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ABSTRACT

We define Genetic Annealing as simulated annealing applied to a population of several solutions
when candidates are generated from more than one (parent) solution at a time. We show that
such genetic annealing algorithms can inherit the convergence properties of simulated annealing.
We present two examples, one that generates each candidate by crossing pairs of parents and a
second that generates each candidate from the entire population. We experimentally apply these
two extreme versions of genetic annealing to a problem in vector quantization.

INTRODUCTION

Combinatorial optimization is the problem of minimizing a function f : X — R where X =
{1,...,N} is a finite set of feasible solutions. We define a neighborhood structure for X as some
X; C X for each i € X where j € X; implies 1 € X;. We will consider algorithms that iteratively
replace a current solution i with neighboring solution j € X; and so we also require that the
neighborhood structure permit the global minimum to be reached in a finite number of such steps
from any initial solution as in the following descent algorithm:

1. Select initial solution z.

2. Select candidate solution j € X;.

3. Replace i « j if and oniy if f; < fi.
4. If not done, go to 2.

5. Report 1, f;.

6. Stop.
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Figure 1: One dimensional slice through a Rastrigin-like function.

It is easy to construct a problem that will defeat this greedy descent algorithm, which generates
a path from the initial point to the terminal point. If the resulting path is deterministic and not
exhaustive, the algorithm will fail for the modified objective into which a global minimum has been
introduced in some unvisited region of X.

Nor does mere randomization guarantee global minimization. Consider a randomized descent
algorithm which selects candidate j given current 7 from generator probabilities g;;, and replaces
1 with j according to acceptance probabilities a;;. This simple random descent algorithm with
uniform g;; = 1/|X;| and greedy a;; = 1, if f; < f; and a;; = 0 otherwise, can also fail if f has local
minima that are not neighbors.

Simulated annealing guarantees global minimization by carefully choosing a;; > 0 for f; > f;
with a Metropolis procedure or a Gibbs sampler[6]. A typical scheme employs uniform g;; = 1/|X;|
and Metropolis a;; = min (1,exp (f; — f;)/Tk) in the k** step where T, = C/In(1 + k) for large k.
Simulated annealing is fastest when C and |X;| are small. In practice, the premises of convergence
are often violated to make SA run faster. It is faster than exhaustive search when good solutions
occur in regions of slightly poorer solutions[4] as in Figure 1 of a Rastrigin-like function[8]. Simulated
Annealing algorithms are particularly efficient on functions like this with smooth global structure
perturbed by smaller local variations.

Simulated annealing can be accelerated by biasing the g;; to concentrate the search in promising
regions, but this bias will cause erroneous convergence unless the a;; are adjusted to compensate.
One early approach used a biased generator without modification of the acceptance probabilities
to obtain promising but erratic results: the covariance matrix of the Markov chain was adaptively
estimated and used to orient the search in anisotropic search spaces. That approach discarded the
scaling information contained in the covariance matrix and it required complicated heuristics to
prevent premature convergence[9]. In a later image restoration, a non-adaptive biased generator
was shown to reduce run times without compromising theoretical convergence. In that application,
the Bayesian mazimum a posteriori objective contained a likelihood part suitable for constructing



a fixed generator appropriate to the problem(3]. More recently, when good g;; are not available a
priori, they have been adaptively accumulated in a binary tree but without guaranteed results[4, 5).

In this paper we propose to secure the efficiency of an adaptive generator without loss of provable
convergence by by enlarging the search space of the usual (fixed-generator) simulated annealing in
a suitable manner. This enlargement will amount to annealing a population of several solutions. A
simple way of adaptively exploiting the structure of the search space is to preferentially generate
new candidates in regions of high population density. We will exploit theoretical guarantees for

asymptotic convergence which exist for a large class of generators if the acceptance probabilities
obey

2. iy oii(Th) = oo (1)
and if the steady-state distribution m;(7T')

klim 7;(Ti) = 0 for f; not minimal (2)

eventually vanishes for i not optimal. In the usual case, this is satisfied for simulated annealing
based on the Metropolis procedure with fixed generator if

T, = C/In(1 + ) 3)
with large enough constant C[1].

ANNEALING A POPULATION

Consider a population of solutions I = 1,1, ...,in. We will take this population I as the current
state of a simulated annealing algorithm with

1. Objective Fr = Y et fm-

2. Generation probabilities for population state J as zero except when I and J differ only in
some single member m as Gry = Gimjm where g may depend arbitrarily on the remaining
members I\i,, of the population; in the present paper we choose m € {1,2,..., M} uniformly.

3. Acceptance probabilities Ary = @ipjm S before with a;; = min (1, —ﬁ;‘: exp ((fi — f_,)/T)) and
i=1m, ] = Im-
For annealing a single solution with fixed gi;, this choice of a;;j and g;; satisfies Anily and Fedegruen’s
sufficient conditions for convergence[4, 3]. We propose here to let g;; depend on I\i,, and preserve
the condition ¥ min;exjex; @i; = °© by requiring gi,.j. = 0 for jm € I\im.

VECTOR QUANTIZATION

Vector Quantization (VQ) is the problem of partitioning a set of d dir.nensiona.l vector's into
cubsets or clusters that optimally represent their members. For image .codmg,, an N x M image
is partitioned into windows of n x m pixels to form V = %’:—;’- vectors in nm dlme.nsxons. VQ is
used to cluster the vectors into K < |V| gioups. The centroids of the groups provide an efficient

approximate code for representing the original image or similar images.



It is natural to formulate VQ as an optimization problem with an optimization objective that
measures the expected cost of representing a vector by properties of the cluster it is assigned to[2, 7].
The usual squared error objective is typical and can be defined for an assignment A as

fA) =3 valvi — el

i€V keK

where the matrix y; = 1 if and only if vector k = A(7) where V is the set of vectors, K is the set
of clusters, and A : V — K. Here v; is the i** data vector and

_ Eiev YikTi

Ck
Yiev Yik

is the code vector for the kt* cluster. Each ¢ is itself a d-vector like the data.

Vector quantization can be formulated as a combinatorial optimization of the assignment vector
A or as a continuous optimization problem with the real-valued code vectors c, as the independent
variable instead of the discrete assignment vector A;. We will consider both formulations in the
next two sections.

MUTATION/CROSSOVER GENETIC ANNEALING

In this section we consider VQ as combinatorial optimization of the assignment A. There are
a finite number of feasible assignments and we number each as before X = {1,2,..., N} and, as
before, construct a population of solutions I = {i,,...,ip} with M members.

The mutation operator can be chosen as in simulated annealing: A member index m is chosen
uniformly from {1,2,..., M} and current solution i, = ay,a,,...,a;y|. A candidate j, generated
by uniformly selecting some assignment @, € j,, and uniformly selecting a new cluster from K to
assign it to. We update i,, «— jn according to the usual (unbiased) Metropolis test because we
chose all selections uniformly so that g; ;. = gjnin-

Crossover is complicated by the following registration problem. A good crossover genetic opera-
tor must “cross” pairs of assignments in such a way that good features of parents may be preserved
in the resulting candidate. But the objective f(A) for VQ is unchanged by relabeling clusters: Let
A =a,,ay,...,ay and let 7 : Z — Z be any permutation on the first |K| integers. Then

A' = n(ay),7(az), ..., m(axk).

is “really” the same clustering as A and f(A) = f(A4'). No simple crossover will respect this
invariance and will scramble features in the offspring.

We propose the following catalytic crossover as a solution in Figure 2. This particular crossover
operator is reversible: for a population I, if there exists a population J that can be obtained
from I in one crossover operation then there exists a unique crossover operation that will convert
population J back into I. Reversibility is convenient for showing that the resulting Markov chain
has the proper steady state distribution. In this case the distribution is Boltzmann as can be shown
by analysis of the detailed balance of probability mass between any two states.

In Figure 2, the upper and lower solid boxes represent vectors of color k; and k, in the first
parent solution p;. The dashed box on the right represents vectors of color k' in the second parent
p2. The vertically hatched intersection comprises the vectors that are assigned to k; in p, and to k'
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Figure 2: Proposed crossover operator.

in p,. The horizontally hatched intersection comprises the vectors that are assigned to k; in p; and
to k' in p,. The new (candidate) solution is obtained by swapping the colors in the two hatched
subsets in p; . The justification is that these vectors are “close” to each other because they have
the same color in p,. If p; the first parent is chosen uniformly from the population and the second
parent p; is chosen uniformly from the remaining population I\i,,, and the candidate q is chosen as
above from I'\{i,, Ui,,}, then the generator gy, p,.q = Gg.ps.py is symmetric and uniform and cancels
out of the acceptance expression as before.

A genetic annealing algorithm can be constructed with this mutation and crossover operator
from the previously discussed scheme for population annealing by choosing with specified probability
whether to take a mutation step or a crossover step.

Figure 4 summarizes the performance of the resulting genetic annealing algorithm for a vector
quantization of the standard test image shown in Figure 3. Each trace in Figure 4 is a plot of the
logarithm of the objective function versus the logarithm of the number of iterations for a specified
probability of crossover and mutation. This particular format of presentation provides a useful
means of comparing the performance (quality and efficiency) of optimization algorithms. On such
a log-log plot, uniform random search produces a straight line as in trace 1. As can be seen, genetic
annealing of the assignment vectors, trace 2, is superior to uniform random search through the
assignment vector space, trace 1. When cooled according to T, = C/In(k) for large enough C,
genetic annealing will eventually find the global minimum.

Traces 3 and 4 are variations of greedy descent algorithms based on optimizing the code vectors
instead of the assignments. Descent algorithms fall rapidly until they become constant at some
local minimum. However the efficiency of these particular algorithms indicate that optimization
of code vectors may be a more attractive starting point than optimization of assignment vectors:
Trace 1 and trace 3 are both greedy descent algorithms based on uniformly generated random
vectors. We address this version of genetic annealing in the next section.

GAUSSIAN GENETIC ANNEALING

In this section we treat vector quantization as optimization of real valued code vectors. Weregard
the c; independent variables and define the assignment of vector 1 to cluster a; = argmin, |v; — ¢/,



Figure 3: A section of a standard test image
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where c; is the k** code vector with components cg. We constrain the search to some hyperbox

Cd,min < Cdk < C4;maz for each code vector k and each dimension d. The cqr are real, but we are
only interested in objectives that smoothly varying so we can discretize each component uniformly
to some specified tolerance and apply the preceding discrete theory.

. Inst.ea,d of a mutation/crossover pair, we propose to generate candidates from g ;., a d-
dimensional Gaussian with mean and covariance equal to the diagonal part of the sample covariance
of I\im. This results in the following algorithm:

1. Select initial populations of solutions I, k = 1
2. Set T). = C/In(1 + k).
3. Select a member i of I with coordinates c;

4. Computethe means p = p,, s, ..., pg and variances o = 02,02, ...,03 of the rest of the population

1\i.

5. Generate a vector u from a multivariate Gaussian density G(u) with mean g and covariance
diag(o?,02,...,03).

6. Replace the coordinates of member ¢; «— u with probability min (1, %%)
7. Go to step 3

This algorithm can be shown to have the right steady state distribution if the covariance does
not happen to get too small[5]. Under the same condition, the sum in Equation 1 diverges. Strictly
speaking therefore, it is necessary to constrain the covariance in step 4 away from zero for guaranteed
convergence, but this does not seem necessary in practice. Using the complete covariance instead
of its diagonal part should produce a more efficient algorithm in general (and permit a smaller C
in Equation 3), but the diagonal part of the covariance provides a simple initial implementation.

Preliminary results on a 4-dimensional problem are shown in the following figures. Figure 5 shows
a slice through the objective function with a single global minimum and several local minimum.
In the next figures, we present the results of genetic annealing for a population of 50 solutions.
This cooling schedule is more aggressive than the guaranteed logarithmic schedule of the preceding
sections, but slow enough to allow the solutions to converge to the global minimum about 90 percent
of the time. We present only the first of the coordinates. The value of this first coordinate at the
global minimum is ¢; = 17. Figure 6 shows the values of ¢, of the solutions generated in genetic
annealing as a function of iteration. Note that the values are initially scattered over the entire
allowed domain of ¢; which some preference for values around the deepest non-global minimum at
c; =~ 10. Figure 7 shows the first coordinate of the mean of the the population converges more
quickly than the sequence of new solutions. The variance of the population also converges quickly
as in Figure 8. The objective function as a function of iteration in Figure Objectives reflects four

coordinates of each new candidate.

CONCLUSIONS



Figure 5: A two-dimensional slice through the 4 dimensional objective.
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Figure 9: Objectives of accepted solutions.

We have introduced genetic annealing as biased simulated annealing applied to a population of
solutions. We show how to construct the generator to treat the population as a single point in a
larger search space comprising the combined coordinates of the member solutions. The members
of the population were used to generate the next candidates. The steady-state distribution of the
the population is Boltzmann in the search space. Convergence for a slow enough logarithm cooling
schedule is guaranteed by the detailed construction of the generator and due to existing results for
simulated annealing with generalized acceptance probabilities. We have introduced a log-log plot as
a means of comparing different algorithms and used it to compare two versions of uniform random
optimization with a genetic annealing algorithm.
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