
ABSTRACT

BHAGWAT, RUTVIJ. Development of Stability Analysis Tools for High Speed Compressible Flows.
(Under the direction of Pramod Subbareddy.)

Fluid flows experience transition to turbulence in ways which are not always easily explained

through traditional ideas such as existence of a well defined flow instability. Experimentally, it can

be seen that in many cases flows which are deemed stable by linear stability analysis experience

transition. An idea that contributed towards bridging this gap was that of transient or nonmodal

growth which was introduced in the early nineties. It proposed that for non-normal flow operators

disturbances can grow over a short term before eventually decaying even if the system is stable and

that this short term growth might be sufficient to trigger transition.

Often earlier computational work was done for simplified configurations or by just analyzing a

subsection of the system at a time, such as analyzing a boundary layer profile at a certain streamwise

station or the flow profile in a certain crossflow plane. These analyses often miss out on capturing

interconnected flow mechanisms in complex systems. Such systems demand a ‘global analysis’

which analyzes the system in its entirety all at once. These methods are computationally expensive

but developments in scientific computing have led to an increased availability of computational

resources which in turn broadened the range of problems accessible for these kinds of analyses.

One such area of interest is transition in high-speed flows and so there is demand for tools and

solvers which cater specially to these flows. This work involves the development of a suite of stability

analysis solvers in a 3D parallel unstructured framework. We have tried to follow a methodology of

developing these stability analyses tools from standard compressible flow solvers which is general

enough that it can be applied to other standard compressible solvers. These tools can also be used

to analyze turbulent flows where the focus is not on predicting the onset of transition but rather on

extracting structural and dynamical features of these turbulent flows. The work also demonstrates

the broad usage of these tools for analyzing transitional and turbulent flow fields across a wide

range of physical regimes from incompressible to hypersonic flows. A number of flowfields such

as: hypersonic flows over flat plates, shock-boundary layer interactions, flow over a sharp wedge

among others were investigated as a part of this work. A novel resolvent based inflow-I/O framework

for predicting the response of the flow to freestream waves has also been proposed.
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CHAPTER

1

INTRODUCTION

The stability of �uid �ows has traditionally been a subject of interest in physics. Instabilities are at the

heart of a wide range of physical processes ranging from the mixing of a drop of milk in coffee to large

scale astrophysical phenomena. A deep fundamental understanding of instabilities and transition

is critical in developing and supporting technological advances in a number of applications such as

mixing in combustion processes, aeroacoustics and drag / surface heating reduction in hypersonic

�ows.

Initial mathematical developments in this �eld provided a robust framework for analyzing

hydrodynamic instabilities but they proved to be inadequate to explain and predict transition

in complex realistic �ows. The laminar-turbulent transition is a highly complex physical process

with sensitivity to a large number of variables and as a result predicting and even explaining some

transition scenarios is a very involved task. Over the last few decades the scienti�c community

has tried to address this gap in our knowledge of transition physics through number of different

approaches such as development of more sophisticated instability analysis techniques, direct

numerical simulations (DNS) and experimental investigations. A major breakthrough in terms of

stability analysis was the concept of transient or nonmodal growth [92]. The transient growth is a

phenomenon whereby disturbances can grow for a short period of time in �ows deemed stable by

modal analysis. In some cases, this is suf�cient to trigger transition in modally stable �ows. Many

other techniques such as spatial optimal growth analysis, resolvent analysis, input-output analysis,

parabolized stability equations (PSE) were developed and employed to analyze different �ows and

to build a more complete picture of transition physics.
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1.1 Stability analysis approaches

1.1.1 Governing equations

We consider the three-dimensional compressible Navier Stokes equations:

@ �

@t
+

@ �u j

@x j
= 0 (1.1)

@ �u i

@t
+

@

@x j
(� u i u j � � i j + p � i j ) = 0 (1.2)

@E

@t
+

@

@x j
((E + p )u j � � i j u j + q j ) = 0, (1.3)

where E = p =( � 1) + �
�
u 2 + v 2 + w 2

�
=2 is the total energy, the pressure is assumed to obey the

ideal gas law,

p = � RT, (1.4)

and the viscous stress and heat conduction terms are de�ned by

� i j =
@u i

@x j
+

@u j

@xi
�

2

3
�� � i j � =

@u k

@xk
q j = � �

@T

@x j
� =

� C p

P r
.

The Navier-Stokes equations may described in the operator form,

@q

@t
= F (q ), (1.5)

where q is a global state vector: q = [ � i , � u i , � v i , � w i ,Ei ]
T
i =1,N , with N being essentially the total

number of grid points in the system. The state vector is decomposed into a base �ow component,

q̄ = [ � , � u , � v , � w ,E]T , and a disturbance component q 0, given by:

q 0= [ � 0, � 0ū + ¯� u 0, � 0v̄ + ¯� v 0, � 0w̄ + ¯� w 0,E0]

A linear disturbance evolution equation can be formed upon neglecting higher-order disturbance

terms,

@q 0

@t
=

@F (q̄ )

@q̄
| {z }

A

q 0 (1.6)

More generally we can also consider an external forcing to this linear disturbance evolution equation

and represent it as:

@q 0

@t
= A (q̄ )q 0+ f 0 (1.7)

2



1.1.2 Modal decomposition

The most general case in examining unsteady �ows is one wherein the spatial �eld as well as the

temporal evolution is fully resolved. In the linear limit we consider that the disturbance �eld consists

of a superposition of waves at different frequencies and the evolution of these waves at each of

these frequencies takes place in a manner independent of each other. This approach is called a

triglobal approach, wherein 3D spatial functions are considered with a Fourier transform for time.

Exploiting �ow symmetries it might be possible to further reduce the size of the problem by applying

a Fourier transform in directions in which the base�ow is homogeneous (typically spanwise and / or

streamwise). These different approaches are typically referred as:

Table 1.1 Stability Analysis Approaches

Approach Amplitude Phase
Local q̂ (y ) e i (� x + � z � ! t )

Biglobal q̂ (x , y ) e i (� z � ! t )

Triglobal q̂ (x , y,z) e � i ! t

1.1.3 Linearized Navier Stokes (LNS)

In absence of an external forcing f 0, we can track the evolution of some initial disturbance �eld

q 0(0) = q 0
0.

@q 0

@t
= A (q̄ )q 0 q 0(0) = q 0

0 (1.8)

The solution at a certain instant of time is given as:

q 0(t ) = eA t q 0
0 (1.9)

1.1.4 Global stability analysis

Without the loss of generality, for a triglobal problem, considering the modal decomposition q 0(x, t ) =

q̂ (x)e i ! t and f 0= 0, Eq.1.7 can be written as:

� i ! q̂ = A q̂ = V � V � 1q̂ (1.10)

Thus if � are all the eigenvalues ( � ) of the operator A the frequencies of the waves and the eigenval-

ues of the operator are related as: � i ! j = � j . For a temporal eigenvalue problem the eigenvalue ! is

complex, with the real part indicating the oscillating frequency and the imaginary part indicating the

growth rate of the disturbance. The eigenvalues with a positive growth rate indicate an exponentially
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growing (with time) instability. If all eigenvalues have a negative growth rate, it indicates that all the

disturbances will die out eventually and the �ow is linearly stable in the time asymptotic limit.

1.1.5 Direct harmonic response

In the absence of any unstable eigenvalues, it might be useful to examine the response of the �ow to

external harmonic forcing. In this case, the frequency ! is purely real as the forcing is non-growing

(and non-decaying). The forcing and response are of the form:

q 0= q̂ e � i ! r t f 0= f̂ e � i ! r t

Substituting this in Eq.1.7

q̂ = (� i ! � A )� 1 f̂ (1.11)

The operator (� i ! � A )� 1 is known as the resolvent operator. In this case we prescribe a forcing of

de�nite shape and frequency and then check the response of the �ow�eld to that forcing.

1.1.6 Resolvent analysis

The resolvent operator basically maps the forcing to the response of the �ow�eld. As a result, a lot

of information about which kinds of forcings would the �ow respond to or amplify the most can be

obtained by examining the resolvent operator H (! ) = (� i ! �A )� 1. A singular value decomposition

of the resolvent operator can provide an orthonormal basis for the forcing and responses shapes

ranked by the ampli�cation factor which is given by the singular values:

q̂ = H f̂ = U � V � f̂ (1.12)

The most ampli�ed disturbance and response are f̂1 and q̂1 respectively. The factor of disturbance

energy ampli�cation is indicated by the gain given by � 2
1. The resolvent norm is given by:

jjH (! )jj = max
f̂

jjq̂ jj

jj f̂ jj
= � 1

A further detailed discussion on the choice of norms and how that �ts into the analysis would be

provided in a subsequent section (Sec.2.7.1). A more specialized form of the resolvent analysis is the

input-output analysis (I / O). In I / O analysis we further restrict the types of inputs and outputs the

system can admit. This can take the form of forcing being applied only in a certain area of the domain

or only forcing a certain component of the �ow (for example, forcing only in the u-momentum).

This is achieved by introducing additional linear operators B and C which can �lter potential inputs

and outputs. In this case:

ŷ = C(� i ! � A )� 1B f̂ = H f̂ = U � V � f̂
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1.1.7 Transient growth

In global stability analysis, we observed that in the case of �ow with all decaying eigenmodes

the �ow is deemed stable in the long term as all disturbances die out eventually. In some cases

however, these disturbances do exhibit growth in the short-term. This growth is known as transient

or nonmodal growth [83]. The maximum possible growth over a certain time horizon is known as

`optimal growth' [36]. In this case, time itself is a parameter. Optimal growth G(t ) is then given as:

G(t ) = max
q 0

0

jjq 0(t )jj2

jjq 0
0jj2

= jjeA t jj2

Whether a certain �ow is susceptible to transient growth depends on the character of A . If A is

non-normal (it's eigenvectors are not orthogonal to each other), transient growth is possible.

1.1.8 Spatial growth framework

The temporal view of stability has an advantage of being more intuitive. However, there are certain

classes of �ows where transition is dominated by growth of disturbance in space, rather than time.

This is typically the case with high-speed �ows without signi�cant separation regions. In this scenario

the streamwise wavenumber � is complex and frequency ! is purely real. Substituting f 0= 0 and

modal form q 0= q̂ e i (� x � ! t ) in Eq.1.7:

� i ! r q 0= [A 0 + A x + A x x ] q 0 (1.13)

Here the terms in A are split into three operators: A 0, A x , A x x containing terms without derivatives

in the streamwise direction, single derivative in the streamwise direction and double derivative in

the streamwise direction respectively.

� i ! r q 0=
�
A 0 + i � B 0 � � 2C0

�
q 0 A x = B 0

@

@x
A x x = C0

@2

@x 2
(1.14)

In this case ! r is prescribed and the problem is solved for � . To convert this quadratic eigenvalue

problem (EVP) into a linear EVP two approaches are typically adopted. Either the � 2 terms are

dropped or the state vector is modi�ed [q 0]T ! [q 0, � q 0]T

1.2 High speed stability and transition

Transition physics for high-speed �ows is in some ways similar to low-speed �ows and in some ways

is quite dissimilar. The classical picture of transition for boundary layers involves [4]:

• Receptivity

• Modal growth of the instability

• Non-linear interactions
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• Breakdown to turbulence

It can be seen in Fig. 1.1 that this very orderly `regular' route of transition may be `bypassed'

and the process of transition may take some other avenue. The classical route does tend to explain

transition scenarios in more simpler cases such as �at plate boundary layers and �ows on sharp

cones. But every level of complexity in the �ow�eld makes it that much more unlikely.

(a) Taken from Fedorov [37]; originally from Morkovin (1994)

Figure 1.1 Routes of transition

1.2.1 Linear instabilities

High-speed boundary layer transition is more conveniently viewed through the lens of spatial growth

of disturbances.

1.2.1.1 Local spatial linear stability analysis

Consider a 2D �at plate boundary layer with a base�ow given by q (x , y ) as shown in Fig.1.2. The

premise of a local analysis is that because the boundary layer varies slowly in the streamwise direction

it is reasonable to analyze the stability of the boundary layer pro�le locally at each streamwise station.

For the purpose of this analysis a spatial analysis ( ! : real, prescribed & � : complex,solved for) is
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performed at some location x0 with base�ow q (y ) and the disturbance is of the form q̂ (y )e i (� x � ! t ).

The co-ordinates x and y are normalized by the Blasius length scale given by: L =
p

� �
e x � =U �

e and

the velocity is normalized by U �
e .The time is non-dimensionalized by L =U �

e . The local Reynolds

number R =
p

U �
e x � =� �

e . In this case the subscript ` e' and superscript ` � ' indicate edge quantities

and dimensional quantities respectively. The nomenclature is the same as Fedorov [37]. The non-

dimensional frequency parameter is de�ned as:

Figure 1.2 Schematic: local spatial linear stability analysis

F =
! � � �

e

U �
e

=
2� f � � �

e

U �
e

The frequency parameter F , the angular frequency ! and the Reynolds number R are related as:

! = F � R

In casting the problem this way, Reynolds number can be used as a proxy for spatial location.

So for a particular boundary layer as we travel downstream R increases due to an increase in x �
e . A

typical spatial spectrum (taken from Bitter [15]) at a certain spatial station is shown in Fig.1.3. � i < 0

indicates a growing mode and � i > 0 indicates a decaying one. Three distinct branches of modes

can be observed: two branches of acoustic modes (fast and slow) and an almost vertical branch of

vorticity / entropy modes. Additionally another mode labeled `second mode' can be seen. This is a

discrete unstable mode. Starting from the leading edge as we continue to probe downstream discrete

modes break away or branch from the continuous branches. Some of these discrete modes may

become unstable over a certain streamwise interval within which the amplitude of the disturbance

increases.

The solution procedure in this case consists of solving the spatial eigenvalue problem at suc-

cessive streamwise stations. At each station the spectrum changes slightly and the evolution of

individual eigenmodes can be tracked from station to station. The evolution of two such discrete

eigenmodes (F and S) is shown in Fig.1.4 (taken from- Nichols & Candler [70]) with the arrows
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Figure 1.3 A typical spatial spectrum for a high-speed boundary layer: � = 0, R = 2000, M e = 4.5, T �
e =

1500K , T �
w = 300K - taken from Bitter [15]

indicating the direction of increasing R (also increasing x � ). The S and F originally belong to the

slow and fast continuous acoustic branches respectively near the leading edge. The point at which

the mode S crosses the dotted horizontal line it becomes unstable. The mode is `unstable' over the

interval which � i continues to be negative. Over this interval a disturbance orthogonal to the mode

-or the part of the disturbance which is orthogonal to the mode- will get ampli�ed.

Figure 1.4 Spatial spectrum: the evolution of the discrete `F' and `S' mode as we go downstream from the
leading edge- taken from Nichols & Candler [70]

As we trace these instabilities along the length of the boundary layer modes of different frequen-

cies become unstable over different intervals. The unstable modes are often referred to as the �̀rst

mode' and `second mode'. The terms �̀rst mode' and `second mode' are somewhat of a misnomer
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but their usage in this context has become ubiquitous in the hypersonic transition literature [38].

The second mode is the dominant instability at higher Mach numbers ( M >4.5). For the second

mode the boundary layer acts as an acoustic waveguide and as a result the lower the frequency of

the mode the further downstream it becomes unstable and / or peaks. This happens because short

wavelength waves become attuned to the boundary layer further upstream when the boundary

layer thickness is smaller. The �rst mode instability becomes unstable over a lower frequency range

compared to the second mode instability.

The maximum spatial growth rate ( � i ) a mode experiences is not the determining factor for

transition onset- rather we must look at the integrated growth rate along the length of the �at plate

to determine the energy ampli�cation for a disturbance. This is usually expressed in terms of the ` N

factor'. It is de�ned as:

N (x ) = ln
•

A(x )

A(x0)

‹
=

Z x

x0

� � i ( )d  (1.15)

The choice of x0 in this matter is somewhat arbitrary but the overwhelmingly popular choice is

the neutral point when the mode becomes unstable. This procedure is done for multiple frequencies

and the N-factor curves for each frequency are overlaid on one another to produce an envelope

of N -factor curves. An N-factor envelope for a sharp 7� half-angle cone at M 1 = 10.04 is shown

in Fig.1.5 (taken from Grossir et al. [46]). The location where it is known that the transition occurs

experimentally is shown with a vertical dotted line and maximum N -factor corresponding to this

location is given by the horizontal dotted line. The N -factor method is widely used in hypersonics

for estimating transition location. In order to do this one must have a suf�ciently good idea of what

the critical N -factor at which transition would occur ( Nt r ) should be. The N -factor in some ways

represents a critical relative amplitude, but ultimately the possibility of transition onset at some

location ( x1) is determined not by the degree to which the disturbance amplitude gets ampli�ed in

the interval from x0 to x1 but rather by the absolute level of disturbance energy at x1. So the other

important piece of the puzzle is what disturbance energy level is available at the location x0. The

critical N-factor Nt r is heavily in�uenced by the noise levels in �ow-�eld it is typically in the range

5-10 for conventional windtunnels and over 15 in low-noise �ight conditions. The knowledge about

an appropriate Nt r is built using experimental correlations and other factors such as freestream

noise, surface �nish etc.

There are other limitations to the local spatial linear stability analysis or as it is generally referred

to in this context: linear stability theory (LST). Firstly, it relies on the locally parallel assumption for

the base�ow at each station and so doesn't directly account for the spatial development effect. This

is usually a decent assumption for simple �ows over �at-plates and sharp cones and as long as the

wavelengths of the disturbances being probed are smaller than the distance over which the base�ow

develops appreciably. Secondly, the LST approach tracks the growth of an instability in a mode-by-

mode basis and so any non-modal growth (spatial non-modal growth) will not be captured. High-

speed stability theory involves a particularly in�uential phenomenon known as `synchronization'

9



(will be discussed in greater detail in the next section) is a speci�c example of an inter-modal

interaction that will not be organically captured. Additionally, the points at which the discrete

mode passes the continuous branch involve singularities and therefore demand special treatment.

Fedorov [37] says:“The LST and PSE methods should be supplemented by special procedures, which

help to identify the singular regions and get through them in a proper way. This could be done using

approximate theoretical models providing an intermodal exchange rule” .

Figure 1.5 N -factor envelope for a 7 � half-angle sharp cone- picture taken from Grossir et al. [46]

1.2.2 Receptivity mechanisms

A large number of studies in hypersonic transition deal with the identi�cation and analysis of

instabilities. For high-speed �ows (especially boundary layers) the instability process is viewed

through the lens of the spatial growth of a disturbance. The role of the instability is to amplify the

amplitude of a certain disturbance as it travels downstream through the �ow. To complete this

picture it is essential to ascertain the initial amplitude of the disturbance available for the instability

to amplify. Receptivity is the process by which this instability acquires an initial amplitude.

For low-speed �ows the frequency-wavelength of the freestream waves does not synchronize

with that of the instability and thus a special scale-conversion mechanism is required. In low-speed

boundary layers the ability of acoustic waves interacting with surface irregularities to produce

Tollmein-Schlichting (T-S) waves was shown by Ruban [80] and Goldstein [44]. In this case the

frequency is determined by the freestream waves and the wavelength is imparted by the surface

irregularity and this allows the disturbance to be synchronized with the T-S waves [24]. High-speed

�ows on the other hand do not require such a special scale-conversion mechanism as the freestream

waves and the instability waves can naturally synchronize. In Fig.1.6 (a) (taken from Fedorov [37])

10



one can see the discrete modes F and S are synchronized with the fast and slow freestream acoustic

waves near the leading edge. The phase speeds for the fast and slow acoustic waves are shown

with thin solid lines labeled with c = 1 + 1
M and c = 1 � 1

M respectively. The dashed line labeled

with c = 1 represents the vorticity / entropy waves. In the region near the leading edge (labelled 1)

the discrete modes F and S are synchronized with the fast and slow acoustic waves and therefore

are receptive to fast and slow waves respectively in this region. In this region these freestream

waves can impart amplitude to these discrete modes. In the region labeled 2 the F mode crosses

the dashed line representing the entropy / vorticity waves. At this point the mode F is receptive to

freestream entropy or vorticity waves (freestream turbulence or temperature spots). Eventually the

mode F and mode S merge. The point at which their wavenumbers (and frequencies) match is

known as the synchronization point. This modal interaction is a very important phenomenon in

hypersonic transition. As a part of this intermodal interaction the growth rates of both the modes

are signi�cantly affected as well. Almost simultaneously, the mode S is destabilized and mode F is

stabilized. This particular interval of instability associated with mode S is commonly known as the

`second mode'.

(a) Wavenumber as a function of R (b) Spatial growth rate as a function of R

Figure 1.6 Dispersion curves for the F and the S mode -pictures taken from Fedorov [37]

Different scenarios by which transition may occur are shown in Fig.1.7 (taken from Fedorov

[37]). For instance one path may involve freestream fast acoustic waves which trigger mode F near

the leading edge which in turn imparts its amplitude to mode S through an intermodal interaction

which then goes on to become unstable. Another scenario is through the action of entropy / vorticity

waves to which the mode F is receptive in region 2 (refer Fig.1.6) which then imparts its amplitude

to mode S. Yet another path involves slow acoustic wave directly triggering mode S near the leading

edge which then goes on to become unstable.

In addition to the receptivity to freestream noise the receptivity of a �ow to other factors or mech-

anisms is also important. These include: surface �nish, distributed roughness, isolated roughness,
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Figure 1.7 Paths of regular transition- taken from Fedorov [37]

suction / blowing etc.

1.3 Discrete and continuous spectra

The terms `discrete mode' and `continuous branches' often appear in the boundary layer transition

literature. This particular character of the boundary layer spectrum is due to its unbounded domain

(as against a channel which is bounded). This can be illustrated by a simple 1D example from Schmid

et al. [83].

For a bounded domain a system is given by-

@2u

@t 2
=

@2u

@x 2
x 2 [0,1] u (0, t ) = u (1,t ) = 0 (1.16)

The solution is given by:

u (x , t ) = f (x )e i ! t ! n = n � fn (x ) =
1

p
2

sin(n � x ) n = 1,2,3, ... (1.17)

For an unbounded domain a system is given by-

@2u

@t 2
=

@2u

@x 2
x 2 [0,1 ) u (0, t ) = 0 u (x , t ) is bounded as x ! 1 (1.18)

The solution is given by:

u (x , t ) = f (x )e i ! t ! 2 R +
0 f (x , ! ) =

1
p

2�
sin(! x ) n = 1,2,3, ... (1.19)

It can be seen that for the 1D example wherein the discrete modes could completely represent

the bounded problem a continuous spectra was required by the unbounded �ows. It was shown that

for unbounded �ows the spectrum consists of discrete modes and some portion of a continuous

spectrum ( [45], [81]).

12



It is important to distinguish between discrete and continuous modes when computing eigen-

values numerically. While the numerical spectrum can compute the discrete modes it only approxi-

mates the continuous spectrum [28]. Moreover, discrete mode amplitudes are expected to vanish as

y ! 1 . The modes belonging to the continuous spectrum on the other hand are only expected to

be bounded [5].

1.4 Outline

CHAPTER 2: Contains numerical details related to the development of a suite of stability analysis

tools in a 3D unstructured parallel context. It also includes the details on using a novel dual number

based strategy for obtaining accurate numerical jacobians. Additionally an analysis on shock cap-

turing in the context of stability analysis tools is performed. Furthermore, an extension of the code

to solve axisymmetric problems is also discussed.

CHAPTER 3: An extensive validation is performed to demonstrate the capabilities of the code in

handling �ow problems across a wide range of �ow regimes from incompressible to hypersonic

�ows.

CHAPTER 4: Discusses the application of these stability analysis tools to turbulent mean �ows with

a view of extracting important structural and dynamical features. Compressible turbulent channel

�ows across a wide range of Mach numbers are analyzed.

CHAPTER 5: An input-output analysis of high speed boundary layer stability for boundary layers

with thermal distortions such as temperature bumps and temperature steps is conducted.

CHAPTER 6: Discusses a novel in�ow-I / O framework for freestream receptivity studies. Cases

involving a M 1 = 6 �at plate boundary layer and a M 1 = 6, 7� half-angle sharp wedge are shown.
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CHAPTER

2

NUMERICAL FRAMEWORK

In this chapter the different building blocks that make up the suite of stability solvers are discussed.

The governing philosophy of this effort was to build the stability analysis tools in a way which makes

it possible to convert standard compressible �ow solvers into stability analysis tools in a seamless

and straightforward manner.

2.1 LNS Operator

A is the linearized Navier-Stokes (LNS) operator and is essentially the jacobian of the global right

hand-side with respect to the global state vector. A large number of tools and methods of analysis

concerned with �uid stability use A in some form. In some algorithms it is not necessary to explicitly

form A , but the action of the matrix A on a vector is required. These approaches are known as

`matrix free' approaches. The `matrix forming' approaches on the other hand require that the matrix

be explicitly formed and stored. The matrix forming approaches provide a direct access to the linear

operator and as a result provide more algorithmic �exibility. The matrix can be formed by deriving

the linear operator based on the continuous form of nonlinear equations and then discretizing

it (continuous approach) or by linearizing the already discretized non-linear equations (discrete

approach) [43]. To compute the jacobian using the discrete approach, a brute-force way to do this

would be to compute the entire global right hand-side each time a particular degree of freedom (an

element of the state vector) is perturbed. Cook et al. [26] use an approach wherein one independently

perturbs multiple DOFs simultaneously such that they affect mutually exclusive and independent

domains in the system. This approach was earlier used by Nielsen & Kleb [73] to compute direct and

adjoint operators using complex step derivative approach. In this work we use the discrete approach
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along with dual number differentiation to compute the linearized operator and the details of the

algorithm are mentioned in the next section.

2.2 Matrix formation algorithm

In order to ef�ciently form the matrix in a parallel framework we linearize �uxes at individual

faces instead of the entire global right hand side. The Navier-Stokes equations in the standard

�nite-volume form for a cell i is given as:

@Ui

@t
=

1

V–

X

k

Fn
k Sk (2.1)

Fn
k is the normal �ux at a face. Our approach involves linearizing this individual entry. This

procedure requires two ingredients:

• A local self-contained �ux stencil

• A local �ux routine to compute the �ux at a face given all necessary information (through the

self-contained �ux stencil).

The algorithm is as follows:

1. Loop over all faces

2. Assemble a local stencil at each face

3. Perturb each DOF within the stencil and compute the derivative of the �ux at that face with

respect to that DOF

4. Assign entries to the global matrix (row determined by cells adjoining the face and column

determined by DOF being perturbed)

This approach considers the fact that a particular entry in the global right hand side depends on

a very limited DOFs in the system. This sparsity is exploited by assembling a local �ux stencil which

indicates that the value of a �ux at a face is solely determined by the �ow variables in the stencil.

How large the local �ux stencil needs to be or in other words what is the `extent' of the local �ux

stencil is determined by �ux numerics.

2.3 Flux numerics

The global matrix A is very sparse. Regardless of the size of the domain, the number of non-

zeros in any row doesn't exceed a �xed number which depends on the �ux numerics used. This

number is known a priori. The number of non-zeros depends on the extent of the local �ux stencil.

In our code the �uxes are composed of mainly two parts: inviscid and viscous. Additionally, a
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dissipative �ux complements the inviscid �ux wherever necessary to ensure stability of solutions

near discontinuities. The �ux at a face is given as: ~F = ~F I + ~F V . The inviscid �ux is given as:

~F I = ~Fcentral + � ~Fdiss

The central �ux is a component of the �ux designed to minimize dissipation but is prone to

instabilities. Higher order central �ux can be constructed by using gradients in the upstream and

downstream cells. They are expressed as follows with the superscript indicating the order.

~F (2)
central = ~F (2)

central (Ui ,Ui i )

~F (4)
central = ~F (4)

central (Ui ,Ui i , r Ui , r Ui i )

~F (6)
central = ~F (6)

central (Ui ,Ui i , r Ui , r Ui i , r Ui i l , r Ui i r )

The 2D version of the stencils representing fourth and the sixth order �ux is shown in Fig.2.1.

(a) Fourth order (b) sixth order

Figure 2.1 Comparison of different numerical approximations

The viscous �uxes are based on central differencing. They are built using the primitives and gradients

in the adjoining cells.

~F V = ~F V (Ui ,Ui i , r Ui , r Ui i )

The dissipative �ux is given as
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~Fdiss = �
1

2
jAj(Ui ,Ui i ) � (UR � UL )

A is the jacobian of the normal �ux through the face with respect to the conserved variables. It

is built using an average of the conserved variables in the adjoining cells (here instead of a simple

mean, a pressure weighted average is used). UR and UL are the right and the left states built using

variable extrapolation. We use a TVD-MUSCL approach with appropriate limiters to build these

states. These left and right states can be constructed as:

UL = Ui +
1

2
� (r i ) � (Ui i � Ui ) UR = Ui i �

1

2
� (r i i ) � (Ui i r � Ui i )

r i =
Ui � Ui i l

Ui i � Ui
r i i =

Ui i � Ui

Ui i r � Ui i

Thus the dissipative �ux depends on the values in two upstream and the two downstream cells.

~Fdiss = ~Fdiss(Ui ,Ui i ,Ui i l ,Ui i r )

2.4 Numerical perturbation:

In order to form the matrix, numerical differentiation may be used. The standard way to do this is

by using a �nite difference approximation based on a Taylor series expansion. For a certain function

f (q ) the Taylor series expansion upon perturbing q with a small � is given as:

f (q + � ) = f (q ) + �
@f

@q
+

� 2

2!

@2 f

@q 2
+

� 3

3!

@3 f

@q 3
+ ...

Using this expansion a �rst or second order �nite difference approximation can be given as:

@f

@q
=

f (q + � ) � f (q )

�
+ O(� )

@f

@q
=

f (q + � ) � f (q � � )

�
+ O(� 2)

These approaches suffer from two kinds of errors: truncation error and error due to �nite

precision arithmetic. The truncation error can be reduced by selecting a very small value of � . As

the approximation involves calculating the difference between two numbers, its reliability suffers

due to �nite precision arithmetic if a very small � is chosen. Thus there is always a competition

between these two kinds of errors and a compromise must be struck to determine the optimal � op t .

For large-dimensional systems this � op t could be different for different elements in the state vector

and this cannot be determined apriori.

The error due to the �nite precision arithmetic can be eliminated by not requiring the difference
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operation to compute the derivative by using approaches such as complex step derivative or dual

numbers. In this work we use dual numbers to compute high-precision numerical derivatives. Dual

numbers are special numbers which are very similar to complex numbers in many ways but with the

exception of one critical difference. These numbers have a special algebra wherein the higher orders

of the dual unit ( �̂ ) are identically zero: �̂ � �̂ = 0. For instance for a function f (q ), the argument q is

replaced with a dual number: q + 1�̂ .

f (q + 1�̂ ) = f (q ) + �̂
@f

@q
+ �̂ 2 1

2!

@2 f

@q 2
+ �̂ 3 1

3!

@3 f

@q 3
+ ...

= f (q ) + �̂
@f

@q
+ 0

= ( f (q ),
@f

@q
)

Thus the derivative of f (q ) with respect to q is exactly recovered in the dual part. It allows us to

compute highly precise numerical derivatives which are exact to machine precision (as long as the

underlying function is differentiable). An example of how these different approaches compare with

each other for different functions can be seen in Fig.2.2. The error is calculated as ( f̂ i refers to the

exact derivative at the point xi and f 0
i is the numerical approximation for the same):

Error =

r P
i =1,N

�
f 0
i � f̂ i

�2

r P
i =1,N

�
f̂ i

�2
=

jj f 0� f̂ jj2
jj f̂ jj2

(2.2)

For the abs(x ) function shown in Fig.2.2(a)&(b), which is a linear continuous and non- differen-

tiable function, the error drops for both the �rst and the second order approximations at the same

rate (as the function is linear in x ), and then precipitously drops at a threshold level beyond which

round-off errors take over. This threshold depends on how close a certain point is to x = 0, as this is

where the function de�nition changes. If the � > jd x j, then the function will be perturbed into the

other side of x = 0 and inaccurate derivatives will be obtained. The threshold drop occurs around

10� 2 in Fig.2.2(a) and around 10� 4 in Fig.2.2(b) and this re�ects the value of d x in these two cases.

Dual number approximation on the other hand gives exact derivatives at each point except x = 0 at

which the function is not de�ned in any case. The error for the dual number approximation was

zero and so doesn't show up on the log plot. For a more complex function such as ex
p

s in 3(x )+c o s3(x )
it

can be seen in Fig.2.2(b) that the dual number approximation doesn't exactly show zero error but

instead shows some level of machine precision level error.

Dual numbers have been used to compute high-precision derivatives in CFD applications before.

Martins et al. [61] observed that the automatic differentiation and the complex step derivative

approach are equivalent. Spall & Yu [88], implemented dual numbers in CFD codes in order to

compute the sensitivity of the CFD solution to parameters such as �uid properties, geometric

18



parameters or turbulence model coef�cients. Fike & Alonso [40] used a similar idea known as

hyper-dual numbers to compute accurate �rst and second-derivatives of engineering parameters

(CL ,CD ,CM ) with respect to �ow and geometric parameters such as Mach number ( M 1 ) and angle

of attack ( � ). D'Onofrio et al. [30], used dual numbers to form accurate jacobians for optimal control

problems and found that compared to traditional methods they could get more accurate answers

albeit at a higher computational cost.

(a) f (x ) = jx j,d x = 10.0� 2 (b) f (x ) = jx j,d x = 10.0� 4

(c) f (x ) = ex
p

s in 3(x )+c o s3(x )

Figure 2.2 Comparison of different numerical approximations for computing �rst derivatives: variation of
error with perturbation size ( � ) for �rst-order �nite difference, second-order �nite difference and a dual
number based approximation ( � not applicable)
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2.5 Shock Capturing

Discontinuities in the form of shocks are routinely encountered in high-speed compressible �ows.

Low dissipation high-order schemes which are often used in computations to resolve �ne structures

better, tend to become unstable in the vicinity of shocks. The remedy usually consists of reducing

the order of the scheme and / or introducing additional dissipation in the vicinity of shocks to ensure

numerical stability. We use shock-capturing to deal with discontinuities. This approach contains

two ingredients: a shock detector and a dissipative �ux. The dissipative component can be given as:

� ~Fdiss = � �
1

2
jAj(Ui ,Ui i ) � (UR � UL )

A Linearized version of this component can be given as:

(� ~Fdiss)0= �
1

2
�̄ ¯jAj � (U 0

R � U 0
L ) �

1

2
�̄ jAj0� (ŪR � ŪL ) �

1

2
� 0 ¯jAj � (ŪR � ŪL ) (2.3)

Mathematically speaking, the full linearized version must be used, but each of the terms in Eq.2.3

represents different physical mechanisms. The additional dissipation through the shock-capturing

method is added for numerical considerations not physical ones. Therefore, it is not obvious if all

of these linear components should be retained. Moreover, it is important to note here that shock

capturing is a remedy prescribed for a speci�c problem in non-linear computations. Whether the

`linearization of the remedy' an appropriate r̀emedy' for the linearized problem remains to be seen.

In our work we freeze the shock-detector switch by setting � 0= 0.

In the context of linearized analysis wherein we have �ne instability waves traveling through a

shock the desirable attributes of a shock-capturing method include:

• The amplitudes and wavelengths of the instability waves are correctly predicted downstream

of the shock

• Disturbances do not generate aphysical oscillations when passing through a shock

2.5.1 Ducros switch: in�uence of � d uc

The ducros switch is de�ned as:

� d uc =
� 2

� 2 + ! 2 + � d uc
(2.4)

Here � indicates divergence and ! indicates vorticity. The rationale is that in the regions of

discontinuity j� j >> j! j, � d uc ! 1. In the regions away from the discontinuity j� j << j! j and

� d uc ! 0. � d uc is a small number to avoid division by zero. But this creates a problem in the

freestream where ! � 0, then if � 2 >> � d uc , and � d uc ! 1 despite being a smooth region of the �ow.

This causes the switch to oscillate erratically between 0 and 1, in a region where it should be 0. As a
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remedy, instead of an arbitrarily chosen small � d uc , a number scaled with the �ow scales is used:

� d uc � U 2

L 2 . This is scaled as � d uc = � 0
U 2

L 2 . To see how this fares, we will check � d uc for a 1D normal

shock. This is an inviscid 1D �ow and so ! = 0. So the ducros switch becomes:

� d uc =
� 2

� 2 + � d uc
(2.5)

(a) Numerator: � 2 (b) Ducros switch: � d uc

Figure 2.3 The effect of � d uc on � d uc relative to the shock width

In Fig.2.3(a) and Fig.2.3(b) we can investigate how the switch would behave for different values of

� d uc . As a reference the value of the numerator ( � 2) is shown in Fig.2.3(a) and the base�ow pressure

(P) is shown in Fig.2.3(b). For this exercise we use a highly re�ned grid near the shock to explore the

intricacies of the switch. It is reasonable to assume that the Ducros switch should be turned ON

for a distance which is at least as large as the shock width in order to subsume the discontinuous

region. Based on the pressure jump shown in Fig.2.3(b) it is clear that � d uc must be less than 10� 6

for the switch to be turned ON over the entire extent of the discontinuity. A very low value of � d uc

on the other hand might lead to an erratic behavior of the Ducros switch in the freestream leading

to the dissipation of disturbances in the freestream. Thus, the Ducros switch needs to be carefully

tuned to balance these competing interests. This is not however as burdensome as it may seem as

the Ducros switch can be tuned for the stability analysis independent of how it was tuned for the

base�ow. An analysis of the kind shown in Fig.2.3 can be performed almost readily based on the

base�ow information and then � d uc can be set accordingly.

Although the 1D inviscid cases are illustrative it is still an academic pursuit. The picture is more

complicated for a realistic �ow�eld with � , ! 6= 0 and where the magnitude of both the divergence

and vorticity varies over many orders of magnitude over the �ow�eld.
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(a) � d uc = 103 � Ue
2

� 2 � 10� 8 (b) � d uc = 105 � Ue
2

� 2 � 10� 6

(c) � d uc = 107 � Ue
2

� 2 � 10� 4 (d) � d uc = 109 � Ue
2

� 2 � 10� 2

Figure 2.4 The effect of � d uc on the � d uc for a converged base�ow ( M 1 = 6 �ow over sharp wedge)
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(a) � d uc = 103 � Ue
2

� 2 � 10� 8 (b) � d uc = 105 � Ue
2

� 2 � 10� 6

(c) � d uc = 107 � Ue
2

� 2 � 10� 4 (d) � d uc = 109 � Ue
2

� 2 � 10� 2

Figure 2.5 The effect of � d uc on the � d uc at x = 0.4 for a converged base�ow ( M 1 = 6 �ow over sharp
wedge) with reference to P
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In Fig.2.4 we can see the plot of the Ducros switch ( � d uc ) for different values of � d uc for a M 1 = 6

�ow over a 7� wedge. The relevant length scale and velocity scale in this case are selected to be the

boundary layer thickness at the out�ow ( � ) and the edge velocity ( Ue). For � d uc = 103 the switch

turns ON in most of the post-shock region and this is undesirable. For � d uc = 105 and � d uc = 107

the switch is mostly turned ON in the vicinity of the shock as is desirable. � d uc = 109, the switch

is ON near the shock but the value is less than 1 downstream. To further investigate this we plot

the values of � d uc along a vertical line at x =0.4. It can be seen that � d uc = 107 seems to have no

oscillations and is fully turned ON near the shock. For phenomena which involve the interaction of

�ne disturbance structures with shocks competing interests between stability and accuracy need to

be balanced deftly.

To further illustrate how � d uc plays a role in the transmission of waves through a shock we

perform an unsteady computation using the linearized solver by looking at a fast acoustic wave

(! = 10) passing through a M 1 = 3 normal shock. We capture the wave at different instances of

time speci�cally: before and after the wave hits the shock. We do this for three different values

of � d uc = 10� 6,10� 12 & 10� 18. In Fig.2.6 it can be seen that before the wave hits the shock � d uc

has little or no effect on the wave. However, once the wave hits the shock, it can be seen that for

� d uc = 10� 6 numerical oscillations travel upstream and downstream from the shock and distort the

wave structure. This effect is almost negligible for � d uc = 10� 12 and nonexistent for � d uc = 10� 18.

However for � d uc = 10� 18 it can be seen that the wave dissipates more as it travels downstream (the

horizontal lines indicate exact amplitude obtained from linear theory by McKenzie & Westphal [64]).

Although the dissipation isn't signi�cant in this case it indicates a potential drawback of choosing a

very low � d uc .

2.5.2 Grid resolution

Grid resolution is of critical importance to adequately resolve instability waves. This is usually

measured in terms of X cells per wavelength of the instability wave. Broadly speaking about 8-12

cells are suf�cient to resolve waves in smooth �ows. We intend to investigate if this is still true in the

context of shocks. We investigate for an acoustic wave passing through a M 1 = 3 normal shock for

a uniform grid distribution if an increased resolution is required due to the presence of a normal

shock relative to a smooth �ow. We introduce a fast acoustic wave ( ! = 10) from the in�ow.

The frequencies (and wavenumbers) are related by:

(u1 + a1)k1a = (u2 + a2)k2a = (u2)k2e = !

The wavelengths for the incident fast acoustic wave, the transmitted fast acoustic wave and the

generated entropy wave are: � a1 = 0.8377, � a2 = 0.5057and � e2 = 0.1629. The smallest wavelength is

the generated entropy wave and so we will use that as a metric in terms of what resolution is required.

The basic grid is Nx = 1501(8cells/ � 2e). The other grids considered are Nx = 3001, Nx = 6001and
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(a) � d uc = 10� 6 (b) � d uc = 10� 6 (c) � d uc = 10� 6

(d) � d uc = 10� 12 (e) � d uc = 10� 12 (f ) � d uc = 10� 12

(g) � d uc = 10� 18 (h) � d uc = 10� 18 (i) � d uc = 10� 18

Figure 2.6 The effect of � d uc for a shock-acoustic wave interaction at M 1 = 3; left panel ( t = 4.5s, pre
shock interaction), middle panel ( t = 45s, close-up view)& right panel ( t = 45s), full view
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Nx = 12001.

It can be seen in the results shown in Fig.2.7 that although the acoustic wave is captured fairly well

across all grid con�gurations, the grid con�guration is much more critical in terms of capturing the

much �ner entropy wave (generated). In case of the entropy wave the effect of � d uc can also be seen

wherein the entropy wave dissipates far more aggressively for � d uc = 10� 18 than for � d uc = 10� 17.

2.5.3 2D shock-acoustic interaction

For an adequate resolution (16 cells / � 2e for � = 0� ) we compare the performance for acoustic

waves incident at different angles to the normal shock. The base�ow was obtained by positioning

a normal shock ( M = 3) at x = 4 as shown in Fig.2.8. The domain extends from x = [0,12] and

y = [ � 2.5,7.5]. Slow acoustic waves are introduced through a section of the in�ow ( 0 < y < 5) as

harmonic forcing. Sponge layers are applied for x > 10.0, y > 5 and y < 0 near the right, top and

bottom out�ow boundaries respectively to damp out outgoing waves. Grid stretching is also applied

in this region for the same effect. As the orientation of the wave increases �ne resolution is required

in both x and y directions. It can be seen in Fig.2.9 that the two-dimensional interaction between

the acoustic wave and the normal shock is captured well.

2.6 Handling of homogeneous directions

In stability analysis we are often concerned with problems where the base�ow might be invariant in

one or two spatial directions but the disturbance �eld can be Fourier transformed in those directions.

These directions are referred to as homogeneous directions. Thus the stability problem can be solved

for disturbances which are resolved in some spatial direction / s and have a �xed wavenumber in the

homogeneous directions.

Consider a case,where a particular direction, say x j is homogeneous, then the derivatives in the

direction x j for the base�ow and the disturbances are given as: @q̄
@x j

= 0, @q 0

@x j
= i � j q 0. The routine �ux

linearization described in §2.2 cannot handle this aspect. So the linearization must be conducted

carefully to include the effect of this disturbance variation in the x j direction. This is done in two

steps. Firstly, the basic routine is modi�ed to make sure that the �ux in the x j direction does not

contribute to the linearized operator. Thereafter, the contributions in the x j direction are replaced

in the matrix using the correct form. The Navier-Stokes equations can be written as follows where

the inviscid and the viscous �uxes are given by ~F I and ~F V .

@~U

@t
= �

@

@x j

~F I +
@

@x j

~F V (2.6)

The inviscid and the viscous �uxes are implemented using different procedures as shown next.

26



(a) Nx = 1501 (b) Nx = 3001 (c) Nx = 6001 (d) Nx = 12001

(e) Nx = 1501 (f ) Nx = 3001 (g) Nx = 6001 (h) Nx = 12001

(i) Nx = 1501 (j) Nx = 3001 (k) Nx = 6001 (l) , Nx = 12001

(m) Nx = 1501 (n) Nx = 3001 (o) Nx = 6001 (p) Nx = 12001

Figure 2.7 Decomposing the density perturbations into acoustic (rows 1 & 3) and entropy (rows 2 & 4)
components. The effect of grid resolution & � d uc , (a)-(h): � d uc = 10� 18, (i)-(p): � d uc = 10� 17
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