ABSTRACT

PALATHINGAL, PAUL JOSE. Integration of Information Retrieval Techniquesinto a Re-
ferral System for Knowlegde Management. (Under the direction of Dr. Munindar Singh.)
Socia networks potentially form ahuge repository of private knowledge that is unavailable
on any search engine. The Multi Agent Referral system (MARS) prototype is a tool for
building and exploiting social networks. Referral chains represent social networks and are
used to request for expertsin a particular field. The MARS system uses software agents to
automate the search of information and expertise.

However information about a user’s expertise is not readily available. Also currently
most systems do not exploit the fact that the user’s document repository isagood pointer to
other user’s interests. By contrast this paper shows how to use Information Retrieval tech-
niques to be able to answer queries and also make referrals on behalf of the user. TFIDF
(Term Frequency Inverse Document Frequency) indexing is implemented on user docu-
ments and messages to determine user interests. A simulation has been carried out and
results of the ssmulation are presented.

This thesis studies the effects of using term and document frequency indexing for in-
formation retrieval on user documents and messages in the MARS prototype.

| ntegration of Information Retrieval Techniques

into a Referral System for Knowledge M anagement

By
PAUL JOSE PALATHINGAL

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
COMPUTER SCIENCE
AT
NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NORTH CAROLINA
5-20-2002

APPROVED BY:

Advisor:

Munindar Singh

Committee Members:

Peng Ning

Mona Singh

NORTH CAROLINA STATE UNIVERSITY
DEPARTMENT OF
COMPUTER SCIENCE

The undersigned hereby certify that they have read and
recommend to the Faculty of Graduate Studies for acceptance a
thesis entitled “Integration of Information Retrieval Techniques
into a Referral System for Knowledge Management”
by Paul J Palathingal in partial fulfillment of the requirements

for the degree of Master of Science.

Dated: _5-20-2002

Advisor: /VLL""\’\”/C{ e ""/Q g"j/\

Munindar Singh

Committee Members: %\

Peng Ning

Mona Singh U

DEDICATION

To my late grand father P O Poulose.

To my parents who have made my higher education dreams come true.

BIOGRAPHY

Paul Jose Palathingal was born in Trichur, Kerala, India. He did his undergraduate
program at Government Engineering College, Trichur, Indiaand received aBTech in Com-
puter Science and Engineering from University of Calicut in 1997. He joined North Car-
olina State University in thefall of 1999 to pursue an MS in Computer Science. He worked
as a Research Assitant for Dr. Mumnindar Singh in the field of Agents and Information
Retrieval for about two years. As part of his MS co-operative program, he has worked at
IBM (Websphere integration) at the Research Triangle Park, Raleigh.

ACKNOWLEDGEMENT

| would like to thank Dr Munindar Singh, my supervisor, for his many suggestions and
constant support during this research. | am aso thankful to Bin Yu and Wentao Mo for
their guidance through my years of chaos and confusion.

Dr Singh was instrumental in bringing me to the field of Multi-agent Systems. | would
like to thank him for his concerted efforts towards my thesis. Bin Yu supplied me with
material on some of hisrecent joint work with Dr Singh, which gave me abetter perspective
on my own results.

| would like to thank Dr Peng Ning and Dr Mona Singh for serving on my thesis com-
mittee.

| am grateful to my parents for their patience and love. Without them this work would
never have come into existence (literally).

Finally, I wish to thank the following: Harish (for his friendship); Dhruba (for chang-
ing my life from worse to bad); all my friends who have helped me with the Thesis and
my sisters (because they asked me to).

This work was partially supported by the National Science Foundation through grant
ITR-0081742.

Paul J Palathingal
May 20, 2002

(© Copyright by Paul J Palathingal, 2002

Table of Contents

List of Figures

1 Introduction

1.1 KnowledgeManagement
1.2 ExpertiseLocation

1.3 Traditiona Information Retrieval

2 Multi Agent Referral System

21 MARSPrototype
22 MARSComponents.
2.3 Motivation For Information Retrieva

3 Indexing

3.1 Introduction
32 ScamningTheText
3.3 Vector SpaceModels L.

4 |Information Retrieval In MARS
4.1 Information Retrieval In MARS

4.2 Thelndexer Architecture
4.3 Refara ScenariosInMARS

5 Implementation

51 TheClassDiagram
52 Anaysis. e

viii

10

14
14
16
17

21
21
22
25

6 Discussion

A Package Structure

Bibliography

Vii

35

37

45

List of Figures

21
22
2.3

31

4.1
4.2
4.3
4.4

5.1
5.2

Al
A2
A3
A4
A5
A.6
A7
A.8

Referral Process 11
ExampleOntology 12
Multi AgentLearning e 13
Overview Of Search And Index Mechanisms 15
Indexing Architecture 26
Scanningdocuments 27
Indexingdocuments. 27
Similarity Check 28
Indexer Module Collaboration Diagram 30
Indexer Module Class Interaction 34
PackageengineClassDiagram 37
Packageenginekb ClassDiagram 38
Package enginelearner ClassDiagram 39
Package engine.reasoner ClassDiagram 40
Package enginereferral ClassDiagram 41
Packageui ClassDiagram 42
Packagemail ClassDiagram 43
Packageindexer ClassDiagram 44

viii

Chapter 1

| ntroduction

Information Retrieval (IR) isawide, often loosely defined term [Grovlen, 1995]. The word
information can be very misleading. In fact, in many cases one can adequately describe
the kind of retrieval by simply substituting “document” for “information”. Information
Retrieval does not inform the user on the subject of his inquiry, but only merely informs
on the existence and whereabouts of documents relating to his request. Simply put, an
Information Retrieval system leads the user to those documents that will best enable him
or her to satisfy his or her need for information. We begin with a look at knowledge

management, referral systems and IR techniques used.

1.1 Knowledge Management

Knowledge management is a process that helps organizations find, select, organize, dis-
seminate, and transfer important information and expertise necessary for problems such as
problem solving, dynamic learning, strategic planning and decision making [Gupta et al.,

2000]. Polanyi first distinguished between tacit and implicit knowledge [Polanyi, 1958].

Tacit knowledge is usually in the domain of subjective, cognitive, and experimental learn-
ing, whereas explicit knowledge deals with more objective, rational, and technical knowl-
edge. The above two types of knowledge can be seen asrelating to the following classes of

approach for knowledge management:
e Expertiselocation.
e Traditional information retrieval.

The approach developed here considers the first, but applies some techniques from the

second.

1.2 EXxpertiseLocation

Significant research has been done on referral systems and social networks. Interpersonal
communication acts as an important channel for gathering information [Yu et al., 1999].
For example, suppose you need to see a dentist, and want to know if there is a good dentist
near where you live. You might find information on dentists in your area when you look
up the Web. However, the search will not tell you how good he is or how experienced he
is. Expertsin a particular field are not known directly. Through friends or neighbors we
usually reach a potential expert. Six Degrees Of Separation [Singh, 1999] is a phenomenon
that states that large social networks can have remarkably short paths between participants.
For the case of multiagent systems, it gives a strong reason to believe that intelligent soft-
ware agents may be ableto interpret linksto other agents and follow only the relevant ones,
so asto find the desired experts quickly.

Theideaof using referral systemsto model social networks has appeared only recently.

MINDS is one of the earliest agent-based referral system [Salton and Buckley, 1988]. Re-
ferralWeb is another referral system that is based on co-occurrence of names on web pages
[Kautz et al., 1997]. However, none of these use interpersonal communications or the so-
cia structure to determine plausible referrals. The prototype system MARS, however, is
developed to be used in a practical social network. The architecture is fully distributed
and each agent learns models of each other in terms of expertise (ability to answer queries
effectively) and sociability (ability to give referrals effectively).

The MARS system is an active model aimed at achieving an effect similar to the phe-
nomenon of the Six Degrees Of Separation. The model is distributed in its functioning.
MARS distinguishes between user interests and user expertise. A user will query based on
his interest and will respond to a query based on his expertise. Determining which user
or neighbor to query is done by incorporating a Vector Space Model to socia networks.
Queries, user interest, expertise are al represented by vectors. Applying similarity based
on Term Frequency Inverse Document Frequency (TFIDF) agorithms, we determine the
user whose expertise is the most similar to the query.

To adapt to finding information that is more private and informal, the MARS system
has incorporated the Information Retrieval system outlined in this Thesis. When a user
formulates a query, the user agent has to determine which contacts to send the query to.
Using the Vector Space model an agent is able to estimate the importance of each termina
query and use it to discriminate among the users who may be sent that query based on the

expertise they have exhibited [Yan and Garcia-Molina, 1993] .

1.3 Traditional Information Retrieval

Mankind today has to handle both dynamic and static knowledge structures. For example
in the field of Web based training particular domain knowledge can be built by the course
material [Dietinger et a., 1999]. The dynamic part may consist of relevant web sites or web
areas, new forums etc. The static library will include electronic books, electronic journals,
exercises, student papers etc. Static as well as dynamic knowledge sources are gathered,
processed and stored by a knowledge processor. An indexer system could implement such
a knowledge processor. Experience has shown that only relevant terms depending on the
proper domain subject or environment have to be taken into account for describing and
clustering documents. An indexing system doesjust that by clustering documents based on
term and inverse document frequencies. Thisisatraditional information retrieval approach
and helps extract implicit knowledge.

Conventional Information Retrieval has been based on existing Boolean text search
systems. In such asystem, search requests are normally represented by Boolean statements,
consisting of search terms interrelated by the Boolean operators and, or, and not. The
retrieval system selects those stored items that are identified by the exact combination of
the search items specified. Our approach used indexing mechanisms to describe documents
and requests. The elements of the index language are index terms, which may be derived
from the text of the document to be described, or may be arrived at independently. The
index terms are weighted as a function of the rank order of their frequency of occurrence.
There are two types of weighting, one in which the weight is given to a term based on the
number of documentsin which it occurs (Document Frequency) and the other based on the
frequency of occurrence of aterm in a particular document (Term Frequency).

The difference between the Document Frequency weighting and the Term Frequency

weighting may be summarized by saying that document frequency weighting places em-
phasis on content description whereas term frequency attempts to emphasize the ability of
terms to discriminate one document from another. The Term Frequency Inverse Document
Frequency indexing scheme uses the two features to extract information from a collection
of documents accurately. The TFIDF schemeisintegrated with the MARS system to search
for potential experts and accurate location of expertise by an agent.

This thesis dicusses how to combine these two aspects of knowledge management by
integrating IR techniques into areferral system. The IR techniques apply to documents to
bootstrap the referral system.

Chapter 2
Multi Agent Referral System

In this chapter we look briefly at the Multi Agent Referral System (MARS), and the moti-

vation for thisthesis.

2.1 MARSPrototype

MARS s an agent based system that combines techniques from information retrieval, multi
agent learning and adaptive user modelling to refine the social network to the users needs
[Yu and Singh, 2000]. Unlike many previous approaches, MARS is fully distributed and
preserves the privacy and autonomy of its users. To better understand the referral function
in the MARS system refer to Figure 2.1

There are basically two types of agents - an agent who sends out a query and an agent
who answers queries or gives referrals. All the agents in the MARS system have the fol-

lowing:
e User Profile: This profiles the users expertise areas.

e Neighbor model: A model or shortcut to neighbors that are in the user’srealm. The
neighbor model contains the neighbors expertise and sociability (which is a measure

of how well the neighbor is able to refer other potential agents).

6

A querying agent sends out a query to a set of neighbors based on their expertise. The
originating agent can receive two types of replies. An answer, in which case the agent
evaluates the answer and updates the neighbor model. A referral in which case the agent
sends out the query to the referred agent. If an answer is agood one, the agent updates the
expertise of the answering agent to reflect that and vice versa. Also if the referral isagood
referral the sociability of the referring agent goes up and the expertise value of the referred
agent gets alift.

An answering agent can take either of three actions:

e Answer: Answer with respect to the query based on the expertise of the user or agent.

o Refer: Based on the neighbor model, the agent can refer another potential expert to

the querying agent.

¢ Ignore: The agent can totally ignore the query.

2.2 MARS Components

e Ontology - Knowledge and expertise values learnt from users and agents are rep-
resented using an ontology. An Ontology is a specification of a conceptualization
[Gruber, 1993]. Practically, an ontological commitment is an agreement to use a
vocabulary in away that is consistent with respect to the theory specified by an on-
tology. In the MARS system, an ontology is used to represent a query domain and
the user’s expertise. There are 30 fields in the domain of Al programming used in

the MARS ontol ogy.

e Neighbor Model - The neighbor model is a list of agents whom the user’s agent

knows. The reason the MARS system has a neighbor model is two fold.

When a user is sending a query, the user’'s agent must decide to whom from the

neighbors list the query will be sent to.

For an incoming query, if the user does not have the expertise to answer it, the agent
uses the neighbor model to decide which agents in the neighbor list the query will be

referred to. Refer to Figure 2.2 for an example ontology.

To do the above each neighbor model must contain

— Expertise vector - The neighbors expertise on different domain fields (each

valueisbetween 0 and 1).

— Sociability - The value which isascalar is a measure of the neighbors sociabil-
ity level, or in other words how well the neighbor knows other expert neighbors.
Also when auser asks a question and gets an answer from someone who is nei-
ther in the close friend list nor in the neighbor model, and if the user evaluates

the answer as a good one, the agent will be added to the neighbor model.

e Multi Agent Learning - Each agent stores information about the user and his close
friends (expertise, sociability) during the bootstrap period of the system. After that,
the agent will maintain and modify the information through the interactions between

the user and his agent, and the agent and other agents. Please refer to Figure 2.3.

When a good answer is obtained, the expertise of the agent who provides the answer
will increase, and so will the sociability of the agents who made referrasif any. On
the contrary if a bad answer is obtained, the expertise of the answering agent will

decrease and so will the sociability of the referring agents, if any.

o Referral Graph - Being ableto make Referralsisthe coreto thewhole MARS system.
For a specific query, it may be referred by a number of agents before it is answered.
To keep track of the referring agents and to maintain areferral chain corresponding

to the query, the MARS system needs areferral graph.

10

2.3 Motivation For Information Retrieval

The MARS system rides on its referral capability. This would imply locating expertise
necessary to solve difficult problems. In organizations, some people assist othersinlocating
expertise by making referrals. People who make referralsfill key organizational roles. The
motivation behind using IR in the MARS system isto decrease workload and support users
by automatically making expert referrals. To be able to make referralsin an IR setting is
more of a recommendation system. However combining the referral power of MARS with
the recommendations of the IR system to make the user more autonomous, was one of the
motivations to use

Another reason that isthat in organizations, an IR modulein the MARS system leadsto
a system, which is a possible technology that can augment and assist the natural expertise
locating behavior. A referral system that suggests people who have some expertise with a
problem holds the promiseto provide, in avery small way, aservice similar to that provided
by key people.

In the current MARS prototype, the referral agent passes on queries to the user. And
based on decisions from the expertise values of neighbors, the user can suggest referrals.
There is scope here for the agent to provide the referral directly, without intervention from
the user. To test the system, two different approaches can be pursued. One where the
referral is made only by the agent, based on what he knows about the users neighbors. And
the other where both the agent and user make referrals based on their knowledge of the

users neighbors.

Querying

Send out queries

l

Collect Responses

@— Referrals?

No

Evauate the answers
and update the models

Replying

Get queries

Yes

) A

Yes

11

Collect Referrals

No
l -——

Yes
No v

Collect Responses

Figure 2.1: Referral Process

[Expertise Fields
@ [Java Programming
|j| programiming enviranment
|j| programming structure
|j| abject-oriented programming
[A
|j| Swing
|j| applets
|j| streams and files
|j| tnultithreading
|j| collections
|j| netwiarking
|j| databasze connectivity: JOBC
|j| rermote objects
|j| JavaBeans

|j| Security
[1oL

|j| multimedia
|j| internationalization
ﬁ hative methods

Figure 2.2: Example Ontology

7 \—P

Other users Other agents
BN
User
Query/ Answer/ .
Refarral Profile

Check user profileto
determineif user has expertise

~ Query in answering queries
7\ ————
/ Y i/ /
= AmwE Agent
Check neighbor profile for expert neighbors to
User answer a query/ Check for neighbors who have

probability of knowing friends (sociability)
who could answer the query

Neighbor
Profile

Figure 2.3: Multi Agent Learning

Chapter 3

| ndexing

3.1 Introduction

Intuitively, an indexing scheme is simply a collection of blocks, each block containing
some large, fixed number of objects (typically hundreds of objects per block) [Brown et al.,
1994]. The union of the blocks exhausts the instance. Each query isanswered by retrieving
aset of blocks whose union is a superset of the query [Hellerstein et al., 1997]. Simply put
it meansthat given a set of documents, the process of finding an exhaustive set of keywords
that identify the text in the documents and storing these terms in some structure is called
indexing. Indexing addresses the issue of how information from a collection of documents
should be organized so that queries can be resolved efficiently and relevant portions of the
data extracted quickly. Anindex must be capable of identifying all documents that contain
combinations of specified terms, and the process of identifying the documents based on the

termsis called a search or query of the index.

Given a cluster of documents it can be time taking to come up with an index file that
appropriately indexes the cluster. The indexing mechanism is broadly divided into the

following:

14

“Document Collections”™

Query
Index >

“Document List”

Figure 3.1: Overview Of Search And Index Mechanisms

e Full text Scanning.

e Vector Space Model.

15

16

3.2 Scanning The Text

Scanning the text is a very time consuming process. Hence a considerable amount of work
has gone into it. To make a set of documents available for indexing, you must first make a
collection. A collection is a set of directories and files that allow you to quickly find and
display source documents that match various search criteria. To make sure that you have
the right collection, the process of gathering the collection of documents follows a distinct
process. The documents are collected based on the need of the agent to avoid indexing a
huge collection. This would speed up the search and help in returning documents that are
more accurate and closer to the query. Anindex tableis created, and the name of the term,
name of the document in which it occurs and the number of times the term occurs in each
document is stored.

The text is scanned for key terms [Alexander and McCracken, 1994]. While scanning,

there are four types of lexical entities that are processed as key terms:

e Proper nouns.

e Proper noun categories - Before indexing occurs, proper nouns have already been

identified and placed in categories such as city, company, person, etc.

e Complex nomina’s - Before indexing occurs, phrases consisting of a combination
of nouns and adjectives (i.e. trade ban, chemical dependency seminar) are tagged as

complex nominal’s.

e Singlewords - nouns, verbs, and adjectives.

17

3.3 Vector Space Models

The vector-space models for information retrieval are just one class of retrieval techniques
that have been studied in recent years. We could term it as a partial match retrieval tech-
nigque since they typically rely on an underlying forma mathematical model for retrieval,
model the documents as sets of terms that can be individually weighted and manipulated,
perform queries by comparing the representation of the query to the representation of each
document in the space, and can retrieve documents that don’t necessarily contain one of
the search terms [Berry et a., 1995]. Although the vector-space techniques share common
characteristics with other techniques in the information retrieval hierarchy, they have acore
set of functionality’s that justify their own class.

Vector-space models rely on the premise that the meaning of a document can be de-
rived from the document’s constituent terms [Letsche and Berry, 1997]. They represent
documents as vectors of terms d = (t1, o, ..,t,) Wheret;(1 < i < n) is a non-negative
value denoting the single or multiple occurrences of term i in document d. Thus, each
unique term in the document collection corresponds to a dimension in the space. Simi-
larly, a query is represented as avector ¢ = (f1, f2,.., f") whereterm fi(1 < i < n) is
a non-negative value denoting the number of occurrences of f¢ (or, merely a 1 to signify
the occurrence of term %) in the query. Both the document vectors and the query vector
provide the locations of the objectsin the term-document space. By computing the distance
between the query and other objects in the space, objects with similar semantic content to
the query presumably will be retrieved.

Vector-space models that don’t attempt to collapse the dimensions of the space treat
each term independently, essentially mimicking an inverted index. However, vector-space

model s are more flexible than inverted indices since each term can beindividually weighted,

18

allowing that term to become more or less important within a document or the entire doc-
ument collection as awhole. Also, by applying different similarity measures to compare
gueries to terms and documents, properties of the document collection can be emphasized
or de-emphasized. For example, the dot product (or, inner product) similarity measure finds
the Euclidean distance between the query and aterm or document in the space. The cosine
similarity measure, on the other hand, by computing the angle between the query and a

term or document rather than the distance, de-emphasi zes the lengths of the vectors.

The TFIDF approach to document classification works as follows:

e LetV bethevocabulary used. Let d be adocument. The document is processed using

stemming and stopping procedures to obtain a bag of words for document d.
e Let w; bethe i word in the vocabulary V.
e Term frequency of w;, TF(w;, d) isthe number of times w; occursin d.

e The document frequency of w; , DF(w;), is the number of documents in which w;

occurs at least once.

e Inverse document frequency of w; , IDF(w;) is defined as IDF(w;) = log (%)s

where | D| isthe total number of documents.

e Then, the term frequency - inverse document frequency of w;, TFIDF(w;, d) isgiven

by TF(w;, d) * IDF(w;).

e Thevector representation d of adocument d isgiven by d= [TFIDF(w,, d), TFIDF(ws,,
d), ., TFIDF(w, , d)].

19

Vectors are normalized by their lengths in order to be able to cope with documents of
differing lengths. Thisis accomplished by computing the length of the vector representing
the document and dividing the weights of the terms by this value. Hence the vector dis

given by d= Vi, Vo, .. V], where V; =

TFIDF (w;,d)
/> TFIDF (w;,d)xTFIDF (w;,d)

The queries in our model are expressed in a way similar to that documents are ex-
pressed, i.e.,a query Q with k terms is represented by the vector V= [TFQ(w1), TFQ(w,),
., TFQ(w,]. The weights assigned to the terms will describe the importance of each term.
Unlike the way the weight of a document term is calculated, the weight of a query term
will be assigned solely based on the frequency of that term in the query.

The ranking of a query with respect to a document d is done by using the cosine simi-

larity given below

Y, TFIDF(w;,d)xTFQ(w;)
/2 TFQ(w)*TFQ(w;)/Y; TFIDF (w;,d)*TFIDF (w;,d)

When a query is posed to the IR system, the system parses the query first, extracting
its terms, and then evaluates the query by calculating its relevance to the documents in its
document collection. If there is no index on the documents, then al the document vectors
must be processed in order to find the ones that relate highest to the query. Thisis avery
expensive process asthere are typically millions of documents and each document typically
contains at least 100 to 1000 terms (which defines the number of floating point operations

to be done while calculating the relevance of aquery and adocument by using the relevance

20

measure as described above).

In order to evaluate user-queries efficiently, all IR systems make use of inverted indexes.
An inverted index contains, for each term that occurs in the documents of the document
collection, alist of < DID, f, p;p > pairs where DID is the unique identifier for the
document that contains the term, and f; p;p isthe frequency of the term in that document.
The usage of an inverted index allows to reduce the number of documents to be processed

by processing only those documents that contain at least one term from the query.

Chapter 4

| nformation Retrieval In MARS

In Chapter 2 we saw the MARS prototype briefly introduced. Now we shall go into the
details of the system and how an effective information retrieval system based on the TFIDF

indexing scheme can be incorporated.

4.1 Information Retrieval In MARS

Thisisabrief introduction to how the indexing and information retrieval mechanism dis-
cussed in Chapter 3 can be applied to the MARS system. Vector space models and cor-
responding information retrieval methods have been used in many news and information
filtering systems recently. The MARS system adapts the vector space model to locate peo-
ple rather than documents. The way that this can be achieved is by modelling users - User
Profile and modelling other users - Neighbor model. Vectors are used to represent user ex-
pertise values and also expertise values of each neighbor. Thisvector is called the expertise
vector. From Chapter 3, we saw that when we are able to model an entity as a vector, it is
possible to do a similarity measure determination to a particular query. This feature can be

extrapolated and used in the MARS system.

21

22

4.2 Thelndexer Architecture

A look at the indexer architecture in (Figure 4.1) lays out the following

Components:

e Scanner - The scanner as seen in Chapter 3, scans al documents and looks for terms
that could be indices to the documents. The criteriafor scanning such terms or texts

are aslaid out in Chapter 3. The result of the scanner is sent to the indexer.

e Indexer - Theindexing mechanism used isthe TFIDF indexing scheme. The scanned
terms are used as indices to the document list. The indexer determines the document
frequency and the term frequency as defined in Chapter 3. Based on this a TFIDF

vector and index tableis created.

e Similarity Check - This module compares 2 vectors based on the dot product rule
and returns the documents that have a dot product value greater than or equal to a

threshold. The results are sent to the result processor.
Processes:

e Scanning Documents - Most of theindexing processis doneindependently of the rest
of the system. The first step in the indexing process, scanning of documents is done
every 5 minutes. The scanned words also called the index terms are passed back to

the Indexer.

¢ Indexing Documents - Once the documents are scanned for index terms, the indexer
indexes into the documents. This is done every 5 minutes and is again independent
of the rest of the system. This process returns the TFIDF vector for the document

list.

23

e Build - This process builds the index table that will be used to determine relevance

of documentsto queries. The process returns an index table that is stored.

e Save - When a query is matched to relevant documents in the document list, this

match is saved to create alog of recent queries and possible matches.
Data Collections:

e Query List - Queries are queued up at the input to the indexer. Thislist isstored asa

gueue and served on afirs comefirst serve basis.

e Index Table - The indexing process returns the TFIDF vector which is stored as an

index table for future similarity check to relevant documents.

e Document List - This data collection includes user documents that profile his or her

expertisein acertain field. It also contains e-mail logs of queries and answers.

e Query Search Results Log - Thisis aform of a cache that can be quickly looked up

in the future if asimilar query comes to the agent.

The indexer control flow is divided into the following

e Scanning documents: Please refer to Figure 4.2.

e Indexing documents. Please refer to Figure 4.3.

e Query matching: Pleaserefer to Figure 4.4.

Each user has a set of documentsthat model hisor her expertise. For example an author
inthe field of artificial intelligence is bootstrapped with a set of documents in the artificial

intelligence domain. These documents maybe be files, html pages, xml documents. Each

24

time a new document is added to the users list of documents, it becomes an integral part of
the indexed documents.

Each user is also assigned a referral agent. The agent as seen in Figure 4.1 has a
user profile and a neighbormodel. It also indexes the user documents. Every time a new

document is added it gets indexed and the index table is updated.

25

4.3 Referral Scenariosln MARS

There are two possible scenarios of implementing the IR module with the existent MARS

system. They differ in the fact that one maintains greater referral capability than the other.

e Scenario 1: When an agent receives a query, it is indexed and compared to the in-
dexed user documents. If there are matches the documents are sent asreplies. If there
is no match the query is passed on to the user. Based on his or her neighbor model,
the querying agent is referred to potential experts. The problem with this scenario is
that in many situations the referral power of the system islost. However it provides

greater autonomous nature to the user.

e Scenario 2: When an agent receives a query, it is indexed. It is passed on to the
user for potential referrals, and also expert replies. At the same time, the query is
compared to the indexed documents. The answer here consists of both user specific
answers like answers and referral, and matched indexed documents. All replies are
sent back to the requesting agent. The advantage with this scenario isthat the referral

power of the system is maintained.

2. Document
Pr ocessor

Index
documents
every 5 minutes

Document
list
including
email logs

NS

Incoming Query

—>

4.1ndexer

1. Query Processor

A\
5. Smilarity

Check

3.Scanner |4+

Query
List

Query
Search

Results Log

Scan
documents
every 5
minutes

Figure 4.1: Indexing Architecture

Result
Processor

26

Incoming query
from MARS
MAIL module
(INPUT)

Relevant
Documents
(OUTPUT)

(Sort
Results)

Document Processor

I ndexer

Scan documents
every 5 minutes

Document list Scanner

including
email logs

Figure 4.2: Scanning documents

Document Pr ocessor

Index documents Indexer
every 5 minutes

Document list
including
email logs

Index

Table

Figure 4.3: Indexing documents

27

28

Incoming
Query Processor Query from
MARS MAIL
module
Incoming Query (INPUT)

l Query Ligt

Similarity Check Relevant
Documents

(OUTPUT)

Result
Processor
(Sort

Results)

N
\i
=y -
Index Table

l

Query Search

Results Log

Figure 4.4: Similarity Check

Chapter 5

| mplementation

5.1 TheClassDiagram

The implementation of the indexer involves using some programming tools and utilities.
Sun’s Java Mail API, POP3 is the mail interface used and the indexer is written in Java

using Java 1.2. Hereis alisting of the MARS packages

e engine - This package implements the learning, reasoning and referral processes in

each agent. Refer to Appendix A.1 for the class diagram.
e engine.kb - Refer to Appendix A.2 for the class diagram.
e engine.learner - Refer to Appendix A.3 for the class diagram.
e engine.reasoner - Refer to Appendix A.4 for the class diagram.
e enginereferral - Refer to Appendix A.5 for the class diagram.

e Ui - MARS interfaces that enable the interactions between the user and MARS, i.e,,
transforming the queries and responses between the Reasoner, Learner and the user.

Refer to Appendix A.6 for the class diagram.

29

30

e mail - This package deals with sending and receiving message between agents. Refer

to Appendix A.7 for the class diagram.

e indexer - This package implements an indexer that indexes messages and documents.

Refer to Appendix A.8 for the class diagram.

A collaboration diagram of the interaction between the indexer classes is shown in Fig-

ureb.1
List of .
words Receive
or terms Query
Stem > TFIDF TFIDFQ —] M ailReceiver
TFIDF vector for
the Query
Return Term
frequency for TFIDF vector for
stemmed words each document
Matched
Documents
\
Tfreqg Similar »| MailSender

Figure 5.1: Indexer Module Collaboration Diagram

A class diagram of the interaction between the indexer classesis shown in Figure 5.2

The control flow is as follows:

e 1. The MailReceiver class acceptsincoming queries and forwards them to the agent.

e 2. The TFIDFQ class determines the Term Frequency and Inverse Document fre-

quencies for the incoming query.

31

e 3. The Stem class is a stemmer that deletes stop words from the documents and

generates the index terms. This can be done in parallel with steps 1 and 2.

e 4. TFIDF callsthe Tfreq class to determine the frequency of occurrence of each term
in each document. The inverse document frequency, that is the number of documents

that contain the each term is aso returned.

e 5. To determine or search for documents that match the incoming query, TFIDF and
TFIDFQ pass their TFIDF vectors to the Similar class. The Similar class does a dot
product on the two vectors and returns to the MailSender class a set of matching

documents.

32

5.2 Analysis

Test for referrals

e 1. Select five authors from the Artificial Intelligence domain and assign one author

to one MARS agent.

e 2. Index abstracts to their proceedings on the AAAI (American Association for Arti-

ficia Intelligence) forum.

e 3. If an abstract has co-authors, assign them as neighbors, and bootstrap an expertise

level for each of them.
o 4. Tests:

— 4.1 Test the case where: Kautz islooking for expertise on planning. Kautz and
Selman are co-authors. Selman has Levesque as his neighbor, who is an expert

in planning. Hencetest the referral mechanism: Kautz — Selman — Levesque.

— 4.2 Test the case where: Kautz is looking for expertise on combinatorial auc-
tions to supplement his research. Kautz and Selman are co-authors. However
Selman has no expertise in auctions, and has no neighborsin its neighbor model

to refer to. Possibly set up aregistration server.

— Result: It was seen that by doing the above experiment, a referral chain was
established. Kautz was able to locate Levesque who is an expert in planning

using thereferral chain.

— : The above experiment was then done for 5 authors and it was seen that the so-
cial network converged quickly through thereferral chainsthat were established

between each of the authors.

33

Test how the Kautz — Registration server — Sandholm (who is an expert in Combina-
toria auctions work)
Test for document types

Test how the system works with different types of documents (HTML, XML, TEXT)

It was seen that the MARS system worked efficiently for HTML, XML and Text docu-
ments. HTML and XML documents were indexed based on their tags.
Contrast different scenarios

Thetwo scenariosin 4.2, where the agent passesthe query to the user and waitsfrom the
indexer to passit to the user above were contrasted. It was seen that the system converged
faster when the query was passed to the user. Or in other words when the user had less

autonomy the system converged faster.

34

mainGui mailQueueReasoner TFIDF
{rom ui) {frorm engine.reasoner) fromn indeser)
e ind +DF: Hashivlap
Si 58 dirt: File
+mainGui +mallQueueReasoner +TF: HashMap
+actionPerformed +gethisgluens +TFIDF()
#executeCommand +processhsgluele +file_TFIDF{java.io.File)
+processisgQuens 2 +getFregijava.lang String, java lang String): float
i +getlFreq(java.io File, java lang. String): float
0--155'”1 OﬁL +0etTFIDF(java.io.File, java.lang.String, java.lang String): float
Similar HiI
from indexer) / 0.1 g/cat
dir1: File Category
Str: String
e {from indexer)

+aimilariindexer String) TR

+gethdatches(indexer String): Vector ———_ 0.1 TF- HashMa

+0etObj(indexer String): result +Cat c t 2

+getSimilar{indexer String): float 5 c?d%g"-;\r’y(). o

-main{indexer String(1) +addCatvec(java.lang Slring)

+getCateql)

| screatesy
W

result
frarn indeser)
fromID: String
fromiame: String
+resultjava lang. String, java lang String)
+getfromID{); String
+getfromiame() String

+DF: Hashilap
dir1: File

+hm: Hashiiap
St String

+IFIDFQ(java lang. String)

+TermQFreq()
+getTF{java lang.String): Hashiap

-main(java.lang. String[1}

0. \qu /

+getCatvec(); Vector 0.4
+gethaxCatFreq(java.lang String): int Feat
S

+cm/AO..1 a1

TermQlFreq

{rom indexer)

TFreq

{from indlexer)

dir1: File
+TFreq()
+getDF(java.io File)
+getF(java.io File)
+getnDF{java.lang. String)
+0etTF{java lang String, java.util Vector): Hashiap

-mainijava.lang. String[1)

401 .1

TFIDFQ

franm incescer]

CategoryQ
{from indexer)
0.1
ot +CategoryQ()
+getMaxCatFreq(java lang String): int
-main{java.lang. String

+getFregijava lang String): float
+getlFreq(java.io File, java lang String): float
+getTFIDF(java.io File, java lang String): float

Figure 5.2: Indexer Module Class I nteraction

Chapter 6

Discussion

e Semantic Indexing - The current indexing is based on term frequencies and word
matching. However in the future this could be taken one step further to build a
semantic indexer. Using statistical techniques to index collections for deeper search
than word matching has its advantages in leading to better and more accurate search
results. It would involve coming up with semantic indexes that record the correlation

of noun phrases, and could be computed generically, independent of subject domain.

e Document Analyzer - Though the query was generated by the user, it might still be
possible to evaluate answers independently. This comes to light more so when the
answering agent returns documents to the querying agent. It can be foreseen to have
an analyzer at the querying agent determine the relevance of the returned document.
It might also be away to determine the expertise level of the answering agent. It is

not a sure shot guarantee to determine how relevant a query is to a given document.

e A registration server will be introduced to help the agents new to the MARS com-
munity, or in case the agent does not have any helpful neighbors for its query or no
response for all agents being asked. The agent will periodically update its profile in-

formation on the server. At the same time, the agent can decide if it wantsits profile

35

36

information visible to the community.

The registration subsystem will be implemented in a conventional manner.The first
tier will use a Web browser or aMARS application. For the first time, the user will
need to register with the server by visiting MARS web site (the user’s profile is saved
on the database). After the user downloads MARS, the MARS application will con-

nect to the Application Server and retrieve or update the corresponding information.

The second tier will be implemented with a Web server running Java servlets. The
Java servlet is able to access the database (via JDBC) and return an HTML page

listing the data or store the information in Enterprise JavaBeans (EJB).

The third tier will be the back-end database server. The Java servlet can use in-
formation in the database provided that a JDBC driver exists. In our situation, we
will MS-Access so we can use the IDBC-ODBC driver that is bundled with the Java

Development Kit versions 1.1 and higher.

Query Expansion - Queries can be expanded to include a subset of a domain than
is provided in the ontology. For example suppose a query “what is JAVA” is sent
out under the Computer field in the ontology. A gquery expansion technique could be
added to make the ontology “what is JAVA” under the Language field of the ontology.
A mechanism to expand queries would greatly enhance the probability to be able to

match that query with a particular users interest.

Appendix A

Package Structure

[]
—| enging —|
java.io _ : java.lang
Meighbarlist
FileReader NE'Q“””"P"”“'E Diouble
FileWriter AL Object
IOException S — — ~= String
InputstreamBEeader atringButfer
PrintStream = Systerm
Frintriter Throvwahle
Readar
StreamTokenizer]
Stringhriter java.util
Writar
Enymeration
— — | Hashtahle
Fropedies
Yector

Figure A.1: Package engine Class Diagram

37

i

=

(-

engine.kh.graph

engine.kh

i

Node
RootedDAGImpl

java.io

File

FileMotFoundException
FileReader

FileWriter

[OException
CutputStreamiiriter
Frintstream

Raadar
StreamTokenizer
Miritar

oraphTut

java.lang

Exception
Chject
atring
atringBuffer
aystem

Figure A.2: Package engine.kb Class Diagram

38

i

engine

Heighborlist
MeighborProfile
ownerProfile

e

java.io

FrintStream

[]

java.lang

Double
Dhject
String
aStringButfer
System

(|

engine.learner

i

AdjacencylList
Adjacencyrlode
CrossEdge
Lagrhet
Learnerlimipl
Learnerlimpl-ald
Fath

engine.referral

ReferralGraph
edge
node

i

java.math

Biglnteger

i

java.text

NumberFormat

=

java.util

Vector

-

mail

mail

Figure A.3: Package engine.learner Class Diagram

39

1

1]

com.ibm.able

engine.reasoner

[1

AhleOhject

o — —

1

com.ibm.able.beans

AhleEffector
AhleSensaor

e — —

1]

engine

MeighborList
MHeighborProfile
ownerProfile

e — —

e — —

indexer
Sirmilar
result
Swish
Java.lang
Boolean
Class

ClasshotF oundException
Diauble

Exception
MoClassDefFoundError
Ohject

String

StringButfer

System

Throwwahle

Reasoner
RuleSetRunner
mailZueueReasoner

com.ibm.able.beans.rules

—— =

AhleBooleanRuleSet
AhleParTrace
AhleRuleSet

1]

engine.referral

—— ==

ReferralGraph
node

[1]

java.io

PrintStream

1]

java.lang.reflect

Method

1]

java.rmi

RemoteException

=

jara.util

Vector

1]

mail

—— =

Settings

rmail
mailSenderA
fquele

Figure A.4: Package engine.reasoner Class Diagram

40

[1

engine.learner

Adjacencylist
Leathar
Learnerimipl

i

java.io

[1

engine.referral

[1

Filg

FileEeader
Filewriter
[DExCception
FrintStreatm
Printiriter
Readar
Setizlizablie
StreamTokenizer
Wiritar

b —

FeferralGraph
edge
hode

engine.reasoner

mailZueueReasoner

]

java.lang

— — ==

Integer
Dhject
atring
StringBuffer
Systerm
Throweahle

[]

java.util

Enumeration
Vectar

Figure A.5: Package engine.referral Class Diagram

41

(I

ui
<Default Package:> engine.kb
Madelnfo
— =1 addreighbor T graphTat
evaluationl]
] gotMaH ;]
engine Ir‘:]il:;gtl‘ engine.kb.graph
Neighbortist | _ | PrOmeou wods
MeighborProfile & RootedDAGImpl
replyhail
ownerFrofile SHiaEn “
[— engine.learner
engine-reasoner | g
Learnerimpl
Reasoner B
maildueueReasoner 1]
_| engine.referral
indexer ReferralGraph
= _ | nade
swish
1
_| Java.awt.event
Java.awt
ActionEvant
Component | - ActionListener
Container i Windowddapter
Dimension WindowEvent
FlowlLayaut = Winciowi istenar
Frame
GridLayout 1
Lavoutfanager java.lang
Windon
Dauhle
_| Exception
java.io Integer
InterruptedException
File | - Object
FilaReader | Process
FileWriter Runtime
|OException String
InputStrearm [StringBuffer
FrintStream Systemn
Frintwititar Throvahle
Reader
StreamTokenizer 1
Writer java.net
1 " uRL
javax.swing
AbstractBution jm.mil
BardetFactory
Box [~ EventOhject
BoxLayout Vectar
ButtonGraup
DefaultlistModel _|
feon Javaz.swing.border
Imagelcon
JButton Barder
Lot TitledBarder
JComboBox
JCompanent le | |
drgieds javax swing.event
JLabel
A ListSelectionEvent
ok | LisiSelectioniisiensr
JPanel y TreeBelectionEvent
A el TreaSafactionlistaner
JRadioBution
JsecrollPane
Tetrea ;‘mx.swing.lexl
JTextField
JTree =
e JTexiCornpanent
Timer
1

javax.swing.tree

DefaulthutableTreehode
[~ | MuabieTreeNode
TreeNocis
TreaSefactionliocel

1

mail

Settings

—| mail
mailReceivers
mailSenderA
queus

Figure A.6: Package ui Class Diagram

]

—| mail —|
<Default Package: ; engine.reasoner
Settings
rmars] maﬂ . ﬂt_ mailZueueReasaner
mailReceiver
mailFeceivers,
_|. mailReceiverold _|
engine.learner i java.lang
| | mailSendera :
Lagtnay = : Exception
mailSendercld ;
Learnerlmpl quewe . ohject
— — =" String
] StringBuffer
java.io Systern
Throwable
BufferedReader
File]
FileQutputStrearm javax.activation
IOException =
Inputstream | | DataHandler
InputStreamBeader " | DataSource
PrintStream FileDataSource
Regoar
[
_| javaz.mailinternet
java.util
Internetadddress
Date — — =1 MimeBodyPart
Enumetation Mimehessage
Hashtahle = fimetultipart
FProperies
StrinaTokenizer
Yector

[

javax.mail

Address
Authenticator
BodyFart
Flans

Folder
Header
Message T
MessagingException
hultipart

Part
SendFailedException
Semice

Session

Store

Transpaort

Figure A.7: Package mail Class Diagram

]

[|

java.in

indexer

]

BufferedReader
DiatalnputStream
File

FilelnputStream
FileMotFoundException
FileQutputstream
FileReader
Filehyriter
FilterinputStream
[DExceptian
InpLitateanm
InputstreamBeader
ChjectinputStream
ChjectOutputStream
QutaLtStragm
FrintStream
Frintvriter

Reaclar

Writer

Category
Categarycl
Sirmilar
Stem
TFIDF
TFIDF G
TFreq
TermGFredq
Terms
result
swish

java.lang

Character
Exception
Float
Integer
ath
mullPointerException
Chject
Process
Runtime
String
atringButfer
System

=

java.util

— — —==

Hashiap
StringTakenizer
Wectar

Figure A.8: Package indexer Class Diagram

Bibliography

Scott L. Alexander and Nancy J. McCracken. Parallél term indexing for a document re-
trieval system. A NPAC(National Parallel Architectures Center) REU Project, 1994.

Michael W. Berry, Susan T. Dumais, and Gavin W. O’'Brien. Using linear algebra for
intelligent information retrieval. SAM review, pages 573-593, 1995.

Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental indexing for full-
text information retrieval. In Proceedings of the 20th International Conference on Very
Large Databases (VLDB), 1994.

Thomas Dietinger, Christian Gutl, Hermann Maurer, and Maja Pivec. Targeted information
retrieval. In Proceedings of ICCE99, volume 2, pages 355-358, 1999.

Oystein Grovlen. Natural language processing in information retrieval. Technical report,

Norwegian Institute of Technology, 1995.

Thomas R. Gruber. A trandation approach to portable ontology specifications. Knowledge
Acquisition, 5:199-220, 1993.

Babita Gupta, Lakshmi S. lyer, and Jay E. Aronson. Knowledge management:practices and
challenges. industrial management and data systems, 2000.

Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. On the analysis
of indexing schemes. In 16th ACM SIGACT-SGMOD-SGART Symposium on Princi-
ples of Database Systems, pages 249256, 1997.

45

46

Henry Kautz, Bart Selman, and Mehul Shah. Referralweb: Combining social networks and
collaborative filtering. In Communications of the ACM 40(3), pages 6365, 1997.

Todd A. Letsche and Michael W. Berry. Large-scale information retrieval with latent se-
mantic indexing. Information Sciences, 100:105-137, 1997.

Michael Polanyi. Personal Knowledge: towards a post-critical philosophy. University of
chicago press, 1958.

Gerard Salton and Chris Buckley. Paralel text search methods. Communications of the
ACM, 31:203-215, 1988.

Munindar P. Singh. Degrees of separation. |EEE internet Computing, 3:4-5, 1999.

Tak W. Yan and Hector GarciasMolina. Index structures for information filtering under
the vector space model. Technical report, Department of Computer Science, Stanford
University, Stanford CA 94305, 1993.

Bin Yu and Munindar P. Singh. A social mechanism of reputation management in elec-
tronic communities. In Proceedings of Fourth International Workshop on Cooperative
Information Agents, pages 154-165, 2000.

Bin Yu, Mahadevan Venkatraman, and Munindar P. Singh. A multiagent referral system for
expertise location. In Working Notes of the AAAI Workshop on Intelligent Information
Systems, pages 6669, 1999.

