix Figure A-1. These regions represented a grouping of the 2nd-Cycle breeding and 

testing regions: the Northern region (Virginia and Northern North Carolina), the Coastal 

region (Atlantic Coastal Plains of southern NC, SC, GA, and the Lower Gulf Coast of AL 

and MS), and the Piedmont region (inland zones of South Carolina and Georgia and the 

Upper Gulf Coast of AL, MS, and TN).  

 

The mating scheme in each series was identical: polymix crossing to produce half-sibling 

families to predict general combining ability of parents. Polymix, also known as pollen mix 

or PMX (henceforth called PMX), refers to crossing a specified mix of pollen from known 

male parents to known female parents. This mating strategy uses a common bulked pollen 

source to mate large number of female parents, reducing variation of genetic input of male 

parents within each provenance. Thus, each progeny of a PMX cross has one female parent 

in common and theoretically different male parents. For each breeding region, twenty well-

characterized parents with average breeding values were selected to represent the pollen 

donor in a region. Pollen was collected from ramets of each male parent and blended using 

the pollen germination percentage as the weight factor. Details of the mating design are 

reported by (McKeand and Bridgwater 1998). 

 

To connect tests series, a checklot system was developed for each region. Checklots are 

bulked seeds from average performing families. These checklots are CCK, PCK, NCK for 
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the Coastal, Piedmont, and Northern regions, respectively. These checklots were developed 

by crossing the pollen mix for each region onto a subset of ten of the twenty parents. That is, 

for the Coastal region, the parentage of CCK would be a subset of ten Coastal female parents 

crossed with a pollen blend of all 20 male parents. Additionally, seven well-characterized 

parents were crossed with the pollen mix for each respective series and incorporated into the 

testing. Four of these families were PMX crosses with two high-performing and two poor-

performing parents from 1st- and 2nd- Cycle testing.  

 

Experimental Design 

Half-sib families of a given PMX test series were tested using a randomized complete block 

design with 20 blocks at each site. Single-tree-plots were used as experimental units. 

Approximately 70 half-sib families were included at each site, including three checklots 

(CCK, PCK, NCK) and seven common family checks that were used for connection. About 

1400 trees were planted at each site at the time of establishment. The experiment was 

replicated at different environments, ranging from three to 13 sites for a given test series (see 

Appendix Table A-13 for details).  

 

Measurement Traits 

Tests were measured between ages four and seven years. Height and diameter at breast 

height (DBH) were measured to the nearest 0.1 foot and 0.1 inch, respectively. These 

measurements were converted into meters and centimeters. Inside-bark volume (in cubic 
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decimeters) was calculated according to Sherrill et al. ( 2011). Because volume is the only 

trait considered in this study, commentary on other measured traits is excluded. 

 

Statistical analysis 

Cross classified mixed model 

The following linear mixed model was used to analyze the data on a series basis.  

࢒࢑࢐࢏࢟  = ࣆ  + ࢏ࡿ  + (࢏)࢐(ࡿ)ࡾ  + ࢑ࡲ  ࢑࢏ࡲࡿ + +  (2-1)    ࢒࢑࢐࢏ࢋ 

where ݕ௜௝௞ is the response variable, ߤ is the overall mean response,  ௜ܵ is the fixed site effect, 

ܴ(ܵ)௝(௜) is the random blocking effect nested within site ~N(0, ߪ௥௕
ଶ  ௞ is the random effectܨ ,(

of female parent ~N(0, ߪ௙
ଶ), ܵܨ௜௞ is the site-female interaction term (GxE) ~N(0, ߪ௦௙

ଶ ), and 

݁௜௝௞௟ is the residual error ~N(0, ߪ௘
ଶ). All random effects and errors are assumed to be IID. 

This is a typical cross-classified model with usual ANOVA assumptions.  

 

Female variance component was divided by the sum of the female variance component and 

female by site interaction variance components to estimate type B genetic correlation as 

suggested by (Burdon (Burdon 1977):  

࡮࢘ =  
ࢌ࣌

૛

ࢌ࣌
૛ା ࢙ࢌ࣌

૛        (2-2) 

Where ߪ௙
ଶ is the family genetic variance and ߪ௙௦

ଶ  is the GxE effect.  This statistic has a range 

of 0 and 1, with higher values suggesting lack of significant GxE interactions. 
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Statistical significance of the GxE term was assessed using the residual maximum likelihood 

ratio test (LRT) from two nested models with the same fixed effects (Self and Liang (Self 

and Liang 1987). The model in equation (2-1) would be the full model. The same model 

without the GxE term would be the reduced model.  

 

૛࣑ =  −૛[(࢒ࢋࢊ࢕࢓ ࢒࢒࢛ࢌ)ࡸࢍ࢕ࡸ −  (2-3)   [(࢒ࢋࢊ࢕࢓ ࢊࢋࢉ࢛ࢊࢋ࢘)ࡸࢍ࢕ࡸ

Here, ߯ଶ is a Chi-square distributed random variable representing the difference in LogL. 

This statistic has 1 degree of freedom since the full model has one additional random effect 

(GxE). Significance of the Chi-square variable suggests that the GxE term is significant.  

 

Relaxing assumptions of the mixed models  

The cross-classified model assumptions (uniform correlation between pairs of sites and 

homogenous genetic and residual variance structures) are not realistic in forest trees progeny 

tests.  We first relaxed the homogenous residual structure by fitting a block diagonal residual 

variance structure. That is, each environment has different residual error variance, and the 

residual errors are identical and independent within an environment. The model fit statistics 

improved substantially. In order to explain the heterogeneity in family and family by 

environment interaction effects, a genetic variance structure assuming uniform correlations 

among sites with homogenous genetic variance (CORUV) was fit.  The generalized equation 

is shown below: 

࢒࢑࢐࢏࢟ = ࣆ  + ࢏ࡿ  + (࢏)࢐(ࡿ)ࡾ  + ࢑࢏࢛   (2-4)    ࢒࢑࢐࢏ࢋ +
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Where ݕ௜௝௞௟ is the response variable (volume), ߤ is the mean, ௜ܵ is the fixed site effect, 

ܴ(ܵ)௝(௜) is the random blocking effect nested within site ~N(0, ߪ௥௦
ଶ  ௜௞ is the randomݑ ,(

covariance of genotype at a pair of sites, (i,k), where the number of sites t = i = k. In this 

compound term the genotypes are nested within sites. ݁௜௝௞௟ is the residual error ~N(0, ߪ௘೔
ଶ ). 

This model has the same number of parameters, but parameterization is different as the 

genetic and GxE terms are combined in one term. The variance components from CORUV 

structure produced one genetic variance (family effect) and one correlation (equal to type B 

genetic correlation from the cross-classified model). The assumptions of homogeneous 

genetic correlations in the CORUV structure were further relaxed by fitting a heterogeneous 

genetic covariance structure with uniform correlation between pairs of sites (CORUH) and 

Factor Analytic covariance structure (XFA) for  ݑ௜௞ term. 

 

Results of implementing XFA structure 

Genetic correlations between all pairs of sites as well as unique site loadings and site specific 

variances are estimated by specifying the factor analytic variance structure. Pair-site 

covariances are calculated as a linear combination of site loadings and estimated 

multiplicative factors. Using the “heatmap.2” function in the ggplot2 package in R (Wickham 

et al. 2013), symmetric heatmap images of these site-site genetic correlations were produced 

to visualize the correlations between sites. Percent genetic variance explained by the 

multiplicative terms in the factor analytic structure were reported as direct model output. This 

term describes the amount of genetic variance retained in the k-factor estimation of the 

covariance matrix. Explicitly, it is the amount of genetic variance explained as a linear 
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combination by the first k factors and the site loadings. Ideally, 100% of all of the variance 

would be captured, but this is not always the case in a dimension reduction exercise. This 

figure can be explained as the “cost” of a more parsimonious model. 

 

Estimation of heritability 

Narrow-sense individual-tree and family-mean heritability estimates were obtained from 

models to compare their efficiency for selection and gain prediction. Estimates were obtained 

for each test series. For the cross-classified model, narrow-sense individual-tree (ℎ௜
ଶ) and 

family-mean heritability (ℎ௙
ଶ) were estimated from linear combinations of variance 

components for each test series: 

࢏ࢎ
૛ =

૝ࢌ࣌
૛

ࢌ࣌
૛ା ࢌ࢙࣌

૛ ା ࢋ࣌
૛തതതത     (2-5) 

ࢌࢎ
૛ =

ࢌ࣌
૛

ࢌ࣌
૛ା 

ࢌ࢙࣌
૛

࢙
ା 

ࢋ࣌
૛

࢔࢙

തതത     (2-6) 

where  4ߪ௙
ଶ is the additive variance assuming families consist of half-sibs, ߪ௙

ଶ is the family 

variance, ߪ௦௙
ଶ  is the site-family interaction (i.e. GxE), and ߪ௘

ଶതതത is the pooled residual variance 

across sites, s is the number of sites, and n is the harmonic mean number of trees per family 

per site. For this calculation, the phenotypic variance pool includes additive family variance, 

non-additive GxE variance, and residual variance across all sites. 

 

For the factor analytic structure, heritability estimates were calculated using linear 

combinations of variance components. Family variance components were averaged across 
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site assuming completely balance data. Similarly, residual variance components were 

averaged across sites. Narrow-sense individual tree heritability is calculated as described in 

(Isik et al. 2017): 

࢏ࢎ
૛ =  

૝ ∗ ࢌ࣌ଙ
૛തതതതത∗  ࢌ࣋ଙതതതതത

ଙࢌ࣌
૛തതതതതା ࢋ࣌

૛തതതത        (2-7) 

and family mean heritability was calculated as  

ࢌࢎ
૛ =  

തതതത࢏ࢌ࣌  

ଙࢌ࣌
૛

࢙

തതതത
ା(ି࢙૚) 

തതതതത࢏ࢌ࣌  

࢙
ା

૚

 ૛࢙
ࢋ࣌

૛

࢔

തതത
      (2-8) 

where ߪ௙పതതതത is the mean genetic covariance between pairs of sites sites,  ߩ௙పതതതതത is the average pari-

site genetic correlation, ߪ௙ప
ଶതതതത is the average within-site family variance, and ߪ௘

ଶതതത is the mean 

residual variance for all sites. Here, we assume that the site variances also implicitly describe 

GxE, and the average genetic correlation multiplied by the average site variance 

approximates the mean additive variance at each site. For family mean heritability, s is the 

number of sites, and n is the number of trees per family per site.  In this way, we treat each 

site of the MET as a random variable from a sampling distribution. Justification and formal 

explanation of the motivation for these methods is found in Isik et al. (2005). 

 

Results  

Model fit statistics for the ANOVA-type IID model and models with XFA1, XFA2, CORUH, 

and CORUV variance structure specifications suggest that a more complex variance structure 

that accommodates both site-specific genotype variances and genetic covariances among 

sites is a better fit for describing these data than the cross-classified model, which explicitly 
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defines a unique GxE term (Table 2-2). We observed consistent decrease in AIC and BIC 

model fit statistics, demonstrating an improvement in goodness-of-fit. From a model 

selection standpoint, the XFA1, XFA2, and CORUH variance structures were the best 

models. 

 

For the ANOVA-type IID model, evaluation of GxE did not yield clear results. Depending on 

the test series, Type-B genetic correlations for this model ranged from 0.41 to 0.61. The GxE 

interaction effect was significant at an 0.001 = ߙ level for each series based on the likelihood 

ratio tests previously described (Table 2-1). Because statistically significant GxE could be 

due to family rank changes between sites and scale differences of families at different 

environments, type B genetic correlations are not particularly informative. Performance of 

genotypes across multiple sites is never expected to be independent in practice, since 

resemblance of relatives is expected to have some sort of continuity across environments. 

The major drawback of cross-classified models and compound symmetry models is that they 

assume a uniform genetic correlation between sites.  

 

The factor analytic variance structure explicitly described the heterogeneous structure of GxE 

(Table B-2 to B-8). The mean correlation for test series is shown in Table 2-3. Mean 

correlations for series ranged from 0.66 for CPMX1 to 0.86 for PPMX3. Overall, genetic 

correlations were high across sites. This result is more intuitively understood by examining 

heatmaps for each series (Figure 2-1 and Appendix Figures B-1 to B-6), where strong 
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correlations are demonstrated for most sites, with a small number of errant sites seeming to 

show poor relationship with one another.  

 

The mean percent variance explained by genetic covariance effects for each site in a series 

ranged from 0.61% to 93.3% (Table 2-4). Here, higher percentages suggest that definable, 

additive effects are primarily responsible for genetic variance. Further, the loading associated 

with the k multiplicative factors for sites within a series were informative in the way of 

describing the relationship between sites. For example, in CPMX1, loadings for factor 1 were 

all essentially the same magnitude, suggesting that each site contributed to the variance at 

different levels, but in the same “direction.” The second factor was weighted heavily toward 

site 5, suggesting that this site in particular had something different about it than the other 

sites. This paradigm held true in view of the correlations among sites, where site 5 had 

weaker correlations with most of the other sites in the series.  

 

Individual-tree narrow-sense and family-mean heritability estimates are presented in Tables 

2-5 and 2-6. Heritability estimates from more complex models were significantly greater for 

each test series. Narrow-sense heritability estimates based on variance components derived 

from the ANOVA-type IID model ranged from 0.11 in CPMX2 to 0.29 in PPMX2. For 

factor-analytic models, these estimates ranged from 0.17 in CPMX1 to 0.40 in PPMX2. The 

per-series increase was even more dramatic for family-mean heritability. For the ANOVA-

type IID model, family-mean heritability estimates ranged from 0.30 in CPMX2 to 0.55 in 

PPMX2. In contrast, these estimates ranged from 0.69 in PPMX3 to 0.94 in CPMX1 for the 
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FA model. It is important to note that these heritability estimates are based on roughly the 

same site-specific variances, but the methods for calculating these estimates can be quite 

complex when data are not balanced. 

 

Discussion 

Strictly from the perspective of models fitting data, statistics for the models considered in 

this study suggest that implementation of the one- and two-factor XFA structures represented 

an improvement in goodness of fit relative to the IID models in each testing series. We 

conclude that the FA approach is superior in comparison to the standard cross-classified IID 

model, likely due to its ability to describe GxE and accommodate heterogeneous variances. 

This is an expected result and has been widely reported in the literature (Zapata-Valenzuela 

2012; Cullis et al. 2014; Ogut et al. 2014). From a statistical standpoint, the advantage of the 

XFAk variance structure is that it approximates unstructured (US) genetic covariances with 

much smaller number of parameters (Piepho 1998). The US structure assumes that sites have 

different variances, and pairs of sites have different genetic covariances. Namely, all pairs of 

sites have different genetic correlations and a unique genetic and residual variance. This 

assumption of complete heterogeneity requires the estimation of an unwieldy number of 

parameters, losing degrees of freedom, and requiring more computation resources.  Because 

the XFAk model accommodates heterogeneity more with more parsimoniously than the US 

model while accommodating flexible covariance assumptions, it has lower AIC and BIC. 
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The XFA2 variance structure was overall the best according to model fit statistics. However, 

it is noteworthy that the CORUH structure, specifying heterogeneous variances across sites 

with a common genetic correlation for all pairs of sites, was often close in model fit and was 

occasionally better. The most intuitive explanation for this result is that if genetic correlations 

are high for all pairs of sites, the correlations would likely be close to homogeneous. If 

indeed correlations among sites are homogeneous, the CORUH model would be preferred for 

fit statistics because it would be more parsimonious than the XFA2 model. Simply, instead of 

estimating the covariance matrix with two factors, p site loadings for each factor, and p site-

specific variances, it would be estimated with p site specific variances and a single 

correlation term. For this reason, instances where the CORUH model is superior with respect 

to AIC or BIC, it is likely because genetic correlations are similar. Therefore, because the 

homogeneous correlation model is not as informative, the XFA2 model is preferred for 

evaluation of these data. 

 

Employing a variance structure that accommodates non-specific correlations of genotypes 

among sites is also more intuitive for describing data for multiple environments. 

Incorporating a set of variance assumptions that are not restricted to strictly identical residual 

variances represents a much more realistic approach for attempting to describe this type of 

data. An example demonstrating the importance of this result is the CPMX1 series, where 

site 5 exhibits poor correlation, but other sites are highly correlated to one another. This 

result is an important one because while the IID model would require accounting for this 

information by an increase in GxE, the FA structure, while not explicitly defining a cause for 



60 

 

the aberration, explains it incidentally. While it is not based on formal statistical testing, it 

can be intuitively seen that it would be misleading to ascribe a low heritability for an entire 

group of genotypes based on what ultimately is the aberration of one particular site. This can 

be understood visually with a heatmap of genetic correlations, where the disparity of site 5 is 

obvious in view of the others (Figure 2-1). Heatmaps for other series are found in Appendix 

Figures B-1 through B-6. 

 

The statistical significance of GxE in the ANOVA-type IID model serves as confirmation 

that selecting a model with assumptions of homogeneous error variances and genetic 

variances is not appropriate for describing these data. Genetic correlations between pairs of 

sites were very high when heterogeneity was accounted with more complex variance-

covariance structures. The cross-classified model does not allow for describing meaningful 

sets of environmental delineations. For example, yearly precipitation, and minimum, and 

mean temperatures, have been conjectured by (Roth et al. 2007) to be important factors to 

account for differences in genotype performances among sites.  Any of these variables could 

cause genotypes to rank differently among sites. The advantage of using the FA covariance 

structure is that GxE can be better explained. The results showed that GxE for volume 

growth in loblolly pine was negligible for a given test series. 

 

Because FA structures result in better-fitting models, they produced heritability estimates 

substantially higher than those of cross classified models (Tables 2-5 and 2-6). GxE is 

described with a series of pair-site genetic covariances, so it is no longer considered a ‘black 
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box’ term as in the case of the cross-classified IID model and thus is not part of the 

phenotypic variance. Therefore, the ‘penalty’ of high GxE associated with differences in 

scale of family rank is overcome, and heritability is increased in magnitude and theoretical 

accuracy. FA-based estimates of both narrow-sense and family-mean heritability imply that 

volume is more heritable and that repeatability of family means is much higher than 

estimates with the cross-classified model would suggest. The method used to calculate 

estimates of heritability in this study assume completely balanced data. If the data were 

imbalanced across sites, the heritability estimates would be adjusted according to the 

harmonic means of families per site. Although the assumption of completely balanced data is 

flawed, relative balance across sites and consistency of method motivated exclusion of the 

harmonic mean term. The clear outcome of this study shows that the FA structure is 

preferable to analyzing MET data using the traditional cross-classified model.  

 

Conclusions  

The factor analytic variance structure was found to be the optimal structure to fit the data for 

each series according to model fit statistics. Although GxE was found to be statistically 

significant based on the cross classified model, we found that it was not important with 

respect to prediction of ranks across multiple environments. Genetic correlations among sites 

were high for each test series, so GxE was principally associated with scale differences 

among genotype ranks rather than switches in rank change among sites; these are the two 

possible explanations for high GxE. Although there is some unexplained GxE because 

genetic correlations are not perfect, the overwhelming trend is consistency of family rank 
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among sites. Because GxE is accounted for with genetic correlation, it is ignored in estimates 

of heritability. Therefore, heritability estimates were dramatically increased over those from 

the cross-classified model. 
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Table 2-1: Likelihood ratio tests results to determine significance of the GxE term for 
volume in cross-classified model. The “Full Model” is given in equation (2-1), and the 
reduced model is a linear model with no GxE effect.  

Series Full Model Reduced model Difference1 P-value 

CPMX1 -1975.98 -2013.71 75.46 <0.001 

CPMX2 -7593.33 -7632.39 78.12 <0.001 

CPMX3 5406.17 5373.80 64.74 <0.001 

CPMX4 -3900.38 -3951.42 102.08 <0.001 

PPMX1 -355.33 -399.52 88.36 <0.001 

PPMX2 -6247.94 -6293.07 90.26 <0.001 

PPMX3 -6527.10 -6536.61 19.02 <0.001 

 
  

                                                 

1 Chi-square critical value for 1 DF is 3.88.  
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Table 2-2: Model fit statistics (Akaike Information Criterion, Bayesian Information 
Criterion, log likelihood, and number of parameters) for volume in the PMX data. For 
each statistic, a smaller number indicates better model fit. 

CPMX1 AIC BIC LL Parameters 

IID 103960 103991 -51976 4 

CORUH 99033 99248 -49489 28 

CORUV 99185 99308 -49577 16 

XFA1 99029 99320 -49477 38 

XFA2 99030 99398 -49467 48 

     

CPMX2 AIC BIC LL Parameters 

IID 55195 55223 -27593 4 

CORUH 48445 48558 -24206 16 

CORUV 48563 48634 -24271 10 

XFA1 48451 48607 -24203 22 

XFA2 48441 48611 -24197 24 

          

CPMX32 AIC BIC LL Parameters 

IID -70804 -70775 5406 4 

CORUH -74031 -73901 7033 18 

CORUV -73958 -73879 6990 11 

XFA1 -74025 -73844 7037 25 

XFA2 NA NA NA NA 

 

                                                 

2 Model diagnostics for CPMX3 are inverted positive because LogL is reported as positive because of small 
variance component estimates in ASReml. Nonetheless, the XFA1 structure is preferred. A model incorporating 
the XFA2 structure did not converge. 
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Table 2-2 (con’t): Model fit statistics (Akaike Information Criterion, Bayesian 
Information Criterion, log likelihood, and number of parameters) for volume in the  
polymix data. For each statistic, a smaller number indicates better model fit.  

     

CPMX4 AIC BIC LL Parameters 

IID 47809 47836 -23900 4 

CORUH 44008 44105 -21990 14 

CORUV 44185 44247 -22083 9 

XFA1 44008 44139 -21985 19 

XFA2 44012 44164 -21984 22 

          

PPMX1 AIC BIC LL Parameters 

IID 40719 40746 -20355 4 

CORUH 39701 39811 -19834 16 

CORUV 39758 39827 -19869 10 

XFA1 39707 39858 -19831 22 

XFA2 39708 39880 -19829 25 
     

PPMX2 AIC BIC LL Parameters 

IID 49875 50037 -24914 4 

CORUH 49899 50012 -24934 16 

CORUV 50089 50160 -25035 10 

XFA1 49899 50040 -24929 20 

XFA2 49875 50037 -24914 23 
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Table 2-2 (con’t): Model fit statistics (Akaike Information Criterion, Bayesian 
Information Criterion, log likelihood, and number of parameters) for volume in the 
polymix data. For each statistic, a smaller number indicates better model fit. 

     

PPMX3 AIC BIC LL Parameters 

IID 13062 13086 -6527 4 

CORUH 11964 12012 -5974 8 

CORUV 12000 12036 -5994 6 

XFA1 11964 12018 -5973 9 
XFA2 11964 12017 -5973 9 
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Table 2-3: The mean genetic correlation between all pairs of sites for each PMX test 
series. Correlations were obtained from XFA structures.  

Test series Average correlation  

CPMX1 0.66 

CPMX2 0.73 

CPMX3 0.80 

CPMX4 0.77 

PPMX1 0.78 

PPMX2 0.85 

PPMX3 0.86 
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Table 2-4: Percent genetic variance explained by XFA2 model terms. Sites are indexed 
by test series name along the top row and site number along the first column.  

Site CPMX1 CPMX2 CPMX33 CPMX4 PPMX1 PPMX2 PPMX3 

1 61.6 34.9 95.6 66.5 53.1 100.0 100.0 

2 94.5 81.1 66.1 100.0 79.8 100.0 100.0 

3 59.6 100.0 . 80.8 77.9 87.1 72.7 

4 100.0 . 68.0 81.5 100.0 86.3 . 

5 100.0 . 61.4 86.7 100.0 100.0 . 

6 84.4 72.9 37.6 . 83.1 100.0 . 

7 89.9 . 39.5 . 43.1 79.5 . 

8 97.8 32.7 50.1 37.6 . . . 

9 54.3 100.0 . . . . . 

10 70.3 100.0 69.9 . . . . 

11 60.0 . . . . . . 

12 72.8 . . . . . . 

13 100.0 . . . . . . 

Mean 80.4 74.5 61 75.5 76.7 93.3 90.9 

 

  

                                                 

3 This series did not have global loglikelihood convergence with the XFA2 structure, so XFA1 results are 
shown. 
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Table 2-5: Series-wide narrow-sense heritability estimates (with standard errors in 
parentheses) for the scaled identity and the XFA2 covariance structures. Heritability 
estimates were always higher when variance components from the XFA2 structure are 
used.   

Series ID Scaled identity (IID) XFA2 Structure4 

CPMX1 0.15 (0.029) 0.175 

CPMX2 0.11 (0.027) 0.19 

CPMX3 0.17 (0.033) 0.24 

CPMX4 0.22 (0.046) 0.32 

PPMX1 0.21 (0.046) 0.31 

PPMX2 0.29 (0.055) 0.40 

PPMX3 0.20 (0.065) 0.33 
 

 
  

                                                 

4 CPMX3 was calculated based off of XFA1-derived variance components. 
5 Standard errors were not calculated in these estimates of heritability.  
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Table 2-6: Series-wide family-mean heritability estimates for the scaled identity and the 
XFA2 covariance structures. Heritability estimates were dramatically higher than those 
estimated with the cross-classified model, and expected result given the high 
repeatability of family performance observed across sites with genetic correlations. 

Series ID Scaled identity (IID) XFA2 Structure6 

CPMX1 0.417 0.94 

CPMX2 0.30 0.80 

CPMX3 0.38 0.88 

CPMX4 0.47 0.85 

PPMX1 0.42 0.87 

PPMX2 0.55 0.90 

PPMX3 0.39 0.69 
 

  

                                                 

6 CPMX3 was calculated based off of XFA1-derived variance components. 
7 Standard errors for these estimates were not calculated. 
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Figure 2-1: A heatmap of genetic correlation among sites for Coastal series 1 (CPMX1) 
based on XFA2 structure. Dark colors show high correlations. Site 5 had weak 
correlations with the rest of the sites. Overall GxE seems not important in the test 
series.  

 
  



76 

 

Appendixes 
 
  



77 

 

Appendix A: Supplementary Tables and Figures for Chapter 1. 
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Table A-1: Means and standard errors of traits measured in the CPMX1 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram8 
Incidence 

n 

1 
7.27 

(0.028) 
43.04 

(0.431) 
3.56 

(0.034) 
0.02 

(0.004) 
0.34 

(0.013) 
1284 

2 
9.09 

(0.018) 
76.30 

(0.444) 
3.53 

(0.019) 
0.20 

(0.011) 
0.49 

(0.014) 
1256 

3 
8.46 

(0.029) 
52.06 

(0.529) 
3.41 

(0.024) 
0.37 

(0.013) 
0.10 

(0.008) 
1269 

4 
7.80 

(0.024) 
51.73 

(0.453) 
1.90 

(0.022) 
0.27 

(0.012) 
0.22 

(0.011) 
1306 

5 
8.74 

(0.030) 
82.32 

(0.762) 
1.80 

(0.042) 
0.46 

(0.014) 
0.21 

(0.012) 
1175 

6 
6.64 

(0.032) 
31.24 

(0.332) 
1.36 

(0.016) 
0.34 

(0.014) 
0.06 

(0.007) 
1198 

7 
8.85 

(0.027) 
68.57 

(0.658) 
3.48 

(0.038) 
0.63 

(0.013) 
0.15 

(0.010) 
1164 

8 
8.70 

(0.020) 
71.50 

(0.509) 
3.53 

(0.037) 
0.26 

(0.012) 
0.27 

(0.013) 
1238 

9 
7.85 

(0.025) 
38.35 

(0.346) 
3.55 

(0.023) 
0.41 

(0.013) 
0.05 

(0.006) 
1295 

10 
8.02 

(0.026) 
53.00 

(0.508) 
3.56 

(0.022) 
0.40 

(0.014) 
0.17 

(0.012) 
1064 

11 
3.87 

(0.020) 
10.46 

(0.089) 
3.40 

(0.024) 
0.10 

(0.009) 
0.02 

(0.004) 
1197 

12 
8.60 

(0.031) 
57.09 

(0.646) 
3.53 

(0.037) 
0.50 

(0.014) 
0.07 

(0.007) 
1092 

13 
6.67 

(0.022) 
33.81 

(0.301) 
2.30 

(0.021) 
0.02 

(0.004) 
0.13 

(0.010) 
1269 

  

                                                 

8 Forkram is the incidence of forking or ramicorn branching. 
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Table A-2: Means and standard errors of traits measured in the CPMX2 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram9 
Incidence 

n 

1 
8.27 

(0.033) 
79.01 

(0.676) 
1.74 

(0.040) 
0.18 

(0.011) 
0.08 

(0.008) 
1258 

2 
6.07 

(0.022) 
26.69 

(0.237) 
3.55 

(0.036) 
0.38 

(0.013) 
0.63 

(0.013) 
1282 

3 
8.69 

(0.027) 
64.89 

(0.614) 
3.54 

(0.036) 
0.46 

(0.014) 
0.50 

(0.014) 
1240 

6 
7.52 

(0.020) 
44.36 

(0.341) 
3.67 

(0.025) 
0.42 

(0.013) 
0.18 

(0.011) 
1297 

8 
6.70 

(0.023) 
28.29 

(0.263) 
2.99 

(0.031) 
0.46 

(0.014) 
0.18 

(0.010) 
1348 

9 
4.07 

(0.015) 
12.09 

(0.088) 
3.58 

(0.034) 
0.18 

(0.010) 
0.29 

(0.012) 
1397 

10 
4.74 

(0.018) 
17.27 

(0.138) 
3.50 

(0.042) 
0.23 

(0.013) 
0.32 

(0.014) 
1048 

 

  

                                                 

9 Forkram is the incidence of forking or ramicorn branching. 
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Table A-3: Means and standard errors of traits measured in the CPMX3 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram10 
Incidence 

n 

1 
10.89 

(0.025) 
84.17 

(0.873) 
3.65 

(0.021) 
0.43 

(0.013) 
0.26 

(0.012) 
1404 

2 
10.65 

(0.027) 
70.66 

(0.676) 
3.60 

(0.023) 
0.41 

(0.013) 
0.15 

(0.010) 
1427 

4 
9.50 

(0.025) 
79.13 

(0.971) 
3.64 

(0.033) 
0.41 

(0.013) 
0.20 

(0.011) 
1326 

5 
7.97 

(0.029) 
64.54 

(0.600) 
1.68 

(0.040) 
0.32 

(0.012) 
0.20 

(0.010) 
1445 

6 
7.19 

(0.025) 
29.18 

(0.331) 
3.60 

(0.023) 
0.38 

(0.014) 
0.10 

(0.009) 
1199 

7 
5.62 

(0.023) 
24.69 

(0.296) 
3.13 

(0.023) 
0.40 

(0.014) 
0.92 

(0.008) 
1203 

8 
7.08 

(0.018) 
41.42 

(0.372) 
3.45 

(0.022) 
0.19 

(0.011) 
0.17 

(0.011) 
1223 

10 
6.98 

(0.027) 
29.05 

(0.586) 
3.27 

(0.033) 
0.39 

(0.015) 
0.32 

(0.015) 
963 

 
  

                                                 

10 Forkram is the incidence of forking or ramicorn branching. 
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Table A-4: Means and standard errors of traits measured in the CPMX4 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram11 
Incidence 

n 

1 
5.56 

(0.027) 
30.06 

(0.347) 
3.29 

(0.034) 
0.25 

(0.012) 
0.13 

(0.010) 
1214 

2 
8.17 

(0.025) 
42.02 

(0.378) 
3.58 

(0.022) 
0.40 

(0.013) 
0.07 

(0.007) 
1371 

3 
7.17 

(0.025) 
41.40 

(0.450) 
3.57 

(0.031) 
0.35 

(0.013) 
0.35 

(0.014) 
1209 

4 
8.21 

(0.026) 
59.48 

(0.622) 
3.59 

(0.040) 
0.52 

(0.013) 
0.20 

(0.012) 
1083 

5 
7.34 

(0.026) 
62.18 

(0.495) 
1.99 

(0.041) 
0.57 

(0.013) 
0.15 

(0.009) 
1474 

8 
3.68 

(0.016) 
10.39 

(0.068) 
3.79 

(0.031) 
0.18 

(0.011) 
NA 1169 

 
  

                                                 

11 Forkram is the incidence of forking or ramicorn branching. 
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Table A-5: Means and standard errors of traits measured in the PPMX1 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram12 
Incidence 

n 

1 
7.04 

(0.021) 
33.81 

(0.273) 
3.51 

(0.034) 
0.16 

(0.011) 
0.14 

(0.010) 
1163 

2 
6.89 

(0.023) 
35.40 

(0.300) 
3.50 

(0.037) 
0.14 

(0.011) 
0.24 

(0.013) 
1096 

3 
7.48 

(0.035) 
57.08 

(0.488) 
3.51 

(0.045) 
0.10 

(0.010) 
0.29 

(0.015) 
956 

4 
7.66 

(0.022) 
55.57 

(0.469) 
3.46 

(0.025) 
0.13 

(0.010) 
0.11 

(0.010) 
1056 

5 
6.13 

(0.034) 
41.99 

(0.589) 
2.99 

(0.057) 
0.01 

(0.005) 
0.23 

(0.019) 
491 

6 
5.52 

(0.017) 
23.85 

(0.189) 
3.50 

(0.020) 
0.12 

(0.010) 
0.16 

(0.011) 
1135 

7 
6.15 

(0.022) 
33.40 

(0.300) 
3.48 

(0.036) 
0.10 

(0.009) 
0.28 

(0.013) 
1203 

 
  

                                                 

12 Forkram is the incidence of forking or ramicorn branching. 
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Table A-6: Means and standard errors of traits measured in the PPMX2 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram13 
Incidence 

n 

1 
7.58 

(0.020) 
42.75 

(0.311) 
3.45 

(0.023) 
0.56 

(0.013) 
0.17 

(0.010) 
1443 

2 
6.70 

(0.030) 
35.30 

(0.428) 
3.64 

(0.036) 
0.42 

(0.013) 
0.25 

(0.012) 
1422 

3 
3.98 

(0.018) 
12.85 

(0.103) 
3.29 

(0.034) 
0.23 

(0.012) 
0.39 

(0.014) 
1212 

4 
6.16 

(0.024) 
33.17 

(0.299) 
3.44 

(0.025) 
0.41 

(0.014) 
0.49 

(0.014) 
1243 

5 
8.00 

(0.021) 
65.91 

(0.491) 
3.12 

(0.024) 
0.21 

(0.011) 
0.43 

(0.014) 
1302 

6 
7.78 

(0.023) 
60.99 

(0.511) 
3.16 

(0.029) 
0.18 

(0.011) 
0.43 

(0.015) 
1124 

7 
8.45 

(0.020) 
60.86 

(0.443) 
3.42 

(0.031) 
0.11 

(0.008) 
0.33 

(0.012) 
1540 

 
  

                                                 

13 Forkram is the incidence of forking or ramicorn branching. 
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Table A-7: Means and standard errors of traits measured in the PPMX3 series. 
Straightness is visually assessed on a 1-6 scale where 1 is the straightest. Rust and 
forkram are binary (0, 1) where 1 indicates incidence. Number of measured trees for 
height is represented by n. 

Test 
Height 

(m) 
Volume 
(dm3) 

Straightness 
Score 

Rust 
Incidence 

Forkram14 
Incidence 

n 

1 
5.29 

(0.025) 
24.74 

(0.291) 
3.46 

(0.042) 
0.47 

(0.016) 
0.31 

(0.015) 
955 

2 
5.54 

(0.017) 
22.20 

(0.166) 
3.52 

(0.038) 
0.10 

(0.009) 
0.15 

(0.011) 
1082 

3 
3.64 

(0.015) 
12.02 

(0.088) 
3.32 

(0.037) 
0.13 

(0.012) 
0.54 

(0.017) 
814 

 
  

                                                 

14 Forkram is the incidence of forking or ramicorn branching. 
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Table A-8: Additive genetic variances with standard errors in parentheses for height, 
volume, and straightness. Additive variance ࢇ࣌

૛ is four times the family variance ࢌ࣌
૛  

since progeny for half-sib families are expected to share 1/4 of their genetic material 
from the known parent. 

Site Height Volume Straightness 

cpmx1_1 0.46 (0.114) 119.7 (29.2) 0.40 (0.121) 

cpmx1_2 0.20 (0.046) 85.5 (22.9) 0.09 (0.032) 

cpmx1_3 0.23 (0.063) 68.6 (22.0) 0.25 (0.070) 

cpmx1_4 0.15 (0.051) 38.9 (15.6) 0.05 (0.030) 

cpmx1_5 0.21 (0.075) 117.2 (46.7) 0.42 (0.154) 

cpmx1_6 0.28 (0.092) 40.5 (11.7) 0.03 (0.017) 

cpmx1_7 0.32 (0.081) 125.3 (39.7) 0.24 (0.108) 

cpmx1_8 0.14 (0.042) 70.9 (23.9) 0.29 (0.112) 

cpmx1_9 0.27 (0.069) 38.9 (11.4) 0.16 (0.050) 

cpmx1_10 0.19 (0.058) 69.6 (22.2) 0.19 (0.054) 

cpmx1_11 0.16 (0.045) 2.9 (0.8) 0.17 (0.056) 

cpmx1_12 0.37 (0.102) 153.9 (45.3) 0.30 (0.112) 

cpmx1_13 0.07 (0.033) 23.6 (8.1) 0.06 (0.029) 

cpmx2_1 0.18 (0.081) 154.8 (46.9) 0.43 (0.144) 

cpmx2_2 0.34 (0.075) 36.7 (8.4) 0.36 (0.115) 

cpmx2_3 0.26 (0.071) 91.2 (31.0) 0.56 (0.153) 

cpmx2_6 0.21 (0.053) 46.2 (12.9) 0.23 (0.066) 

cpmx2_8 0.22 (0.060) 22.6 (7.0) 0.28 (0.091) 

cpmx2_9 0.09 (0.026) 2.8 (0.8) 0.56 (0.145) 

cpmx2_10 0.09 (0.027) 6.2 (1.9) 0.62 (0.175) 
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Table A-8 (con’t): Additive genetic variances with standard errors in parentheses for 
height, volume, and straightness. Additive variance ࢇ࣌

૛ is four times the family variance 
ࢌ࣌

૛  since progeny for half-sib families are expected to share 1/4 of their genetic material 
from the known parent. 
 

Site Height Volume Straightness 

cpmx3_1 0.34 (0.082) 369.3 (97.2) 0.13 (0.044) 

cpmx3_2 0.44 (0.103) 180.7 (51.1) 0.31 (0.074) 

cpmx3_4 0.35 (0.084) 505.8 (132.0) 0.39 (0.113) 

cpmx3_5 0.16 (0.065) 113.8 (36.6) 0.18 (0.105) 

cpmx3_6 0.28 (0.068) 26.5 (9.0) 0.17 (0.053) 

cpmx3_7 0.24 (0.065) 29.1 (8.9) 0.06 (0.035) 

cpmx3_8 0.07 (0.026) 16.6 (9.1) 0.15 (0.048) 

cpmx3_10 0.18 (0.062) 67.7 (27.3) 0.09 (0.065) 

cpmx4_1 0.18 (0.060) 39.6 (12.0) 0.24 (0.096) 

cpmx4_2 0.21 (0.059) 55.4 (15.1) 0.30 (0.071) 

cpmx4_3 0.14 (0.051) 58.0 (18.8) 0.20 (0.077) 

cpmx4_4 0.30 (0.078) 221.7 (53.3) 0.28 (0.118) 

cpmx4_5 0.41 (0.096) 182.4 (40.7) 0.37 (0.144) 

cpmx4_8 0.15 (0.037) 3.4 (0.8) 0.18 (0.074) 

ppmx1_1 0.11 (0.033) 17.6 (5.7) 0.17 (0.079) 

ppmx1_2 0.27 (0.067) 58.2 (14.3) 0.22 (0.093) 

ppmx1_3 0.04 (0.044) 90.2 (25.7) 0.35 (0.151) 

ppmx1_4 0.11 (0.035) 84.8 (23.0) 0.18 (0.058) 

ppmx1_5 0.06 (0.051) 33.3 (17.9) 0.24 (0.186) 

ppmx1_6 0.06 (0.023) 6.1 (2.6) 0.03 (0.023) 

ppmx1_7 0.27 (0.068) 59.0 (13.9) 0.58 (0.156) 
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Table A-8 (con’t): Additive genetic variances with standard errors in parentheses for 
height, volume, and straightness. Additive variance ࢇ࣌

૛ is four times the family variance 
ࢌ࣌

૛  since progeny for half-sib families are expected to share 1/4 of their genetic material 
from the known parent. 
 

Site Height Volume Straightness 

ppmx2_1 0.16 (0.046) 48.9 (12.7) 0.22 (0.065) 

ppmx2_2 0.20 (0.056) 28.9 (10.1) 0.57 (0.165) 

ppmx2_3 0.10 (0.032) 3.3 (1.0) 0.20 (0.093) 

ppmx2_4 0.27 (0.066) 54.8 (13.4) 0.08 (0.042) 

ppmx2_5 0.36 (0.082) 196.3 (44.5) 0.11 (0.050) 

ppmx2_6 0.13 (0.044) 65.3 (23.2) 0.16 (0.072) 

ppmx2_7 0.32 (0.070) 191.6 (40.6) 0.41 (0.115) 

ppmx3_1 0.18 (0.056) 25.8 (8.0) 0.08 (0.090) 

ppmx3_2 0.21 (0.049) 12.2 (3.2) 0.33 (0.123) 

ppmx3_3 0.04 (0.017) 1.3 (0.6) 0.14 (0.078) 
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Table A-9: Residual (environmental) variances with standard errors in parentheses for 
height, volume, and straightness.  

 

Site Height Volume Straightness 

cpmx1_1 0.89 (0.036) 209.5 (8.6) 1.43 (0.058) 

cpmx1_2 0.29 (0.012) 210.9 (8.7) 0.45 (0.019) 

cpmx1_3 0.63 (0.026) 269.2 (11.1) 0.67 (0.028) 

cpmx1_4 0.67 (0.027) 243.4 (9.9) 0.56 (0.023) 

cpmx1_5 0.97 (0.041) 656.4 (28.1) 1.73 (0.080) 

cpmx1_6 1.09 (0.046) 114.1 (4.9) 0.27 (0.012) 

cpmx1_7 0.62 (0.027) 438.1 (18.9) 1.64 (0.070) 

cpmx1_8 0.45 (0.019) 298.6 (12.4) 1.62 (0.067) 

cpmx1_9 0.62 (0.025) 126.7 (5.2) 0.63 (0.025) 

cpmx1_10 0.55 (0.025) 226.2 (10.2) 0.46 (0.021) 

cpmx1_11 0.41 (0.017) 8.3 (0.4) 0.64 (0.027) 

cpmx1_12 0.86 (0.038) 403.2 (17.9) 1.38 (0.061) 

cpmx1_13 0.57 (0.023) 106.5 (4.4) 0.48 (0.020) 

cpmx2_1 1.28 (0.053) 531.5 (22.0) 1.73 (0.073) 

cpmx2_2 0.42 (0.017) 55.4 (2.3) 1.45 (0.059) 

cpmx2_3 0.66 (0.027) 396.1 (16.5) 1.46 (0.061) 

cpmx2_6 0.45 (0.018) 135.4 (5.5) 0.73 (0.030) 

cpmx2_8 0.62 (0.025) 84.8 (3.4) 1.15 (0.046) 

cpmx2_9 0.29 (0.011) 9.7 (0.4) 1.41 (0.055) 

cpmx2_10 0.26 (0.012) 17.3 (0.8) 1.50 (0.068) 
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Table A-9 (con’t): Residual (environmental) variances with standard errors in 
parentheses for height, volume, and straightness.  

 

Site Height Volume Straightness 

cpmx3_1 0.76 (0.030) 1052.3 (39.7) 0.60 (0.023) 

cpmx3_2 0.85 (0.033) 622.6 (23.5) 0.67 (0.026) 

cpmx3_4 0.72 (0.029) 1300.3 (49.0) 1.29 (0.052) 

cpmx3_5 1.12 (0.043) 503.1 (19.1) 2.07 (0.083) 

cpmx3_6 0.48 (0.020) 116.9 (4.8) 0.57 (0.024) 

cpmx3_7 0.56 (0.024) 102.7 (4.2) 0.61 (0.026) 

cpmx3_8 0.36 (0.015) 165.5 (6.8) 0.55 (0.023) 

cpmx3_10 0.62 (0.030) 411.9 (16.9) 0.99 (0.047) 

cpmx4_1 0.73 (0.031) 129.2 (5.5) 1.35 (0.057) 

cpmx4_2 0.68 (0.027) 164.3 (6.5) 0.61 (0.024) 

cpmx4_3 0.68 (0.029) 222.0 (9.4) 1.10 (0.046) 

cpmx4_4 0.61 (0.027) 352.4 (15.8) 1.55 (0.070) 

cpmx4_5 0.85 (0.032) 304.3 (11.6) 2.26 (0.089) 

cpmx4_8 0.24 (0.010) 4.3 (0.2) 1.00 (0.043) 

ppmx1_1 0.33 (0.014) 63.5 (2.7) 1.24 (0.053) 

ppmx1_2 0.44 (0.019) 82.2 (3.6) 1.30 (0.058) 

ppmx1_3 0.81 (0.038) 187.7 (9.0) 1.87 (0.088) 

ppmx1_4 0.35 (0.016) 174.8 (7.9) 0.61 (0.027) 

ppmx1_5 0.44 (0.030) 127.2 (8.7) 1.56 (0.106) 

ppmx1_6 0.30 (0.013) 36.3 (1.6) 0.44 (0.019) 

ppmx1_7 0.48 (0.020) 87.3 (3.7) 1.40 (0.059) 
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Table A-9 (con’t): Residual (environmental) variances with standard errors in 
parentheses for height, volume, and straightness.  

 

Site Height Volume Straightness 

ppmx2_1 0.52 (0.021) 121.1 (4.9) 0.73 (0.029) 

ppmx2_2 0.60 (0.024) 140.5 (5.7) 1.67 (0.068) 

ppmx2_3 0.33 (0.015) 10.9 (0.5) 1.33 (0.059) 

ppmx2_4 0.47 (0.020) 88.2 (3.9) 0.67 (0.029) 

ppmx2_5 0.46 (0.019) 263.9 (11.2) 0.74 (0.031) 

ppmx2_6 0.47 (0.021) 253.3 (11.6) 0.91 (0.041) 

ppmx2_7 0.44 (0.017) 227.4 (8.8) 1.38 (0.054) 

ppmx3_1 0.49 (0.023) 66.5 (3.2) 1.58 (0.075) 

ppmx3_2 0.24 (0.011) 22.6 (1.0) 1.50 (0.067) 

ppmx3_3 0.17 (0.009) 5.8 (0.3) 0.93 (0.048) 
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Table A-10: Narrow-sense heritabilities by site on an individual-tree basis for 
continuous traits with standard errors in parentheses. 

 

Site Height Volume Straightness 

CPMX1_1 0.46 (0.103) 0.50 (0.109) 0.26 (0.076) 

CPMX1_2 0.57 (0.117) 0.37 (0.092) 0.18 (0.066) 

CPMX1_3 0.33 (0.086) 0.30 (0.091) 0.35 (0.089) 

CPMX1_4 0.21 (0.069) 0.15 (0.060) 0.09 (0.052) 

CPMX1_5 0.20 (0.072) 0.17 (0.067) 0.23 (0.081) 

CPMX1_6 0.24 (0.076) 0.33 (0.089) 0.12 (0.061) 

CPMX1_7 0.46 (0.105) 0.27 (0.081) 0.14 (0.062) 

CPMX1_8 0.30 (0.083) 0.22 (0.073) 0.17 (0.064) 

CPMX1_9 0.39 (0.093) 0.29 (0.080) 0.23 (0.072) 

CPMX1_10 0.32 (0.092) 0.29 (0.087) 0.38 (0.099) 

CPMX1_11 0.36 (0.092) 0.32 (0.087) 0.25 (0.079) 

CPMX1_12 0.39 (0.099) 0.35 (0.096) 0.20 (0.075) 

CPMX1_13 0.11 (0.056) 0.21 (0.070) 0.13 (0.058) 

CPMX2_1 0.14 (0.060) 0.27 (0.078) 0.24 (0.076) 

CPMX2_2 0.68 (0.127) 0.57 (0.114) 0.23 (0.072) 

CPMX2_3 0.36 (0.091) 0.22 (0.072) 0.35 (0.089) 

CPMX2_6 0.42 (0.096) 0.31 (0.083) 0.29 (0.080) 

CPMX2_8 0.33 (0.085) 0.25 (0.074) 0.23 (0.072) 

CPMX2_9 0.30 (0.078) 0.27 (0.075) 0.36 (0.087) 

CPMX2_10 0.31 (0.092) 0.33 (0.094) 0.37 (0.099) 
 

  



92 

 

Table A-10 (con’t): Narrow-sense heritabilities by site on an individual-tree basis for 
continuous traits with standard errors in parentheses. 
 

Site Height Volume Straightness 

CPMX3_1 0.40 (0.091) 0.32 (0.080) 0.21 (0.067) 

CPMX3_2 0.46 (0.097) 0.27 (0.073) 0.42 (0.091) 

CPMX3_4 0.41 (0.091) 0.43 (0.101) 0.28 (0.078) 

CPMX3_5 0.13 (0.053) 0.21 (0.068) 0.08 (0.049) 

CPMX3_6 0.50 (0.110) 0.21 (0.070) 0.28 (0.082) 

CPMX3_7 0.38 (0.096) 0.26 (0.077) 0.10 (0.056) 

CPMX3_8 0.18 (0.066) 0.10 (0.053) 0.25 (0.078) 

CPMX3_10 0.27 (0.089) 0.16 (0.062) 0.08 (0.063) 

CPMX4_1 0.23 (0.074) 0.29 (0.082) 0.17 (0.067) 

CPMX4_2 0.28 (0.076) 0.31 (0.080) 0.43 (0.095) 

CPMX4_3 0.19 (0.070) 0.25 (0.076) 0.17 (0.066) 

CPMX4_4 0.44 (0.105) 0.54 (0.116) 0.17 (0.071) 

CPMX4_5 0.43 (0.092) 0.52 (0.104) 0.16 (0.060) 

CPMX4_8 0.55 (0.117) 0.66 (0.130) 0.17 (0.069) 

PPMX1_1 0.31 (0.088) 0.26 (0.080) 0.13 (0.060) 

PPMX1_2 0.53 (0.120) 0.60 (0.129) 0.16 (0.067) 

PPMX1_3 0.05 (0.054) 0.43 (0.112) 0.18 (0.075) 

PPMX1_4 0.29 (0.089) 0.43 (0.108) 0.27 (0.085) 

PPMX1_5 0.14 (0.111) 0.25 (0.128) 0.15 (0.114) 

PPMX1_6 0.19 (0.070) 0.16 (0.067) 0.07 (0.052) 

PPMX1_7 0.50 (0.110) 0.58 (0.119) 0.37 (0.094) 
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Table A-10 (con’t): Narrow-sense heritabilities by site on an individual-tree basis for 
continuous traits with standard errors in parentheses. 
 

Site Height Volume Straightness 

PPMX2_1 0.28 (0.078) 0.37 (0.088) 0.28 (0.078) 

PPMX2_2 0.31 (0.082) 0.20 (0.067) 0.32 (0.086) 

PPMX2_3 0.29 (0.085) 0.28 (0.084) 0.15 (0.066) 

PPMX2_4 0.50 (0.112) 0.54 (0.117) 0.11 (0.061) 

PPMX2_5 0.66 (0.129) 0.63 (0.123) 0.14 (0.064) 

PPMX2_6 0.26 (0.084) 0.24 (0.083) 0.17 (0.074) 

PPMX2_7 0.62 (0.116) 0.70 (0.125) 0.28 (0.074) 

PPMX3_1 0.34 (0.100) 0.35 (0.103) 0.05 (0.056) 

PPMX3_2 0.72 (0.140) 0.48 (0.112) 0.21 (0.075) 

PPMX3_3 0.21 (0.089) 0.22 (0.091) 0.15 (0.079) 
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Table A-11: Additive genetic variance, GxE interaction variance, and residual variance 
for traits in each test series with standard errors in parentheses. Additive genetic 
variance ࢇ࣌

૛ is four times the family variance ࢌ࣌
૛. 

Additive Genetic Variance   

Series Height Volume Straightness 

CPMX1 0.16 (0.031) 40.64 (8.168) 0.12 (0.024) 

CPMX2 0.12 (0.025) 21.03 (5.205) 0.29 (0.058) 

CPMX3 0.18 (0.033) 0.00 (0.123) 0.15 (0.029) 

CPMX4 0.14 (0.031) 48.43 (10.698) 0.24 (0.049) 

PPMX1 0.08 (0.018) 24.69 (5.615) 0.19 (0.045) 

PPMX2 0.19 (0.036) 52.94 (10.701) 0.17 (0.385) 

PPMX3 0.13 (0.035) 7.07 (2.418) 0.18 (0.061) 

GxE Variance   

Series Height Volume Straightness 

CPMX1 0.02 (0.003) 7.33 (1.084) 0.02 (0.004) 

CPMX2 0.02 (0.004) 7.42 (1.206) 0.03 (0.008) 

CPMX3 0.02 (0.004) 0.00 (0.000) 0.01 (0.004) 

CPMX4 0.02 (0.004) 11.35 (1.726) 0.01 (0.006) 

PPMX1 0.01 (0.003) 5.94 (0.944) 0.02 (0.007) 

PPMX2 0.01 (0.003) 7.88 (1.212) 0.02 (0.006) 

PPMX3 0.01 (0.004) 1.58 (0.499) 0.01 (0.012) 

Residual Variance   

Series Height Volume Straightness 

CPMX1 0.66 (0.008) 251.35 (2.935) 0.91 (0.011) 

CPMX2 0.57 (0.009) 174.66 (2.719) 1.34 (0.021) 

CPMX3 0.70 (0.010) 0.00 (0.000) 0.92 (0.013) 

CPMX4 0.64 (0.011) 197.39 (3.342) 1.32 (0.022) 

PPMX1 0.44 (0.008) 103.59 (1.809) 1.16 (0.020) 

PPMX2 0.47 (0.008) 159.31 (2.533) 1.08 (0.017) 

PPMX3 0.30 (0.008) 32.61 (0.901) 1.37 (0.038) 
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Table A-12: Family variances for binary traits with standard errors in parentheses.  
Blank cells indicate that incidence levels were not in acceptable range for estimation of 
genetic parameters. 

Site Forkram15 Rust 

cpmx1_1 0.06 (0.055) . 

cpmx1_2 0.18 (0.071) . 

cpmx1_3 . 0.32 (0.098) 

cpmx1_4 0.26 (0.106) 0.52 (0.150) 

cpmx1_5 0.25 (0.111) 0.30 (0.096) 

cpmx1_6 . 0.45 (0.132) 

cpmx1_7 . 0.28 (0.091) 

cpmx1_8 0.06 (0.061) 0.34 (0.118) 

cpmx1_9 . 0.50 (0.130) 

cpmx1_10 . 0.61 (0.157) 

cpmx1_11 . . 

cpmx1_12 . 0.41 (0.113) 

cpmx1_13 . . 

cpmx2_1 . . 

cpmx2_2 0.03 (0.047) 0.27 (0.085) 

cpmx2_3 0.04 (0.047) 0.39 (0.110) 

cpmx2_6 . 0.28 (0.110) 

cpmx2_8 . . 

cpmx2_9 . . 

cpmx2_10 . . 

  

                                                 

15 Forkram is the incidence of forking or ramicorn branching. 
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Table A-12 (con’t): Family variances for binary traits with standard errors in 
parentheses. Blank cells indicate that incidence levels were not in acceptable range for 
estimation of genetic parameters. 
 

Site Forkram16 Rust 

cpmx3_1 0.13 (0.066) 0.41 (0.106) 

cpmx3_2 . 0.51 (0.125) 

cpmx3_4 . 0.33 (0.099) 

cpmx3_5 . 0.34 (0.104) 

cpmx3_6 . 0.45 (0.125) 

cpmx3_7 . 0.19 (0.093) 

cpmx3_8 . . 

cpmx3_10 . . 

cpmx4_1 . 0.18 (0.083) 

cpmx4_2 . 1.03 (0.220) 

cpmx4_3 0.07 (0.060) 0.25 (0.089) 

cpmx4_4 . 0.21 (0.072) 

cpmx4_5 . 0.39 (0.103) 

cpmx4_8 . . 

ppmx1_1 . . 

ppmx1_2 0.21 (0.097) . 

ppmx1_3 0.10 (0.080) . 

ppmx1_4 . . 

ppmx1_5 0.02 (0.136) . 

ppmx1_6 . . 

ppmx1_7 . . 

  

                                                 

16 Forkram is the incidence of forking or ramicorn branching. 
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Table A-12 (con’t): Family variances for binary traits with standard errors in 
parentheses. Blank cells indicate that incidence levels were not in acceptable range for 
estimation of genetic parameters.  
 

Site Forkram17 Rust 

ppmx2_1 . 0.67 (0.160) 

ppmx2_2 0.11 (0.067) 0.39 (0.112) 

ppmx2_3 0.09 (0.065) 0.35 (0.124) 

ppmx2_4 0.16 (0.075) 0.42 (0.122) 

ppmx2_5 0.10 (0.059) 0.41 (0.132) 

ppmx2_6 0.08 (0.063) . 

ppmx2_7 0.14 (0.065) . 

ppmx3_1 0.02 (0.054) 0.32 (0.111) 

ppmx3_2 . . 

ppmx3_3 . . 

 

 

 

  

                                                 

17 Forkram is the incidence of forking or ramicorn branching. 
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Table A-13: Number of individuals per site per family in each test series. It is assumed 
that each site in a series has the same number of families and each site has the same 
number of replications. Here, n indicates the average number of measured trees per 
family per site. 

 

Series Trait # Tests # Families Data Points n 

CPMX1 Forkram18 5 68 6258 18.41 

 Rust 9 68 11524 18.83 

CPMX2 Forkram 2 82 2522 15.38 

 Rust 3 82 4033 16.39 

CPMX3 Forkram 1 91 1404 15.43 

 Rust 6 91 8296 15.19 

CPMX4 Forkram 1 74 1212 16.38 

 Rust 5 74 6816 18.42 

PPMX1 Forkram 3 75 2543 11.30 

 Rust19 NA NA NA NA 

PPMX2 Forkram 6 75 7838 17.42 

 Rust 5 75 6920 18.45 

PPMX3 Forkram 1 64 985 15.39 

  Rust 1 64 985 15.39 

 

 

  

                                                 

18 Forkram is the incidence of forking or ramicorn branching. 
19 No sites in this test series had rust incidence levels appropriate for analysis. 
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Table A-14: Family mean narrow sense heritabilities (with their standard errors) of 
binary response traits. This estimate was only possible on sites with mean trait 
incidence between 0.20 and 0.80. Blank cells indicate that incidence levels at the site for 
the trait pair were not in an acceptable range for estimation of genetic parameters. 

Site Forkram20 Rust 

cpmx1_1 0.54 (0.213) . 

cpmx1_2 0.77 (0.070) . 

cpmx1_3 . 0.86 (0.038) 

cpmx1_4 0.83 (0.059) 0.91 (0.024) 

cpmx1_5 0.82 (0.063) 0.85 (0.041) 

cpmx1_6 . 0.89 (0.028) 

cpmx1_7 . 0.84 (0.043) 

cpmx1_8 0.52 (0.255) 0.86 (0.041) 

cpmx1_9 . 0.90 (0.023) 

cpmx1_10 . 0.92 (0.019) 

cpmx1_11 . . 

cpmx1_12 . 0.89 (0.028) 

cpmx1_13 . . 

cpmx2_1 . . 

cpmx2_2 0.28 (0.372) 0.81 (0.049) 

cpmx2_3 0.37 (0.291) 0.87 (0.033) 

cpmx2_6 . 0.82 (0.056) 

cpmx2_8 . . 

cpmx2_9 . . 

cpmx2_10 . . 
Table A-14 (con’t): Family mean narrow sense heritabilities (with their standard 
errors) of binary response traits. This estimate was only possible on sites with mean 
trait incidence between 0.20 and 0.80. Blank cells indicate that incidence levels at the 

                                                 

20 Forkram is the incidence of forking or ramicorn branching. 
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site for the trait pair were not in an acceptable range for estimation of genetic 
parameters. 

Site Forkram21 Rust 

cpmx3_1 0.66 (0.117) 0.86 (0.031) 

cpmx3_2 . 0.88 (0.025) 

cpmx3_4 . 0.83 (0.042) 

cpmx3_5 . 0.84 (0.041) 

cpmx3_6 . 0.87 (0.031) 

cpmx3_7 . 0.74 (0.096) 

cpmx3_8 . . 

cpmx3_10 . . 

cpmx4_1 . 0.77 (0.084) 

cpmx4_2 . 0.95 (0.010) 

cpmx4_3 0.55 (0.197) 0.82 (0.053) 

cpmx4_4 . 0.79 (0.057) 

cpmx4_5 . 0.88 (0.029) 

cpmx4_8 . . 

ppmx1_1 . . 

ppmx1_2 0.70 (0.097) . 

ppmx1_3 0.54 (0.191) . 

ppmx1_4 . . 

ppmx1_5 0.22 (0.950) . 

ppmx1_6 . . 

ppmx1_7 . . 
  

                                                 

21 Forkram is the incidence of forking or ramicorn branching. 
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Table A-14 (con’t): Family mean narrow sense heritabilities (with their standard 
errors) of binary response traits. This estimate was only possible on sites with mean 
trait incidence between 0.20 and 0.80. Blank cells indicate that incidence levels at the 
site for the trait pair were not in an acceptable range for estimation of genetic 
parameters. 

Site Forkram22 Rust 

ppmx2_1 . 0.93 (0.017) 

ppmx2_2 0.66 (0.139) 0.88 (0.031) 

ppmx2_3 0.61 (0.173) 0.87 (0.041) 

ppmx2_4 0.74 (0.090) 0.89 (0.029) 

ppmx2_5 0.64 (0.138) 0.88 (0.033) 

ppmx2_6 0.59 (0.184) . 

ppmx2_7 0.70 (0.100) . 

ppmx3_1 0.19 (0.541) 0.83 (0.047) 

ppmx3_2 . . 

ppmx3_3 . . 
 
  

                                                 

22 Forkram is the incidence of forking or ramicorn branching. 
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Table A-15: Additive and GxE variance for series analysis of binary traits. 

 

Additive Variance  

Series Forkram23 Rust 

CPMX1 0.06 (0.017) 0.29 (0.056) 

CPMX2 0.05 (0.017) 0.24 (0.048) 

CPMX3 0.07 (0.023) 0.36 (0.062) 

CPMX4 0.08 (0.028) 0.27 (0.053) 

PPMX1 0.03 (0.017) 0.00 (0.028) 

PPMX2 0.07 (0.020) 0.36 (0.071) 

PPMX3 0.03 (0.026) 0.03 (0.029) 

GxE Variance  

Series Forkram Rust 

CPMX1 0.04 (0.022) 0.09 (0.019) 

CPMX2 0.02 (0.023) 0.06 (0.023) 

CPMX3 0.04 (0.027) 0.01 (0.016) 

CPMX4 0.01 (0.036) 0.04 (0.022) 

PPMX1 0.14 (0.047) 0.09 (0.047) 

PPMX2 0.02 (0.020) 0.04 (0.024) 

PPMX3 0.00 (0.000) 0.10 (0.072) 

 

 

  

                                                 

23 Forkram is the incidence of forking or ramicorn branching. 
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Table A-16: Number of individuals per family series in each test series. It is assumed 
that each site in a series has the same number of families and each site has the same 
number of replications. Here, n represents the mean number of individuals in a half-sib 
family for each series. 

 

Series Trait # Tests # Families Data Points n 

CPMX1 Forkram 13 68 15915 234.04 

 Rust 13 68 16587 243.93 

CPMX2 Forkram 7 82 8727 106.43 

 Rust 7 82 9107 111.06 

CPMX3 Forkram 8 91 10211 112.21 

 Rust 8 91 10581 116.27 

CPMX4 Forkram 6 74 6354 85.86 

 Rust 6 74 8011 108.26 

PPMX1 Forkram 7 75 7126 95.01 

 Rust 7 75 7153 95.37 

PPMX2 Forkram 7 75 8517 113.56 

 Rust 7 75 8856 118.08 

PPMX3 Forkram 3 64 2879 44.98 

  Rust 3 64 2912 45.50 
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Table A-17: Means of the site heritability estimates for each test series (denoted ࢎഥ࢙
૛), an 

overall heritability term based on pooled variance for each series (denoted ࢎ૛), and 
percent difference between the two figures. The ࢎഥ࢙

૛ term is biased because GxE is 
ignored across sites. Note that bias is consistently higher than 50% due to the presence 
of GxE. 

 

    CPMX1 CPMX2 CPMX3 CPMX4 PPMX1 PPMX2 PPMX3 
Height ℎത௦

ଶ 0.33 0.36 0.34 0.35 0.29 0.41 0.42 
 ℎଶ 0.23 0.20 0.23 0.20 0.16 0.36 0.38 
 % bias 49% 82% 47% 74% 78% 16% 11% 
         

Volume ℎത௦
ଶ 0.29 0.32 0.25 0.43 0.39 0.42 0.35 

 ℎଶ 0.15 0.11 0.17 0.22 0.21 0.29 0.20 
 % bias 91% 182% 43% 95% 81% 43% 78% 
         

Straightness ℎത௦
ଶ 0.21 0.30 0.21 0.21 0.19 0.21 0.14 

 ℎଶ 0.12 0.20 0.15 0.17 0.15 0.15 0.13 
  % bias 76% 48% 43% 24% 23% 35% 8% 
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Figure A-1: 3rd-cycle breeding zones: Coastal, Piedmont, and Northern. The overlays 
show that the regions are delineated by weather and temperature patterns. 
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Appendix B: Supplementary Tables and Figures for Chapter 2. 
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Table B-1: Type-B genetic correlations of volume in respective test series with standard 
errors in parentheses. Type-B genetic correlations are the proportion of genetic 
variance that is additive. 

Series Volume 

CPMX1 0.58 (0.062) 

CPMX2 0.41 (0.076) 

CPMX3 0.57 (0.068) 

CPMX4 0.52 (0.070) 

PPMX1 0.51 (0.073) 

PPMX2 0.63 (0.062) 

PPMX3 0.53 (0.135) 
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Table B-2: Genetic correlations of volume among sites for Coastal Series 1. 

Site 2 3 4 5 6 7 8 9 10 11 12 13 

1 0.73 0.52 0.68 0.18 0.70 0.74 0.73 0.58 0.62 0.57 0.67 0.78 

2  0.73 0.94 0.49 0.76 0.90 0.96 0.67 0.81 0.61 0.77 0.95 

3   0.77 0.55 0.49 0.65 0.75 0.46 0.63 0.37 0.53 0.69 

4    0.70 0.65 0.85 0.97 0.60 0.82 0.49 0.70 0.90 

5     <0.01 0.28 0.53 0.11 0.47 <0.01 0.13 0.32 

6      0.83 0.76 0.67 0.63 0.71 0.77 0.87 

7       0.90 0.69 0.76 0.67 0.80 0.95 

8        0.66 0.83 0.60 0.77 0.96 

9         0.56 0.55 0.63 0.73 

10          0.50 0.65 0.81 

11           0.64 0.70 

12            0.84 
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Table B-3: Genetic correlations of volume among sites for Coastal Series 2. 

 

Site 2 3 6 8 9 10 

1 0.59 0.71 0.70 0.53 0.73 0.73 

2  0.97 0.91 0.69 0.66 0.66 

3   0.96 0.74 0.78 0.78 

6    0.68 0.75 0.75 

8     0.53 0.53 

9      1.00 
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Table B-4: Genetic correlations of volume among sites for Coastal Series 3. 

 

Site 2 4 5 6 7 8 10 

1 0.79 0.81 0.77 0.60 0.61 0.69 0.82 

2  0.67 0.64 0.50 0.51 0.57 0.68 

4   0.65 0.51 0.52 0.58 0.69 

5    0.48 0.49 0.55 0.66 

6     0.38 0.43 0.51 

7      0.44 0.53 

8       0.59 
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Table B-5: Genetic correlations of volume among sites for Coastal Series 4. 

 

Site 2 3 4 5 8 

1 0.68 0.91 0.88 0.91 0.61 

2  0.67 0.75 0.64 0.68 

3   0.94 0.96 0.64 

4    0.93 0.72 

5     0.62 
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Table B-6: Genetic correlations of volume among sites for Piedmont Series 1. 

Site 2 3 4 5 6 7 

1 0.85 0.80 0.84 0.66 0.85 0.66 

2  0.90 0.91 0.69 0.95 0.73 

3   0.80 0.50 0.90 0.72 

4    0.91 0.96 0.74 

5     0.78 0.55 

6      0.78 
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Table B-7: Genetic correlations of volume among sites for Piedmont Series 2. 

 

Site 2 3 4 5 6 7 

1 0.77 0.99 0.98 0.67 0.73 0.66 

2  0.83 0.83 0.99 1.00 0.96 

3   0.97 0.75 0.80 0.73 

4    0.75 0.80 0.74 

5     1.00 0.96 

6      0.96 
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Table B-8: Genetic correlations of volume among sites for Piedmont Series 3. 

 

Site 2 3 

1 0.89 0.74 

2  0.95 
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Figure B-1: A heatmap of genetic correlation among sites for Coastal series 2 (CPMX2) 
based on XFA2 assumptions. This image represents the correlation matrix form of the 
variance/covariance structure for this test series. 
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Figure B-2: A heatmap of genetic correlation among sites for Coastal series 3 (CPMX3) 
based on XFA1 assumptions. This image represents the correlation matrix form of the 
variance/covariance structure for this test series. 
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Figure B-3 A heatmap of genetic correlation among sites for Coastal series 4 (CPMX4) 
based on XFA2 assumptions. This image represents the correlation matrix form of the 
variance/covariance structure for this test series. 
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Figure B-4: A heatmap of genetic correlation among sites for Piedmont series 1 
(PPMX1) based on XFA2 assumptions. This image represents the correlation matrix 
form of the variance/covariance structure for this test series. 
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Figure B-5: A heatmap of genetic correlation among sites for Piedmont series 2 
(PPMX2) based on XFA2 assumptions. This image represents the correlation matrix 
form of the variance/covariance structure for this test series. 
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Figure B-6: A heatmap of genetic correlation among sites for Piedmont series 3 
(PPMX3) based on XFA2 assumptions. This image represents the correlation matrix 
form of the variance/covariance structure for this test series. 
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Appendix C: Sample code for data analysis using ASReml. 
  



122 

 

Script C-1: ASReml4 code describing an unstructured iid model for each site in Coastal 
Series 1. 

!ARGS ht vol strt  !RENAME 1 !OUTFOLDER 
C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1\outputfiles 
#for ht, dbh, vol, sweep, strt measurements 
Title: CPMX1_nochecks. 
#ser,Test,Rep,female,Male,status,rust,strt,fork,ram,sweep,HT(m),DBH(cm),VOL(dm),check,
forkram 
#CPMX1,1,1,PCK,PPMX,1,0,5,1,0,2.5,7.16,10.92,34.99,2,1 
#CPMX1,1,1,PCK,PPMX,4,,,,,,,,,2, 
 ser  !A      # CPMX1 
 test  !A 
 rep  * 
 female  !A    
 male  !A      
 status  *     
 rust     strt     fork     ram    sweep   ht     dbh   vol 
 check  * 
 forkram 
 
#!Folder  W:\AndrewThesis\data\CPMX1 
!Folder  C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1 
CPMX1_nochecks.csv  !SKIP 1  !FILTER check !EXCLUDE 2  !WORKSPACE 1000  
!CONTINUE  !NODISPLAY 
 
# define model terms 
# variance structure: US 
$1  ~ mu  !r   diag(test).id(rep)  diag(test).id(female)         # Specify model 
               residual sat(test).id(units) 
VPREDICT !DEFINE 
# site1 
F evar1  Residual_1 
F fvar1  diag(test).id(female)[1] 
F phen1  evar1 + fvar1 
F avar1  fvar1*4 
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Script C-1 (con’t): ASReml4 code describing an unstructured iid model for each site in 
Coastal Series 1.  
 
# site2 
F evar2  Residual_2 
F fvar2  diag(test).id(female)[2] 
F phen2  evar2 + fvar2 
F avar2  fvar2*4 
# site3 
F evar3  Residual_3 
F fvar3  diag(test).id(female)[3] 
F phen3  evar3 + fvar3 
F avar3  fvar3*4 
# site4 
F evar4  Residual_4 
F fvar4  diag(test).id(female)[4] 
F phen4  evar4 + fvar4 
F avar4  fvar4*4 
# site5 
F evar5  Residual_5 
F fvar5  diag(test).id(female)[5] 
F phen5  evar5 + fvar5 
F avar5  fvar5*4 
# site6 
F evar6  Residual_6 
F fvar6  diag(test).id(female)[6] 
F phen6  evar6 + fvar6 
F avar6  fvar6*4 
# site7 
F evar7  Residual_7 
F fvar7  diag(test).id(female)[7] 
F phen7  evar7 + fvar7 
F avar7  fvar7*4 
# site8 
F evar8  Residual_8 
F fvar8  diag(test).id(female)[8] 
F phen8  evar8 + fvar8 
F avar8  fvar8*4 
  



124 

 

Script C-1 (con’t): ASReml4 code describing an unstructured iid model for each site in 
Coastal Series 1. 
 
# site9 
F evar9  Residual_9 
F fvar9  diag(test).id(female)[9] 
F phen9  evar9 + fvar9 
F avar9  fvar9*4 
# site10 
F evar10  Residual_10 
F fvar10  diag(test).id(female)[10] 
F phen10  evar10 + fvar10 
F avar10  fvar10*4 
# site11 
F evar11  Residual_11 
F fvar11  diag(test).id(female)[11] 
F phen11  evar11 + fvar11 
F avar11  fvar11*4 
# site12 
F evar12  Residual_12 
F fvar12  diag(test).id(female)[12] 
F phen12  evar12 + fvar12 
F avar12  fvar12*4 
# site13 
F evar13  Residual_13 
F fvar13  diag(test).id(female)[13] 
F phen13  evar13 + fvar13 
F avar13  fvar13*4 
# heritability 
H h2i_1  avar1 phen1 
H h2i_2  avar2 phen2 
H h2i_3  avar3 phen3 
H h2i_4  avar4 phen4 
H h2i_5  avar5 phen5 
H h2i_6  avar6 phen6 
H h2i_7  avar7 phen7 
H h2i_8  avar8 phen8 
H h2i_9  avar9 phen9 
H h2i_10  avar10 phen10 
H h2i_11  avar11 phen11 
H h2i_12  avar12 phen12 
H h2i_13  avar13 phen13  
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Script C-2: ASReml4 code describing a linear mixed model for all sites in Coastal Series 
1 with iid variance assumptions. 

!ARGS ht vol strt !RENAME 1 !OUTFOLDER 
C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1\outputfiles 
#for ht, dbh, vol measurements 
Title: CPMX1_nochecks. 
#ser,Test,Rep,female,Male,status,rust,strt,fork,ram,sweep,HT(m),DBH(cm),VOL(dm),check,
forkram 
#CPMX1,1,1,PCK,PPMX,1,0,5,1,0,2.5,7.16,10.92,34.99,2,1 
#CPMX1,1,1,PCK,PPMX,4,,,,,,,,,2, 
 ser  !A      # CPMX1 
 test  !A 
 rep  * 
 female  !A 
 male  !A 
 status  * 
 rust     strt     fork     ram    sweep   ht     dbh   vol 
 check  * 
 forkram 
 
#!Folder  W:\AndrewThesis\data\CPMX1 
!Folder  C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1 
CPMX1_nochecks.csv  !DOPART 1 !SKIP 1  !FILTER check !EXCLUDE 2  
!WORKSPACE 1000  !CONTINUE  !NODISPLAY 
 
  # reduced model 
# $1  ~ mu  test !r  female  test.rep           # Specify model 
#                residual units 
 
tabulate vol ~ test 
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Script C-2 (con’t): ASReml4 code describing a linear mixed model for all sites in 
Coastal Series 1 with iid variance assumptions. 
 
 # full model 
$1  ~ mu  test !r  female  test.rep   test.female           # Specify model 
               residual units 
VPREDICT !DEFINE 
# overall 
F evar  Residual 
F fvar  female 
F phen  evar + fvar + test.female 
F avar  fvar*4 
H h2i  avar phen 
F GxE test.female 
F gvar fvar + GxE 
H typeBcorr fvar gvar 
 

  



127 

 

Script C-3: ASReml4 code used to generate genetic correlations of traits for Coastal 
Series 1 with iid assumptions. 

!RENAME !OUTFOLDER C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1\outputfiles 
#for ht, dbh, vol, sweep, strt measurements 
Title: CPMX1_nochecks. 
#ser,Test,Rep,female,Male,status,rust,strt,fork,ram,sweep,HT(m),DBH(cm),VOL(dm),check,
forkram 
#CPMX1,1,1,PCK,PPMX,1,0,5,1,0,2.5,7.16,10.92,34.99,2,1 
#CPMX1,1,1,PCK,PPMX,4,,,,,,,,,2, 
 ser  !A      # CPMX1 
 test  !A 
 rep  * 
 female  !A    
 male  !A      
 status  *     
 rust     strt     fork     ram    sweep   ht     dbh   vol 
 check  * 
 forkram 
 
#!Folder  W:\AndrewThesis\data\CPMX1 
!Folder  C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1 
CPMX1_nochecks.csv  !SKIP 1  !FILTER check !EXCLUDE 2  !WORKSPACE 1000  
!CONTINUE  !NODISPLAY 
 
ht vol strt  ~ Trait  !r   Trait.diag(test).id(rep)  Trait.diag(test).id(female)         # Specify 
model 
               residual units.us(Trait) 
1 2 2 
0 0 ID 
Trait 0 US 
4*0 
 
Trait.female 4 
Trait 0 CORR 
5 
0.4   5 
0.4   0.4    5 
0.4   0.4    0.4    5 !GP 
female 0 ID 
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Script C-4: ASReml4 code describing a linear mixed model for all Coastal Series 1 data 
with an Extended Factor Analytic variance structure. This code was used to generate a 
solution for both XFA1 and XFA2 models. 

!ARGS ht vol strt !RENAME 1 !OUTFOLDER 
C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1\output_FA 
#for ht, dbh, vol measurements 
Title: CPMX1_FA. 
#ser,Test,Rep,female,Male,status,rust,strt,fork,ram,sweep,HT(m),DBH(cm),VOL(dm),check,
forkram 
#CPMX1,1,1,PCK,PPMX,1,0,5,1,0,2.5,7.16,10.92,34.99,2,1 
#CPMX1,1,1,PCK,PPMX,4,,,,,,,,,2, 
 ser  !A      # CPMX1 
 test  !A 
 rep  * 
 female  !A 
 male  !A 
 status  * 
 rust     strt     fork     ram    sweep   ht     dbh   vol 
 check  * 
 forkram 
 
#!Folder  W:\AndrewThesis\data\CPMX1 
!Folder  C:\Users\ADS\Dropbox\AndrewThesis\data\CPMX1 
CPMX1_nochecks.csv  !DOPART 1 !SKIP 1  !FILTER check !EXCLUDE 2  
!WORKSPACE 1000  !CONTINUE  !NODISPLAY 
 
 
 
$1 ~ mu test  !r  xfa1(test).id(female) test.rep 
               residual sat(test).id(units) 
 
predict female !present female test 
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Script C-4 (con’t): ASReml4 code describing a linear mixed model for all Coastal Series 
1 data with an Extended Factor Analytic variance structure. This code was used to 
generate a solution for both XFA1 and XFA2 models. 
 
VPREDICT !DEFINE 
V female xfa1(test) 
# 
# phenotypic variances 
F phen1 at(test,01).id(units) + 41 
F phen2 at(test,02).id(units) + 43 
F phen3 at(test,03).id(units) + 46 
F phen4 at(test,04).id(units) + 50 
F phen5 at(test,05).id(units) + 55 
F phen6 at(test,06).id(units) + 61 
F phen7 at(test,07).id(units) + 68 
F phen8 at(test,08).id(units) + 76 
F phen9 at(test,09).id(units) + 85 
F phen10 at(test,10).id(units) + 95 
F phen11 at(test,11).id(units) + 106 
F phen12 at(test,12).id(units) + 118 
F phen13 at(test,13).id(units) + 131 
# 
# additive variances 
F add1 41 * 4 
F add2 43 * 4 
F add3 46 * 4 
F add4 50 * 4 
F add5 55 * 4 
F add6 61 * 4 
F add7 68 * 4 
F add8 76 * 4 
F add9 85 * 4 
F add10 95 * 4 
F add11 106 * 4 
F add12 118 * 4 
F add13 131 * 4 
# 
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Script C-4 (con’t): ASReml4 code describing a linear mixed model for all Coastal Series 
1 data with an Extended Factor Analytic variance structure. This code was used to 
generate a solution for both XFA1 and XFA2 models. 
 
# heritabilities 
H h2i_1 add1 phen1 
H h2i_2 add2 phen2 
H h2i_3 add3 phen3 
H h2i_4 add4 phen4 
H h2i_5 add5 phen5 
H h2i_6 add6 phen6 
H h2i_7 add7 phen7 
H h2i_8 add8 phen8 
H h2i_9 add9 phen9 
H h2i_10 add10 phen10 
H h2i_11 add11 phen11 
H h2i_12 add12 phen12 
H h2i_13 add13 phen13 
# 
# total e variance and mean 
F evar 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 
# multiply by 1/13 
F avg_evar evar * 0.0769 
# familiy var avg 
F fvar 41 + 43 + 46 + 50 + 55 + 61 + 68 + 76 + 85 + 95 + 106 + 118 + 131 
# multiply by 1/13, multiply by 4 
F avg_fvar   fvar * 0.0769 
#additive variance 
F avar avg_fvar * 4 
# total p var 
F pvar avg_fvar + avg_evar 
H h2i_avg avar pvar 
 


