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Abstract

Scripting languages such as R and Matlab are
widely used by scientists for data processing. As
the amount of data and the complexity of analy-
sis tasks both grow, sequential data processing using
these tools often becomes the bottleneck in scientific
workflows. We describe pR, a runtime framework
for automatic and transparent parallelization of the
popular R language used in statistical computing.

Recognizing R’s  interpreted nature and
computation-intensive R  codes’ wuse pattern,
pR adopts several novel techniques: (1) runtime
whole-program dependence analysis and code trans-
formation assisted with evaluation results, (2) a
selective parallelizing scheme that only parallelizes
the expensive parts of the program, namely loops
and function calls, and (3) a master-worker schedul-
ing and erecution engine that only “outsources”
ezxpensive tasks to the workers. Our framework uses
MPI for inter-processor communication and does
not require any modification to either the source
code or the underlying R implementation. Ezxperi-
mental results demonstrate that pR can exploit both
task and data parallelism in a totally transparent
manner and overall has better performance as well
as scalability compared to an existing parallel R
package that requires code modification.

1 Introduction

Ultra-scale simulations and high-throughput ex-
periments have become increasingly data-intensive,
routinely producing terabytes or even petabytes of
data. Hidden in this “hay of stack” is “a needle”
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— a scientific discovery. Finding the needle is a
tedious and time-consuming task that requires ad-
vanced high-performance data analytics.

Scientific data analysis is a complex but inher-
ently parallel process. It is often highly repeti-
tive: performing the same set of statistical func-
tions iteratively over many data objects, which are
generated from different timesteps, data partitions,
etc. In most cases, both task parallelism and data
parallelism are present. For example, computing
the eigenvalue decomposition and generating a his-
togram of a matrix, two common R tasks, can be
perfectly overlapped with each other and executed
in a task parallel fashion. Likewise, a loop process-
ing the elements of a large array may be broken into
blocks and executed in a data parallel manner.

While inherently parallel, scientific data analyt-
ics lacks the proper statistical tools and libraries
that could efficiently exploit this parallelism. Many
popular tools such as R [21], S-plus [1], and IDL [2]
have not been fully parallelized. As a result, the
data analysis capacity has increasingly become a
rate limiting factor on the path to scientific dis-
covery. To overcome this bottleneck, scientists are
spending a lot of their time on writing customized
parallel data analysis utilities rather than focusing
on their science. In this paper, we address this
problem with an automatic and transparent runtime
parallelization framework for R, a popular script-
ing language for statistical computing (more back-
ground information about R will be given in Section
2.1).

Although exploiting task and data parallelism in
the data analysis scenarios does not seem difficult,
the key challenge in doing so lies in the fact that
such parallelization should be done in a transpar-
ent manner as much as possible. Ideally, the do-
main scientists should be able to re-use in a parallel
environment their existing sequential data analysis
codes with little or no changes. Throughout their



scientific career, many scientists have accumulated
hundreds or even thousands of lines of their favorite
codes. Re-writing or making changes to such collec-
tively lengthy codes is an error-prone, tedious, and
psychologically painful exercise that scientists will
often resist to. Also, domain scientists, especially
experimentalists, often lack the knowledge and ex-
perience of parallel computing. Hence, an approach
that requires these scientists’ explicit parallel pro-
gramming will likely fail.

The requirement of transparency greatly compli-
cates the parallelizing task. In a user-driven ex-
plicit parallelization set-up, it is the user’s job to
directly specify what sessions to run in parallel, how
to distribute the data across processors, what inter-
process communication scheme to use, when to syn-
chronize the processors, and which parts of the code
to run in task- or data-independent fashion. Per-
forming all these tasks automatically, without direct
user supervision, is difficult. Doing it efficiently is
even more challenging. The nature of the under-
lying programming language brings another dimen-
sion to this problem.

The fact that R is a scripting language is both
a curse and a blessing. On one hand, its scripting
feature facilitates runtime parallelization, as a lot
of information not known a priori becomes avail-
able at execution time while an R script is being
interpreted. On the other hand, since the depen-
dence analysis and scheduling of such tasks are done
online, guaranteeing overall performance efficiency
gets complicated.

In this paper, we present our work towards sup-
porting efficient, yet transparent R parallelization.
We have designed and implemented pR, a modified
R environment that executes R scripts in parallel.
We consider the major contributions, as well as key
novelties of this paper to be as follows:

e We developed several automatic runtime tech-
niques to parallelize R, which do not require
any source code modification and hide all the
parallelization details from users. To our best
knowledge, this is the first transparent paral-
lelizing tool for a high-level language without
using special hardware support.

e We applied parallelizing compiler’s technology
to parallelizing an interpreted language and
coupled it with incremental runtime analysis.

e We evaluated the pR prototype with both real-
world data analysis applications and synthetic
codes. Our experiments demonstrate that a
significant speedup can be achieved and the
parallelizing overhead is relatively small.

The rest of the paper is organized as follows. Sec-
tion 2 gives background information on R and dis-
cusses related work. Section 3 presents an overview
of pR’s design rationale and system architecture,
while Section 4 discusses design and implementa-
tion details. Section 5 evaluates both the user in-
terface and the performance. Section 6 talks about
the system limitations and future work, and Section
7 concludes the paper.

2 Background
2.1 AboutR

R [21] is an open-source software and language
for statistical computing and graphics, which is
widely used by the statistics, bioinformatics, engi-
neering, and finance communities. It has a center
part that was developed by its core development
team and provides add-on hooks for external de-
velopers to write and add extension packages. The
R source codes were written mainly in C. R can
be used on various platforms such as Linux, Macin-
tosh and Windows and can be downloaded from the
CRAN (Comprehensive R Archive Network) site at
http://www.r-project.org/.

As a data processing tool, R can perform diverse
statistical analysis tasks such as linear regression,
classical statistical tests, time-series analysis, and
clustering. It also provides a variety of graphical
functions such as histograms, pie charts and 3D
surface plots. Built upon R, many other data pro-
cessing software tools are developed, such as Bio-
Conductor, an open-source and open-development
software package for the analysis of biological data
[6].

R is an interpreted language, whose basic data
structure and entity is an object. Internally an
R object is implemented as a C struct SEXPREC,
whose naming roughly corresponds to a Lisp “S-
expression.” For example, an object may be a vec-
tor of numeric values or a vector of character strings.
R also provides a list, an object consisting of a col-
lection of objects.

R can be used in both interactive and batch
modes. In the interactive mode, R issues a prompt
to expect input commands. Upon receiving one
correct command, the R environment executes the
command. The user retrieves the results from the
standard output by typing variable names. In the
batch mode, an R script is supplied as a file and ex-
ecuted from the R prompt. Results can be written
into output files or retrieved from the standard out-



put as in the interactive mode. This paper focuses
on the parallelization of the batch-mode execution.

a<-1 1
b<-2 )
¢ <- rnorm(9) 3
d <- array(0:0, dim=c(9,9)) .
for (i in b:length(c)) 5
¢ 6
cl[i] <-c[i-1] +a .

8

for (i in 1:length(c)) 5
10

d[i,] <- matrix(scan(paste(“test.data”, i, sep=""))) 11
12

if (c[length(c)] > 10) 13
¢ 14
e <- eigen(d) 15
16

else 1
¢ 18
e <- sum(c) 1
20

Figure 1. A sample R script.

In Figure 1, we present a running example of an R
script that will be used to illustrate how pR works.
It is designed more to cover important pR issues
than to perform a meaningful job. Line 1 and line 2
are simple constants assignment. Line 3 generates
a vector of nine normally distributed real numbers.
Line 4 initializes a 2-D array. Lines 5-8 are a loop
performing a simple arithmetic operation. Lines 9-
12 read the matrix data from the file. Lines 13-20
are a conditional branch. The first branch computes
eigenvalues and eigenvectors of the rectangular ma-
trix and the second branch finds the summation of
all the vector elements.

2.2 Related Work

Several projects aiming at parallelizing programs
in widely used interpreted languages have recently
emerged in response to an increasing demand for
their parallel processing capabilities. Choy and
Edelman [10] have surveyed 27 parallel Matlab sys-
tems and categorized them as: (1) embarrassingly
parallel, (2) message passing, (3) back-end sup-
port, (4) Matlab compilers, and (5) shared memory.
Among them, the embarrassingly parallel, message
passing and shared memory approaches require ex-
plicit parallel programming. Programmers either
need to mark embarrassingly parallel task regions
or to orchestrate communication as well as synchro-
nization. Back-end support has been a popular
approach utilizing high-performance numerical li-
braries such as ScaLAPACK [9] to carry out Matlab
routines in parallel on multiple servers. Star-P [11],

a typical example from this category, provides trans-
parent parallelization through function overloading
and supports user-controlled row-wise, column-wise
or block-wise distribution of data matrices. Matlab
compiler-based approaches require special compiler
support to translate Matlab programs into codes in
a compiled language or directly into parallel exe-
cutables. While efficient, these approaches are less
portable and fail to utilize any runtime information.

Similar categorization applies to existing work on
other scripting languages. For example, pyMPI [20]
provides MPI interfaces for parallel programming
in Python and belongs to message passing category.
For R, the snow package [22] exploits embarrass-
ingly parallel tasks and belongs to category 1, while
our RScaLAPACK [24, 29] uses the ScaLAPACK li-
brary along with the dynamic process management
for parallel computation and could be broadly con-
sidered to fall under category 3.

In contrast, our proposed framework is highly
complementary to all the aforementioned categories.
It parallelizes sequential R code without requiring
any source code modification or specialized com-
pilers. Similar to our preliminary task-pR pack-
age [27], it performs runtime dependence analysis
and scheduling of task parallel jobs within the user-
specified blocks of code. However, it brings task-
pR’s capabilities to a completely new level: (a) it
automatically detects data parallel blocks inside of
for loops, unrolls those loops and runs them concur-
rently, (b) it performs dependence analysis on the
entire program thus eliminating the need for code
changes previously required for marking the blocks
of interest, and (c) it increases the efficiency through
selectively “outsourcing” only expensive tasks to
worker processors, while letting the master execute
light-weight tasks. Our current framework assumes
that individual functions are sequential codes and it
does not explicitly parallelize them. However, our
approach can be combined with back-end support
methods through adjusting its scheduling strategy
(this work is in-progress and not reported here).

The snow package [22] mentioned above is prob-
ably the closest related project to our framework,
in the sense that both tools allow users to par-
allelize independent operations. snow works with
interactive execution while pR currently only sup-
ports batch-mode runs. However, pR’s paralleliza-
tion is much more general (for example, it can par-
allelize two heterogeneous function calls), and un-
like snow, pR does not require any modification to
the sequential R source code. Performance wise, our
experiments indicate that pR is able to achieve sim-



ilar speedup with snow on an embarrassingly paral-
lel code, and an order-of-magnitude better speedup
on a more communication-intensive code. Section 5
give more related details.

Regarding transparent or semi-transparent par-
allelization, there have also been a few related
projects. A simple yet powerful interface called
MapReduce was designed for processing and gener-
ating large data sets in Google [13]. With MapRe-
duce, the run-time system handles data partition-
ing and task scheduling automatically. However,
it is targeted toward a certain type of data paral-
lelism (where the same operation is performed over
a large set of objects, with a reduction operation
at the end to merge the results). Users still need
to explicitly specify the Map and Reduce opera-
tions. pR, again, exploits both data parallelism and
task parallelism, with no extra effort requested from
R programmers. To a certain extent, pR resem-
bles OpenMP [3], a set of compiler directives and
callable runtime library routines that enables trans-
parent shared-memory parallelism. However, with
OpenMP, programmers are responsible for check-
ing dependencies, deadlocks, race conditions, etc.,
while pR handles parallelization transparently. In
addition, Seinstra et al. designed a software ar-
chitecture for parallel image processing [26]. Users
are supplied with a parallel library with interfaces
identical to those from a sequential image library.
In this case, although the parallelization is hidden
from the user, different library calls cannot be par-
allelized even when they are independent from each
other.

In a nutshell, our work performs what paralleliz-
ing compilers do to compiled languages on an in-
terpreted language. Two representative paralleliz-
ing compilers, SUIF [17] and Polaris [7], transform
sequential C or Fortran codes into parallel codes
(e.g., using OpenMP). The design of pR has bor-
rowed mature techniques from these projects, such
as loop dependence analysis. However, dealing with
online parallelization of an interpreted language, we
have to address new issues such as runtime task
scheduling. In addition, the scope of paralleliza-
tion of the aforementioned compilers may be signif-
icantly limited by the lack of information at compile
time, while pR is assisted with runtime dependence
analysis.

Several runtime parallelization techniques have
been proposed. Salz et al. presented run-time meth-
ods to automatically parallelize and schedule itera-
tions of a do loop in a situation where compile-time
information is inadequate [23]. Gupta et al. pre-

sented a set of new run-time tests for speculative
parallelization of loops [16]. In contrast, our work
moves the static analysis performed by compilers
to run time and combines such analysis with run-
time parallelization. Chen et al. proposed the Java
runtime parallelizing machine (Jrpm), a complete
system for parallelizing loops in sequential Java pro-
grams automatically [8]. Like other systems using
speculative multi-threading (e.g., [14]), Jrpm relies
on hardware support to ensure correctness and re-
quires additional profiling. Our framework performs
a similar task in the R context but works at the user
level. Both systems allow the sequential code to be
parallelized without modifications to the original se-
quential codes, but Jrpm deals with while loops
more easily, while pR supports task parallelism be-
yond loops.

In addition, the dynamic, incremental depen-
dence analysis technique presented in this paper is
related to but quite different from the existing dy-
namic compilation technology. Mechanisms such as
just-in-time compilation [12] and incremental com-
pilation [25] are designed to reduce the overhead of
runtime bytecode interpretation or interactive com-
pilation. Our work is closer to dynamic compiling
systems such as DyC [15]. The difference is that
these systems perform runtime optimization while
our framework takes advantage of the interpreted
nature of the R language to perform runtime paral-
lelization.

3 pR Overview

In this section we describe the a high-level design
of the pR framework, with more details given in
Section 4.

3.1 Design Rationale

The approach we adopt in building pR is
based on several motivating observations regard-
ing computation-intensive and/or data-intensive R
codes:

e As a high-level scripting language, the use pat-
tern of R is significantly different from those
of general-purpose compiled languages such as
C/C++ or Fortran. Most R codes are com-
posed of high-level pre-built functions [10] typ-
ically written in a compiled language but made
available to R environment through dynam-
ically loadable libraries. For example, the
R function svd() utilizes LAPACK’s Fortran



dgesdd () code underneath rather than provid-
ing an explicit low-level matrix decomposition
in a scripting language.

e While users would not frequently write their
own nested loops to implement tasks such as
matrix operations (as many such operations
are already provided by R), loops are widely
used to carry out similar tasks repeatedly,
such as Markov Chain Monte Carlo, boot-
strap sampling or likelihood maximization or
going through a collection of data files. These
“coarse-grained” operations, compared with
“fine-grained” loops used in numerical func-
tions, typically have less inter-iteration depen-
dency and higher per-iteration execution cost,
making them ideal candidates for data-level
parallelization.

e Several characteristics of the R language sim-
plify dependency analysis. First, there are no
data pointers. The input parameters to the
functions are read-only, while the modified or
newly-created variables by the function are re-
turned explicitly. Returning several such vari-
ables is accomplished through the formation
of a list object, which is a collection of other
objects. Second, R only uses pass-by-value.
While this may cause un-necessary memory-
copies (especially for read-only input parame-
ters to a function), this removes the aliasing
problem, a major limiting factor in general-
purpose compilers. Still, users may call ex-
ternal functions that are written in other lan-
guages such as C, which may contain the use
of pointers.

As a result, in designing this proof-of-concept
parallel R framework, we focus on parallelizing two
types of operations: function calls and loops. In a
typical computation-intensive R program (and pro-
grams in other languages as well), these two form
the bulk of the execution time.

Here we highlight the two major innovations in
the pR design. The first one is runtime analy-
sis/parallelization. We perform dynamic depen-
dency analysis before interpreting R statements and
identify tasks and loops that can be parallelized.
This allows us to go beyond loop parallelization,
which has been the primary focus of parallelizing
compilers, to also exploit task parallelism between
any two statements. In addition, we perform incre-
mental analysis that delays the processing of condi-
tional branches and dynamic loop bounds until the
related variables are evaluated.

R seript Master
Parallel
Execution Il;ocal R
: rocess
Engine
7] '\
Frontend Frontend
Worker 1 Worker n

Figure 2. pR Architecture.

To parallelize an entire program at the granular-
ity of individual statements, however, may gener-
ate too much scheduling and data communication
overhead and hurt the overall performance. We
address this with our second innovation - a selec-
tive and asymmetric parallelization model. Instead
of generating a symmetric Single Process Multiple
Data (SPMD) type of parallel code using one or
more “fork-join” sessions, we adopt a master-worker
paradigm that only “outsources” the expensive jobs
(i.e., function calls and loops) to the workers. All
the light-weight operations, such as simple state-
ments and conditional statements that do not con-
tain any loops or function calls, are executed locally
by the master. This selective and asymmetric par-
allelization approach reduces the parallel execution
overhead as well as the communication cost.

Details of our design will be given in Section 4.

3.2 Framework Architecture

The key feature of pR is that it dynamically and
transparently analyzes a sequential R source script
and accordingly parallelizes its execution. The re-
sults of partial execution are collected to perform
further analysis at run time. The framework is built
on top of and does not require any modifications to
the native R environment. Internally, the Message
Passing Interface (MPI) [19] library is used for inter-
node communication.

When users run their R scripts in parallel using
PR, one of the processors, the one with the MPI
rank 0, is assigned as the master node, while the
others become worker nodes. As shown in Figure
2, there is an R process running on the master and
each of the worker nodes. This process executes
individual R tasks: functions and parallelized loops
on the workers and all the other tasks on the master.



The basic execution unit in pR is an R task (or
task for brevity), which is the finest unit for schedul-
ing. A task is essentially one or multiple R state-
ments grouped together as a result of parsing, de-
pendence analysis and loop transformation. A task
can be a part of a parallelized loop, a standard func-
tion call, or a block of other statements between
these two types of objects. As shown in Figure 2,
there is an R process running on the master and
each of the worker nodes. This process executes R
tasks: functions and parallelized loops on the work-
ers and all the other tasks on the master.

The major complexity of pR resides at the mas-
ter side, which performs dynamic code analysis, on-
the-fly parallelization, task scheduling, and worker
coordination. These are carried out by two compo-
nents: an analyzer and a parallel execution engine.

The analyzer forms the front-end of our pR sys-
tem. Its primary functionality is to perform syntac-
tic and semantic analysis of R scripts. Such analysis
helps pR identify execution units and their prece-
dence relationship to exploit task and data paral-
lelism.

The parallel execution engine works as the back-
end of pR and takes input from the analyzer. It is
responsible for dispatching tasks, coordinating the
communication among the workers, supervising the
local R processing, and collecting results.

The analyzer pauses where static analysis is not
sufficient to perform parallelization, such as condi-
tional branches and loops with dynamic bounds.
The analyzer resumes its analysis after the paral-
lel execution engine provides appropriate runtime
evaluation results. In this case, these results are
fed-back to the analyzer, as shown in Figure 2.

Each of the worker nodes also has a front-end
process, which interacts with the master and other
worker nodes. This way, data communication can
be performed without interrupting the R task ex-
ecution carried out by the R process. The front-
end process manages the data, tasks, and messages
for the worker. It supplies the R process with task
scripts and input data, and collects the output data
from the latter.

The inter-node communication in pR is per-
formed via MPI, while the inter-process commu-
nication on each node is performed via the UNIX
domain sockets.

4 pR System Design and Implemen-
tation

In this section, we give the design and implemen-
tation details of the pR components.

4.1 The Analyzer

— | Parser Dependence Loop

T T Analyzer '\ Parallelizer/

R Script Parsing Tree Task Precedence Graph

Figure 3. The pR analyzer’s internal structure.

As illustrated in Figure 3, there are three basic
modules inside the analyzer: a parser, a dependence
analyzer, and a loop parallelizer. Below we discuss
the task performed by each of these modules.

Parsing The pR parser focuses on identifying R
tasks for subsequent execution. Given an input R
script, the parser carries out a pre-processing pass
of the code using R’s internal lexical functions to
identify tokens and statements. The parser then
breaks down the script into a hierarchical structure
and outputs a parse tree.

Although the parsing task sounds very similar to
the one performed by compilers, the parse tree gen-
erated by the pR parser is a simplified version. Here
the sole purpose of parsing is to perform dependence
analysis and automatic parallelization, while the ac-
tual interpretation and evaluation of R statements
are carried out by the native R environment. Be-
cause the basic unit of pR’s task scheduling is at
least one R statement, its parse tree stops at this
granularity, with each leaf node representing one in-
dividual R statement. For all the leaf nodes, the
input and output variable names as well as array
subscripts, if any, are extracted and stored.

Each internal node of the parse tree represents
a region of statements in the script that share the
same entry or exit point. A region is a loop (includ-
ing nested loops), or a conditional branch, or one
or more consecutive other statements. For exam-
ple, a region that goes from the very beginning of a
script till the beginning of the first loop or branch
within the same scope forms an internal node in
the parse tree. A loop makes up another internal
node and inside the loop scope, the same procedure
of constructing internal nodes recursively applies.
Similarly, a conditional branch node includes the if

I —



clause and the else clause (if there is one) and inside
the branch scope for which the parsing sub-tree is
recursively built in the same way.

Figure 4. A sample parse tree.

Figure 4 shows the generated parse tree for the
sample code given in Figure 1. The leaf nodes are
all statements corresponding to lines 1-4, 7, 11, 15,
and 19, respectively. Each internal node covers a
loop, a branch, or another region in the code, where
a “block” stands for a code block that does not con-
tain loops or branches.

Dependence Analysis The pR dependence an-
alyzer takes the parse tree generated by the parser
and performs both statement dependence analysis
and loop dependence analysis. Because the ba-
sic scheduling unit is a task, the dependence ana-
lyzer will first group consecutive simple statements
(those not containing any function calls) inside non-
loop code blocks into tasks. For example, the first
two statements in our sample code will become one
schedulable R task, which will be executed locally
on the master.

In statement dependence analysis, we compare
the input and output variables between the state-
ments to identify all three dependency types: true
dependence (write-read), anti-dependence (read-
write), and output dependence (write-write). State-
ments dependence analysis is applied across the
tasks. If a dependence is discovered between two
tasks, the dependence type and the dependent vari-
ables are recorded and to be used by the scheduler
subsequently.

In loop dependence analysis, we perform the
same task as in parallelizing compilers to ex-
plore data parallelism inside the loop task. While
statement dependence analysis is relatively simple
and straightforward to implement, loop dependence
analysis is much more challenging and has been
studied with many years of research efforts in the
compiler community. Exact loop data dependence
analysis has been shown to be NP-complete [18].
Our dependence analyzer employs the ged test [5],
a method of data-dependence test generally used in

automatic program parallelization. The test com-
pares subscripts of two array variables and is lin-
ear (affine) in terms of the loop index variables.
Basically, it builds a linear Diophantine equation
and calculates the greatest common divisor to see
whether a solution to that equation exists. The test
is effective for simple array subscripts but gets in-
efficient for complex array subscripts, in which case
the compiler may fail to detect the parallelism be-
tween loop iterations, and hence, will execute the
loop sequentially. Our experience shows that the
ged test suffices for pR’s purposes, since typical R
scripts used in scientific data analysis are not ex-
pected to contain elaborate user-defined loops with
a complex array index structure.

pR takes advantage of the fact that the analysis
tool can closely interact with the runtime R inter-
pretation environment to perform incremental anal-
ysis. This allows the analyzer to temporarily pause
at points where it requires runtime information to
continue with the code analysis and parallelization.
In this initial implementation, we define an pause
point in the dependence analysis as a task that is ei-
ther a loop with an unknown outer-most loop bound
or a conditional branch that contains function calls
or loops. These tasks are considered worth paral-
lelization and remote execution, but cannot be par-
allelized before runtime. When the key evaluation
results are returned from the execution engine, the
analysis and parallelization resumes and advances
to the next pause point or the end of the script.

Finally, when it comes to file I/O operations, pR
takes a slightly more aggressive approach than com-
pilers do. Traditionally, compilers do not attempt
to parallelize operations involving system calls. In
the R context, however, users would greatly ben-
efit from parallelizing the analysis of different files
(such as a batch of time-series simulation results).
This type of processing is very common and the
operations across different files are typically inde-
pendent. Therefore, we perform a simple file name
check when determining whether there exists de-
pendence between tasks containing file I/O oper-
ations.! Any two operations working on the same
files are considered dependent. Further, all calls of
user-defined functions, each considered as one single
task, are considered dependent with any task that
performs I/0.

The precedence relationship among the tasks is
stored in a task precedence graph (TPG), as the out-
put of the dependence analyzer. A TPG is essen-

I This solution assumes that there are no file aliasing prob-
lems, for example, that created by symbolic links.



task 1 task 2 task 3

[c <- morm(9)] [d <- array(0:0, dim=c(9,9))|

O =k 4| () task 5

for (i in b:length(c) for (i in 1:length(c))

cfi] <-cfi-1] +a d[i,] <- matrix(scan(paste(“test.data”, i, sep="")))

@ i (c[ler:gth(c)] > 10)
{
e <- eigen(d) task 6
L|se @ Pause point

e <- sum(c)

}

Figure 5. A sample task precedence graph.

tially a directed acyclic graph, where each vertex
represents one task and each directed edge repre-
sents the dependence between two tasks. In addi-
tion, if the task group consists of a loop, the depen-
dence distance (defined as the difference between
dependent iteration numbers) for each loop index
will also be recorded. This information is not used
in the current implementation, but will be useful
in future extensions performing loop transformation
to parallelize loops where limited inter-iteration de-
pendence exists.

Figure 5 shows the task precedence graph gen-
erated from the parse tree in Figure 4. Each box
stands for one task and each edge stands for a
known dependence. There are three pause points, as
marked in this TPG. A dashed edge indicates that
the dependence relation might hold, depending on
the result of branch condition evaluation. In this
figure, the loop task in a bold box denotes a paral-
lelizable loop, while a simple task in a bold box de-
notes an expensive operation (a function call) that
should be outsourced to a worker. Here the loop
in task 4 cannot be parallelized because it possesses
inter-iteration data dependence.

Loop Parallelization Loops are parallelized au-
tomatically by our system if no loop dependency
is identified. Similar to parallelizing compilers, we
focused on the outer-most loop for nested loops.
If necessary, mature techniques such as loop inter-
change [4] can be applied to better exploit data par-
allelism, though our current implementation does
not support this feature. Currently, pR does not
further parallelize the content of the loop (even if
there are parallelizable operations such as function
calls). Basically, the loops are executed in an em-
barrassingly parallel fashion with all the statements
inside the loop executed by a single processor on
processor-specific portion of the data.

For all the parallelizable loop tasks, the iterations
of the outer-most loop are split into disjoint blocks
and executed in parallel. In this initial prototype,
we simply set the number of blocks as the number of
workers. Consequently, the original loop task is di-
vided into multiple tasks, each with a similar-sized
block of iterations from the original loop (some of
the tasks will have a few more iterations than the
others). The corresponding TPG vertex is split into
multiple vertices, with the dependence edges repli-
cated for each of them. Also, the start and end in-
dices of its sub-loop are stored in each of the newly
created TPG vertices.

4.2 The Parallel Execution Engine

Our parallel execution engine is responsible for
executing the tasks. As mentioned earlier, it adopts
an asymmetric, master-worker model. The workers
are responsible for executing tasks that our system
considers heavy-weight, namely parallelized loops
and function calls within our current implementa-
tion. The master, on the other hand, plays two
roles. Besides performing all the analysis, schedul-
ing, and worker coordination, it also possesses a lo-
cal R process that executes light-weight tasks. This
simplifies scheduling as well as reduces communica-
tion overhead.

The parallel execution engine takes the task
precedence graph from the dependence analyzer
and makes a scheduling table for dispatching tasks,
which essentially holds job information packet en-
tries. Each job information packet consists of the R
statements in the task, a map of variables that this
task depends on along with the tasks where these
variables are last modified and a list of output vari-
ables. The job information packet is distributed ei-
ther to workers if the task in question is considered
heavy-weight or to the master, otherwise. There-
fore, the execution engine maintains two separate
ready queues, for the workers and for the master,
respectively. It also keeps a list of all the free work-
ers and the status of the master, i.e., whether the
master is executing an R task or is idle. Whenever
a worker or the master is available, the first task
in the corresponding ready queue is dispatched by
sending the job information packet. This process
continues until the execution of the entire script is
complete, upon which the master will instruct all
the workers to quit.

The key challenge in coordinating the parallel ex-
ecution of R tasks is to overlap the transfer of data
generated from previously completed tasks with the



computation of the currently active tasks. For ex-
ample, suppose worker wy executes task 2 (“c <-
rnorm(9)”) in Figure 5. The master can direct wy
to send array c to itself because it knows that task
4 (the loop that cannot be parallelized) will be ex-
ecuted on the master locally. However, upon the
completion of task 2 it may not be known where
tasks 5 and 6 will be assigned, since these tasks de-
pend on another task (task 3), which may be waiting
for an idle node or currently under processing.

One way to handle this problem is to let each
worker send back its output data to the master since
it does not know which worker will later need the
data. The master then sends such data to the appro-
priate worker when the corresponding task is sched-
uled. This solution may significantly increase the
communication traffic and can potentially make the
master node a bottleneck. Therefore, we make the
workers responsible for the management and peer-
to-peer communication of the task input/output
data, which are accomplished by the worker front-
end process. This process does not execute any R
task and is alert for incoming messages both from
the master and from the other workers. In the above
example, the R process on w; will hand over array
c to the front-end process on the same node, and
wy will report itself ready for the next task. When
the master schedules task 5 to ws, it tells ws, as a
part of the job information packet, that array t is
to be retrieved from w;. wy will then contact wy to
ask for the array, without interrupting the R task
processing on wj .

The parallel execution engine is also responsible
for sending runtime information back to the ana-
lyzer and triggering the analysis to resume when
key variables at a pause point have been evaluated.

5 Experimental Results

In this section, we demonstrate the ease of use
and efficiency of the pR framework. We show that
PR can be easily used without modifying the se-
quential R script. We also illustrate pR’s perfor-
mance using several R codes. Note the emphasis
of this paper is not on achieving the highest pos-
sible speedup and our current implementation is
an early proof-of-concept prototype that does not
contain sufficient optimization or refinement. How-
ever, we show that pR is able to achieve reason-
able speedup on a real-world computation-intensive
R application, while matching or exceeding the per-
formance of an existing parallel R package, which
does require code modification.

5.1 Experiment Settings

Our experiments were performed on the opt%*
cluster located at NCSU, which has 16 2-way SMP
nodes, each with two dual-core AMD Opteron 265
processors. The nodes have 2GB memory each and
are connected using Gigabit Ethernet and run Fe-
dora Core 5. A single NFS server manages 750GB
of shared RAID storage.

We performed each test multiple times and ob-
served that the performance variance was very small
(less than 5%), so error bars were omitted.

5.2 Ease of Use Demonstration

a <- matrix(1:1000, 100, 10)| /ibrary(Rmpi)

b <- list() library(snow)
C <- mean(a)
d <- sum(a) cl <- makeCluster(2, type = “MPI’)
for (i in 1:dim(a)[1]) a <- matrix(1:1000, 100, 10)
b <-list()
b[i] <- sum(ali,]) € <- mean(a)
d <- sum(a)
b <- parApply(cl, a, 1, sum)
stopCluster(cl)

Figure 6. Comparison with the snow package in-
terface.

To illustrate the advantage of pR’s interface,
we compare it with the snow (Simple Network Of
Workstations) parallel R package [22], which allows
users to parallelize embarrassingly parallel opera-
tions. Figure 6 lists, side by side, the sequential
version and the snow version of a small piece of sam-
ple R code. These two codes perform the same R
operations and generate the same results.

Statements that call snow APIs are printed in
italic. With snow, users must first include both
the RMPI and the snow libraries, then indicate
that a cluster consists of two processors using
makeCluster. The user then executes the function
sum on the target matrix along the 1st dimension in
parallel on this cluster using parApply. In this case
the results will be stored as the 1000 elements of the
list b. Finally the user has to remove the cluster by
calling stopCluster.

The sequential version on the left side, however,
carries out the sum operations in a loop, as typically
will be done to perform such a task. With pR, this
sequential version can be automatically parallelized
without any modification as an ordinary MPI job.
Suppose the script is stored in file sum. R, the regular
command to execute it in batch mode with R is
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Figure 7. Performance of pR with the Boost ap-
plication.

R CMD BATCH sum.R,

then the command to execute it in parallel with pR
is simply

mpirun -np <num_procs> pR sum.R

This allows the sequential code to run unmodified,
which has not been enabled by any existing parallel
scripting language environments.

The only assumption pR makes for the parallel
execution is that all the files used in the sequential
script must be stored in the shared file system and
the appropriate paths are provided in the code.

5.3 Parallel Execution Performance

First, we evaluate pR using Boost, a real-world
application that we acquired from the Statistics De-
partment at NCSU. This code is a simulation study
evaluating an in-house boosting algorithm for the
nonlinear transformation model with censored sur-
vival data. The nonlinear transformation model is
complex, and the boosting algorithm is computa-
tionally intensive. Moreover, the simulation study
often requires a large number of repeated data gen-
eration and model fitting, and the total computa-
tional time can be forbidding.

The bulk of computation in Boost is spent on a
loop, which contains other loops. The only modifi-
cation we made to Boost before running it in pR is
to change the number of iterations in one inner loop
(which is not parallelized) to reduce the execution
time, as the original code runs for dozens of hours.

Figure 7 shows the speedup of running Boost
with pR, on 2 to 32 processors, with the “1 pro-
cessor” data point marking the sequential running
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time of Boost in the native R environment. We also
plot the ideal speedup for pR, which grows linearly
with the number of workers (note that the master
does not carry out any heavy-weight computation).
For example, with 8 processors the ideal speedup
is 7. The results indicate that the actual pR per-
formance, including all the preprocessing, analysis,
and scheduling overhead, follows the ideal speedup
pretty well, until when there are 15 workers. Up
to this point, the R task computation time still de-
creases linearly, but the pR initialization and data
communication overhead becomes more significant
(Table 1 will give more details). The overall speedup
with 15 workers is 13.5. When the number of pro-
cessors is creased to 32, the gap between the ideal
speedup and the pR actual performance widens: the
actual speedup is 24.7 rather than the ideal speedup
of 31. This is mainly due to the fact that the con-
tention between the two processors on each SMP
node, as the computation speedup (the speedup in
executing Boost’s main loop) drops to around 1.5
from 16 to 32 processors. Meanwhile, the pR over-
head also increases when both processors on a node
are used.

Next, we compare pR’s performance with that
of the snow package. We select two representative
synthetic test cases here.
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Figure 8. Performance with the bootstrap code.

The first test case was the bootstrap example
taken from an online snow tutorial [28]. It per-
forms bootstrap in a loop using the R boot function
and the nuclear data provided in R. This forms an
ideal case for parallelization, as it is computation-
intensive but not data-intensive. We created the
corresponding sequential code using a for loop. Fig-
ure 8 portraits the performance of snow and pR.

We can see from the figure that both snow and



pR perform well with the bootstrap code. The pR
curve closely follows the ideal speedup line until the
32-processor point, where the hardware contention
becomes heavier. Initially, snow outperforms pR be-
cause snow uses all of the processors in running the
parallelized operations. With 32 processors, how-
ever, pR slightly beats snow.
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Figure 9. Performance with the SVD code.

The second synthetic test case resembles the ex-
ample we gave in Figure 6, but at a much larger
scale. It performs SVD on each 2-D slide in a large
3-D array. In this case, the initialized array must
be partitioned and distributed to all the workers,
while the results must be gathered. This code is
both computation- and data-intensive.

Figure 9 shows that the speedup achieved by pR
is significantly worse than the ideal value. The par-
allel performance saturates beyond 16 processors
and peaks around 4.2. Still, this performance is over
an order of magnitude better than snow’s, which
never produces any speedup starting from 2 pro-
cessors and actually slows down the application by
over 4 times with 16 and 32. This behavior is con-
sistent with what the snow authors reported with
communication-intensive codes [22].

For data to be communicated between processes
and interpreted correctly as R objects, both snow
and pR uses the serialization function provided by
R. This helps to keep the parallelization package
high-level and easy to work with R updates. How-
ever, we have found through our measurement that
the R serialization can be more costly than the
inter-processor communication. To verify this, we
benchmarked the point-to-point MPI communica-
tion time and the R serialization time of an 8MB
array. On our test cluster, we measured the MPI
bandwidth to be 72.5MB/s, while the R serializa-

tion bandwidth is only 1.9MB/s. In pR, since the
array initialization function call is treated as one
task, one worker performs this initialization, seri-
alizes partitions of the array, and sends these par-
titions to the appropriate workers. Therefore the
array initialization time remains constant and the
communication time increases as the number of
workers grows. Such overhead becomes more domi-
nating as more workers are used and the parallel R
task execution time shrinks.

The reason that pR’s performance is much better
than snow, we suspect, is due to the fact that pR is
implemented in C and directly issues MPI calls. In
contrast, snow is implemented in R itself and calls
R’s high-level functions for message passing, which
may result in worse communication performance.

2 4 8 16 32
Initialization 0.05 | 0.13 | 0.31 | 0.65 | 1.28
Analysis 0.00 | 0.00 | 0.00 | 0.01 | 0.04

Master MPI 0.00 | 0.00 | 0.00 | 0.00 | 0.01
Max wkr. serial. | 0.42 | 0.69 | 1.15 | 2.05 | 3.19
Max wkr MPI 0.00 | 0.03 | 0.07 | 0.15 | 0.26
Max wkr socket | 0.01 | 0.01 | 0.02 | 0.04 | 0.05

Table 1. Itemized overhead with the Boost code,
in percentage of the total execution time. The
sequential execution time of Boost is 2070.7 sec-
onds.

2 4 8 16 32
Initialization 0.02 | 0.09 | 0.17 | 0.39 | 0.77
Analysis 0.00 | 0.00 | 0.00 | 0.00 | 0.01

Master MPI 0.00 | 0.02 | 0.00 | 0.00 | 0.00
Max wkr serial. | 0.00 | 0.00 | 0.00 | 0.00 | 0.01
Max wkr MPI 0.00 | 0.00 | 0.01 | 0.01 | 0.00
Max wkr socket | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Table 2. Itemized overhead with the bootstrap
code, in percentage of the total execution time.
The sequential execution time of bootstrap is
2918.2 seconds.

2 4 8 16 32
Initialization 0.23 0.49 0.78 1.12 1.27
Analysis 0.00 0.00 0.00 0.01 0.02

Master MPI 0.00 0.00 0.00 0.00 0.01

Max wkr serial. | 11.70 | 26.46 | 41.71 | 52.98 | 57.98

Max wkr MPI 0.00 2.10 4.32 6.44 7.83

Max wkr socket 1.45 1.56 1.99 2.40 2.51

Table 3. Itemized overhead with the SVD code,
in percentage of the total execution time. The
sequential execution time of SVD is 227.1 seconds.



Tables 1-3 list the itemized overhead measured
from pR tests, in the percentage of the total exe-
cution time. E.g., “0.05” in a cell means 0.05% of
the total execution time is spent on this particular
category of overhead.

We measure six types of pR overhead. “Initial-
ization” includes the cost of initializing the mas-
ter and the worker processes, performing the ini-
tial communication, and loading necessary libraries.
“Analysis” includes the total dependence analysis
time. “Master MPI” is the sum of time spent on
message passing after the initialization phase on
the master node. The next three categories stand
for the data serialization, inter-node communication
(MPI), and intra-node communication (socket), re-
spectively. For each type of operation, we sum up
the total overhead spent on such operations on each
worker, and then report the maximum value across
all the workers.

The first observation we can draw from these ta-
bles is that analysis overhead is very insignificant,
counting for less than 0.005% in most cases. The
slight increase in the relative cost of analysis when
there are more workers is more due to the decrease
of the overall execution time.

Initialization, on the other hand, steadily in-
creases with the number of workers, because this
process involves loading libraries at the workers.
This overhead grows as the I/O contention in-
creases, especially with the NFS server equipped at
our test cluster. The initialization cost also varies
from application to application. Note that the SVD
code has a very small initialization cost since it does
not load extra libraries (which is not reflected di-
rectly in the tables as SVD’s execution time is sig-
nificantly shorter than the other two test cases).

After the initialization phase, the master has lit-
tle MPI communication overhead, since most of the
inter-processor data communication happens be-
tween the workers.

The worker-side overhead heavily relies on how
data-intensive an application is. For bootstrap,
there is almost no data communication between
workers, and we measured minimal worker com-
munication overheads. In contrast, with SVD such
overheads may dominate the total execution time.
With 32 processors, the SVD code spends 58% of
the total execution time on data serialization, and
a total of around 10% on data communication. This
explains the small speedup we observed in Figure 9.

Overall, it appears that the analysis and schedul-
ing protocol of pR is quite efficient, while the data
serialization procedure provided by R requires a lot
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of improvement.

a <- array(rnorm(1000000), dim=c(1000,1000))
b <- matrix(scan("test.data"), 1000, 1000)
c <- rnorm (1000)

s <- prcomp(b)

sd <- svd(a)

| <- Im fit(b,c)

st <- sort(a)

f <- fft(b)

sv <- solve (a,c)

sp <- cor(b, method = "spearman")
q<-qr(a)

Figure 10. The task parallelism test code.

Finally, we use another synthetic test case to test
pR’s capability of parallelizing non-loop tasks. Fig-
ure 10 lists the source code. The first three state-
ments create a matrix and a vector with normal dis-
tribution, and read a 2-D matrix from an input file.
Following those are 8 R function calls that perform a
variety of tasks on one or more of these data objects.
These tasks include principal components analysis
(prcomp), SVD (svd), linear model fitting (1Im.fit),
variance computation (cor), sorting (sort), FFT
(fft), equation solving (solve), and QR decompo-
sition (qr). The sequential running times of these
tasks range from less than 3 seconds for the major-
ity of them, to 19 seconds for SVD and 27 seconds
for the linear model fitting. The total sequential
time spent on the three data object initialization
statements is around 5 seconds.

1 2 4 8
Exec time | 87.69 | 114.86 | 45.8 | 37.9
Speedup 1 0.76 1.91 | 2.31

Table 4. The parallel execution time and speedup
of the task parallelism test script.

When pR is used to run this test case, the three
data initialization tasks can be parallelized, and af-
ter these data objects are ready, all the 8 computa-
tion tasks are independent of each other and can be
fully parallelized. This type of parallelization can-
not be performed by snow or tools using the back-
end support approach.

Table 4 shows the results. Due to the small num-
ber of tasks, we stopped at 8 processors. With
2 processors, the single worker is carrying out all
the work, while the serialization involved in com-
municating the data back and forth between the R



process and the worker front-end process adds sig-
nificant overhead. This causes the overall execu-
tion time to grow by 31%. With more processors,
the parallel execution performance picks up and pR
achieves a speedup of 2.3 with 8 processors. Con-
sidering that the longest execution path (including
the initialization of b and ¢, and the 1m.fit call)
costs 30.1 seconds, the total execution time with 8
processors at 37.9 seconds is reasonable given the
known high expense of the R serialization.

6 Discussions

In this section, we describe several limitations of
the pR design, and discuss related plans for future
work.

First, like most parallelizing compilers, our loop
parallelization only deals with for loops and only
partitions the outer-most loop at this point. This
may heavily restrict the parallelism available for pR
to exploit. One future direction we are considering
is to apply existing compiler techniques such as loop
interchange and loop flattening [4] to explore inner-
loop parallelism.

Second, our current design does not perform load
balancing. With a total of p processors, each par-
allelizable loop is cut into p — 1 similar-sized parti-
tions, one for each worker. However, some workers
may be assigned additional heavy-weight tasks such
as function calls. This may cause load imbalance
and calls for finer-granule loop partitioning, or non-
uniform partitioning plus more intelligent schedul-
ing algorithms. Similarly, in the current design we
do not perform data locality-aware scheduling opti-
mizations, which are among our future work items.
Further, load balance can be improved if the mas-
ter is more involved in executing R tasks. It ap-
pears from our experiments that the master has a
very light workload, especially with a small number
of workers. Although it is not worthwhile to dis-
tribute light-weight tasks remotely, it helps to let
the master share heavy-weight tasks.

Also, the current framework executes each func-
tion call as one unit. This limits the parallel execu-
tion performance if a script contains a small number
of very expensive function calls. Having more work-
ers will not be able to help in this case. We plan
to combine pR with existing parallelized back-end
engines such as RScaLAPACK [29]. This will allow
each heavy-weight standard function call to be ex-
ecuted in parallel, in addition to its task and loop
parallelization, while keeping both types of paral-
lelization transparent to users. This, however, gen-
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eralizes the load balancing problem discussed above
and increases the scheduling challenge. When there
are multiple independent tasks and each one can be
parallelized itself, pR must decide how many pro-
cessors to allocate to each task, in order to shorten
the overall execution time. Existing scheduling al-
gorithms for this type of optimization often require
the cost of each task to be known in advance. We
believe an on-the-fly performance monitoring mod-
ule will provide dynamic cost observations and will
work well with an interpretation environment.

Finally, as mentioned earlier, the data serializa-
tion procedure needs to be optimized to generate
better performance for data-intensive applications.
Extending pR to work in the interactive mode is an-
other important and challenging task. We also plan
to obtain more real-world applications to evaluate
PR, especially those with a mixture of task paral-
lelism and loop parallelism, which has not been suf-
ficiently evaluated in this paper.

7 Conclusions

In this paper, we presented pR, a framework that
automatically and transparently parallelizes the R
language for high-performance statistical comput-
ing. We illustrated that scripting languages like R
possess unique characteristics and use patterns that
facilitate automatic parallelization. Performance re-
sults with both real-world and synthetic R codes
show that pR achieves good speedup and reason-
able scalability in most cases, without any modifi-
cations to the sequential script. Environments like
this can improve scientists’ data processing produc-
tivity and boost the currently handled size of the
problems to a more realistic scale without imposing
requirements for explicit parallel programming.
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