
 

ABSTRACT 

Mehrzad Mehrabipour. Traffic Congestion Management in Transportation Networks through 

Dynamic Traffic Assignment. (Under the direction of Dr. Ali Hajbabaie). 

  

Dynamic Traffic Assignment (DTA) is used in a wide range of applications such as congestion 

pricing, traffic operations, network design, evacuation planning, traffic management systems, and 

policy evaluations. DTA determines time-dependent link/path flows to optimize a system-level or 

user-level objective considering demands for origin-destination pairs. The goal of this dissertation 

is to develop algorithms to solve a dynamic traffic assignment problem and present an 

optimization-based approach to manage congestion at bottlenecks. 

We first present a decomposition scheme to solve a System Optimal (SO) DTA problem with 

multiple origin-destination pairs in urban transportation networks. The decomposition is designed 

based on the Dantzig-Wolfe decomposition principle that splits the set of constraints into sub-sets 

through the construction of a master problem and a set of sub-problems. Each origin-destination 

pair is represented by an independent sub-problem with a less computational burden compared to 

the original problem. The master problem captures the coordination between sub-problems. The 

proposed methodology is implemented in two case study networks including 20 and 40 

intersections. The numerical results show that the decomposition scheme converges to the optimal 

solution, within a 2% gap, in 22-99% less time compared to a benchmark solution capable of 

finding optimal solutions. This result confirms the computational efficiency of the proposed 

methodology.  

We then present a distributed gradient-based approach to solve the SODTA problem formulated 

based on the cell transmission model network loading concept. Centralized algorithms to solve 

such a problem do not scale well with the size of the network and the number of origin-destination 



 

pairs. While the existing decomposition algorithms scale better with the size of the problem, they 

still have centralized components that eventually limit their scalability. The proposed algorithm 

distributes the SODTA formulation into local sub-problems that find optimal values for their 

decision variables within an intersection region. Each sub-problem communicates with its 

immediate neighbors to reach a consensus on the values of common decision variables. A sub-

problem receives proposed values for common decision variables from all adjacent sub-problems 

and incorporates them in its own offered values by weighted averaging and enforcing a gradient 

step to minimize its own objective function. Then, the updated values are projected onto the 

feasible region of the sub-problems. We prove that the proposed algorithm converges to the 

optimal solution of the SODTA problem in an infinite number of iterations. The algorithm is also 

tested on two case study networks with 20 and 40 intersections under different demand levels. The 

approach finds solutions with at most a 5% optimality gap with a 97% shorter runtime compared 

to a benchmark that finds optimal solutions. The runtime of this approach is improved by 77% 

with 48% fewer variables compared to the approach in the first study of the dissertation.  

We next introduce an algorithm to find near-optimal solutions for the SODTA problem with 

multiple origins and destinations in real-time. The proposed distributed optimization and 

coordination algorithm decomposes the network-level traffic assignment problem into several 

intersection-level sub-problems that can be efficiently solved individually. The approach also uses 

a rolling horizon technique for temporal decomposition. As a result of this decomposition, the 

complexity of the problem is reduced, and the solutions can be found in real-time. The sub-

problems coordinate their decisions by exchanging information with other sub-problems and push 

the solutions toward global optimality. The approach is tested on a case study of 20 and 40 

intersections. The results are compared with a benchmark approach capable of finding the optimal 



 

solutions with a 3% maximum optimality gap. The proposed solution technique finds the solutions 

in real-time because the solutions are generated in less time than the duration of each time step. 

The algorithm is also compared with the Method of Successive Averages (MSA) and Projection 

Algorithm (PA) on the Nguyen-Dupuis network.  MSA and PA achieved a 0.17-4.29% relative 

gap in 8-200 iterations in different scenarios. Our algorithm generates solutions for each time step 

in real-time and achieved 0.00% optimality for all scenarios.  

Lastly, we present a nonlinear mathematical formulation and a solution technique for a 

bottleneck congestion management approach. In this approach, travelers submit their willingness 

to pay value for using certain parts of a transportation system with limited roadway capacity. The 

first part of formulation determines the allocation of travelers who submit their willingness to pay 

to network roads to minimize total system travel time and maximize revenue. The second part of 

the formulation is a user equilibrium DTA modeled with a variational inequality approach. This 

part models the behavior of other travelers against the allocation by a system manager in the first 

part. The demand for paths in the second part of the formulation is determined based on the 

allocation in the first part, and, thus, the decision of travelers on route choices is a factor of 

assignments in the first part of the formulation. The objective function of the first part of 

formulation is also a function of UEDTA traffic flows. A heuristic solution technique is developed 

using projection and genetic algorithms. The solution technique is tested on case studies with 20 

and 40 intersections. The objective of the first part of formulation is improved by 15-95% over 

iterations under different demand profiles. The proposed approach can find solutions with at most 

a 3-5% gap with SODTA as a lower bound. 
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CHAPTER 1. INTRODUCTION 

1.1. Background 

Merchant and Nemhauser (1978a;1978b) studied a Dynamic Traffic Assignment (DTA) 

problem for the first time about forty years ago. DTA is a well-studied research area to determine 

time-dependent traffic flows. The objective function can be the minimization of the system cost or 

individual users' cost, and the problems are called System Optimal (SO) DTA and User 

Equilibrium (UE) DTA, respectively. DTA deployment has brought many benefits to a wide range 

of applications over the past decades. Network design (Karoonsoontawong and Waller, 2010), 

traffic operations (Beard and Ziliaskopoulos, 2006), congestion pricing (Shen and Zhang, 2009), 

evacuation planning (Shen et al., 2007a), and traffic management systems (Peeta and Bulusu, 

1999) are some of DTA applications. DTA often has many decision variables and constraints to 

encompass its spatial/temporal scales and the number of Origin-Destination (OD) pairs. The 

number of decision variables and constraints may further increase based on the utilized network 

loading concept. For instance, a Cell Transmission Model (CTM)-based DTA will have more 

decision variables and constraints than a link performance function-based DTA, as CTM divides 

each link into several homogenous cells. Therefore, rather than having a decision variable for each 

link at each time step, several decision variables are required.  

According to Lo & Szeto (2002), Szeto & Lo (2004), Ukkusuri & Waller (2008), Ukkusuri et 

al. (2012), and Doan & Ukkusuri (2015), formulating DTA problems using the CTM network 

loading concept improves accuracy in modeling traffic dynamics compared to link exit functions 

(Ban et al., 2008; Carey, 1992, 1987; Friesz et al., 1989; Merchant and Nemhauser, 1978a; Wie et 

al., 1994) and point queue models (Chow, 2009; Doan et al., 2011; Ramadurai et al., 2010). 

However, it increases computational complexity due to significant growth in the number of 
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decision variables and the inclusion of constraints with the min(.) function to ensure that traffic 

flow follows the fundamental diagram. Several studies (Beard and Ziliaskopoulos, 2006; 

Ziliaskopoulos, 2000) reduced the complexity of problems by linearizing these constraints, which 

may lead to the flow holding back problem: traffic flow does not follow the fundamental diagram  

(Carey and Subrahmanian, 2000; Doan and Ukkusuri, 2012; Nie, 2011).  

The existing state-of-the-art solution techniques to solve CTM-based SODTA are either 

optimization or heuristic-based. The optimization-based approaches do not scale well with the size 

of networks and become computationally intractable. This is mostly due to the large number of 

decision variables that are included in SODTA problems (Aziz and Ukkusuri, 2012; Beard and 

Ziliaskopoulos, 2006; Li et al., 2003; Lin et al., 2011b). Optimization-based approaches can be 

categorized into centralized and decomposition approaches. 

Central optimization frameworks do not scale well with the size of DTA, especially when more 

complicated network loading concepts, such as CTM are in use (Aziz and Ukkusuri, 2012; Beard 

and Ziliaskopoulos, 2006; Chiu and Zheng, 2007; Zheng and Chiu, 2011; Ziliaskopoulos, 2000). 

While centralized approaches have the premise of finding globally optimal solutions, they are not 

scalable. In fact, the largest CTM-based SODTA that is solved in the literature has less than half a 

million decision variables (Zheng and Chiu 2011).  

Decomposition approaches offer great potential to address the scalability issue of central 

approaches by partitioning the problem into two or more sub-problems, each with a smaller set of 

decision variables, that are computationally less challenging than the original problem. However, 

the existing decomposition techniques for CTM-based SODTA problems are structured for only 

one OD pair and require significant changes to allow multiple OD pairs (Lin, Valsaraj, and Waller 

2011) or have a restrictive assumption on the ratio of free-flow speed to backward propagation 
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speed and cannot provide efficient convergence for cases with multiple OD pairs (Li, Waller, and 

Ziliaskopoulos 2003). Moreover, (non-spatial) decomposition approaches scale better than 

centralized approaches; however, they face computational complexity growth in the sub-problems 

as the size of the original problem grows. Besides, all existing decomposition techniques require 

solving a central problem (often referred to as a master problem) to aggregate the solutions found 

by sub-problems, and expanding the network size will increase the complexity of the master 

problem. Therefore, while they can provide optimality bounds and scale better than the centralized 

approaches, they eventually become intractable with the size of the problem (Jafari et al. 2017; 

Larsson and Patriksson 1992; Larsson et al. 2004; Li et al. 2003; Lin et al. 2011; Mehrabipour et 

al. 2019).  

The heuristic approaches scale with the size of networks; however, they require a long run-time 

to find solutions and the quality and optimality of solutions remain unknown. Moreover, these 

approaches are mainly path-based, and they need to find the marginal costs of paths and links in a 

network to satisfy the equilibrium condition of SODTA which may lead to finding sub-optimal 

solutions and long run-time. 

Another subject that we have studied in this dissertation is congestion pricing. Congestion 

pricing can alleviate traffic congestion and generate revenue for the maintenance and construction 

of transportation networks. Congestion pricing techniques that are widely used can be classified 

into tolling through currency and tolling through tokens. Tolling through dollars is a form of price 

regulation that requires information on travelers’ demand, the value of time, arrival time, etc. to 

determine toll levels. This information is not accessible or very hard to obtain. The lack of accurate 

or complete information may lead to the failure of tolling systems through currency (Pandey et al., 

2020; Schade and Schlag, 2003; Sumalee, 2001). Tolling through tokens is a form of quantity 
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regulation that has shown more public acceptance, and equity, and can react to economic changes 

more rapidly, but it has still some major drawbacks. How distribute tokens among travelers can 

have a significant effect on the system and is not straightforward to determine. Also, the usage of 

tokens in a cycle can affect traffic conditions adversely  (Kockelman and Kalmanje, 2005; Wu et 

al., 2012; Yang and Wang, 2011). A congestion pricing system that creates market competition 

can overcome the drawbacks of tolling systems through dollars and tokens.  

1.2. Problem Statement 

Dynamic traffic assignment has been researched extensively since its introduction by Merchant 

and Nemhauser (1978a, 1978b). Ziliaskopoulos (2000) introduced a linear program for SODTA, 

which was based on CTM (Daganzo, 1995, 1994a). Various researchers (e.g., Lo and Szeto, 2002; 

Ukkusuri and Waller, 2008) have shown that utilizing the CTM network loading concept in DTA 

formulation improves accuracy in modeling traffic flow dynamics compared to link exit functions 

(e.g., Ban et al., 2008; Carey, 1992, 1987; Friesz et al., 1989; Merchant and Nemhauser, 1978a; 

Wie et al., 1994) and point queue models (e.g., Chow, 2009; Doan et al., 2011; Ramadurai et al., 

2010). However, the additional accuracy comes with an increase in computational complexity due 

to significant growth in the number of decision variables and constraints.  

Existing centralized approaches to solve the CTM-based SODTA problem can find optimal 

solutions to the problem in theory; however, do not scale well with the size of the problem and 

become intractable in medium-sized problems (e.g., Beard and Ziliaskopoulos, 2006; Chiu and 

Zheng, 2007; Zheng and Chiu, 2011; Ziliaskopoulos, 2000). Decomposition approaches are used 

to address the computational complexity issue by decomposing the formulation into two or more 

sub-problems since they will have fewer decision variables and constraints compared to the 

original formulation. However, these approaches need to optimize a master problem to coordinate 



  

5 

the actions of sub-problems (e.g., Larsson et al., 2004; Li et al., 2003; Lin et al., 2011; Mehrabipour 

et al., 2019). The computational complexity of the master problem increases over iterations as new 

extreme points generated by sub-problems are added to the master problem. In addition, the 

number of decision variables of each sub-problem increases with the size of the network. Even 

though the spatial decomposition introduced by Jafari et al. (2017) faces complexity growth neither 

in the master problem over iterations nor in the sub-problems by adding links and nodes, adding 

more nodes and links to the network makes solving the master problem very challenging. 

The current heuristics like the Method of Successive Averages (MSA) (Qian et al., 2012; Sbayti 

et al., 2007; Tajtehranifard et al., 2018), projection approach (Doan and Ukkusuri, 2015; Lu et al., 

2016), and proximal point algorithm (Zhan and Ukkusuri, 2019) lack temporal and spatial 

decomposition schemes to reduce the complexity of CTM-based SODTA problems. These 

approaches force limitations (e.g., number of paths), especially when the number of variables 

increases. These approaches are also iterative techniques that cannot generate solutions in real-

time. They mostly focus on finding path-marginal costs which is a computationally expensive step 

and requires generating and sorting paths that lead to a limited number of paths for each OD. 

Therefore, proposing methodologies to address the discussed drawbacks is essential. These 

methodologies should be able to determine routes of vehicles with a reasonable amount of time 

and memory while capturing traffic flow more realistically.  

We also study congestion pricing techniques to overcome the drawbacks of tolling systems 

through dollars and tokens. In current congestion pricing techniques, accuracy and accessibility of 

information on travelers' demand, the value of time, arrival time, etc. plays an important role to 

determine toll levels. Thus, the lack of accurate or complete information may lead to the failure of 

current tolling systems through dollars. In tolling systems through tokens, the main problems are 
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the determination of tokens distribution and adverse effects on traffic conditions.  

1.3. Research Summary  

The first study develops an analytical decomposition technique to tackle the intractability of 

CTM-based SODTA featured with multiple OD pairs. The proposed methodology applies to 

spatially and temporally larger transportation networks and still provides solutions that are 

appropriate for operational applications. We employ the Dantzig-Wolfe technique, which 

constructs a Master Problem (MP) and a set of Sub-Problems (SPs), where each SP represents a 

single OD pair. This configuration makes SODTA’s search space more manageable compared to 

previous efforts in the literature. The independency of SPs makes the problem well-suited for 

parallelism, which can expand the applicability of the proposed methodology to large-scale 

networks. The SPs are solved based on a single OD pair that, collectively, may not necessarily 

reduce the total system cost. Thus, a coordination scheme is required to push the single OD level 

solutions towards the global optimality, i.e., the main objective in SODTA with multiple ODs. The 

MP captures the unseen coordination among the SPs (that exist in the coupling constraints prior to 

decomposition). Hence, the convex combination of the existing solutions to SPs will be found to 

ensure that the combined solution does not violate the coupling constraints. Those constraints 

establish a set of restrictions to the total flow of all OD pairs. The algorithm iterates between SP’s 

and MP’s optimizations until the termination criteria are satisfied. 

In the next study, we present a Distributed Gradient-based Approach (DGA) to overcome the 

drawbacks of existing decomposition approaches about having a central component. The proposed 

methodology distributes the network-level DTA problem into several intersection-level DTA sub-

problems. Then, the approach performs three steps to update the value of decision variables 

iteratively at each sub-problem: (1) It first incorporates the value of common decision variables 
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among sub-problems by taking a weighted average, (2) the approach moves the values toward the 

negative direction of the gradient of the objective function at each sub-problem to minimize the 

objective, and (3) it projects the values onto the set of constraints at each sub-problem to maintain 

feasibility. The approach iterates among these three steps until the values of shared decision 

variables from sub-problems reach consensus. It allocates a computational node to each sub-

problem and does not have a central component or a master problem. Therefore, it scales better 

than the algorithms with dependent complexity on network nodes and links. The computational 

complexity of sub-problems does not depend on the number of nodes and links in the network as 

a result of the spatial decomposition; however, it is a function of the number of OD pairs. This 

intersection-level distribution is well-suited for urban network planning because increasing the 

network geographic area by adding more intersections (nodes and links) will not change the 

computational complexity of the methodology and its structure. We show that the algorithm 

converges to the optimal solution of the problem in an infinite number of iterations. Note that the 

approach can work without necessarily starting with a feasible solution. Furthermore, the approach 

is applicable to problems with nonlinear and quadratic objectives without requiring any further 

simplifications or using complicated methods since it needs either the gradient or sub-gradients of 

the objective function.  

We next introduce a distributed and coordinated solution technique to solve the CTM-based 

SODTA problem to find near-optimal solutions in real-time. This solution technique distributes 

the network-level problem into several intersection-level sub-problems. The distribution is 

achieved by relaxing the constraints that represent an interrelationship between the sub-problems. 

Dummy source and sink cells are added to the sub-problems to ensure they are stand-alone 

systems. This distribution significantly reduces the complexity of the problem as intersection-level 
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sub-problems have far fewer decision variables, are linear, and can be solved in parallel. The 

solution technique creates distributed coordination between the sub-problems to push the solutions 

towards global optimality. The coordination is achieved by exchanging information between 

adjacent sub-problems and re-enforcing the relaxed constraints and incorporating the required 

information in them. The approach also temporally decomposes the study period to enable online 

network updates and generating real-time solutions.  

In the last chapter, we propose a formulation for a bottleneck congestion management problem 

and solve the formulation with a heuristic algorithm. This problem includes two types of agents: 

system manager and traveler. The system manager provides path options considering network 

bottlenecks to minimize total travel time and maximize revenue, and travelers can submit their 

willingness to pay to use paths with network bottlenecks and minimize their travel costs. The first 

part of formulation is an allocation problem with an objective function to minimize total travel 

time and maximize revenue. The second problem is a UEDTA that finds user-optimal dynamic 

traffic flows and is formulated using a variational inequality approach. The solution technique 

solves this formulation with the genetic algorithm as an outer loop and the projection algorithm as 

an inner loop. 

1.4. Research Contributions 

Solving the problem centrally using standard algorithms like Simplex, Dual Simplex, and 

Barrier methods (e.g., Chiu and Zheng (2007); Nie (2011); and Aziz and Ukkusuri (2012)), or 

network flow algorithm (Zheng and Chiu, 2011) can determine optimal solutions for a small 

number of variables. However, testing networks with larger decision spaces will require long 

running times or/and large memories. Our proposed methodologies address limited scalability.  

In the first study, we decompose the CTM-based SODTA into several single OD sub-problems 
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using the Dantzig-Wolfe principle. These sub-problems are independent and include a 

significantly fewer number of decision variables compared to the original formulation, which 

facilitates the application of the proposed technique to larger problems in comparison to the 

existing CTM-based traffic assignment approaches (Beard and Ziliaskopoulos, 2006; Chiu and 

Zheng, 2007; Li et al., 2003; Zheng and Chiu, 2011). In contrast with decomposition approaches 

that cannot guarantee optimality (Ramadurai and Ukkusuri, 2011; Xie and Jiang, 2016), our first 

methodology is guaranteed to converge to the global optimality in a finite number of iterations as 

it satisfies all the assumptions of the Dantzig-Wolfe principle (Dantzig and Wolfe, 1960). Our 

assumptions in this study include the (a) feasibility of the initial solution, (b) linearity of the 

formulation, (c) convexity of the formulation, and (d) non-singularity of the constraint coefficient 

matrix of the master problem. These assumptions do not limit the application of this approach to 

specific network problems. The approach does not have non-trivial processes for parameter tuning 

despite studies by (Jafari et al., 2017; Larsson et al., 2004; Larsson and Patriksson, 1995).  

Restrictive assumptions on the arc capacity (Ramadurai and Ukkusuri, 2011), the ratio of free-

flow speed to backward propagation wave speed (Li et al. 2003), or network geometry to be acyclic 

(Jafari et al., 2017; Larsson et al., 2004) do not appear as well. 

In the next study, a distributed gradient-based approach is developed that has a fully distributed 

architecture and does not require a central component or master problem. In other words, the sub-

problems work cooperatively without requiring a central optimization unlike existing 

decomposition approaches developed by Gibert (1968); Jafari et al. (2017); Larsson and Patriksson 

(1992); Larsson et al. (2004); Leventhal et al. (1973); Li et al. (2003); Lin et al. (2011); and 

Mehrabipour et al. (2019). Therefore, the proposed approach is scalable with the size of the 

network and do not face computational complexity growth in the master problem over iterations 
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or by increasing the network size. The approach also converges to the optimal solution of the 

SODTA problem in an infinite number of iterations. The required assumptions for convergence do 

not restrict the application of the approach to specific network properties such as limiting the ratio 

of free-flow speed to backward propagation wave speed (Li et al., 2003) and having specific 

network geometry (Jafari et al., 2017; Larsson et al., 2004). Moreover, the computational 

complexity of sub-problems is independent of the number of nodes and links in the network since 

we create each sub-problem by the spatial distribution of the objective function and the set of 

constraints unlike the previous approaches: (e.g., Gibert (1968); Larsson and Patriksson (1992); 

Larsson et al. (2004); Leventhal et al. (1973); Li et al. (2003); Lin et al. (2011); and Mehrabipour 

et al. (2019)).  

Decomposition approaches can find optimal or/and high-quality solutions for cell-based 

SODTA problems in less time by creating smaller decision spaces from the original formulation, 

but the computation time is not close to real-time. The current heuristics like MSA (Qian et al., 

2012; Sbayti et al., 2007; Tajtehranifard et al., 2018), projection approach (Doan and Ukkusuri, 

2015; Lu et al., 2016), and proximal point algorithm (Zhan and Ukkusuri, 2019) lack temporal and 

spatial decomposition schemes to reduce the complexity of CTM-based SODTA problems. These 

approaches force limitations (e.g., number of paths) especially when the number of variables 

increases. These approaches are also iterative techniques that cannot generate finding solutions in 

real-time. They mostly focus on finding path-marginal costs that is a computationally expensive 

step, requires generating paths, and storing them that lead to a limited number of paths for each 

OD. We bridge this gap by proposing a Distributed Optimization and Coordination Algorithm that 

decomposes the network-level SODTA problem (DOCA-SODTA) into several intersection-level 

sub-problems with a link-based structure. We also present a temporal decomposition to further 
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decrease the number of variables at each sub-problem and generate solutions in real-time. 

Developing a coordination scheme allows the sub-problems to share information among 

themselves to ensure feasibility and finding high-quality solutions. 

In our last study, we develop a mathematical formulation and solution technique for a 

bottleneck congestion management approach. The literature lacks a decision support system for 

this problem which is presented in this study. Despite other congestion pricing techniques, this 

approach does not need to determine toll prices. The determination of price requires access to 

accurate and private information. Note that the toll price needs to be determined and updated 

constantly to react to demand and supply changes. Personalized pricing is determined through 

market competition. Moreover, it is shown that market competition can be adaptive to economic 

and network changes very quickly.  

1.5. Dissertation Layout 

The exposition of this doctoral dissertation is as follows.  

Chapter 2 presents a review of methodologies to solve DTA problems in the literature. This 

chapter provides a review of central, decomposition, and heuristic-based solution techniques. It 

also includes literature on congestion pricing techniques.  

Chapter 3 explains the problem formulation that is mainly used in this dissertation. The DTA 

problem is formulated as a linear program by utilizing the CTM traffic dynamics and has a system-

level optimal objective. 

Chapter 4 presents a decomposition scheme based on the Dantzig-Wolfe principle to solve the 

CTM-based SODTA problem. The problem is decomposed into several OD-based sub-problems 

and a master problem. The numerical experiments of this scheme on networks of 20 and 40 

intersections are also presented in this chapter. 
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Chapter 5 presents a gradient-based methodology that distributes the SODTA problem into 

several independent sub-problems without requiring a master problem. We also proved the 

optimality properties of this approach. Then, we showed analytical insights into the approach by 

implementing it on a network of 20 and 40 intersections, and the results are compared with 

benchmark approaches  

Chapter 6 presents the development of a distributed optimization and coordination algorithm to 

find near-optimal solutions for a cell-based SODTA problem in real-time. The proposed algorithm 

includes two main components: distributed optimization and distributed coordination. The tests on 

networks with 20 and 40 intersections are presented. The results are compared with other heuristics 

and a benchmark approach capable of finding the optimal solutions. 

Chapter 7 introduces a formulation to minimize a total travel time function and revenue by 

designing a bottleneck congestion management approach for using selected paths of a 

transportation network.  

Finally, the concluding remarks and directions for future research are presented in Chapter 8. 
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CHAPTER 2. LITERATURE REVIEW 

Dynamic Traffic Assignment (DTA) is well-studied since early researches by Merchant and 

Nemhauser (1978b, 1976) about forty decades ago. In DTA, time-dependent traffic flow from a 

specific origin to a specific destination is determined. Two objectives can be considered: (1) 

minimization of the total cost and (2) minimization of individual cost. These objectives result in 

two sets of problems namely, System Optimal (SO) DTA and User Optimal (UE) DTA (Peeta and 

Ziliaskopoulos, 2001). SODTA is one of the most extensively studied DTA problems because the 

objective function in SODTA is more attractive for researchers than its counterpart in UEDTA due 

to its flexibility to be used for various applications in transportation planning and management. 

DTA has been studied in a wide range of applications, either as an independent problem or 

embedded in other problems. Applications include eco-friendly routing problems (Aziz and 

Ukkusuri, 2012; Lu et al., 2016), network policy evaluation (Karoonsoontawong and Waller, 

2010), congestion management (Beard and Ziliaskopoulos, 2006; Doan et al., 2011; Muñoz and 

Laval, 2006), and evacuation planning (Zheng and Chiu, 2011). Another classification is presented 

by Nie (2011) as follows: evaluating investment decisions such as network expansion and design 

(Karoonsoontawong and Waller, 2010), traffic management policies such as congestion pricing 

and information provision (Shen and Zhang, 2009), operational strategies such as signal control 

and ramp metering (Beard and Ziliaskopoulos, 2006; Muñoz and Laval, 2006), and large-scale 

evacuation planning (Shen et al., 2007a). SODTA models can also be classified into two categories 

based on the type of time parameters: discrete-time models and continuous-time models. Examples 

of SODTA discrete-time models are SODTA formulations modeled with CTM (Ziliaskopoulos, 

2000). In SODTA continuous-time models, the decision-making process is conducted 

continuously when network conditions change (Friesz et al., 1989). Another classification for 
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SODTA is introduced by Doan and Ukkusuri (2015) which considers different choice dimensions. 

This classification includes a single bottleneck model with only departure time choice (Doan et 

al., 2011), route choice problem (Zheng and Chiu, 2011), and incorporating route choice and 

departure time choice (Shen et al., 2007b). Moreover, SODTA can be formulated as a network of 

multiple origins and destinations (Qian et al., 2012), a network of single-origin and destination 

(Ziliaskopoulos, 2000), and with multiple destinations without diverging nodes (Shen et al., 

2007b). 

Different network loading concepts have been utilized to formulate DTA problems. The models 

can be categorized into exit flow function (Carey, 1992, 1987; Friesz et al., 1989; Wie et al., 1994), 

point queue model (Chow, 2009; Han et al., 2011; Ramadurai et al., 2010), and cell transmission 

model (CTM) (Chiu and Zheng, 2007; Zheng and Chiu, 2011; Ziliaskopoulos and Waller, 2000). 

Nie and Zhang (2005) have discussed the benefits and drawbacks of the mentioned network 

loading concepts. 

 Exit flow function-based approaches have a smaller set of decision variables as such, they can 

be applied to larger transportation networks. However, the flow propagation is instantaneous from 

the beginning of a link to its end. Moreover, the anisotropic property of traffic and queue spillbacks 

are not captured. The point queue model forms queues at nodes when the number of upcoming 

vehicles is more than the capacity of the link. This model has restrictive assumptions such as (1) 

the length of vehicles is zero, (2) their speed is equal to the free-flow speed, and (3) the queues are 

formed at the exit node.  

The CTM (Daganzo, 1995, 1994b) loading concept represents each transportation link by 

several cells and decomposes the study period into short time intervals (e.g., seconds). Therefore, 

it can capture traffic flow dynamics more accurately than the other mentioned loading concepts 
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(Lo and Szeto, 2002; Szeto and Lo, 2004; Ukkusuri et al., 2012; Ukkusuri and Waller, 2008). As 

a result, it is more appropriate for operational purposes. However, the additional accuracy is 

achieved at the expense of a significant increase in computational complexity that limits the 

application of the CTM-based SODTA to networks with limited temporal and spatial scales and 

only a few OD pairs. In the rest of this chapter, different approaches to solve DTA problems are 

explained in detail. They are classified into optimization and heuristic-based approaches. 

Optimization-based approaches are further categorized into centralized and decomposition 

approaches.  

2.1. Optimization-based Approaches to Solve DTA 

2.1.1. Centralized Approaches 

Exact analytical techniques to solve SODTA problems are mainly centralized. Merchant and 

Nemhauser (1978a) pioneered the research efforts with the development of a discrete-time, non-

linear, non-convex macroscopic formulation for a SODTA problem with multiple origins and a 

single destination. In another study, they presented the optimality conditions of the formulation 

(Merchant and Nemhauser, 1978b).  

In 1980, Ho presented an approach for solving the formulation developed by Merchant & 

Nemhauser (1978a). A sequence of objective functions was solved to find optimal solutions under 

various assumptions. Carey (1986) showed the validity of assumptions in the study of Merchant 

& Nemhauser (1978a), about using Kuhn-Tucker conditions for deriving the optimality conditions. 

The assumptions were specifically related to the formulation structure, e.g., using differentiable, 

continuous, and linearly-independent functions (Merchant and Nemhauser, 1978a). Later, Carey 

(1987) developed a convex, non-linear formulation with superior convexity properties compared 

to the formulation of Merchant & Nemhauser (1978a). Besides, he developed several formulations 
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to account for multiple commodities and destinations that some led to non-convex models. 

Wie et al. (1994) employed an augmented Lagrangian algorithm with the conjugate gradient 

method, which was an integrated penalty function and a primal-dual method. Based on Wardrop’s 

second principle (Wardrop, 1952), the algorithm found the optimal solution when the dynamic 

marginal costs of all used paths were balanced. A discrete-time optimal control problem to 

minimize the total transportation cost was also modeled. The main drawback of the model was the 

inaccurate propagation of vehicles across arcs in uncongested conditions.  

Exit flow functions used in all the previous formulations are only dependent on the link 

volumes. Therefore, they cannot capture traffic dynamics, and, since they do not propagate traffic 

gradually, they are not realistic and not suitable for the link analysis of traveled vehicles. 

Incorporating time-variant flows and their interactions through links lead to highly nonlinear, non-

convex formulations (Gartner et al., 2002) that are computationally expensive (Carey and 

Subrahmanian, 2000). Carey & Subrahmanian (2000) presented linear convex models for a 

SODTA problem with multiple destinations that could capture traffic dynamics more accurately. 

Yet, the models were not fully dynamic since the delay of links was a function of only the link 

volumes, and the formulation could not capture queue spillback.  

Ziliaskopoulos (2000) developed a CTM-based linear formulation to solve a SODTA problem 

with a single OD pair and provided the dual formulation and its interpretation. The formulation 

was solved centrally using Simplex for a very simplified network of 10 cells without any signalized 

intersection. In 2006, Beard and Ziliaskopoulos proposed a cell-based, mixed-integer linear 

formulation to integrate a SODTA problem with multiple OD pairs and a signal timing 

optimization problem. This formulation was tested centrally on a small network of 2 intersections. 

Even though both formulations could capture traffic dynamics, they were not scalable and became 
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computationally intractable as the size of the problem grew. Therefore, efficient solution 

techniques were required.  

Chiu & Zheng (2007) developed another linear formulation for SODTA with multiple OD pairs 

using the cell-based formulation presented by Ziliaskopoulos (2000) to determine prioritized 

optimal paths and departure schedules in a no-notice disaster condition. Because this formulation 

added another dimension to the feasible region of Ziliaskopoulos's (2000) formulation by 

incorporating multi-priority groups, the formulation had more computational complexity and was 

solved only for a simple network of 40 cells using the interior point method.  This test network 

was unrealistic for the application of this study, and the proposed approach did not scale well with 

the size of the network.  

 Zheng & Chiu (2011) proposed a network flow algorithm to overcome the computational 

complexity of centralized approaches for solving Ziliaskopoulos's (2000) formulation. The 

researchers solved an equivalent problem, the earliest arrival flow, for the formulation and 

optimized path flows in a time-expanded network. The algorithm could perform faster in larger 

study periods compared to the primal-simplex and the interior point methods for a medium-sized 

network. However, all three algorithms were solved in polynomial time and became intractable 

with the addition of cells. Moreover, the network flow algorithm could not be applied to a SODTA 

problem with multiple OD pairs since the underlying assumptions of the algorithm could not be 

guaranteed.  

Aziz & Ukkusuri (2012) developed a cell-based, non-linear, quadratic SODTA formulation 

with a single destination to minimize both total travel time and vehicle emissions. The formulation 

was solved centrally using commercial software for a similar network to Nguyen and Dupuis 

network with 14 nodes. Solving the formulation for a larger network required more 
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computationally efficient algorithms. Using mesoscopic traffic flow models would increase the 

computational complexity even more (Lu et al., 2016).  

  Long et al. (2016) presented mixed-integer linear formulations for SODTA with a single 

destination to minimize the total emission of a network using a link transmission model. Several 

restrictive and unrealistic assumptions were considered to create the formulations. It was assumed 

that queue spillback would not occur, and all vehicles traversed a link with constant speed. The 

formulations were solved centrally for small networks involving 2, 6, 9, and 17 nodes. The link-

based outputs could not provide enough information on different parts of a link for traffic 

management in the urban street network. Moreover, testing larger networks would not be possible 

without the development of more efficient methodologies. 

 Zhou et al. (2016) developed two approaches to solve a stochastic Static Traffic Assignment 

(STA) problem. The first approach consisted of two parts: linearize the problem and form a sub-

problem; and find an approximate solution for the sub-problem. The second approach solved the 

Lagrangian relaxation of the dual problem with the steepest ascent method. These approaches were 

path-based, which could limit their application when the number of paths would increase. 

  Long, Wang, and Szeto, (2018) proposed twelve formulations to model SODTA using Link 

Transmission Model (LTM) to optimize route and departure choice decisions. Different 

combinations of models including First-In-First-Out (FIFO) and non-holding-back constraints 

were presented. The problems without FIFO constraints were solved using a commercial solver 

and those with FIFO constraints were optimized using the branch and bound algorithm for a 

network of at most twelve nodes. They showed that the link-based formulations were more 

computationally efficient compared to their path-based counterparts. However, solving the 

problem for larger cases would require efficient algorithms.  
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Chakraborty et al. (2018) presented a linear formulation for SODTA with a single OD pair 

using LTM. The formulation was applied to a six-node case study network. While the proposed 

formulation included 34% fewer decision variables compared to its corresponding cell-based 

formulation, it still did not scale well with the size of the problem.  

All these approaches used a centralized solution approach, which did not scale well with the 

temporal and spatial scales of the CTM-based traffic assignment problems. Therefore, they have 

been applied to small problems that require a limited amount of available memory and time.  

2.1.2. Decomposition Approaches 

Decomposition techniques have shown superior performance and scalability for medium to 

large size network problems. To avoid path enumerations, observed in most centralized methods 

(except for link-based approaches), a subset of paths for each OD pair had to be included in the 

solution process. For instance, Gibert (1968) initiated the idea of iteratively generating paths under 

certain conditions. Similarly, Leventhal et al. (1973) implemented such a decomposition scheme 

for a non-linear, path-based STA problem using a Column Generation (CG) algorithm, which was 

first introduced by Ford and Fulkerson (1958) to decrease the computational complexity of a multi-

commodity problem with a large number of variables. Later, Dantzig and Wolfe (1960) 

generalized the CG algorithm to broaden its application to any linear program.  

Wollmer (1969) generalized the decomposition algorithm presented by Tomlin (1966) to solve 

multi-commodity network flow models with no flow-commodity restrictions. Using the Dantzig-

Wolfe principle, each Sub-Problem (SP) found arc flows for one commodity, and Master Problem 

(MP) optimized the convex combination of available link flows to satisfy capacity constraints; 

however, this algorithm was not tested and evaluated numerically. Besides, Tomlin (1971) used 

the Dantzig-Wolfe principle to solve an integrated equilibrium STA and distribution problem. The 
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algorithm generated new distributions at each iteration through SPs and added them to the MP, 

which found a new assignment. Link-path and node-link decomposition schemes were presented, 

where all paths were enumerated in the link-path design leading to a computationally expensive 

process in large-scale networks. Besides, the convergence of the algorithm was not guaranteed 

since the formulations did not satisfy the linearity assumption of the Dantzig-Wolfe principle. CG 

was further implemented to solve variational inequality formulations in Bertsekas & Gafni (1982) 

and complementarity formulations in Aashtiani et al. (1983).  

Larsson & Patriksson (1992) proposed a decomposition algorithm using a block-diagonal 

structure of an arc-node formulation for the STA problem. SPs generated paths for each OD pair, 

and MP found the best flow assignment to the generated paths for each OD pair. The MP was 

consecutively solved using a scaled reduced gradient followed by a Newton method. Using these 

methods might lead to finding sub-optimal solutions. The algorithm was designed for a 

formulation using an exit flow function that was unable to propagate traffic accurately, especially 

with time-variant demand. Moreover, the algorithm required the storage of both paths and flows. 

Therefore, providing significant storage space was always a problem as experienced by 

Abrahamsson, (1998).  

Later, Larsson and Patriksson (1995) decomposed an STA problem with flow capacity upper 

bounds using an augmented Lagrangian dual method. Initialization of Lagrangian multipliers and 

a penalty parameter in the algorithm were experimental and non-trivial. The uncapacitated sub-

problems were solved using the disaggregate simplicial decomposition algorithm (Larsson and 

Patriksson, 1992). The solutions were not guaranteed to be optimal due to using the scaled reduced 

gradient method in the disaggregate simplicial decomposition algorithm. Moreover, the algorithm 

required the storage of paths and their corresponding storage. The solutions of the sub-problem 
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were not feasible, and an additional heuristic algorithm was incorporated to generate feasible 

solutions. The algorithm was tested on small to large size networks, but the optimality properties 

of solutions were not discussed. 

Larsson et al. (2004) proposed a CG-based algorithm to solve an STA problem with linear side 

constraints. The side constraints were relaxed to create a Lagrangian dual problem. Then, MP was 

created by dualizing the Lagrangian dual problem. MP found the best convex combination of the 

available extreme points for link flows. SP was a traffic assignment problem that was solved by 

the disaggregate simplicial decomposition algorithm (Larsson and Patriksson, 1992). Solving SPs 

by finding the shortest paths required the assumption of non-negative cycle times even though no 

approach had been presented in the presence of negative cycle times. Furthermore, MP solutions 

might not be feasible at each iteration because MP was modified using a Box Step method to 

stabilize the CG-based algorithm. Setting parameters in this algorithm to avoid negative cycles 

and find better quality solutions was a non-trivial process. The algorithm was tested on small to 

medium size networks. Moreover, the optimality of solutions was not guaranteed since SPs were 

solved with a gradient projection method. 

In a rather similar context, the implementation of the Benders decomposition algorithm to solve 

traffic assignment problems was explored by Hearn (1984) and Barton et al. (1989). Their 

algorithms could solve simplified traffic models without capturing traffic dynamics. Besides, their 

decomposition approach required the enumeration of all paths in each iteration to assign traffic.  

Ramadurai & Ukkusuri (2011) presented a simulation-based decomposition algorithm for a user 

equilibrium DTA problem formulation with a point queue model. The network was decomposed 

into acyclic sub-networks. Then, the algorithm found paths with minimum and maximum utilities 

in each sub-network according to link costs and shifted the flow between paths in certain 
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conditions. The algorithm required a restrictive assumption on some of the arcs’ capacities. The 

algorithm was tested on the Sioux Falls network with 30 nodes, but the quality of solutions was 

unspecified, and the algorithm failed to converge smoothly in some cases. 

Li et al. (2003) proposed a decomposition scheme using the Dantzig-Wolfe principle based on 

the formulation introduced by Ziliaskopoulos (2000) with a single destination. MP found the best 

convex combination of available flow patterns, and SP was a minimum-cost-flow problem on a 

space-time network. The algorithm was tested on a 20-node small network of 62 cells with 3 

origins. The algorithm could not be applied to cases with fractional ratios of free flow speed to 

backward propagation speed because the properties of a minimum cost flow problem would not 

be satisfied for the sub-problems. Note that this ratio is within the 0.2-0.5 range in realistic cases 

(Lin and Ahanotu, 1995). This algorithm required a large number of iterations for convergence. 

The first reason was that when multiple OD pairs were included, two levels of decomposition had 

to be considered to solve SPs. Therefore, the convergence criterion had to be met twice in each 

iteration. The second reason was that the capacity constraint could not be modeled as a network 

flow constraint and must be excluded from SP. Adding this constraint to SP could improve the 

convergence substantially        

Moreover, Lin et al. (2011) proposed a Dantzig-Wolfe-based decomposition heuristic to 

calibrate the flow capacity of CTM-based DTA with a user-optimal objective function. They 

decomposed the dual formulation of bi-level capacity calibration into an MP and several pricing 

SPs. However, the solution quality was not assured, due mainly to the approximation of the dual 

variables, and the algorithm required substantial modifications for application to larger network 

problems with multiple OD pairs. 

Xie & Jiang (2016) proposed an algorithm based on the Benders decomposition technique to 
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solve a non-linear integer program for STA with additional constraints to consider charging 

stations for electric vehicles. The master problem generated new paths and was solved by a 

gradient projection method and the primal problem found the equilibrium solution and was solved 

using a labeling algorithm. The model used in the paper could not capture traffic dynamics, and 

the solution properties were not known due to the primal approximations.  

Jafari et al. (2017) decomposed the UESTA problem spatially by creating sub-networks to 

represent sub-problems. The sub-problems found the traffic assignment solution within a sub-

network given the regional demand from a master problem. The master problem solved the STA 

problem for an aggregated network using modified travel times obtained from the sub-problems. 

They needed to create the aggregated network with arbitrary arcs that contained all paths based on 

the original network. They applied a method of sensitivity analysis by Jafari and Boyles (2016) to 

find required parameters for arbitrary links and relative changes in path flows by demand 

fluctuations at each iteration. The approach by Boyles (2012) provided the basis for network 

aggregation to create the master problem and modeling sub-networks. Boyles's (2012) method 

could find the cost function of arbitrary arcs in the aggregated network as well. In Jafari et al.'s 

(2017) approach, considering more sub-networks led to increasing the complexity of the 

aggregated network and the master problem. Moreover, the algorithm was restricted to acyclic 

networks and required an initial feasible solution to satisfy UE conditions.  

2.2.   Heuristic Approaches to Solve DTA 

In practice, the optimal solution is not easily accessible for real traffic networks either in a 

reasonable amount of time or in real-time. Nondifferentiable problems are also the main reasons 

to shift from exact methods to heuristic-based algorithms. Because of this transition, heuristics 

approaches are widely used to find the solutions to intractable SODTA problems. However, the 
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optimality of the solution is not guaranteed and the algorithms require long run times.  

The Method of Successive Averages (MSA) has been employed extensively as a heuristic 

solution technique to solve SODTA problems. This technique generates new paths iteratively and 

assigns traffic to each path according to experienced travel times. The main challenge of MSA is 

the procedure of finding a step size in path flow allocation. The step size should utilize available 

information on the recent cost of paths to swap flow among newly generated paths. The main 

application of MSA is for solving path-based traffic assignment problems. Thus, finding and 

storing paths is another challenge that makes MSA computationally expensive. Furthermore, MSA 

faces either slow, insufficient, or failure in convergence in large and congested networks, more 

discussion can be found in a study by Sbayti et al., (2007). Sbayti et al. (2007) improved MSA by 

introducing a variable step size. Their framework could be applied to different network loading 

models. They distributed flows among the updated set of paths considering the willingness of 

drivers to switch their current paths to newly added paths to the set. They also presented a vehicle-

based approach with reduced storage space requirements. However, the approach required lots of 

iterations and time to generate solutions.  

One critical step in some of the SODTA heuristic-based approaches is finding the marginal 

costs of the paths and links in transportation networks. The SODTA condition according to 

Wardrop’s second principle (Wardrop, 1952) states that if a path contains any flow, the path 

marginal cost of the path is equal to the minimum path marginal cost. This condition can be 

interpreted as the equilibrium of path marginal costs for all used paths. These marginal costs show 

the effect of changes in flows on the total system costs. The correctness and efficiency of 

algorithms to estimate the marginal costs as a key factor of convergence to the optimal solution 

have created methodological challenges (Doan and Ukkusuri, 2015; Ghali and Smith, 1995; Lu et 
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al., 2016; Nie, 2011; Peeta and Mahmassani, 1995; Peeta and Zhou, 2006; Qian et al., 2012; Shen 

et al., 2007b, 2006). 

Qian et al. (2012) embedded their proposed path marginal cost computation and a least marginal 

cost algorithm in MSA to solve a path-based SODTA formulation. The presented approach for the 

path marginal cost computation would work for point queue and kinematic wave models. Doan & 

Ukkusuri (2015) also presented an approach to find path marginal costs in a cell-based SODTA 

formulation. Their projection algorithm had better solutions and computational time in comparison 

with MSA by incorporating their approach for finding path marginal costs. The projection 

algorithm was mostly used for variational inequality problems. In this algorithm, a quadratic 

program was solved in each iteration to find new departure rates according to path marginal costs 

(Ukkusuri et al., 2012). Both heuristics developed by Qian et al. (2012) and Doan & Ukkusuri 

(2015) were limited to cases with a predetermined number of paths for each OD. Moreover, these 

approaches would become intractable with an increase in the spatial and temporal scales of 

problems due to the computational cost of a path-based simulation and marginal cost estimation. 

The approaches were also iterative and could not generate solutions in real-time. 

Lu et al. (2016) presented a path-based heuristic approach using marginal costs to solve a 

SODTA problem and determine the greenest routes for drivers. The heuristic algorithm had a 

general framework that could be used for various network loading models. The algorithm updated 

the set of paths for each OD in each iteration using a time-dependent shortest path algorithm. They 

also solved the SODTA problem with a gradient projection algorithm considering an updated set 

of paths and an approach to find link marginal emissions. This approach needed several iterations 

for convergence, which did not allow finding solutions in real-time. 

Tajtehranifard et al., (2018) proposed a path marginal cost approach to solve an SO problem 
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with quasi-DTA network loading. The model used capacity constraints and residual queues in a 

static traffic assignment problem. However, this model could not capture queue spillbacks and 

consider signalized intersections. The developed path marginal cost approximation was embedded 

in MSA. The algorithm considered a limited number of paths for OD pairs to reduce the 

computational efforts in computing path marginal costs and travel times. It also had two loops and 

required convergence for inner and outer loops to be terminated, which might not allow finding 

solutions in real-time. Moreover, finding a good perturbation of flow on each path for path 

marginal cost approximation and appropriate step size values in MSA were non-trivial steps. 

Zhan and Ukkusuri (2019) proposed a cell-based user equilibrium DTA formulation and solved 

it using a proximal point algorithm developed by Rockafellar (1976). The proximal point algorithm 

used in this study was a heuristic technique that solved variational inequality problems using the 

projection approach iteratively. Since the algorithm optimized a formulation with a computational 

complexity that was dependent on the network size in each iteration, it faced long CPU times. The 

algorithm also showed slow convergence and deviated from optimality mainly due to the included 

perturbation in variational inequality problems. As suggested by the authors, distributed techniques 

could help enhance the efficiency of their approach. 

The discussed approaches were scalable and more efficient in run-time in comparison to the 

optimization-based approaches; however, they could not find near-optimal solutions in real-time. 

Moreover, these approaches were iterative, and they needed to find the marginal costs of paths and 

links in a network to satisfy the equilibrium condition of SODTA that might lead to long run-time. 

2.3.  Congestion Pricing 

Congestion pricing and tolling systems have been studied for more than 10 decades, and 

preliminary ideas belong to Pigou (1912) and Vickrey (1969). Tolling has been recognized as an 
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effective approach for managing and alleviating traffic congestion for many years. It also results 

in a revenue source for maintaining and constructing infrastructure. The focus of our literature is 

on second-best pricing which enforces tolls on a subset of links in a network.  

Most studies require toll determination for finding second-best pricing solutions. The required 

calibration for finding cost functions and the assumption of having perfect information on current 

and future travel costs make these studies restrictive and sensitive to information accuracy.  

Verhoef (2002) proposed a mathematical formulation to determine the second-best optimal toll 

levels and locations to maximize social welfare. The problem was modeled using a Lagrangian 

function with equilibrium conditions. Shepherd and Sumalee (2004) proposed genetic-based 

algorithms to apply Verhoef’s formulation to realistic case studies. Lawphongpanich and Hearn 

(2004) presented nonlinear programming formulations with equilibrium constraints and proposed 

a cutting constraint algorithm to find second-best prices for realistic cases. Joksimovic et al., 

(2005) studied the second-best pricing problem with route and departure time decisions. They 

presented a bi-level formulation to find optimal uniform and time-dependent toll levels. A grid-

search solution technique was used to solve the formulations which required exploring all 

solutions. Di et al., (2016) studied a boundedly rational route choice behavior instead of a classical 

UE problem in second-best pricing and bi-level tolling problems. 

Lin et al., (2011a) determined time-dependent tolls by developing and solving a bi-level linear 

program with a CTM network flow. The upper-level formulation minimized the total travel time 

of the system and was the difference between the arrival and departure time for flow over time. 

The lower level was a UEDTA formulated as a variational inequality. They used a dual variable 

approximation technique and the method of successive averages to solve the formulation. The 

combinatorial heuristic found solutions with about a 2% optimality gap. Approximating toll values 
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was dependent on formulation structure and could not be generalized. This study could not also 

solve problems with multiple destinations. Sharon et al., (2017) proposed a tolling framework with 

three components: traffic, travel time estimation, and tolling models. The traffic model determined 

drivers’ routes and was a function of a system state, travel times  of links, demand, and tolls. This 

framework was implemented using 3 network loading models including link performance 

functions, CTM, and microsimulation. The travel time model used a system state to estimate link 

travel times. The toll estimation model required tuning for two parameters and was a function of 

link travel time, free-flow travel time, and tolls on the previous time step. Even though this study 

used less assumptions and parameters compared to initial studies to determine toll, it still faced 

fundamental challenges. These tolling systems face public opposition and the lack of accurate or 

complete information may lead to their failure. 

Congestion pricing through tokens is another classification of congestion pricing techniques. 

Kockelman and Kalmanje (2005) argued that conventional congestion pricing strategies suffer 

from equity issues because the strategies favor users with a higher value of time who are willing 

to pay higher prices for the tolls. These users are mostly associated with higher income levels. 

Therefore, Kockelman and Kalmanje (2005) suggested that credit-based congestion pricing has 

the potential to resolve equity issues. In credit-based congestion pricing, drivers receive a monthly 

travel credit that can be used on tolled roads. Users that do not use their credit can use it later or 

receive the equivalent cash value of their unused credit, whereas users that go over their credit 

should pay for the extra usage. To evaluate the public acceptance of this tolling strategy,  

Kockelman and Kalmanje (2005) conducted a survey in Austin, TX, and concluded that 25% of 

the respondents supported this strategy. Yang and Wang (2011) stated that distributing credits 

among users requires issuing credits to all eligible users such as all taxpayers, determining the 
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charge or credit consumption for each tolled link, and trading the credits in a free market. 

Therefore, Yang and Wang (2011) showed that for a general network with homogenous users, 

there existed unique equilibrium flow patterns that could be found using standard traffic 

equilibrium models with the side constraint of total credit consumption. Although the strategy 

discussed by Kockelman and Kalmanje (2005) and Yang and Wang (2011) could resolve the 

equity issues, it did not necessarily improve traffic operations at bottlenecks since it was a 

planning-level strategy. Therefore, the response of users to this strategy and how they distributed 

their credit usage over a month (or any other credit allocation period) might negatively impact 

traffic congestion. 

Su and Park (2015) developed an agent-based simulation for highway reservations. The 

highway reservation mechanism was proposed as an alternative to traditional fixed-rate tolling 

systems. In the proposed mechanism, system users bid on their desired routes with an on-ramp 

time interval. A reservation management center sorted all bids based on their bidding amount. 

Starting from higher bids, the bids were accepted or rejected based on the capacity of the link. 

Spatial-temporal tables were used for storing and updating highway reservations. It was assumed 

that the users arrived within the reserved on-ramp time interval. The case study of this paper was 

a 13-mile freeway with two routes which included a reserved highway and an arterial. MATSim 

was used for simulation, and the results of comparing the reservation system with DTA showed 

the travel time was more in DTA in most cases.  

Basar and Cetin (2017) presented online survey results for an auction-based tolling system 

using the technology of autonomous and connected vehicles for efficient utilization of low 

capacities of roads. This system was a descending price auction including two arbitrary routes of 

tolled and non-tolled. The survey results were analyzed with discrete choice models to determine 
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the effects of different factors on tolls. This tolling system showed no public rejection or 

unacceptance. This system was also simulated to compare fixed tolling and auction-based tolling 

systems.  The results indicated that deployment of this system could lead to reductions in travel 

time by 30 minutes and an increase in revenue by a least %70 compared to fixed tolls. The two 

above studies presented simulation-based studies on auction-based tolling systems. However, they 

did not provide a procedure to generate optimal or near-optimal solutions for this system. 
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CHAPTER 3. SYSTEM OPTIMAL DYNAMIC TRAFFIC 

ASSIGNMENT FORMULATION  

The SODTA problem is formulated as a linear program utilizing the CTM traffic dynamics 

introduced by Daganzo (1994 and 1995). Note that CTM relates flow and density in each cell using 

non-linear equations. We used the linearized form of the CTM-based SODTA formulation 

introduced by Beard and Ziliaskopoulos (2006) and modified the set of OD pairs to reduce the 

formulation complexity. Two indices are considered for origins and destinations by Beard and 

Ziliaskopoulos (2006). Instead, we used one index by creating a set consisting of tuples for OD 

pairs. this modification reduces the dimensionality, and, as a result, the computational complexity 

of the formulation.  

Table 3-1 presents the sets, decision variables, and parameters used for formulating SODTA. 

Let 𝐶 , 𝑇, 𝐶𝑂𝐷, and 𝑆(𝑖) respectively denote the set of cells, time steps, OD pairs, and successors 

to cell 𝑖 ∈ 𝐶. This formulation includes two sets of decision variables. The first set is the number 

of vehicles 𝑥𝑖
𝑡,𝑜𝑑

in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷, and the second set is 

the number of vehicles 𝑦𝑖𝑗
𝑡,𝑜𝑑

 flowing from cell 𝑖 ∈ 𝐶 to successor cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 

with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. This formulation receives traffic signals as inputs, and equation (3-1) 

finds the variable saturation flow rate 𝑓𝑖
𝑡 at intersection cell 𝑖 ∈ 𝐶𝐼 for time step 𝑡 ∈ 𝑇 using pre-

defined signal timing parameters. We use 𝐶𝐼 to denote the set of intersection cells. The signal status 

𝑔𝑖
𝑡 is a binary parameter defined for all intersection cells 𝑖 ∈ 𝐶𝐼 and time steps 𝑡 ∈ 𝑇. When the 

signal is green, 𝑔𝑖
𝑡 will be one and zero otherwise. The variable saturation flow rate is equal to the 

constant saturation flow rate if the signal in an intersection cell is one. More studies on signal 

timing optimization can be found in  (Hajbabaie et al., 2021, 2018, 2011; Hajbabaie and 

Benekohal, 2013, 2011a; Islam et al., 2021; Medina et al., 2013; Mehrabipour, M., 2017; 
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Mehrabipour and Hajbabaie, 2017; Tajalli et al., 2019; Tajalli and Hajbabaie, 2021a). More studies 

on CTM can be found in studies by  Al Islam and Hajbabaie (2021) and Islam et al., (2020). 

𝑓𝑖
𝑡 = 𝑔𝑖

𝑡𝐹𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 (3-1) 

Table 3-1 Definition of sets, decision variables, and parameters used in chapter 3 

Sets: 

𝑇 The set of all time steps 

𝐶 The set of all network cells 

𝐶𝑂 The set of all source cells 

𝐶𝑆 The set of all sink cells 

𝐶𝐼 The set of all intersection cells 

𝐶𝑂𝐷 The set of all OD pairs 

𝑃(𝑖) The set of all predecessors to cell 𝑖 ∈ 𝐶 

𝑆(𝑖) The set of all successors to cell 𝑖 ∈ 𝐶 

Decision variables: 

𝑥𝑖
𝑡,𝑜𝑑

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝑦𝑖𝑗
𝑡,𝑜𝑑

 
The number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 

with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

Parameters: 

𝜏 The duration of each time step 

𝑑𝑖
𝑡,𝑜𝑑

 
The entry demand level at source cell 𝑖 ∈ 𝐶𝑂 at time step 𝑡 ∈ 𝑇 from origin 𝑜 to destination 𝑑 

in OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝐹𝑖 The saturation flow rate at cell 𝑖 ∈ 𝐶 

𝑀𝑖 The maximum number of vehicles that cell 𝑖 ∈ 𝐶 can accommodate  

𝑔𝑖
𝑡 

A binary parameter to define signal status at intersection cell 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇. Zero and 

one values indicate red and green signals, respectively. 

𝑓𝑖
𝑡 The variable saturation flow rate of intersection cell 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇 

 

We define the minimization of total travel time as the objective function in equation (3-2). The 

total travel time is found by summing all vehicles 𝑥𝑖
𝑡,𝑜𝑑

 in all network cells except for sink cells 

𝑖 ∈  𝐶\𝐶𝑆  with all OD pairs (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 over all time steps 𝑡 ∈ 𝑇 and multiplying the result by 𝜏 
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(i.e., the duration of each time step). We can eliminate the time step duration 𝜏 from the objective 

function for simplicity since it is a constant value.  

Min ∑ ∑ ∑ 𝜏𝑥𝑖
𝑡,𝑜𝑑

𝑖∈ 𝐶\𝐶𝑆𝑡∈𝑇(𝑜,𝑑)∈𝐶𝑂𝐷

 (3-2) 

Constraints (3-3), (3-4), and (3-5) show the conservation of flow for different cell types. The 

increase or decrease in the number of vehicles 𝑥𝑖
𝑡+1,𝑜𝑑 − 𝑥𝑖

𝑡,𝑜𝑑
 between time steps 𝑡 ∈ 𝑇 and 𝑡 +

1 ∈ 𝑇 is equal to the difference of the total inflow to and total outflow of cell 𝑖 ∈  𝐶  at time step 

𝑡 ∈ 𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. Constraints (3-3) ensures the flow conservation for all cells 𝑖 ∈

 𝐶 except for source cells 𝑖 ∈ 𝐶𝑂 and sink cells 𝑖 ∈ 𝐶𝑆. Constraint (3-4) shows the flow 

conservation for source cells 𝑖 ∈ 𝐶𝑂, and the incoming flow for these cells is the demand. We use 

𝑑𝑖
𝑡,𝑜𝑑

 to denote the demand at source cell 𝑖 ∈ 𝐶𝑂 at time step 𝑡 ∈ 𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. 

Constraint (3-5) is for sink cells 𝐶𝑠, where there is no outflow. 

∑ 𝑦𝑘𝑖
𝑡,𝑜𝑑 −

𝑘∈𝑃(𝑖)

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 =  𝑥𝑖

𝑡+1,𝑜𝑑 −

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡,𝑜𝑑

 
∀𝑡 ∈ 𝑇, 𝑖 ∈  𝐶 \ {𝐶𝑆 , 𝐶𝑂}, (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 

(3-3) 

𝑑𝑖
𝑡,𝑜𝑑 − ∑ 𝑦𝑖𝑗

𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)

= 𝑥𝑖
𝑡+1,𝑜𝑑 − 𝑥𝑖

𝑡,𝑜𝑑
 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-4) 

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)

= 𝑥𝑗
𝑡+1,𝑜𝑑 − 𝑥𝑗

𝑡,𝑜𝑑
 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶𝑆, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-5) 

Constraint (3-6) limits the total outgoing flow ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)  from cell 𝑖 ∈ 𝐶 to its successor cells 

𝑗 ∈ 𝑆(𝑖) to the occupancy 𝑥𝑖
𝑡,𝑜𝑑

 of the cell at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. 

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-6) 

Constraints (3-7) and (3-8), respectively, ensure that the total outgoing flow from and the total 

incoming flow to a cell are limited to the constant saturation flow rate of the cell. We find the total 
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outflow ∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷
 or total inflow ∑ ∑ 𝑦𝑖𝑗

𝑡,𝑜𝑑
𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷

 at time step 𝑡 ∈ 𝑇 by 

summing all outgoing flows from cell  𝑖 ∈ 𝐶 to its successor cells 𝑗 ∈ 𝑆(𝑖) and incoming flows to 

cell  𝑗 ∈ 𝐶 from its predecessor cells 𝑖 ∈ 𝑃(𝑗), respectively, over all OD pairs. We use 𝐹𝑖 to denote 

the constant saturation flow rate of cell 𝑖 ∈ 𝐶. 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷

𝐹𝑖  ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶 (3-7) 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷
≤ 𝐹𝑗   ∀𝑡 ∈  𝑇, 𝑗 ∈ 𝐶 (3-8) 

The total incoming flow ∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷
 to cell 𝑗 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 should be less 

than or equal to the available capacity 𝑀𝑗 − ∑ 𝑥𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷
 of that cell as shown by constraint (3-

9). The total inflow ∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷
 at time step 𝑡 ∈ 𝑇 is found by summing flow 𝑦𝑖𝑗

𝑡,𝑜𝑑
 on 

all incoming links to cell  𝑗 ∈ 𝐶 from its predecessor cells 𝑖 ∈ 𝑃(𝑗) and over all  OD pairs (𝑜, 𝑑) ∈

𝐶𝑂𝐷. The total occupancy ∑ 𝑥𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷
 of cell 𝑗 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 is computed by summing 

the occupancy 𝑥𝑗
𝑡,𝑜𝑑 over all OD pairs (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. Let 𝑀𝑗 denote the maximum number of 

vehicles that cell 𝑗 ∈ 𝐶 can accommodate. Hence, we find the available capacity by 𝑀𝑗 −

∑ 𝑥𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷
 for cell 𝑗 ∈ 𝐶 at time step 𝑡 ∈ 𝑇. We use 𝛿 to denote the ratio of free-flow speed 

to the backward propagation speed. 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷

𝛿(𝑀𝑗 − ∑ 𝑥𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷

) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-9) 

Constraint (3-10) limits the total outgoing flow ∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷
 from intersection cell 

𝑖 ∈ 𝐶𝐼 to variable saturation flow rate 𝑓𝑖
𝑡 at time step 𝑡 ∈ 𝑇. We sum the flow 𝑦𝑖𝑗

𝑡,𝑜𝑑
 on all links 

between cell 𝑖 ∈ 𝐶𝐼 and its successor cells 𝑗 ∈ 𝑆(𝑖) over all OD pairs to find the total outflow 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷
 at time step time step 𝑡 ∈ 𝑇. Equation (3-1) finds the variable saturation 

flow rate 𝑓𝑖
𝑡 given the signal status 𝑔𝑖

𝑡 for intersection cell 𝑖 ∈ 𝐶𝐼 and time step 𝑡 ∈ 𝑇.  
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∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷

𝑓𝑖
𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 (3-10) 

Constraints (3-11) and (3-12) are used to ensure that the decision variables are nonnegative.  

𝑥𝑖
𝑡,𝑜𝑑 ≥ 0  ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-11) 

𝑦𝑖𝑗
𝑡,𝑜𝑑 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\𝐶𝑆, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (3-12) 
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CHAPTER 4. SOLVING SODTA WITH THE DANTZIG-WOLFE 

DECOMPOSITION PRINCIPLE 

This chapter presents a decomposition methodology for solving the SODTA problem that 

includes generating initial feasible solutions, formulating a restricted Master Problem (RMP), and 

formulating Sub Problems (SPs). The algorithm initiates with a set of feasible solutions to the 

problem (3-2)-(3-12). At each iteration, the RMP finds an optimal convex combination of currently 

available extreme points. Then, the objective functions of the SPs are updated based on the dual 

values of the RMP, and new extreme points are generated. The recently generated points are added 

to the RMP’s set of input parameters. The iterative procedure continues until the termination 

criterion is satisfied. The steps of the algorithm are detailed in the following sections.  Table 4-1 

presents the definition of sets, decision variables, and parameters used in this chapter. The 

schematic diagram of the described decomposition methodology is shown in Figure 4-1. Note that 

this study is published by Mehrabipour et al. in 2019. 

Table 4-1 Definition of sets, decision variables, and parameters used in chapter 4 

Sets: 

𝑇 The set of all time steps 

𝐶 The set of all network cells 

𝐶𝑂 The set of all source cells 

𝐶𝑆 The set of all sink cells (i.e., vehicle destinations) 

𝐶𝐼 The set of all intersection cells 

𝐶𝑂𝐷 The set of all origin-destination pairs 

𝑃(𝑖) The set of all cell predecessors 

𝑆(𝑖)  The sets of all cell successors 

𝐸𝑂 The set of all ordinary links 

𝐸𝐷 The set of all diverge links 



  

37 

Table 4-1 (continued) 

𝐶𝐷 The set of all diverge cells 

𝑃 The set of all paths 

𝐸 The set of extreme points 

Decision variables: 

𝑥𝑖
𝑡,𝑜𝑑

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time 𝑡 ∈ 𝑇 with 𝑜𝑑 ∈ 𝐶𝑂𝐷 

𝑦𝑖𝑗
𝑡,𝑜𝑑

 
The flow of vehicles from cell 𝑖 ∈ 𝐶 to successor cell 𝑗 ∈ 𝑆(𝑖) at time 

𝑡 ∈ 𝑇 with 𝑜𝑑 ∈ 𝐶𝑂𝐷 

𝑥𝑖
𝑡,𝑝

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time 𝑡 ∈ 𝑇 for path 𝑝 ∈ 𝑃 

𝑦𝑖𝑗
𝑡,𝑝

 
The flow of vehicles from cell 𝑖 ∈ 𝐶 to successor cell 𝑗 ∈ 𝑆(𝑖) at time 

𝑡 ∈ 𝑇 for path 𝑝 ∈ 𝑃 

𝜉𝑖
𝑡 = ∑ 𝑥𝑖

𝑡,𝑝
∀𝑝∈𝑃   

The total number of vehicles in cell 𝑖 ∈ 𝐶 at time 𝑡 ∈ 𝑇 for all paths 𝑝 ∈
𝑃 

𝜓𝑖𝑗
𝑡 = ∑ 𝑦𝑖𝑗

𝑡,𝑝
∀𝑝∈𝑃   

The flow of vehicles from cell 𝑖 ∈ 𝐶 to successor cell 𝑗 ∈ 𝑆(𝑖) at time 

𝑡 ∈ 𝑇 over all paths 𝑝 ∈ 𝑃 

𝜂𝑖𝑗
𝑡 =

∑ 𝑥𝑖
𝑡,𝑝

𝑝∈𝑃 , ∀(𝑖, 𝑗) ∈

𝑝  

The total number of vehicles in cell 𝑖 ∈ 𝐶𝐷 at time 𝑡 ∈ 𝑇 that plan to go 

to cell 𝑗 ∈ 𝑆(𝑖) over all paths 𝑝 ∈ 𝑃 containing link (𝑖, 𝑗) 

𝛾𝑖𝑗
𝑡,𝑝

 
The number of vehicles in cell 𝑖 ∈ 𝐶𝐷 at time 𝑡 ∈ 𝑇 that plan to go to 

cell 𝑗 ∈ 𝑆(𝑖): 𝑥𝑖
𝑡,𝑝

 if path 𝑝 ∈ 𝑃 contains link (𝑖, 𝑗) or 0 otherwise 

𝜋𝑖,𝑗
𝑡   The dual variable for cell 𝑖 ∈ 𝐶 for coupling constraints 𝑗 at time 𝑡 ∈ 𝑇 

𝜑𝑜𝑑 The dual variable for convexity constraints on 𝑜𝑑 ∈ 𝐶𝑂𝐷 

Parameters: 

𝜏 Duration of each time step 

𝑑𝑖
𝑡,𝑜𝑑

 The entry demand level at source cell 𝑖 ∈ 𝐶𝑂 at time 𝑡 ∈ 𝑇 for 𝑜𝑑 ∈ 𝐶𝑂𝐷 

𝐹𝑖 The saturation flow rate at cell 𝑖 ∈ 𝐶 

𝑓𝑖
𝑡 = 𝑔𝑖

𝑡𝐹𝑖,∀𝑡 ∈ 𝑇,
𝑖 ∈ 𝐶𝐼 

The variable saturation flow rate at cell 𝑖 ∈ 𝐶 at time 𝑡 ∈ 𝑇  

𝑀𝑗 The maximum number of vehicles that cell 𝑗 ∈ 𝐶 can accommodate  

𝛿 The ratio of free flow speed to backward propagation speed 

𝑔𝑖
𝑡 

A binary parameter to define signal status: 1 if signal is green or 0 if it 

is red  

𝑓𝑖
𝑡 The variable saturation flow rate in intersection cell 𝑖 ∈ 𝐶𝐼 at time 𝑡 ∈ 𝑇 

𝜇 An arbitrary small and positive number 

𝒟𝑡,𝑝 The entry demand level on path 𝑝 ∈ P at time 𝑡 ∈ 𝑇 
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4.1. Step 0. Initialization 

The occupancy and flow on the shortest paths can help to provide a set of feasible solutions and 

initialize the algorithm. We have first applied the Dijkstra algorithm by Ahuja et al. (1993) to find 

the shortest paths, where the cost of each link is set to travel time under free-flow conditions. Then, 

we have implemented a path-based CTM simulation to produce the flow on paths for the entire 

network. Details follow. 

4.1.1. Path-based Simulation 

We have implemented the CTM path-based simulation developed by Ukkusuri et al. (2012) 

with slight changes to obtain the values of 𝑥𝑖
𝑡,𝑝

 and 𝑦𝑖𝑗
𝑡,𝑝

. We define 𝑥𝑖
𝑡,𝑝

 as the total number of 

vehicles in each cell 𝑖 ∈ 𝐶 at time 𝑡 ∈ 𝑇 on path 𝑝 ∈ 𝑃; and 𝑦𝑖𝑗
𝑡,𝑝

 as the flow of vehicles from cell 

𝑖 ∈ 𝐶 to cell 𝑗 ∈ 𝑆(𝑖) over path 𝑝 ∈ 𝑃 at each time 𝑡 ∈ 𝑇. 

 

Figure 4-1 The decomposition scheme for SODTA with multiple OD pairs 

The summation of all vehicles in cell 𝑖 ∈ 𝐶 at each time 𝑡 ∈ 𝑇 over all paths is denoted by 𝜉𝑖
𝑡, 
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calculated by ∑ 𝑥𝑖
𝑡,𝑝

∀𝑝∈𝑃 . We also define 𝜂𝑖𝑗
𝑡  as the total number of vehicles in cell 𝑖 ∈ 𝐶𝐷 at time 

𝑡 ∈ 𝑇 that plan to go to cell 𝑗 ∈ 𝑆(𝑖) over all paths 𝑝 ∈ 𝑃 containing link (𝑖, 𝑗). In other words, 𝜂𝑖𝑗
𝑡  

represents the total number of vehicles that simultaneously need to use a link leaving a diverge 

cell. We have denoted the summation of 𝑦𝑖𝑗
𝑡,𝑝

 over all paths by 𝜓𝑖𝑗
𝑡 , calculated by ∑ 𝑦𝑖𝑗

𝑡,𝑝
∀𝑝∈𝑃 . In 

addition, parameter 𝒟𝑡,𝑝 represents the demand of each path 𝑝 ∈ P at time 𝑡 ∈ 𝑇. 

The links are categorized into sets of ordinary links 𝐸𝑂 and diverge links 𝐸𝐷. A representation 

of an ordinary link (𝑖, 𝑗) ∈ 𝐸𝑂, a diverge link (𝑖, 𝑗) ∈ 𝐸𝐷, and a diverge cell 𝑖 ∈ 𝐶𝐷 is shown in 

Figure 4-2.  

 

Figure 4-2 Link and cell representation in path-based simulation 

To start the CTM simulation, we first assign initial values to 𝑥𝑖
𝑡,𝑝

 at time 𝑡 = 0 for each 𝑖 ∈ 𝐶 

on path 𝑝 ∈ 𝑃. We assume the network is empty at the beginning of the study period, i.e., 𝑥𝑖
0,𝑝 =

0, ∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃. Then, we follow a two-stage procedure at time 𝑡 ∈ 𝑇: 

a. Update the flow of link (𝑖, 𝑗) on path 𝑝 ∈ 𝑃; see Equations (4-1)-(4-7). 

b. Update occupancies at cell 𝑖 ∈  𝐶, 𝐶𝑆 and 𝐶𝑂 on path 𝑝 ∈ 𝑃; see Equations (4-8)-(4-10). 

Equation (4-1) finds the total flow ψ𝑖𝑗
𝑡  on each ordinary link (𝑖, 𝑗) ∈ 𝐸𝑂 at time step 𝑡 ∈ 𝑇. To 

extract the path-level flow on 𝑝 ∈ 𝑃, the total flow ψ𝑖𝑗
𝑡  needs to be distributed among all paths 

based on ξ𝑖
−𝑡 𝑥𝑖

𝑡,𝑝
, as is shown in Equations (4-2) that can be re-formulated into Equations (4-3). 

Equations (4-4) and (4-5) determine the flow of the diverge links under two conditions: (1) 
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Conditions (4-4) will be enforced when the maximum outflow of a diverge cell 𝑖 ∈ 𝐶𝐷 at time 𝑡 ∈

𝑇 is less than or equal to the corresponding saturation flow rate 𝐹𝑖 or (2) Conditions (4-5) will be 

applied, otherwise. Equation (4-6) is a compact form of (4-4) and (4-5). Equations (4-7) find the 

path-level flow 𝑦𝑖𝑗
𝑡,𝑝

 by distributing the total flow ψ𝑖𝑗
𝑡  among the diverge links of a diverge cell  

𝑖 ∈ 𝐶𝐷 at time 𝑡 ∈ 𝑇 using  (𝜂𝑖𝑗
𝑡 + 𝜇)−1𝑥𝑖

𝑡,𝑝
. Equations (4-8), (4-9), and (4-10) update the cell 

occupancies at each time 𝑡 ∈ 𝑇 on each path 𝑝 ∈ 𝑃, for each ordinary cell 𝑖 ∈  𝐶\{𝐶𝑆 , 𝐶𝑂}, source 

cell 𝑖 ∈ 𝐶𝑂, and sink cell 𝑖 ∈ 𝐶𝑆, respectively. 

ψ𝑖𝑗
𝑡 = min {ξ𝑖

𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗
𝑡 )} ∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 

(4-1) 

𝑦𝑖𝑗
𝑡,𝑝 = {min {ξ𝑖

𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗
𝑡 )} 

𝑥𝑖
𝑡,𝑝

ξ𝑖
𝑡 ,   𝑖𝑓 ξ𝑖

𝑡 > 0

0                                                                  𝑂. 𝑊.

 

∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 , 𝑝

∈ 𝑃 
(4-2) 

𝑦𝑖𝑗
𝑡,𝑝 = min {ξ𝑖

𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗
𝑡)} 

𝑥𝑖
𝑡,𝑝

ξ𝑖
𝑡 + 𝜇

 

∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 , 𝑝

∈ 𝑃 
(4-3) 

𝑖𝑓 ∑ (min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡)}) ≤ 𝐹𝑖𝑗∈𝑆(𝑖) ,ψ𝑖𝑗
𝑡 =

min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡 )} 

∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗

∈ 𝑆(𝑖) 
(4-4) 

𝑖𝑓 ∑ (min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡)}) > 𝐹𝑖

𝑗∈𝑆(𝑖)

 

ψ𝑖𝑗
𝑡 =

min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡)}

∑ (min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡 )})𝑗∈𝑆(𝑖)

𝐹𝑖 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗

∈ 𝑆(𝑖) 
(4-5) 

ψ𝑖𝑗
𝑡

= min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗

− ξ𝑗
𝑡)} min {1,

𝐹𝑖

∑ (min {ξ𝑖
𝑡 , 𝐹𝑖 , 𝐹𝑗  , (𝑀𝑗 − ξ𝑗

𝑡)})𝑗∈𝑆(𝑖) + 𝜇
} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗

∈ 𝑆(𝑖) 
(4-6) 
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𝑦𝑖𝑗
𝑡,𝑝 = ψ𝑖𝑗

𝑡  
𝛾𝑖𝑗

𝑡,𝑝

𝜂𝑖𝑗
𝑡 +𝜇

  ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(4-7) 

𝑦𝑘𝑖
𝑡,𝑝 − 𝑦𝑖𝑗

𝑡,𝑝 = 𝑥𝑖
𝑡+1,𝑝 − 𝑥𝑖

𝑡,𝑝
 

∀ 𝑡 ∈ 𝑇, 𝑖 ∈  𝐶 \ {𝐶𝑆 , 𝐶𝑂}, 𝑘 ∈ 𝑃(𝑖), 𝑗 ∈ 𝑆(𝑖), 𝑝

∈ 𝑃 
(4-8) 

𝒟𝑡,𝑝 − 𝑦𝑖𝑗
𝑡,𝑝 = 𝑥𝑖

𝑡+1,𝑝 − 𝑥𝑖
𝑡,𝑝

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , 𝑗 ∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 
(4-9) 

𝑦𝑘𝑖
𝑡,𝑝 = 𝑥𝑖

𝑡+1,𝑝 − 𝑥𝑖
𝑡,𝑝

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑆, 𝑘 ∈ 𝑃(𝑖), 𝑝 ∈ 𝑃    
(4-10) 

4.2. Step 1. Update 

To implement the Dantzig-Wolfe decomposition, we have employed the block diagonal 

structure of SODTA that helps break down the problem into OD pairs. In the following 

formulation, all constraints except for Constraints (3-7)-(3-10) are defined for each 𝑜𝑑 ∈ 𝐶𝑂𝐷. 

Therefore, we can categorize the constraints based on OD pairs to define different sets of 

constraints, where each set represents one OD pair. Each set of constraints forms a sub-problem. 

Constraints (3-7)-(3-10) are in none of the sets or sub-problems. We include these constraints in 

the master problem. In other words, constraints (3-7)-(3-10) on total flows of ODs are not 

decomposable unless they are relaxed, leading to an RMP and several SPs. Note that constraints 

(3-7)-(3-10) for one OD are included in SPs for faster convergence. The RMP selects a combined 

optimal solution that satisfies all relaxed constraints coupling the SPs. In each iteration of the 

algorithm, the optimal solution to the RMP is also feasible for (3-2)-(3-12). The dual values of the 

RMP are added as the modification indicators of the violations of the partially relaxed constraints, 

i.e., penalty terms, to the objective function of the SPs. The procedures proposed to determine the 

optimal solutions to the MP and SPs follow. 

4.2.1. Step 1.1. Restricted Master Problem 

The RMP is formulated using (3-2), (3-7)-(3-10) and a set of convexity constraints. In this 
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procedure, 𝑥𝑖,𝑒
𝑡,𝑜𝑑

and 𝑦𝑖𝑗,𝑒
𝑡,𝑜𝑑

 are identified as parameters and 𝜆𝑒
𝑜𝑑 is defined as the decision variable, 

optimized for each 𝑜𝑑 ∈ 𝐶𝑂𝐷 for the set of extreme points 𝑒 ∈ 𝐸. For each 𝑜𝑑 ∈ 𝐶𝑂𝐷, a convexity 

constraint ∑ 𝜆𝑒
𝑜𝑑

∀𝑒∈𝐸 = 1 will be added to the RMP (Constraints (4-16)). Thus, the RMP will be 

formulated as follows. 

min ∑ ∑ ∑ ∑ 𝜆𝑒
𝑜𝑑𝑥𝑖,𝑒

𝑡,𝑜𝑑
𝑒∈𝐸𝑜𝑑∈𝐶𝑂𝐷𝑖∈ 𝐶\𝐶𝑆𝑡∈𝑇     

(4-11) 

∑ ∑ ∑ 𝜆𝑒
𝑜𝑑

𝑒∈𝐸

𝑦𝑖𝑗,𝑒
𝑡,𝑜𝑑 ≤

𝑜𝑑∈𝐶𝑂𝐷𝑗∈𝑆(𝑖)

𝐹𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\𝐶𝑆 (4-12) 

∑ ∑ ∑ 𝜆𝑒
𝑜𝑑

𝑒∈𝐸

𝑦𝑖𝑗,𝑒
𝑡,𝑜𝑑

𝑜𝑑∈𝐶𝑂𝐷𝑖∈𝑃(𝑗)

≤ 𝐹𝑗 ∀𝑡 ∈  𝑇, 𝑗 ∈ 𝐶\𝐶𝑂  (4-13) 

∑ ∑( ∑ 𝜆𝑒
𝑜𝑑

𝑖∈𝑃(𝑗)

𝑦𝑖𝑗,𝑒
𝑡,𝑜𝑑) + 𝜆𝑒

𝑜𝑑𝑥𝑗,𝑒
𝑡

𝑒∈𝐸𝑜𝑑∈𝐶𝑂𝐷

≤ 𝑀𝑗 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶\𝐶𝑂  (4-14) 

∑ ∑ ∑ 𝜆𝑒
𝑜𝑑

𝑒∈𝐸

𝑦𝑖𝑗,𝑒
𝑡,𝑜𝑑 ≤

𝑜𝑑∈𝐶𝑂𝐷𝑗∈𝑆(𝑖)

𝑓𝑖
𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼  (4-15) 

∑ 𝜆𝑒
𝑜𝑑

𝑒∈𝐸

= 1 ∀𝑜𝑑 ∈ 𝐶𝑂𝐷 (4-16) 

𝜆𝑒
𝑜𝑑 ≥ 0  ∀𝑜𝑑 ∈ 𝐶𝑂𝐷 , 𝑒 ∈ 𝐸 (4-17) 

Objective function (4-11) aims to minimize the convex combination of the total travel time of 

all cells except for the sink cells 𝑖 ∈  𝐶\𝐶𝑆 over all time steps 𝑡 ∈ 𝑇, all OD pairs 𝑜𝑑 ∈ 𝐶𝑂𝐷, and 

the set of extreme points 𝑒 ∈ 𝐸. Constraints (4-12)-(4-15) compensate for the violation of the 

partially relaxed constraints (in the solutions of the SPs). Finally, Constraints (4-17) ensure the 

non-negativity of  𝜆𝑒
𝑂𝐷.  

4.2.2. Step 1.2. Sub-problems 

Each SP is presented for only one OD pair; hence, the 𝑜𝑑 index will be eliminated from all 

variables in the updated formulation (Constraints (4-20)-(4-29)). Constraints (3-7)-(3-10) are 
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reserved for exclusive application to the total flow of all OD pairs. SPs aim to maximize the 

reduced cost of the RMP. To formulate the objective function, we define the dual variables of the 

RMP as follows. We let 𝜋𝑖,𝑗
𝑡  denote the dual variable for cell 𝑖 ∈ 𝐶 for coupling constraint 𝑗 at time 

𝑡 ∈ 𝑇. Besides, 𝜑𝑜𝑑 represents the dual variable for convexity constraints on 𝑂𝐷 ∈ 𝐶𝑂𝐷. In other 

words,  𝜋𝑖,14
𝑡  , 𝜋𝑖,15

𝑡 , 𝜋𝑖,16
𝑡 , 𝜋𝑖,17

𝑡 , and 𝜑𝑜𝑑 respectively denote the dual variables of constraints (4-

12)-(4-16) in the RMP. The reduced costs of the RMP are introduced as:  

− ∑ ∑ 𝑥𝑖
𝑡

𝑡∈𝑇𝑖∈𝐶\𝐶𝑆

+ ∑ ∑ 𝜋𝑖,14
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑗∈𝑆(𝑖)𝑡∈𝑇𝑖∈𝐶\𝐶𝑆

+ ∑ ∑ 𝜋𝑖,15
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑖∈𝑃(𝑗)𝑡∈𝑇𝑖∈𝐶\𝐶𝑂

+ ∑ ∑ 𝜋𝑖,16
𝑡 ( ∑ 𝑦𝑖𝑗

𝑡

𝑖∈𝑃(𝑗)𝑡∈𝑇𝑖∈𝐶\𝐶𝑂

+ 𝑥𝑖
𝑡)

+ ∑ ∑ 𝜋𝑖,17
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑗∈𝑆(𝑖)𝑡∈𝑇𝑖∈𝐶𝐼

+ 𝜑𝑜𝑑  

∀𝑜𝑑 ∈ 𝐶𝑂𝐷 (4-18) 

Variable 𝜆𝑒
𝑜𝑑 can be introduced as a basic variable in the RMP solution if (4-18) is greater than 

zero. We maximize (4-19) as the objective function of each SP. 𝜑𝑜𝑑 is eliminated from (4-19) 

since it is a constant value; however, it will be included later for the algorithm’s termination. If the 

generated optimal solutions guarantee strictly greater than zero reduced costs, considering −𝜑𝑜𝑑, 

the solutions (i.e., 𝑥𝑖
𝑡,𝑜𝑑

and 𝑦𝑖𝑗
𝑡,𝑜𝑑

) will be introduced to the RMP as a set of input parameters.   
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max − ∑ ∑ 𝑥𝑖
𝑡

𝑡∈𝑇𝑖∈𝐶\𝐶𝑆

+ ∑ ∑ 𝜋𝑖,14
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑗∈𝑆(𝑖)𝑡∈𝑇𝑖∈𝐶\𝐶𝑆

+ ∑ ∑ 𝜋𝑖,15
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑖∈𝑃(𝑗)𝑡∈𝑇𝑖∈𝐶\𝐶𝑂

+ ∑ ∑ 𝜋𝑖,16
𝑡 ( ∑ 𝑦𝑖𝑗

𝑡

𝑖∈𝑃(𝑗)

+ 𝑥𝑖
𝑡)

𝑡∈𝑇𝑖∈𝐶\𝐶𝑂

+ ∑ ∑ 𝜋𝑖,17
𝑡 ∑ 𝑦𝑖𝑗

𝑡

𝑗∈𝑆(𝑖)𝑡∈𝑇𝑖∈𝐶𝐼

 

(4-19) 

∑ 𝑦𝑘𝑖
𝑡 −

𝑘∈𝑃(𝑖)

∑ 𝑦𝑖𝑗
𝑡 =  𝑥𝑖

𝑡+1 −

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\{𝐶𝑆 , 𝐶𝑂} (4-20) 

𝑑𝑖
𝑡 − ∑ 𝑦𝑖𝑗

𝑡

𝑗∈𝑆(𝑖)

= 𝑥𝑖
𝑡+1 − 𝑥𝑖

𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂  (4-21) 

∑ 𝑦𝑖𝑗
𝑡

𝑖∈𝑃(𝑗)

= 𝑥𝑗
𝑡+1 − 𝑥𝑗

𝑡 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶𝑆 (4-22) 

∑ 𝑦𝑖𝑗
𝑡 ≤

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶 (4-23) 

∑ 𝑦𝑖𝑗
𝑡 ≤

𝑗∈𝑆(𝑖)

𝐹𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶 (4-24) 

∑ 𝑦𝑖𝑗
𝑡

𝑖∈𝑃(𝑗)

≤ 𝐹𝑗 ∀𝑡 ∈  𝑇, 𝑗 ∈ 𝐶 (4-25) 

∑ 𝑦𝑖𝑗
𝑡

𝑖∈𝑃(𝑗)

≤ 𝑀𝑗 − 𝑥𝑗
𝑡 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶 (4-26) 

𝑓𝑖
𝑡 = 𝑔𝑖

𝑡𝐹𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 (4-27) 

𝑥𝑖
𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶 (4-28) 

𝑦𝑖𝑗
𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶/𝐶𝑠, 𝑗 ∈ 𝑃(𝑖) (4-29) 

4.3. Termination Criterion 

To evaluate the solution quality of the proposed algorithm, the Upper Bound (UB) and the 

Lower Bound (LB) are computed in each iteration. The objective value of the RMP represents the 

UB and hence, a feasible solution with a specified optimality gap will be derived in each iteration. 
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The LB is computed by subtracting the non-negative objective value of the SPs from the UB. Note 

that it is proven that the proposed solution technique will find the optimal solution to the problem 

in a finite number of iterations (Dantzig and Wolfe, 1960). However, finding the optimal solutions 

may require an excessive number of iterations and runtime. Therefore, we have set the termination 

criterion to reach a 2% gap between UB and LB or 500 iterations. 

4.4. Distributed Computing Framework 

Distributed and parallel computing techniques generate concurrently-solvable problem 

elements and utilize the capabilities offered by multi-processor machines to efficiently solve 

complex problems (Adeli, 2000; Adeli and Kamal, 2014). Although parallel algorithms have been 

applied to different traffic assignment problems, the structure of CTM-based SODTA formulations 

with multiple ODs has not been exploited for high-performance optimization computations. For 

instance, Chen and Meyer (1988) have presented a parallel algorithm for an approximate multi-

commodity STA problem, where all commodities are optimized in parallel. A disaggregate 

simplicial decomposition algorithm presented by Larsson & Patriksson (1992) to solve STA 

problems is parallelized by OD pairs (Karakitsiou et al., 2004; Lotito, 2006). Parallel frameworks 

are also used for DTA simulations. However, these simulations are not as computationally 

expensive as the optimization techniques (Qu and Zhou, 2017; Rickert and Nagel, 2001). On the 

other hand, the literature presents extensive studies that aim to maximize the computational 

efficiency by parallel algorithms that utilize macro-tasking, micro-tasking, and vectorization 

features of super-computers; see Saleh & Adeli (1994); Saleh & Adeli (1996); Soegiarso & Adeli 

(1994); Saleh & Adeli (1997). Micro-tasking and vectorization are conducted at the loop level, 

and macro-tasking parallelizes functions (Adeli and Hung, 1993; Saleh and Adeli, 1994). Besides, 

Adeli and Kumar, 1995; Kumar and Adeli (1995) have implemented distributed algorithms on a 
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cluster with a costly communication architecture among workstations. Adeli & Kamal (1992a) and 

Adeli & Kamal (1992b) have parallelized the computation components while maintaining a 

workload balance among processors. 

Our proposed algorithm is partitioned into multiple tasks, as shown in Figure 4-3, where each 

is assigned to a new or the same Computing Processor Unit (CPU). Tasks either take place 

simultaneously or are implemented sequentially. According to Ziliaskopoulos, Kotzinos, and 

Mahmassani (1997), a task is a code script that is executed on a CPU. A cluster of workstations 

can be efficiently employed if the computation tasks are much more than the communication ones 

because the workstations are coupled loosely in clusters and the communication is slow and 

inefficient (Adeli and Kumar, 1998). In our algorithm, the main computational tasks are the 

optimization of SPs that do not require any message passing, so it is suitable to be run on clusters. 

The synchronization of SPs can improve the computational efficiency of the algorithm 

substantially because the algorithm should not wait to optimize all SPs one by one sequentially to 

be able to go the next step. Moreover, increasing SPs by the addition of OD pairs will not affect 

the required time for the optimization of SPs. 

The presented algorithm is implemented on a High-Performance Computing (HPC) cluster. The 

number of nodes and processors that are requested from HPC to run the algorithm are one and one 

plus the number of ODs, respectively.   

The algorithm starts with reading input data using the first processor. All the following tasks 

are being processed with the same processor and sequentially: 

• Read the input data 

• Set the number of sub-problems equal to the number of OD pairs 

• Set the iteration number to zero 
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• Set the termination criteria (maximum number of iterations and gap between UB and LB) 

• Find a path for each OD using the Dijkstra algorithm  

• Simulate the network 

• Initialize the set of extreme points with the outputs of the simulation  

• Optimize RMP 

Then, the following tasks are implemented concurrently by new threads. New threads are 

assigned to the set of tasks that are placed in one column: 

• Update the objective functions of SPs 

• Optimize SPs 

• Add the extreme points generated by SPs to MP if the objective function of SP is strictly 

positive 

All three tasks for each SP are assigned to a node, and the access of all threads to the shared 

arrays is delayed until all threads finish their jobs. Then, the arrays are shared among SPs to insert 

their outputs. Finally, the algorithm checks if the termination criteria are met using the first 

processor. If so, the algorithm is stopped. Otherwise, the RMP is optimized, and the algorithm 

continues. 



  

48 

 

Figure 4-3 The outline of the algorithm’s implementation 

4.5. Numerical Experiments 

This section presents the characteristics of test networks and test scenarios used to evaluate the 

performance of the proposed methodology. Two networks include 20 (4 × 5) and 40 (4 × 10) 

intersections. The 20 intersection network is shown in Figure 4-4. 40 intersection network is a 

duplication of the 20 intersection network. Table 4-2 shows a list of scenarios with a different 

number of intersections, OD pairs, and the type of demand.  Table 4-3 shows the demand profiles 

for each OD pair and all scenarios. The network loading interval is assumed to be 30 min with an 

additional 10 min for unloading the network. The proposed methodology is coded in Java Eclipse 

and run on a Linux-based cluster. In the test network of 20 intersections, we have used one node 

of a High-Performance Computer (HPC) with 21 cores with a total of 16.0 GB of memory. In 

addition, we have used one HPC node with 41 cores in the test network of 40 intersections. In both 
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cases, the master problem is solved in one core, and each sub-problem is solved in a separate core 

in parallel. The CPLEX libraries are called via Java scripts to solve linear programs. The duration 

of each time step is six seconds, the number of cells in each link is between two to four, the total 

number of cells in the network is 316 for 20 intersections and 632 for 40 intersections, the free-

flow speed is 25 mph, length of each cell is 220 ft, and saturation flow rate is 3 vehicle/time 

step/lane.  

 

Figure 4-4 Test network 1: 20 intersections –Springfield, IL 
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Table 4-2 List of tested scenarios 

Scenario 
Number of 

intersections 

Number of OD 

pairs 
Demand 

1 20 5 Under-saturated 

2 20 5 Semi-saturated 

3 20 5 Over-saturated 

4 20 10 Under-saturated 

5 20 10 Semi-saturated 

6 20 10 Over-saturated 

7 20 15 Under-saturated 

8 20 15 Semi-saturated 

9 20 15 Over-saturated 

10 40 25 Under-saturated 

11 40 25 Semi-saturated 

12 40 25 Over-saturated 

Table 4-3 Demand profiles loaded into the test networks of 20 and 40 intersections 

Network of 20 intersections 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

1 333 500 750 9 133 200 300 

2 133 200 300 10 133 200 300 

3 333 500 750 11 333 500 750 

4 333 500 750 12 333 500 750 

5 67 100 150 13 333 500 750 

6 333 500 750 14 333 500 750 

7 333 500 750 15 67 100 150 

8 333 500 750     

Network of 40 intersections 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

1 267 400 600 14 320 480 720 

2 333 500 750 15 333 500 750 

3 267 400 600 16 160 240 360 

4 320 480 720 17 160 240 360 

5 320 480 720 18 67 100 150 

6 320 480 720 19 160 240 360 

7 200 300 450 20 120 180 270 

8 333 500 750 21 120 180 270 

9 333 500 750 22 320 480 720 

10 333 500 750 23 160 240 360 

11 200 300 450 24 120 180 270 

12 320 480 720 25 67 100 150 

13 200 300 450     
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4.6.  Results 

This section presents a set of numerical experiments to show the performance of the proposed 

decomposition algorithm in solving the CTM-based SODTA problem. Figure 4-5 displays UB and 

LB over iterations for scenarios with oversaturate demand (i.e., 3, 6, 9, and 12). The proposed 

algorithm has achieved a 2% optimality gap in less than 200 iterations in all tested scenarios.   
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Figure 4-5 UB and LB of the proposed algorithm in Scenarios 3, 6, 9, and 12 

Figure 4-6 shows the runtime per iteration of the proposed algorithm to solve SODTA up to the 

termination point in scenarios 3, 6, 9, and 12. As expected, the average runtime of SPs does not 

change over iterations since their complexity is the same. On the other hand, it can be observed 
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that the runtime of MPs is increased slightly in each iteration because new decision variables 𝜆𝑒
𝑜𝑑 

are added. The runtime of other parts of the algorithm including the SP procedure is constant. Note 

that the number of decision variables in scenario 12 is more than 14 million as opposed to 4 million 

in scenario 9. However, the total runtime in scenario 12 is only 52% more than that of scenario 9, 

which is a strong indicator of the scalability of the proposed solution algorithm.  

  

A) Scenario 3 B) Scenario 6 

  

C) Scenario 9 D) Scenario 12 

 

Figure 4-6 Run-time of 3 SPs and MP in Scenarios 3, 6, 9, and 12 

4.6.1. Benchmark Solutions 

CPLEX is used to find optimal solutions to the original problem as the benchmark. CPLEX is 

given the flexibility to select the most appropriate method to find the optimal solutions. Figure 4-
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7 shows the marginal objective value, i.e., the difference between the optimal objective values of 

CPLEX and the decomposition technique and optimality gap (of the decomposition technique), 

based on all scenarios. Note that the marginal objective values are not available in Scenarios 7-12 

as the CPLEX required more memory to find solutions (CPLEX was run on a Linux-based cluster 

with 16 GB of memory). Among all scenarios, the maximum marginal objective value is 1.19%, 

and the optimality gap is reported less than 2%, which was the defined termination criteria. Note 

that the optimality gaps and marginal objective value are both zero for scenario 2.  

 

Figure 4-7 Marginal objective value and optimality gap in Scenarios 1-12 

Table 4-4 presents the total travel time and the computation time for all scenarios solved with 

the decomposition algorithm and CPLEX. Since CPLEX fails to provide the optimal solutions in 

scenarios 7-12, the difference between travel time and computation times is not available. The 

maximum difference between the travel time found by the solutions of the proposed algorithm and 

the benchmark approach is 2.00%. Note that the algorithm can reach a much lower optimality gap 

at the cost of higher CPU times. For example, the algorithm requires 343.09 minutes of 

computation time to reach a 0.01% optimality gap in scenario 7. Moreover, CPLEX is more 

computationally expensive with similar computational resources compared to the proposed 

algorithm in all scenarios. In Scenarios 1-2 and 4-5, the proposed algorithm can find near-optimal 
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solutions in the initial iterations, which implies that the initial solution obtained by the path-based 

simulation is very close to the optimal solution. This is not the case for CPLEX since it does not 

follow an initialization-update procedure.  

Table 4-4 Network performance measures for Scenarios 1-12 

Performance 

measures 

Algorithm / 

Gap 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Total travel time 

(hr) 

CPLEX 82.03 140.34 210.81 145.12 221.18 354.75 

Proposed 82.28 140.34 213.88 145.38 221.73 362.00 

difference 

(%) 
0.31 0.00 1.98 0.17 0.24 1.66 

Total computation 

time (min) 

CPLEX 1.90 3.09 58.68 46.01 69.36 790.2 

Proposed 0.06 0.06 45.61 0.12 0.12 28.179 

difference 

(%) 
-96.84 -98.06 -22.27 -99.74 -99.83 -96.43 

Performance 

measures 

Algorithm / 

Gap 

Scenario 

7 

Scenario 

8 

Scenario 

9 

Scenario 

10 

Scenario 

11 

Scenario 

12 

Total travel time 

(hr) 

CPLEX NA* NA NA NA NA NA 

Proposed 170.16 262.59 464.92 265.70 474.00 812.52 

difference 

(%) 
NA NA NA NA NA NA 

Total computation 

time (min) 

CPLEX NA NA NA NA NA NA 

Proposed 4.56 33.71 438.18 8.81 97.67 2927.41 

difference 

(%) 
NA NA NA NA NA NA 

*not available (NA) 

 

Figure 4-9 illustrates the convergence of the link flows to the optimality in Scenario 3 based on 

the proposed decomposition scheme. The total link flows are calculated by the accumulation of 

flows over all OD pairs and time steps. We have selected four CTM-based links (33,34), (162,163), 

(172,174) and (276,277) as network representatives. In all cases, the link flows are converged to 

their optimal values with smooth fluctuations by 200 iterations. 
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Figure 4-8 Total link flows in the proposed algorithm compared to the optimal Simplex solution in 

Scenario 3 

To parallelize the proposed decomposition scheme, a multi-thread program is coded in Java-

Eclipse. Detailed information on parallelization is available in section 4.4. Each SP on a single OD 

is assigned to a specific processor and each thread is executed on a different directory. This thread-

based program allows the concurrent optimization of the SPs. The sequential and parallel modes 

are compared through the generation of an experimental scenario that assigns a single processor 
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to the sequential mode and 16 processors to the parallel mode. In the parallel computing procedure, 

15 threads are generated, where each handles the SP of a single OD. Besides, one thread is created 

for the MP. Figure 4-8 shows the runtime of the sequential and parallel modes over 5 min. The 

sequential mode can only complete 15 iterations in 5 min, while the parallel programming enabled 

by the proposed decomposition technique allows 40 iterations, which is a substantial improvement 

in the computation time. 

 

Figure 4-9 Runtime comparison of sequential and parallel architectures for 5 min runtime in Scenario 7
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CHAPTER 5. DISTRIBUTED GRADIENT-BASED APPROACH 

FOR SOLVING SODTA 

This chapter presents a distributed gradient-based methodology to solve the SODTA problem. 

The discussions are continued in five subsections: (1) the distribution of SODTA problem 

formulation, (2) initialization, (3) the gradient-based update, (4) termination criteria, and (5) 

convergence properties. In the first section, we partition the cell-based SODTA formulation 

among sub-problems with an intersection-level segmentation so that the number of sub-problems 

is equal to the number of intersections. Each sub-problem contains some parts of the objective 

function and constraints of the original SODTA formulation that have decision variables 

corresponding to the cells and links within the intersection region assigned to the sub-problem.  

In the initialization step, we find initial values for the decision variables of each sub-problem. 

We start by generating the shortest paths for each OD pair using Dijkstra’s algorithm (Ahuja et 

al., 1993) and sending the demand to the network through these paths using a path-based CTM 

simulation (Mehrabipour et al. 2019; Ukkusuri, Han, and Doan 2012). We initialize the approach 

with the occupancy and flow values that are the outputs of the simulation. Then, we update the 

value of the decision variables of each sub-problem iteratively through a distributed gradient-

based step. For each sub-problem, we incorporate the proposed values by themselves and other 

sub-problems for the shared decision variables of the sub-problem by taking a weighted average. 

We find the weighted average at the current iteration for all sub-problems using the value of 

decision variables from either the initialization step or the previous iteration. Then, the values 

are moved towards the negative direction of the gradient of the objective function of each sub-

problem (to minimize it), and the values of the decision variables are projected on the set of 

constraints at each sub-problem to maintain feasibility. The approach iterates until the conflict 
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among the proposed values from the sub-problems is within an acceptable threshold. We will 

show that the methodology converges to the optimal solution of the problem by an infinite 

number of iterations. Table 5-1 shows the notations used in this chapter. Figure 5-1 shows the 

overall framework of the methodology, and more details about each part of the figure are 

provided in the rest of this section. Note that this study is published in IEEE Transactions in 

Intelligent Transportation Systems Journal (Mehrabipour and Hajbabaie, 2022a), and, for 

materials used in this chapter, the full credit is given to the original source © 2022 IEEE. 

Table 5-1 Definition of sets, decision variables, and parameters used in chapter 5 © 2022 IEEE 

Sets 

𝑇 The set of time steps 

𝐶 The set of network cells 

𝐶𝑂 The set of source cells 

𝐶𝑆 The set of sink cells 

𝐶𝐼 The set of intersection cells 

𝐶𝑂𝐷 The set of OD pairs 

𝑃(𝑖) The set of predecessors of cell 𝑖 ∈ 𝐶 

𝑆(𝑖) The set of successors of cell 𝑖 ∈ 𝐶 

𝐶𝐷 The set of diverge cells 

𝑁 The set of sub-problems 

𝐶𝑙 
The set of links that their heads 𝑖 ∈ 𝐶𝑠and tails 𝑗 ∈ 𝑆(𝑖) belong to sub-problems 

𝑒 ∈ 𝐶𝓈∈𝑛𝑠
 and 𝑓 ∈ 𝑆(𝑒) such that 𝑖 = 𝑒, 𝑗 = 𝑓, 𝑠 ≠ 𝓈 

𝔫𝑠 The set of neighbors of sub-problem 𝑠 ∈ 𝑁 including itself 

𝐶𝑠 The set of cells in sub-problem 𝑠 ∈ 𝑁 

𝐶𝑜𝑠 
The union of the set of cells in sub-problem 𝑠 ∈ 𝑁 and the set of source cells, 

i.e., 𝐶𝑂 ∩ 𝐶𝑠 

𝐶𝑠𝑠 
The union of the set of cells in sub-problem 𝑠 ∈ 𝑁 and the set of sink cells, i.e., 

𝐶𝑆 ∩ 𝐶𝑠 

𝐶𝐷
𝑠  The set of diverge cells in sub-problem 𝑠 ∈ 𝑁 

𝐶𝑒𝑜𝑠𝑠 
The set of cells in sub-problem 𝑠 ∈ 𝑁 except for the set of source cells and the 

set of sink cells i.e., 𝐶𝑠/𝐶𝑂 ∪ 𝐶𝑆 
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Table 5-1 (continued) 

𝐶𝑒𝑠𝑠 The set of cells in sub-problem 𝑠 ∈ 𝑁 except for the set of sink cells, i.e., 𝐶𝑠/𝐶𝑆 

𝐶𝑒𝑜𝑠 
The set of cells in sub-problem 𝑠 ∈ 𝑁 except for the set of source cells, i.e., 

𝐶𝑠/𝐶𝑂 

𝐶𝑖𝑠 
The union of the set of cells in sub-problem 𝑠 ∈ 𝑁 and the set of intersection 

cells, i.e., 𝐶𝐼 ∩ 𝐶𝑠 

𝑋𝑠 The set of constraints of 𝑠ubproblem 𝑠 ∈ 𝑁 

𝑋  The feasible region of the SODTA problem 

X∗  The set of optimal solutions 

Decision variables 

𝑥𝑖
𝑡,𝑜𝑑

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝑦𝑖𝑗
𝑡,𝑜𝑑

 
The number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at 

time step 𝑡 ∈ 𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

Parameters 

𝜏 The duration of time step 𝑡 ∈ 𝑇 

𝒟𝑖
𝑡,𝑜𝑑

 
The entry demand level at source cell 𝑖 ∈ 𝐶𝑂 at time step 𝑡 ∈ 𝑇 for OD pair 
(𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝐹𝑖 The saturation flow rate at cell 𝑖 ∈ 𝐶 

𝑀𝑖 The maximum number of vehicles that cell 𝑖 ∈ 𝐶 can accommodate  

𝛿 The ratio of free-flow speed to the backward propagation speed 

𝑔𝑖
𝑡 

A binary parameter to define signal status at intersection cell 𝑖 ∈ 𝐶𝐼 at time step 

𝑡 ∈ 𝑇. Zero and one values indicate red and green signals, respectively 

𝑅𝑖𝑗
𝑡,𝑜𝑑

 
The turning ratio of the link between diverge cell 𝑖 ∈ 𝐶𝐷 and its successor cell 

𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝑓𝑖
𝑡 The variable saturation flow rate of intersection cell 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇 

Notations and Terms 

𝐾 The total number of iterations 

𝑘 The iteration counter 

Ӽ𝑠
𝑘 

The column vector of values for the decision variables of sub-problem 𝑠 ∈ 𝑁 at 

iteration 𝑘 ∈ 𝐾 

𝔁 and 𝒛 The column vectors  

𝔁′ The transpose of vector 𝓍 

𝔁′𝐳 The dot product of two vectors 𝓍 and 𝑧 

𝒛∗ ∈ X∗   A realization of the vector of optimal solution 
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Table 5-1 (continued) 

‖𝔁‖

= (𝔁′𝔁)
1
2 

The standard Euclidean norm 

𝑷𝑋[𝔁] The projection of vector 𝓍 on set 𝑋 

ℱ The objective function of the SODTA problem 

ℱ𝑠(𝔁) The objective function of sub-problem 𝑠 ∈ 𝑁 at vector 𝓍 

ℱ∗ The optimal objective function  

𝐺 = (𝑁, 𝐴) 
The information exchange graph with a set of nodes 𝑁 and a set of directional 

links 𝐴 

(𝑠, 𝓈) ∈ 𝐴 A link in information exchange graph 𝐺 = (𝑁, 𝐴) 

𝓌𝑠𝓈 
The weight on the link going from node 𝑠 to node 𝓈 in information exchange 

graph 𝐺 = (𝑁, 𝐴) 

𝜃 and 𝜃′ The lower bound and the upper bound for weight values 𝓌𝑠𝓈: 𝑠𝓈 ∈ 𝑁 

𝓌 
The weighted graph Laplacian matrix with weight 𝓌𝑠𝓈 entries assigned to 

links (𝑠, 𝓈) ∈ 𝑁 in information exchange graph 𝐺 = (𝑁, 𝐴) 

𝓖𝑠 The gradient of the objective function ℱ𝑠 of sub-problem 𝑠 ∈ 𝑁 

𝒢𝑠,𝑖
𝑡,𝑜𝑑

  The gradient of objective function of sub-problem 𝑠 ∈ 𝑁 with respect to 𝑥𝑖
𝑡,𝑜𝑑

  

𝒢𝑠,𝑖𝑗
𝑡,𝑜𝑑

 The gradient of objective function of sub-problem 𝑠 ∈ 𝑁 with respect to 𝑦𝑖𝑗
𝑡,𝑜𝑑

 

𝛼𝑘 and 𝛾𝑘 The step sizes at iteration 𝑘 ∈ 𝐾 

𝜀 The consensus error used for termination criterion 

𝓅𝑖
𝑡,𝑜𝑑

  
The auxiliary parameter for vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with OD 

pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝓆𝑖𝑗
𝑡,𝑜𝑑

 
The auxiliary parameter for vehicles going from cell 𝑖 ∈ 𝐶 to downstream cell 

𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝔸\𝔹 All elements in set 𝔸 except for the ones in set 𝔹 
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Figure 5-1 The framework of the distributed gradient-based methodology © 2022 IEEE 

5.1. The Distribution of SODTA Formulation  

The first step of the methodology is to decompose the network-level SODTA problem 

formulation into intersection-level sub-problems. Each sub-problem will have decision variables 

associated with one intersection. The summation of the objective functions from each sub-

problem is equivalent to the objective function of the original SODTA problem, and the union 

of the constraints from each sub-problem is equivalent to the original constraint set. Note that 

the sub-problems do not share any constraints. This intersection-level decomposition is well-

suited for solving problems in urban street networks since assigning more intersections to the 

network will not change the architecture of the methodology and its computational complexity. 

A general formulation for sub-problem 𝑠 ∈ 𝑁 can be written by redefining all previous sets for 

each sub-problem 𝑠 ∈ 𝑁. A general formulation for sub-problem 𝑠 ∈ 𝑁 is shown below. This 

formulation differs from the original formulation in the set of cells for which the constraints are 

defined.  
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min ∑ ∑ ∑ 𝑥𝑖
𝑡,𝑜𝑑

𝑖∈ 𝐶𝑒𝑠𝑠𝑡∈𝑇(𝑜,𝑑)∈𝐶𝑂𝐷

 

 

 

 

∑ 𝑦𝑘𝑖
𝑡,𝑜𝑑 −

𝑘∈𝑃(𝑖)

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 =  𝑥𝑖

𝑡+1,𝑜𝑑 −

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑒𝑥𝑜𝑠𝑠, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(5-1) 

𝒟𝑖
𝑡,𝑜𝑑 − ∑ 𝑦𝑖𝑗

𝑡,𝑜𝑑 =  𝑥𝑖
𝑡+1,𝑜𝑑 −

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑜𝑠, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(5-2) 

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)

= 𝑥𝑗
𝑡+1,𝑜𝑑 − 𝑥𝑗

𝑡,𝑜𝑑
 ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶𝑠𝑠, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

(5-3) 

∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑗∈𝑆(𝑖)

𝑥𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑒𝑠𝑠, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(5-4) 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷

𝐹𝑖 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑒𝑠𝑠 
(5-5) 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷

≤ 𝐹𝑗 ∀𝑡 ∈  𝑇, 𝑗 ∈ 𝐶𝑒𝑜𝑠 
(5-6) 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑖∈𝑃(𝑗)(𝑜,𝑑)∈𝐶𝑂𝐷

≤ 𝛿(𝑀𝑗 − ∑ 𝑥𝑗
𝑡,𝑜𝑑

∀(𝑜,𝑑)∈𝐶𝑂𝐷

) ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐶𝑒𝑜𝑠 
(5-7) 

∑ ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑 ≤

𝑗∈𝑆(𝑖)(𝑜,𝑑)∈𝐶𝑂𝐷

𝑓𝑖
𝑡 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑖𝑠 

(5-8) 

𝑥𝑖
𝑡,𝑜𝑑 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 (5-9) 

𝑦𝑖𝑗
𝑡,𝑜𝑑 ≥ 0 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 

(5-10) 

5.2. Initialization 

The approach starts with initial values for all decision variables at the first iteration. The initial 

solutions do not have to be feasible for the original SODTA formulation. We first implement 
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Dijkstra’s algorithm (Ahuja et al., 1993) to generate the shortest paths for all OD pairs. Note that 

we assume that the network is under free-flow conditions. Then, we use the path-based CTM 

simulation introduced by Ukkusuri et al. (2012) to find occupancy 𝑥𝑖
𝑡,𝑝

 for cell 𝑖 ∈ 𝐶𝑠 at time 

step 𝑡 ∈ 𝑇 with path 𝑝 ∈ 𝑃 and flow 𝑦𝑖𝑗
𝑡,𝑝

for links between cell 𝑖 ∈ 𝐶𝑠 and its successor cell 𝑗 ∈

S(𝑖) at time step 𝑡 ∈ 𝑇 with path 𝑝 ∈ 𝑃 for all sub-problems 𝑠 ∈ 𝑁.  Note that we assume each 

OD pair is associated with one path for simplicity. This assumption is not restrictive. 

5.3. Distributed Gradient Update  

This procedure updates the decision variables of all sub-problems in iteration 𝑘 + 1 ∈ 𝐾 using 

three main steps: 

Step 1: Each sub-problem optimizes the values of its decision variables. Therefore, decision 

variables that are in common between several sub-problems will have various values. This step 

sets the value of these decision variables in each sub-problem equal to their weighted average. 

The weights in each sub-problem are determined such that they satisfy the required conditions 

for convergence.  

Step 2: The approach moves the computed values for sub-problem 𝑠 ∈ 𝑁 from Step 1 towards 

the negative direction of the gradient of the objective function of the corresponding sub-problem 

to minimize the total travel time within the region assigned to the sub-problem. 

Step 3: The approach projects the decision variable values in sub-problem 𝑠 ∈ 𝑁 from Step 2 

onto the set of constraints of the sub-problem to make the values feasible for that sub-problem. 

Note that the formulation is not changed for updating the flow and occupancy values. The 

adjustment of the flow values is handled by the gradient update procedure. We describe these 

steps with a mathematical representation in the rest of this section. We first introduce four 

definitions for the information exchange graph (Definition 1), neighbors of a sub-problem 
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(Definition 2), the gradient of a function (Definition 3), and the projection operator (Definition 

4). 

Definition 1 (Information exchange graph) The information exchange graph 𝐺 = (𝑁, 𝐴) 

contains nodes and directional links that belong to sets 𝑁 and 𝐴, respectively. Node 𝑠 ∈ 𝑁 

represents a sub-problem, and link (𝑠, 𝓈) ∈ 𝐴 shows the transfer of information from sub-

problem 𝑠 ∈ 𝑁 to sub-problem 𝓈 ∈ 𝑁. If there is a variable in common between sub-problems 

𝑠, 𝓈 ∈ 𝑁, directional links (𝑠, 𝓈) ∈ 𝐴 and (𝓈, 𝑠) ∈ 𝐴 are needed. There is also a self-arc at each 

node i.e., {(𝑠, 𝓈): 𝑠 = 𝓈, ∀𝑠, 𝓈 ∈ 𝑁}. This arc represents the use of information generated by sub-

problem 𝑠 ∈ 𝑁 for computations of sub-problem 𝑠 ∈ 𝑁.  Weight value 𝓌𝑠𝓈 for the link going 

from node 𝑠 ∈ 𝑁 to node 𝓈 ∈ 𝑁 is also assigned to link (𝑠, 𝓈) ∈ 𝐴 to be used for incorporating 

information from sub-problem 𝑠 ∈ 𝑁 for decision variables in sub-problem 𝓈 ∈ 𝑁. Assumption 

1 determines the value of weights and is required to prove the convergence of the approach. We 

can use identical values for wights on all links (𝑠, 𝓈) ∈ 𝐴 if 𝑠 ≠ 𝓈. Weights on self-arcs 𝑠 ∈ 𝑁 

satisfy equation 𝓌𝑠𝑠 = − ∑ 𝓌𝓈𝑠𝓈∈𝐶𝔫𝑠
:𝑠≠𝓈 . Numerical examples for the weights are provided for 

a simple example in this section and a test network in the result section. 

Definition 2 (The neighbors of a sub-problem) The neighbors of sub-problem 𝑠 ∈ 𝑁 are sub-

problems 𝓈 ∈ 𝑁: 𝓈 ≠ 𝑠 that offer estimation for at least one decision variable of sub-problem 

𝑠 ∈ 𝑁. In other words, sub-problem 𝓈 ∈ 𝑁 is a neighbor of sub-problem 𝑠 ∈ 𝑁 if and only if 

𝓌𝓈𝑠 > 0. We define the set of neighbors of sub-problem 𝑠 ∈ 𝑁 including itself by 𝔫𝑠.  

In general, any node 𝑠 ∈ 𝑁 may be connected to any other node 𝓈 ∈ 𝑁 in information 

exchange graph 𝐺 even if the sub-problems (nodes) are not immediate neighbors in the original 

(physical) network if their corresponding sub-problems share a decision variable.  This fact will 

not affect the distributed structure of the methodology because the approach uses the information 
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from the previous iteration for the exchange process, not the current iteration. However, the 

structure of SODTA formulation and intersection-based distribution lead to the presence of links 

only between immediate neighbors in the information exchange graph. The reason is that the 

immediate neighbors share decision variables corresponding to the links between any two 

intersections (regions).      

Definition 3 (Gradient of a function) Let ℱ𝑠(𝔁), 𝒢𝑠 ∈ ℝ𝑛, and 𝑋𝑠 respectively denote the 

objective function value of sub-problem 𝑠 ∈ 𝑁 given vector 𝔁, the gradient of the objective 

function ℱ𝑠(𝔁), and the feasible region of sub-problem 𝑠 ∈ 𝑁. The gradient 𝒢𝑠 satisfies 

inequality (5-11) for all vectors 𝒛, 𝔁 ∈ 𝑋𝑠. 

ℱ𝑠(𝒛) + 𝒢𝑠
′(𝔁 − 𝒛) ≤ ℱ𝑠(𝔁)  (5-11) 

Definition 4 (Projection operator) We use the projection operator 𝑷𝑋[𝒛] to find the projection 

of vector 𝒛 onto a closed convex set 𝑋 using Euclidean norm as shown in (5-12). 

𝑷𝑋[𝒛] = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑋‖𝒛 − 𝔁‖  (5-12) 

A projection is a linear transformation, and the projection operator is used to map any vector 

onto a closed convex set. By solving arg min
𝑧∈𝑋

‖𝑧 − 𝑥‖, we can apply this operator to map vector 

of 𝑥 ∈ 𝑋 on set 𝑋. 

We now describe all three steps for iteration 𝑘 + 1 ∈ 𝐾 assuming that the value of occupancy 

and flow decision variables are available (either from the initialization step or previous iteration 

𝑘 ∈ 𝐾 for all sub-problems 𝑠 ∈ 𝑁). We first update the value of decision variables as described 

in Steps 1 and 2. We define auxiliary parameters 𝓅𝑖
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 and 𝓆𝑖𝑗

𝑡,𝑜𝑑: 𝑡 ∈

𝑇, 𝑖 ∈ 𝐶𝑠, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 for updating the value of cell occupancy and flow decision 

variables, respectively. If a decision variable appears in only one sub-problem, we find its 

auxiliary parameter using either equation (5-13) or (5-14). Equations (5-13) and (5-14) find the 
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auxiliary parameters for occupancy and flow variables, respectively. Including a weighted 

average in these equations is not required because the decision variable is optimized exclusively. 

We only need to move the value of the decision variable from the initialization step or previous 

iteration 𝑘 ∈ 𝐾 at sub-problem 𝑠 ∈ 𝑁 towards the negative direction of the gradient of the 

objective function. We denote the gradient of the objective function of sub-problem 𝑠 ∈ 𝑁 by 𝓖𝑠 

and the step size by 𝛾𝑘+1. The gradient of objective function of sub-problem 𝑠 ∈ 𝑁 respect to 

𝑥𝑖
𝑡,𝑜𝑑

 and  𝑦𝑖𝑗
𝑡,𝑜𝑑

 are shown by 𝒢𝑠,𝑖
𝑡,𝑜𝑑

 and 𝒢𝑠,𝑖𝑗
𝑡,𝑜𝑑

, respectively. 

We use equation (5-15) for the occupancy variable and (5-16) for the flow variable to find 

their auxiliary parameters when a decision variable appears in more than one sub-problem. For 

instance, the weighted average for decision variable 𝑥𝑖
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 at sub-

problem 𝑠 ∈ 𝑁 is ∑ 𝓌𝑠𝓈𝑥𝑗
𝑡,𝑜𝑑

𝑠,𝓈∈𝑛𝑠,𝑗∈𝐶𝑛𝑠
:𝑖=𝑗 , which takes weighted average of the generated 

values for this variable by itself and its neighbors from previous iteration 𝑘 ∈ 𝐾. Then, the value 

of 𝑥𝑖
𝑡,𝑜𝑑

 generated by sub-problem 𝑠 ∈ 𝑁 at iteration 𝑘 ∈ 𝐾 is added to term 

𝛼𝑘+1 ∑ 𝓌𝑠𝓈𝑥𝑗
𝑡,𝑜𝑑

𝑠,𝓈∈𝑛𝑠,𝑗∈𝐶𝑛𝑠
:𝑖=𝑗 − 𝛾𝑘+1𝒢𝑠 to find auxiliary parameter 𝓅𝑖

𝑡,𝑜𝑑
. We also use 𝛼𝑘+1 to 

denote the step size used for consensus among decision variables at iteration 𝑘 + 1 ∈ 𝐾. The 

same approach is used to find other auxiliary parameters at iteration 𝑘 + 1 ∈ 𝐾 as shown in 

equation (5-16). 

If 𝑥𝑖
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 is in one 

sub-problem 𝑠 ∈ 𝑁 

𝓅𝑖
𝑡,𝑜𝑑 = 𝑥𝑖

𝑡,𝑜𝑑 − 𝛾𝑘+1𝒢𝑠,𝑖
𝑡,𝑜𝑑

 (5-13) 

If 𝑦𝑖𝑗
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

is in one sub-problem 𝑠 ∈ 𝑁 

𝓆𝑖𝑗
𝑡,𝑜𝑑 = 𝑦𝑖𝑗

𝑡,𝑜𝑑 − 𝛾𝑘+1𝒢𝑠,𝑖𝑗
𝑡,𝑜𝑑

 (5-14) 

If 𝑥𝑖
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 is in 𝓅𝑖

𝑡,𝑜𝑑 = 𝑥𝑖
𝑡,𝑜𝑑 + (5-15) 



  

67 

more than one sub-problem 𝑠 ∈ 𝑁 𝛼𝑘+1 ∑ 𝓌𝑠𝓈𝑥𝑗
𝑡,𝑜𝑑

𝑠,𝓈∈𝑛𝑠,𝑗∈𝐶𝑛𝑠
:𝑖=𝑗 −

𝛾𝑘+1𝒢𝑠,𝑖
𝑡,𝑜𝑑

  

If 𝑦𝑖𝑗
𝑡,𝑜𝑑: 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑠 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

is in more than one sub-problem 𝑠 ∈ 𝑁 

𝓆𝑖𝑗
𝑡,𝑜𝑑 = 𝑦𝑖𝑗

𝑡,𝑜𝑑 +

𝛼𝑘+1 ∑ 𝓌𝑠𝓈𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑠,𝓈∈𝑛𝑠,𝑗∈𝐶𝑛𝑠
:𝑖=𝑗 −

𝛾𝑘+1𝒢𝑠,𝑖𝑗
𝑡,𝑜𝑑   

(5-16) 

Then, we project the value of auxiliary parameters onto the constraints set of sub-problem 

𝑠 ∈ 𝑁 as discussed in Step 3 and using the projection operator described in Definition 4. In fact, 

we find new values for decision variables at iteration 𝑘 + 1 ∈ 𝐾 by solving the following 

optimization program for sub-problem 𝑠 ∈ 𝑁.  

min ∑ ∑ ∑ ‖𝑥𝑖
𝑡,𝑜𝑑 − 𝓅𝑖

𝑡,𝑜𝑑‖
2

𝑖∈ 𝐶𝑠𝑡∈𝑇(𝑜,𝑑)∈𝐶𝑂𝐷

+ ∑ ∑ ∑ ‖𝑦𝑖𝑗
𝑡,𝑜𝑑 − 𝓆𝑖𝑗

𝑡,𝑜𝑑‖
2

𝑖∈ 𝐶𝑠,𝑗∈𝑆(𝑖)𝑡∈𝑇(𝑜,𝑑)∈𝐶𝑂𝐷

 
(5-17) 

s.t. 

Constraints (3-2)- (3-12) for sub-problem 𝑠 ∈ 𝑁 

We continue the procedure of updating the value of auxiliary parameters and decision 

variables for sub-problem 𝑠 ∈ 𝑁 over iterations 𝑘 ∈ 𝐾 until the termination criterion is satisfied.  

Equation (5-18) shows the update procedure in vector notation. The vector of decision 

variables in sub-problem 𝑠 ∈ 𝑁 at iteration 𝑘 + 1 is denoted by Ӽ𝑠
𝑘+1, and 𝑋𝑠 is the feasible 

region of sub-problem 𝑠 ∈ 𝑁.  Let 𝓌𝑠𝓈 and 𝓖𝑠 denote the weight for link (𝑠, 𝓈) ∈ 𝑁 in 

information exchange graph 𝐺 = (𝑁, 𝐴) and the gradient of the objective function of sub-

problem 𝑠 ∈ 𝑁, respectively. Step sizes at iteration 𝑘 + 1 ∈ 𝐾 are 𝛼𝑘+1 and 𝛾𝑘+1.  

Ӽ𝑠
𝑘+1 = 𝑃𝑋𝑠

[Ӽ𝑠
𝑘 + 𝛼𝑘+1 ∑ 𝓌𝓈𝑠Ӽ𝓈

𝑘
𝓈∈𝔫𝑠 − 𝛾𝑘+1𝓖𝑠]  (5-18) 

Figure 5-2 shows a small network of four cells that is distributed to two sub-problems. We 

also illustrate the three steps of the update procedure in Figure 5-3 using vector notation to 
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visualize this procedure for this simple example. Each sub-problem contains those constraints 

and parts of the objective function that have the decision variables corresponding to cells and 

links within the region assigned to that sub-problem. Note that the constraints and objective 

function can be distributed following a different structure as long as the explained conditions in 

section 5.1 are satisfied. In this simple example, the sub-problems share the decision variables 

corresponding to the link between cells 2 and 3. Adding more links between cells 2 and 3 will 

not change the information exchange graph nor the performance of the approach because this 

one link forces the flow decision variables to appear in both sub-problems, and these sub-

problems share information using two directional arcs in the information exchange graph.  

 

Figure 5-2 The distribution of a link with 4 cells to sub-problems 1 and 2 © 2022 IEEE 

Figure 5-3.a shows information exchange graph 𝐺 = (𝑁, 𝐴), where 𝑁 = {1,2} and 𝐴 =

{(1,2), (2,1), (1,1), (2,2)}. In Figure 5-3.b-d, each red circle represents the feasible region of 

one sub-problem, and vector 𝒛∗ ∈ X∗ denotes the vector of optimal solutions. Vector 𝒛∗ ∈ X∗ is 

within the feasible region of the original problem as well. The number of variables in common 

among sub-problems will not change this region. Note that sub-problems do not need to share 

all decision variables. In other words, if there is at least one variable in common, the sub-

problems share information.  

The vector of initial values for decision variables for sub-problems 1 and 2 at iteration 0 ∈ 𝐾 

are denoted by Ӽ1
0 and Ӽ2

0, respectively. Figure 5-3.b shows the incorporation of the value of 
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decision variables and the computation of weighted average values for sub-problems 1 and 2 

using parameters 𝑎 and 𝑏, respectively, as described in Step 1. For example, we explain how to 

compute the value of 𝑎. We first  multiply weight 𝓌11 on self-arc (1,1) on node 1 in information 

exchange graph 𝐺 with the vector of values for decision variables Ӽ1
0 in sub-problem 1 at iteration 

0 ∈ 𝐾, that is 𝓌11Ӽ1
0, and find term 𝓌21Ӽ2

0 the same way. We then find the value of 𝑎 by 

summing terms 𝓌11Ӽ1
0 and 𝓌21Ӽ2

0 and multiplying the result by step size 𝛼1. The value of 𝑏 is 

found following the same procedure. Figure 5-3.c presents Step 2 of the update procedure. We 

first sum the values of 𝑎 and 𝑏 with Ӽ1
0 and Ӽ2

0, respectively. Then, we add −𝛾1𝒢1 and −𝛾1𝒢2 to 

the value of Ӽ1
0 + 𝑎 and Ӽ2

0 + 𝑏 to move them towards the negative direction of the objective 

function gradient and find 𝑐 and 𝑑, respectively. Figure 5-3.d presents the third step, where we 

project the value of 𝑐 and 𝑑 on the feasible region of sub-problems 1 and 2 to find the vector of 

new values for decision variables Ӽ1
1 and Ӽ2

1 at iteration 1 ∈ 𝐾, respectively. In the next section, 

we explain the required assumption for determining the value of step sizes and weights. 
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(a) Information exchange graph 𝐺 = (𝑁, 𝐴) such 

that 𝑁 = {1,2} and 𝐴 = {(1,2), (2,1), (1,1), (2,2)} 

(b) Step 1: Finding a weighted average by 

incorporating the proposed values 

  

c) Step 2: Moving the values towards the negative 

direction of the gradient of the objective function 

from each sub-problem 

(d) Step 3: Projecting the values on the feasible 

region of each sub-problem 

Figure 5-3 The procedure of distributed gradient-based update for an iteration © 2022 IEEE 

5.4. Convergence Properties 

We prove that the solution of Distributed Gradient-based Approach (DGA) converges to the 

optimal solution of the SODTA formulation. We use six lemmas and two assumptions to provide 

the required conditions of a known convergence theorem for sequences proposed by Polyak 

(1987) and use the results of this theorem to show the convergence of our approach. 

We first show that the feasible region of the SODTA formulation is a closed and convex set 

in Lemma 1. We also prove that the gradient of the objective function for all sub-problems is 

convex and uniformly bounded in this lemma. Then, we prove a sequence of upper bounds for 

various terms in Lemmas 2-5. The upper bounds help simplify the main inequality in Lemma 6 
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that is pertinent to the inequality in the convergence results proposed by Polyak (1987). Lemma 

1 and the two assumptions are also necessary to achieve the desired results and satisfy the 

conditions of Polyak's (1987) theorem. Assumption 1 determines rules for the weight values in 

the information exchange graph and the graph connectivity, and Assumption 2 determines the 

step size rules. We finally use the results of Polyak's (1987) theorem and the assumptions to 

prove the convergence to optimal solutions in Theorem 1.  

Lemma 1 Given the feasible region of sub-problems 𝑋𝑠 ⊆ ℝ𝑛,  𝑠 =  1,  .  .  .  , 𝑁 and the feasible 

region 𝑋 of SODTA formulation that is equal to the intersection of the feasible region of sub-

problems, i.e., 𝑋 = ⋂ 𝑋𝑠𝑠∈𝑁 , the following features hold for set 𝑋 and gradient 𝓖𝑠 of the 

objective function ℱ𝑠 of all sub-problems 𝑠 ∈ 𝑁. 

(1) Set 𝑋 is convex. 

(2) Set 𝑋 is closed. 

(3) Gradient 𝓖𝑠 of objective function ℱ𝑠 for all sub-problems 𝑠 ∈ 𝑁 is convex over ℝ𝑛, and 

(4) Gradient 𝓖𝑠 for all sub-problems 𝑠 ∈ 𝑁 is uniformly bounded, i.e., {‖𝓖𝑠 ‖ ≤ 𝐿: 𝐿 > 0}. 

Proof. We show the proof for each part of this lemma in separate sections below: 

(1) Set 𝑋 is convex because the SODTA formulation consists of linear constraints that create 

half-spaces, and half-spaces are convex as well as the combination of convex half-spaces 

(Rockafellar, 1970).  

(2) Set 𝑋 is closed because it contains all the boundary points by having equality and less-

than-or-equal-to constraints (MacCluer, 2006).  

(3) Since set 𝑋 is closed and convex, the SODTA objective function ℱ and objective function 

ℱ𝑠 of each sub-problem 𝑠 ∈ 𝑁 are convex and continuous as well as their gradients.  

(4) Gradient 𝓖𝑠 of objective function ℱ𝑠 at sub-problem 𝑠 ∈ 𝑁 is one if the derivative is 
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respect to 𝑥𝑖
𝑡,𝑜𝑑

 for 𝐶𝑒𝑠𝑠, 𝑡 ∈ 𝑇 and (𝑜, 𝑑) ∈ 𝐶𝑂𝐷, and all other elements of gradient 𝒢𝑠 

are zero, knowing that the objective function ℱ𝑠 at sub-problem 𝑠 ∈ 𝑁 is the minimization 

of ∑ ∑ ∑ 𝑥𝑖
𝑡,𝑜𝑑

𝑖∈ 𝐶𝑒𝑠𝑠𝑡∈𝑇(𝑜,𝑑)∈𝐶𝑂𝐷
. Therefore, gradient vector 𝓖𝑠 of all sub-problems 𝑠 ∈

𝑁 is uniformly bounded by 1. ∎ 

Weierstrass theorem states that assuming function ℱ is a continuous real function on a 

compact metric space 𝑋, it can be concluded that there are points 𝑟 ∈ 𝑋 and 𝑙 ∈ 𝑋 such that 

sup
𝑟∈𝑋

ℱ(𝑟) = ℱ(𝑟) and inf
𝑙∈𝑋

ℱ(𝑙) = ℱ(𝑙) (theorem 4.16 form Rudin (1976)). Weierstrass theorem 

concludes that there exists ℱ(𝑙) ≤ ℱ(𝑥) ≤ ℱ(𝑟) for ∀𝑥 ∈ 𝑋. In our case, the set 𝑋 is bounded, 

and SODTA objective function ℱ is convex and as a result continuous over ℝ𝑛. Therefore, we 

can conclude that optimal objective function ℱ∗ is finite, and the minimum or optimal value can 

be achieved at some point in the set. The other conclusion of this statement is having a non-

empty optimal set 𝑋∗. Moreover, since set 𝑋 ⊆ ℝ𝑛 and the objective function ℱ𝑠 at sub-problem 

𝑠 ∈ 𝑁 is convex over ℝ𝑛, the gradient 𝒢𝑠 of ℱ𝑠 can be derived at any point in set 𝑋. 

Lemma 2 Set 𝑋 ⊆ ℝ𝑛 is nonempty, closed, and convex according to Lemma 1. Therefore, we 

can conclude that inequality (5-19) holds for all 𝓍 ∈ ℝ𝑛 and 𝑧 ∈ 𝑋. 

‖𝑃𝑋[𝓍] − 𝑧‖2 ≤ ‖𝓍 − 𝑧‖2 − ‖𝑃𝑋[𝓍] − 𝓍‖2  (5-19) 

Proof. the proof of this lemma exactly follows the proof that is presented in Nedic et al. (2010) 

-  Lemma1.b. ∎ 

Definition 5 (Error vector) We define 𝒗𝑠
𝑘+1 = Ӽ𝑠

𝑘 + 𝛼𝑘+1 ∑ 𝓌𝓈𝑠Ӽ𝓈
𝑘

𝓈∈𝔫𝑠 . Then, the error vector is 

the difference between the projection 𝑷𝑋𝑠
 of 𝒗𝑠

𝑘+1 − 𝛾𝑘+1𝓖𝑠 onto set 𝑋𝑠 and 𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠 for 

sub-problem 𝑠 ∈ 𝑁 and iteration 𝑘 + 1 ∈ 𝐾 as shown in (5-20). 

𝒆𝑠
𝑘+1 = 𝑃𝑋𝑠

[𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠] − 𝒗𝑠

𝑘+1 + 𝛾𝑘+1𝓖𝑠  (5-20) 

Lemma 3 Inequality (5-21) holds for all sub-problems 𝑠 ∈ 𝑁, solution vectors 𝒙 ∈ 𝑋, and 



  

73 

iterations 𝑘 ∈ 𝐾.  

‖Ӽ𝑠
𝑘+1 − 𝔁‖2 ≤ ‖𝒗𝑠

𝑘+1 − 𝛾𝑘+1𝓖𝑠 − 𝔁‖2 − ‖𝒆𝑠
𝑘+1‖2 (5-21) 

Proof. We first use Definition 5 to substitute vector Ӽ𝑠
𝑘+1with 𝑷𝑋𝑠

[𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠] as it is shown 

in (5-22). 

‖Ӽ𝑠
𝑘+1 − 𝔁‖2 = ‖𝑃𝑋𝑠

[𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠] − 𝔁‖

2
  (5-22) 

Then, we use Lemma 2 and Definition 5 for the error vector to find an upper bound for error 

vector to find an upper bound for ‖𝑃𝑋𝑠
[𝒗𝑠

𝑘+1 − 𝛾𝑘+1𝓖𝑠] − 𝔁‖
2
 as shown in (5-23). 

‖𝑃𝑋𝑠
[𝒗𝑠

𝑘+1 − 𝛾𝑘+1𝓖𝑠] − 𝔁‖
2

≤ ‖𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠 − 𝔁‖2 − ‖𝒆𝑠

𝑘+1‖2  (5-23) 

If we substitute ‖Ӽ𝑠
𝑘+1 − 𝔁‖2with ‖𝑃𝑋𝑠

[𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠] − 𝔁‖

2
in (5-23), we find the desired 

result. ∎ 

Definition 6 (Joint state vectors) we define joint state vectors similar to the definitions 

determined by Srivastava et al. (2010) to show the update procedure and the rest of the proofs 

for all sub-problems in a compact form. The column vectors 𝘅𝑘+1 = (Ӽ1
𝑘+1′

, Ӽ2
𝑘+1′

, … , Ӽ𝑁
𝑘+1′

)′, 

𝐞𝑘+1 = (𝐞1
𝑘+1′

, 𝐞2
𝑘+1′

, … , 𝐞𝑁
𝑘+1′

)′,𝐯𝑘+1 = (𝒗1
𝑘+1′

, 𝒗2
𝑘+1′

, … , 𝒗𝑁
𝑘+1′

)′, 𝒛∗ = (𝒛∗
1

′, 𝒛∗
2

′, … , 𝒛∗
𝑁

′)′ , 

and 𝓖 = (𝓖1
′, 𝓖2

′, … , 𝓖𝑁
′)′ represent joint vectors of Ӽ𝑠

𝑘+1, 𝐞𝑠
𝑘+1, 𝒗𝑠

𝑘+1, 𝒛𝑠
∗, and 𝓖𝑠 for all sub-

problems 𝑠 ∈ 𝑁, respectively. Let us also define 𝔀 = 𝓌 ⊗ 𝐼𝑁 in which 𝑁 × 𝑁 dimensional 

matrix 𝓌 contains weight 𝓌𝑠𝓈 on all links (𝑠, 𝓈) ∈ 𝑁 as entries and matrix 𝐼𝑁 denotes 𝑁 × 𝑁 

dimensional identity matrix. 

Let 𝑉 denote the total number of variables. We now redefine update equation (5-18) as 

equation (5-24) using Definition 6. 

𝘅𝑘+1 = [𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝛾𝑘+1𝓖 + 𝐞𝑘+1  (5-24) 

Assumption 1 Let us use 𝜃 and 𝜃′ to show a lower and an upper bound for weights 𝓌𝑠𝓈 on all 
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links (𝑠, 𝓈) ∈ 𝑁, respectively. The information exchange graph 𝐺 = (𝑁, 𝐴) and weight 𝓌𝑠𝓈 on 

link (𝑠, 𝓈) ∈ 𝑁 should satisfy the following conditions: 

(1) Information exchange graph 𝐺 = (𝑁, 𝐴) should be connected.  

(2) If weight 𝓌𝑠𝓈 > 0 for link (𝑠, 𝓈) ∈ 𝑁, weight 𝓌𝓈𝑠 > 0 on link (𝓈, 𝑠) ∈ 𝑁 for all 𝑠, 𝓈 ∈ 𝑁 

(3) Weights satisfy 𝓌𝑠𝓈 = 𝓌𝓈𝑠 for all 𝑠, 𝓈 ∈ 𝑁 

(4) If weight 𝓌𝑠𝓈 ≠ 0, we have 𝜃 ≤ 𝓌𝑠𝓈 ≤ 𝜃′ for all 𝑠, 𝓈 ∈ 𝑁 such that 𝜃, 𝜃′ > 0 

(5) Weights on self-arcs 𝑠 ∈ 𝑁 satisfy equation 𝓌𝑠𝑠 = − ∑ 𝓌𝓈𝑠𝓈∈𝐶𝔫𝑠
:𝑠≠𝓈  

Assumption 1 part 1 implies that there exists at least one path between each pair of sub-

problems. This assumption ensures that the information is propagated from sub-problem 𝑠 ∈ 𝑁 

to sub-problem 𝓈 ∈ 𝑁 through an immediate link (𝑠, 𝓈) or a path 𝒫 denoted by 

{(𝑠, 𝑞), (𝑞, 𝑙), … , (ℎ, 𝓈): 𝑠, 𝑞, 𝑙 … , ℎ, 𝓈 ∈ 𝑁 and 𝓌𝑠𝑞 , 𝓌𝑞𝑙 , … , 𝓌ℎ𝓈 > 0}.  

Assumption 1 part 1 and Assumption 1 part 2 ensure the strong connectivity of the network. 

Assumption 1 part 2 also ensures mutual connectivity with a symmetric pattern that is required 

to prove Lemma 4. Assumption 1 part 3 states that non-negative weights 𝓌𝓈𝑠 on links (𝓈, 𝑠) ∈

𝑁 are bounded which is important to prove Lemma 6, and the received information at each sub-

problem has a meaningful effect on finding the decision variables of sub-problems 𝑠 ∈ 𝑁. 

Finally, Assumption 1 part 4 leads to having a row sum zero in the weighted graph Laplacian 

matrix 𝓌. This characteristic is also important to prove Lemma 4. Note that these satisfying 

assumptions do not have any relation with the algorithm performance. In other words, the value 

of weights will not affect the convergence rate. They are provided to guarantee conditions to 

reach an agreement among subproblems and optimality. 

Lemma 4 If parts 1 and 2 of Lemma 1, and 5 of Assumption 1 hold, inequality (5-25) will be 

satisfied. 
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‖𝒗𝑘+1 − 𝒛‖2 ≤ [(1 + (𝛼𝑘+1)2𝜏2) + 2(𝛾𝑘+1)2(1 + (𝛼𝑘+1)2𝜏2)]‖𝘅𝑘 − 𝒛‖2 −

(2𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + (𝛾𝑘+1)2  

(5-25) 

Proof. We obtain inequality (5-26) by using joint state representation and substituting vector 𝒛 

with vector 𝓍 in inequality (5-21) derived in Lemma 3. 

‖𝘅𝑘+1 − 𝒛‖2 ≤ ‖𝒗𝑘+1 − 𝛾𝑘+1𝓖 − 𝒛‖2 − ‖𝐞𝑘+1‖2  (5-26) 

We can write 𝒗𝑘+1 = [𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 by applying joint vectors. Then, we find an 

equivalent expression for ‖𝒗𝑘+1 − 𝛾𝑘+1𝓖 − 𝒛‖2 by substituting [𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 with 𝒗𝑘+1 in 

(5-26) and some mathematical simplifications, as shown in (5-27). 

‖𝒗𝑘+1 − 𝛾𝑘+1𝓖 − 𝒛‖2 = ‖[𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝛾𝑘+1𝓖 − 𝒛‖2 = ‖[𝐼𝑁𝑉 +

𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2 + ‖−𝛾𝑘+1𝓖‖2 + 2([𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛)′(−𝛾𝑘+1𝓖)  

(5-27) 

We derive inequality (5-28) by substituting ([𝐼𝑁𝑉 + 𝛼𝑘+1𝔀𝑘+1]𝘅𝑘 − 𝒛)′(−𝛾𝑘+1𝓖) with their 

individual second norms to the power of two. 

‖𝒗𝑘+1 − 𝛾𝑘+1𝓖 − 𝒛‖2 ≤ ‖[𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2 + ‖−𝛾𝑘+1𝓖‖2 + 2‖[𝐼𝑁𝑉 +

𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2‖−𝛾𝑘+1𝓖‖2  

(5-28) 

We next use an upper bound for ‖[𝐼𝑁𝑉 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2 derived by Srivastava et al. 

(2010), as shown in (5-29), where 𝜏2 denotes the maximum value in matrix 𝓌 to the power of 

two. Let 𝑆𝑇𝑘 denote the spanning tree derived based on information exchange graph 𝐺 = (𝑁, 𝐴) 

at iteration 𝑘 ∈ 𝐾. There is an arc between nodes 𝑠, 𝓈 ∈ 𝑁 in this spanning tree if 𝓌𝑠𝓈 > 0. 

Spanning tree 𝑆𝑇𝑘 always exits since having a non-empty feasible region for the SODTA 

problem ensures that information exchange graph 𝐺 = (𝑁, 𝐴) is connected. Assumption 1 part 

1, 2, and 3 are also critical for finding this upper bound. 

‖[𝐼𝑁𝐷 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2 ≤ (1 + (𝛼𝑘+1)2𝜏2)‖𝘅𝑘 − 𝒛‖2 − 2𝜃𝛼𝑘+1 ∑ ‖Ӽ𝑠
𝑘 −𝑆𝑇𝑘 (5-29) 



  

76 

Ӽ𝓈
𝑘‖2  

We have bounded gradient 𝒢𝑠 for the objective function at sub-problem 𝑠 ∈ 𝑁 from Lemma 

1 part 4, i.e., ‖𝓖‖ ≤ 𝑳 = 𝟏. We find the desired inequality by substituting the upper bound for 

‖[𝐼𝑁𝐷 + 𝛼𝑘+1𝔀]𝘅𝑘 − 𝒛‖2 from inequality (5-29) and the upper bound 𝐿 = 1 for gradient joint 

vector 𝓖 in inequality (5-28). ∎ 

Lemma 5 If parts 1 and  2 of Lemma 1 hold for any vector Ӽ𝑠
𝑘 ∈ 𝑋𝑠 and vector Ӽ𝓈 

𝑘 ∈ 𝑋𝓈, 

inequality (5-30) is valid for all sub-problems 𝑠, 𝓈 ∈ 𝑁. Let 𝐵 denote a uniform upper bound on 

the norms of the vectors in set 𝑋𝑠 for all sub-problems 𝑠 ∈ 𝑁, and parameter σ shows the radius 

given in Lemma 1 part 1.  

‖Ӽ𝑠
𝑘 − 𝑃𝑋[Ӽ𝑠

𝑘]‖ ≤
𝐵

σ
∑ ‖Ӽ𝑠

𝑘 − Ӽ𝓈 
𝑘 ‖𝓈∈𝑁   (5-30) 

Proof. The proof of this lemma exactly follows the proof that is presented by Srivastava et al. 

(2010) -Lemma 4, see also the study by Gubin, Polyak, and Raik (1967) for the techniques used 

to prove this lemma. ∎ 

Lemma 6 Inequality (5-31) holds for any vector 𝒛∗ ∈ X∗ using Assumption 1 and Lemma 1. 

Note that X∗ denotes the set of optimal solutions, and 𝒛∗ is a vector of optimal values for decision 

variables. 

‖𝘅𝑘+1 − 𝒛∗‖2 ≤ [(1 + (𝛼𝑘+1)2𝜏2) + 2(𝛾𝑘+1)2(1 + (𝛼𝑘+1)2𝜏2)]‖𝘅𝑘 − 𝒛‖2 −

(𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + (𝛾𝑘+1)2(1 + 𝑁) +

(𝛾𝑘+1)2((𝑁−1)
𝑁𝐵+σ

σ
)2

𝛼𝑘+1𝜃
+ 2𝛾𝑘+1𝛼𝑘+1 ∑ ‖∑ 𝓌𝓈𝑠Ӽ𝓈

𝑘
𝓈∈𝑁 ‖𝑠∈𝑁 − ‖𝐞𝑘+1‖2 −

2𝛾𝑘+1(ℱ(𝝆𝑘) − ℱ(𝒛∗))  

(5-31) 

Proof. We use similar techniques by Srivastava et al. (2010). We derived  ‖Ӽ𝑠
𝑘+1 − 𝔁‖2 ≤

‖𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠 − 𝔁‖2 − ‖𝒆𝑠

𝑘+1‖2 in (5-21). If we substitute 𝒛∗ with 𝑥 and substitute this 
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expression ‖𝒗𝑠
𝑘+1 − 𝛾𝑘+1𝓖𝑠 − 𝒛∗‖2 with its multiplication (𝒗𝑠

𝑘+1 − 𝛾𝑘+1𝓖𝑠 − 𝒛∗) ′(𝒗𝑠
𝑘+1 −

𝛾𝑘+1𝓖𝑠 − 𝒛∗) in the inequality of Lemma 3, we find inequality (5-32). 

‖Ӽ𝑠
𝑘+1 − 𝒛∗‖

2
≤ ‖𝒗𝑠

𝑘+1 − 𝒛∗‖
2

− 2𝛾𝑘+1𝓖𝑠
′(𝒗𝑠

𝑘+1 − 𝒛∗) + (𝛾𝑘+1)2‖𝓖𝑠‖2 − ‖𝒆𝑠
𝑘+1‖

2
  (5-32) 

We can write inequality (5-33) knowing that gradient 𝓖𝑠 of the objective function ℱ𝑠 at sub-

problem 𝑠 ∈ 𝑁 is bounded, i.e., ‖𝓖𝑠‖ ≤ 1, from Lemma 1 part 4 and 𝓖𝑠
′(𝒗𝑠

𝑘+1 − 𝒛∗) ≥

𝓕𝑠(𝒗𝑠
𝑘+1) − 𝓕𝑠(𝒛∗). Let 𝓕𝑠(𝔁) denote the objective function of sub-problem 𝑠 ∈ 𝑁 at vector 𝓍. 

‖Ӽ𝑠
𝑘+1 − 𝒛∗‖2 ≤ ‖𝒗𝑠

𝑘+1 − 𝒛∗‖2 + (𝛾𝑘+1)2 − 2𝛾𝑘+1[𝓕𝑠(𝒗𝑠
𝑘+1) − 𝓕𝑠(𝒛∗)] −

‖𝒆𝑠
𝑘+1‖2  

(5-33) 

We sum both sides of inequality (5-33) over all sub-problems 𝑠 ∈ 𝑁, as shown in inequality 

(5-34). 

∑ ‖Ӽ𝑠
𝑘+1 − 𝒛∗‖2

𝑠∈𝑁 ≤ ∑ ‖𝒗𝑠
𝑘+1 − 𝒛∗‖2

𝑠∈𝑁 + 𝑁(𝛾𝑘+1)2 −

2𝛾𝑘+1 ∑ [𝓕𝑠(𝒗𝑠
𝑘+1) − ℱ𝑠(𝒛∗)]𝑠∈𝑁 − ∑ ‖𝑒𝑠

𝑘+1‖2
𝑠∈𝑁   

(5-34) 

We now use joint vectors 𝘅𝑘+1 = (Ӽ1
𝑘+1′

, Ӽ2
𝑘+1′

, … , Ӽ𝑁
𝑘+1′

)′, 𝐞𝑘+1 =

(𝐞1
𝑘+1′

, 𝐞2
𝑘+1′

, … , 𝐞𝑁
𝑘+1′

)′, 𝐯𝑘+1 = (𝒗1
𝑘+1′

, 𝒗2
𝑘+1′

, … , 𝒗𝑁
𝑘+1′

)′, and 𝒛∗ =

(𝒛∗
1

′, 𝒛∗
2

′, … , 𝒛∗
𝑁

′)′ from Definition 5 instead of using the summation operator in ∑ ‖Ӽ𝑠
𝑘+1 −𝑠∈𝑁

𝒛∗‖2, ∑ ‖𝒗𝑠
𝑘+1 − 𝒛∗‖2

𝑠∈𝑁 , and ∑ ‖𝒆𝑠
𝑘+1‖2

𝑠∈𝑁  in inequality (5-34), respectively to derive 

inequality (5-35). 

‖𝘅𝑘+1 − 𝒛∗‖2 ≤ ‖𝐯𝑘+1 − 𝒛∗‖2 + 𝑁(𝛾𝑘+1)2 − 2𝛾𝑘+1 ∑ [ℱ𝑠(𝒗𝑠
𝑘+1) −𝑠∈𝑁

ℱ𝑠(𝒛∗)] − ‖𝐞𝑘+1‖2  

(5-35) 

We substitute the upper bound for ‖𝒗𝑘+1 − 𝒛‖2derived in Lemma 4 and use 𝒛∗ instead of 𝒛 

to derive inequality (5-36).  

‖𝘅𝑘+1 − 𝒛∗‖2 ≤ [(1 + (𝛼𝑘+1)2𝜏2) + 2(𝛾𝑘+1)2(1 + (𝛼𝑘+1)2𝜏2)]‖𝘅𝑘 − 𝒛‖2 − (5-36) 
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(2𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + (𝛾𝑘+1)2 + 𝑁(𝛾𝑘+1)2 −

2𝛾𝑘+1 ∑ [ℱ𝑠(𝒗𝑠
𝑘+1) − ℱ𝑠(𝒛∗)]𝑠∈𝑁 − ‖𝐞𝑘+1‖2  

We define new parameter 𝝆𝑘 = ∑ 𝑷𝑋[Ӽ𝑠
𝑘]/𝑁𝑠∈𝑁 . Because projection 𝑷𝑋[Ӽ𝑠

𝑘] belongs to 𝑋 for 

all sub-problems 𝑠 ∈ 𝑁 and iterations 𝑘 ∈ 𝐾, and 𝑋 is convex, the convex combination of 

projections 𝑷𝑋[Ӽ𝑠
𝑘] for all sub-problems 𝑠 ∈ 𝑁, that is ∑ 𝑷𝑋[𝔁𝑠

𝑘]/𝑁𝑠∈𝑁 , belongs to 𝑋 as well, 

i.e., ∑ 𝑷𝑋[𝔁𝑠
𝑘]/𝑁𝑠∈𝑁 ∈ 𝑋. By adding and subtracting ℱ𝑠(𝝆𝑘) in the right side of inequality (5-

36) and using ℱ(𝔁) = ∑ ℱ𝑠(𝔁)𝑠∈𝑁 , we derive inequality (5-37).  

‖𝘅𝑘+1 − 𝒛∗‖2 ≤ [(1 + (𝛼𝑘+1)2𝜏2) + 2(𝛾𝑘+1)2(1 + (𝛼𝑘+1)2𝜏2)]‖𝘅𝑘 − 𝒛‖2 −

(2𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + (𝛾𝑘+1)2 + 𝑁(𝛾𝑘+1)2 −

2𝛾𝑘+1 ∑ [ℱ𝑠(𝒗𝑠
𝑘+1) − ℱ𝑠(𝝆𝑘)]𝑠∈𝑁 − ‖𝐞𝑘+1‖2 − 2𝛾𝑘+1(ℱ(𝝆𝑘) − ℱ(𝒛∗))  

(5-37) 

Based on convexity and boundedness properties in Lemma 1, we have |ℱ𝑠(𝑣𝑠
𝑘+1) −

ℱ𝑠(𝜌𝑘)| ≤ ‖𝑣𝑠
𝑘+1 − 𝜌𝑘‖, and we can derive inequality (5-38). 

‖𝘅𝑘+1 − 𝒛∗‖2 ≤ [(1 + (𝛼𝑘+1)2𝜏2) + 2(𝛾𝑘+1)2(1 + (𝛼𝑘+1)2𝜏2)]‖𝘅𝑘 − 𝒛‖2 −

(2𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + (𝛾𝑘+1)2 + 𝑁(𝛾𝑘+1)2 +

2𝛾𝑘+1 ∑ ‖𝒗𝑠
𝑘+1 − 𝝆𝑘‖𝑠∈𝑁 − ‖𝐞𝑘+1‖2 − 2𝛾𝑘+1(ℱ(𝝆𝑘) − ℱ(𝒛∗))  

(5-38) 

We finally use the upper bound derived by Srivastava et al. (2010) for 2𝛾𝑘+1 ∑ ‖𝒗𝑠
𝑘+1 −𝑠∈𝑁

𝝆𝑘‖ in inequality (5-38) to derive the desired result. The upper bound is 
(𝛾𝑘+1)2((𝑁−1)

𝑁𝐵+σ

σ
)2

𝛼𝑘+1𝜃
+

𝜃𝛼𝑘+1 ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + 2𝛾𝑘+1𝛼𝑘+1 ∑ ‖∑ 𝓌𝓈𝑠Ӽ𝓈

𝑘
𝓈∈𝑁 ‖𝑠∈𝑁 . ∎ 

Assumption 2 The step sizes 𝛼𝑘 and 𝛾𝑘 should satisfy these conditions: (1)∑ 𝛼𝑘∞
𝑘=1 = ∞ and 

∑ 𝛾𝑘∞
𝑘=1 = ∞, (2) ∑ (𝛼𝑘)2∞

𝑘=1 < ∞ and ∑ (𝛾𝑘)2∞
𝑘=1 < ∞, (3) ∑ (𝛼𝑘)2(𝛾𝑘)2∞

𝑘=1 < ∞, (4) 

∑
(𝛾𝑘)2

𝛼𝑘
∞
𝑘=1 < ∞, and (5) ∑ min (𝛼𝑘∞

𝑘=1 , 𝛾𝑘) = ∞.  
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Let us assume 𝛼𝑘 =
1

𝑘𝔲 and 𝛾𝑘 =
1

𝑘𝔳 as an example for step sizes. Assuming 0.5 < 𝔲, 𝔳 ≤ 1 

satisfies assumptions 2.1, 2.2, and 2.3. Considering 1 + 𝔲 < 2𝔳 and 𝔲 < 𝔳 ensures assumptions 

2.4 and assumptions 2.5, respectively. Therefore, the above five conditions are sufficient to 

determine the step sizes, and there exist step sizes that satisfy all conditions. More details can be 

found in the study by Srivastava (2012). 

We now prove the convergence of the distributed approach to optimality using a deterministic 

version of supermartingale convergence proposed by Polyak (1987) and also applied by Nedić 

and Olshevsky (2014). We provide proof of convergence in Theorem 1. Theorem 1 includes 

similar techniques proposed by Srivastava (2012). 

Theorem 1 Vectors Ӽ𝑠
𝑘+1 generated by sub-problems 𝑠 ∈ 𝑁 using the proposed distributed 

gradient-based methodology converge to a common optimal vector 𝒛∗ ∈ 𝑋∗, i.e., lim
𝑘⟶∞

Ӽ𝑠
𝑘+1 =

𝒛∗, ∀𝑠 ∈ 𝑁 if Assumptions 1 and 2 hold.  

Proof of Theorem 1. We start with the inequality derived in Lemma 6 and show that this 

inequality satisfies all the required conditions in the following Lemma from Polyak (1987) using 

Assumption 1 and Assumption 2.  

Polyak (1987)- Lemma 11- Chapter 2.2: Let Θk, Γ𝑘, Ψ𝑘 , Ω𝑘 and Φ𝑘 be sequences of variables 

that satisfy inequality (5-39) for all iterations 𝑘 ∈ 𝐾. Then, if the scalar sequences Θk, Γ𝑘, Ψ𝑘  , 

Ω𝑘 and Φ𝑘 are nonnegative, and these inequalities ∑ Γ𝑘 < ∞∞
𝑘=1  and ∑ Φ𝑘 < ∞∞

𝑘=1  hold for all 

iterations 𝑘 ∈ 𝐾, the sequence Ψ𝑘 converges to a non-negative value, and we have 

∑ Ω𝑘 < ∞∞
𝑘=1 . 

Θk+1 ≤ (1 + Γ𝑘)Ψ𝑘 − Ω𝑘 + Φ𝑘 (5-39) 

We now use the results of Polyak (1987)- Lemma 11. Each part in inequality (5-39) represents 

one sequence in Polyak (1987)- Lemma 11, and we can match inequality (5-31) with inequality 
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(5-39) as follows: 

• Θk+1 ≜ ‖𝘅𝑘+1 − 𝒛∗‖2, 

• Γ𝑘 ≜ 2𝜏2(𝛼𝑘+1)2(𝛾𝑘+1)2 + 2(𝛾𝑘+1)2 + (𝛼𝑘+1)2𝜏2, 

• Ψ𝑘 ≜ ‖𝘅𝑘 − 𝒛‖2,  

• Ω𝑘 ≜ (𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2
𝑆𝑇𝑘 + 2𝛾𝑘+1(ℱ(𝝆𝑘) − ℱ(𝒛∗)), and  

• Φ𝑘 ≜ (𝛾𝑘+1)2(1 + 𝑁) +
(𝛾𝑘+1)2((𝑁−1)

𝑁𝐵+σ

σ
)2

𝛼𝑘+1𝜃
+ 2𝛾𝑘+1𝛼𝑘+1 ∑ ‖∑ 𝓌𝓈𝑠Ӽ𝓈

𝑘
𝓈∈𝑁 ‖𝑠∈𝑁 .  

It is evident that the sequences Θk, Γ𝑘, Ψ𝑘  , Ω𝑘 and Φ𝑘  are nonnegative and satisfy the first 

condition in Polyak (1987)- Lemma 11. We then show that ∑ Γ𝑘∞
𝑘=1 ≜

∑ 2𝜏2(𝛼𝑘+1)2(𝛾𝑘+1)2 + 2(𝛾𝑘+1)2 + (𝛼𝑘+1)2𝜏2 < ∞∞
𝑘=1  and ∑ Φ𝑘∞

𝑘=1 ≜ (𝛾𝑘+1)2 +

𝑁(𝛾𝑘+1)2 +
(𝛾𝑘+1)2((𝑁−1)

𝑁𝐵+σ

σ
)2

𝛼𝑘+1𝜃
+ 2𝛾𝑘+1𝛼𝑘+1 ∑ ‖∑ 𝓌𝑠𝓈Ӽ𝓈

𝑘
𝓈∈𝑁 ‖ < ∞𝑠∈𝑁  to ensure that the 

second condition in Polyak (1987)- Lemma 11 holds.  

We know ∑ (𝛼𝑘)2∞
𝑘=1 < ∞, ∑ (𝛾𝑘)2∞

𝑘=1 < ∞, and ∑ (𝛼𝑘)2(𝛾𝑘)2∞
𝑘=1 < ∞ from Assumption 2, 

and 𝜏2 is a constant value. Therefore, inequality ∑ Γ𝑘 < ∞∞
𝑘=1  holds. We then show that 

∑ Φ𝑘 < ∞∞
𝑘=1 . We have ∑ (𝛾𝑘)2∞

𝑘=1 < ∞ and ∑
(𝛾𝑘)2

𝛼𝑘
∞
𝑘=1 < ∞ from Assumption 2. Because all 

sets 𝑋𝑠 ⊆ ℝ𝑛,  𝑠 =  1,  .  .  .  , 𝑁 are closed according to Lemma 1 part 2, and the weights are 

bounded using Assumption 1, ∑ ‖∑ 𝓌𝑠𝓈Ӽ𝓈
𝑘

𝓈∈𝑁 ‖𝑠∈𝑁  is bounded. We also know that ∑ 𝛼𝑘∞
𝑘=1 𝛾𝑘 <

∞ by Assumption 2. Hence, we can also conclude that ∑ Φ𝑘 < ∞∞
𝑘=1 . Now, we can use the 

results of Polyak (1987)- Lemma 11 and infer that Ω𝑘  < ∞ and sequence ‖𝘅𝑘 − 𝒛∗‖2 converges 

to 𝒛∗ ∈ 𝑋∗. We first focus on sequence Ω𝑘. So, we can write inequalities in (5-40). 

∑ min(𝛼𝑘+1, 𝛾𝑘+1) [(𝜃 + 4𝜃(𝛾𝑘+1)2) ∑ ‖Ӽ𝑖
𝑘 − Ӽ𝑗

𝑘‖
2

𝑆𝑇𝑘 + 2(ℱ(𝜌𝑘) −∞
𝑘=1

(5-40) 
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ℱ(𝑧∗))] < (𝜃𝛼𝑘+1 + 4𝜃𝛼𝑘+1(𝛾𝑘+1)2) ∑ ‖Ӽ𝑖
𝑘 − Ӽ𝑗

𝑘‖
2

𝑆𝑇𝑘 + 2𝛾𝑘+1(ℱ(𝜌𝑘) −

ℱ(𝑧∗)) < ∞.  

 Since ∑ min (𝛼𝑘∞
𝑘=1 , 𝛾𝑘) = ∞ according to Assumption 2, we have lim

𝑘→∞
∑ ‖Ӽ𝑠

𝑘 − Ӽ𝓈
𝑘‖2 =𝑆𝑇𝑘

0  and lim
𝑘→∞

ℱ(𝜌𝑘) = ℱ(𝑧∗) for at least one subsequence. The number of nodes 𝑠 ∈ 𝑁 and arcs 

(𝑠, 𝓈) ∈ 𝐴: 𝑠, 𝓈 ∈ 𝑁 of information exchange graph 𝐺 = (𝑁, 𝐴) are finite, so we can derive finite 

number of spanning trees 𝑆𝑇𝑘 over iterations 𝑘 ∈ 𝐾, and spanning tree 𝑆𝑇𝑘 repeats often over 

iterations. We can write lim
𝑘→∞

∑ ‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2 = 0𝑆𝑇𝑘  and lim
𝑘→∞

‖Ӽ𝑠
𝑘 − Ӽ𝓈

𝑘‖2=0 for any spanning tree 

𝑆𝑇𝑘 at iteration 𝑘 ∈ 𝐾 for all sub-problems 𝑠, 𝓈 ∈ 𝑁 using the connectivity of information 

exchange graph 𝐺 = (𝑁, 𝐴) and having finite set of arcs and nodes. 

We use inequality lim
𝑘→∞

∑ ‖Ӽ𝑠
𝑘 − 𝝆𝑘‖2

𝑠∈𝑁  ≤ lim
𝑘→∞

2(
𝑁𝐵+𝜎

𝑁𝜎
) ∑ ‖Ӽ𝑠

𝑘 − Ӽ𝓈
𝑘‖2

𝑠<𝓈  in the study by 

Srivastava et al. (2010). Since the right-hand side of this inequality is 0, we have 

lim
𝑘→∞

∑ ‖Ӽ𝑠
𝑘 − 𝝆𝑘‖2 = 0𝑠∈𝑁  and lim

𝑘→∞
‖Ӽ𝑠

𝑘 − 𝝆𝑘‖2for all sub-problems 𝑠 ∈ 𝑁. We use 

lim
𝑘→∞

ℱ(𝝆𝑘) = ℱ(𝒛∗) to infer the sequence 𝝆𝑘 converges to optimal vector 𝒛∗ ∈ 𝑋∗. We also 

know lim
𝑘→∞

‖Ӽ𝑠
𝑘 − 𝝆𝑘‖2 = 0. Therefore, 𝒙𝑠

𝑘 and 𝝆𝑘 converge to the same vector that is 𝒛∗ ∈ 𝑋∗for 

all sub-problems 𝑠 ∈ 𝑁. The sequences of Ӽ𝑠
𝑘 for all sub-problems 𝑠 ∈ 𝑁 converge to a common 

point that is also optimal vector 𝒛∗ ∈ 𝑋∗ knowing that the sequence ‖𝘅𝑘 − 𝒛∗‖2 converges to 

𝒛∗ ∈ 𝑋∗ using the results of Polyak (1987) - Lemma 11.∎
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5.5. Termination Criterion 

The methodology finds the optimal solution when there is no disagreement among the values 

of decision variables found by different sub-problems. Note that only some of the flow variables 

for the boundary links between intersections belong to more than one sub-problem. Therefore, the 

optimal solution is found when sub-problems are in agreement on the value of these decision 

variables, or in other words, when the left-hand side of inequality (5-41) is zero. Since urban streets 

have a different number of lanes, the value of flow decision variables should be normalized to 

compute the disagreement by dividing the flow variable by the maximum capacity of receiving or 

sending cells. We set the termination criterion to reach a disagreement of at most 𝜀. If the 

termination criterion is not met, we update step sizes 𝛼𝑘+1 and 𝛾𝑘+1 and go back to the distributed 

gradient-based update step.  

∑ ∑ ∑ |
𝑦𝑖𝑗

𝑡,𝑜𝑑

max(𝑀𝑖, 𝑀𝑗)
⁄

𝑖∈𝐶𝑠,𝑗∈𝑆(𝑖),𝑒∈𝐶 𝓈∈𝑛𝑠
,𝑓∈𝑆(𝑒): 𝑖=𝑒,𝑗=𝑓,𝑠≠𝓈𝑜𝑑∈𝑂𝐷𝑡∈𝑇

−
𝑦𝑒𝑓

𝑡,𝑜𝑑

max(𝑀𝑒 , 𝑀𝑓)
⁄ | ≤ 𝜀 

(5-41) 

This termination criterion is checked using a distributed communication paradigm. Each sub-

problem checks inequality (5-41), and if it satisfies the termination criterion, it stops updating the 

value of variables. The sub-problems compute the termination at the same time. The value of 𝜀 

does not dependent on the network size since it is determined for each intersection. Finding a 

feasible solution is possible regardless of the value of 𝜀. Moreover, we select the duration of the 

study period so that it is long enough for all vehicles can exit the network. 

The vector of optimal solutions for the subproblems may not be a feasible solution to SODTA. 

Therefore, a feasible solution is found using CTM simulation. The input to the CTM is turning 

ratios that are found using the output of projections on the feasible region of subproblems. The 
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output of the simulation is feasible flows for the entire network. 

5.6. Test Network 

We tested DGA on a portion of downtown Springfield network in Illinois. The network consists 

of 20 intersections with one-way and two-way streets. All intersections are signalized with 

predefined signal timing parameters. We considered 15 OD pairs and three demand profiles for 

this test network, as presented in Figure 5-4. A test network with 40 (4×10) intersections and 25 

ODs is also tested to show how the approach scales. This network is created by duplicating the 

network of 20 intersections. Table 5-2 shows three demand profiles for this network. According 

to Assumption 1, one set of values for weights can be 𝓌𝑠𝓈 = 𝓌𝓈𝑠 = 1 for all 𝑠, 𝓈 ∈ 𝑁 in which 𝑠 ≠

𝓈  and 𝓌𝑠𝑠 = − ∑ 𝓌𝓈𝑠𝓈∈𝐶𝔫𝑠
:𝑠≠𝓈  for weights on self-arcs 𝑠 ∈ 𝑁. We also set the step size rules as 

𝛼𝑘 = 1
𝑘0.55⁄  and 𝛾𝑘 = 1

𝑘⁄ , that satisfy Assumption 2. For 20 intersection network, the 

termination is set to reach a disagreement of 0.5 for each sub-problem. It should be noted that 

networks with 20 and 40 intersections respectively result in 4,218,000 and 14,120,00 decision 

variables, representing a large optimization program. 
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OD / (veh/hr/ln) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Profile 1 333 133 333 333 67 333 333 333 133 133 333 333 333 333 67 

Profile 2 500 200 500 500 100 500 500 500 200 200 500 500 500 500 100 

Profile 3 750 300 750 750 150 750 750 750 300 300 750 750 750 750 150 

The case study of 20 intersections –Springfield, IL CTM characteristics 

 

The duration of each time 

step (sec) 
6 

The number of cells in each 

link 

2,3 

and 4 

The total number of cells  316 

The total number of links  387 

Free-flow speed (mph) 25 

Cell length (ft) 220 

The capacity of cells except 

for source and sink cells 

(veh) 

9, 24, 

and 

36 

Saturation flow rate except 

for source and sink cells 

(veh/ts/ln) 

3,6, 

and 9 

Capacity and Saturation 

flow rate 

for source and sink cells 

1000 

sec: second, mph: mile per hour, ft: 

feet, veh: vehicle, ts: time step 

Figure 5-4 Case study of 20 intersections, CTM characteristics, and demand patterns © 2022 IEEE 

Table 5-2 Demand profiles for the test network of 40 intersections 

Network of 40 intersections with 25 ODs 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

1 333 500 750 14 333 500 750 

2 267 400 600 15 267 400 600 

3 27 40 60 16 27 40 60 

4 40 60 90 17 40 60 90 

5 267 400 600 18 267 400 600 

6 67 100 150 19 67 100 150 

7 320 480 720 20 320 480 720 

8 200 300 450 21 200 300 450 

9 120 180 270 22 120 180 270 

10 200 300 450 23 200 300 450 

11 120 180 270 24 120 180 270 

12 200 300 450 25 320 480 720 

13 120 180 270     
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5.7. Results 

We applied DGA and a central approach to the case study network of 20 intersections. Table 

5-3 shows the total travel time and the total computation time by our approach and the central 

approach under three different demand patterns. The SODTA formulation has more than 4 million 

decision variables in this case study, and we could not find the optimal solution by running CPLEX 

for cases with less than 150 GB of memory. DGA reduced the decision variables of each sub-

problem to 243,600 on average.  Each pair of sub-problems shares 6,000 variables for one-

directional streets and 12,000 variables for two-directional streets. DGA required only 5 GB of 

memory to generate the solutions. Note that the distributed approach is implemented with a parallel 

architecture. It also found the solutions with at most a 5% optimality gap in less than 2.01 hours, 

which translates to about 97 % shorter runtime than CPLEX.    

Table 5-3 Objective function and computation time for DGA and a central approach for the network 

of 20 intersections © 2022 IEEE 

Network 

Performance 

Measures 

Approach/Gap 

Required 

Memory 

(GB) 

Deman

d 

Profile 

1 

Deman

d 

Profile 

2 

Deman

d 

Profile 

3 

Objective Function: 

Total Travel Time 

(hr) 

Optimal Solution (from 

CPLEX) 
150 187.06 291.29 499.85 

Proposed Approach 5 197.34 307.30 524.84 

Difference (%) - 5.49 5.50 5.01 

Run-time (hr) 

Optimal Solution (from 

CPLEX) 
150 70.54 73.59 90.56 

Proposed Approach 5 1.60 1.81 2.01 

Difference (%) - 97.73 97.54 97.78 

 

Figure 5-5. a-c shows the objective value of DGA and the optimal objective value for three 

demand profiles over iterations. The distributed approach reduces the value of the objective 

function towards the optimal value over iterations. Note that the optimal solution from CPLEX 

had the well-known holding-back problem due to the linearization of the minimization functions 
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in CTM. However, the solutions from the distributed approach did not have this issue since we 

found the solutions by simulating the network using non-linear CTM equations as presented by 

Mohebifard and Hajbabaie, (2019). In all three figures, the optimality gap was at most 5% when 

we stopped the approach. 

  

(a) demand profile 1 (b) demand profile 2 

 

(c) demand profile 3 

 

Figure 5-5 The objective functions value over iterations for network of 20 intersections © 2022 IEEE 

5.7.1. Comparison with a Danzig-Wolfe Decomposition-based Algorithm (DWDA) 

We compared the solutions and performance of the DGA to an OD-based decomposition 

approach developed by Mehrabipour et al. (2019). Table 5-4 shows different characteristics and 

performance measures for both approaches. Danzig-Wolfe Decomposition-based Algorithm 

150

200

250

300

350

0 400 800 1200 1600 2000

O
b

je
ct

iv
e 

F
u
n
ct

io
n
 (

h
r)

Iteration

150

200

250

300

350

400

450

500

550

0 400 800 1200 1600 2000

O
b

je
ct

iv
e 

F
u
n
ct

io
n
 (

h
r)

Iteration

350

400

450

500

550

600

650

700

0 400 800 1200 1600 2000

O
b

je
ct

iv
e 

F
u
n
ct

io
n
 (

h
r)

Iteration



  

87 

(DWDA) has a master problem and several sub-problems that are solved iteratively with a stopping 

criterion of a 5% gap between the upper bound and lower bound of the approach. Each sub-

problem has all decision variables and constraints for a SODTA formulation with one OD pair. 

Since we have 15 ODs, the number of sub-problems is 15. New extreme points are generated by 

sub-problems and added to the master problem solution pool. Therefore, the complexity of the 

master problem increases over iterations. 

DGA has an intersection-based decomposition, and the number of sub-problems is 20 due to 

having 20 intersections in the network. This approach does not have any central component or 

master problem. The number of decision variables differs slightly in each sub-problem of DGA 

depending on the number of nodes and links and is at least 48% less than the number of variables 

in the sub-problems of DWDA. The number of iterations in DWDA is at most 101 while this 

number is 1715 for DGA. Even though we have more number of iterations in DGA, the 

computation time of each iteration is much less. The total run-time of DGA is 74% more than 

DWDA in an undersaturated demand pattern. However, when most of the decision variables have 

non-zero values in the oversaturated condition, the runtime of DGA is improved by 77% compared 

to DWDA. Moreover, since we have 48% fewer variables in DGA, we only required 5 GB of 

memory though we needed at least 20 GB of memory to run DWDA.  
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Table 5-4 Comparison of our approach with the Danzig-Wolfe Decomposition algorithm for the 

network of 20 intersections © 2022 IEEE 
D

em
an

d
 

Approach/Ga

p 

Number of 

variables in 

sub-problems 

Iterations 
Objective 

Function 

Optimality 

gap (%) 
Run-time (hr) 

Memory 

(GB) 

1 

DWDA 281,200 11 197.69 0.05 0.92 20 

DGA ≤ 146,880 1706 197.34 0.05 1.60 5 

Diff. (%) -48 15409 0.18 0.00 74 -75 

2 

DWDA 281,200 53 308.42 0.05 2.34 20 

DGA ≤ 146,880 1708 307.30 0.05 1.81 5 

Diff.  (%) -48 3123 0.36 0.00 -23 -75 

3 

DWDA 281,200 101 529.29 0.05 8.83 20 

DGA ≤ 146,880 1715 524.84 0.05 2.01 5 

Diff. (%) -48 1599 0.84 0.00 -77 -75 

 

5.7.2. The Performance of the Methodology  

Figure 5-6 presents the disagreement on the value of shared decision variables for three sub-

problems with their neighbors for three demand profiles over iterations. In demand profile 1, when 

each sub-problem has a disagreement of less than 0.5, the algorithm is terminated. The algorithm 

reached a 5.5% optimality gap for demand profile 1 at iteration 1706, see Figure 5-6.a. The 

algorithm reached a disagreement value of 0.5 for the second demand pattern at iteration 1708 

with the 5.5% optimality gap, see Figure 5-6.b. The approach also reached a disagreement value 

of 0.5 at iteration 1715 iterations for the third demand pattern with a similar gap of 5.0%. As 

expected, the disagreement increased with the demand level. However, the gap is the same for all 

scenarios once the approach is terminated. 
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(a) demand profile 1 (b) demand profile 2 

 

(c) demand profile 3 

 

Figure 5-6 The disagreement value 𝜀 over iterations for the network of 20 intersections © 2022 IEEE 

Figure 5-7. a-c shows the run-time of three sub-problems over iterations for the three demand 

profiles. We assigned each sub-problem to a different computational node using a multi-thread 

platform. The sub-problems are independent and optimized synchronously. Each sub-problem 

represents one intersection with an almost equal number of variables and constraints with other 

sub-problems. Therefore, the run-time is approximately the same among different nodes, which 

reduces overhead delays. The run-time of each sub-problem is relatively similar for all three 

demand profiles, and having a more congested sub-problem did not significantly affect the 

computation time; however, the total run-time differs by at most 20% between demand profiles 
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due to the additional number of required iterations.  

  

(a) demand profile 1 (b) demand profile 2 

 

(c) demand profile 3 

 

Figure 5-7 The run-time of three sub-problems with three demand profiles in the network of 20 

intersections © 2022 IEEE 

Table 5-5 shows the computation time for each step of the approach under three demand 

patterns. The distributed gradient update consists of step 1: computing weighted averages, step 2: 

moving values towards the negative direction of the gradient, and step 3: projecting values on the 

feasible region of sub-problems. The runtime for the initialization step is negligible for all demand 

profiles. Finding the weighted average needs the least CPU time, and projection has the highest 

computation time. The projection of the value of variables is implemented for all sub-problems at 

the same time, and its CPU time has increased by increasing the demand. This can happen because 
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more decision variables have non-zero values as the demand increases, and more computational 

effort is required to find variables’ optimal values. No specific trend has appeared for other steps 

including termination criterion calculation.  

Table 5-5 Breakdown of runtimes for the network of 20 intersections © 2022 IEEE 

Steps of approach/ demand Profile 1 Profile 2 Profile 3 

Run-time for initialization (hr) 0.0000 0.0000 0.0000 

Run-time for distributed 

gradient update (hr) 

Compute weighted averages 0.0023 0.0024 0.0022 

Move values towards negative 

direction of gradient 
0.0035 0.0036 0.0033 

Project values on feasible 

region 
1.5525 1.7643 1.9689 

Run-time for checking termination criterion (hr) 0.0351 0.0346 0.0338 

 

Figure 5-8.a-d shows the disagreement on the value of decision variables for each sub-problem 

with its neighbors at iterations 1, 500, 1000, and 1800 for three demand profiles. Each sub-problem 

is shown with a number following the same layout shown in Figure 5-4. The spectrum shows a 

range of colors depending on the value of the disagreement. Darker color represents a higher 

disagreement value. Figure 5-8. a-d present the disagreement at each sub-problem for the under-

saturated demand profile. The colors become lighter as the number of iterations increases, which 

shows that the conflict on the proposed value by each sub-problem with its neighbors decreases. 

Figure 5-8. e-h and Figure 5-8. j-m display the same pattern for the second and third demand 

profiles, respectively. 
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(a) Iteration 1 (b) Iteration 500 (c) Iteration 1000 (d) Iteration 1800 

Demand profile 1 

    

(e) Iteration 1 (f) Iteration 500 (g) Iteration 1000 (h) Iteration 1800 

Demand profile 2 

    

(e) Iteration 1 (f) Iteration 500 (g) Iteration 1000 (h) Iteration 1800 

Demand profile 3 

 

Figure 5-8 The value of disagreement at each sub-problem for two demand patterns at iterations 100, 

1000, 2000, and 3000 for the network of 20 intersections © 2022 IEEE 

Note: the circled numbers represent sub-problem numbers. 

Figure 5-9 shows the impact of the number of OD pairs (15, 20, and 40) on the convergence of 

our approach in the test network of 20 intersections and semi-saturated demand. The algorithm 

reached the termination criteria in 1708, 2157, and 2319 iterations with 5%, 4%, and 5% optimality 
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gaps for 15, 20, and 40 ODs, respectively. Increasing the number of OD pairs led to more iterations 

for convergence; however, the number of iterations does not increase as fast as the number of 

decision variables. Specifically, increasing the number of ODs from 20 to 40 doubles the number 

of decision variables but only increases the number of iterations by 7%. 

  

(a) 15 OD pairs (b) 20 OD pairs 

 

(c) 40 OD pairs 

 

Figure 5-9 The effects of the number of OD pairs on DGA convergence © 2022 IEEE 

In this section, we evaluated the effect of increasing the duration of the study period on 

convergence. We tested three loading periods of 150, 300, and 450 time steps, as shown in Figure 

5-10.  The three cases required 1420, 1708, and 2081 iterations with 5%, 4%, and 4% optimality 

gaps to reach the termination criterion. As we increased the loading time, the number of required 
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iterations to meet the termination was increased. Increasing loading time created more congestion. 

Therefore, the number of iterations was increased by increasing the loading period. However, the 

rate of increase in the required iterations was much less than the increase in the number of decision 

variables.  

  

(a) 150 time steps for loading (b) 300 time steps for loading 

 

(c) 450 time steps for loading 

 

Figure 5-10 The effect of study period duration on DGA convergence © 2022 IEEE 

We also studied the effects of network size on convergence by looking at networks of 10, 20, 

and 40 intersections with similar characteristics, as shown in Figure 5-11. An increase in network 

size increased the number of decision variables from 1,674,000 to 4,218,000, and 14,120,00. DGA 

was converged in 807, 1708, and 1710 iterations with 2%, 4%, and 5% optimality gaps for 
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networks with 10, 20, and 40 intersections, respectively.  The loading period, demand, and the 

number of OD pairs were the same in all cases. The number of iterations for convergence was 

increased by increasing the network size; however, at a rate much slower than the increase in the 

network size. Increasing the size of the network from 20 intersections to 40 increases the number 

of required iterations by two, which shows the scalability of the proposed methodology.  

  

(a) 10 intersections (b) 20 intersections 

 

(c) 40 intersections 

 

Figure 5-11 The effect of network size on DGA convergence © 2022 IEEE 

We also tested the approach on a network with 40 intersections with 632 cells, 780 links, 400 

time steps, and 25 OD pairs that bring the total number of decision variables to 14,120,000. We 

used the same termination criterion that was applied to other cases. By increasing the intersections 
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from 20 to 40, the number of decision variables increased from ~4 million to ~14 million (more 

than a factor of 3). We need to mention that the literature that includes models of networks with 

thousands of intersections and OD pairs uses either exit flow functions, point queue models, or 

link-performance functions. These approaches are aggregated and have significantly fewer 

decision variables and do not provide the accuracy that is required for traffic operation purposes. 

In this study, we use the CTM model, which is more accurate but at the expense of additional 

complexity. The network of 40 intersections is significantly larger than comparable studies that 

have used the cell transmission model (Aziz and Ukkusuri, 2012; Chiu and Zheng, 2007; Doan 

and Ukkusuri, 2015). The studies solve the problem for 5805 to 489,700 decision variables (Li et 

al., 2003; Zheng and Chiu, 2011).  

Table 5-6 presents the number of cells, links, time steps, and decision variables for cases with 

20 and 40 intersections. Increasing the number of links from 387 to 780 and nodes from 316 to 

632 does not change the complexity of each sub-problem due to the intersection-based distribution 

of the formulation. However, increasing the study period from 400 to 500 time steps and OD pairs 

from 15 to 25 lead to having more variables. Even though the variables are increased by 70%, we 

can find the solutions with at most a 5.70% optimality gap in at most 5.34 hours.  
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Table 5-6 The effect of increasing the network size from 20 to 40 intersections on DGA © 2022 IEEE 

Demand 

Pattern 
Intersections Cells Links 

Time 

steps 
Variables 

Optimality 

gap (%) 

Runtime 

(hr) 

Iterations 

to satisfy 

termination 

Under-

saturated 

20 316 387 400 4,218,000 5.90 1.60 1704 

40 632 780 500 14,120,00 5.68 5.19 1710 

Semi-

saturated 

20 316 387 400 4,218,000 5.28 1.81 1708 

40 632 780 500 14,120,00 5.68 5.26 1711 

Over-

saturated 

20 316 387 400 4,218,000 5.93 2.01 1715 

40 632 780 500 14,120,00 5.70 5.34 1716 

 

Figure 5-12 shows the total run-time for sub-problems for the network of 20 intersections with 

15 and 30 ODs and the network of 40 intersections with 25 ODs. Increasing the number of OD 

pairs from 15 to 30 in the network of 20 intersections has increased the number of decision 

variables by 50% and run-time at each iteration on average by 71%. When the size increases, the 

number of variables in each sub-problem increases only by the number of OD pairs in this case. 

The number of cells, links, and time steps of the horizon remain constant. By increasing the number 

of intersections from 20 with 15 ODs to 40 intersections with 25 ODs, the number of decision 

variables in each sub-problem has increased by 70%. The run-time to generate solutions at each 

time step has increased by 52% on average.  
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Figure 5-12 The run-time of approach using different cases of 20 intersections with 15 and 30 ODs 

and 40 intersections with 25 ODs © 2022 IEEE 

 

 

  

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u
n
-t

im
e 

(s
ec

o
n
d

)

Iteration

20 intersections with 15 ODs 20 intersections with 30 ODs

40 intersections with 25 ODs



  

99 

CHAPTER 6. DISTRIBUTED COORDINATED METHODOLOGY 

TO SOLVE SODTA 

The proposed methodology in this chapter consists of two main components: distributed 

optimization and distributed coordination. The distributed optimization decomposes a network-

level SODTA problem into several intersection-level sub-problems by relaxing the constraints that 

represent interrelationships between sub-problems. Dummy source and sink cells are added to the 

sub-problems (when needed) to make them stand-alone systems capable of making their own 

decisions. These sub-problems are optimized in parallel and simultaneously. The distributed 

coordination exchanges data among the sub-problems and implements it in their objective 

functions and constraints to reduce the possibility of finding locally optimal solutions. The 

exchange of data is key to maintaining an appropriate balance between computational efficiency 

and solution quality.  

Each sub-problem receives information on the (a) number of incoming vehicles, (b) available 

capacity of receiving cells at the adjacent sub-problems, and (c) and travel time on network cells. 

The information is estimated by a CTM simulation run (will be detailed later in this section) and 

is incorporated into each sub-problem by either re-introducing and reinforcing the relaxed 

constraints or modifying the objective function. The information on travel times is used to help 

assign traffic to appropriate routes. The algorithm estimates the shortest travel times from the 

dummy sink cells of each sub-problem to the network sinks to estimate the remaining travel time 

and select how traffic should be assigned within each sub-problem. The estimated travel times are 

incorporated in the objective function of each sub-problem as a penalty term to give a higher 

priority to the sink cells of a sub-problem that are estimated to have a shorter travel time to the 

actual network destination. The details of the proposed algorithm will follow. Table 6-1 presents 
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the notations used in this chapter. 

Table 6-1 Definition of sets, decision variables, and parameters used in chapter 6 

Sets: 

𝑇 The set of all time steps 

𝐶 The set of all network cells 

𝐶𝑂 The set of all source cells 

𝐶𝑆 The set of all sink cells 

𝐶𝐼 The set of all intersection cells 

𝐶𝑂𝐷 The set of all OD pairs 

𝑃(𝑖) The set of all predecessors to cell 𝑖 ∈ 𝐶 

𝑆(𝑖) The set of all successors to cell 𝑖 ∈ 𝐶 

𝐶𝐸 The set of all ordinary cells 

𝐶𝐷 The set of all diverge cells 

𝑁 The set of all sub-problems 

𝐶𝑘 The set of all cells that belong to sub-problem 𝑘 ∈ 𝑁 

𝐶𝑂
𝑘 The set of all source cells that belong to sub-problem 𝑘 ∈ 𝑁 

𝐶𝑆
𝑘 The set of all sink cells that belong to sub-problem 𝑘 ∈ 𝑁 

𝐶𝐼
𝑘 The set of all intersection cells that belong to sub-problem 𝑘 ∈ 𝑁 

𝐶𝑂𝐷
𝑘 The set of all OD pairs that belong to sub-problem 𝑘 ∈ 𝑁 

𝑃(𝑖)𝑘 The set of all predecessors to cell 𝑖 ∈ 𝐶 that belong to sub-problem 𝑘 ∈ 𝑁 

𝑆(𝑖)𝑘 The set of all successors to cell 𝑖 ∈ 𝐶 that belong to sub-problem 𝑘 ∈ 𝑁 

𝐶𝐷
𝑘 The set of all diverge cells that belong to sub-problem 𝑘 ∈ 𝑁 

Decision variables: 

𝑥𝑖
𝑡,𝑜𝑑

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝑦𝑖𝑗
𝑡,𝑜𝑑

 
The number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at 

time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

Parameters: 

𝜏 The duration of each time step 

𝑑𝑖
𝑡,𝑜𝑑

 
The entry demand level at source cell 𝑖 ∈ 𝐶𝑂 at time step 𝑡 ∈ 𝑇 from origin 𝑜 to 

destination 𝑑 in OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
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Table 6-1 (continued) 

𝐹𝑖 The saturation flow rate at cell 𝑖 ∈ 𝐶 

𝑀𝑖 The maximum number of vehicles that cell 𝑖 ∈ 𝐶 can accommodate  

𝑔𝑖
𝑡 

A binary parameter to define signal status at intersection cell 𝑖 ∈ 𝐶𝐼 at time step 

𝑡 ∈ 𝑇. Zero and one values indicate red and green signals, respectively. 

𝜇 An arbitrary small and positive number 

𝑅𝑖𝑗
𝑡,𝑜𝑑

 
The turning ratio of diverge cell 𝑖 ∈ 𝐶𝐷 to successor cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈
𝑇 for OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝑓𝑖
𝑡 = 𝑔𝑖

𝑡𝐹𝑖 The variable saturation flow rate of intersection cell 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇 

𝑥̂𝑖
𝑡,𝑜𝑑

 
The number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷  

obtained from a CTM simulation 

𝑦̂𝑖𝑗
𝑡,𝑜𝑑

 
The number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at 

time step 𝑡 ∈ 𝑇 with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 obtained from a CTM simulation 

𝑥𝑖
𝑡
 

The total number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 (over all OD pairs 

(𝑜, 𝑑) ∈ 𝐶𝑂𝐷) 

𝑦
𝑖𝑗

𝑡
 

The total number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) 

at time step 𝑡 ∈ 𝑇 (over all OD pairs (𝑜, 𝑑) ∈ 𝐶𝑂𝐷) 

𝒳𝑖𝑗
𝑡  

The total number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 heading to 

successor cell 𝑗 ∈ 𝑆(𝑖)  

𝔛𝑖𝑗
𝑡,𝑜𝑑

 
The number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 heading to cell 

𝑗 ∈ 𝑆(𝑖) with OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

𝓅𝑖,𝑜𝑑
𝑡′

 Vehicles that entered cell 𝑖 at time step 𝑡′ with origin 𝑜 and destination 𝑑 

𝒯𝑖𝑗 The time that not all vehicles can exit a cell 𝑖 ∈ 𝐶 outgoing to 𝑗 ∈ 𝑆(𝑖)  

𝒻𝑖𝑗 The fraction of vehicles that can leave cell 𝑖 ∈ 𝐶 in time 𝒯𝑖𝑗 

𝓏𝑖𝑗 An axillary variable for links between cells 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 

∆𝑇 The prediction horizon 

  

6.1. Distributed Optimization 

Figure 6-1 shows a network of two intersections with a CTM cell representation and two OD 

pairs (𝑠, 𝑒) in blue and (𝑛, 𝑟) in green colors. The network is shown before and after distribution 

in parts A and B, respectively. The formulation is distributed by relaxing the constraints 

representing the interrelationship between the two intersections and adding a penalty function to 

the objective function (similar to the Lagrangian relaxation approach). The relaxation is equivalent 
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to disconnecting the link between cells 𝑖 ∈ 𝐶1 and 𝑗 ∈ 𝐶2 and cells 𝑘 ∈ 𝐶1 and 𝑙 ∈ 𝐶2 or relaxing 

Constraints (3-3)-(3-9) for links between cells 𝑖 ∈ 𝐶1 to 𝑗 ∈ 𝐶2 and cells 𝑙 ∈ 𝐶2 to 𝑘 ∈ 𝐶1. Dummy 

source cells 𝑗′ ∈ 𝐶𝑂
2, 𝑘′ ∈ 𝐶𝑂

1 and sink cells 𝑙′ ∈ 𝐶𝑆
2 and 𝑖′ ∈ 𝐶𝑆

1 are added after omitting the 

links to make each sub-problem a stand-alone system. Constraint (3-4) is added for new source 

cells 𝑗′ ∈ 𝐶𝑂
2 and 𝑘′ ∈ 𝐶𝑂

1 in their corresponding sub-problems’ formulations. Constraint (3-5) 

is also added for new sink cells 𝑙′ ∈ 𝐶𝑆
2 and 𝑖′ ∈ 𝐶𝑆

1. 

The distribution affects the set of OD pairs 𝐶𝑂𝐷 = {(𝑛, 𝑟), (𝑠, 𝑒)} when either an origin or a 

destination for an OD belongs to different sub-problems. This is the case for both OD pairs shown 

in Figure 6-1. Therefore, the set of OD pairs will be 𝐶𝑂𝐷
1 = {(𝑛, 𝑖′), (𝑘′, 𝑒)} for Sub-problem 1, 

and 𝐶𝑂𝐷
2 = {(𝑠, 𝑙′), (𝑗′, 𝑟)} for Sub-problem 2. Example of intersection level distribution for 

signal timing optimization and DTA can be found in (Mehrabipour, 2018; Mehrabipour and 

Hajbabaie, 2020). Hajbabaie et al., (2020), Mohebifard and Hajbabaie (2019b) and Mohebifard 

and others (2021) also studied the distribution of a CTM-based formulation for traffic metering.  

Note that each sub-problem 𝑘 ∈ 𝑁 optimizes the outgoing flow 𝑦𝑖𝑗
𝑡,𝑜𝑑

 from diverge cell 𝑖 ∈ 𝐶𝐷
𝑘 

to successor cell 𝑗 ∈ 𝑆(𝑖)𝑘 at time step 𝑡 ∈ 𝑇 for (𝑜, 𝑑) ∈ 𝐶𝑂𝐷
𝑘 exclusively. Note that the 

maximization of outflows in a CTM-based formulation is equivalent to the total travel time 

minimization. The decision variables corresponding to the diverge cells and their outflow are 

controlled only by one sub-problem. Therefore, the turning ratios can be found for the entire 

network without any conflict and infeasibility. After optimizing all sub-problems, the turning 

ratios 𝑅𝑖𝑗
𝑡,𝑜𝑑

for the link between diverge cell 𝑖 ∈ 𝐶𝐷 and successor cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 

with (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 are computed as shown in Equation (6-1). These turning ratios are given as 

inputs to the distributed coordination. 
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𝑅𝑖𝑗
𝑡,𝑜𝑑 = 𝑦𝑖𝑗

𝑡,𝑜𝑑 ∑ 𝑦𝑖𝑗
𝑡,𝑜𝑑

𝑗∈𝑆(𝑖)

⁄  
∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-1) 

Note that besides network decomposition, the study period is also decomposed into smaller 

horizons using the rolling horizon technique for faster performance. 

 

A) Before Decomposition 

 

B) After Decomposition 

Figure 6-1 An example of a network of two intersections before and after decomposition 
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6.2. Distributed Coordination 

The independent optimization of the localized sub-problems does not lead to finding a system-

level optimal solution. Furthermore, the solutions of these sub-problems may not be feasible to the 

original formulation. Therefore, an effective coordination scheme among the sub-problems is a 

critical step towards reducing the possibility of finding locally optimal or infeasible solutions. As 

mentioned before, each sub-problem needs to receive information on the (a) incoming vehicles, 

(b) available capacity of receiving cells at neighboring sub-problems, and (c) travel time on the 

network cells. The information is estimated by a CTM simulation run and is incorporated into each 

sub-problem by either re-introducing and reinforcing the relaxed constraints and/or modifying the 

objective function. We will first show how each sub-problem's constraints and objective function 

are modified and how the CTM estimates the required information.  

The entry demand at the dummy source cells of each sub-problem needs to be communicated. 

Constraint (6-2) updates the entry demand at the boundary cells according to the number of 

vehicles coming from the neighboring intersections. Following the example presented in Figure 6-

1, traffic demand 𝑑
𝑘′
𝑡,𝑜𝑑

 in dummy source cell 𝑘′ ∈ 𝐶𝑂
1 (see Figure 6-1.B) is equal to the number 

of vehicles 𝑦̂𝑙𝑘
𝑡,𝑜𝑑

 flowing from cell 𝑙 ∈ 𝐶2 to cell k ∈ 𝐶1 at time step 𝑡 ∈ 𝑇 for (𝑜, 𝑑) ∈ 𝐶𝑂𝐷
1 (see 

Figure 6-1.A). The flow of vehicles between the two cells is estimated by a CTM simulation based 

on turning ratios given from all sub-problems.  

𝑑
𝑘′
𝑡,𝑜𝑑 = 𝑦̂𝑙𝑘

𝑡,𝑜𝑑
  ∀𝑡 ∈ 𝑇, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷

1  
(6-2) 

Constraint (6-3) ensures that Sub-problem 1 does not send more vehicles than the available 

capacity of receiving cell 𝑗 ∈ 𝐶2 in Sub-problem 2. Hence, the outgoing flow 𝑦
𝑖𝑖′
𝑡,𝑜𝑑

 from cell 𝑖 ∈

𝐶1 to cell 𝑖′ ∈ 𝐶𝑆
1 at time 𝑡 ∈ 𝑇 for (𝑜, 𝑑) ∈ 𝐶𝑂𝐷

1 in Sub-problem 1 is limited to the available 

capacity (𝑀𝑗 − ∑ 𝑥̂𝑗
𝑡,𝑜𝑑

∀(𝑜,𝑑)∈𝐶𝑂𝐷
2 ) of receiving cell 𝑗 ∈ 𝐶2 at time step 𝑡 ∈ 𝑇. The available 
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capacity is found by estimating the total number of vehicles ∑ 𝑥̂𝑗
𝑡,𝑜𝑑

∀(𝑜,𝑑)∈𝐶𝑂𝐷
2  in cell 𝑗 ∈ 𝐶2 at 

time step 𝑡 ∈ 𝑇 by a CTM simulation. Cell 𝑗 ∈ 𝐶2 is shown in Figure 6-1.A, and cells 𝑖 ∈ 𝐶1 and 

𝑖′ ∈ 𝐶𝑆
1 are shown in Figure 6-1.B. 

𝑦
𝑖𝑖′
𝑡,𝑜𝑑 ≤ 𝑀𝑗 − ∑ 𝑥̂𝑗

𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷
2

 ∀𝑡 ∈ 𝑇, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷
1  

(6-3) 

Information on cell travel times is used to help assign traffic to appropriate routes. The approach 

estimates the shortest travel times using Dijkstra’s algorithm (Ahuja et al., 1993)  from the dummy 

sink cells of each sub-problem to the sink cells of the network to estimate the remaining travel 

time and select how the traffic should be assigned within each sub-problem. The estimated travel 

times will be incorporated into the objective function of each sub-problem 𝑘 ∈ 𝑁 as a penalty term 

−1 𝛼𝑗
𝑡,𝑜𝑑⁄ (for sink cell 𝑖 ∈ 𝐶𝑆

𝑘 in the sub-problem 𝑘 ∈ 𝑁 at time step 𝑡 ∈ 𝑇 with (𝑜, 𝑑) ∈ 𝐶𝑂𝐷
𝑘 ) 

to give a higher priority to the sink cells that have a shorter travel time to the actual destinations 

of the network. The term 𝛼𝑗
𝑡,𝑜𝑑

 is defined as the total travel time on the shortest path. The objective 

function of each sub-problem is redefined as shown in Expression (6-4). 

min ∑ ∑ ∑ 𝑥𝑖
𝑡,𝑜𝑑

𝑖∈ 𝐶𝑘 \ 𝐶𝑆
𝑘(𝑜,𝑑)∈𝐶𝑂𝐷

𝑘𝑡∈𝑇

+ ∑ ∑ ∑ −𝑥𝑗
𝑡,𝑜𝑑 𝛼𝑗

𝑡,𝑜𝑑⁄

𝑗∈ 𝐶𝑆
𝑘(𝑜,𝑑)∈𝐶𝑂𝐷

𝑘𝑡∈𝑇

 
(6-4) 

 The total travel time on the shortest path (denoted by 𝛼𝑗
𝑡,𝑜𝑑

) is a positive value that is assigned 

to sink cells. To absorb vehicles into sink cells in a minimization problem, term −1 𝛼𝑗
𝑡,𝑜𝑑⁄  as a 

penalty function needs to be used not to interfere with the first term in Expression (6-4). 

A link-based CTM simulation is run for the entire network to find the required information to 

be exchanged among adjacent sup-problems. We modified the path-based CTM simulation 

developed by Ukkusuri et al. (2012) and created a link-based simulation by changing the definition 

of decision variables, incorporating turning ratios, and updating the equations. The main 
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modification is changing the definition of variables so that the index of variables showing path 

represents OD pairs.  The other modification is computing the value of decision variables for 

vehicles moving out from a diverge cell based on the turning ratio instead of checking the cells 

that appeared in a path.  The OD component was added to the turning ratios to ensure that the 

demand between each OD pair was met.  

The distributed optimization of each sub-problem provides turning ratios 𝑅𝑖𝑗
𝑡,𝑜𝑑

 as inputs to the 

CTM. The turning ratios are defined for links between diverge cell 𝑖 ∈ 𝐶𝐷 to successor cell 𝑗 ∈

𝑆(𝑖) at time step 𝑡 ∈ 𝑇 with (𝑜, 𝑑) ∈ 𝐶𝑂𝐷. The CTM estimates the number of vehicles in each cell 

and the flow between adjacent cells over the duration of a prediction period. The CTM simulation 

equations are described below. The algorithm estimates the initial value of decision variables by 

generating the shortest path between each origin and destination. It then uses a path-based 

simulation to compute the value of variables. However, a link-based simulation is used in each 

iteration to be compatible with link-based sub-problems. 

The total number of vehicles 𝑥𝑖
𝑡
 in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 is the summation of the number 

of vehicles in that cell over all OD pairs as shown in Equation (6-5). The same concept is used to 

find the total flow between two adjacent cells as shown in Equation (6-6). 

𝑥𝑖
𝑡

= ∑ 𝑥̂𝑖
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷 

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶 
(6-5) 

𝑦
𝑖𝑗

𝑡
= ∑ 𝑦̂𝑖𝑗

𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷 

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) 
(6-6) 

Equation (6-7) determines the total flow between adjacent cells, similar to flow feasibility 

constraints explained in the problem formulation. The OD-level flow of vehicles between two 

adjacent cells (from cell 𝑖 ∈ 𝐶 to cell 𝑗 ∈ 𝑆(𝑖)) is determined based on Equation (6-8) by 

distributing the flow proportional to the ratio of OD-level to the total cell occupancy (𝑥𝑖
𝑡,𝑝 𝑥𝑖

𝑡
⁄ ). 
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This equation is converted to Equation (6-9) to formulate an if-condition and ensure that it works 

with empty cells as well. Note that for intersection cells 𝑖 ∈ 𝐶𝐼, we substitute 𝐹𝑖 by 𝑔𝑖
𝑡𝐹𝑖. 

𝑦
𝑖𝑗

𝑡
= 𝑚𝑖𝑛 {𝑥𝑖

𝑡
, 𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
} ∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 

(6-7) 

𝑦̂𝑖𝑗
𝑡,𝑜𝑑

= {𝑚𝑖𝑛 {𝑥𝑖
𝑡

, 𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗
𝑡
} × 𝑥̂𝑖

𝑡,𝑜𝑑 𝑥𝑖
𝑡

⁄    𝑖𝑓 𝑥𝑖
𝑡

> 0

0                                                             𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 , (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-8) 

𝑦̂𝑖𝑗
𝑡,𝑜𝑑 = 𝑚𝑖𝑛 {𝑥𝑖

𝑡
, 𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
} × 𝑥̂𝑖

𝑡,𝑜𝑑 𝑥𝑖
𝑡

+ 𝜇⁄  

∀𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 , (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-9) 

We define two new variables for diverge cells to be able to track the paths of vehicles through 

these cells. Let 𝒳𝑖𝑗
𝑡  denote the number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 that are headed to 

successor cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇, see Equation (6-10). Note that 𝔛𝑖𝑗
𝑡,𝑜𝑑

 represents the OD-

level definition of 𝒳𝑖𝑗
𝑡 , see Equation (6-11).  

𝒳𝑖𝑗
𝑡 = ∑ 𝑥̂𝑖

𝑡,𝑜𝑑𝑅𝑖𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(6-10) 

𝔛𝑖𝑗
𝑡,𝑜𝑑 = 𝑥̂𝑖

𝑡,𝑜𝑑𝑅𝑖𝑗
𝑡,𝑜𝑑

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-11) 

The flow from diverge cells is found using Equations (6-12)-(6-15). There are two possible 

conditions for the maximum total outflow ∑ 𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
}𝑗∈𝑆(𝑖)  for diverge cell 𝑖 ∈ 𝐶𝐷 at 

time step 𝑡 ∈ 𝑇. If the first condition in (6-12) is satisfied, the total flow 𝑦
𝑖𝑗

𝑡
 will be the minimum 

of 𝒳𝑖𝑗
𝑡 , 𝐹𝑗 and 𝑀𝑗 − 𝑥𝑗

𝑡
. Otherwise, Equation (6-13) is applied, where 𝑦

𝑖𝑗

𝑡
 is limited to saturation 

flow rate 𝐹𝑖, and 𝐹𝑖 will be distributed among all outgoing links from diverge cell 𝑖 ∈ 𝐶𝐷. Equation 

(6-14) is a compact form of (6-12) and (6-13). Equation (6-15) finds the OD-level flow 𝑦𝑖𝑗
𝑡,𝑜𝑑

 by 
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distributing the total flow 𝑦
𝑖𝑗

𝑡
 among all links of diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 according 

to 𝔛𝑖𝑗
𝑡,𝑜𝑑 𝒳𝑖𝑗

𝑡 + 𝜇⁄  ratio.  

𝑖𝑓 ∑ 𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
}

𝑗∈𝑆(𝑖)

≤ 𝐹𝑖 

, 𝑦
𝑖𝑗

𝑡
= 𝑚𝑖𝑛 {𝒳𝑖𝑗

𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗
𝑡
} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(6-12) 

𝑖𝑓 ∑ 𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
}

𝑗∈𝑆(𝑖)

> 𝐹𝑖 

, 𝑦
𝑖𝑗

𝑡
= 𝐹𝑖

𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 ,𝐹𝑗 ,𝑀𝑗−𝑥𝑗

𝑡
}

∑ 𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 ,𝐹𝑗 ,𝑀𝑗−𝑥𝑗

𝑡
}𝑗∈𝑆(𝑖)

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(6-13) 

𝑦
𝑖𝑗

𝑡

= 𝑚𝑖𝑛 {𝒳𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗

− 𝑥𝑗
𝑡
}𝑚𝑖𝑛 {1,

𝐹𝑖

∑ 𝑚𝑖𝑛{𝒳𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
}𝑗∈𝑆(𝑖) + 𝜇

} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(6-14) 

𝑦̂𝑖𝑗
𝑡,𝑜𝑑 = 𝑦

𝑖𝑗

𝑡
𝔛𝑖𝑗

𝑡,𝑜𝑑 𝒳𝑖𝑗
𝑡 + 𝜇⁄  

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-15) 

Equations (6-16), (6-17), and (6-18) are the conservation flow constraints to update 𝑥𝑖
𝑡+1,𝑜𝑑

 for 

ordinary cell 𝑖 ∈  𝐶 \ {𝐶𝑆 , 𝐶𝑂}, source cell  𝑖 ∈ 𝐶𝑂 and sink cell 𝑖 ∈ 𝐶𝑆, respectively. 

𝑦̂𝑘𝑖
𝑡,𝑜𝑑 − 𝑦̂𝑖𝑗

𝑡,𝑜𝑑 = 𝑥̂𝑖
𝑡+1,𝑜𝑑 − 𝑥̂𝑖

𝑡,𝑜𝑑
 

∀𝑡 ∈ 𝑇, 𝑖 ∈  𝐶 \ {𝐶𝑆 , 𝐶𝑂}, 𝑘 ∈ 𝑃(𝑖), 𝑗

∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-16) 

𝜑𝑡,𝑜𝑑 − 𝑦̂𝑖𝑗
𝑡,𝑜𝑑 = 𝑥̂𝑖

𝑡+1,𝑜𝑑 − 𝑥̂𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂  , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-17) 

𝑦̂𝑘𝑖
𝑡,𝑜𝑑 = 𝑥̂𝑖

𝑡+1,𝑜𝑑 − 𝑥̂𝑖
𝑡,𝑜𝑑

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑆, 𝑘 ∈ 𝑃(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-18) 

6.3. FIFO implementation 

In this section, we present a link-based simulation to approximate the First–In–First–Out 
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(FIFO) rule as described by Carey et al. (2014). The flow is computed similar to CTM simulation 

and disaggregated based on the entry time to the current link. The traffic is labeled by its current 

cell, entry time to link, and path and exit the cell following the same order that it enters the link. 

We use 𝓅𝑖,𝑜𝑑
𝑡′

 to denote vehicles that entered cell 𝑖 at time step 𝑡′ with origin 𝑜 and destination 𝑑. 

In equation (6-19), the value of 𝓅𝑖,𝑜𝑑
𝑡′

 are initialized and set equal to 0.  

𝓅𝑖,𝑜𝑑
0 = 0  ∀ 𝑖 ∈ 𝐶, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

(6-19) 

In equation (6-20), we set the value of occupancy 𝑥𝑖
0,𝑜𝑑

 at time zero to 𝓅𝑖,𝑜𝑑
0 . Let 𝑥𝑖

𝑡
 denote total 

number of vehicles 𝑥𝑖
𝑡
 in cell 𝑖 ∈ 𝐶 at time step 𝑡 for all OD pairs. Equation (6-21) shows the value 

of 𝑥𝑖
0
 that is equal to the total number of vehicles 𝓅𝑖,𝑜𝑑

0  that entered cell 𝑖 at time step 0.  

𝑥𝑖
0,𝑜𝑑 = 𝓅𝑖,𝑜𝑑

0   ∀𝑖 ∈ 𝐶, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-20) 

𝑥𝑖
0

= ∑ 𝓅𝑖,𝑜𝑑
0

(𝑜,𝑑)∈𝐶𝑂𝐷 

 ∀𝑖 ∈ 𝐶 
(6-21) 

Next, we update the value of flow variables. Let us define new variables 𝒯𝑖𝑗 and 𝒻𝑖𝑗 for all 

network links 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) to track the time that not all vehicles can exit a cell and the fraction 

of flow that can exit the cell in this time in (6-22) and (6-23), respectively. 

𝒯𝑖𝑗 = 0 ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) 
(6-22) 

𝒻𝑖𝑗 = 0  ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) 
(6-23) 

The value of 𝑦
𝑖𝑗

𝑡
 shows the total flow moving from cell 𝑖 ∈ 𝐶 to cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡, and 

its value is updated using equation (6-24) for all cells except for diverge and intersection cells. 

This equation is defined by Daganzo (1995). 

𝑦
𝑖𝑗

𝑡
= min {𝑥𝑖

𝑡
, 𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
} ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 

(6-24) 

If 𝑦
𝑖𝑗

𝑡
> 0, we use equations (6-25), (6-26), and (6-27) to determine flow for each OD pair. 
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Equation (6-25) finds the first time step 𝒯𝑖𝑗 that not all vehicles can exit. In (6-26), the fraction of 

vehicles 𝒻𝑖𝑗 that can leave the cell in 𝒯𝑖𝑗 is found. Using this fraction value, the outflow for each 

OD pair is found in (6-27). 

𝒯𝑖𝑗 = max
𝜏

{ ∑ ∑ 𝓅𝑖,𝑜𝑑
𝑡′

(𝑜,𝑑)∈𝐶𝑂𝐷 

𝜏

𝑡′=0

> 𝑦
𝑖𝑗

𝑡
}   

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), 𝜏

= 0, … , 𝑡 − 1 
(6-25) 

𝒻𝑖𝑗 =

𝑦
𝑖𝑗

𝑡
− ∑ ∑ 𝓅𝑖,𝑜𝑑

𝑡′

(𝑜,𝑑)∈𝐶𝑂𝐷 
𝒯𝑖𝑗−1

𝑡′=0

∑ 𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗
(𝑜,𝑑)∈𝐶𝑂𝐷 

⁄   

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) 
(6-26) 

𝑦𝑖𝑗
𝑡,𝑜𝑑 = 𝒻𝑖𝑗 ∑ 𝓅

𝑖,𝑜𝑑

𝒯𝑖𝑗

(𝑜,𝑑)∈𝐶𝑂𝐷 

+ ∑ ∑ 𝓅𝑖,𝑜𝑑
𝑡′

𝒯𝑖𝑗−1

𝑡′=0(𝑜,𝑑)∈𝐶𝑂𝐷 

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-27) 

For intersection cells, the value of  𝑦
𝑖𝑗

𝑡
 is found using equation (6-28). The difference with other 

cells is the signal can influence the value of flow to become zero. The flow for each OD pair is 

found using equations (6-25), (6-26), and (6-27). 

𝑦
𝑖𝑗

𝑡
= min {𝑥𝑖

𝑡
, 𝑔𝑖

𝑡𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗
𝑡
} ∀ 𝑡 ∈ 𝑇, (𝑖, 𝑗) ∈ 𝐸𝑂 

(6-28) 

The update of outflow of diverge cells is also different. An axillary variable 𝓏𝑖𝑗 for diverge 

links 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) is defined and set equal to 𝑥𝑖
𝑡,𝑜𝑑𝑅𝑖𝑗

𝑡,𝑜𝑑
 as shown in equation (6-29). The value 

of 𝑦
𝑖𝑗

𝑡
 is determined using equation (6-30) explained by Ukkusuri et al. (2012). 

𝓏𝑖𝑗 = ∑ 𝑅𝑖𝑗
𝑡,𝑜𝑑

(𝑜,𝑑)∈𝐶𝑂𝐷 

𝑥𝑖
𝑡,𝑜𝑑

 ∀ 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 
(6-29) 
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𝑦
𝑖𝑗

𝑡

= min {𝓏𝑖𝑗, 𝐹𝑖, 𝐹𝑗  , 𝑀𝑗

− 𝑥𝑗
𝑡
}min {1,

𝐹𝑖

∑ min{𝓏𝑖𝑗, 𝐹𝑖 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗
𝑡
}𝑗∈𝑆(𝑖) + 𝜇

} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗

∈ 𝑆(𝑖) 
(6-30) 

𝒯𝑖𝑗 = max
𝜏

{∑ ∑ 𝑅𝑖𝑗
𝑡,𝑜𝑑𝓅𝑖,𝑜𝑑

𝑡′

(𝑜,𝑑)∈𝐶𝑂𝐷 
𝜏
𝑡′=0 > 𝑦

𝑖𝑗

𝑡
}    

∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗

∈ 𝑆(𝑖), 𝜏

= 0, … , 𝑡 − 1 

(6-31) 

𝒻𝑖𝑗

=
𝑦

𝑖𝑗

𝑡
− ∑ ∑ 𝑅𝑖𝑗

𝑡,𝑜𝑑𝓅𝑖,𝑜𝑑
𝑡′

(𝑜,𝑑)∈𝐶𝑂𝐷 
𝒯𝑖𝑗−1

𝑡′=0

∑ 𝑅𝑖𝑗
𝑡,𝑜𝑑𝓅

𝑖,𝑜𝑑

𝒯𝑖𝑗
(𝑜,𝑑)∈𝐶𝑂𝐷 

⁄  

∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗

∈ 𝑆(𝑖) 
(6-32) 

𝑦𝑖𝑗
𝑡,𝑜𝑑 = 𝒻𝑖𝑗𝑅𝑖𝑗

𝑡,𝑜𝑑𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 + ∑ ∑ 𝑅𝑖𝑗
𝑡,𝑜𝑑𝓅𝑖,𝑜𝑑

𝑡′

𝒯𝑖𝑗−1

𝑡′=0(𝑜,𝑑)∈𝐶𝑂𝐷 

 

∀ 𝑡 ∈ 𝑇, 𝑖

∈ 𝐶𝑂 , (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-33) 

For source cell 𝑖 ∈ 𝐶𝑂 and OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷, we update the value of 𝓅𝑖,𝑜𝑑
𝑡′

 using equations 

(6-34)-(6-37). 

𝓅𝑖,𝑜𝑑
𝑡′

= 0  

∀ 𝑡′ = 0, … , 𝒯𝑖𝑗 − 1, 𝑖 ∈ 𝐶𝑂 , 𝑗

∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-34) 

𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 = 𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 (1 − 𝒻𝑖𝑗) ∀𝑖 ∈ 𝐶𝑂 , 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-35) 

𝓅𝑗,𝑜𝑑
𝑡 = 𝓅𝑗,𝑜𝑑

𝑡 + 𝐷𝑖
𝑡,𝑜𝑑

 ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , 𝑖 = 𝑜, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-36) 

𝓅𝑗,𝑜𝑑
𝑡 = 𝓅𝑗,𝑜𝑑

𝑡 + 𝑦𝑖𝑗
𝑡,𝑜𝑑

  ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , 𝑖 ≠ 𝑜, (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-37) 

For each cell 𝑖 ∈ 𝐶 and OD pair (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 except for the source and diverge cells, we update 

the value of 𝓅𝑖,𝑜𝑑
𝑡′

 using equations (6-38)-(6-40). 
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𝓅𝑖,𝑜𝑑
𝑡′

= 0  

∀ 𝑡′ = 0, … , 𝒯𝑖𝑗 − 1, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-38) 

𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 = 𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 (1 − 𝒻𝑖𝑗) ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-39) 

𝓅𝑗,𝑜𝑑
𝑡 = 𝓅𝑗,𝑜𝑑

𝑡 + 𝑦𝑖𝑗
𝑡,𝑜𝑑

 ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-40) 

Equations (6-41)-(6-43) show the update procedure for diverge cells.  

𝓅𝑖,𝑜𝑑
𝑡′

= 𝓅𝑖,𝑜𝑑
𝑡′

− 𝑅𝑖𝑗
𝑡,𝑜𝑑𝓅𝑖,𝑜𝑑

𝑡′
  

∀ 𝑡′ = 0, … , 𝒯𝑖𝑗 − 1, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-41) 

𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 = 𝓅
𝑖,𝑜𝑑

𝒯𝑖𝑗 (1 − 𝑅𝑖𝑗
𝑡,𝑜𝑑𝒻𝑖𝑗) ∀𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 

(6-42) 

𝓅𝑗,𝑜𝑑
𝑡 = 𝓅𝑗,𝑜𝑑

𝑡 + 𝑦𝑖𝑗
𝑡,𝑜𝑑

 ∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑) ∈ 𝐶𝑂𝐷 
(6-43) 

Finally, we update the value of 𝑥𝑖
𝑡+1,𝑜𝑑

 by summing 𝓅𝑖,𝑜𝑑
𝑡′,

 over all entry times in (6-44) and find 

𝑥𝑖
𝑡+1

using the updated values of 𝓅𝑖,𝑜𝑑
𝑡′

 in (6-45). 

𝑥𝑖
𝑡+1,𝑜𝑑 = ∑ 𝓅𝑖,𝑜𝑑

𝑡′

𝑡

𝑡′=0

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖), (𝑜, 𝑑)

∈ 𝐶𝑂𝐷 
(6-44) 

𝑥𝑖
𝑡+1

= ∑ ∑ 𝓅𝑖,𝑜𝑑
𝑡′

𝑡

𝑡′=0(𝑜,𝑑)∈𝐶𝑂𝐷 

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑆(𝑖) 
(6-45) 

6.4. Overall DOCA-SODTA framework  

The DOCA-SODTA approach is summarized in the following steps and shown in Figure 6-2.  



  

113 

 

Figure 6-2 The DOCA-SODTA framework 

1. Initialization › the study period 𝑇 and prediction horizon ∆𝑇 are initialized. Then, the 

approach adjusts sets and parameters for each sub-problem and sets counter 𝑡 = 1. It next generates 

paths using the Dijkstra algorithm and initializes occupancy and flow variables by running a path-

based simulation (Ukkusuri et al., 2012) for prediction horizon 𝑡 + ∆𝑇 + 1. Next, the algorithm 

goes to Step 2. 

2. Termination Criteria › if 𝑡 ≥ 𝑇, the algorithm runs a link-based CTM using stored turning 

percentages and is terminated. Otherwise, the algorithm goes to Step 3. 

3. Distributed Coordination: first part › Constraints (6-2) and (6-3) and objective function (6-4) 

in the formulation of each sub-problem are updated using occupancy and flow values given from 

either the path-based CTM (when 𝑡 = 1) or the link-based CTM (when 𝑡 ≠ 1). Next, the algorithm 

goes to Step 4. 
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4. Distributed Optimization › The sub-problems are optimized simultaneously for prediction 

horizon 𝑡 + ∆𝑇, and turning percentages are computed using Equation (6-1). The turning 

percentages of the first time step 𝑡 of the current horizon are stored, and the algorithm goes to Step 

5.  

5. Distributed Coordination: second part › The algorithm sets 𝑡 = 𝑡 + 1. The link-based CTM 

simulation is run for prediction horizon 𝑡 + ∆𝑇 + 1 using turning percentages from the distributed 

optimization step. The algorithm next goes to Step 2. 

a. Benchmark Solutions 

To evaluate the solutions found by DOCA-SODTA, the SODTA optimization problem is 

solved centrally using CPLEX. CPLEX was run on a Linux-based cluster with 150.0 GB of 

memory. 

6.5. Test Network 

The approach was first tested on a portion of the downtown Springfield network in Illinois, as 

shown in Figure 6-3. This network consists of 20 (4×5) intersections with one-way and two-way 

streets. All intersections are signalized with pre-timed signal timing parameters. We considered 15 

OD pairs, and the network was loaded with three fixed and three time-variant demand profiles, see 

Table 6-3. The total study period was 60 minutes which included 30 minutes of loading the 

network.  Six test scenarios correspond to six demand profiles in Table 6-3, respectively. Another 

test network with 40 (4×10) intersections and 25 OD pairs is created by duplicating the network 

of 20 intersections to evaluate the performance of the approach when the number of decision 

variables and constraints increase. Table 6-2 shows three demand profiles tested for this network. 
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The case study of 20 intersections – Springfield, IL CTM characteristics 

 

The duration of each time step 

(sec) 
6 

The number of cells in each link 2,3, 4 

The total number of cells  316 

The total number of links  387 

Free-flow speed (mph) 25 

Cell length (ft) 220 

The capacity of cells except for 

source and sink cells (veh) 

9, 24, 

36 

Saturation flow rate except for 

source and sink cells (veh/ts/ln) 
3,6, 9 

Capacity and Saturation flow 

rate 

for source and sink cells 

1000 

sec: second, mph: mile per hour, ft: feet, 

veh: vehicle, ts: time step 

Figure 6-3 The case study of 20 intersections and its CTM characteristics 

Table 6-2 Demand profiles for the test network of 40 intersections 

Network of 40 intersections with 25 ODs 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

OD/Demand 

(veh/hr/ln) 

Under-

saturated 

Semi-

saturated 

Over-

saturated 

1 333 500 750 14 333 500 750 

2 267 400 600 15 267 400 600 

3 27 40 60 16 27 40 60 

4 40 60 90 17 40 60 90 

5 267 400 600 18 267 400 600 

6 67 100 150 19 67 100 150 

7 320 480 720 20 320 480 720 

8 200 300 450 21 200 300 450 

9 120 180 270 22 120 180 270 

10 200 300 450 23 200 300 450 

11 120 180 270 24 120 180 270 

12 200 300 450 25 320 480 720 

13 120 180 270     
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Table 6-3 Demand profiles for network with 20 intersections 

Number OD 

Constant Demand 

(veh/hr/lane) 
Variable Demand (veh/hr/lane) 

Profile 

1 

Profile 

2 

Profile 

3 
 

 

1 B-L 333 500 750 

 

2 C-K 333 500 750 

3 D-J 333 500 750 

4 F-O 67 100 150 

5 F-Q 266 400 600 

6 H-O 333 500 750 

 

7 I-N 333 500 750 

8 J-D 333 500 750 

9 K-C 333 500 750 

10 M-A 266 400 600 

11 M-H 67 100 150 

 

12 N-I 333 500 750 

13 O-H 333 500 750 

14 P-G 333 500 750 

15 R-E 333 500 750 

6.6. Results 

6.6.1. General Results and FIFO Implementation 

Table 6-4 shows the network performance measures achieved by applying DOCA and the 

benchmark algorithm to solve SODTA on the test network of 20 intersections using six demand 

patterns. The proposed approach is a heuristic, so it is not guaranteed that the approach provides a 

tight optimality gap in general. However, our numerical results show that a gap of at most 2.39% 

was achieved in the evaluated scenarios. The difference between the number of completed trips 

achieved by the two solutions was less than 0.05% because vehicles had 30 minutes to exit the 
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network. DOCA’s solutions had shorter congestion durations than those of the optimal solutions. 

The reason is that the optimal solutions of the benchmark algorithm suffer from the flow holding 

back issue while DOCA’s solutions avoid it. In other words, the flow may be held as long as it 

does not increase the network-level travel time (i.e., the objective function of the problem). As 

such, the flow holding back phenomena may create unwanted congestions that do not change the 

total travel time.  Note that DOCA found its near-optimal solutions in real-time and reduced the 

computation times in different scenarios between 99.63% and 99.71%. These reductions are 

significant and highlight the capability of the proposed distributed solution technique to obtain 

high-quality solutions very efficiently. The results of implementing FIFO in CTM are also 

included in this table. Considering FIFO has led to more travel times, fewer completed trips, higher 

congestion, and higher CPU time compared to the original DOCA. 

Table 6-4 Network performance measures for scenarios 1-6 in the Springfield network  

Performance 

Measures 
Approach/Gap Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

Objective 

function: 

Total Travel 

Time (hr) 

Optimal Solution 187.1 291.30 489.6 187.5 291.6 499.6 

DOCA 187.5 292.7 499.9 188.1 292.8 511.8 

Gap (%) 0.26 0.47 2.05 0.30 0.43 2.39 

DOCA-FIFO 190.9 294.6 539.6 192.2 294.4 607.1 

Total 

Completed 

Trips (veh) 

Optimal Solution 4590.0 6750.0 9990.0 4590.0 6750.0 9990.0 

DOCA 4590.0 6750.0 9987.1 4590.0 6750.0 9984.9 

Gap (%) 0.00 0.00 0.03 0.00 0.00 0.05 

DOCA-FIFO 4590.0 6749.9 9950.6 4590.0 6740.0 9935.4 

Total 

Congestion 

Duration (hr) 

Optimal Solution 19.7 25.4 30.1 19.6 24.2 33.6 

DOCA 19.2 23.1 27.9 20.0 21.9 34.4 

Gap (%) -2.82 -9.83 -7.71 2.08 -10.41 2.30 

DOCA-FIFO 118.5 108.9 178.9 120.6 102.3 210.6 

Total CPU-

Time (hr) 

Optimal Solution 70.5 73.6 90.6 75.2 79.0 75.1 

DOCA 0.24 0.24 0.26 0.25 0.26 0.28 

Gap (%) -99.7 -99.7 -99.7 -99.7 -99.7 -99.6 

DOCA-FIFO 0.48 0.60 0.73 0.58 0.76 0.81 
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Figure 6-4. A to F show the total travel times found by DOCA and the benchmark algorithm 

for scenarios 1 to 6, respectively. The maximum observed difference was 1.00% across all time 

steps and scenarios. This small difference indicates that the solutions of DOCA are very close to 

the optimal solutions generated by the benchmark algorithm at different time steps of the study 

period.  
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Figure 6-4 Travel time over time steps for scenarios 1-6 in the Springfield network 
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Figure 6-5. A to F show the accumulative number of completed trips in the network over the 

duration of the study period for scenarios 1 to 6, respectively. Both DOCA and the benchmark 

algorithm found solutions with relatively the same accumulative number of completed trips (the 

maximum difference was 0.44%). This small difference shows that not only the total number of 

completed trips were the same, but DOCA also processed the same number of vehicles compared 

to the benchmark algorithm over the duration of the study period.   
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Figure 6-5 Accumulated completed trips over time steps for scenarios 1-6 in Springfield Network 
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Figure 6-6. A to F show the congestion duration for all time steps for scenarios 1 to 6, 

respectively. The congestion duration found by the solutions of DOCA was always within a 1% 

gap from that of the benchmark solutions at each time step.  The portion of time with queued 

vehicles varies over time steps. This congestion duration is less in the initial time steps because 

the network has not got congested yet. Also, the congestion time does not decrease substantially 

until time step 300, when the network starts to be unloaded. DOCA has the same congestion 

duration patterns as the optimal solution in scenarios 1 through 6. As it appears in Figure 6-6. A, 

B, C, and E, the optimal values are mostly higher than DOCA, leading to less total congestion 

duration in DOCA. The reason can be the holding back issue in the optimal solutions that keeps 

vehicles at some cells while there is enough capacity in the downstream cells with no signal 

interruption. 
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Figure 6-6 Congestion duration over time steps for scenarios 1-6 in Springfield network 
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6.6.2. Non-holding Back Solution 

The solutions generated by DOCA are feasible. These solutions are found by giving the sub-

problem level optimal solutions (turning ratios) to the CTM simulation. Therefore, they do not 

have the flow holding-back issue since the simulation does not have a way to hold the flow. Figure 

6-7. A to D show the accumulative departure rates in scenario 1 for 4 source cells. The vehicles 

were sent into the network at a constant rate, which is less than the saturation flow rate at each 

time step. Scenario 1 is selected as it has an under-saturated demand level so that the incoming 

flow to the network is not blocked by other traffic. Therefore, if the incoming flow does not get 

into the network, it is held back by the optimization process. As the figures show, the benchmark 

algorithm has the flow holding back issue, while the solution of DOCA does not have this problem. 

Note that this methodology guarantees non-holding back solutions due to the utilization of 

simulation. However, this approach may not be applicable to other formulations and 

methodologies.  
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Figure 6-7 Accumulative departure rates in scenario 1 for source Cells 1, 67, 89 and 182 

6.6.3. Scalability of DOCA 

Figure 6-8 shows the required CPU time to find the optimal solution for each time step in all 

test scenarios in the Springfield network. DOCA took at most 3.6 seconds to find a near-optimal 

solution, which is considerably shorter than the duration of each time step (six seconds). As a 

result, by assuming a significant safety margin for communications between the sub-problems, the 

solutions are generated in real-time. Even though the solutions for all tested scenarios are found in 

real-time, the approach does not guarantee real-time solutions in general. Note that the proposed 
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methodology was run on a Linux-based cluster with 16.0 GB of memory. The multi-thread 

platform was used in the distributed optimization. 

We used 21 processors and one node for parallelization. Increasing the number of intersections 

will not increase the computational time for optimizing subproblems, but more processors will be 

required for parallelization. Moreover, the computation time of simulation will also increase by 

adding more partitions to the network since its complexity is dependent on network size. One of 

the main reasons for lower runtimes in our approach compared to CPLEX and other heuristics is 

that sub-problems are far less computationally complex and can be optimized in parallel.   

 

Figure 6-8 CPU-time of DOCA for scenarios 1-6 in the Springfield network 

Table 6-5 shows the run-time of each component of DOCA in the Springfield network when 

the study period was 400 time steps. Adding up the run times of all steps except for the 

initialization step and dividing that by the number of time steps gives the average run-time of each 

time step. The initialization step needed at most 0.10 seconds in scenarios 2,3 and 5. This step is a 

one-time process and does not repeat in each time step. The distributed optimization step took at 

most 325.98 seconds in scenario 6. In the distributed coordination step, link-based CTM simulation 
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took at most 8.93 seconds in scenario 6. The time duration of updating Constraints (6-2) and (6-3) 

and the objective function (6-4) in the formulations of sub-problems were at most 60.10 and 612.00 

seconds in scenario 5 for the variable semi-saturated demand profile and scenario 6 for the variable 

oversaturated demand profile, respectively. Finally, the CPU-time for checking the termination 

criterion was negligible. Therefore, the maximum run-time per time step was 3.6 seconds, which 

is less than six seconds, hence the approach is real-time.  

Table 6-5 The computational time for different components of DOCA in the Springfield network 

Run-time for 400 Time Steps (sec) 
Scenario 

1 

Scenario 

2 

Scenario 

3 

Scenario 

4 

Scenario 

5 

Scenario 

6 

Initialization 0.09 0.10 0.10 0.08 0.10 0.08 

Distributed Optimization 220.66 232.57 276.66 230.06 246.87 325.98 

Distributed 

Coordination 

 

Link-based CTM Simulation 8.07 8.62 8.50 8.39 8.90 8.93 

Update Constraints (6-2) and (6-

3) in Sub-problems 
56.17 58.01 58.21 57.75 60.10 60.07 

Update Objective Function (6-4) 569.28 577.73 578.03 590.77 612.00 605.97 

Termination Criteria 0.00 0.00 0.00 0.00 0.00 0.00 

 

We applied DOCA to a network with 40 intersections with 632 cells, 780 links, 400 time steps, 

and 25 OD pairs to test its scalability. The number of decision variables in this network was 

14,120,000. The number of decision variables in the Springfield network was ~4 million. The 

existing studies that deal with thousands of intersections and OD pairs either use exit flow 

functions, point queue models, or link-performance functions. These approaches are aggregated 

and do not provide the accuracy that is required for traffic operation purposes. In this paper, we 

use the CTM model, which is more accurate but at the expense of additional complexity. The 

network of 40 intersections is significantly larger than comparable studies that have used the cell 

transmission model (Aziz and Ukkusuri, 2012; Chiu and Zheng, 2007; Doan and Ukkusuri, 2015). 

The studies solve the problem for 5805 to 489,700 decision variables (Li et al., 2003; Zheng and 
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Chiu, 2011). The algorithm can find solutions very efficiently with at most a 3.13% difference 

from the optimal solution in real-time in the new network. Table 6-6 shows the number of cells, 

links, time steps, and decision variables for case studies with 20 and 40 intersections. By increasing 

the number of intersections, the optimality gap increases by at most 0.51%, and the solutions are 

generated in real-time. 

Table 6-6 DOCA performance by increasing the network size from 20 to 40 intersections  

Demand 

Pattern 

Number of 

intersections 

Number 

of cells 

Number 

of links 

Number 

of time 

steps 

Number 

of 

variables 

Optimality 

gap (%) 

Runtime 

(hr) 

1. Under-

saturated 

20 316 387 400 4,218,000 0.26 0.24 

40 632 780 500 14,120,00 0.36 0.28 

2. Semi-

saturated 

20 316 387 400 4,218,000 0.47 0.26 

40 632 780 500 14,120,00 0.60 0.29 

3. Over-

saturated 

20 316 387 400 4,218,000 2.05 0.27 

40 632 780 500 14,120,00 3.13 0.30 

 

Figure 6-9 shows the required time for optimizing sub-problems over all time steps for both 

networks with 20 and 40 intersections. When the size increases, the number of variables in each 

sub-problem increases only by the number of OD pairs. The number of cells, links, and time steps 

of the horizon remain constant. By increasing the number of intersections from 20 to 40, the 

number of decision variables in each sub-problem has increased by 60%. However, as it is shown 

in the figure, the run-time to generate solutions at each time step has not increased on average. 

This happens because the majority of decision variables will take on the value of zero as the flow 

will be on a small subset of the links.  
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Figure 6-9 Run-time of sub-problems over time steps for networks with 20 and 40 intersections 

6.6.4. Comparison with other heuristics  

This section presents the results of comparing DOCA to the Method of Successive Averages 

(MSA) and the Projection Algorithm (PA) used by Doan and Ukkusuri (2015). The largest test 

network in Doan and Ukkusuri (2015) is the Nguyen-Dupuis network. This network has 57 cells, 

63 links, 4 OD pairs, and 100 time steps for the study period, resulting in 48,000 decision variables. 

The loading horizon contains 80 time steps, and each time step is 1 minute. It is assumed that each 

OD pair has only three possible paths, but we relax this assumption in DOCA. The Nguyen-

Dupuis’ network is decomposed into two regions for creating sub-problems in DOCA. The two 

regions have 30 and 27 cells. They also have 36 and 31 links, respectively, from which four links 

are shared.  

Table 6-7 shows the required number of iterations, computation time, and optimality gap for 

MSA, PA, and DOCA for ten different scenarios. The scenarios differ in the demand level. MSA 

and PA are iterative approaches and required 200 and 25 iterations at most to meet the termination 
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criterion, respectively. However, DOCA is not an iterative approach, and it generates solutions for 

each time step in real-time. The computational time for MSA and PA is reported for the total 

number of iterations, and for DOCA, it is for the total number of time steps. The computational 

time of DOCA is significantly faster than MSA and PA. The optimality gap is 0.00% for DOCA, 

but the relative gap changes from 0.17 to 4.29% in other heuristics.  

Table 6-7 Performance comparison of MSA, PA, and DOCA for Nguyen-Dupuis Network 

Scenarios 
OD 

demand 

Number of iterations 
Computational time 

(minute) 

Relative Gap/Optimality 

Gap 

MSA PA DOCA MSA PA DOCA MSA PA DOCA 

1 400 200 9 NA* 80 3.5 0.19 4.29 0.17 0.00 

2 500 200 8 NA 80 3.5 0.19 3.9 0.2 0.00 

3 600 200 10 NA 82 4 0.19 3.35 0.18 0.00 

4 700 200 9 NA 81 4 0.19 2.67 0.2 0.00 

5 800 200 13 NA 82 5.5 0.19 1.77 0.19 0.00 

6 900 200 20 NA 85 9 0.19 1.68 0.17 0.00 

7 1000 200 19 NA 85 9 0.19 1.97 0.19 0.00 

8 1100 200 22 NA 85 10 0.20 1.97 0.19 0.00 

9 1200 200 25 NA 86 11 0.20 1.53 0.19 0.00 

10 1300 200 25 NA 86 11 0.21 1.48 0.2 0.00 

*NA: Not Applicable: DOCA is not an iterative approach. 

 

We also plotted the required time to generate solutions for each time step by DOCA in Figure 

6-10 for all scenarios tested in the Nguyen-Dupuis network. The run-time varies from 0.08 to 0.19 

among different scenarios and time steps.  



  

131 

 

Figure 6-10 Run-time of DOCA over time steps for the Nguyen-Dupuis network and scenarios 1-10 
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CHAPTER 7. TRAFFIC CONGESTION MANAGEMENT IN 

URBAN STREET NETWORK BOTTLENECKS  

Congestion pricing has been studied widely as an effective approach to decrease traffic 

congestion and generate revenue for maintaining and building infrastructure. Congestion pricing 

techniques also encourage people to use public transportation during peak hours. The congestion 

pricing concept has been introduced by Pigou (1912) and Vickrey (1969) more than 10 decades 

ago. Congestion pricing has been implemented mainly by tolling through currency or tokens. 

Tolling through currency or dollars is a form of price regulation that enforces a fixed price for 

using a network area or specific links. Tolling through tokens or permits is a form of quantity 

regulation that provides variable distribution and quantity control opportunities. Despite tolling 

through currency, the maximum number of travelers using tokens is fixed (de Palma et al., 2018).  

In tolling through currency, toll levels or prices should be determined constantly to stay 

adaptive and react to daily changes in demand and supply. Constant changes in prices can impose 

control costs and public opposition (de Palma et al., 2018). Moreover, there exists asymmetric 

information between system managers and travelers. The system manager needs detailed 

information on travelers' demand, the value of time, arrival time, etc. to determine toll levels. 

However, this information is private, not accessible, or very hard to obtain. The lack of accurate 

or complete information may lead to non-optimal toll levels that result in the failure of tolling 

systems and economic loss (Lin et al., 2011a; Sharon et al., 2017).  

Tolling through tokens or credits is proposed as an alternative to tolling through dollars. The 

new alternative has shown to be more equitable with more public acceptance than the price 

regulation (de Palma et al., 2018), but it has some major drawbacks. In finding the supply of tokens, 

permit distribution, or their price, tolling through tokens can face a similar problem in tolling 
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through currency in price determination. How to distribute tokens among travelers can have a 

significant effect on the system and is not straightforward to determine. Travelers can consume 

allocated credits gradually at any time during a cycle which depends on travelers’ budgeting 

behaviors and mobility needs. Therefore, the behavior of travelers in consuming credits at different 

times in a cycle can affect traffic congestion adversely. In addition, strategies should be designed 

for cases when travelers have used their cycle credits but are in need of emergency trips 

(Kockelman and Kalmanje, 2005; Wu et al., 2012; Yang and Wang, 2011).  

In the third group of tolling approaches, travelers are involved in a competitive process for 

using certain parts of a transportation system with limited roadway capacity. This approach can 

create market competition by letting drivers determine the toll price or simply personalized pricing. 

Research has shown economic shocks can be handled faster and more efficiently in market 

competition compared to markets that are controlled centrally (Basar and Cetin 2017). Researches 

in this area are in the primary stages of examining public perception and the current studies are 

simulation-based that lack a decision support system. In this chapter, we design a mathematical 

formulation and a solution technique for congestion management at bottlenecks in urban street 

networks with similar concepts to this group of approaches.  

7.1. Problem Description 

Consider a portion of an urban street network and a study period in which traffic congestion 

occurs. One example of this area is downtown during rush hours. High traffic congestion in an 

urban street network can occur due to bottlenecks caused by limited capacity. Our objective is to 

alleviate traffic congestion and generate revenue using a congestion management approach. 

Considering the road segments with bottlenecks, we create a set of paths that passes each of these 

segments. Then, these paths are offered to travelers for submitting their Willingness To Pay 
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(WTP). 

This approach has two main sets of players: a system manager and travelers. The goal of the 

system manager is to minimize the total travel time of the system and maximize revenue. The 

system manager informs travelers about options for WTP submission. Travelers present their WTP 

values to use paths passing network bottlenecks. The system manager selects some travelers with 

WTP submissions and determines their assignment to paths with bottlenecks. If a traveler is not 

selected in the selection and allocation process, she/he should use an alternative path for her/his 

trip.  

There is a tradeoff between minimizing the total travel time and maximizing revenue because 

assigning more travelers, who submit their WTPs, to roads will increase the revenue, but it will 

also increase the total system travel time. The goal of travelers is to minimize their individual 

travel times considering the enforced assignment of travelers with WTP submission. The following 

sections provide the formulation and solution technique for the proposed approach. We used the 

cell transmission model to model network flows in the proposed formulation. Genetic and 

projection algorithms are developed to solve the formulation. 

7.2. Model Description and Mathematical Formulation 

The problem includes two agents: a system manager and travelers. The first part of formulation 

is an allocation problem in which the system manager selects the best travelers with WTP 

submission and allocates them to paths with bottlenecks to minimize total travel time and 

maximize revenue. This part is an integer program with binary decision variables which take the 

value of one if a traveler is assigned to a path with bottleneck, and zero otherwise. The system 

manager wants to find the best decisions for the selection and allocation of travelers with WTP 

submission, providing path options considering network bottlenecks, and receiving WTPs. This 
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decision-making process requires the manager to consider the response of other travelers to the 

selection and allocation decisions and the decision impact on the total travel time of the system. 

This consideration leads to a second part of this problem. 

The second part of formulation is a dynamic user equilibrium problem that is formulated using 

variational inequalities. At this part, travelers choose a path to minimize their travel time, and 

travelers with WTP submissions are routed through paths with bottlenecks considering the results 

of the assignments from the first part of the formulation. We now present a mathematical 

formulation for the described approach. Table 7-1 presents the definition of sets, decision 

variables, and parameters used in this chapter.  

Table 7-1 Definition of sets, decision variables, and parameters used in Chapter 7 

Sets  

𝑇 The set of all time steps 

𝑇′ The set of time steps for departure 

𝐶 The set of all network cells 

𝐶𝑂 The set of all source cells 

𝐶𝑆 The set of all sink cells 

𝐶𝐼 The set of all intersection cells 

𝐶𝐷 The set of diverge cells 

𝐶𝑂𝐷 The set of Origin-Destination pairs 

𝑃(𝑖) The set of all predecessors to cell 𝑖 ∈ 𝐶 

𝑆(𝑖) The set of all successors to cell 𝑖 ∈ 𝐶 

𝑃 The set of all paths 

𝑅 The set of road segments 

𝐵 The set of travelers with WTP submission 

𝐿(𝑖) The set of paths for traveler 𝑖 ∈ 𝐵 with WTP submission  

𝑄 The set of all paths for traveler 𝑖 ∈ 𝐵 with WTP submission 
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Table 7-1 (continued) 

𝐾 
The set of all paths for travelers who do not submit any WTP and travelers 

who do not win in the selection process 

𝑆 The set of feasible solutions 

Parameters 

𝜏 The duration of each time step 

𝐹𝑖 The saturation flow rate at cell 𝑖 ∈ 𝐶 

𝑣 The value of time for travelers 

𝑀𝑖 The maximum number of vehicles that cell 𝑖 ∈ 𝐶 can accommodate 

𝑔𝑖
𝑡 

A binary parameter to define signal status at intersection cell 𝑖 ∈ 𝐶𝐼 at time step 

𝑡 ∈ 𝑇. Zero and one values indicate red and green signals, respectively. 

𝑓𝑖
𝑡 

The variable saturation flow rate of intersection cell 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇 

that is equal to 𝑔𝑖
𝑡𝐹𝑖 

𝜔𝑖 The capacity of road segment 𝑖 ∈ 𝑅 

𝜋𝑖
𝑝
 The price that traveler 𝑖 ∈ 𝐵 will pay for using path 𝑝 ∈ 𝐿(𝑖)  

𝜃(𝒙) Total travel time function that is equal to ∑ ∑ ∑ 𝑣𝜏𝑥𝑖
𝑡,p

𝑖∈ 𝐶\𝐶𝑆𝑡∈𝑇𝑝∈𝑃  

𝜇 An arbitrary small and positive number 

𝜊𝑡,𝑡′,𝑝 
An auxiliary variable for average travel time estimation with time step 𝑡 ∈ 𝑇, 

departure time 𝑡 ∈ 𝑇′, and path 𝑝 ∈ 𝑃  

𝑂(𝑝) Origin of path 𝑝 ∈ 𝑃 

𝐷(𝑝) Destination of path 𝑝 ∈ 𝑃 

𝑟𝑡,𝑝 Departure rate at time step 𝑡 ∈ 𝑇 for path 𝑝 ∈ 𝑃 

𝒓 A vector of departure rates 

𝒓∗ A vector of optimal departure rates 

𝜗𝑡,𝑝 Average travel time estimation at time step 𝑡 ∈ 𝑇 for path 𝑝 ∈ 𝑃 

𝝑 The vector of average travel times 

𝜆 Step size used in projection algorithm 

d 
The vector of demand for travelers who do not participate or win in WTP 

submission 

𝜼 
The vector of path flows that represents any feasible dynamic traffic 

assignment 

𝜼∗  
The vector of path flows that represents user optimal dynamic traffic 

assignment 



  

137 

Table 7-1 (continued) 

𝝍(𝜼∗, 𝝑) A vector that represents the path costs  

𝑑𝑖
𝑡,𝑝(𝒃, 𝒅) Demand function defined for source cell 𝑖 ∈ 𝐶𝑂 time step 𝑡 ∈ 𝑇 in path 𝑝 ∈ 𝑃 

𝜒𝑖
0,𝑝

 Initial values for 𝑥𝑖
𝑡,𝑝

 

ℙ The feasible region of the second part of the formulation  

𝔻 Feasible region to optimize departure rates 

𝒹𝑡,𝑜𝑑 

The demand of travelers who do not submit any WTP and travelers who do not 

win in the selection process at time step 𝑡 ∈ 𝑇 for origin-destination pair 𝑜𝑑 ∈
𝑂𝐷 

𝜌𝑡,𝑝 
The demand of travelers with WTP submission at time step 𝑡 ∈ 𝑇 for path 𝑝 ∈
𝑃 

𝜑𝑖  The selection probability of solution 𝑖 

𝜛𝑖 
The fitness value or objective function of the first part of formulation for 

solution 𝑖 

𝑝𝑚 Mutation percentage 

𝑝𝑐 Crossover percentage 

𝜎𝑖
𝑝

 
A binary parameter which is one if path 𝑝 ∈ 𝑃 passes road segment 𝑖 ∈ 𝑅 and 

zero otherwise  

Decision Variables 

𝑥𝑖
𝑡,𝑝

 The number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 in path 𝑝 ∈ 𝑃 

𝑦𝑖𝑗
𝑡,𝑝

 
The number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at 

time step 𝑡 ∈ 𝑇 in path 𝑝 ∈ 𝑃 

𝑏𝑖
𝑝
 

A binary variable which is 1 if traveler 𝑖 ∈ 𝐵 with WTP submission is 

assigned to path 𝑝 ∈ 𝐿(𝑖), and zero otherwise 

Variables  

𝑥𝑖
𝑡
 The total number of vehicles in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 

𝑦
𝑖𝑗

𝑡
 

The total number of vehicles flowing from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈
𝑆(𝑖) at time step 𝑡 ∈ 𝑇  

𝜍𝑖𝑗
𝑡  

The total number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 heading 

to successor cell 𝑗 ∈ 𝑆(𝑖)  

𝜚𝑖𝑗
𝑡,𝑝

 
The number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 heading to 

cell 𝑗 ∈ 𝑆(𝑖) for path 𝑝 ∈ 𝑃 

b The vector of solutions for 𝑏𝑖
𝑝
 for traveler 𝑖 ∈ 𝐵 and path 𝑝 ∈ 𝐿(𝑖) 

z A vector of solutions 

𝒛∗ A vector of optimal solutions 
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7.2.1. First Part of Formulation  

The formulation for finding an optimized assignment of travelers to the network paths with 

bottlenecks is presented in this section. The objective function (7-1) has two parts: minimization 

of total travel time and maximization of revenue.  

The total travel time is estimated using the solution from the second part of the formulation 

based on the behavior of other travelers on route selection. Using the second part of the 

formulation, the number of vehicles 𝑥𝑖
𝑡,𝑝

 in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 in path 𝑝 ∈ 𝑃 is obtained. 

Then, the total travel time is computed by multiplying 𝑥𝑖
𝑡,𝑝

 by the duration of each time step 𝜏 and 

summing the result over all paths 𝑝 ∈ 𝑃, time steps 𝑡 ∈ 𝑇, and cells 𝑖 ∈  𝐶 expect for sink cells 𝐶𝑠, 

∑ ∑ ∑ 𝜏𝑥𝑖
𝑡,𝑝

𝑖∈ 𝐶\𝐶𝑆𝑡∈𝑇𝑝∈𝑃  . 

Then, the total travel time is multiplied by the value of time 𝜐 and converted to an equivalent 

monetary value for having the same unit as the revenue expression which is the second part of the 

objective function. The resultant expression is 𝜃(𝒙) = ∑ ∑ ∑ 𝑣𝜏𝑥𝑖
𝑡,p

𝑖∈ 𝐶\𝐶𝑆𝑡∈𝑇𝑝∈𝑃 . We use 𝜃(𝒙) to 

denote the total travel time function. Notation 𝒙 presents a vector of solutions for 𝑥𝑖
𝑡,𝑜𝑑

. Note that 

the value of time can be estimated using methodologies in literature, and the value is mainly 

determined based on household incomes and compensations (Federal Highway Administration, 

2005; Oregon Department of Transportation, 2004).  

In the second expression, the revenue is found by multiplying the binary variable 𝑏𝑖
𝑝
 with the 

WTP value 𝜋𝑖
𝑝
 and summing the result over all travelers 𝑖 ∈ 𝐵 with WTS submission and paths 

𝑝 ∈ 𝐿(𝑖), ∑ ∑ 𝑏𝑖
𝑝

𝑖∈𝐵𝑝∈𝐿(𝑖) 𝜋𝑖
𝑝
.  

𝑚𝑖𝑛 𝜃(𝒙) − ∑ ∑ 𝑏𝑖
𝑝

𝑖∈𝐵𝑝∈𝐿(𝑖) 𝜋𝑖
𝑝

  (7-1) 

Constraint (7-2) ensures that each traveler with WTP submission is assigned to no more than 
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one path. The summation of binary variables 𝑏𝑖
𝑝
 over all paths 𝐿(𝑖) is set to be less than or equal 

to one. This constraint is written for each traveler 𝑖 ∈ 𝐵. 

∑ 𝑏𝑖
𝑝

𝑝∈𝐿(𝑖)

≤ 1 ∀𝑖 ∈ 𝐵 (7-2) 

Constraint (7-3) limits the number of travelers with WTP submissions assigned to road 

segments that are open for WTP submissions. The total number of travelers assigned to road 

segment 𝑖 ∈ 𝑅 is computed by ∑ ∑ 𝑏𝑖
𝑝

𝜎𝑟
𝑝

𝑖∈𝐵𝑝∈𝐿(𝑖) . We use 𝜎𝑟
𝑝

 to denote a binary parameter which 

is one if the path passes road segment 𝑟 ∈ 𝑅, and it is zero, otherwise. Hence, if a traveler is 

assigned to the path that passes a road segment, this traveler is considered in the capacity constraint 

of the corresponding road segment. Let 𝜔𝑟 denotes the capacity of road segment 𝑟 ∈ 𝑅. The 

computed expression ∑ ∑ 𝑏𝑖
𝑝𝜎𝑟

𝑝
𝑖∈𝐵𝑝∈𝐿(𝑖)  is set to be less than or equal to 𝜔𝑖. 

∑ ∑ 𝑏𝑖
𝑝𝜎𝑟

𝑝 ≤ 𝜔𝑟

𝑖∈𝐵𝑝∈𝐿(𝑖)

 ∀𝑟 ∈ 𝑅 (7-3) 

7.2.2. Second Part of Formulation 

The second part of the formulation is modeled as a variational inequality in (7-4) since it cannot 

be modeled as a CTM-based closed-form formulation for capturing UEDTA (Lin et al., 2011a). 

We use 𝜼 and 𝜼∗to show a vector of feasible path flows for DTA and a vector of optimal path flows 

for UEDTA, respectively. Notation 𝝍 represents a vector for path costs, and 𝝑 shows a vector of 

average travel times. Inequality (7-4) shows that the cost of an optimal path flow set for UEDTA 

is less than or equal to the cost of any feasible DTA path flows, i.e.,  𝝍(𝜼∗, 𝝑)′𝜼 ≥ 𝝍(𝜼∗,  𝝑)′𝜼∗.  

𝝍(𝜼∗, 𝝑)′(𝜼 − 𝜼∗) ≥ 0          𝜼 ∈ ℙ (7-4) 

Set ℙ is the feasible region of the second part of the formulation. The following constraints (7-



  

140 

5)-(7-20) shape the region ℙ using variables 𝑥𝑖
𝑡,𝑝

 and 𝑦𝑖𝑗
𝑡,𝑝

. Let 𝑥𝑖
𝑡,𝑝

 denote the number of vehicles 

in cell 𝑖 ∈ 𝐶 at time step 𝑡 ∈ 𝑇 with path 𝑝 ∈ 𝑃 and 𝑦𝑖𝑗
𝑡,𝑝

 denote the number of vehicles flowing 

from cell 𝑖 ∈ 𝐶 to downstream cell 𝑗 ∈ 𝑆(𝑖) at time step 𝑡 ∈ 𝑇 with path 𝑝 ∈ 𝑃. Constraint (7-5) 

set the initial state of the network by putting occupancy 𝑥𝑖
0,𝑝

at time step 0 for path 𝑝 ∈ 𝑃 equal to 

initial values 𝜒𝑖
0,𝑝

. 

𝑥𝑖
0,𝑝 = 𝜒𝑖

0,𝑝
 ∀𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃 (7-5) 

Constraints (7-6), (7-7), and (7-8) are conservation flow constraints for all cells except sink and 

resource cells, resource cells, and sink cells, respectively. The demand parameter 𝑑𝑖
𝑡,𝑝

 in constraint 

(7-7) is a fuction of travelers with WTP submission and the rest of travellers demand. Let 𝒃 and 𝒅 

denote vectors of solutions for travelers with WTP submission assignment and other travelers 

demand, respectively. 

𝑦𝑘𝑖
𝑡,𝑝 − 𝑦𝑖𝑗

𝑡,𝑝 = 𝑥𝑖
𝑡+1,𝑝 − 𝑥𝑖

𝑡,𝑝
 

∀𝑡 ∈ 𝑇, 𝑖 ∈  𝐶 \ {𝐶𝑆 ,  𝐶𝑂}, 𝑘 ∈ 𝑃(𝑖), 𝑗

∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 

(7-6) 

𝑑𝑖
𝑡,𝑝(𝒃, 𝒅) − 𝑦𝑖𝑗

𝑡,𝑝 = 𝑥𝑖
𝑡+1,𝑝 − 𝑥𝑖

𝑡,𝑝
 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑂 , 𝑗 ∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 

(7-7) 

𝑦𝑘𝑖
𝑡,𝑝 = 𝑥𝑖

𝑡+1,𝑝 − 𝑥𝑖
𝑡,𝑝

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝑆, 𝑘 ∈ 𝑃(𝑖), 𝑝 ∈ 𝑃 

(7-8) 

Equation (7-9) determines the aggregate flow for all cells 𝑖 ∈ 𝐶 except diverge cells 𝑖 ∈ 𝐶𝐷 and 

intersection cells 𝑖 ∈ 𝐶𝐼 at time step 𝑡 ∈ 𝑇. The minimum function in this equation follows the 

CTM rules for determining flow. The aggregated occupancy and flow are noted by 𝑥𝑗
𝑡
 and 𝑦

𝑖𝑗

𝑡
, 

respectively. To find the disaggregated flow for each path 𝑝 ∈ 𝑃, the aggregated flow 𝑦
𝑖𝑗

𝑡
 is 

distributed among the paths using 
𝑥𝑖

𝑡,𝑝

𝑥𝑖
𝑡  ratio, as shown in equation (7-10). The if-condition in (7-10) 



  

141 

can be written as equation (7-11) by adding an arbitrary small and positive number 𝜇 to the 

denominator of 
𝑥𝑖

𝑡,𝑝

𝑥𝑖
𝑡 . 

𝑦
𝑖𝑗

𝑡
= min{𝑥𝑖

𝑡
, 𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗

𝑡
} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\{𝐶𝐷 , 𝐶𝐼}, 𝑗

∈ 𝑆(𝑖) 

(7-9) 

𝑦𝑖𝑗
𝑡,𝑝 = {

min{𝑥𝑖
𝑡

, 𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗
𝑡
}

𝑥𝑖
𝑡,𝑝

𝑥𝑖
𝑡     𝑥𝑖

𝑡
> 0

0                                                     𝑥𝑖
𝑡

≤  0

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\{𝐶𝐷 , 𝐶𝐼}, 𝑗

∈ 𝑆(𝑖) 

(7-10) 

𝑦𝑖𝑗
𝑡,𝑝 = min{𝑥𝑖

𝑡
, 𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗

𝑡
} ×  

𝑥𝑖
𝑡,𝑝

𝑥𝑖
𝑡

+ 𝜇
 

∀ 𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\{𝐶𝐷 , 𝐶𝐼}, 𝑗

∈ 𝑆(𝑖), 𝑝

∈ 𝑃 

(7-11) 

The constraints in (7-12), (7-13), and (7-14) find flow for intersection cell 𝑖 ∈ 𝐶𝐼. We have used 

𝑔𝑖𝐹𝑖 instead of 𝐹𝑖 in (7-9), (7-10), and (7-11) to model variable saturation flow rates for these cells. 

𝑦
𝑖𝑗

𝑡
= min{𝑥𝑖

𝑡
, 𝑔𝑖𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗

𝑡
} ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 , 𝑗 ∈ 𝑆(𝑖) 

(7-12) 

𝑦𝑖𝑗
𝑡,𝑝

= {
min{𝑥𝑖

𝑡
, 𝑔𝑖𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗

𝑡
}

𝑥𝑖
𝑡,𝑝

𝑥𝑖
𝑡      𝑥𝑖

𝑡
> 0

0                                                            𝑥𝑖
𝑡

≤ 0

 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 , 𝑗 ∈ 𝑆(𝑖) 

(7-13) 

𝑦𝑖𝑗
𝑡,𝑝 = min{𝑥𝑖

𝑡
, 𝑔𝑖𝐹𝑖 , 𝐹𝑗  ,  𝑀𝑗 − 𝑥𝑗

𝑡
} ×  

𝑥𝑖
𝑡,𝑝

𝑥𝑖
𝑡

+ 𝜇
 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐼 , 𝑗 ∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 

(7-14) 

Let 𝜍𝑖𝑗
𝑡  and 𝜚𝑖𝑗

𝑡,𝑝
denote the total number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 𝑡 ∈ 𝑇 

heading to successor cell 𝑗 ∈ 𝑆(𝑖) and the number of vehicles in diverge cell 𝑖 ∈ 𝐶𝐷 at time step 

𝑡 ∈ 𝑇 heading to cell 𝑗 ∈ 𝑆(𝑖) for path 𝑝 ∈ 𝑃. Equations (7-15) and (7-16) determine the outflow 
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of diverging cells using two if-conditions. In (7-15),  the maximum outflow 𝑦
𝑖𝑗

𝑡
 is the minimum of 

𝜍𝑖𝑗
𝑡 , 𝐹𝑗, and 𝑀𝑗 − 𝑥𝑗

𝑡
, when ∑ min (𝜍𝑖𝑗

𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗
𝑡
) ≤ 𝐹𝑖𝑗∈𝑆(𝑖) . In (7-16), since 

∑ min(𝜍𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
) > 𝐹𝑖𝑗∈𝑆(𝑖) , the aggregated flow 𝑦

𝑖𝑗

𝑡
 is limited to saturation flow rate 𝐹𝑖, 

and saturation flow rate 𝐹𝑖 should be shared among all outgoing links from a diverge cell. Equation 

(7-17) is a compact form of (7-15) and (7-16). Equation (7-18) finds the disaggregated flow 𝑦𝑖𝑗
𝑡,𝑝

 

by distributing the aggregated flow 𝑦𝑖𝑗
𝑡,𝑝

using 
𝜚𝑖𝑗

𝑡,𝑝

𝜍𝑖𝑗
𝑡 +𝜇

 ratio. 

𝑖𝑓 ∑ 𝑚𝑖𝑛 (𝜍𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
) ≤ 𝐹𝑖

𝑗∈𝑆(𝑖)

 

𝑦
𝑖𝑗

𝑡
= 𝑚𝑖𝑛 (𝜍𝑖𝑗

𝑡 , 𝐹𝑗 , 𝑀𝑗 − 𝑥𝑗
𝑡
) 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 

(7-15) 

𝑖𝑓 ∑ 𝑚𝑖𝑛 (𝜍𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
) > 𝐹𝑖

𝑗∈𝑆(𝑖)

 

𝑦
𝑖𝑗

𝑡
=

𝑚𝑖𝑛 (𝜍𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
)

∑ 𝑚𝑖𝑛 (𝜍𝑖𝑗
𝑡 , 𝐹𝑗  , 𝑀𝑗 − 𝑥𝑗

𝑡
)𝑗∈𝑆(𝑖)

× 𝐹𝑖 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 

(7-16) 

𝑦
𝑖𝑗

𝑡

= 𝑚𝑖𝑛 (𝜍𝑖𝑗
𝑡 , 𝐹𝑗 , 𝑀𝑗

− 𝑥𝑗
𝑡
)𝑚𝑖𝑛{1,

𝐹𝑖

∑ 𝑚𝑖𝑛(𝜍𝑖𝑗
𝑡 , 𝐹𝑗 , 𝑀𝑗 − 𝑥𝑗

𝑡
)𝑗∈𝑆(𝑖) + 𝜇

} 

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖) 

(7-17) 

𝑦𝑖𝑗
𝑡,𝑝 = 𝑦

𝑖𝑗

𝑡
×  

𝜚𝑖𝑗
𝑡,𝑝

𝜍𝑖𝑗
𝑡 + 𝜇

 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶𝐷 , 𝑗 ∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 

(7-18) 

Constraints (7-19) and (7-20) are non-negativity constraints for occupancy 𝑥𝑖
𝑡,𝑝

 and flow 𝑦𝑖𝑗
𝑡,𝑝

 

variables, respectively. 
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𝑥𝑖
𝑡,𝑝

≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶, 𝑝 ∈ 𝑃 (7-19) 

𝑦𝑖𝑗
𝑡,𝑝 ≥ 0 ∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐶\𝐶𝑆, 𝑗 ∈ 𝑆(𝑖), 𝑝 ∈ 𝑃 (7-20) 

7.3. Solution Technique 

In this section, we present a heuristic solution technique that integrates Projection Algorithm 

and Genetic Algorithm (GA) to solve the described formulation. The projection algorithm is 

widely employed to solve a system of variational inequality. It is also used to find an 

approximation for the solution of UEDTA. Even though the method of successive averages can 

also be used to find user equilibrium flows, the projection algorithm has shown better 

performances with higher quality solutions compared to the method of successive averages. The 

projection algorithm switches the demand among paths such that a UE solution is found. This 

algorithm involves solving a quadratic program, simulating the network, and finding travel times 

iteratively (Doan and Ukkusuri, 2015; Facchinei and Pang, 2003; Nie and Zhang, 2010; Ukkusuri 

et al., 2012). Moreover, GA explores the program feasible region to find good quality solutions. 

GA is inspired by the concepts of natural evolution and genetics (Goldberg, 1989; Holland, 1975) 

and is shown to be practical in solving computational optimization problems for transportation 

systems (Hajbabaie, 2012; Hajbabaie and Benekohal, 2011b; Liu and Song, 2019; Shepherd and 

Sumalee, 2004). There are also several research records of promising results to solve congestion 

pricing problems using GA (Fan and Gurmu, 2014; Fan, 2016; Liu et al., 2013; Shepherd and 

Sumalee, 2004; Zhang and Yang, 2004). 

The proposed solution technique includes four main parts: initialization, evaluation, variation, 

and selection. Figure 7-1 presents a flow chart of the solution technique.  
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Figure 7-1 The flowchart of solution technique for the bottleneck congestion management approach 

7.3.1. Initialization 

The initialization generates a feasible solution pool. Since the decision variables 𝑏𝑖
𝑝
 are binary, 

binary strings are used to show potential solutions. The strings have similar lengths, and the length 

of each binary string or candidate solution is equal to the summation of the number of paths for all 

travelers with WTP submission (i.e., size of binary decision variable 𝑏𝑖
𝑝
). 

 After creating a solution by randomly generating a vector of 0 and 1 for variable 𝑏𝑖
𝑝
 for traveler 

𝑖 ∈ 𝐵 and paths 𝑝 ∈ 𝐿(𝑖), the feasibility of the solution is checked, and if the solution is feasible, 

it is added to the solution pool. For checking the feasibility, we check if constraints (7-2) and (7-

3) are met. If these constraints are not satisfied, we project the current solution onto a feasible 

region that is formed by constraints (7-2) and (7-3). In other words, we solve the following 
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quadratic problem with a minimization objective function (7-21) and constraints (7-2) and (7-3) to 

find the closest feasible solution to the current solution such that the new solution is feasible. Let 

𝒛 and 𝒃 denote a vector of decision variables and a vector of assignment of travelers with WTP 

submission , respectively. Note that ‖. ‖ is the second norm operator and hence makes the objective 

function quadratic.  

𝑚𝑖𝑛 ‖𝒛 − 𝒃‖  
(7-21) 

Constraints (7-2) and (7-3)  
 

7.3.2. Evaluation: Solving the UEDTA problem 

In this section, we present an algorithm to determine the quality of each solution with a real 

number, i.e., fitness. We should find the quality of the solutions by computing the objective 

function values of the first part of formulation for all solutions in the pool. This objective function 

has two parts: total travel time and revenue. The total travel time should be estimated by solving a 

UEDTA problem. Since UEDTA does not have a closed form, we use the projection algorithm to 

solve UEDTA. The revenue part of the objective function can be computed by multiplying the 

travelers assignment 𝑏𝑖
𝑝
 by WTP value 𝜋𝑖

𝑝
 and summing the result over all travelers and paths 

involved in the WTP submission process, i.e., ∑ ∑ 𝑏𝑖
𝑝

𝑖∈𝐵𝑝∈𝐿(𝑖) 𝜋𝑖
𝑝
. 

The projection algorithm proposed by Doan and Ukkusuri (2015) is adopted to solve the 

UEDTA problem. This algorithm starts with some initial demand for paths and departure route 

choice rates. The network is then simulated to find occupancy and flow across the network, and 

the average travel time is computed using simulation outputs. The number of travelers on each 

path is updated using the negative direction of estimated average travel times. The updated values 

are then projected to the feasible area to find feasible departure rates. The new departure rates are 
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used as initial solutions for the next iteration. This algorithm iterates until the termination criterion, 

which is a specific number of iterations in our case, is met. The departure route choice rates are 

changed over iterations such that a UE solution is found. The projection algorithm is implemented 

to evaluate all solutions simultaneously and in parallel. More details on the steps of the projection 

algorithm are provided below. 

 Considering each solution in the pool, the initial demand profile should be adjusted knowing 

how travelers with WTP submission are assigned to paths with bottlenecks. The demand on these 

paths can be determined considering these travelers’ assignments in the current solution. The 

demand for paths that do not have bottlenecks can be updated by adding the travelers who do not 

win in the selection process to their alternative paths.  

A path-based simulation is then executed to find occupancy 𝑥𝑖
𝑡,𝑝

 and flow 𝑦𝑖𝑗
𝑡,𝑝

 across the 

network. The simulation is described in detail in 4.1.1. Paths and their demands are given as input 

to this step. The average path travel times 𝜗𝑡,𝑝, is computed as shown in (7-22), (7-23), and (7-24) 

similar to a study by Ukkusuri et al., (2012), using the value of occupancy 𝑥𝑖
𝑡,𝑝

 obtained from the 

CTM path-based simulation. The travel time is estimated by comparing the cumulative arrival and 

departure rates in (7-22). We use 𝜊𝑡,𝑡′,𝑝 and 𝑟𝑡,𝑝 to denote an auxiliary variable for average travel 

time estimation and departure rate at time step 𝑡 ∈ 𝑇 with departure time 𝑡′ ∈ 𝑇′ for path 𝑝 ∈ 𝑃, 

respectively.  

𝜊𝑡,𝑡′,𝑝 = 𝑚𝑎𝑥  (0, ∑ 𝑟ℎ,𝑝

𝑡

ℎ=0

− 𝑥𝐷(𝑝)
𝑡′,𝑝 ) ∀𝑡′ ∈ 𝑇′, 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 

(7-22) 

𝜗0,𝑝 =
∑ (𝜊0,ℎ,𝑝 − 𝜊0,ℎ+1,𝑝)ℎ𝑇′−1

ℎ=0

𝑟0,𝑝 + 𝜇
 ∀𝑝 ∈ 𝑃 

(7-23) 
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𝜗𝑡,𝑝

=
∑ (𝜊𝑡,ℎ,𝑝 − 𝜊𝑡,ℎ+1,𝑝 + 𝜊𝑡−1,ℎ+1,𝑝 − 𝜊𝑡−1,ℎ,𝑝)(ℎ − 𝑡)𝑇′−1

ℎ=𝑡

𝑟𝑡,𝑝 + 𝜇
 

∀𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 

(7-24) 

In the next step, the departure rates are updated, as shown in equation (7-25). Let 𝜆 denote a 

step size. The departure rate of iteration 𝑘 + 1 at time step 𝑡 ∈ 𝑇 for path 𝑝 ∈ 𝑃 is found by moving 

the departure rate (𝑟𝑡,𝑝)𝑘 of previous iteration 𝑘 towards the negative direction of average travel 

time 𝜗𝑡,𝑝 considering step size 𝜆. 

(𝑟𝑡,𝑝)𝑘+1 = (𝑟𝑡,𝑝)𝑘 − 𝜆𝜗𝑡,𝑝  ∀𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 (7-25) 

The updated departure rates are now projected onto constraints (7-27) using the following 

problem formulation. The objective function (7-26) minimizes the distance between the previous 

departure rate vector 𝒓 and the new rates obtained by solving this formulation. Let us use 𝒛 and 𝒓 

to denote a vector of variables for departure rates and original departure rates. Constraint (7-27) 

puts the summation of departure rates 𝑟𝑡,𝑝 over all paths 𝑝 ∈ 𝐾 with no bottlenckes that connctes 

origin-destination pair 𝑜𝑑 ∈ 𝑂𝐷 equal to demand for all times 𝑡 ∈ 𝑇′. 

𝑚𝑖𝑛 ‖𝒛 − 𝒓‖  
(7-26) 

∑ 𝑟𝑡,𝑝

𝑝∈𝐾:𝑂(𝑝)=𝑜,𝐷(𝑝)=𝑑

= 𝒹𝑡,𝑜𝑑  ∀𝑡 ∈ 𝑇′, 𝑜𝑑 ∈ 𝐶𝑜𝑑 
(7-27) 

Then, we check the termination criterion. If the termination criterion is met, we stop the 

algorithm. We use the latest result from the CTM simulation to compute the objective function of 

the first part of the formulation. If the termination is not met, a new CTM path-based simulation 

is executed, and we go back to the travel time estimation step.  

This algorithm is summarized in the following steps: 

1. Set 𝑘 = 0. Initialize a feasible departure rate 𝑟0  
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2. Run the simulation 𝐶𝑇𝑀  and compute 𝝑 

3. Update departure rates 𝒓𝑘+1 = 𝒓𝑘 − 𝜆𝝑 

4. Project solutions of step 3 using 𝑎𝑟𝑔𝑚𝑖𝑛
𝒛∈𝔻

‖𝒛 − 𝒓𝑘+1‖2 

5. If the termination is met, stop the algorithm and put 𝒓∗ = 𝒛∗ . Otherwise, set 𝒓𝑘+1 = 𝒛∗, 

𝑘 = 𝑘 + 1 and go to step 2. 

7.3.3. Variation 

In this section, we generate new solutions by making changes to the current solutions to explore 

the feasible region and find better solutions. New solutions are generated using two variation 

operations: crossover and mutation. The crossover operation generates new solutions by 

exchanging several strings between a pair of solutions. The mutation operator changes a few 

strings in a solution to generate solutions that are slightly different and find solutions close to 

current solutions. 

7.3.3.1. Crossover 

We provide a higher probability of selecting the solutions with higher fitness values or objective 

function values of the first part of the formulation. Equation (7-28) shows the calculation of 

selection probability for a solution. Let 𝑆 presents a set of feasible solutions, 𝜑𝑖 denotes the 

selection probability of solution 𝑖 ∈ 𝑆, and 𝜛𝑖 shows the fitness value or objective function value 

of the first part of formulation for the current solution 𝑖 ∈ 𝑆. 

𝜑𝑖 =
𝑒

−
𝜛𝑖

max
𝑖

𝜛𝑖

∑ 𝜑𝑖𝑖
 

∀𝑖 ∈ 𝑆 

(7-28) 

We then use selection probability values 𝜑𝑖 to run a roulette wheel selection or fitness 

proportionate selection algorithm. The roulette wheel selection algorithm selects two solutions for 
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pairing. These solutions are input to the crossover operation, and we implemented one point 

crossover with full replacement to generate two new solutions. The crossing position is selected 

randomly to exchange binary strings. The number of generated solutions from crossover operation 

in each iteration of the proposed solution technique is equal to cross over percentage 𝑝𝑐 multiplied 

by population size. 

The feasibility of two generated solutions from crossover operation is evaluated by checking 

constraints (7-2) and (7-3). If the new solutions are feasible, they are added to the solution pool. 

Otherwise, the solutions are projected on the constraint set of the first part of the formulation. The 

problem with a minimization objective function (7-21) and constraints (7-2) and (7-3) is solved to 

find the closest feasible solutions to the current solution, and the feasible solutions are added to 

the solution pool. 

Then, the feasible solutions are evaluated for quality by running a projection algorithm 

described in section 7.3.2. This algorithm is parallelized using a multi-thread platform in which 

each solution is evaluated on one thread. All evaluations are implemented simultaneously, and the 

objective function values of the first part of formulation as the output of the evaluation operation 

are stored for each solution.  

7.3.3.2. Mutation 

In the mutation operation, a random solution is selected, and a random string of this solution is 

changed from zero to one or vice versa. The number of selected random strings is equal to the 

multiplication of mutation percentage 𝑝𝑚 and the string length. The number of iterations in the 

mutation and added new solutions are also equal to mutation percentage 𝑝𝑚 multiplied by 

population size.  

In case that the generated solution is feasible, it is added to the solution pool. Otherwise, the 
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problem with objective function (7-21) and constraints (7-2) and (7-3) is solved to project the 

solution onto the constraint set of the first part of formulation and find the closest feasible solution 

to the current solution. The feasible solution is then added to the solution pool. All generated 

solutions by mutation operation are evaluated by the projection algorithm, described in section 

7.3.2, in parallel, and the objective function values of solutions are stored. 

7.3.4. Selection 

Once new solutions are generated and added to the solution pool using the variation operation, 

we discard the solutions with the lowest fitness values. The number of removals is equal to the 

number of added solutions in the crossover and mutation operations which is the multiplication of 

the initial population size by 𝑝𝑚 + 𝑝𝑐. The selection operation helps in keeping the same number 

of solutions in the pool over iterations of the proposed solution technique. 

7.4. Test Networks 

In this section, the presented formulation is solved using the proposed solution technique for 

two case studies. The first case study is a portion of the downtown Springfield network in Illinois. 

This network consists of 20 intersections with one-way and two-way streets. All intersections are 

signalized with predefined signal timing parameters. We considered 15 OD pairs, 400 time steps, 

and three demand profiles for this test network. The loading period has 300 time steps, and each 

time step is 6 seconds. Detailed information on demand profiles and CTM network characteristics 

are presented in Figure 7-2. The second test network has 40 (4×10) intersections, 25 ODs, and 500 

time steps. This network is a hypothetical network and is created by duplicating the network of 20 

intersections. Table 7-2 shows three demand profiles for this network. In all cases, demand profile 

1, demand profile 2, and demand profile 3 represent under-saturated, semi-saturated, and over-

saturated demands, respectively. Note that the OD matrix is dynamic. 
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The parameters for the genetic algorithm include population size, crossover probability, and 

mutation probability which are set to 250, 0.5, and 0.2, respectively. The parameter 𝜆 for the 

projection algorithm is set to 0.01, considering the recommendations by Ukkusuri et al., (2012). 

For each OD pair, three paths are considered resulting in a total of 45 paths in the network with 20 

intersections and 75 paths in the network of 40 intersections. Four road segments are considered 

as bottlenecks in both case studies. The number of paths for WTP submission is 18 and 20 for case 

studies of 20 and 40 intersections, respectively. These are the paths that pass the road segments 

which are considered bottlenecks. The value of time is set to $15.31 as suggested by (Oregon 

Department of Transportation, 2004). In a real-world implementation of this approach, WTPs are 

determined by travelers, but for our analysis, it is assumed the WTPs are distributed uniformly 

between zero and four dollars based on the studies on drivers willingness to pay (Brownstone et 

al., 2003; Jou et al., 2012; Li et al., 2010). The WTPs are not demand responsive. The termination 

criterion for the solution technique is 200 iterations. We assume travelers are homogenous.  
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Demand 

(veh/hr/ln)/OD 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Profile 1 333 133 333 333 67 333 333 333 133 133 333 333 333 333 67 

Profile 2 500 200 500 500 100 500 500 500 200 200 500 500 500 500 100 

Profile 3 750 300 750 750 150 750 750 750 300 300 750 750 750 750 150 

The case study of 20 intersections –Springfield, IL CTM characteristics 

 

The duration of each time 

step (sec) 
6 

The number of cells in each 

link 

2,3 

and 4 

The total number of cells  316 

The total number of links  387 

Free-flow speed (mph) 25 

Cell length (ft) 220 

The capacity of cells except 

for source and sink cells 

(veh/cell) 

9, 24, 

and 

36 

Saturation flow rate except 

for source and sink cells 

(veh/ts/cell) 

3,6, 

and 9 

Capacity and Saturation 

flow rate 

for source and sink cells 

1000 

sec: second, mph: mile per hour, ft: 

feet, veh: vehicle, ts: time step 

Figure 7-2 The case study of 20 intersections, its CTM characteristics, and demand patterns 

Table 7-2 Demand profiles for the test network of 40 intersections 

Network of 40 intersections with 25 ODs 

OD/Demand 

(veh/hr/ln) 

Demand 

Profile 1 

Demand 

Profile 2 

Demand 

Profile 3 

OD/Demand 

(veh/hr/ln) 

Demand 

Profile 1 

Demand 

Profile 2 

Demand 

Profile 3 

1 333 500 750 14 333 500 750 

2 267 400 600 15 267 400 600 

3 27 40 60 16 27 40 60 

4 40 60 90 17 40 60 90 

5 267 400 600 18 267 400 600 

6 67 100 150 19 67 100 150 

7 320 480 720 20 320 480 720 

8 200 300 450 21 200 300 450 

9 120 180 270 22 120 180 270 

10 200 300 450 23 200 300 450 

11 120 180 270 24 120 180 270 

12 200 300 450 25 320 480 720 

13 120 180 270     
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7.5. Results 

7.5.1. Solution Technique Performance 

For benchmarking, 3 problems are solved, UEDTA, SODTA, and the proposed approach for 

bottleneck congestion management. The user equilibrium traffic assignment is solved with the 

projection algorithm, described in section 7.3.2. SODTA is solved centrally using CPLEX. The 

presented problem is solved with the proposed solution techniques with projection and genetic 

algorithms.  

In Table 7-3, we compared the total travel time of the proposed solution technique with the total 

travel times obtained from UEDTA and SODTA problems for three demand profiles. According 

to the table, the total travel time of the proposed solution technique is within the bounds created 

by UEDTA and SODTA. We have the minimum total travel time in SODTA since the objective 

of this problem is to minimize the total travel time. UEDTA’s objective is to minimize individual 

travel time. We have reported the total travel time based on the solution obtained from UEDTA. 

In the proposed solution technique, the objective has two parts: minimization of a travel time 

function and maximization of revenue, and, based on its solutions, total travel time is reported. 

The total travel time of our approach has a gap of 0.03%, 0.05%, and 13.08% with UEDTA, and 

a gap of 2.83%, 2.72%, and 4.61% with SODTA for demand profiles 1,2, and 3, respectively. 

When the network has the most congestion in demand profile 3, we can observe the effect of our 

approach better. In this case, the solutions have a 13.08% gap with UEDTA and a 4.61% gap with 

SODTA. The goal of our approach is also to keep the solutions away from a UEDTA behavior and 

as close as possible to SODTA.  
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Table 7-3 Total travel time of UEDTA, SODTA, and our approach in the case study with 20 

intersections with three demand profiles 

Total Travel Time (hr) 

Approach/Demand 
Demand 

Profile 1 

Demand 

Profile 2 

Demand 

Profile 3 

UEDTA 187.19 297.79 597.95 

Proposed Solution 

Technique 
187.13 297.65 519.72 

SODTA 181.98 289.78 496.84 

 

Figure 7-3. a-d presents the total link flow over iterations for our proposed technique, SODTA, 

and UEDTA for the case study of 20 intersections with demand profile 3 (oversaturated demand). 

Four links are selected as link representatives, and each figure shows the total link flow for one 

link. The total link flow is the summation of flow over all time steps and paths on a link. Our 

approach objective is to minimize the total travel time of the system and maximize the revenue. 

Hence, our approach pushes the solutions towards SODTA and away from UEDTA while ensuring 

revenue is maximized. We observe that the total link flow in all figures has stayed close to the 

SODTA solution. Since the objective of our problem is both minimizing total travel time and 

maximizing revenue, the flow may have a gap with the SODTA solution to satisfy the second part 

of the objective function in the first part of the formulation. We also have a considerable gap with 

a UEDTA to avoid the selfish behavior of travelers. 
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(a) Link 1 (b) Link 2 

  
(c) Link 3 (d) Link 4 

 

Figure 7-3 Link flows from the proposed technique, SODTA, and UEDTA for the case study of 20 

intersections with demand profile 3 

Figure 7-4.a, b, and c present the objective function value of the first part of formulation over 

iterations for the 20-intersection network with Demand Profile 1 (under-saturated), Demand 

Profile 2 (semi-saturated), and Demand Profile 3 (oversaturated), respectively. The objective of 

the first part of the formulation is the total travel time function minus revenue, so we expect to see 

a decreasing trend over iteration. The objective is improved by 95.28%, 37.17%, and 15.63% over 

iterations in demand profiles 1,2, and 3, respectively. The changes in the objective are zero after 

iterations 98, 103, and 104, where the solution technique is converged, for under-saturated, semi-

saturated, and oversaturated demand profiles, respectively. In all cases, the convergence happened 

before the termination criterion of 200 iterations. 
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(a) demand profile 1 (b) demand profile 2 

 

(c) demand profile 3 

Figure 7-4 Objective function value of the first part of formulation over iterations for 20 intersections 

and 3 demand profiles 

Figure 7-5 demonstrates a graphical distribution of WTP values for three paths in 2 stages: (1) 

all WTP values for the path and (2) selected WTP values by the proposed approach. The results 

are shown for the case study of 20 intersections with the demand profile 3 (oversaturated).  The 

first two box plots present the distribution of WTP values for Path a. The third and fourth plots are 

for Path b, and the last two plots are for Path c. By comparing the box plots for one path, we 

observe that the highest WTP values are selected by our approach. Hence, the average WTP values 

have increased from $2.02 to $2.76 after selecting travelers with WTP submission for Path a. For 

Path b, the average has increased from $1.87 to $2.59, and, for Path c, the average is increased 

from $1.91 to $2.54. Other measures including median, first quartile, third quartile, minimum, and 
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maximum for WTP values indicate the selection of the highest WTP values by applying the 

approach. 

 

Figure 7-5 The distribution of willingness to pay values in 20 intersections network with demand 

profile 3 

Table 7-4 shows the computation time for each stage and operation in the solution technique 

for three demand patterns, profile 1 (undersaturated), profile 2 (semi-saturated), and profile 3 

(oversaturated) for 20 intersections. The run times are reported for 200 iterations which is the 

required number of iterations to satisfy the termination criterion. The population size is 250. The 

most time-consuming operations are the evaluations of solutions that run the projection algorithm. 

The evaluations in crossover and mutation range from 48.44 to 53.93 minutes. The evaluation 

operation in the initialization has the least times (0.25, 0.26, and 0.27 minutes) since the 

initialization is only implemented in the first iteration. Nothing that the evaluation step in all stages 

is parallelized using a multi-thread approach. The total runtimes are 107.22, 117.35, and 122.34 

minutes for demand profiles 1, 2, and 3, respectively. The increase in demand has increased the 

runtime. 
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Table 7-4 Breakdown of runtimes for the network of 20 intersections for 3 demand profiles 

Stage Operations 
Demand 

Profile 1 

Demand 

Profile 2 

Demand 

Profile 3 

Initialization (min) 

Solution pool 0.00 0.00 0.00 

Feasibility 0.14 0.22 0.38 

Evaluation 0.25 0.26 0.27 

Variation through Cross Over (min) 

Crossover 0.13 0.10 0.08 

Feasibility 3.21 7.96 4.62 

Evaluation 50.43 51.31 53.93 

Variation through Mutation (min) 

Mutation 0.57 1.03 2.27 

Feasibility 4.05 5.72 8.33 

Evaluation 48.44 50.74 52.45 

Selection (min) Removal 0.00 0.01 0.00 

7.5.2. Sensitivity Analysis 

 Figure 7-6 shows the values for total travel time and revenue with different associated weights 

in the objective function for the case study of 20 intersections with a semi-saturated demand profile 

(demand profile 2).  We observe that the lowest values for revenue and total travel time happen 

when their weight is zero and one, respectively, and the highest values occur when their weight is 

one and zero, respectively, as expected. Increasing the weight of revenue has led to an increase in 

revenue, and increasing the weight of total travel time has led to the travel time decrease. 

Decreasing the weight of revenue decreases the revenue and decreasing the weight of total travel 

time increases the total travel time. The model is more sensitive to weights of 1, 0 and 0.8, 0.2 for 

revenue and travel time, respectively, compared to other weight combinations.  
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Figure 7-6 Total travel time and revenue with different associated weights for the case study of 20 

intersections with demand profile 2  

 Figure 7-7 shows the effect of population size on the value of the first part of the formulation 

objective function for the semi-saturated demand profile. For sensitivity analysis, we have selected 

the semi-saturated demand profile as a good representative of both undersaturated and 

oversaturated demand. By increasing the population size from 50 to 250, the objective function 

has improved due to the possibility of finding better solutions in a bigger population. Note that, a 

population of 250 was the maximum population size that we could test on the computer used for 

this analysis, considering the cores and memory resources.  
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Figure 7-7 Objective function value of first part of formulation over iterations for different population 

sizes for 20 intersections with demand profile 2 

Figure 7-8 presents the objective value of the first part of formulation over iterations for 3 

different crossover percentage values, 0.4, 0.5, and 0.6, for the case study of 20 intersections with 

a semi-saturated demand profile (demand profile 2). The mutation percentage is fixed at 0.2, and 

the population size is 250. Since finding smaller values for the objective is better, a crossover 

percentage of 0.5 is better than 0.4, and a crossover percentage of 0.4 is better than 0.6.  
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Figure 7-8 Objective function value of first part of formulation over iterations for different crossover 

percentages for the case study of 20 intersections with demand profile 2 

Figure 7-9 presents the objective value of the first part of formulation over iterations for 3 

different mutation percentage values, 0.2, 0.3, and 0.4, for the case study of 20 intersections with 

a semi-saturated demand profile (demand profile 2). We fixed the crossover percentage to 0.5 and 

the population size to 250. We observed that a mutation percentage of 0.2 has the best performance 

in terms of the objective value. 

 

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200

U
L

 O
b

je
ct

iv
e 

V
al

u
e 

($
)

Iteration

Crossover Percentage = 0.4 Crossover Percentage = 0.5

Crossover Percentage = 0.6



  

162 

 

Figure 7-9 Objective function value of first part of formulation over iterations for different mutation 

percentages for the case study of 20 intersections with demand profile 2  

7.5.3. Increasing the Network Size 

We also tested the  40 intersections with 632 cells, 780 links, 500 time steps, and 25 OD pairs. 

Table 7-5 presents the objective function of the first part of the formulation, runtime, total travel 

time, and a lower level for the network of 40 intersections with 3 demand profiles. By increasing 

the number of intersections from 20 to 40, the number of decision variables has increased from 

more than ~4 million to ~14 million. The objective function value has increased by increasing the 

demand from profiles 1 to 3. The run time has not been affected much by changes in demand 

levels. The solutions are compared with a lower bound in the last two columns. We can observe 

that the total travel time of our approach has a 2.78-4.15% gap with SODTA which indicates that 

our approach behavior is close enough to SODTA.  
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Table 7-5 The performance of the case study with 40 intersections for three demand profiles 

Demand 
First part Objective 

Function ($) 

Runtime 

(min) 

Total Travel 

Time (hr) 

Lower Bound -

SODTA Objective 

Value (hr) 

Demand Profile 1 2033.57     295.32 183.75 178.16 

Demand Profile 2 3360.61 297.37 289.33 281.50 

Demand Profile 3 6257.89 294.69 524.12 503.25 

 

Table 7-6 shows the computation time for each stage and operation in the solution technique 

for three demand patterns, profile 1 (undersaturated), profile 2 (semi-saturated), and profile 3 

(oversaturated) for the case study of 40 intersections. The run times are reported for 200 iterations 

which is the termination criterion. The population size is 250. Similar to the case study with 20 

intersections, the computation time of evaluation with the projection algorithm has the highest 

runtime among all operations. The evaluation operations are parallelized to accelerate the 

algorithm speed. The increase in demand from profiles 1 to 3 has not necessarily led to an increase 

in runtime. 

Table 7-6 Breakdown of runtimes for the case study with 40 intersections 

Stage  Operations 
Demand 

Profile 1 

Demand 

Profile 2 

Demand 

Profile 3 

Initialization (min) 

Solution pool 0.00 0.00 0.00 

Feasibility 0.03 0.06 0.06 

Evaluation 0.79 0.76 0.74 

Variation through Cross Over (min) 

Crossover 0.03 0.11 0.06 

Feasibility 0.48 0.13 0.50 

Evaluation 150.74 156.97 144.64 

Variation through Mutation (min) 

Mutation 0.23 0.28 0.32 

Feasibility 0.83 1.10 1.20 

Evaluation 142.17 137.95 147.16 

Selection (min) Removal 0.00 0.01 0.01 
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CHAPTER 8. CONCLUSIONS 

Dynamic Traffic Assignment (DTA) models can be employed for congestion management of 

transportation networks. The reduction in traffic congestion leads to less environmental pollutants, 

travel times, and energy consumption. This dissertation has proposed several approaches to 

optimize time-dependent link/path flows for vehicles traveling in a transportation network and 

developed an optimization-based approach for bottleneck congestion management to improve 

traffic operations in urban transportation networks. 

DTA problems have large temporal and spatial scales with complex traffic dynamics, especially 

if they follow a relatively accurate network loading model. Hence, solving these problems requires 

high computational resources. One main goal of this dissertation is to present decomposition and 

distributed approaches to tackle the large decision spaces in System Optimal (DTA) problems. 

This line of research has proposed analytical and simulation-based methodologies to address the 

challenges of solving the SODTA problem while capturing realism in traffic flow modeling. The 

shared idea among proposed methodologies in the three chapters is to convert the problem into 

several sub-problems using decomposition techniques. The optimization of sub-problems needs 

fewer computations due to small decision spaces compared to the original problem. The sub-

problems are then coordinated through either master problems, information exchange graphs, or 

direct communications. This dissertation has employed the notion of an information exchange 

graph that coordinates sub-problems without requiring a central component. The dissertation also 

has taken the distributed and decomposition idea to the next stage by solving the problem in real-

time with tight optimality gaps. More details follow. 

In the first study, this research has employed the Dantzig-Wolfe decomposition principle to 

solve the SODTA problem. The approach proposes an origin and destination-based decomposition 
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scheme to generate independent Sub-Problems (SPs) with less computational complexity 

compared to the original problem. This decomposition also facilitates their parallelization on high-

performance computing machines. The relaxed interactions among SPs are handled by solving a 

Master Problem (MP). This study has resolved the limited scalability of existing solution 

techniques, guarantees convergence to the global optimality in a finite number of iterations, and is 

not restricted to specific network properties. 

The next study has proposed the development of a distributed gradient-based approach. This 

approach overcomes the main drawback of the existing techniques by having a fully distributed 

framework that does not require a centralized component, i.e., MP. The approach employs an 

information exchange graph to update the value of shared decision variables among SPs, considers 

the gradient of the objective function to minimize travel time, and projects the value of decision 

variables on the feasible region of each SP simultaneously. This approach has provided an 

independent computational complexity from the number of nodes and links in the network, and it 

is proved the approach converges to the optimal solution in an infinite number of iterations. 

Furthermore, the development of a real-time approach has been also studied. This work 

employs an intersection-level decomposition, distributed coordination, and rolling horizon 

technique that leads to less computational complexity and real-time performance. The information 

is coordinated among SPs by updating the objective function and constraints of SPs at each 

horizon. This information is gained by simulating the network and using optimized route decisions 

from SPs. 

This line of research has resulted in heuristic and optimization-based approaches that solve 

larger problems in less time with lower computational resources compared to the existing state-of-

the-art approaches. The approaches allow researchers to optimize paths of vehicles in real-size 
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networks with accurate network flow models. The presented methodologies can assist decision-

makers of transportation systems to manage the flow of vehicles efficiently with more accurate 

network loading models or incorporate methodologies inside their applications like transportation 

management systems as a sub-module.  

Lastly, this dissertation has presented a formulation and a solution technique to manage 

congestion at bottlenecks. This formulation minimizes total travel time and maximizes revenue by 

assigning travelers, who submit their willingness to pay values, to the network paths of a 

transportation network. The first part of the formulation assigns travelers with the willingness to 

pay submission to network paths with bottlenecks, and the second part of the formulation estimates 

other travelers' route selection behavior by solving a User Equilibrium (UE) dynamic traffic 

assignment problem. UEDTA is modeled with a variational inequality approach. The heuristic 

approach including projection and the genetic algorithm is designed to solve this nonlinear 

formulation. The algorithm evaluates a set of solutions, using the projection algorithm iteratively, 

generated by the genetic algorithm.  

One future research direction is to study distributed approaches in the presence of noisy 

communication and stochastic errors. Noises and errors can be the result of limited accessibility to 

the true value of the gradient of the objective function and the exchange of noise-corrupted 

information among subproblems or subnetworks. It is interesting to show the robustness of the 

approach by proving the convergence to an optimal solution or a good quality solution in the 

presence of perturbations. 

The proposed methodologies can be employed and generalized to solve DTA formulations with 

other network loading models, DTA formulations for multi-modal transportation systems (Pi et 

al., 2019), and formulations with mixed fleets of automated and human-driven vehicles (Mirheli 
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et al., 2019; Mohebifard and Hajbabaie, 2021a, 2021b, 2020; Niroumand et al., 2020; Tajalli et al., 

2022; Tajalli and Hajbabaie, 2021b). The methodologies can also be adopted to solve formulations 

for other congestion management approaches including traffic metering (Mohebifard and 

Hajbabaie, 2018a, 2018b), speed optimization (Tajalli et al., 2020; Tajalli and Hajbabaie, 2018a, 

2018b), trajectory optimization (Mohebifard and Hajbabaie, 2021a), and signal timing 

optimization (Al Islam and Hajbabaie, 2017; Islam et al., 2020; Mehrabipour and Hajbabaie, 

2022b). The methodologies can also be applied to solve formulations for different applications of 

DTA such as policy evaluation, evacuation planning, and environmental-related studies.  

The proposed methodologies have reduced the problem complexity significantly. As such, the 

methodologies can allow solving cooperative traffic assignments in which different congestion 

management techniques are modeled as one formulation for the possibility of higher improvements 

in the network performance. Mohebifard et al. (2019) and Tajalli et al. (2020) have shown by 

solving cooperative congestion management problems, we can observe more reductions in traffic 

congestion.  

This dissertation distributed the traffic assignment problem into several intersection-level sub-

problems. Other network partitioning approaches when decomposing the network or formulation 

are other subjects to explore. Different network partitioning approaches or sub-network sizes can 

affect the convergence and run-time of our approaches. A tradeoff between convergence rate and 

computation time exists that is affected by the sub-network complexity. A similar study to research 

by Yahia et al., (2018) for proposed solutions techniques can provide insights into the effect of 

various partitioning strategies on solutions.  

Another extension for proposed approaches is to develop a solution technique that does not 

require a simulation for coordinating sub-problems. Since the simulation is network-level, even 
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though it is very fast, increasing the network size can affect its performance. Moreover, we have 

developed approaches whose complexity is not dependent on study period length and the number 

of cells, but they are still dependent on the number of Origin-Destination (OD) pairs. The 

development of an approach with independent complexity on OD pairs can increase the scalability 

of algorithms for solving the SODTA problem. We can also study the possibility of estimating the 

expected number of iterations to achieve a solution within a small gap and how to deal with an 

excessive number of OD pairs and what would be their effects on the problem’s complexity in 

future studies. We mainly focused on distributing the problem to SPs such that we can parallelize 

SPs for faster performance. Designing efficient high-performance computing architectures is a 

future direction for this dissertation. 

Moreover, studying the bottleneck congestion management problem under uncertainty 

associated with demand and capacity is also an interesting topic for further exploration. 

Considering real-time data feeds and real-time decision-making in algorithm development for the 

proposed approach can be an interesting future study.   
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