
Abstract

PERRY, JOHN EDWARD. Combinatorial Criteria for Gröbner Bases. (Under

the direction of Hoon Hong.)

Both the computation and the detection of Gröbner bases require a criterion

that decides whether a set of polynomials is a Gröbner basis. The most funda-

mental decision criterion is the reduction of all S-polynomials to zero. However,

S-polynomial reduction is expensive in terms of time and storage, so a number

of researchers have investigated the question of when we can avoid S-polynomial

reduction. Certain results can be considered “combinatorial”, because they are cri-

teria on the leading terms, which are determined by integers. Our research builds

on these results; this thesis presents combinatorial criteria for Gröbner bases.

The first part of this thesis reviews the relevant literature on Gröbner bases and

skipping S-polynomial reduction. The second part considers criteria for skipping a

fixed number of S-polynomial reductions. The first two theorems of part two show

how to apply Buchberger’s criteria to obtain necessary and sufficient conditions for



skipping all S-polynomial reductions, and for skipping all but one S-polynomial

reductions. The third theorem considers the question of skipping all but two S-

polynomial reductions; we have found that this problem requires new criteria on

leading terms. We provide one new criterion that solves this problem for a set of

three polynomials; for larger sets, the problem remains open.

The final part of this thesis considers Gröbner basis detection. After a brief

review of a previous result that requires S-polynomial reduction, we provide a

new result which takes a completely different approach, avoiding S-polynomial

reduction completely.

Throughout the latter two parts, we provide some statistical analysis and ex-

perimental results.
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Chapter 1

An introduction to Gröbner bases

1.1. GRÖBNER BASES: ANALOGY

This text studies certain properties of Gröbner bases. What are Gröbner bases?

We introduce them as an extension of a high-school topic.

1.1.1. A “NICE FORM”. Suppose we are given two polynomials f1, f2. We want to

know the following:1

• Do f1, f2 share any common roots?

• If so, is the solution set finite or infinite?

• If the solution set is finite, how many common roots are there?

• If the solution set is infinite, what is its dimension?

• Find or describe these common solutions.

1Although we raise these questions for the purpose of motivating the study of Gröbner bases, it is
beyond the scope of this text to answer them. The interested reader can find an excellent treatment
of these topics in [CLO97].

2
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These are natural questions: systems of polynomials appear in numerous applica-

tions of mathematics, and the common roots of polynomial systems have impor-

tant real-world significance.

We would like a “nice form” that would help us answer these questions easily.

Such a “nice form” exists, and we call it a Gröbner basis.

The precise definition of a Gröbner basis will have to wait for section 1.2.4. For

now, we present an intuitive idea via two examples.

1.1.2. LINEAR POLYNOMIALS.

EXAMPLE 1.1. Consider the system

2x + 3y + 1 = 0

x + y = 0

Do the equations have common solutions?

High school students encounter this problems in Algebra I, and learn to solve

them by Gaussian elimination. They begin by writing the variables on one side, and

the constants on the opposite side:

2x + 3y = −1

x + y = 0
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The goal of Gaussian elimination is to obtain a “nice form” that allows us to

identify properties of the common solutions. We eliminate so-called “pivot” vari-

ables by combining two equations, yielding a new equation that lacks the pivot.

In this example, we will consider the term containing x to be the first “pivot”.

We multiply an appropriately-chosen constant (−2) to the second equation:

2x + 3y = −1

(−2) · (x + y = 0)


−→

−→

2x + 3y = −1

−2x − 2y = 0

Adding the two, we obtain a new equation,

y = −1

We can replace the first equation with this new one, giving us the following system:

x + y = 0

y = −1

We say that this new system has a “nice form”. Why? Observe that the system

is “triangular”: both x and y appear in the first equation, but only y appears in

the second. We see immediately that any solution requires y = −1, and we can

substitute this value into the first equation to find a unique solution at (1, −1). �

1.1.3. NON-LINEAR POLYNOMIALS. The situation is a little more complicated for

non-linear polynomials.
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EXAMPLE 1.2. Let

f1 = x2 + y2

f2 = xy

We want to know whether the system has a common root. This is equivalent to

saying that we want to know whether the equations

x2 + y2 = 0

xy = 0

have a common solution.

Perhaps we could generalize the method of example 1.1. Do these polynomials

have a “nice form”? If not, what must we do to find a similar ”nice form”?2

To answer the first question: no, this system is not a nice form.

So, we need to identify “pivots”. It doesn’t seem unreasonable to focus our

attention on the highest powers of x: so, we identify x2 and xy as “pivots” of

f1, f2.3

Now we want to eliminate the pivots. How? When the polynomials were linear,

the pivots were like terms, so we only needed to multiply by “magic constants.”

In this case, the pivots are not alike, so we need to multiply by monomials that give

2We do not yet have the machinery to provide the precise definition of this “nice form”; that will
come in definition 1.18 on page 19 of section 1.2.4.
3There is a science of choosing pivots, and we provide a treatment of this science in section 1.2.2.
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the pivots’ least common multiple: x2y. To accomplish this, multiply y to the first

equation and −x to the second:

y · (x2 + y2 = 0)

−x · (xy = 0)


−→

−→

x2y + y3 = 0

−x2y = 0

Adding the resulting equations, we have

y3 = 0

Let

f3 = y3

It turns out that f1, f2, f3 together have the “nice form” we are looking for. �

It is not obvious to the previously uninitiated that f1, f2, f3 have a “nice form”.

While it is true that we eliminated x from f3, we discarded neither f1 nor f2 (nor

can we). Furthermore, we have increased the total degree of the system: f3 is a

cubic, whereas f1, f2 are quadratic in x, y.

These difficulties are unimportant for now. What matters is the illustration of

the method: we identified a pivot, then eliminated it; this obtained for us a “nice

form”.

What is going on here?
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1.2. GRÖBNER BASES: DEFINITION

In 1965 [Buc65] Bruno Buchberger invented an algorithm to compute such a

”nice form” for systems of polynomial equations. In honor of his advisor, Wolf-

gang Gröbner, he named this form Gröbner bases; the corresponding algorithm has

since become known as Buchberger’s algorithm. Gröbner bases are now recog-

nized as an important tool for describing solutions to systems of nonlinear equa-

tions. They form a part of all major computer algebra systems, and have found

their place as an important application to scientific research in fields such as physics

and engineering.4

A precise definition of a Gröbner basis appears in section 1.2.4; first, we must

establish some fundamental concepts.

1.2.1. TERMS, MONOMIALS, COEFFICIENTS. Different authors give incompatible

definitions to the notions of terms, monomials, and coefficients. We follow the

convention of the Maple computer algebra system.

4An on-line conversation with a cousin drove this point home to me. When he asked me what I
was researching, I told him that I was working with Gröbner bases. To my surprise, my cousin
replied, “That sounds familiar... let me check.” I didn’t expect this, because he was a computer
science major, but a few moments later, he continued, “Yes, they’re in my astronomy book; they are
used to compute singularities.”
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DEFINITION 1.3. An indeterminate (also called a variable5) is an unspecified value.

A term is a product of indeterminates. A monomial is the product of a term and

a constant from the field F. We call this constant the coefficient. A polynomial is

the sum of a finite number of monomials.

EXAMPLE 1.4. Let

g = 5x2 − 3xy2 + y3

The monomials of f are

5x2 , −3xy2 , y3

The terms of f are

x2 , xy2 , y3

The coefficients of f are

5 , −3 , 1

�

1.2.2. TERM ORDERINGS (THE SCIENCE OF CHOOSING PIVOTS). Recall that in ex-

ample 1.2 we chose to eliminate the “pivots” x2 and xy. Why did we choose these

two monomials, rather than another pair, such as y2 and xy? We had chosen a term

ordering which identified x2 and xy as the “leading terms” of f1 and f2, respectively.

5Some authors distinguish between a variable and an indeterminate. For example, [Woo04] indi-
cates that a variable has a solution, while an indeterminate does not. Other authors use the terms
interchangeably (for example, pg. 188 of [BWK93]). In any case, this distinction does not matter
for our purposes.
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What do we mean by “leading terms”? When polynomials are univariate, this

is not a difficult task: we identify the highest power of x. Consider however the

polynomial x2 + y2: which term should we identify as the leading term? It is

entirely possible that in some contexts, x2 is a better candidate; in other contexts,

y2 might be better.

This gives rise to the need for a way to pick leading terms of multivariate poly-

nomials; we call this a term ordering.

DEFINITION 1.5. A term ordering is a relation on the set T (x1, . . . , xn) of all terms

in the indeterminates x1, . . . , xn. We denote a term ordering by �. We say that � is

an admissible term ordering on T (x1, . . . , xn) if ∀t1, t2, t3 ∈ T (x1, . . . , xn)

• either t1 � t2 or t2 � t1

• t1 � 1 or t1 = 1

• t1 � t2 implies t1t3 � t2t3

We write t1 � t2 if t1 � t2 or t1 = t2, and we sometimes write t2 ≺ t1 instead of

t1 � t2, and t2 � t1 instead of t1 � t2.

We never consider term orderings that are not admissible, so for the sake of

readability we refer to admissible term orderings simply as term orderings.

Any term ordering can be applied to monomials by disregarding the coeffi-

cients. It happens that two different monomials can have equal weight in a term
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ordering, but this does not present a problem in practice; normally we combine

like monomials, and we will consider polynomials to be in this “simplified” form.

Let’s look at some common term orderings.

EXAMPLE 1.6. Let

g = 5x2 − 3xy2 + y3

One way to choose the leading terms would be by picking the higher power of x;

in case of a tie, we could fall back on the higher power of y. We can write this

formally as:

• lex (x, y): t1 �lex(x,y) t2 if

degx t1 > degx t2;

in the case that degx t1 = degx t2, if degy t1 > degy t2.

Another way to chose the leading terms would be by picking the higher power of

y; in case of a tie, we could fall back on the higher power of x. We can write this

formally as:

• lex (y, x): we say that t1 �lex(y,x) t2 if

degy t1 > degy t2;

in the case that degy t1 = degy t2, if degx t1 > degx t2.

We call�lex(x,y) and�lex(y,x) lexicographic term orderings (hence the label, lex). Con-

sider the terms x2, xy2, y3, 1; the former has

x2 �lex(x,y) xy2 �lex(x,y) y3 �lex(x,y) 1
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and the latter has

y3 �lex(y,x) xy2 �lex(y,x) x2 �lex(y,x) 1

�

Of course, we need our term orderings to apply to terms in more than two in-

determinates. We can generalize the two term orderings of example 1.6 as follows:

DEFINITION 1.7. The lexicographic term ordering�= lex (x1, . . . , xn) gives t1 � t2

if

• degx1
t1 > degx1

t2, or

• degx1
t1 = degx1

t2 and

degx2
t1 > degx2

t2, or

• . . .

• degx1
t1 = degx1

t2 and

. . . and

degxn−1
t1 = degxn−1

t2 and

degxn
t1 > degxn

t2.

EXAMPLE 1.8. If �= lex (x, y, z), then

x2y2 � x2yz � xy2z � y3 � z5

As we noted above, we need term orderings to give us a precise manner of

choosing leading terms for multivariate polynomials.
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DEFINITION 1.9. The leading term of a polynomial f = a1t1+· · ·+artr with respect

to a term ordering � is

max
�
{tk : k = 1, . . . , r}

that is, the term t such that t � u for every other term u of f . We write lt� (f) = t.

If the term ordering is understood from context, we write f = t.

The leading monomial of a polynomial f with respect to a term ordering � is

is the monomial containing f . We write m = lm� (f). If the term ordering is un-

derstood from context, we write f̂ = m. The leading coefficient is the coefficient

of f in f̂ , written c = lc� (f).

Note that

lm� (f) = lc� (f) · lt� (f)

or, if the term ordering is understood from context,

f̂ = lc� (f) · f

Now let’s introduce a third term ordering, a total-degree term ordering. Here

we will pick the leading term not by favoring one variable over another, but by

favoring terms whose exponents have the highest sum. Before defining it precisely,

we’ll look first at an example in two variables.
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EXAMPLE 1.10. Define tdeg (x, y) over terms in x, y as follows: t1 �tdeg(x,y) t2 if the

sum of the degrees in x, y of t1 is larger than the sum of the degrees of t2; we will

break ties by the higher degree in x.

Recall from example 1.4 the term orderings lex (x, y) and lex (y, x) as well as

g (x, y) = 5x2 − 3xy2 + y3

We have

lm�lex(x,y)
(g) = 5x2 lm�lex(y,x)

(g) = y3 lm�tdeg(x,y)
(g) = −3xy2

lt�lex(x,y)
(g) = x2 lt�lex(y,x)

(g) = y3 lt�tdeg(x,y)
(g) = xy2

lc�lex(x,y)
(g) = 5 lc�lex(y,x)

(g) = 1 lc�tdeg(x,y)
(g) = −3

�

For terms in more than two variables, we have to decide how we should break

ties if the sum of the exponents is the same for two different terms. One way

would be to resort to the lexicographic technique: favoring an arbitrary variable.

Another way would be to disfavor an arbitrary variable: to consider the sum of all

the exponents but one. If that ties, we could exclude another variable, and so forth.

This latter technique is what we will take to mean the total-degree term ordering.
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DEFINITION 1.11. The total-degree term ordering6 �= tdeg (x1, . . . , xn) gives t1 �

t2 if

• degx1
t1 + · · ·+ degxn

t1 > degx1
t2 + · · ·+ degxn

t2, or

• degx1
t1 + · · ·+ degxn

t1 = degx1
t2 + · · ·+ degxn

t2 and

degx1
t1 + · · ·+ degxn−1

t1 > degx1
t2 + · · ·+ degxn−1

t2, or

• . . .

• degx1
t1 + · · ·+ degxn

t1 = degx1
t2 + · · ·+ degxn

t2 and

degx1
t1 + · · ·+ degxn−1

t1 = degx1
t2 + · · · degxn−1

t2 and

. . . and

degx1
t1 + degx2

t1 = degx1
t2 + degx2

t2 and

degx1
t1 > degx1

t2.

Let’s consider one last example to clarify how the total-degree term ordering

behaves with more than two indeterminates:

EXAMPLE 1.12. Let �= tdeg (x, y, z). Then

z5 � x2y2 � x2yz � xy2z � y3

Notice that in some cases, the ordering of the terms is the same as in example 1.8:

x2y2 � x2yz, for example. In this case, the sum of all the exponents is 4 for both

6This is also called the graded reverse lexicographic term ordering in some texts, for example definition
6 on page 56 of [CLO97]: graded refers to the consideration of the sum of a term’s exponents, while
reverse lexicographic refers to the breaking of ties by excluding the exponent of xn, then the exponent
of xn and xn−1, etc.
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terms, so we have a tie. To break it, we look at the sum of the exponents of x and

y, which is 4 for x2y2, and only 3 for x2yz.

On the other hand, the total degree of z5 is larger than the total degree of x2y2,

so z5 � x2y2, which was not the case in example 1.8. �

In view of the large amount of polynomial arithmetic that awaits us, it is ad-

visable to consider how leading terms behave under the operations of polynomial

arithmetic. The following lemma7 provides us with a number of useful properties.

LEMMA 1.13. For all term orderings � and for all polynomials f1, f2, we have the follow-

ing:

(A) f1 ± f2 � max�
(
f1 , f2

)
(B) f1 · f2 = f1 · f2

PROOF. Let �, f1, f2 be arbitrary, but fixed.

(A) Let g = f1 ± f2, and let t be an arbitrary term of g. By the definition of

polynomial addition, t is a term either of f1 or of f2. If t is a term of f1, then t � f1 ;

otherwise, t is a term of f2, whence t � f2 . In either case, t � max�
(
f1 , f2

)
.

(B) Let h = f1 · f2, and let t be an arbitrary term of h. Then

t = u1 · u2

7Adapted from lemma 5.17 on pg. 194 of [BWK93].
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where u1 is a term of f1, and u2 is a term of f2. Clearly u1 � f1 and u2 � f2 . Thus

t = u1 · u2 � f1 · u2 � f1 · f2 �

COROLLARY 1.14. For all term orderings � and for all polynomials f1, f2, we have the

following:

(A) f̂1 ± f2 � max�

(
f̂1 , f̂2

)
(B) f̂1 · f2 = f̂1 · f̂2

(B) lc� (f1 · f2) = lc� (f1) · lc� (f2)

1.2.3. REDUCTION OF A POLYNOMIAL MODULO f1, . . . , fm. The essence of reduc-

tion is obtaining a remainder by division. This is comparable to Gaussian elimina-

tion in matrices, insofar as we reduce one row of a matrix by adding multiples of

other rows to it.

DEFINITION 1.15. Given polynomials p, f, f1, . . . , fm, r and a term ordering �, we

write:

• p −→
f

r

if there exists a monomial q and a monomial d of p such that q ·

lm� (f) = d and r = p− qf

• p −→
q·f

r

as an explicit synonym for the above
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• p 9
f

if ¬∃r such that p −→
f

r

• p
∗−→

(f1,...,fm)
r

if ∃i1, . . . iµ ∈ {1, . . . ,m}, and there exist polynomials p0, . . . , pµ

such that

p = p0 −→
fi1

p1 −→
fi2

p2 · · · −→
fiµ

pµ = r

In this case, we say p reduces to r modulo (f1, . . . , fm).

EXAMPLE 1.16. Let

f1 = x2 + x + 1 f2 = xy p = x2y + y

For every term ordering �we have

f1 = x2

f2 = xy

Then

p −→
y·f1

xy −→
1·f2

0

�

The reader should note that a reduction path is not unique! It frequently happens

that different remainders follow from different reduction paths.8 For instance, in

8For Gröbner bases, however, this phenomenon does not occur; one property of Gröbner bases is
that reduction over a Gröbner basis gives the same remainder regardless of the reduction path.
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example 1.16, we could have reduced

p −→
x·f2

y
∗9

(f1,f2)

Hence

p
∗−→

(f1,f2)
0 and p

∗−→
(f1,f2)

y

1.2.4. FORMAL DEFINITION OF A GRÖBNER BASIS. We introduced Gröbner bases

with an analogy from linear algebra; namely, comparing them to the “nice form”

provided by Gaussian elimination. In the case of linear polynomials, this “nice

form” is a basis of the vector space generated by f1, . . . , fm. We will define Gröbner

bases by drawing an analogy with a property of bases of vector spaces.

Recall from linear algebra that for polynomials f1, . . . , fm, if {b1, . . . , bM} is a

basis of the vector space

V = {c1f1 + · · ·+ cmfm : ck ∈ F}

then for all v ∈ V , Gaussian elimination of v over b1, . . . , bM compares to polyno-

mial reduction of v by b1, . . . , bM ; indeed

v = v0 −→
(b1,...,bM )

v1 −→
(b1,...,bM )

· · · −→
(b1,...,bM )

vM = 0

In other words, v
∗−→

(b1,...,bM )
0. Note that the resulting quotients give co-ordinates of v

with respect to b1, . . . , bM . This follows from the fact that the bk generate the vector

space.
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EXAMPLE 1.17. Let

f1 = x + y

f2 = y + 1

Note that x is a monomial of f1, but not of f2; hence the two polynomials are

linearly independent, thus a basis for

V = {c1f1 + c2f2 : c1, c2 ∈ Q}

Let g = 10f1 − 10f2. Clearly g ∈ V . Then

g = 10x− 10 −→
10·f1

−10y − 10 −→
−10·f2

0

Notice that the quotients give the co-ordinates of g with respect to f1, f2. �

Now define

I (f1, . . . , fm) = {h1f1 + · · ·+ hmfm : hk ∈ F[x1, . . . , xn]}

We define a Gröbner basis as if it gave a non-linear generalization of the above

property of the basis of a vector space.

DEFINITION 1.18. We say that f1, . . . , fm ∈ F[x1, . . . , xn] are a Gröbner basis with

respect to the term ordering � if for every p ∈ I we have p
∗−→

(f1,··· ,fm)
0.9

9This is not the only way to define a Gröbner basis. Our definition comes from [BWK93] (definition
5.37 on page 207 and condition (v) of theorem 5.35 on page 206). The interested reader can find
other definitions:
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If f1, . . . , fm are a Gröbner basis, then we may write GB� (f1, . . . , fm) for short.

To familiarize ourselves with this definition, we reconsider the polynomials of

examples 1.1 and 1.2.

EXAMPLE 1.19. Let

f1 = 2x + 3y + 1

f2 = x + y

Notice that f1, f2 are derived from 1.1 on page 3.

To work in Gröbner bases, we need a term ordering, say �= lex (x, y). Thus

f1 = x f2 = x

We claim that f1, f2 are not a Gröbner basis with respect to �. Why not?

Let

p = 1 · f1 − 2 · f2

= (2x + 3y + 1)− 2 (x + y)

= y + 1

• [CLO98] (definition 3.1 on page 12), [Coh03] (definition 8.30 on page 324), and
more generally [Eis95] define a Gröbner basis so that for every p ∈ I, we have
fi | g for some i = 1, . . . ,m;
• [CLO97] (Definition 5 on page 74) and [vzGG99] (definition 21.25 on page 579)

use the definition that the ideal of the leading terms of f1, . . . , fm equals the
ideal of the leading terms of all p ∈ I.

Both these definitions also appear in [BWK93] (definition 5.37 on page 207 and condition (viii) of
theorem 5.35 on page 206). It should come as no surprise that these definitions are equivalent;
proving this fact is the point of theorem 5.35 of [BWK93].
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(Notice that p is the polynomial we obtained by Gaussian elimination in example

1.1.)

Certainly p ∈ I (f1, f2). However, neither f1 nor f2 divides any term of p.

Hence

p 9
(f1,f2)

which implies that

p
∗9

(f1,f2)
0

Since f1, f2 do not satisfy definition 1.18, they are not a Gröbner basis. �

EXAMPLE 1.20. This time, let f1, f2 be as in example 1.2:

f1 = x2 + y2

f2 = xy

Again, let �= lex (x, y), so

f1 = x2 f2 = xy

We claim that f1, f2 are not a Gröbner basis. Let

p = y · f1 − x · f2

=
(
x2y + y3

)
− x2y

= y3
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(Notice that p is the polynomial f3 that we identified in example 1.2.)

Certainly p ∈ I (f1, f2). However, neither f1 nor f2 divides any term of p.

Hence

p 9
(f1,f2)

which implies that

p
∗9

(f1,f2)
0

Since f1, f2 do not satisfy definition 1.18, they are not a Gröbner basis. �

At the end of example 1.2, we claimed that by appending f3, we did have the

“nice form.” In essence, we were claiming that f1, f2, f3 are a Gröbner basis with

respect to �. We would like to show this, but we cannot yet sit down and verify

that for all p ∈ I (f1, f2, f3), p
∗−→

(f1,f2,f3)
0.

How do we prove this claim?

1.3. GRÖBNER BASES: DECISION

Definition 1.18 does not suggest an algorithm that will decide whether the poly-

nomials f1, . . . , fm are a Gröbner basis. We cannot apply the definition directly,

since it is universally quantified over the p, and we would have to test infinitely

many p ∈ I (f1, . . . , fm).
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In order to check whether some given polynomials are a Gröbner basis, we

need equivalent conditions that are not universally quantified over I. We present

these conditions as theorem 1.30 of section 1.3.3. Before we can present theorem

1.30, however, we have two more items of background material.10

1.3.1. S-POLYNOMIALS. For linear polynomials, we cancel the pivots by multiply-

ing appropriate scalar factors. For non-linear polynomials, we cancel the leading

terms by multiplying appropriate monomial factors. The construction that accom-

plishes this is the S-polynomial:

DEFINITION 1.21. For polynomials f1, f2 and for a term ordering �

S� (f1, f2) =
lcm (lt� (f1) , lt� (f2))

lm� (f1)
· f1 −

lcm (lt� (f1) , lt� (f2))

lm� (f2)
· f2

We call S� (f1, f2) the S-polynomial of f1 and f2; the S stands for subtraction.11

When the term ordering � is understood from the context, we will write Sf1,f2 or

even S1,2.

10There is also the question of how to compute a Gröbner basis for f1, . . . , fm in the case where
they are not a Gröbner basis themselves. There are several well-known algorithms for this: Bruno
Buchberger’s algorithm of [Buc65] is the most famous, and more recently there are Faugère’s al-
gorithms F4 [Fau99] and F5 [Fau02]. All these algorithms require a sub-algorithm that decides
whether a set of polynomials is a Gröbner basis; this is the focus of our particular research A dis-
cussion of Gröbner basis computation lies beyond the scope of this thesis, and we refer the reader
to the sources.
11Buchberger refers to the S-polynomial as a subtraction polynomial in his thesis [Buc65], although
Cox, Little, and O’Shea refer to it as a syzygy polynomial in their text [CLO97]. The latter authors
are trying to place S-polynomials in this very important context of syzygies.
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Note that Si,j = −Sj,i. As a result, we consider only the S-polynomials with

i < j.

The polynomials p of examples 1.19 on page 20 and 1.20 on page 21 were

formed by a construction very similar to that of S-polynomials. Compare their

results to examples 1.22 and 1.23.

EXAMPLE 1.22. Let

f1 = 2x + 3y + 1

f2 = x + y

We will use �= lex (x, y). Then

S1,2 =
lcm (x, x)

2x
· (2x + 3y + 1)− lcm (x, x)

x
· (x + y)

=
x

2x
· (2x + 3y + 1)− x

x
· (x + y)

=
1

2
· (2x + 3y + 1)− (x + y)

= x +
3

2
· y +

1

2
− x− y

=
1

2
· y +

1

2

Notice that S1,2 is a constant multiple of p in example 1.19 on page 20, which, as

we noted, is the polynomial we found by Gaussian elimination in example 1.1 on

page 3. �
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EXAMPLE 1.23. Let

f1 = x2 + y2

f2 = xy

Again, let �= lex (x, y). This gives us

f̂1 = x2

f̂2 = xy

Then

S1,2 =
lcm (x2, xy)

x2
·
(
x2 + y2

)
− lcm (x2, xy)

xy
· xy

=
x2y

x2
·
(
x2 + y2

)
− x2y

xy
· xy

= y ·
(
x2 + y2

)
− x · xy

=
(
x2y + y3

)
− x2y

= y3

Compare this to f3 and p in examples 1.2 on page 4 and 1.20 on page 21, respec-

tively. �

We leave it as an exercise for the reader to show that, for the polynomials given

in example 1.23,

S�lex(x,y)
(f1, f2) = S�tdeg(x,y)

(f1, f2)
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However, the S-polynomial can also change if we change the term ordering, as

illustrated by example 1.24.

EXAMPLE 1.24. Let f1, f2 be as in example 1.23. This time, let �= lex (y, x). Now

we have f̂1 = y2. Then

S1,2 =
lcm (y2, xy)

y2
·
(
x2 + y2

)
− lcm (y2, xy)

xy
· xy

=
xy2

y2
·
(
x2 + y2

)
− xy2

xy
· xy

= x ·
(
x2 + y2

)
− y · xy

=
(
x3 + xy2

)
− xy2

= x3

�

The following lemma formalizes the observation that S-polynomials eliminate

leading terms, and it provides an unreachable “upper bound” for the leading terms

of S-polynomials.

LEMMA 1.25. For all fi, fj ∈ F[x1, . . . , xn]

Si,j ≺ lcm
(
fi , fj

)
PROOF. Let fi, fj ∈ F[x1, . . . , xn] be arbitrary, but fixed. Recall that

Si,j =
lcm

(
fi , fj

)
fi

· fi −
lcm

(
fi , fj

)
fi

· fi



1.3. GRÖBNER BASES: DECISION 27

Write fi = f̂i + Ri and fj = f̂j + Rj . Then

Si,j =
lcm

(
fi , fj

)
fi

·
(

f̂i + Ri

)
−

lcm
(
fi , fj

)
fi

·
(

f̂j + Rj

)
=lcm

(
fi , fj

)
+

lcm
(
fi , fj

)
fi

·Ri − lcm
(
fi , fj

)
−

lcm
(
fi , fj

)
fi

·Rj

=
lcm

(
fi , fj

)
fi

·Ri −
lcm

(
fi , fj

)
fj

·Rj

Clearly,

Si,j = max
�

(
lcm

(
fi , fj

)
fi

·Ri ,
lcm

(
fi , fj

)
fj

·Rj

)
Observe that

lcm
(
fi , fj

)
fi

·Ri =
lcm

(
fi , fj

)
fi

· Ri

≺
lcm

(
fi , fj

)
fi

· fi

= lcm
(
fi , fj

)
Similarly,

lcm
(
fi , fj

)
fi

·Ri ≺ lcm
(
fi , fj

)
Thus

Si,j ≺ lcm
(
fi , fj

)
�

1.3.2. REPRESENTATION OF AN S-POLYNOMIAL MODULO f1, . . . , fm. Suppose we

perform Gaussian elimination on the linear polynomials f1, . . . , fm and obtain the
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linear basis b1, . . . , bM . We alluded in example 1.17 on page 18 to the fact that if

p = c1f1 + · · ·+ cmfm

where the ck are scalars in the base field, then we can represent p in terms of

b1, . . . , bM by its co-ordinates.

We extend this idea to the concept of the representation of an S-polynomial

modulo f1, . . . , fm:12

DEFINITION 1.26. We say that h1, . . . , hm give a representation of Si,j modulo

f1, . . . , fm if

Si,j = h1f1 + · · ·+ hmfm

and for every k = 1, . . . ,m hk 6= 0 implies

hk · fk ≺ lcm
(
fi , fj

)
If ∃h1, . . . , hm such that h1, . . . , hm give a representation of Si,j modulo f1, . . . , fm,

we say that Si,j has a representation modulo f1, . . . , fm. We often omit the modu-

lus if it is obvious from context.

With linear polynomials, we can find a representation for a polynomial p by

performing row-reduction operations on p using the basis b1, . . . , bM . It turns out

12We could define this more generally; see the standard representation of a polynomial on page 218
of [BWK93]. For our purposes, the notion of an S-polynomial representation (a special case of the
t-representation on page 219 of [BWK93]) will suffice.
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that we can do something similar in the non-linear case using reduction and repre-

sentation. If we collect the monomial quotients of a reduction path, we can obtain

sample hk by adding the all monomial quotients for fk. We illustrate this in exam-

ple 1.27.

EXAMPLE 1.27. Let

f1 = x2 + x + 1 f2 = y − 1

Let � be any term ordering. Then

f1 = x2 f2 = y

We have

S1,2 =
lcm (x2, y)

x2
·
(
x2 + x + 1

)
− lcm (x2, y)

y
· (y − 1)

=y ·
(
x2 + x + 1

)
− x2 · (y − 1)

=x2 + xy + y

Then

S1,2 −→
1·f1

xy + y − x− 1 −→
x·f2

y − 1 −→
1·f2

0

Collecting and negating the monomials of the reduction path, we see that

S1,2 = h1f1 + h2f2

where

h1 = 1 h2 = x + 1
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We have

h1 · f1 = 1 · x2 ≺ x2y = lcm
(
f1 , f2

)
h2 · f2 = x · y ≺ x2y = lcm

(
f1 , f2

)
So h1 and h2 give us a representation of S1,2. �

Generalizing the above, we have the following lemma:

LEMMA 1.28. Let f1, . . . , fm be polynomials. For all 1 ≤ i < j ≤ m we have (A)⇒(B)

where

(A) Si,j
∗−→

(f1,··· ,fm)
0

(B) Si,j has a representation modulo f1, . . . , fm

PROOF. Let i 6= j be arbitrary, but fixed.

We want to show (A)⇒(B), so assume (A).

Then

Si,j
∗−→

(f1,...,fm)
0

Write out an explicit reduction path

(1.1) Si,j = p0 −→
q1·fi1

p1 −→
q2·fi2

· · · −→
qr·fir

pr = 0

Notice that by the definition of reduction and lemma 1.25 on page 26, we have

for all ` = 1, . . . , r

q` · fi` � p`−1 � · · · � p0 = Si,j ≺ lcm
(
fi , fj

)
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Working backwards in (1.1), we see that

0 = pr =pr − qr · fir

=
(
pr−2 − qr−1 · fir−1

)
− qr · fir

...

=p0 − q1 · fi1 − · · · − qr−1 · fir−1 − qr · fir

Thus

p0 = q1 · fi1 + · · ·+ qr · fir

Since p0 = Si,j , we have

Si,j = q1 · fi1 + · · ·+ qr · fir

For k = 1, . . . ,m let hk =
∑

qj such that qj · fk appears in the above equation.

Then

Si,j = h1f1 + · · ·+ hmfm

and hk 6= 0 implies that

hk · fk = max
�

( qj : qj · fk appears above) ≺ lcm
(
fi , fj

)
�

The reader should take heed that the converse of the above lemma is not, in general,

true, even if p is restricted to S-polynomials! Consider the following example:
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EXAMPLE 1.29. Let

f1 = x3y2 + 1

f2 = x2y3 + 1

f3 = x2y + 1

f4 = xy2 + 1

Let � be any admissible term ordering. Observe that

f1 = x3y2 f2 = x2y3 f3 = x2y f4 = xy2

We have

S1,2 =
lcm (x3y2, x2y3)

x3y2
·
(
x3y2 + 1

)
− lcm (x3y2, x2y3)

x2y3
·
(
x2y3 + 1

)
= y ·

(
x3y2 + 1

)
− x ·

(
x2y3 + 1

)
= y − x

Let

h1 = 0 h2 = 0 h3 = y h4 = −x

Then

h1f1 + h2f2 + h3f3 + h4f4 = y
(
x2y + 1

)
− x

(
xy2 + 1

)
= y − x
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So

S1,2 = h1f1 + h2f2 + h3f3 + h4f4

Furthermore,

h3 · f3 = h4 · f4 = x2y2 ≺ x3y3 = lcm
(
f1 , f2

)
So for S1,2, we have satisfied (B) of lemma 1.28.

However, for k = 1, 2, 3, 4 fk - x and fk - y, so

S1,2 9
(f1,··· ,f4)

As a consequence,

S1,2
∗9

(f1,··· ,f4)
0

�

1.3.3. EQUIVALENT CONDITIONS FOR A GRÖBNER BASIS. Because they capture

completely the cancellation of leading monomials, S-polynomials provide the crit-

ical key for determining whether f1, . . . , fm are a Gröbner basis with respect to

a term ordering �. Definition 1.18 requires us to verify that every polynomial in

I (f1, . . . , fm) reduces to zero; however, there are infinitely many polynomials, so

we cannot create an algorithm directly. Theorem 1.30 will circumvent this obstacle:

we only have to check that a finite number of polynomials reduce to zero: namely,

all the S-polynomials for f1, . . . , fm. Moreover, we do not even have to reduce them
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to zero; the theorem shows that having representations for all the S-polynomials

is also equivalent.

THEOREM 1.30. For all f1, . . . , fm and for all �, the following are equivalent.

(A) f1, . . . , fm are a Gröbner basis with respect to �.

(B) for all 1 ≤ i < j ≤ m, Si,j
∗−→

(f1,...,fm)
0.

(C) for all 1 ≤ i < j ≤ m, Si,j has a representation modulo f1, . . . , fm.

The proof is rather long, so we present it at the end of the section. We precede

the proof with an algorithm that follows naturally from clause (B), and with some

examples.

First, a caution on what the theorem does not say. The positions of the quanti-

fiers are essential; it is not the case that

∀1 ≤ i < j ≤ m

[
Si,j

∗−→
(f1,...,fm)

0 ⇔ Si,j has a representation modulo f1, . . . , fm

]
(Recall example 1.29 on page 31.)

AN ALGORITHM FOR THEOREM 1.30. Clause (B) of theorem 1.30 lends itself nat-

urally to an algorithm to decide whether a system of polynomials are a Gröbner

basis with respect to a given term ordering, and we present this as algorithm 1.1.

The algorithm is a straightforward implementation of theorem 1.30, so it clearly

terminates correctly.
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Algorithm 1.1 Is_GB
Inputs: �, f1, . . . , fm

Output: YESif f1, . . . , fm are a Gröbner basis with respect to �; NOotherwise.

B ← {(i, j) : 1 ≤ i < j ≤ m}

For (i, j) ∈ B Do

If Si,j
∗9

(f1,...,fm)
0 Then

Return FALSE

Return TRUE

EXAMPLES OF THEOREM 1.30. Now for some examples. The first ones are those

that we could not verify previously. The first example is the linear system derived

from example 1.1 on page 3.

EXAMPLE 1.31. Recall from example 1.22 on page 24

f2 = x + y

Let

f3 = y + 1

Notice f3 = S1,2 (where f1 = 2x + 3y + 1 as in example 1.22).

We claim that f2, f3 are a Gröbner basis with respect to �. Observe that

S2,3 =
lcm (x, y)

x
· (x + y)− lcm (x, y)

y
· (y + 1)

=
(
xy + y2

)
− (xy + x)

=y2 − x
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Then

S2,3 −→
f2

y2 + y −→
−2y·f3

0

By theorem 1.30, f2, f3 are a Gröbner basis with respect to �. �

We leave it as an exercise to the reader to show that f1, f2, f3 from example 1.22

on page 24 are also a Gröbner basis with respect to �. However, it is not necessary

to include f1 in the Gröbner basis, since f1 ∈ I (f2, f3):

f1 = 2f2 + f3

Recalling example 1.2 on page 4, we now show that the non-linear f1, f2, f3 do

have the “nice form”, and that we cannot drop any one of the three.

EXAMPLE 1.32. Let �= lex (x, y). Recall from examples 1.2 on page 4 and 1.23 on

page 25

f1 =x2 + y2

f2 =xy

f3 =y3

According to theorem 1.30, we need to verify that S1,2, S1,3, S2,3 all reduce to zero

over f1, f2, f3.

We saw in example 1.23 on page 25 that S1,2 = f3, so

S1,2
∗−→

(f1,f2,f3)
0
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We also have

S1,3 =
lcm (x2, y3)

x2
·
(
x2 + y2

)
− lcm (x2, y3)

y3
· y3

=
(
x2y3 + y5

)
− x2y3

=y5

Here

S1,3 −→
y2·f3

0

so

S1,3
∗−→

(f1,f2,f3)
0

Finally, S2,3 = 0 so S2,3
∗−→

(f1,f2,f3)
0.

Since all of S1,2, S1,3, S2,3 reduce to zero over f1, f2, f3, theorem 1.30 informs us

that f1, f2, f3 are a Gröbner basis with respect to �. �

The reader should note that the steps we followed in example 1.32 are not only

the steps necessary to verify that clause (B) of theorem 1.30 holds, but they are also

the precise steps that we followed in example 1.2 on page 4, a generalization of

Gaussian elimination.

The choice of term ordering can affect whether a set of polynomials is a Gröb-

ner basis. This should make sense, since we have seen already that changing the

term ordering can change the leading terms, the S-polynomials, and the possible

reduction paths – in other words, everything can hinge on the term ordering.
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Example 1.33 illustrates this fact. We reconsider the polynomials of example

1.32 using a different term ordering.

EXAMPLE 1.33. Let f1, f2, f3 be as in example 1.2; that is,

f1 =x2 + y2

f2 =xy

f3 =y3

We claim that f1, f2, f3 are not a Gröbner basis with respect to �= lex (y, x).

Notice first that one of the leading terms has changed! We now have

f1 = y2 f2 = xy f4 = y3

Then

S1,2 =
lcm (y2, xy)

y2
·
(
x2 + y2

)
− lcm (y2, xy)

xy
· xy

=
(
x3 + xy2

)
− xy2

=x3

We cannot carry out a single reduction! Hence

S1,2
∗9

(f1,f2,f3)
0

We conclude that f1, f2, f3 are not a Gröbner basis with respect to �. �
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PROOF OF THEOREM 1.30. We conclude section 1.3.3 with a proof of theorem 1.30.

First, we restate the theorem:

THEOREM. For all f1, . . . , fm and for all �, the following are equivalent.

(A) f1, . . . , fm are a Gröbner basis with respect to �.

(B) for all 1 ≤ i < j ≤ m, Si,j
∗−→

(f1,...,fm)
0.

(C) for all 1 ≤ i < j ≤ m, Si,j has a representation modulo f1, . . . , fm.

The proof has three major sections:

• (A)⇒(B) (short)

• (B)⇒(C) (very short)

• (C)⇒(A) (long: pages 40 – 48)

PROOF. (Of theorem 1.30)

Let f1, . . . , fm, and � be arbitrary, but fixed.

(A)⇒(B): Assume (A). So f1, . . . , fm are a Gröbner basis with respect to �.

Let i < j satisfy (B).

Recall that

Si,j =
lcm

(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂j

· fj

We have

Si,j = h1f1 + · · ·+ hmfm
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where

hi =
lcm

(
fi , fj

)
f̂i

· fi

hj =
lcm

(
fi , fj

)
f̂j

· fj

hk =0 ∀k 6= i, j

Then

Si,j ∈ I (f1, . . . , fm)

Recall that f1, . . . , fm are a Gröbner basis. Hence, for every p ∈ I (f1, . . . , fm),

p
∗−→

(f1,...,fm)
0. In particular, Si,j

∗−→
(f1,...,fm)

0.

But i, j were arbitrary. Hence (B).

(B)⇒(C): This is a consequence of lemma 1.28 on page 30.

(C)⇒(A): Assume (C).13

Abbreviate I (f1, . . . , fm) as I. We have to show that p
∗−→

(f1,...,fm)
0 for every p ∈ I.

We proceed in three steps, each of which is a claim. Claim 1 is by far the longest.

Claim 1. We claim that for every nonzero p ∈ I ∃h1, . . . , hm such that

(1.2) p = h1f1 + · · ·+ hmfm

and ∀k = 1, . . . ,m hk · fk � p .

Let p ∈ I be arbitrary, but fixed.

13The following is derived from the proofs of theorem 5.64, lemma 5.61, and theorem 5.35 of
[BWK93].
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Let

R = {(h1, . . . , hm) : p = h1f1 + · · ·+ hmf}

and

S =
{
max

(
h1 · f1 , . . . , hm · fm

)
: (h1, . . . , hm) ∈ R

}
Since S ⊂ T (x1, . . . , xn), S has a least element with respect to �; call it s.

Clearly s � p : we have s � p only if two terms on the right-hand side of (1.2)

cancel. We claim that by choosing h1, . . . , hm so that s is minimal, we have p = s.

Note that this would imply claim 1.

By way of contradiction, assume that s � p . Then the terms on the right-hand

side of (1.2) that contain s must cancel.

Let n be the number of leading terms of the hkfk such that hk · fk = s. Note

that n > 1.

We claim that if for some M ≤ n

s = hk1 · fk1 = · · · = hkM
· fkM

and

ĥk1 · f̂k1 + · · ·+ ĥkM
· f̂kM

= 0

then we can rewrite

(1.3) hk1fk1 + · · ·+ hkM
fkM
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such that

s′ = max
�

{
hk`
· fk`

: ` = 1, . . . ,M
}
≺ s

We proceed by induction on M .

Inductive base: Assume that M = 2. Without loss of generality,

h1 · f1 = h2 · f2 = s

and

ĥ1 · f̂1 + ĥ2 · f̂2 = 0

Thus

lcm
(
f1 , f2

)
| s

Let u be such that

u · lcm
(
f1 , f2

)
= s

Let ak = lc� (hk) and bk = lc� (fk); then

a1b1 = −a2b2

Put

c = a1b1 = −a2b2

Then

ĥ1 · f1 + ĥ2 · f2 =a1 h1 · f1 + a2 h2 · f2

=a1 h1 · f̂1 ·
f1

f̂1

+ a2 h2 · f̂2 ·
f2

f̂2
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=a1 h1 · b1 f1 ·
f1

f̂1

+ a2 h2 · b2 f2 ·
f2

f̂2

=c · h1 · f1 ·
f1

f̂1

− c · h2 · f2 ·
f2

f̂2

=cs · f1

f̂1

− cs · f2

f̂2

=cs ·
(

f1

f̂1

− f2

f̂2

)
=c · u · lcm

(
f1 , f2

)
·
(

f1

f̂1

− f2

f̂2

)
=cu ·

(
lcm

(
f1 , f2

)
f̂1

· f1 −
lcm

(
f1 , f2

)
f̂2

· f2

)

=cu · S1,2

We had assumed (C), so there exist H1, . . . , Hm such that

(1.4) S1,2 = H1f1 + · · ·+ Hmfm

and for k = 1, . . . ,m Hk 6= 0 implies

Hk · fk ≺ lcm
(
f1 , f2

)
Thus

(1.5) u · Hk · fk ≺ u · lcm
(
f1 , f2

)
= s

Recalling (1.2), we have

p =h1f1 + h2f2 + h3f3 + · · ·+ hmfm

=
[
ĥ1 · f1 + ĥ2 · f2

]
+
[(

h1 − ĥ1

)
· f1 +

(
h2 − ĥ2

)
· f2 + h3f3 + · · ·+ hmfm

]
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=cu · S1,2 +
[(

h1 − ĥ1

)
· f1 +

(
h2 − ĥ2

)
· f2 + h3f3 + · · ·+ hmfm

]
=cu · (H1f1 + · · ·+ Hmfm)

= +
[(

h1 − ĥ1

)
· f1 +

(
h2 − ĥ2

)
· f2 + h3f3 + · · ·+ hmfm

]
Collecting on f1, . . . , fm we have

p =
(
cu ·H1 + h1 − ĥ1

)
· f1 +

(
cu ·H2 + h2 − ĥ2

)
· f2

+ (cu ·H3 + h3) f3 + · · ·+ (cu ·Hm + hm) fm(1.6)

Note that we have removed h1 · f1 and h2 · f2 from this last equation, so we

removed the two instances where s appeared in (1.2).

Recall from (1.5) that u · Hk · fk ≺ s for k = 1, . . . ,m.

Since M = 2, we know that hk · fk ≺ s for k = 3, . . . ,m.

Let

s′ = max
{

u ·H1 + h1 − ĥ1 · f1 ,

u ·H2 + h2 − ĥ2 · f2 ,

u ·H3 + h3 · f3 ,

. . . ,

u ·Hm + hm · fm

}
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Since s′ is from the leading terms of (1.6), we see that s′ 6= s. No term larger than s

was added during the construction of (1.6), and s was maximal among the hk · fk ,

so s′ ≺ s.

Inductive step: Assume that M > 2, and if

• ĥk1 · f̂k1 + ĥk2 · f̂k2 = 0

• . . .

• ĥk1 · f̂k1 + · · ·+ ĥkM−1
· f̂kM−1

= 0

then we can rewrite (1.3) such that s′ = max�
{

hk · fk

}
≺ s. Since M > 2,

ĥk1 · f̂k1 + · · ·+ ĥkM
· f̂kM

= 0

Without loss of generality, we may assume that

h1 · f1 = · · · = hM · fM = s

so that

ĥ1 · f̂1 + · · ·+ ĥM · f̂M = 0

Write

lc� (hk) = ak lc� (fk) = bk

Certainly

(1.7) p = h1f1 −
a1b1

a2b2

· ĥ2 · f2 +

(
h2 +

a1b1

a2b2

· ĥ2

)
· f2 + h3f3 · · ·+ hmfm



1.3. GRÖBNER BASES: DECISION 46

Notice that the leading monomials of the first two summands are constant multi-

ples of s, and they cancel:

ĥ1 · f̂1 −
a1b1

a2b2

· ĥ2 · f̂2 = ĥ1 · f̂1 − a1b1 · h2 · f2

= a1b1s− a1b1s

= 0

The inductive hypothesis applies here, so that we can rewrite

h1f1 −
a1b1

a2b2

· ĥ2 · f2 = H1f1 +H2f2

with

s′ = max
�

{
H1 · f1 , H2 · f2

}
≺ s

In the last m − 1 summands of (1.7), s must cancel. There are exactly M − 2

occurrences of s in h3 · f3 , . . . , hM · fM . Further, there is only one occurrence of s

in

h2 +
a1b1

a2b2

· ĥ2 · f2

So s appears exactly M −1 times in the last m−1 summands of (1.7); the inductive

hypothesis applies to these summands as well.

Regardless of the value of M , we have found an expression

p = H1 · f1 + · · ·+Hm · fm
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where

s′ = max
�

{
Hk · fk : k = 1, . . . ,m

}
≺ s

This contradicts the choice of s, so our assumption that s � p was wrong. We have

shown that (C) implies that

∀p ∈ I ∃h1, . . . , hm ∈ F[x1, . . . , xn] p = h1f1 + · · ·+ hmfm ∧ hk · fk � p

Claim 2. For every nonzero p ∈ I, fk | p for some k = 1, . . . m.

Let p ∈ I be arbitrary, but fixed.

From claim 1, ∃h1, . . . , hm such that p = h1f1 + · · ·hmfm and hk · fk � p for

k = 1, . . . ,m.

Certainly hk · fk = p for some k = 1, . . . ,m (otherwise the equations cannot

be equal).

For this k, we have fk | p .

Claim 3. We claim that ∀p ∈ I p
∗−→

(f1,...,fm)
0.

Let p ∈ I be arbitrary, but fixed. Let r be such that

p
∗−→

(f1,...,fm)
r 9

(f1,...,fm)

If r 6= 0, then from claim 2 we know fk | r for some k = 1, . . . ,m.

This contradicts r 9
(f1,...,fm)

.

Thus r = 0 and

p
∗−→

(f1,...,fm)
0 �
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1.4. SOME PROPERTIES OF REPRESENTATIONS OF S-POLYNOMIALS

Although the climax of this chapter is theorem 1.30, we will need some ad-

ditional tools in subsequent chapters. These tools describe elementary properties

of representations of S-polynomials, and they pop up in multiple chapters, so we

present them here.

We begin by defining notation for the “magic monomials” used to create S-

polynomials.14

DEFINITION 1.34. For all polynomials fi, fj and term orderings �, we write

σij =
lcm

(
fi , fj

)
f̂i

σji =
lcm

(
fi , fj

)
f̂j

This gives us an abbreviated notation for S-polynomials:

Si,j = σij · fi − σji · fj

This abbreviated notation for S-polynomials is not the reason we introduce the

σ-notation. These “magic monomials” will prove very important to subsequent

results.

What relationship exists between σij and σji, the two monomials used to create

Si,j? It turns out that the two are relatively prime on their indeterminates.

14We are adapting this extremely useful notation from [Hon98].
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LEMMA 1.35. For all i 6= j, gcd ( σij , σji ) = 1.

PROOF. Let i 6= j. Assume x | σij .

We have

degx σij = degx

(
lcm

(
fi , fj

)
f̂i

)

= degx lcm
(
fi , fj

)
− degx f̂i

= max
(
degx fi , degx fj

)
− degx fi

= max
(
0, degx fj − degx fi

)
Since x | σij , degx σij > 0. Thus

degx fj > degx fi

Now consider

degx σji = degx

(
lcm

(
fi , fj

)
f̂j

)

= degx lcm
(
fi , fj

)
− degx f̂j

= max
(
degx fi , degx fj

)
− degx fj

= degx fj − degx fj

=0

Since x was an arbitrary indeterminate such that x | σij , we know that degx σji =

0 for any indeterminate x where x | σij .
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A symmetric argument shows that degx σij = 0 for any indeterminate x where

x | σji.

Hence gcd ( σij , σji ) = 1 as claimed. �

The next result is a useful consequence of lemma 1.25 on page 26.

LEMMA 1.36. For all i 6= j (A)⇒(B) where

(A) h1, . . . , hm give a representation of Si,j modulo f1, . . . , fm

(B) ̂(σij ± hi) = σij and ̂(σji ± hj) = σji

PROOF. Let i 6= j be arbitrary, but fixed.

Assume (A).

The statement of (B) is equivalent to σij � ĥi and σji � ĥj .

By way of contradiction, assume

σij � ĥi

Using corollary 1.14 on page 16,

lcm
(
fi , fj

)
f̂i

� ĥi

lcm
(
fi , fj

)
� ĥi · f̂i

Recall (A). Since h1, . . . , hm give a representation of Si,j , we know

ĥi · f̂i ≺ lcm
(
fi , fj

)
We have a contradiction.
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Hence σij � hi . That σji � hj is proved similarly. �

We will see in later chapters that it is useful to remove a common divisor from

the polynomials to study the representations of their S-polynomials. That is, sup-

pose c1, . . . , cm, g are polynomials such that fk = ckg. We would like to know how

to “descend” from a representation of Sfi,fj
to a representation of Sci,cj

and how

to ascend again. What relationship, if any, exists between a representation of the

S-polynomial of ci, cj and the S-polynomial of fi, fj? Lemma 1.37 provides the

answer.

LEMMA 1.37. For all f1, . . . , fm where fk = ckg for some c1, . . . , cm, g, the following are

equivalent:

(A) h1, . . . , hm give a representation of Sfi,fj
modulo f1, . . . , fm

(B)H1, . . . ,Hm give a representation of Sci,cj
modulo c1, . . . , cm, whereHk = lc� (g) ·

hk

PROOF. Let � and f1, . . . , fm be arbitrary, but fixed. Assume ∃c1, . . . , cm, g such

that fk = ckg. Let i 6= j be arbitrary, but fixed, and let h1, . . . , h3 be arbitrary, but

fixed.

Then

Sfi,fj
=h1f1 + · · ·+ hmfm

m
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lcm
(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂j

· fj =h1f1 + · · ·+ hmfm

m

g ·
(

lcm ( gci , gcj )

ĉig
· ci −

lcm ( gci , gcj )

ĉjg
cj

)
=g · (h1c1 + · · ·+ hmcm)

m

g · lcm ( ci , cj )

ĝ · ĉi

· ci −
g · lcm ( ci , cj )

ĝ · ĉj

cj =h1c1 + · · ·+ hmcm

m

1

lc� (g)
·
(

lcm ( ci , cj )

ĉi

· ci −
lcm ( ci , cj )

ĉj

cj

)
=h1c1 + · · ·+ hmcm

m

Sci,cj
=H1c1 + · · ·+Hmcm

Moreover, for any k, if hk 6= 0 then

fk · hk ≺lcm
(
fi , fj

)
m

ckg · hk ≺lcm ( cig , cjg )

m

g · ck · hk ≺ g · lcm ( ci , cj )

m

ck · hk ≺lcm ( ci , cj )
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SinceHk is a constant multiple of hk, hk = Hk . Thus

ck · Hk ≺ lcm ( ci , cj )

From the preceding, we have the equivalence

Sfi,fj
= h1f1 + · · ·+ hmfm

m

Sci,cj
=H1c1 + · · ·+Hmcm

and for each k = 1, 2, 3 we have the equivalence

fkhk ≺lcm
(
fi , fj

)
m

ckHk ≺lcm ( ci , cj )

The statement of the lemma follows from these two equivalences. �



Chapter 2

Skipping S-polynomial reductions

2.1. A BOTTLENECK

The most time-consuming step in algorithm 1.1 on page 35 is the reduction of

S-polynomials. Reduction can introduce growth in two ways: the storage size of

the coefficients, and the number of monomials. This phenomenon, appropriately

called “blowup”, has proven a challenge for many applications of Gröbner bases.1

Examining the algorithm, we see that for a set of M polynomials, there are

M (M − 1) S-polynomials to check. If we know a priori that some S-polynomials

reduce to zero, then we can skip their reduction. For example:

LEMMA 2.1. If fi and fj are monomials, then Si,j
∗−→

(fi,fj)
0.

1I can illustrate the bad reputation this phenomenon has given Gröbner bases using the following
anecdote: during a conversation, a specialist in algebraic geometry told me that another algebraic
geometer had advised him to steer away from Gröbner bases since, in the latter’s opinion, they are
unusable for systems of more than 5 or 6 polynomials in 5 or 6 variables.

54
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PROOF. Regardless of the term ordering, we have

f̂i =fi

f̂j =fj

Thus

Si,j =
lcm

(
fi , fj

)
fi

· fi −
lcm

(
fi , fj

)
fj

· fj

= lcm
(
fi , fj

)
− lcm

(
fi , fj

)
= 0

So we have trivially

Si,j
∗−→

(fi,fj)
0 �

2.2. SKIPPING S-POLYNOMIAL REDUCTIONS

We now formalize the notion of skipping an S-polynomial reduction.

DEFINITION 2.2. Suppose we are given f1, . . . , fm and a term ordering. We say

that condition C allows us to skip the reduction of Si,j modulo f1, . . . , fm (written

Si,j  0) if C implies that ∃P such that

(A) P ⊂ {(k, `) : 1 ≤ k < ` ≤ m} and (i, j) 6∈ P

(B) If Sk,`
∗−→

(f1,...,fm)
0 for every (k, `) ∈ P , then GB� (f1, . . . , fm).

In other words, algorithm Is_GB ( 1.1 on page 35) does not need to reduce Si,j

to decide whether f1, . . . , fm are a Gröbner basis.
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Certainly, if we knew a priori that Si,j reduces to zero, then we could skip its

reduction, so this definition makes sense.

On the other hand, what if all we knew was that Si,j has a representation?

Algorithm Is_GB ( 1.1 on page 35) checks whether every S-polynomial reduces to

zero, and definition 2.2 says nothing about representations of S-polynomials, and

we know that representation does not necessarily imply reduction to zero.

This is not such an obstacle as it may first seem. It turns out that having a

representation is equivalent to being able to skip an S-polynomial reduction:

LEMMA 2.3. (A) and (B) are equivalent, where

(A) Si,j has a representation.

(B) Si,j  0.

PROOF. Let f1, . . . , fm and � be arbitrary, but fixed.

(A)⇒(B): Assume that Si,j has a representation. Let P = {(k, `) : (k, `) 6= (i, j)}.

Assume that Sk,` reduces to zero for every (k, `) ∈ P ; applying lemma 1.28, every

S-polynomial in P has a representation. We know that Si,j has a representation;

thus every S-polynomial has a representation, so f1, . . . , fm are a Gröbner basis.

Thus Si,j  0.

(A)⇐(B): We proceed by showing the contrapositive: assume that Si,j does not

have a representation. By theorem 1.30 on page 34, f1, . . . , fm cannot be a Gröbner
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basis regardless of the choice ofP (keeping in mind that (i, j) 6∈ P). Since f1, . . . , fm

are not a Gröbner basis for any value of P , we cannot skip Si,j . �

This result gives us a way to use representation to skip an S-polynomial re-

duction. In fact, we will never prove directly in this text that if some condition

C is true, then Si,j reduces to zero. Rather, we will prove that if some condition

C is true, then Si,j has a representation. Why? Besides an aesthetic consistency,

it’s usually easier! I have no idea how to prove most of the results on skipping

S-polynomial reduction except by representation.

Notice the following: knowing that we can skip an S-polynomial reduction

is not equivalent to knowing that it reduces to zero! Why not? Assume that we

can skip Si,j . It follows from lemma 2.3 that Si,j has a representation. On the

other hand, suppose that we know a priori that Si,j does not reduce to zero. Then

f1, . . . , fm are certainly not a Gröbner basis. Since Si,j has a representation and

f1, . . . , fm are not a Gröbner basis, it follows from theorem 1.30 on page 34 that

some other S-polynomial does have a representation. By lemma 1.28, this second

S-polynomial neither reduces to zero: thus, it still makes sense to say that we can

skip Si,j . We will see a concrete example of this with example 2.7 on page 68 below.

We conclude by noting that definition 2.2 and lemma 2.3 give a revised algo-

rithm for deciding whether f1, . . . , fm are a Gröbner basis: algorithm Implied_GB

(2.1). An active area of research is determining what makes for a “minimal” B; al-
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Algorithm 2.1 Implied_GB
Inputs: �, f1, . . . , fm

Output: YESif f1, . . . , fm are a Gröbner basis with respect to �; NOotherwise.

B ← {(i, j) : 1 ≤ i < j ≤ m} \ {(k, `) : Sk,`  0}

For (i, j) ∈ B Do

If Si,j
∗9

(f1,...,fm)
0 Then

Return FALSE

Return TRUE

ready Buchberger had discussed this (in different terms) in [Buc65]; later research

appears also in [Buc79], [GM88], [CKR02], and [Fau02].

2.3. COMBINATORIAL CRITERIA ON LEADING TERMS

Suppose that a criterion C considers only the leading terms of polynomials —

not the other terms, and none of the coefficients. Terms are determined by the

exponents on the variables. Exponents are natural numbers; thus, we call C a

combinatorial criterion on leading terms.

If we can apply combinatorial criteria on leading terms to S-polynomial reduc-

tion, we avoid completely the bottleneck that reduction causes by its blowup both

in coefficient size and in the number of monomials.
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2.4. THE BUCHBERGER CRITERIA

During and after his PhD thesis, Bruno Buchberger presented two combinato-

rial criteria on leading terms.2

BUCHBERGER’S FIRST CRITERION. In his PhD thesis [Buc65] Buchberger had al-

ready discovered the following criterion which allows one to skip some S-poly-

nomial reductions.

THEOREM 2.4. If lt� (fi) and lt� (fj) are relatively prime, then Si,j has a representation

modulo fi, fj .

Before presenting the proof, we encourage the reader to consider again the re-

duction of S1,3 in example 1.32 on page 36. Notice that the leading terms were

relatively prime. Upon careful examination, we see that the reduction took place

with the quotients being the non-leading monomial of f1; we can call such mono-

mials “trailing monomials”. By collecting the quotients into a representation (as in

the proof of lemma 1.28 on page 30), we discern that S1,3 has a form something like

(2.1) S1,3 = R1 · f3 −R3 · f1

2Because our research considers only “combinatorial criteria on the leading terms,” we will refer to
them simply as “combinatorial criteria”.



2.4. THE BUCHBERGER CRITERIA 60

where R1, R3 consist of the trailing monomials of f1, f3 respectively. This is pre-

cisely a representation of S1,3. We exploit this form to prove theorem 2.4.3

PROOF. (of theorem 2.4)

Assume lt� (fi) and lt� (fj) are relatively prime. Then

lcm
(
fi , fj

)
= fi · fj

We have

Si,j =
lcm

(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂j

· fj

The first thing to do is take advantage of the fact that the leading terms are

relatively prime. We simplify the least common multiple:

Si,j =
fi · fj

lc� (fi) · fi

· fi −
fi · fj

lc� (fj) · fj

· fj

=
fj

lc� (fi)
· fi −

fi

lc� (fj)
· fj

At this point we introduce the trailing monomials. Write fi = f̂i + Ri and

fj = f̂j + Rj . Rewrite them as fi = lc� (fi) · fi + Ri and fj = lc� (fj) · fj + Rj .

Now rewrite Si,j and cancel the leading monomials:

Si,j =
fj

lc� (fi)
·
(
lc� (fi) · fi + Ri

)
− fi

lc� (fj)
·
(
lc� (fj) · fj + Rj

)
=

(
fi · fj +

fj

lc� (fi)
·Ri

)
−
(

fi · fj +
fi

lc� (fj)
·Rj

)
3One can, in fact, prove that S1,3

∗−→
(f1,...,fm)

0; see for example the proof of lemma 5.66 on page 222 of

[BWK93]. We prove the first criterion using representations in order to maintain consistency with
our general approach of using representations of S-polynomials to skip their reduction.
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=
fj

lc� (fi)
·Ri −

fi

lc� (fj)
·Rj

Now we introduce additional polynomials that should help us obtain a repre-

sentation similar in form to (2.1):

Si,j =

(
fj

lc� (fi)
·Ri −

fi

lc� (fj)
·Rj

)
+

(
Ri ·Rj

lc� (fi) · lc� (fj)
− Ri ·Rj

lc� (fi) · lc� (fj)

)
Some careful rewriting follows:

Si,j =

(
f̂j

lc� (fi) · lc� (fj)
·Ri −

f̂i

lc� (fi) · lc� (fj)
·Rj

)

+

(
Ri ·Rj

lc� (fi) · lc� (fj)
− Ri ·Rj

lc� (fi) · lc� (fj)

)
=

1

lc� (fi) · lc� (fj)
·
(

f̂j ·Ri + Ri ·Rj

)
− 1

lc� (fi) · lc� (fj)
·
(

f̂i ·Rj + Ri ·Rj

)
=

(
1

lc� (fi) · lc� (fj)
·Ri

)
· fj −

(
1

lc� (fi) · lc� (fj)
·Rj

)
· fi

We now have

Si,j = hifi + hjfj

where

hi = − 1

lc� (fi) · lc� (fj)
·Rj

and

hj =
1

lc� (fi) · lc� (fj)
·Ri
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Do hi, hj give a representation of Si,j? They will if

hi · fi ≺ lcm
(
fi , fj

)
and

hj · fj ≺ lcm
(
fi , fj

)
Observe that

hi · fi = Rj · fi

≺ fj · fi

= lcm
(
fi , fj

)
Similarly,

hj · fj ≺ lcm
(
fi , fj

)
Hence hi, hj give a representation of Si,j modulo fi, fj . �

BUCHBERGER’S SECOND CRITERION. In [Buc79], Buchberger presented an addi-

tional criterion; this one allows one to skip an S-polynomial reduction based on

the knowledge that others reduce to zero. Buchberger calls this criterion a “chain

criterion,” and we can see why from the form of (A).

THEOREM 2.5. If lt� (fk) | lcm (lt� (fi) , lt� (fj)), then (A)⇒(B) where

(A) Si,k
∗−→

(f1,...,fm)
0 and Sk,j

∗−→
(f1,...,fm)

0.

(B) Si,j has a representation modulo f1, . . . , fm.
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As with theorem 2.4, theorem 2.5 gives us a representation for Si,j . If the other

S-polynomials reduce to zero, in particular Si,k and Sk,j , then they will also have

representations; otherwise, we know that f1, . . . , fm are not a Gröbner basis.

How shall we prove the second criterion? If (A) of lemma 2.5 is satisfied, it

turns out that we can write Si,j in terms of Si,k and Sk,j . We illustrate this by an

example.

EXAMPLE 2.6. Let � be any term ordering, and let

f1 = x2y + x f2 = xz + z f3 = yz + y

Observe that

f1 = x2y f2 = xz f3 = yz

We have

lcm
(
f1 , f3

)
= x2yz

So (A) of lemma 2.5 is satisfied with i = 1, j = 2, k = 3.

Then

S1,2 =
x2yz

x2y
·
(
x2y + x

)
− x2yz

xz
· (xz + z)

= xz − xyz

S2,3 =
xyz

xz
· (xz + z)− xyz

yz
· (yz + y)

= yz − xy
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S1,3 =
x2yz

x2y
·
(
x2y + x

)
− x2yz

yz
· (yz + y)

= xz − x2y

We claim that we can write S1,3 in terms of S1,2 and S2,3. Notice that S1,2 and

S1,3 have a monomial in common, xz. While S2,3 and S1,3 do not have a monomial

in common, the monomial −xy can “multiply up” to −x2y. Let’s try combining

S1,2 with the appropriate multiple of S2,3:

S1,2 + x · S2,3 = (xz − xyz) + x · (yz − xy)

= xz − x2y

= S1,3

It worked! What we did was apply a monomial multiple to other S-poly-

nomials, and we could rewrite them to obtain the desired S-polynomial. If S1,2

and S1,3 have representations, then we should be able to combine those represen-

tations in the same way to obtain a representation of S1,3.

How do we find these monomials? This is where Buchberger’s second criterion

becomes necessary: the “magic monomials” derive from

lcm
(
f1 , f3

)
lcm

(
f1 , f2

) lcm
(
f1 , f3

)
lcm

(
f2 , f3

)
Since f2 divides the least common multiple of f1 and f3 , the two quotients above

will be terms and not rational expressions. Inspection shows that in the case of
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this example, the first quotient is 1, and the second is x; these were the “magic

monomials” that gave us the right combination.

We note that f1, f2, f3 are not a Gröbner basis. There is no need to reduce S1,3 to

verify this, since S1,2 does not reduce to zero. �

We apply this insight to prove the theorem.

PROOF. Assume fk | lcm
(
fi , fj

)
.

Assume (A):

Si,k
∗−→

(f1,...,fm)
0 or Sk,j

∗−→
(f1,...,fm)

0

Consider

Si,j =
lcm

(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂j

· fj

To obtain the S-polynomials involving fk, we have to introduce fk to the equa-

tion. We use a multiple of fk that may not remain polynomial if Buchberger’s

second criterion is not satisfied:

Si,j =

(
lcm

(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂j

· fj

)

+

(
lcm

(
fi , fj

)
f̂k

· fk −
lcm

(
fi , fj

)
f̂k

· fk

)

=

(
lcm

(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂k

· fk

)

+

(
lcm

(
fi , fj

)
f̂k

· fk −
lcm

(
fi , fj

)
f̂j

· fj

)
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At this point we need to massage the equation a little, introducing factors that

will lead us towards writing Si,j in terms of Si,k and Sk,j :

Si,j =
lcm

(
fi , fk

)
lcm

(
fi , fk

) ·( lcm
(
fi , fj

)
f̂i

· fi −
lcm

(
fi , fj

)
f̂k

· fk

)

+
lcm

(
fk , fj

)
lcm

(
fk , fj

) ·( lcm
(
fi , fj

)
f̂k

· fk −
lcm

(
fi , fj

)
f̂j

· fj

)

=
lcm

(
fi , fj

)
lcm

(
fi , fk

) ·( lcm
(
fi , fk

)
f̂i

· fi −
lcm

(
fi , fk

)
f̂k

· fk

)

+
lcm

(
fi , fj

)
lcm

(
fk , fj

) ·( lcm
(
fk , fj

)
f̂k

· fk −
lcm

(
fk , fj

)
f̂j

· fj

)

=
lcm

(
fi , fj

)
lcm

(
fi , fk

) · Si,k +
lcm

(
fi , fj

)
lcm

(
fk , fj

) · Sk,j

Recall that Si,k
∗−→

(f1,...,fm)
0 and Sk,j

∗−→
(f1,...,fm)

0. By lemma 1.28, there exist h1 . . . , hm

such that h1, . . . , hm give a representation of Si,k. Also, there exist H1, . . . , Hm such

that H1, . . . , Hm give a representation of Sk,j . Then

Si,j =
lcm

(
fi , fj

)
lcm

(
fi , fk

) · Si,k +
lcm

(
fi , fj

)
lcm

(
fk , fj

) · Sk,j

=
lcm

(
fi , fj

)
lcm

(
fi , fk

) · (h1f1 + · · ·+ hmfm) +
lcm

(
fi , fj

)
lcm

(
fk , fj

) · (H1f1 + · · ·+ Hmfm)

Collecting along f1, . . . , fm, we have

Si,j =

(
lcm

(
fi , fj

)
lcm

(
fi , fk

) · h1 +
lcm

(
fi , fj

)
lcm

(
fk , fj

) ·H1

)
· f1

+ · · ·+

(
lcm

(
fi , fj

)
lcm

(
fi , fk

) · hm +
lcm

(
fi , fj

)
lcm

(
fk , fj

) ·Hm

)
· fm
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For ` = 1, . . . ,m let

H` =
lcm

(
fi , fj

)
lcm

(
fi , fk

) · h` +
lcm

(
fi , fj

)
lcm

(
fk , fj

) ·H`

Then

Si,j = H1 · f1 + · · ·+Hm · fm

For ` = 1, . . . ,m,H` 6= 0 implies

H` · f` =

(
lcm

(
fi , fj

)
lcm

(
fi , fk

) · h` +
lcm

(
fi , fj

)
lcm

(
fk , fj

) ·H`

)
· f`

= max
�

(
lcm

(
fi , fj

)
lcm

(
fi , fk

) · h` · f` ,
lcm

(
fi , fj

)
lcm

(
fk , fj

) · H` · f`

)

Recall that the hk are a representation for Si,k and the Hk are a representation for

Sk,j . Thus

H` · f` ≺ max

(
lcm

(
fi , fj

)
lcm

(
fi , fk

) · lcm ( fi , fk

)
,

lcm
(
fi , fj

)
lcm

(
fk , fj

) · lcm ( fk , fj

))

= lcm
(
fi , fj

)
We see thatH1, . . . ,Hm give a representation of Si,j modulo f1, . . . , fm. �

We should issue a cautionary note. Unlike the footnote to theorem 2.4 on

page 59, Buchberger’s second criterion does not guarantee that Si,j reduces to zero;

it only guarantees that we do not need to check whether it does. It is entirely pos-

sible that Si,j does not reduce to zero! In this case, it is certain that one of Si,k or Sk,j

also does not reduce to zero. Since the computation of Si,k and Sk,j are already

necessary to Buchberger’s algorithm, there is no need to check Si,j .
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We illustrate this warning with example 2.7.

EXAMPLE 2.7. Let f1 = x2y +x, f2 = xy, and f3 = x3. Let� be any admissible term

ordering. Then

f1 = x2y f2 = xy f3 = x3

Observe that

f2 | lcm
(
f1 , f3

)
So S1,3  0.

However,

S1,3 =
lcm (x2y, x3)

x2y
·
(
x2y + x

)
− lcm (x2y, x3)

x3
· x3

= x ·
(
x2y + x

)
− y · x3

= x2

Clearly S1,3 9
(f1,f2,f3)

, so

S1,3
∗9

(f1,f2,f3)
0

As expected, the chain that f2 should build does not hold at S1,2:

S1,2 =
lcm (x2y, xy)

x2y
·
(
x2y + x

)
− lcm (x2y, xy)

xy
· xy

= 1 ·
(
x2y + x

)
− x · xy

= x
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and S1,2 9
(f1,f2,f3)

, so

S1,2
∗9

(f1,f2,f3)
0

Since S1,2 does not reduce to zero, it should not surprise us that S1,3 does not reduce

to zero. �

SUMMARY. To summarize, we provide the following definition:

DEFINITION 2.8. Buchberger’s combinatorial criteria are

BC1 (t1, t3) ⇔ gcd (t1, t3) = 1

BC2 (t1, t2, t3) ⇔ t2 | lcm (t1, t3)

We now have the following corollary to theorems 2.4 and 2.5:

COROLLARY 2.9.

BC1 (t1, t3) or BC2 (t1, t2, t3) ⇒ S1,3  0

We conclude this section with an example illustrating the efficacy of Buch-

berger’s criteria.

EXAMPLE 2.10. Let �= lex (x, y, z) and4

f1 = x + y + z

4This system derives from Cyclic-3, a Gröbner basis benchmark related to the roots of the cyclic
polynomial X3 − 1 = 0.
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f2 = xy + xz + yz

f3 = xyz − 1

f4 = y2 + yz + z2

f5 = yz2 + z3 + 1

f6 = y − z4

f7 = z6 + z3 + 1

We claim that Buchberger’s criteria allow us to skip every S-polynomial reduction

involving f7.

Notice that our system consists of the following leading terms:

f1 = x f2 = xy f3 = xyz

f4 = y2 f5 = yz2 f6 = y

f7 = z6

We have

gcd
(
fi , fj

)
= 1 ∀ (i, j) = (1, 7) , (2, 7) , (4, 7) , (6, 7)

By corollary 2.9, we can skip the reduction of S1,7, S2,7, S4,7, S6,7. This leaves S3,7

and S5,7.
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Observe that

f1 | lcm
(
f3 , f7

)
f6 | lcm

(
f5 , f7

)
By corollary 2.9, we can skip the reduction of S3,7 and S5,7.

We see that we need not reduce a single S-polynomial involving f7. This saves us

considerable time: while the expense of reducing these S-polynomials is relatively

significant (1.080s using Maple 9 on a 400MHz G3 iBook), the amount of time re-

quired to check Buchberger’s criteria is so small as not to register (0.0000s). We

will see this difference more dramatically in later chapters. �

2.5. TERM DIAGRAMS

We will find it useful in subsequent chapters to compare visually Buchberger’s

criteria with our results. There is a useful technique for diagramming the locations

of leading terms: drawing term diagrams. This technique is both simple and useful

for visualizing terms of two or three variables; see for example sections 4.2 and 9.2

of [CLO97]. We illustrate it by an example.

EXAMPLE 2.11. Let t1 = x3, t2 = x2y, t3 = y5, t4 = x4y2, t5 = x2y2, t6 = xy4. In

figure 2.1 on the following page, we let the x-axis of the Cartesian plane represent

powers of x, and the y-axis represent powers of y. Graphing exponents of the tk
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4
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64

t6

1

t1
0

6
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1
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t3

5

t2

5

Figure 2.1: Term diagram of t1, t2, . . . , t6

as though they were points, we can visualize where the terms appear in relation to

each other.

Obviously, if one term is further to the left of a second, and further below it,

then the first term divides the second. We see that illustrated with t1 and t4: t1

is both further left and below t4. Thus we have a visual clue that t1 | t4. We also

see this illustrated with t2 and t5. However, t6 is not divisible by another of the tk,

which we see in the diagram because it does not lie both further left and below any

of t1, . . . , t5.

Figure 2.2 on the next page illustrates this divisibility more clearly by shading

the northeast quadrant of each term. Any term in a shaded quadrant that lies away

from the southwest corner is divisible by the term that does lie in that southwest

corner. In figure 2.2, both t4 and t5 lie away from the southwest corner of a shaded

quadrant (in fact, t4 lies in a veritable sea of shading). Since the southwest corner
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Figure 2.2: Diagram of t1, t2, . . . , t6, with shading added for divisible terms.

corresponds to t2, we can see easily that t2 divides t4 and t5. Further, t6 lies at the

southwest corner of a shaded region; hence, it is divisible by no other listed term.

We can also determine quickly where the greatest common divisor and the least

common multiple of any two terms lie. We illustrate this in figure 2.3 using t2 and

t6. �

How does this relate to Buchberger’s criteria? Recall from theorem 2.4 on

page 59 that Buchberger’s first criterion is satisfied if the leading terms of two

polynomials are relatively prime.

EXAMPLE 2.12. Recalling the terms of example 2.11, suppose we know that these

are the leading terms of a set of polynomials f1, . . . , f6. In example 2.11, only t1

and t3 satisfy Buchberger’s first criterion. Thus, we can skip the reduction of S1,3.
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Figure 2.3: Diagram of the greatest common divisor (lower left dot) and least com-
mon multiple (upper right dot) of two terms.
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Figure 2.4: Diagram of two relatively prime terms.

As we see in figure 2.4, the geometric consequence is that the two terms lie on

different axes. �

What about Buchberger’s second criterion? Suppose we want to know whether

we can skip the reduction of S4,6. Recall from theorem 2.5 on page 62 that the
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Figure 2.5: Diagram of the divisors (in grey box) that divide lcm (t4, t6).

second criterion is satisfied if the leading term of one polynomial divides the least

common multiple of the leading terms of two polynomials.

EXAMPLE 2.13. Figure 2.5 shows how we can determine which terms satisfy Buch-

berger’s second criterion, by shading the region that divides the least common mul-

tiple of t4 and t6. It turns out that we can skip S4,6, since any one of t1, t2, t5 lie

within the shaded region, and hence divide the least common multiple of t4 and

t6. It is also clear that we cannot skip S1,2, since as figure 2.6 shows, no other

leading monomial lies within the region of terms that divide their least common

multiple. �

At this point, we are ready to turn to the main results of our thesis.



2.5. TERM DIAGRAMS 76

5

t5

20

6

5

y

4

t2

6

t1

2

1

1

x

0
4

-1

t4

t3

t6

3

3

Figure 2.6: No other monomial lies within the region of divisors of t1 and t2.
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New combinatorial criteria for skipping

S-polynomial reduction



Chapter 3

Outline of part two

3.1. BUCHBERGER’S CRITERIA REVISITED

Recall Buchberger’s criteria from definition 2.8 on page 69. We observed that

Buchberger’s criteria are both combinatorial and sufficient for skipping S-poly-

nomial reduction.

Two natural questions to ask are,

• How are Buchberger’s criteria sufficient?

• Are Buchberger’s criteria necessary?

Related to the second question is a third,

• If Buchberger’s criteria are not necessary, what are the complete combi-

natorial criteria that allow us to skip S-polynomial reductions?

78
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The answers to these questions are not immediately obvious. As noted in section

2.2, there has been some research related to this question; [GM88] applies Buch-

berger’s criteria in a modified algorithm to compute Gröbner bases, and [CKR02]

shows that Buchberger’s criteria generate minimal bases of syzygy modules, which

have a parallel with representations of S-polynomials.1 Somewhat further afield is

the work of Jean-Charles Faugère [Fau02] who has found non-combinatorial crite-

ria that allow one to skip S-polynomial reduction.

We can add the following questions:

• How often do Buchberger’s criteria allow us to skip S-polynomial reduc-

tion?

• How many Gröbner bases do not satisfy Buchberger’s criteria?

We will not consider these latter questions rigorously, but we do have some in-

teresting experimental results. They suggest that Buchberger’s criteria arise quite

often. This corresponds with example 2.10 on page 69, where Buchberger’s crite-

ria allowed us to skip all six reductions involving an S-polynomial of f7. (They

would have allowed us to skip a great deal more, as well.) We present surveys of

randomly-generated polynomials in sections 4.3.3, 5.3.3, and 6.3.3.

1For example, [CLO97] proves Buchberger’s second criterion (our corollary 2.9 on page 69) using
syzygies (their proposition 10 on page 106).
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3.2. FORMAL STATEMENT OF THE PROBLEM CONSIDERED IN PART

TWO

To answer the questions posed in section 3.1, we need to formalize the problem.

The following definition provides the structure that guides the remainder of part

2.

DEFINITION 3.1. We define CC, the “complete combinatorial criterion,” as follows:

Inputs: t1, . . . , tm,�,P ⊂ {(i, j) : 1 ≤ i < j ≤ m}

Output: the boolean value of[
∀ (i, j) ∈ P Si,j

∗−→
(f1,...,fm)

0

]
⇓

GB� (f1, . . . , fm)

∀f1, . . . , fm such that fk = tk

What does this say?

First, CC is a test on leading terms, not on coefficients or on other terms. So one

of its proper inputs is a list of terms t1, . . . , tm, not a list of polynomials f1, . . . , fm.

In consequence, CC provides a guarantee about every set of polynomials f1, . . . , fm

with leading terms t1, . . . , tm.
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What is this guarantee? Criterion CC guarantees that if the S-polynomials listed

in P reduce to zero, then f1, . . . , fm are a Gröbner basis. In other words, we can skip

the reductions of those S-polynomials not indexed by P .

On the other hand, if CC is false, then we know that there exists some system

f1, . . . , fm with leading terms t1, . . . , tm, but f1, . . . , fm are not a Gröbner basis. In

other words, we would need more information than the leading terms alone to

decide whether polynomials with leading terms t1, . . . .tm are a Gröbner basis.

Notice that, given t1, . . . , tm, we cannot try a brute-force method of testing every

set of polynomials f1, . . . , fm with those leading terms; we cannot even make a list

of all such f1, . . . , fm: there are infinitely many!

How is CC related to the definition of skipping S-polynomial reduction (definition 2.2

on page 55)? It can substitute for C in the definition of skipping S-polynomial re-

duction. Because of this, CC does not guarantee that every S-polynomial reduces

to zero; so, it does not guarantee that f1, . . . , fm are a Gröbner basis; it merely guar-

antees that we need not include Si,j in the set P of S-polynomials whose reduction

we check. Using the notation of algorithm Implied_GB ( 2.1 on page 58), CC

guarantees only that (i, j) 6∈ B.

Of course, we might be able to skip S-polynomial reductions for some sys-

tems f1, . . . , fm where CC is not satisfied. This is because CC is a condition on the

leading terms only: in order to show that CC is not true, it suffices to find poly-

nomials f1, . . . , fm with the specified leading terms, one of whose S-polynomials
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does not reduce to zero. However, because S-polynomial reduction depends also

on the trailing monomials, it may well be that we can skip the reduction of Si,j

even though it does not reduce to zero.

3.3. OUTLINE OF THE REMAINDER OF PART TWO

Now that we have defined the problem formally, we proceed in a systematic

manner by increasing the size of P :

• in chapter 4, we set P = ∅, and thus present criteria that decide

whether we can skip all S-polynomial reductions;

• in chapter 5, we set P = {(1, 2)}, and thus present criteria that

decide whether we can skip all but one S-polynomial reductions;

• in chapter 6, we set m = 3 and P = {(1, 2) , (2, 3)}, so that given

f1, f2, f3, we can use the criterion presented in that chapter to de-

cide whether we can skip all but one S-polynomial reductions.

Things become somewhat difficult when we consider skipping all but two S-poly-

nomial reductions. We provide a complete criterion for m = 3, where m is the

number of polynomials, but the more general question for m > 3 remains open.

The problem also remains open for any m when the size of P is larger than two.
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3.4. AN INVALUABLE LEMMA

We will find it necessary in chapters 4, 5, and 6 to construct sets of polynomials

f1, . . . , fm that serve as counterexamples in the following way: the leading terms

f1 , . . . , fm do not satisfy CC, and f1, . . . , fm are not a Gröbner basis. How do we

prove that f1, . . . , fm are not a Gröbner basis? By theorem 1.30, we need to find

i 6= j such that Si,j
∗9

(f1,...,fm)
0.

A great help towards this end would be a clear form for such a counterexample

f1, . . . , fm. Lemma 3.2 provides this form for chapters 4 and 5. In chapter 6 we ap-

ply this lemma for one counterexample (lemma 6.8 on page 131), but require a gen-

eralized form of the lemma for another group of counterexamples (lemma 6.9 on

page 134).

LEMMA 3.2. Let τ be a nonzero monomial, and F = (f1, . . . , fm) a system of polynomials.

Then (A)⇒(B) where

(A) ∃µ with 1 ≤ µ ≤ m such that [ (A1) and (A2) ] where

(A1) f̂` - τ ∀` = 1, . . . , µ

(A2) ∀` = µ + 1, . . . ,m

f` = t` + u` with t` 6= u`

u` | t`

(B) τ
∗9
F

0.

Before proving the lemma, we illustrate it with the following example.
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EXAMPLE 3.3. Let p1 = xy, f1 = y− 1, f2 = x2. Let� be an arbitrary term ordering.

We have

f1 = y f2 = x2

Clearly p1 9
f2

, since degx f2 > degx p1. Observe that

p1 −→
f1

x

Write p2 = x. We still have p2 9
f2

.

Why? Since the leading monomial of f1 cancels the monomial p1, the remain-

der p2 is determined by the trailing term of f1. Comparing the two terms of the

binomial f1, we see degx y ≥ degx 1. As a consequence, degx p2 ≤ degx p1 < degx f2 .

Hence p2 9
f2

; in fact, p2 9
(f1,f2)

, and p2 is the only possible reduction of p1 over f1, f2.

Thus p1
∗9

(f1,f2)
0. �

The application of lemma 3.2 will occur after we construct fi, fj such that Si,j

is a monomial; then we set τ = Si,j . A permutation on the polynomial indices

1, . . . ,m will sometimes be required for a rigorous application of the lemma; we

indicate the necessary permutation in the text.

PROOF. Let τ0, . . . , τs be an arbitrary reduction chain of τ modulo F :

τ = τ0 −→
F

τ1 −→
F
· · · −→

F
τs 9

F

We claim that ∀k = 0, . . . , s, τk is a nonzero monomial and f̂` - τk ∀` = 1, . . . , µ.

We proceed by induction.
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Inductive base: Observe that τ0 = τ , so τ0 is a nonzero monomial, and f̂` - τ0

∀` = 1, . . . , µ.

Inductive step: Assume that τk is a nonzero monomial, and f̂` - τk ∀` =

1, . . . , µ. We will show that τk+1 is a nonzero monomial, and f̂` - τk+1 for all ` =

1, . . . , µ.

We have f` - tk for ` = 1, . . . ,m.

Then τk −→
fj

τk+1 implies µ + 1 ≤ j ≤ m.

Let ` ∈ {1, . . . ,m} be arbitrary, but fixed.

Since f̂` - τk, ∃λ such that degxλ
f̂` > degxλ

τk.

Since u` | t`, degxλ
u` ≤ degxλ

t`.

We have

degxλ
τk+1 = degxλ

(
τk

tj
· uj

)
≤ degxλ

(
τk

tj
· tj
)

= degxλ
τk

Hence f̂` - τk+1.

Since k was arbitrary, τk 6= 0 and f̂` - τk ∀` = 1, . . . , µ ∀k = 0, . . . , s.

Since the reduction chain was arbitrary, τ
∗9
F

0. �

Now we can address the first question: when can we skip all S-polynomial

reductions?



Chapter 4

Skipping all S-polynomial reductions

4.1. PROBLEM

It follows from Buchberger’s first criterion that if the leading terms of f1, . . . , fm

are all pairwise relatively prime, then we can skip the reduction of their S-poly-

nomials (see corollary 2.9 on page 69). Two questions arise:

• If the leading terms of two polynomials are not relatively prime,

can we use Buchberger’s second criterion to skip the correspond-

ing S-polynomial, and thus skip all S-polynomials reductions?

• Do there exist other combinatorial criteria that would allow us to

skip all S-polynomial reductions?

Stated formally, we are looking for an algorithm that decides

CC (t1, . . . , tm,�, ∅)

86
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By definition 3.1 on page 80, this would be equivalent to an algorithm that decides

GB� (f1, . . . , fm) ∀f1, . . . , fm such that f1 = t1, . . . , fm = tm

The answer is given by algorithm 4.1 on page 90, which follows from theorem 4.1.

4.2. RESULT

THEOREM 4.1. (A) is equivalent to (B) where

(A) GB� (f1, . . . , fm) for all f1, . . . , fm such that f1 = t1, . . ., fm = tm

(B) [ (B1) or (B2) ] where

(B1) gcd (ti, tj) = 1 ∀i 6= j

(B2) tk = 1 ∃k

A few observations before we prove theorem 4.1:

That (A)⇐(B) is obvious: clause (B1) is Buchberger’s first criterion, and we

apply corollary 2.9 on page 69; clause (B2) is a “trivial” combinatorial criterion: if

fk = 1, then fk is constant, so every S-polynomial will reduce to zero over fk.

It is not so obvious that (A)⇒(B). To begin with, Buchberger’s second criterion

makes only a trivial contribution to skipping every S-polynomial reduction. Fur-

ther, the theorem asserts that there are no other combinatorial criteria for skipping

every S-polynomial reduction, and this was not exactly clear to start with.

The proof that (A)⇒(B) is also not obvious. Our approach is to show the con-

trapositive: ¬(A)⇐¬(B). This means we have to find a system f1, . . . , fm such that
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¬GB� (f1, . . . , fm). If we picked a random system f1, . . . , fm, we could reason-

ably expect ¬GB� (f1, . . . , fm). However, this would be hard to prove, since we

would have to trace all possible reductions for a random, unstructured system of

polynomials. What we do, then, is provide a simple, structured counterexample.

Lemma 3.2 on page 83 becomes very useful at this point.

PROOF. (Of theorem 4.1, (A)⇒(B).)

We show the contrapositive: assume ¬(B). Then ¬(B1) and ¬(B2): there exist

i 6= j such that gcd (ti, tj) 6= 1, and ∀k tk 6= 1. We will show ¬(A).

Let

fi = ti

fk = tk + 1 ∀k 6= i

Observe

Si,j =
lcm (ti, tj)

ti
· ti −

lcm (ti, tj)

tj
· (tj + 1)

= lcm (ti, tj)− lcm (ti, tj)−
lcm (ti, tj)

tj

= − lcm (ti, tj)

tj

Since

lcm (ti, tj) =
titj

gcd (ti, tj)
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we have

Sti,tj = − ti
gcd (ti, tj)

Since gcd (ti, tj) 6= 1, fi - Si,j .

Applying lemma 3.2, Si,j
∗9

(f1,...,fm)
0. (The permutation that we need to apply for

the lemma is (1 i) (2 j) – that is, exchange 1 with i and 2 with j, with µ = 1.)

Hence (A)⇒(B). �

4.3. APPLICATION OF RESULT

In this section we illustrate how to apply theorem 4.1 and how not to apply it;

then we consider some experimental results.

4.3.1. AN ALGORITHM FOR THEOREM 4.1. Algorithm 4.1 implements the result.

It checks whether any term is constant, then checks whether every pair of terms is

relatively prime. Since clause (B) considers only the leading terms – not the term

ordering, and not the trailing monomials – we only need to provide these leading

terms as the inputs of algorithm Can_Skip_All_SPolys . In an application, the

user would first calculate the leading terms t1, . . . , tm of f1, . . . , fm with respect to

�; then she would pass these leading terms to the implementation of algorithm

4.1.

4.3.2. EXAMPLES OF THEOREM 4.1.
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Algorithm 4.1 Can_Skip_All_SPolys

Inputs: t1, . . . , tm

Output: YES if we can skip all S-polynomial reductions for all polynomials with
leading terms t1, . . . , tm; NOotherwise

For i = 1, . . . ,m

If ti = 1 Then

Return YES

B ← {(i, j) : 1 ≤ i < j ≤ m}

For (i, j) ∈ B

If gcd (ti, tj) 6= 1 Then

Return NO

Return YES

EXAMPLE 4.2. Let f1 = x + 2y + 3z − 1, f2 = y − z + 3, f3 = z + 4. The reader may

notice that f1, f2, f3 are linear, and in triangular form.

We consider two different term orderings. If �= lex (x, y, z), then

f1 = x f2 = y f3 = z

We see that all the leading terms are relatively prime; by theorem 4.1, we can con-

clude that f1, f2, f3 are a Gröbner basis with respect to �without checking a single

S-polynomial. This agrees with the triangular form of the linear system.

In the second case, let �= lex (x, z, y). At this point, the leading term of f2

changes to z, so that the leading terms of f2 and f3 are no longer relatively prime.
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None of the leading terms is 1. Applying theorem 4.1, we see that we cannot con-

clude that f1, f2, f3 are a Gröbner basis with respect to �. In fact,

S2,3 =
lcm (z, z)

−z
· (y − z + 3)− lcm (z, z)

z
· (z + 4)

= −1 · (y − z + 3)− (z + 4)

= −y − 7

None of the monomials of S2,3 is divisible by the leading term of any of f1, f2, f3, so

that f1, f2, f3 are not a Gröbner basis with respect to �. In this case, the triangular

form of the linear system does not guarantee a Gröbner basis, because the second

term ordering prioritizes the pivots differently. The corresponding coefficient ma-

trix is clearly not upper triangular:
1 3 2

0 −1 1

0 1 0


�

Since theorem 4.1 considers only the leading terms, we expect to find polyno-

mial systems whose leading terms do not satisfy its hypotheses even though the

polynomials are themselves a Gröbner basis. Our second example illustrates this.

EXAMPLE 4.3. Let f1 = xy + bx, f2 = x2 − bx. Let � be any term ordering on terms

in x and y. Notice that b is constant in this term ordering. The leading terms of the
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polynomials are

f1 = xy f2 = x2

Since the leading terms are not relatively prime, and neither leading term equals

1, we cannot conclude from theorem 4.1 that they are a Gröbner basis with respect

to �.

It turns out, however, that they are in fact a Gröbner basis with respect to �.

We have

S1,2 =
lcm (xy, x2)

xy
· (xy + bx)− lcm (xy, x2)

x2
·
(
x2 − bx

)
= x · (xy + bx)− y ·

(
x2 − bx

)
= bx2 + bxy

Then

S1,2 −→
b·f1

bx2 − b2x −→
b·f2

−b2x + b2x = 0

�

4.3.3. EXPERIMENTAL RESULTS. We ran two sets of experiments using Maple.
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HOW DOES THEOREM 4.1 APPLY UNDER DIFFERENT CONDITIONS? In the first ex-

periment, we tested how often theorem 4.1 would allow us to skip every S-poly-

nomial reduction. Given a random set of polynomials, we expect that all the lead-

ing terms will be relatively prime only rarely, and the data did not provide any sur-

prises here! On the other hand, changing certain parameters (the term ordering,

the total degree, and the number of variables) provided some interesting insight.

The program we wrote chose polynomials using Maple’s randpoly() with

the following parameters:

we looped from n = 2 to n = 6 variables

for each n, we looped from d = 10 to d = 10n,

where d was the maximum degree of a term,

incrementing d by n with each iteration

for each value of d, we generated 100,000 sets of polynomials

each set consisted of at least 2, at most n sparse polynomials

number of terms per polynomial: rand(2..20)

coefficients: rand(-99..99)

exponents: rand(0..5)

For each set of at most n polynomials, we computed the leading terms with

respect to a fixed term ordering, either total-degree or lexicographic. If every pair

of leading terms was relatively prime, we knew from theorem 4.1 that the set was

a Gröbner basis.
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Why did we restrict each set of polynomials to at most n (the number of vari-

ables)? If there are n variables, then n + 1 polynomials cannot all be relatively

prime, so there is no point in testing the theorem there: for all systems with n + 1

or more polynomials, we will have to check at least one S-polynomial reduction.

We used Maple’s time() command to keep track of how much time we spent

evaluating whether the leading terms were relatively prime. In nearly all cases,

the sum of these times over all 100,000 sets of polynomials for each n and d was

reported as 0 seconds. The only exception was when n = 6 and d = 58; in this very

last case, the software spent 0.009 seconds in evaluation.1

It should come as no surprise that the leading terms of every pair of polynomials

are almost never relatively prime. We see this illustrated in tables 4.1 (when the

term ordering is total-degree) and 4.2 (when the term ordering is lexicographic).

For a total-degree term ordering and only two variables, we get a relatively

high frequency of success when the total degree is low: about 1.5% of the sets of

polynomials for total degree d = 10. Naturally, the frequency of success decreases

as we increase the total degree, since a higher total degree means that the terms

can contain more variables. We have less than 0.5% success when the total degree

is 20.

1Maple’s time() command only keeps track of the amount of time spent in evaluation, and not in
simplification. It certainly took much more than zero seconds to run the program; in fact, it took
about a day. However, whatever time that simplification would add is dwarfed by the amount of
simplification in polynomial reduction: see for example table 4.4.
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Table 4.1: Number of sets of polynomials where every pair of leading terms is
relatively prime, out of 100,000 sets.

d = 10 d = 10 + n d = 10 + 2n d = 10 + 3n d = 10 + 4n
n = 2 1507 1174 882 683 577
n = 3 910 470 264 178 103
n = 4 569 190 97 44 31
n = 5 407 92 33 15 5
n = 6 338 44 14 6 1

d = 10 + 5n d = 10 + 6n d = 10 + 7n d = 10 + 8n
n = 2 486
n = 3 67 49
n = 4 13 8 12
n = 5 0 3 3 2
n = 6 0 0 0 0

(n variables; 2 . . . n polynomials per set; d the maximum degree of a term; expo-
nents range from 0 to 5; total-degree term ordering with x1 � · · · � xn)

Table 4.2: Number of sets where every pair of leading terms is relatively prime,
out of 100,000 sets.

d = 10 d = 10 + n d = 10 + 2n d = 10 + 3n d = 10 + 4n
n = 2 145 86 54 42 30
n = 3 67 31 18 8 2
n = 4 65 14 9 3 1
n = 5 30 5 1 1 1
n = 6 29 8 1 0 0

d = 10 + 5n d = 10 + 6n d = 10 + 7n d = 10 + 8n
n = 2 24
n = 3 3 0
n = 4 0 2 0
n = 5 0 0 0 0
n = 6 0 0 0 0

(n variables; 2 . . . n polynomials per set; d the maximum degree of a term; expo-
nents range from 0 to 5; lexicographic term ordering with x1 � · · · � xn)
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The success rate also drops when we increase the pool of variables. Already

with three variables, the number of times we could skip every S-polynomial re-

duction has dipped below 0.9%, even when d = 10. This came as something of a

surprise to me; I expected that with more variables available per term and a fixed

total degree, the probability of single-variable terms would increase. Apparently

the addition of these single-variable terms is counterbalanced by the large number

of terms that are not single-variable, but have the same total degree. However, this

does not explain everything, as we will see in the following paragraph.

The general pattern of table 4.1 is repeated in table 4.2 where the term ordering

is lexicographic. However, the totals for each case are drastically smaller than

they were in table 4.1. This would seem to be because single-variable terms occur

with high degree. Consider x1x2 + x3
2: a total-degree term ordering would return

x3
2 as the leading term, while a lexicographic term ordering would return x1x2 as

the leading term. This latter term, which has more variables, is less likely to be

relatively prime with the leading terms of other polynomials.

My explanations for the observed phenomena may appear inconsistent. In the

first, I argued that although we should have a higher probability of single-variable

terms as we increase n, these do not increase the overall success rate because they

are outweighed by other terms in a total-degree term ordering. In the second,

I argued that, single-variable terms are more likely to be the leading terms of a

polynomial in a total-degree term ordering than in a lexicographic term ordering.
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These two arguments are not, however, inconsistent, because I’m arguing in

two different contexts. For a fixed number of variables n, single-variable terms

of high degree will be favored by the total-degree term ordering, while the given

lexicographic term ordering will favor any term with x1 regardless of the total

degree.

For increasing n, however, the number single-variable terms may increase, but

the test program ordered the indeterminates as

x1 � x2 � · · · � xn

The additional single-variable terms are powers of “less privileged” indetermi-

nates, so that x1x2 � x2
2 for both term orderings.

WHAT IS THE PROBABILITY OF ENCOUNTERING A GRÖBNER BASIS THAT IS NOT

SKIPPED? The second experiment was designed to get an idea of the probability

that a random set of at most n polynomials will be a Gröbner basis. We also used

the opportunity to compare the timings for checking theorem 4.1 and for reducing

all S-polynomials. The results are given in tables 4.3 and 4.4.

In table 4.3, we computed 1,000 systems of random polynomials with at least

two, at most n polynomials per system, where n is the number of variables. Using

a total-degree term order, we checked combinatorially whether we could skip all

S-polynomial reductions; then we checked by S-polynomial reduction whether

the system was a Gröbner basis. We timed each of these computations.
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Table 4.3: Comparison of the number of Gröbner bases found by S-polynomial
reduction, to the number found by applying theorem 4.1.

# vars Skips other GBs time to check skip time to check reduction
2 5 3 .70s 165s
3 0 0 145.91s* 12015s
4 0 0 1.01s 4092s
5 0 0 .67s 115s
6 0 0 .63s 103s

(1000 total polynomials; n the number of variables; 2 . . . n polynomials per set,
where n =#vars; 10×n the maximum degree of a term; exponents range from 0 to
5; total-degree term ordering with x1 � · · · � xn)
*This number must be a fluke; see the discussion in the text.

Again, almost none of the random polynomials that we generated were Gröb-

ner bases. In fact, the only time we found any Gröbner bases at all was for n = 2

variables. Out of a total of 1,000 polynomials for each value of n, this is not sur-

prising. Why did we keep the total so small? Reduction takes too much time.

Interestingly, theorem 4.1 detected most of the Gröbner bases that we did find

(5 out of 8). Keep in mind that these are unstructured polynomials, so we naturally

do not expect to find many Gröbner bases. In a structured set of polynomials, we

would expect more Gröbner bases to be detected by S-polynomial reduction, and

very few of them to be detected by theorem 4.1.

As expected, the total time to check the conditions of theorem 4.1 was very

small, whereas the time to reduce all S-polynomials to zero was larger by several

orders of magnitude. There was one strange result: for n = 3 variables, we had the

strange result that it took nearly 146 seconds to check the leading terms. I am not
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Table 4.4: Comparison of the number of Gröbner bases found by S-polynomial
reduction, to the number found by applying theorem 4.1.

# vars Skips total GBs time to check skip time to check reduction
2 17453 25502 .02s 19885.71s
3 5952 11005 .03s 37295.14s
4 1726 3878 .03s 92538.03s
5 416 1237 .03s 252596.89s

(1,000,000 total systems of two polynomials; n the number of variables; 10×#vars
the maximum degree of a term; exponents range from 0 to 5; total-degree term
ordering with x1 � · · · � xn)

sure why this happened. We ran the tests in sets of 100, and one of the sets took

144.58 seconds. Take that one away, and we have a far more reasonable result:

1.33 seconds. By contrast, the corresponding set of S-polynomial reductions was

not abnormally higher than normal; there were other reductions that were much

higher. We are not sure what caused this; later tests did not show a recurrence.

We do notice that the total time increases from n = 2 through n = 3, then

declines, both for checking theorem 4.1 and for checking the S-polynomial reduc-

tions. This could be due to a larger number of occasions for n = 3 where the

first pair of the leading terms are relatively prime, or where the first computed S-

polynomial reduces to zero; with a higher number of variables, that could be less

likely.

In the second experiment, we held the number of polynomials fixed at m = 2.

This gave us some confidence that the computed Gröbner bases would not take
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too long to compute, so we could use a larger sample size of polynomials.2 The

results are given in table 4.4; clearly, the fixed number of polynomials helped keep

the time to check the combinatorial criteria nearly constant. Again, almost none

of the random polynomial systems were Gröbner bases: at most 2.5% for n = 2.

Again, theorem 4.1 detected most of the Gröbner bases that we found: starting

above 66%, and decreasing to around 33%.

As expected, the total time to check the conditions of theorem 4.1 remains very

small, whereas the time to reduce all S-polynomials to zero grew by several orders

of magnitude.

2As the reader sees from table 4.4, however, we gave up after n = 5.



Chapter 5

Skipping all but one S-polynomial

reductions

5.1. PROBLEM

In chapter 4 we characterized completely the combinatorial criteria that allow

us to skip every S-polynomial reduction. In this chapter, we turn our attention to

the question of skipping all but one S-polynomial reduction: given polynomials

f1, . . . , fm, we want to know if they are a Gröbner basis, but we will only check

one S-polynomial reduction. Without loss of generality, we can assume that the

S-polynomial we do reduce is S1,2. We are looking for an algorithm that decides

CC (t1, . . . , tm,�, {(1, 2)})

101
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By definition 3.1 on page 80, this is equivalent to[
S1,2

∗−→
(f1,...,fm)

0 ⇒ GB� (f1, . . . , fm)

]
∀f1, . . . , fm such that fk = tk

As in chapter 4, it is fairly clear that satisfying some formulation of Buch-

berger’s first criterion would allow us to skip all but one S-polynomial reduction.

We would also like to know whether Buchberger’s second criterion will help us

to skip all but one S-polynomial reduction, or whether additional criteria on the

leading terms will prove useful.

The answer is given by algorithm 5.1 on page 110, which follows from theorem

5.1.

5.2. RESULT

THEOREM 5.1. (A) is equivalent to (B) where:

(A) S1,2
∗−→

(f1,...,fm)
0 ⇒ GB� (f1, . . . , fm)

∀f1, . . . fm such that f1 = t1, . . ., fm = tm

(B) (B1) ∨ (B2) ∨ (B3) ∨ (B4) where

(B1) gcd (ti, tj) = 1 ∀ (i, j) 6= (1, 2)

(B2) t1 | t2 and gcd (ti, tj) = 1 ∀i 6= j, i 6= 2, j 6= 2

(B3) t2 | t1 and gcd (ti, tj) = 1 ∀i 6= j, i 6= 1, j 6= 1

(B4) tk = 1 ∃k

A few comments before the proof.
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As with theorem 4.1 on page 87, we see that no additional combinatorial criteria

figure into theorem 5.1: (B) is a formulation of Buchberger’s two criteria, and the

trivial criterion that some polynomial be constant. Note in particular that clauses

(B2) and (B3) are applications of the first and the second criteria: if t1 | t2, then

certainly t1 | lcm (t2, tk) for all k > 2. As a result, it is fairly obvious that (A)⇐(B).

However, proving (A)⇒(B) is more difficult than it was for theorem 4.1. Again,

we approach via the contrapositive and employ lemma 3.2 on page 83; this time,

however, we need more than one counterexample, because the negation of (B) ex-

pands to several cases. It may be possible to resolve all these cases using only one

counterexample, but if so, we have not found it.

PROOF. (Of theorem 5.1, (A)⇒(B).)

We show the contrapositive: namely, ¬(A)⇐¬(B). So assume ¬(B). Then ¬(B1)

and ¬(B2) and ¬(B3) and ¬(B4).

We will show ¬(A).

From ¬(B1), we know that ∃ (i, j) 6= (1, 2) such that gcd (ti, tj) 6= 1.

From ¬(B4), we know that ∀k tk 6= 1.

By distribution and De Morgan, we know that ¬(B2) ∧ ¬(B3) is logically equiv-

alent to (D1) ∨ (D2) ∨ (D3) ∨ (D4) where

(D1) t1 - t2 and t2 - t1

(D2) t1 - t2 and gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 1, j 6= 1

(D3) t2 - t1 and gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 2, j 6= 2
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(D4) gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 1, j 6= 1

and gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 2, j 6= 2

We consider each case in turn.

Case 1: (D1) t1 - t2 and t2 - t1

Recall ∃ (i, j) 6= (1, 2) such that gcd (ti, tj) 6= 1. Without loss of generality, j > 2.

We have two subcases.

Case 1a: t1 - tj and t2 - tj .

Let F = (f1, . . . , fm) where

f1 = t1

f2 = t2

fj = tj

fk = tk + 1 for k 6= 1, 2, j

Observe that S1,2
∗−→
F

0 trivially.

Then

Si,j =
lcm (ti, tj)

ti
· (ti + 1)− lcm (ti, tj)

tj
· tj

= lcm (ti, tj) +
lcm (ti, tj)

ti
− lcm (ti, tj)

=
lcm (ti, tj)

ti
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Since

lcm (ti, tj) =
titj

gcd (ti, tj)

we have

Si,j =
tj

gcd (ti, fj)

Obviously Si,j | tj .

Since t1 - tj and Si,j | tj , f̂1 - Si,j .

Since t2 - tj and Si,j | tj , f̂2 - Si,j .

Since gcd (ti, tj) 6= 1, f̂j - Si,j .

By lemma 3.2, Si,j
∗9
F

0. (Use the permutation (3 j) with µ = 3.)

Case 1b: t1 | tj or t2 | tj

Let F = (f1, . . . , fm) where

f1 = t1

f2 = t2

fk = tk + 1 for k 6= 1, 2

Observe that S1,2
∗−→
F

0 trivially.

If t1 | tj , then S1,j = −1. Recall tk 6= 1 for k = 1, . . . ,m. So S1,j
∗9
F

0.

Otherwise, t2 | tj , whence S2,j = −1
∗9
F

0.

Case 2: (D2) t1 - t2andgcd (ti, tj) 6= 1 ∃i 6= j, i 6= 1, j 6= 1

Without loss of generality, j 6= 2.
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We have three subcases.

Case 2a: t1 - ti and t2 - ti

This case is proved using a proof similar to that of case 1a, exchanging i and j.

Case 2b: t1 | ti

We note that since t1 - t2 for case 2, i 6= 2.

Let F = (f1, . . . , fm) where

f1 = t1

f2 = t2

fk = tk + 1 for k 6= 1, 2

Observe that S1,2
∗−→
F

0 trivially.

We have S1,i = −1
∗9
F

0.

Case 2c: t2 | ti

Let F = (f1, . . . , fm) where

f1 = t1

f2 = t2

fk = tk + 1 for k 6= 1, 2

Observe that S1,2
∗−→
F

0 trivially.

If i 6= 2, then S2,i = −1. Recall tk 6= 1 for k = 1, . . . ,m; thus S2,i
∗9
F

0.
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Otherwise i = 2; consider

S2,j =
lcm (t2, tj)

t2
· t2 −

lcm (t2, tj)

tj
· (tj + 1)

= lcm (t2, tj)− lcm (t2, tj)−
lcm (t2, tj)

tj

= − lcm (t2, tj)

tj

Since

lcm (t2, tj) =
t2tj

gcd (t2, tj)

we have

S2,j = − t2
gcd (t2, tj)

Obviously S2j | t2.

Recall t1 - t2; hence f̂1 - S2j .

Recall gcd (t2, tj) = gcd (ti, tj) 6= 1; then f̂2 - S2j .

By lemma 3.2, S2j
∗9
F

0. (Use µ = 2; no permutation is necessary.)

Case 3: (D3) t2 - t1and gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 2, j 6= 2

This case is symmetric to case 2, so we can prove it symmetrically.

Case 4: (D4) gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 1, j 6= 1

and gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 2, j 6= 2

For the sake of clarity, we rewrite this case as

gcd (ti, tj) 6= 1 ∃i 6= j, i 6= 1, j 6= 1 and gcd (tk, t`) 6= 1 ∃k 6= `, k 6= 2, ` 6= 2
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We have already considered the subcase t1 - t2 in case 2, and the subcase t2 - t1

in case 3. We may assume therefore that t1 | t2 and t2 | t1, or t1 = t2.

We have two subcases.

Case 4a: t1 - ti

This case is proved using a proof similar to that of case 1a, exchanging i and j.

Case 4b: t1 | ti

This case is proved using a proof similar to that of case 1b, exchanging i and j.

For all four cases:

In each case, ∃F such that S12
∗−→
F

0 but ∃k, ` such that Sk`
∗9
F

0.

Hence ¬(A). �

5.3. APPLICATION OF RESULT

We present examples of theorem 5.1, then consider some experimental results.

5.3.1. AN ALGORITHM FOR THEOREM 5.1. Implementing an algorithm that de-

cides clause (B) of theorem 5.1 is still rather straightforward, although not so much

as for theorem 4.1; see algorithm 5.1. The extra complication comes from clauses

(B2) and (B3): on the first occasion that we encounter terms t1 and t2 that are not

relatively prime, we need to search for a third term term t3 that divides either t1

or t2. If we cannot find such a term, then (presuming we’ve checked for a constant

polynomial) we can skip all but one S-polynomial reductions only if no other pair
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of terms is relatively prime. The one S-polynomial reduction that we have to check

is S1,2.

If we do find a third term t3 that divides t1 (say), then two things follow imme-

diately: (a) S1,3 is the only S-polynomial that we can skip (since t1 and t3 are clearly

not relatively prime) and (b) we no longer worry whether t1 is relatively prime to

the remaining terms. We do have to worry whether t2 and t3 are relatively prime to

all other terms: if not, then we cannot skip the remaining S-polynomial reductions,

since clause (B) of theorem 5.1 is not satisfied.

As with algorithm 4.1, we only need to pass the leading terms as inputs to our

implementation of theorem 5.1, since clause (B) does not use the term ordering or

any other part of the polynomials.

5.3.2. EXAMPLES OF THEOREM 5.1. We begin with a straightforward example of

when the theorem allows us to skip all but one S-polynomial reductions.

EXAMPLE 5.2. Let

f1 = y2 + 1 f2 = xy3 + 1 f3 = x4 − x2 + 1

Let � be any admissible term ordering. Observe that

f1 = y2 f2 = xy3 f3 = x4

The theorem allows us to skip every S-polynomial reduction except S1,2. Why? We

have
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Algorithm 5.1 Can_Skip_All_But_One_SPolys

Inputs: t1, . . . , tm

Output: YESif we can skip all but one S-polynomial reductions for all polynomials
with leading terms t1, . . . , tm; NOotherwise

Local

number_spolys_cannot_skip← 0

skipped_term← 0

For i = 1, . . . ,m

If ti = 1 Then

Return YES

B ← {(i, j) : 1 ≤ i < j ≤ m}

For (i, j) ∈ B

If gcd (ti, tj) 6= 1 Then

Increment number_spolys_cannot_skip

If number_spolys_cannot_skip > 1 and skipped_term 6= i, j Then

Return NO

Elseif number_spolys_cannot_skip = 1 Then

If Exists k: tk | ti Then

skipped_term← i

B ← B\{(i, `) : ` = 1, . . . ,m}

Elseif Exists k: tk | tj Then

skipped_term← j

B ← B\{(j, `) : ` = 1, . . . ,m}

Return YES
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• f1 | f2

• gcd
(
f1 , f3

)
= 1

This satisfies (B2) of theorem 5.1. Hence, if S1,2
∗−→

(f1,f2,f3)
0, we have GB� (f1, f2, f3).

As it turns out, S1,2
∗9

(f1,f2,f3)
0, so f1, f2, f3 are not a Gröbner basis. �

Now we consider two more examples, both featuring the same set of polyno-

mials. We will see how the choice of term ordering, as well as the ordering of the

polynomials, helps determine whether the theorem applies.

EXAMPLE 5.3. Let

f1 = x3y3 + 1 f2 = x5y3z2 − z6 − 1 f3 = z7 + w8 + 1 f4 = z6 + x2z2 + 1

In this example, let �= tdeg (x, y, z, w). We have

f1 = x3y3 f2 = x5y3z2 f3 = w8 f4 = z6

Can we skip every S-polynomial except S1,2?

Under the given term ordering, the leading terms satisfy (B2) of theorem 5.1:

we have

• f1 | f2

• gcd
(
f1 , f3

)
= gcd

(
f1 , f4

)
= gcd

(
f3 , f4

)
= 1
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Hence, if S1,2
∗−→

(f1,...,f4)
0, we know that GB� (f1, . . . , fm). It turns out that we do in

fact have a Gröbner basis here:

S1,2 =
lcm (x3y3, x5y3z2)

x3y3
·
(
x3y3 + 1

)
− lcm (x3y3, x5y3z2)

x5y3z2
·
(
x5y3z2 − z6 − 1

)
= x2z2 ·

(
x3y3 + 1

)
−
(
x5y3z2 − z6 − 1

)
= z6 + x2z2 + 1

Then

S1,2 −→
1·f4

0

�

As noted above, the same polynomials give a different result if we change the

term ordering:

EXAMPLE 5.4. Recall the polynomials of the previous example:

f1 = x3y3 + 1 f2 = x5y3z2 − z6 − 1 f3 = z7 + w8 + 1 f4 = z6 + x2z2 + 1

This time, use �= lex (x, y, z, w). We have

f1 = x3y3 f2 = x5y3z2 f3 = z7 f4 = x2z2

The leading terms of f3 and f4 have changed from the previous example.

To approach this example systematically, let’s trace through algorithm 5.1:

number_spolys_cannot_skip← 0

skipped_term← 0
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B ← {(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}

(i, j) = (1, 2):

Since ti, tj are not relatively prime,

number_spolys_cannot_skip← 1

Since t4 | t1,

skipped_term← 1

B ← {(2, 3) , (2, 4) , (3, 4)}

(i, j) = (2, 3)

Since t2, t3 are not relatively prime,

number_spolys_cannot_skip← 2

Since number_spolys_cannot_skip > 1 and skipped_term 6= 2, 3

Return NO

Under this term ordering, the algorithm finds that we cannot skip all S-poly-

nomials reductions but one.

It remains the case that S1,2 reduces to zero despite the new term ordering.

However, S2,3 does not:

S2,3 =
lcm (x5y3z2, z7)

x5y3z2
·
(
x5y3z2 − z6 − 1

)
− lcm (x5y3z2, z7)

z7
·
(
z7 + w8 + 1

)
= z5 ·

(
x5y3z2 − z6 − 1

)
− x5y3 ·

(
z7 + w8 + 1

)
= −z11 − z5 − x5y3w8 − x5y3
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Before showing a reduction path of S2,3, we remind the reader of the leading terms:

f1 = x3y3 f2 = x5y3z2 f3 = z7 f4 = x2z2

Thus

S2,3 −→
−x2w8·f1

−z11 − z5 − x5y3 + x2w8

−→
−x2·f1

−z11 − z5 + x2w8 + x2

−→
−z4·f3

x2w8 + x2 − z5 + z4w8 + z4

9
(f1,...,f4)

The remaining reduction paths are nearly identical, although too numerous to list

here. Hence S2,3 9
(f1,...,f4)

0. �

5.3.3. EXPERIMENTAL RESULTS. Again, we ran two kinds of experiments: one to

see how often the criteria applied, and one to compare the number of skipped

systems to the number of Gröbner bases.

HOW OFTEN DOES THEOREM 5.1 APPLY? The first thing I noticed when running

experimental results is that the minimum number of polynomials we test should

be three. In my first, naïve attempt to repeat the experiments of section 4.3.3, I ran

a slight modification of the first experiment for theorem 4.1 (see page 93). I did

not change the number of polynomials generated for each turn. Examining the



5.3. APPLICATION OF RESULT 115

Table 5.1: Number of sets where we can skip all but one S-polynomial reduction,
out of out of 100,000 sets.

d = 10 d = 10 + n d = 10 + 2n d = 10 + 3n d = 10 + 4n
n = 3 314 138 67 44 24
n = 4 220 41 15 2 1
n = 5 130 24 4 1 1
n = 6 86 10 0 0 0

d = 10 + 5n d = 10 + 6n d = 10 + 7n d = 10 + 8n
n = 3 16 9
n = 4 1 1 0
n = 5 0 0 0 0
n = 6 0 0 1 0

(n variables; 3 . . . n + 1 polynomials per set; d the maximum degree of a term;
exponents range from 0 to 5; total-degree term ordering with x1 � · · · � xn)

preliminary results, I noticed with creeping horror that, for two variables, I was

obtaining “a 100% success rate”, and I began to panic!

I spent a few minutes in frantic debugging before realizing how foolish I had

been: for n = 2 variables, the first program would only test two polynomials. With

a set of two polynomials, there is only one S-polynomial to reduce: S1,2. It comes

as no surprise, then, that for the set f1, f2, we can always skip “every S-polynomial

reduction but one”: S1,2.

A revised program produced more reasonable results; see table 5.1. We gener-

ated the data in the following manner:

we looped from n = 2 to n = 6 variables

for each n, we looped from d = 10 to d = 10n stepping by n

for each value of d, we generated 100,000 sets of polynomials



5.3. APPLICATION OF RESULT 116

each set consisted of at least 3, at most n + 1 sparse polynomials

number of terms per polynomial: rand(2..20)

each term had maximum degree d

coefficients: rand(-99..99)

exponents: rand(0..5)

At this point, I made another mistake: I began comparing the data in table

5.1 with that of table 4.1. Again, I began to panic: one would expect that there

would be more sets of polynomials where we can skip all but one S-polynomial

reduction, than when we can skip all reductions, since fewer leading terms have

to be relatively prime. A naïve comparison of table 5.1 with table 4.1 suggests that

there are fewer sets where we skip all but one S-polynomial reduction.

The reality is that the tables are incomparable due to the number of polyno-

mials in each set. Table 5.1 allows 3 . . . n + 1 polynomials per set, while table 4.1

allows only 2 . . . n. To find data for comparison, we modified the program that

generated table 4.1 so that it would test 2 . . . n + 1 polynomials per set for n > 3

indeterminates, and ran it to see how often all leading terms would be relatively

prime. This gave us table 5.2.

The resulting difference is staggering, although hardly surprising: a larger set

of polynomials has a drastically lower probability that all the leading terms will

be relatively prime. The program that generated table 4.1 had 2 . . . n polynomials,

where n is the number of variables; thus, every set enjoyed some chance that the
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Table 5.2: Experimental results: number of sets, out of 100,000, where we can skip
all S-polynomial reductions.

d = 10 d = 10 + n d = 10 + 2n d = 10 + 3n d = 10 + 4n
n = 3 1 0 0 0 0
n = 4 1 0 0 0 0
n = 5 2 0 0 0 0
n = 6 0 0 0 0 0

d = 10 + 5n d = 10 + 6n d = 10 + 7n d = 10 + 8n
n = 3 0 0
n = 4 0 0 0
n = 5 0 0 0 0
n = 6 0 0 0 0

(n variables; 2 . . . n + 1 polynomials per set; d the maximum degree of a term;
exponents range from 0 to 5; total-degree term ordering with x1 � · · · � xn)

leading terms would be relatively prime. The program that generated table 5.2,

on the other hand, has 2 . . . n + 1 polynomials, so that some sets would have more

polynomials than variables. In these sets, there is no chance the leading terms will

be relatively prime.

We can make another observation by comparing tables 4.1 and 5.2: nearly all

the successful skips of table 4.1 appear to have come from sets of two polynomials.

This would explain why table 5.2 generated effectively no sets where we could

skip S-polynomial reduction, whereas table 4.1 had a rather high number.

We return to the data of table 5.1. As we see, there are a number of systems

where we can skip all but one S-polynomial reductions. Unlike tables 4.1-4.3, how-

ever, these systems are not necessarily a Gröbner basis! That depends on whether
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Table 5.3: Comparison of the number of Gröbner bases found by S-polynomial
reduction, to the number found by applying theorem 5.1.

# vars skips total GBs time to check skip time to check reduction
2 2301 (0) 0 .04s 39803.68s
3 128 (3) 8 .08s 116615.28s
4 8 (0) 0 5.01s 219152.64s

*Numbers in parentheses indicated the number of Gröbner bases were all but one
S-polynomial reduction were skipped.
(1,000,000 total systems of three polynomials; 20×#vars the maximum degree of a
term; exponents range from 0 to 5; total-degree term ordering with x1 � · · · � xn)

the remaining S-polynomial reduces to zero. Presumably, some of them are (al-

gorithm 5.1 captures all the occasions that we can skip all) but many of them are

probably not.

WHAT IS THE PROBABILITY OF ENCOUNTERING A GRÖBNER BASIS THAT IS (OR IS

NOT) SKIPPED? We also ran a test to see how often we might find a Gröbner basis

that did not apply. The results of this test are given in table 5.3.

In this test, we generated systems of three polynomials. Despite the large num-

ber of polynomial systems generated, we did not encounter many Gröbner bases

at all: eight out of 3,000,000! Of those eight, we skipped all but one S-polynomial

reductions in three systems: that counts as two skips per system, so we could

have saved six S-polynomial reductions. This stands in marked contrast to the

results of section 4.3.3, but this appears to be because we have found so few Gröb-

ner bases to start with. When we did find a Gröbner basis, we were able to skip

two S-polynomial reductions for almost half of them. The time required to check
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whether we can skip all but one S-polynomial remains quite small in comparison

to the time required to check the system by S-polynomial reduction.



Chapter 6

Skipping all but two S-polynomial

reductions (case for three polynomials)

6.1. PROBLEM

After chapters 4 and 5, the next logical step is to find a criterion for skipping all

but two S-polynomial reductions. Formally, we want an algorithm that decides

CC (t1, . . . , tm,�, {(1, 2) , (2, 3)})

We first approached this problem in the same manner as in the previous two chap-

ters: we tried to build counterexamples to show that Buchberger’s two criteria

were the best that we could do, as in theorems 4.1 on page 87 and 5.1 on page 102.

This turned out to be much more difficult than we anticipated. We have yet to find

the solution to this general form for m terms.

120
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We decided to restrict the problem to a more specific form:

CC (t1, t2, t3,�, {(1, 2) , (2, 3)})

By definition 3.1 on page 80, this is equivalent to[
S1,2

∗−→
(f1,f2,f3)

0 and S2,3
∗−→

(f1,f2,f3)
0 ⇒ S1,3

∗−→
(f1,f2,f3)

0

]
∀f1, f2, f3 such that fk = tk

At first, this also turned out to be too difficult (but we will return to it before long).

At this point, we restricted term ordering:

CC (t1, t2, t3, lex (x0, x1, x2, x3) , {(1, 2) , (2, 3)})

Again, the problem turned out to be too difficult. We were able to show that Buch-

berger’s criteria were necessary for most cases, but the last case resisted solution.

In this case, the leading terms satisfied

(6.1) gcd (t1, t3) | t2

One day, we sat down at the computer and used Maple to trace through all possible

reductions for all polynomials with these leading terms:

t1 = x0x1 t2 = x0x2 t3 = x0x3
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Notice that gcd (t1, t3) = x0 and t2 = x0x2, so these leading terms satisfy (6.1).

On the other hand, no permutation of the terms gives either gcd (t1, t3) = 1 or

t2 | lcm (t1, t3), so Buchberger’s criteria do not apply to these terms.

When we say that we used Maple to trace through “all polynomials with these

leading terms,” we mean with respect to lex (x0, x1, x2, x3), as indicated above. This

gives the form

fk = t0tk + t0 · A + B

where, for all monomials m in A or in B, t0 - m.

To our amazement, we learned that in this restricted situation,

S1,2
∗−→

(f1,f2,f3)
0 and S2,3

∗−→
(f1,f2,f3)

0 ⇒ S1,3
∗−→

(f1,f2,f3)
0

This means that Buchberger’s criteria are not the only combinatorial criteria that

allow us to skip S-polynomial reduction.

After writing, correcting, and revising the proof, we generalized it to the form

t1 = x0x
α1
1 t2 = x0x

α2
2 t3 = x0x

α3
3

The restriction that �= lex (x0, x1, x2, x3) remained. We tried to remove this condi-

tion, but we hit another brick wall; several months would pass before we finally

found a criterion independent of the term ordering. We present it in theorem 6.3.
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6.2. RESULT

We need to define two new combinatorial criteria.

DEFINITION 6.1. For all indeterminates x, we write

VB1x (t1, t3)⇔ min (degx t1, degx t3) = 0

VB2x (t1, t2, t3)⇔ degx t2 ≤ max (degx t1, degx t3)

We can consider these two criteria “variable-wise Buchberger criteria”: the first

is satisfied if t1 and t3 are relatively prime with respect to x (but not necessarily

with respect to all variables); the second is satisfied if t2 divides the least common

multiple of t1 and t3 on x (but not necessarily on all variables).

The following example will help familiarize us with the criteria.

EXAMPLE 6.2. Let

t1 = x0x1 t2 = x0x2 t3 = x0x3

Observe that degx0
t2 = degx0

t1, so

VB2x0 (t1, t2, t3)

Also, for k = 1, 2, 3 we have at least one of degxk
t1 = 0 or degxk

t3 = 0, so

VB1xk
(t1, t3)

Hence one of the “variable-wise” criteria applies to each indeterminate. �
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Our main theorem is

THEOREM 6.3. (A)⇔ (B) where

(A) [ S1,2
∗−→

(f1,f2,f3)
0 and S2,3

∗−→
(f1,f2,f3)

0 ] implies S1,3  0

∀f1, f2, f3 such that fk = tk

(B) (B1) or (B2) where

(B1) gcd (t1, t3) | t2 or BC2 (t1, t2, t3)

(B2) VB1x (t1, t3) or VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xm}

We can consider (B) to have two parts: a divisibility criterion (B1), and a variable-

wise Buchberger criterion (B2). Notice that theorem 6.3 provides criteria for the

second complete criterion mentioned in the introduction, not the first. We repeat

that the first complete criterion remains open for m > 3.

Observe that if Buchberger’s criteria are satisfied, then (B) is also satisfied.

Why? Assume first that BC1 (t1, t3). Then gcd (t1, t3) = 1; (B1) is satisfied by

gcd (t1, t3) | t2, and (B2) is satisfied by ∀x VB1x (t1, t3). On the other hand, sup-

pose that we have instead BC2 (t1, t2, t3). Then t2 | lcm (t1, t3); (B1) is satisfied by

BC2 (t1, t2, t3), and (B2) is satisfied by ∀x VB2x (t1, t2, t3). (See also lemma 6.19 on

page 166 below.)

Note also that if some tk = 1, (B) is also satisfied: one of the divisibility condi-

tions of (B1) is trivial; as is one of the variable-wise Buchberger criteria of (B2).

The proof of theorem 6.3 is long; we present it in three sections:
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• useful facts (section 6.2.1)

• proof that (B) is necessary to (A) (section 6.2.2)

• proof that (B) is sufficient for (A) (section 6.2.3)

Let’s consider one last example that will show how we discovered the criterion

and its proof.

EXAMPLE 6.4. Let �= lex (x, y, z) and

f1 = y6z2 + z4 + xz3 f2 = x2z6 + xy6z5 + x4y4z f3 = z3 + y6z

We have

f1 = xz3 f2 = x4y4z f3 = y6z

The criteria of theorem 6.3 are satisfied; the divisibility criterion because

gcd
(
f1 , f3

)
= z f2 = x4y4z

and the variable-wise Buchberger criteria because

VB1x (t1, t3)

VB1y (t1, t3)

VB2z (t1, t2, t3)

We want to see why we can skip the reduction of S1,3. First we compute it:

S1,3 =
xy6z3

xz3
·
(
y6z2 + z4 + xz3

)
− xy6z3

y6z
·
(
z3 + y6z

)
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= y12z2 + y6z4 − xz5

How does this reduce?

S1,3 −→
−z2·f1

y12z2 + 2y6z4 + z6

−→
y6z·f3

y6z4 + z6

−→
z3·f3

0

Collecting the quotients, we have the representation

S1,3 = h1f1 + h3f3

where

h1 = −z2 h3 = y6z + z3

Where do these polynomials come from? Look again at f1, f3. They have a greatest

common divisor. Separating it from its cofactors, we have

f1 = z
(
y6z + z3 + xz2

)
f2 = z

(
z2 + y6

)
The non-leading monomials of the cofactors are

y6z + z3 z2

These cofactors look suspiciously similar to h1, h3! �
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S� (f1, f2)
∗−→

(f1,f2,f3)
0 and S� (f2, f3)

∗−→
(f1,f2,f3)

0 S� (f1, f3) 0

(6.12, 6.13) ⇓ ⇑ (1.37)

fk = ckg where gcd ( c1 , c3 ) = 1 for k = 1, 2, 3
⇒

(2.4) S� (c1, c3) 0

Numbers indicate which lemma or theorem is used to prove the implication.

Figure 6.1: Diagram of proof strategy for section 6.2.3.

The reader may recall a previous theorem whose proof uses a representation

of non-leading monomials: Buchberger’s first criterion. Indeed, our proof of the

sufficiency of the new criterion (section 6.2.3) will use this fact. We can diagram

the structure of the proof as in figure 6.1.

6.2.1. USEFUL FACTS. Our first lemma serves the same purpose for lemma 6.9 in

this chapter that lemma 3.2 on page 83 serves for the previous two chapters.

The basic idea is the same. We have a monomial τ and polynomials f1, . . . , fm.

These latter polynomials are either monomials or binomials; we want them to have

a structure that implies

τ
∗9

(f1,...,fm)
0

How do we ensure this? No monomial fk may divide τ , so for each k there must

be some indeterminate xλk
with degxλk

fk > degxλk
τ . For every binomial f`, on

the other hand, the structure is slightly different from the binomials of lemma 3.2:

while the trailing term u` does not necessarily divide the leading term t`, we ensure
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that for each xλk
noted for the monomials fk, degxλk

u` < degxλk
t`. That way, τ −→

fk

τ ′ preserves degxλk
fk > degxλk

τ ′.

LEMMA 6.5. Let τ be a nonzero monomial, and F = (f1, . . . , fm) a system of polynomials.

Then (A)⇒(B) where

(A) ∃µ with 1 ≤ µ ≤ m and ∃λ1, . . . , λµ such that [ (A1) and (A2) ] where

(A1) ∀` = 1, . . . , µ such that

degxλ`
f̂` > degxλ`

τ

(A2) ∀` = µ + 1, . . . ,m

f` = t` + u`

t` � u`

degxλi
t` ≥ degxλi

u` ∀i = 1, . . . , µ

(B) τ
∗9
F

0.

PROOF. Assume (A). We want to show (B).

Consider an arbitrary reduction path of τ over F :

τ = τ0 −→
fk1

τ1 −→
fk2

· · · −→
fkr

τr 9
F

We want to show τr 6= 0. We show this by proving that τi and f1, . . . , fm satisfy

(A) for i = 1, . . . , r − 1; since τi can reduce only over a binomial, τi+1 6= 0. We

proceed by induction on i.

Inductive base: i = 0
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Since τ0 = τ , we know by hypothesis that τ0 and f1, . . . , fm satisfy (A).

Inductive step:

Assume that τi 6= 0, and that τi and f1, . . . , fm satisfy (A).

We show that τi+1 6= 0, and that τi+1 and f1, . . . , fm also satisfy (A).

Let ` be such that τi −→
f`

τi+1.

Since τi satisfies (A1), we know that f̂k - τi for k = 1, . . . , µ.

Thus ` > µ, so τi+1 6= 0.

Let k ∈ {1, . . . , µ} be arbitrary, but fixed.

Again, τi satisfies (A1), so ∃λk such that

degxλk
fk > degxλk

τi

Then

degxλk
τi+1 = degxλk

(
τi

t`
· u`

)
≤ degxλk

(
τi

t`
· t`
)

= degxλk
τi

Hence

degxλk
fk > degxλk

τi+1

Since k was arbitrary, τi+1 and f1, . . . , fM satisfy (A).

Thus every monomial τi in the reduction path is nonzero; in particular, τr 6= 0

and τ
∗9
F

0. �
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The second lemma will also be useful for constructing a counterexample in

lemma 6.9.

LEMMA 6.6. The following are equivalent for all terms t1, t2, t3:

(A) gcd (t1, t3) | t2

(B) gcd (t1, t3) | gcd (t1, t2)

(C) gcd (t1, t3) | gcd (t2, t3)

PROOF. Let t1, t2, t3 be arbitrary, but fixed.

(A)⇒(B): Assume gcd (t1, t3) | t2. Equivalently,

∀x min (degx t1, degx t3) ≤ degx t2.

If degx t1 > degx t2, then degx t3 ≤ degx t2; hence gcd (t1, t3) | gcd (t1, t2).

(A)⇐(B): Assume gcd (t1, t3) | gcd (t1, t2). Equivalently,

∀x min (degx t1, degx t3) ≤ min (degx t1, degx t2) .

If degx t1 > degx t2, then degx t3 ≤ degx t2. Thus gcd (t1, t3) | t2.

(A)⇒(C) is symmetric to (A)⇒(B), exchanging t1 and t3.

(A)⇐(C) is symmetric to (A)⇐(B), exchanging t1 and t3. �

REMARK 6.7. For any term ordering � and for any two polynomials fi, fj , if g | fi

and g | fj , it follows from lemma 1.13 on page 15 that g | fi and g | fj . So if fi

and fj are relatively prime, fi and fj have no nontrivial common factors.
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6.2.2. NECESSITY OF THE CRITERION. In this section, we show that we can skip the

reduction of S1,3 only if clause (B) of theorem 6.3 holds true. We do this by showing

the contrapositive: if (B) is false, we produce an F = (f1, f2, f3) that violates (A):

the leading terms of F are t1, t2, t3, and F has the property that S1,2
∗−→
F

0 and

S2,3
∗−→
F

0, but S1,3
∗9
F

0.

We consider two different cases: one if (B1) is false (lemma 6.8); the other, if

(B2) is false (lemma 6.9).

For the counterexamples, we use a form suggested by lemma 6.5 on page 128:

f1 = t1 + u, f2 = t2, and f3 = t3. The question is: how do we structure u?

When (B1) is false, we will arrange for S1,2 −→
f2

0. We know that

S1,2 =
lcm (t1, t2)

t1
· (t1 + u)− lcm (t1, t2)

t2
· t2

=
lcm (t1, t2)

t1
· u

=
t2

gcd (t1, t2)
· u

The simplest way to get S1,2 −→
f2

0 is if u = gcd (t1, t2). That S2,3
∗−→
F

0 is trivial.

How then will we ensure that S1,3
∗9
F

0? This will depend on some “mag-

ical properties” of u. These properties exploit the facts that t2 - lcm (t1, t3) and

gcd (t1, t3) - t2 (hence gcd (t1, t3) - gcd (t1, t2) by lemma 6.6 on the preceding page).

LEMMA 6.8. For all terms t1, t2, t3 (A)⇒(B) where

(A)
[
S1,2

∗−→
F

0 ∧ S2,3
∗−→
F

0
]
⇒ S1,3

∗−→
F

0 ∀F = (f1, f2, f3) : ∀k fk = tk
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(B) gcd (t1, t3) | t2 or BC2 (t1, t2, t3)

In the proof of lemma 6.8, we do not need the general machinery of lemma 6.5,

so we use the simpler form of lemma 3.2 on page 83.

PROOF. We show (A)⇒(B) by proving its contrapositive.

Assume ¬(B): gcd (t1, t3) - t2 and ¬BC2 (t1, t2, t3). We construct F to show ¬(A):

let F = (f1, f2, f3) be such that

f1 = t1 + gcd (t1, t2)

f2 = t2

f3 = t3

We need to show that f1 is a binomial, and f̂1 = t1.

Since gcd (t1, t2) | t1, we have gcd (t1, t2) � t1.

It remains to show that gcd (t1, t2) 6= t1. By way of contradiction:

gcd (t1, t2) = t1 ⇒ t1 | t2 ⇒ gcd (t1, t3) | t2

But ¬(A) has gcd (t1, t3) - t2.

So gcd (t1, t2) 6= t1.

Hence gcd (t1, t2) ≺ t1.

Hence f1 is a binomial, and f̂1 = t1.

We claim S1,2
∗−→
F

0 and S2,3
∗−→
F

0 but S1,3
∗9
F

0.
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From the construction of F

S2,3 = 0

Also

S1,2 =
lcm (t1, t2)

t1
· (t1 + u)− lcm (t1, t2)

t2
· t2

=
t2

gcd (t1, t2)
· gcd (t1, t2)

= f2

So S1,2
∗−→
F

0 and S2,3
∗−→
F

0.

Consider

S1,3 =
lcm (t1, t3)

t1
· (t1 + u)− lcm (t1, t3)

t3
· t3

=
t3

gcd (t1, t3)
· u

We claim that t2 - S1,3.

Assume by way of contradiction that t2 | S13.

Then

t2 |
t3

gcd (t1, t3)
· gcd (t1, t2)

This implies that

t2 |
t3

gcd (t1, t3)
· t1

Then t2 | lcm (t1, t3).

This contradicts t2 - lcm (t1, t3).
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Hence t2 - S1,3.

We further claim that t3 - S1,3.

Assume by way of contradiction that t3 | S1,3.

Then gcd (t1, t3) | u.

Since u = gcd (t1, t2), we have gcd (t1, t3) | gcd (t1, t2).

By lemma 6.6 on page 130, gcd (t1, t3) | t2.

This contradicts gcd (t1, t3) - t2.

Hence t3 - S1,3.

By lemma 3.2, S1,3
∗9
F

0. (Use the permutation (1 3 2) with µ = 1.) �

For clause (B2) in theorem 6.3, we employ a similar approach. As before, we

build F = (f1, f2, f3) “as simple as possible”: f2 and f3 will be monomials, and

f1 = t1 + u where u will have the “magical properties” that S1,2 −→
F

0 but S1,3
∗9
F

0.

We find the “magical properties” by exploiting the failure of the criterion: in this

case, the existence of an indeterminate y ∈ {x1, . . . , xm} such that ¬VB1y (t1, t3)

and ¬VB2y (t1, t2, t3). More precisely, we exploit degy σ12 > degy σ13: a sufficiently

small choice for degy u gives S1,2
∗−→
f3

0 while S1,3
∗9
F

0, since

degy S1,2 = degy (σ12u) > degy (σ13u) = degy S1,3

In this proof, we use the full generality of lemma 6.5 on page 128.

LEMMA 6.9. For all terms t1, t2, t3, (A)⇒(B) where
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(A)
[
S1,2

∗−→
F

0 ∧ S2,3
∗−→
F

0
]
⇒ S1,3

∗−→
F

0 ∀F = (f1, f2, f3) : ∀k fk = tk

(B) VB1x (t1, t3) or VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xn}

PROOF. We show (A)⇒(B) by proving its contrapositive.

Assume ¬(B); then ∃y ∈ {x1, . . . , xn} such that

¬VB1y (t1, t3) and ¬VB2y (t1, t2, t3)

Equivalently, ∃y such that

0 < degy t1, degy t3 < degy t2

We need to find F such that S1,2
∗−→
F

0 and S2,3
∗−→
F

0 but S1,3
∗9
F

0.

Without loss of generality, we may assume degy t1 ≤ degy t3. If not, swap t1 and

t3 for the remainder of the proof.

Case 1: t1 � t3

Define u as

∀x ∈ {x1, . . . , xn} degx u =


degx t3 x 6= y

max
(
0, degy t1 + degy t3 − degy t2

)
x = y

Let F = (f1, f2, f3) be such that

f1 = t1 + u

f2 = t2

f3 = t3
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Note that u | t3 and u 6= t3; hence u ≺ t3 � t1. Hence f1 is a binomial with

f1 = t1.

We claim that S1,2
∗−→
F

0 and S2,3
∗−→
F

0 but S1,3
∗9
F

0.

Immediately we have S2,3 = 0, so S2,3
∗−→

(f1,f2,f3)
0 trivially.

Next,

S1,2 =
lcm (t1, t2)

t1
· (t1 + u)− lcm (t1, t2)

t2
· t2

= lcm (t1, t2) +
lcm (t1, t2)

t1
· u− lcm (t1, t2)

=
lcm (t1, t2)

t1
· u

We see that for x 6= y

degx S1,2 = max (degx t1, degx t2)− degx t1 + degx u

≥ degx u

= degx t3

whereas

degy S1,2 = max
(
degy t1, degy t2

)
− degy t1 + max

(
0, degy t1 + degy t3 − degy t2

)
Recall degy t2 > degy t1. Then

degy S1,2 = degy t2 − degy t1 + max
(
0, degy t1 + degy t3 − degy t2

)
= max

(
degy t2 − degy t1, degy t3

)



6.2. RESULT 137

≥ degy t3

So S1,2
∗−→
f3

0, as desired.

Now we turn to S1,3. By reasoning similar to that for S1,2, we have

S1,3 =
lcm (t1, t3)

t1
· u

We claim degy S1,3 < degy t3 < degy t2.

We have

degy S1,3 = max
(
degy t1, degy t3

)
− degy t1 + max

(
0, degy t1 + degy t3 − degy t2

)
Recall degy t1 ≤ degy t3.

Then

degy S1,3 = degy t3 − degy t1 + max
(
0, degy t1 + degy t3 − degy t2

)
= max

(
degy t3 − degy t1, 2 degy t3 − degy t2

)
Recall degy t3 < degy t2 and 0 < degy t1.

Then

degy S1,3 < degy t3 < degy t2

Recall degy t1 ≥ degy t3 > degy u.

By lemma 6.5, S1,3
∗9
F

0.

Case 2: t1 ≺ t3

We sketch the proof; it is similar to that for case 1.
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Recall degy t2 > max
(
degy t1, degy t3

)
. Let F = (f1, f2, f3) be such that

f1 = t1

f2 = t2

f3 = t3 + v

where v is defined as

∀x ∈ {x1, . . . , xn} degx v =


degx t1 x 6= y

max
(
0, degy t1 + degy t3 − degy t2

)
x = y

We see that v | t1 and v 6= t1, so v ≺ t1 ≺ t3. Hence f̂3 = t3.

Again, we claim S1,2
∗−→
F

0, S2,3
∗−→
F

0, but S1,3
∗9
F

0.

We have S1,2
∗−→
F

0 trivially.

As for S2,3:

S2,3 = − lcm (t2, t3)

t3
· v

Inspection shows S2,3
∗−→
f1

0.

We turn to S1,3. We have

degy S1,3 = max
(
0, degy t1 + degy t3 − degy t2

)
< degy t1

< degy t2

As in case 1, degy t3 > degy u and by lemma 6.5, S1,3
∗9
F

. �
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In lemmas 6.8 and 6.9, we have proven the following strict boundary on triplets

of terms that guarantee S13  0.

COROLLARY 6.10. For all terms t1, t2, t3 (A)⇒(B) where

(A)
[
S12

∗−→
F

0 ∧ S23
∗−→
F

0
]
⇒ S13

∗−→
F

0 ∀F = (f1, f2, f3) : ∀k fk = tk

(B) clause (B) of theorem 6.3

6.2.3. SUFFICIENCY OF THE CRITERION. We turn our attention to proving that the

new combinatorial criterion of theorem 6.3 eliminates the need to check the reduc-

tion of an S-polynomial. This is the more complicated part of the proof of theorem

6.3; the reader may wish to review figure 6.1 on page 127.

We need the following observation. Note the subtle difference between remark

6.11, which is true only if gcd (t1, t3) | t2, and remark 1.35 on page 49, which is true

in all cases.

LEMMA 6.11. If gcd (t1, t3) | t2, then gcd ( σ21 , σ23 ) = 1 for all fk = tk.

PROOF. Let t1, t2, t3 be arbitrary, but fixed. Assume gcd (t1, t3) | t2. Then ∀x

min (degx t1, degx t3) ≤ degx t2

Assume ∃y such that y | σ23 . We have

degy σ23 = degy

lcm
(
f2 , f3

)
f2

= max
(
degy t2, degy t3

)
− degy t2
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= max
(
0, degy t3 − degy t2

)
Since y | σ23 , degy t3 > degy t2.

Recall min
(
degy t1, degy t3

)
≤ degy t2; with the above, this implies degy t1 ≤

degy t2. Hence

degy σ21 = degy

lcm
(
f1 , f2

)
f2

= max
(
degy t1, degy t2

)
− degy t2 = 0 �

We come to the meat of the proof. We proceed by factoring the common divisor

of f1, f3. Lemma 6.12 shows that when the new criterion is satisfied and the two

“chain” S-polynomials reduce, we have a surprising result: gcd (f1, f3) | f2.

LEMMA 6.12. (A)⇐(B) where

(A) S1,2
∗−→
F

0 and S2,3
∗−→
F

0 implies g13 | f2 where g13 = gcd (f1, f3),

(B) gcd
(
f1 , f3

)
| f2

PROOF. Assume (B). Then gcd
(
f1 , f3

)
| f2 .

Assume S1,2
∗−→
F

0 and S2,3
∗−→
F

0. We need to show g13 | f2.

Apply S1,2
∗−→
F

0 and lemma 1.28 on page 30 to obtain a representation h1, h2, h3

of S1,2. So

(6.2) S1,2 = h1f1 + h2f2 + h3f3

and ∀k = 1, 2, 3, hk 6= 0 implies hkfk ≺ lcm
(
f1 , f2

)
.
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Likewise, from S2,3
∗−→
F

0 obtain a representation H1, H2, H3, so that

(6.3) S2,3 = H1f1 + H2f2 + H3f3

and ∀k = 1, 2, 3, Hk 6= 0 implies Hkfk ≺ lcm
(
f2 , f3

)
.

Consider (6.2). We have

σ12f1 − σ21f2 = h1f1 + h2f2 + h3f3

(σ12 − h1) f1 − h3f3 = (σ21 + h2) f2(6.4)

Likewise (6.3) gives us

(6.5) H1f1 + (σ32 + H3) f3 = (σ23 −H2) f2

Let g13 = gcd (f1, f3).

Let c1, c3 be such that f1 = c1g13 and f3 = c3g13.

From (6.4), we have

(6.6) g13 [(σ12 − h1) c1 − h3c3] = (σ21 + h2) f2

From (6.5), we have

(6.7) g13 [H1c1 + (σ32 −H3) c3] = (σ23 −H2) f2

Note g13 | (σ21 + h2) f2 and g13 | (σ23 −H2) f2.

So g13 divides the greatest common divisor of (σ21 + h2) f2 and (σ23 −H2) f2.
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Using lemma 1.36 on page 50,

̂σ21 + h2 = σ21

and

̂σ23 −H2 = σ23

From lemma 6.11, we know gcd ( σ21 , σ23 ) = 1.

By remark 6.7 on page 130 , σ21 + h2 and σ23 + H2 are relatively prime.

Thus f2 is the greatest common divisor of the right-hand side for both (6.6) and

(6.7), and we have g13 | f2. �

We use lemma 6.13 on the cofactors of the greatest common divisor of f1, f2, f3

in lemma 6.14. Note that here we work with representation instead of reduction,

for two reasons: (a) I have no idea how to prove this using reduction, and it may

not be true; further, (b) reduction implies representation (lemma 1.28 on page 30),

while the converse does not hold in general (example 1.29 on page 31).

LEMMA 6.13. For all t1, t2, t3 (A)⇐(B) where

(A) ∀F = (f1, f2, f3) such that fk = tk and gcd (f1, f3) = 1,

if S1,2 and S2,3 have representations modulo f1, f2, f3

then

gcd (t1, t3) = 1

(B) gcd (t1, t3) | t2 and [VB1x (t1, t3) or VB2x (t1, t2, t3)] ∀x ∈ {x1, . . . , xn}
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PROOF. Assume (B).

Let F be arbitrary but fixed.

Assume S1,2 and S2,3 have representations modulo f1, f2, f3. Choose h1, h2, h3

such that

(6.8) S1,2 = h1f1 + h2f2 + h3f3 and ∀k hk 6= 0⇒ hk · fk ≺ lcm
(
f1 , f2

)
and H1, H2, H3 such that

(6.9) S2,3 = H1f1 + H2f2 + H3f3 and ∀k Hk 6= 0⇒ Hk · fk ≺ lcm
(
f2 , f3

)
From (6.8),

σ12f1 − σ21f2 = h1f1 + h2f2 + h3f3

(σ12 − h1) f1 − h3f3 = (σ21 + h2) f2

(σ12 − h1) f1 − h3f3

σ21 + h2

= f2(6.10)

Likewise from (6.9),

(6.11)
H1f1 + (σ32 + H3) f3

σ23 −H2

= f2

From (6.10) and (6.11),

(σ12 − h1) f1 − h3f3

σ21 + h2

=
H1f1 + (σ32 + H3) f3

σ23 −H2

(σ23 −H2) [(σ12 − h1) f1 − h3f3] = (σ21 + h2) [H1f1 + (σ32 + H3) f3]
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Collect expressions with f1 and f3 on opposite sides:

(6.12)

[(σ23 −H2) (σ12 − h1)−H1 (σ21 + h2)] f1 = [h3 (σ23 −H2) + (σ21 + h2) (σ32 + H3)] f3

Let

P = h3 (σ23 −H2) + (σ21 + h2) (σ32 + H3)

Note that P is the cofactor of f1 in (6.12).

We claim P̂ = σ21 · σ32.

As per lemma 1.36,

• σ23 � Ĥ2

• σ21 � ĥ2

• σ32 � Ĥ3

So the only possible leading monomials of P are σ21 · σ32 and σ23 · ĥ3 .

Assume by way of contradiction that

σ23 · ĥ3 � σ21 · σ32

Then

lcm
(
f2 , f3

)
f̂2

· ĥ3 �
lcm

(
f1 , f2

)
f̂2

·
lcm

(
f2 , f3

)
f̂3

Canceling, we find that this implies

ĥ3 �
lcm

(
f1 , f2

)
f̂3
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f̂3 · ĥ3 � lcm
(
f1 , f2

)
This clearly contradicts (6.8).

Hence P̂ = σ21 · σ32.

Observe that f1 divides the left-hand side of (6.12). So f1 must also divide the

right-hand side of (6.12).

Recall that f1 and f3 are relatively prime. Thus

f1 | P

Then f1 | P . That is,

t1 | σ21 · σ32

t1 |
lcm

(
f1 , f2

)
f2

·
lcm

(
f2 , f3

)
f3

t1 |
lcm (t1, t2)

t2
· lcm (t2, t3)

t3

t1 |
t1t2

gcd (t1, t2) · t2
· t2t3
gcd (t2, t3) · t3

gcd (t1, t2) · gcd (t2, t3) | t2(6.13)

We claim this proves gcd (t1, t3) = 1. Why?

Let x be an arbitrary, but fixed indeterminate.

Recall from (B) that:

gcd (t1, t3) | t2, and

for all x VB1x (t1, t3) or VB2x (t1, t2, t3).
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It will suffice to show that VB2x (t1, t2, t3) and (6.13) imply VB1x (t1, t3).

Assume VB2x (t1, t2, t3).

Suppose degx t1 ≤ degx t3

From (B), degx t1 ≤ degx t2 ≤ degx t3.

From (6.13),

degx t1 + degx t2 ≤ degx t2

So degx t1 = 0.

Hence VB1x (t1, t3).

If instead degx t1 > degx t3, a similar argument gives VB1x (t1, t3).

Hence VB2x (t1, t2, t3) and (6.13) imply VB1x (t1, t3).

Since x was arbitrary, degx t1 = 0 or degx t3 = 0, for all indeterminates x.

Thus gcd (t1, t3) = 1. �

Lemma 6.14 completes the proof of the main theorem, by showing that the new

criterion suffices to skip the reduction of one S-polynomial. Because we switch

between two sets of polynomials (fk and ck), we maintain the long notation for

S-polynomials (S� (fi, fj) instead of Si,j).

LEMMA 6.14. For all terms t1, t2, t3 (A)⇐(B) where

(A)
[
S� (f1, f2)

∗−→
F

0 and S� (f2, f3)
∗−→
F

0
]
⇒ S� (f1, f3) 0

∀F = (f1, f2, f3) such that fk = tk.

(B) clause (B) of theorem 6.3.
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PROOF. Assume (B). Thus we have (B1) and (B2) of theorem 6.3.

Let F be arbitrary, but fixed. Assume S1,2
∗−→
F

0 and S2,3
∗−→
F

0. We consider

two cases.

Case 1: BC2 (t1, t2, t3)

(A) follows from corollary 2.9 on page 69.

Case 2: ¬BC2 (t1, t2, t3)

From (B), we have

(6.14) gcd (t1, t3) | t2 and [VB1x (t1, t3) or VB2x (t1, t2, t3) ∀x ∈ {x1, . . . , xn}]

Let g = gcd (f1, f3). Let c1, c3 be such that fk = ckg. Then c1 and c3 are relatively

prime.

Recall S� (f1, f2)
∗−→
F

0 and S� (f2, f3)
∗−→
F

0. From lemma 6.12, g | f2.

Let c2 be such that f2 = c2g.

Since tk = fk = ckg = ck · g , (6.14) implies

gcd ( c1 , c3 ) | c2 ∧ ∀x [VB1x ( c1 , c3 ) ∨ VB2x ( c1 , c2 , c3 )]

Recall again S� (f1, f3) and S� (f2, f3)
∗−→
F

0. It follows from lemma 1.28 on

page 30 that S� (f1, f2) and S� (f2, f3) have representations modulo F . By lemma

1.37 on page 51, we know that S� (c1, c2) and S� (c2, c3) have representations mod-

ulo c1, c2, c3. By lemma 6.13, c1 and c3 are relatively prime.
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Algorithm 6.1 Can_Skip_Third_Spoly

Inputs: t1, t2, t3 which are terms in x1, . . . , xn

Output: YESif clause (B) of theorem 6.3 is satisfied; NOotherwise

If t2 - lcm (t1, t3) and gcd (t1, t3) - t2 Then

Return NO

For i = 1, . . . , n

If degxi
t2 > max

(
degxi

t1, degxi
t3
)

and min
(
degxi

t1, degxi
t3
)
6= 0 Then

Return NO

Return YES

Thus BC1 ( c1 , c3 ). By theorem 2.4 on page 59, S� (c1, c3) has a representation

modulo c1, c3. Re-applying lemma 1.37, we see that S� (f1, f3) has a representation

modulo f1, f3.

Thus S13  0. �

6.3. APPLICATION OF RESULT

6.3.1. AN ALGORITHM FOR THEOREM 6.3. Algorithm 6.1 implements theorem 6.3.

The first conditional statement checks whether (B1) of theorem 6.3 is satisfied;

the conditional statement within the loop checks whether (B2) of theorem 6.3 is

satisfied.

To extend this algorithm into an algorithm that decides whether a system of

polynomials are a Gröbner basis, we have to add the following capabilities which

are not necessary for previous decision algorithms:
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• Remember the representation of each Si,j

• If Can_Skip_Third_SPoly returns YES for terms ti, tj, tk, en-

sure that the representations of Si,j and Sj,k are modulo fi, fj, fk

only

If Si,j or Sj,k reduces only over fi, fj, fk, then theorem 6.3 guarantees that we can

skip Si,k. Otherwise, we may not be able to skip Si,k: see example 6.18 below.

6.3.2. EXAMPLES OF THEOREM 6.3. Our first example will answer the question, Is

theorem 6.3 merely a rearrangement of Buchberger’s criteria, or does it contribute some-

thing new?

The theorem does contribute something new. We illustrate this with two exam-

ples. The first comes from our discussion at the beginning of this chapter.

EXAMPLE 6.15. Let t1 = x0x1, t2 = x0x2, and t3 = x0x3. Let � be any term ordering

whatsoever.

Observe that no arrangement of Buchberger’s criteria allows us to skip an S-

polynomial reduction:

• no pair ti, tj is relatively prime;

• no term tk can serve as a bridge, because no permutation of the

indices allows for tk | lcm (ti, tj)
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On the other hand, t1, t2, t3 do satisfy the combinatorial criterion of theorem 6.3.

Why? Clause (B1) is satisfied by gcd (t1, t3) = x0, and x0 | t2. Clause (B2) is satisfied

by

• VB2x0 (t1, t2, t3)

• VB1xk
(t1, t3) for k = 1, 2, 3

Thus, we have a set of terms so that Buchberger’s criteria do not allow us to skip

an S-polynomial reduction, but theorem 6.3 does. In other words, theorem 6.3

provides a new combinatorial criterion for skipping S-polynomial reduction.

What is this new criterion? If we assume that both of Buchberger’s criteria fail,

then to skip an S-polynomial reduction, we must retain the following:

gcd (t1, t3) | t2

and

∀x VB1x (t1, t3) or VB2x (t1, t2, t3)

The next two examples use the term diagrams of section 2.5 to give us two-

dimensional and three-dimensional visualizations of what is new in the new cri-

terion. In each case, we pose the question: Given t1 and t3, what values of t2 give

S1,3  0, where the leading term of fk is tk? The reader may want to take a moment

to review term diagrams.
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EXAMPLE 6.16. We first consider the question in the two-dimensional case: that is,

when the leading terms are in two polynomials.

In the first case suppose t1 and t3 have no indeterminates in common; that is,

they are relatively prime. This is Buchberger’s first criterion, so we know a priori

that S1,3  0. Thus t2 can have any value we like; see figure 6.2, where we shade

the entire x-y plane to represent this fact.

On the other hand, if t1 and t3 have all their indeterminates in common, then

clause (B2) of theorem is true only if VB2x (t1, t2, t3) for every indeterminate x. This

is Buchberger’s second criterion; we illustrate this in figure 6.3 by shading only that

rectangle of the x-y plane that divides lcm (t1, t3).

The natural question to ask is, what if t1 and t3 share exactly one of their indetermi-

nates? In this case, neither of Buchberger’s criteria applies, but the new criterion

does. If the two terms share x (figure 6.4(a)), then any value of t2 allows S1,3  0

so long as its degree in x is between the degree of the greatest common divisor and

the least common multiple of t1 and t3. Since t1 and t3 do not share y, the degree in

y of t2 is unrestricted. A symmetric result occurs when t1, t3 share y, illustrated in

figure 6.4(b). �

Observe that Buchberger’s two criteria stand at opposite poles: at one, the en-

tire quadrant is shaded, because any value of t2 will allow S1,3  0; at the other,

only a finite rectangle is shaded, because only the values of t2 that divide lcm (t1, t3)
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Term t2 can lie anywhere and S1,3  0.

Figure 6.2: Terms t1 and t3 have no indeterminates in common.
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To guarantee S1,3  0, t2 can only lie in that region of the plane that divides
lcm (t1, t3) (marked in blue).

Figure 6.3: Terms t1 and t3 have all their indeterminates in common.

allow S1,3  0. Between these two extremes, we have the case where the new cri-

terion applies, but neither of Buchberger’s criteria apply: t2 can lie anywhere in an

infinite region of the plane, but this region does not cover the entire plane.

We can observe this in the three-dimensional case as well.
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(b) t1 and t3 share y

To guarantee S1,3  0, t2 can only lie in the shaded area of the x-y plane. The
greatest common divisor is marked in red; the least common multiple in blue.

Figure 6.4: Terms t1 and t3 have one determinate in common.

EXAMPLE 6.17. We start with t1, t3 sharing all their indeterminates, then peel away

one indeterminate after another until they are relatively prime. This adds one

infinite region after another, until we have the entire positive orthant.

Begin with t1 = x2y4z3, t3 = x5y2z. What values of t2 allow S1,3  0? Since t1, t3

share all their variables, we can only satisfy theorem 6.3 if Buchberger’s second

criterion is satisfied. See figure 6.5(a).

Now consider t1 = x2y4z3, t3 = x5z. Here t1, t3 do not share y, so t2 is free with

respect to y; to satisfy theorem 6.3; the only constraints are on the degrees of x and

z. See figure 6.5(b).
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In the next step, consider t1 = y4z3, t3 = x5z. In this case, t1, t3 only share z, so

t2 is free with respect to x and y; the only constraints are on the degree of z. See

figure 6.5(c).

Finally, let t1 = y4z3, t3 = x5. Now the two terms are relatively prime, so t2 is

free with respect to all indeterminates; we always have S1,3  0. We have arrived

at the pole of Buchberger’s first criterion; see figure 6.5(d). �

We close this section with an example that serves as a warning: the new crite-

rion does not extend in an obvious way to m > 3 leading terms. This is more subtle

than might first seem.

EXAMPLE 6.18. Let F = (f1, f2, f3, f4) where

f1 = x0x1 + x2 f2 = x0x2 f3 = x0x3 f4 = x2
2

Let � be any term ordering such that f1 = x0x1; for example, a total-degree

term ordering. Observe that f1 , f2 , f3 are the same as those of example 6.15;

hence, they satisfy (B) of theorem 6.3. However,

S1,2 = x2
2 −→

F
0

S2,3 = 0

S1,3 = x2x3 9
F

�
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nates: Buchberger’s second cri-
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Figure 6.5: Theorem 6.3 allows a progression from Buchberger’s second criterion
to Buchberger’s first criterion.

What is going on? Recall from definition 3.1 on page 80 that the inputs of CC

are the terms t1, . . . , tm, the term ordering �, and the set of paired indices P of
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S-polynomials that are assumed to reduce to zero. The algorithm must decide[
∀f1, . . . , fm such that fk = tk ∀ (i, j) ∈ P Si,j

∗−→
(f1,...,fm)

0

]
⇓

GB� (f1, . . . , fm)

Clause (A) of theorem 6.3 gives the inputs t1, t2, t3. This means that clause (B) is

necessary and sufficient for (A) only if

S1,2
∗−→

(f1,f2,f3)
0 and S2,3

∗−→
(f1,f2,f3)

0

In other words, the S-polynomials must reduce only over the triplet f1, f2, f3 for the

new criterion to give us a valid skip. In example 6.18, the S-polynomial reduces

over a fourth polynomial; hence CC cannot guarantee that S1,3 will reduce to zero.

6.3.3. EXPERIMENTAL RESULTS. We ran experiments to answer two questions re-

garding these results:

• How often can we expect the new criterion to apply in real-life

situations?

• How often do S-polynomials reduce over r polynomials?

It should be obvious why we would pose the first question: although the restriction

on the number of polynomials means that the theorem is not “complete” enough

to expect very many occasions when we can skip one S-polynomial reduction, we

would still like an idea of how often the criterion might appear.
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The second question also tries to see how often the new criterion could appear,

but also whether further research would be useful. If we know how the majority of

S-polynomials reduce to zero during a Gröbner basis computation, and over what

number of polynomials they reduce to zero, this can help us design strategies for

faster Gröbner basis computation.

HOW OFTEN CAN WE EXPECT THE NEW CRITERION TO APPLY IN “REAL-LIFE” SIT-

UATIONS? In a first experiment suggested by Bruno Buchberger, we generated

three random terms t1, t2, t3, which we assumed to be the leading terms of un-

specified polynomials f1, f2, f3.

In a typical Buchberger algorithm for computing (or even deciding) Gröbner

bases, the critical pairs are ordered in some manner. For example, if t1 = x2y,

t2 = x3, and t3 = yz, using �= lex (x, y, z) we could order the critical pairs by

increasing least common multiple. Since

lcm (t2, t3) � lcm (t1, t2) � lcm (t1, t3)

the algorithm would first reduce S1,3, then S1,2, and finally S2,3.

After ordering the critical pairs, we assumed that the first two S-polynomials

reduce to zero. At this point, we checked which combinatorial criteria applied to

the leading terms. Since the terms that satisfy Buchberger’s criteria are a subset of

the terms that satisfy the new criterion, we checked them first. This gives us an
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Table 6.1: Statistical analysis of new criterion on leading terms, assuming all
S-polynomials reduce to zero.

# vars BC applies NC applies
3 53344 (17.8%) 7064 (2.4%)
4 42459 (14.2%) 6618 (2.2%)
5 34882 (11.6%) 5605 (1.9%)
6 28869 (9.6%) 4954 (1.7%)

(Total degree term ordering; critical pairs ordered from lower least common mul-
tiple to higher.)

Table 6.2: Statistical analysis of new criterion on leading terms, assuming all
S-polynomials reduce to zero.

# vars BC applies NC applies
3 53301 (17.8%) 6894 (2.3%)
4 42506 (14.2%) 6743 (2.2%)
5 34795 (11.6%) 5735 (1.9%)
6 29076 (9.7%) 4850 (1.6%)

(Lexicographic term ordering; critical pairs ordered from lower least common mul-
tiple to higher.)

idea how often we can expect a triplet whose terms satisfy the new criterion and

not the Buchberger criteria.

The results of this first experiment are listed in tables 6.1 and 6.2. We gener-

ated 100,000 sets of leading terms, whose indeterminates were randomly chosen

and whose exponents were randomly generated from 0 to 10; this means that there

were 300,000 critical pairs. We assume that the first two critical pairs reduce to

zero, and test the third pair against the criteria; hence, we are testing 100,000 lead-

ing terms. We find that Buchberger’s criteria apply fairly often; the new criterion
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appears rarely. The choice of term ordering does not appear to have a significant

effect on the results.

In another experiment suggested by Erich Kaltofen, we modified an algorithm

that computed Gröbner bases and ran it on randomly-generated polynomials as

well as some benchmark sets of polynomials. (See the footnote contrasting decid-

ing a Gröbner basis and computing a Gröbner basis on page 23.) The benchmarks

used were:

• Cyclic-3

• Cyclic-4

• Cyclic-5

• Katsura-5

The modifications were to keep detailed records of S-polynomial reduction. These

records are necessary for the correct implementation of the new criterion (which

requires that the S-polynomials reduce only over three polynomials). Both to en-

courage reduction to zero and to avoid expression swell and rational coefficients,

we carried out these computations over a field of characteristic two.

While Buchberger’s criteria occurred very frequently in the computation of

Gröbner bases for these benchmarks, the new criterion never appeared. In fact,

Buchberger’s criteria allow us to skip the majority of S-polynomial reductions.



6.3. APPLICATION OF RESULT 160

Table 6.3: Number of skips during the computation of a Gröbner basis for three
randomly-generated polynomials; total-degree term ordering.

Buchberger skips New skips Reductions Polys in GB
1 16 1 (empty) 11 8
3 22 0 14 9
5 113 0 77 20
6 13 0 23 9
8 244 1 (empty) 133 28

10 22 4 (empty) 29 11

For randomly-generated polynomials, the results were a little more “positive”

(as in, non-zero). We give the results in table 6.3. Observe that with the excep-

tion of systems 6 and 10, Buchberger’s criteria allow us to skip the majority of S-

polynomial reductions. As for skips that are genuinely new criteria, we do see six to-

tal. However, they were all “empty” S-polynomials; that is, while the new criteria

would allow us to skip an S-polynomial reduction, the corresponding polynomi-

als were in fact monomials, so that no reduction would have taken place anyway.

(We note that these polynomials were generated with at least 2, at most 5 vari-

ables; at least 2, at most 5 terms; exponents ranged from 0 to 10, with total degree

5; coefficients ranged from -99 to 99.)

WHY SO RARE? The results of tables 6.1, 6.2 and 6.3 seem counter-intuitive to the

infinite regions of additional bridge terms afforded by the new criterion, as illus-

trated by figures 6.4 and 6.5. The question arises: why does the new criterion

appear so rarely? We can think of three reasons.
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Nearly all bridge terms of the new criterion lie above the grad-
ing of total-degree term ordering; thus, nearly all bridge S-
polynomials would be considered after S1,3 when we order the
critical pairs from smallest lcm to greatest.

Figure 6.6: Ordering of critical pairs excludes most occurrences of the new crite-
rion.

First, the new criterion appears only when one of the leading terms lacks at

least one indeterminate. We see this illustrated in the figures by the fact that the

indeterminate lies against a “wall”: an axis in figure 6.4, or a plane in figure 6.5.

This is a special case; very rarely will randomly-generated terms fall into special

cases.

Second, we ordered the S-polynomials of B (the set of “critical pairs”; see algo-

rithm 1.1) by increasing least common multiple. Look again at the terms illustrated

in figures 6.4 and 6.5: in general, the vast majority of additional bridge terms t2 af-

forded by the new criterion lie outside the grading of the least common multiple.

If we draw a line to show the gradings created by the term orderings, we have

figures 6.6, 6.7, and 6.8. How does this affect the frequency of the new criterion? It



6.3. APPLICATION OF RESULT 162

0

t1

5

gcd

-1

y

5

x

4

2

0

1

3

t3

2

lcm
3

1 4

All bridge terms of the new criterion lie above the grading of this
lexicographic term ordering (x � y); thus, bridge S-polynomials
would be considered after S1,3 when we order the critical pairs
from smallest lcm to largest. In this case, the selection of bridge
terms is reduced to Buchberger’s second criterion.

Figure 6.7: Ordering of critical pairs excludes most occurrences of the new crite-
rion.
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"Most" bridge terms of the new criterion lie within the grad-
ing of this lexicographic term ordering (y � x); thus, bridge S-
polynomials would be considered before S1,3 when we order the
critical pairs from smallest lcm to largest.

Figure 6.8: Ordering of critical pairs excludes most occurrences of the new crite-
rion.
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means that often we have a triplet that may satisfy the new criterion, but the algo-

rithm will almost always evaluate S1,3 before S1,2 and S2,3, the reverse of the order

needed for the new criterion to apply!

To test this latter hypothesis, we ran an experiment to estimate the area of re-

gions where one can find possible bridge terms. Increasing from two to six vari-

ables, we generated for each turn 1,000 random pairs of terms t1, t2. For each pair

of terms, we first calculated the area of the region from which Buchberger’s criteria

would give us a bridge term; since this region is a hypercube, it is immediate to de-

duce the area from the exponents. Then we calculated the area of the region from

which the new criterion would give us a bridge term. To avoid having to aver-

age the occasional “infinite” region, we restricted this region so that the maximum

degree of a bridge term could be no larger than that of the two endpoints. This

is a reasonable restriction, since the random terms we generated for tables were

also restricted in their maximum degree. Then we removed from the region any

bridge terms t3 that were larger than lcm (t1, t2) with respect to the term ordering.

To calculate the area, then, we simply counted the number of terms remaining in

the set.

Tables 6.4 and 6.5 show the results. As we see, the area of the regions also sug-

gest that the new criterion provides few additional possibilities for bridge terms.

We would caution the reader agaisnt comparing the data too closely to those of

tables 6.1 and 6.2; although we kept some conditions similar, we are comparing
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Table 6.4: Comparison of areas of regions: Buchberger criteria vs. new criterion
(total-degree ordering).

# vars max degree BC area NC area
2 8 32.7% 2.9%
3 7 21.1% 3.6%
4 6 14.3% 3.0%
5 4 12.2% 3.6%
6 3 13.4% 3.7%

Table 6.5: Comparison of areas of regions: Buchberger criteria vs. new criterion
(lexicographic ordering).

# vars max degree BC area BC area
2 8 32.1% 4.8%
3 7 21.3% 4.5%
4 6 14.9% 4.1%
5 4 12.8% 3.6%
6 3 12.8% 3.6%

objects that are fundamentally different. What interests us is the fact that the new

criterion appears rarely in comparison to Buchberger’s criteria.

Finally, recall that the new criterion requires that the S-polynomials reduce

only over the triplet f1, f2, f3. (Otherwise, we might skip an S-polynomial that

is not unnecessary, as we saw in example 6.18 on page 154.) In other words, the

new criterion requires a Gröbner sub-basis. This phenomenon is, again, a ”special

case;” we would expect it to occur rarely.

HOW OFTEN DO S-POLYNOMIALS REDUCE OVER r POLYNOMIALS? By keeping

track of the S-polynomial reductions, we were also able to record the data shown

in tables 6.6, 6.7, and 6.8.
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Table 6.6: Which Si,j used r polynomials to reduce to zero (system 1).

r S-polynomials
0 (1, 7) , (1, 8) , (4, 6) , (5, 7) , (5, 8) , (7, 8)
1 (1, 2) , (1, 3) , (1, 4) , (1, 6) , (2, 5) , (2, 7) , (2, 8) , (3, 5) , (3, 7) , (3, 8) ,

(4, 5) , (4, 7) , (4, 8) , (5, 6) , (6, 7) , (6, 8)
2 (1, 5) , (2, 3) , (2, 4) , (2, 6) , (3, 4) , (3, 6)

Table 6.7: Which Si,j used r polynomials to reduce to zero (system 3).

r S-polynomials
0 (2, 7) , (2, 8) , (7, 8) ,
1 (1, 2) , (1, 3) , (1, 6) , (1, 7) , (1, 8) , (2, 3) , (2, 5) , (2, 6) , (2, 9) , (3, 8) ,

(3, 9) , (4, 5) , (4, 7) , (4, 8) , (5, 7) , (5, 8) , (6, 7) , (6, 8) ,
2 (1, 4) , (1, 5) , (1, 9) , (2, 4) , (3, 4) , (3, 5) , (3, 6) , (3, 7) , (4, 6) , (4, 9) ,

(5, 6) , (5, 9) ,
3 (6, 9) , (7, 9) , (8, 9)

Table 6.8: Which Si,j used r polynomials to reduce to zero (system 6).

r S-polynomials
0 (6, 9)
1 (3, 9) , (6, 8) , (8, 9)
2 (1, 2) , (1, 3) , (2, 3) , (3, 4) , (3, 7) , (3, 8)
3 (2, 4)
4 (1, 4)
5 (1, 5) , (1, 6) , (1, 7) , (1, 9) , (2, 6) , (2, 9) , (3, 5) , (3, 6) , (4, 5) , (4, 7) , (5, 7)
6 (1, 8) , (2, 5) , (2, 7) , (2, 8) , (4, 6) , (6, 7)
7 (4, 8) , (4, 9) , (5, 6) , (5, 8)
8 (5, 9) , (7, 8) , (7, 9)

There does not appear to be any discernible pattern. In systems 1 and 3, the

S-polynomials all reduce over a very small number of polynomials; in system 6,

however, most of the S-polynomials reduce over 5 or more polynomials.
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6.3.4. FINAL REMARK. The following “cute” fact provides an “alternate defini-

tion” of Buchberger’s criteria:

LEMMA 6.19. (A) and (B) where

(A) ∀x VB1xk
(t1, t3) if and only if BC1 (t1, t3)

(B) ∀x VB2xk
(t1, t2, t3) if and only if BC2 (t1, t2, t3)

PROOF. Immediate from the definitions of the criteria. �



Part 3

A New Criterion for Gröbner Basis Detection

of Two Polynomials



Chapter 7

Gröbner basis detection: introduction

7.1. INTRODUCTION TO THE PROBLEM

In previous chapters, we were given a term ordering� and the leading terms of

a set of polynomials with respect to �. We looked for criteria on the leading terms

that would guarantee that the polynomials were a Gröbner basis with respect to

�, so long as a certain number of S-polynomials reduced to zero.

Suppose instead that we only have a set of polynomials. Rather than picking

a term ordering and deciding whether the polynomials were a Gröbner basis with

respect to that term ordering, what if we searched for a term ordering that would

guarantee the polynomials were already a Gröbner basis? We are asking for criteria

that decide for given f1, . . . , fm

∃ � GB� (f1, . . . , fm)

168
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We illustrate the idea with example 7.1.

EXAMPLE 7.1. Let f1 = x + y, f2 = y + 1. We know from corollary 2.9 on page 69

that if their leading terms are

f1 = x f2 = y

then we can skip the reduction of their S-polynomial. Hence f1, f2 are a Gröbner

basis with respect to �= lex (x, y).

However, if �= lex (y, x), we have

f1 = y f2 = y

Then

S1,2 =
lcm (y, y)

y
· (x + y)− lcm (y, y)

y
· (y + 1)

= (x + y)− (y + 1)

= x− 1

Observe that neither f1 nor f2 divides any term of S1,2. Hence

S1,2
∗9

(f1,f2)
0

and f1, f2 are not a Gröbner basis with respect to �= lex (x, y). �
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We do not expect to encounter many sets of polynomials where there exists

some term ordering such that the leading terms are all relatively prime. We shall

see that we may be able to detect a Gröbner basis nevertheless.

Why would we want to do this? For many Gröbner basis applications, any term

ordering will suffice: we don’t care if we have a total-degree term ordering, a lexi-

cographic term ordering, or some other term ordering altogether – all that matters

is the existence of a Gröbner basis with respect to some term ordering. One example

application would be the problem we used to introduce Gröbner bases: deciding

the existence and cardinality of common roots.

On the other hand, if a specific term ordering is needed – as in the case of

finding the common roots, where one typically uses a lexicographic ordering to

compute a Gröbner basis – it may still be useful to try detecting a Gröbner ba-

sis beforehand. Why? To pursue the example: a lexicographic term ordering is

generally agreed to give some of the least efficient performance from any algo-

rithm used to compute Gröbner bases, while a total-degree term ordering is more

efficient.1 In most of the cutting-edge work done with Gröbner bases, one com-

putes the Gröbner basis with respect to a “probably efficient” term ordering, then

employs a second algorithm that converts to the desired term ordering. Such algo-

rithms exist and are in use; see for example [FGLM93] and [CKM97]. Thus, if we

can detect that a system of polynomials is already a Gröbner basis with respect to

1See the remark on page 109 of [CLO97], who reference [BS87]; see also [CKM97] and [Tra05].
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some term ordering, we could use that as a starting point to convert to the desired

term ordering.

A general solution for Gröbner basis detection already exists: Peter Gritzmann

and Bernd Sturmfels give it in [GS93]; we discuss this solution in chapter 8.

If there is already a general solution, why pursue more research in this area? The

general solution is not easily implemented. To our knowledge, there is no current

implementation. Indeed, Bernd Sturmfels and Markus Wiegelman followed the

first paper with a second that considered the special case of finding a term ordering

where all the leading terms are relatively prime; see [SW97].

We stumbled on our solution by accident. While conducting the research that

led to the results in chapter 6, we observed that Gröbner bases of two polynomials

had a special form. This led to a theorem; in turn, this theorem suggested an

algorithm for Gröbner basis detection that is easy to implement. How easy? The

author implemented the algorithm in two days (see [HP04]), most of which he

spent persuading Maple that it really could find solutions to strict inequalities. We

demonstrated this implementation at the 2004 Applications of Computer Algebra

conference at Lamar University in Beaumont, Texas.

7.2. MATRIX REPRESENTATIONS OF TERM ORDERINGS

Since “Gröbner basis detection” considers the question of whether a special

term ordering exists, we need a way to solve for term orderings. For this, we
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need a convenient algebraic representation of term orderings. A well-established

technique allows us to represent any admissible term ordering as one of the most

familiar of mathematical objects: a matrix.

To treat the theory in full detail is beyond the scope of this thesis; the interested

reader should refer to [Rob86], [Wei87], and [HW99]. We give the results necessary

to understand our results and those of [GS93].

We adopt the following notational conventions:

• α, β represent column vectors;

• M, N represent matrices;

• α(i) represents row i of vector α, andM(i) represents row i of vec-

torM.

7.2.1. ADMISSIBLE MATRICES.

DEFINITION 7.2. For vectors α, β ∈ Rn we say α� β if

• α(1) > β(1), or

• α(1) = β(1) and α(2) > β(2), or

• . . .

• α(1) = β(1) and . . . and α(n−1) = β(n−1) and α(n) > β(n).

We say that α, β are exponent vectors if α, β ∈ Qn. A matrix M ∈ Rm×n is ad-

missible if it has full rank over Q (that is, its column rank over Q equals n) and if

M · α� 0 for all nonzero vectors α ∈ Zn
≥0.
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EXAMPLE 7.3. Let

M =


1 1 1

0 1 1

0 0 1

 N =


1 −1 −1

0 2 2

0 0 1


We claim thatM is admissible, while N is not.

Proof thatM is admissible: Since detM 6= 0, it has full rank. Let α be a nonzero

vector in Z3
≥0; then

M · α =


1 1 1

0 1 1

0 0 1

 ·


α(1)

α(2)

α(3)



=


α(1) + α(2) + α(3)

α(2) + α(3)

α(3)


Since α ∈ Z3

≥0 and α is nonzero, α(1), α(2), α(3) ≥ 0 and α(1) + α(2) + α(3) > 0. Hence

M · α� 0, as desired.

Proof thatN is not admissible: Let α =

(
0 1 0

)T

. Clearly α ∈ Z3
≥0. However,

N · α =


1 −1 −1

0 2 2

0 0 1

 ·


0

1

0
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=


−1

2

0


� 0

�

Admissible matrices will prove useful because we can represent terms as expo-

nent vectors with integer entries. For an admissible matrixM, the product ofM(i)

with an exponent vector α represents a weight w for α. The product ofM with α

is a vector of weights w1, . . . , wm ∈ R. Theorem 7.5 will use these weight vectors to

show howM corresponds to a term ordering on the terms in x1, . . . , xn.

DEFINITION 7.4. Let M be an admissible matrix, and � be an admissible term

ordering. We say thatM is an admissible matrix representation of � if for every

pair of terms t, u, whose exponent vectors we denote as α, β,

t � u ⇔ M · α�M · β

In general, we will say thatM is a representation of �, or thatM induces �, or

that � inducesM.

It turns out that every admissible matrix induces a term ordering, and vice-

versa. This result is due to [Rob86, Wei87, HW99].
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THEOREM 7.5. (A) and (B) where

(A) Every term ordering on terms in x1, . . . , xn is induced by an admissible matrix

M∈ Rm×n.

(B) Every admissible matrix M ∈ Rm×n induces a term ordering on T (x1, . . . , xn)

(the set of terms in x1, . . . , xn).

Before proving the theorem, we require some background material.

7.2.2. EXTENDING � FROM T (x1, . . . , xn) TO Qn. One thing we will need to do, is

extend a term ordering from an ordering on terms to an ordering on Qn. How do

we do this?2

Let � be an admissible term ordering. We can extend � to an ordering �Zn
≥0

on

Zn
≥0 directly: for α, β ∈ Zn

≥0

α �Zn
≥0

β ⇔ x
α(1)

1 · · ·xα(n)
n � x

β(1)

1 · · ·xβ(n)
n

Recall that, for terms, t, u, v, we know that

t � u ⇔ tv � uv

It follows that for all α, β, γ ∈ Zn
≥0

(7.1) α �Zn
≥0

β ⇔ α + γ �Zn
≥0

β + γ

2The following argument appears in numerous sources before this one; for example, proposition
1.4.14 and exercise 8 in chapter 1, section 4 of [KR00].
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Now that we have �Zn
≥0

, we can extend it immediately to an ordering on all of

Zn. For γ ∈ Zn, find α, β ∈ Zn
≥0 such that γ = α− β. Begin by defining

γ �Zn 0 ⇔ α �Zn
≥0

β

We have to check that the ordering is well defined here. Suppose γ = α−β = ζ−ϑ

for γ ∈ Zn, α, β, ζ, ϑ ∈ Zn
≥0. Assume that α �Zn

≥0
β; by (7.1), α + ϑ �Zn

≥0
β + ϑ. Since

α = β + ζ − ϑ,

α + ϑ �Zn
≥0

β + ϑ

(β + ζ − ϑ) + ϑ �Zn
≥0

β + ϑ

β + ζ �Zn
≥0

β + ϑ

Again by (7.1), we have ζ �Zn
≥0

ϑ. Hence γ �Zn
≥0

0 is well-defined. We complete

the definition by

γ �Zn
≥0

ζ ⇔ γ − ζ �Zn
≥0

0

How shall we extend the ordering to �Qn? We teach grade-school students to

compare rational numbers by finding a common denominator; the same technique

extends naturally to Qn. Proceed in the following way: for α, β ∈ Qn in sim-

plest form, let γ be the least common multiple of the denominators of α(1), . . . , α(n),

β(1), . . . , β(n). Notice that γ is a natural number, and hence a scalar with respect to

α, β. Then

α �Qn β ⇔ γ · α �Zn
≥0

γ · β
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The following example illustrates each of these techniques.

EXAMPLE 7.6. Let � represent the lexicographic ordering on x1, x2 with x1 � x2.

Consider α =

(
1 3

)T

, β =

(
0 2

)T

. Note that α, β ∈ Z2
≥0. We have

x1x
3
2 � x2

2 ⇒ α �Zn
≥0

β

Thus

α− β �Zn 0

Continuing the extension,

α− β �Zn 0 ⇒ 0 �Zn β − α

(Put 0 = γ, ζ = β − α and use the definition for γ �Zn ζ .)

Let γ =

(
−1 −1

)T

. Note that γ ∈ Z2 and γ = β − α. Hence 0 �Zn γ.

Finally, let ζ =

(
1 −2

3

)T

and ϑ =

(
3
4
−2

)T

. The least common multiple

of the denominators is 12; since
(

12 −8

)T

�Zn

(
9 −24

)T

, we have ζ �Qn ϑ.

�

7.2.3. WEIGHT VECTORS FOR A SUBSPACE OF Qn. If we could assemble different

“weight vectors” that order different subspaces of Qn in accordance with �Qn , we

could construct a matrix that satisfies the requirements of theorem 7.5. How would

these weight vectors behave? Suppose ω was one such weight vector; we would
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need

ω · α > ω · β ⇒ α �Qn β

Moreover, for the matrix to be admissible, we would also need the weight vectors

to be linearly independent over Q, and

ω · α > 0 ∀α ∈ Nn
≥0

The following lemma, adapted with minor cosmetic changes from [HW99], pro-

vides a constructive proof that such weight vectors exist for any term ordering �.

It is an explicit construction that corresponds to a similar lemma in [Wei87].

LEMMA 7.7. Let �Qn be the extension to Qn of an admissible term ordering �. For any

non-trivial, Q-linear subspace U of Qn, ∃m ∈ Rn such that:

• m is in the R-linear extension of U

• m · x > 0 implies x �Qn 0

• x ∈ Zn
≥0 implies m · x ≥ 0

PROOF. Let U be a non-trivial Q-linear subspace of Qn. We prove the lemma by

construction of m.

Let {v1, . . . , vs} be an arbitrary orthogonal Q-basis of U with v1, . . . , vs �Qn 0.

Let k be such that vk �Qn v1, . . . , vs.

For j = 1, . . . , s, let

γj = inf {q ∈ Q : qvk �Qn vj}
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Let

m =
s∑

i=1

γi ·
vT

i

vT
i · vi

We claim that m satisfies the requirements of the lemma.

Let x ∈ U be arbitrary, but fixed. Let x′1, . . . , x
′
s be the co-ordinates of x with

respect to v1, . . . , vs. Then

m · x =

(
s∑

i=1

γi ·
vT

i

vT
i · vi

)
·

(
s∑

j=1

x′jvj

)

=
s∑

i=1

s∑
j=1

γix
′
j ·

vT
i · vj

vT
i · vi

For i 6= j, vi and vj are orthogonal, so vT
i · vj = 0. Thus

m · x =
s∑

i=1

γix
′
i

= γ · x′

Assume m · x > 0; then γ · x′ > 0. We want to show that x �Qn 0. Using the

continuity of the real line, choose γ′ ∈ Qn such that γ′ · x′ > 0 and

γ′j > γj if x′j < 0

γ′j < γj if x′j > 0

γ′j = 0 if x′j = 0

We claim that

0 ≺Qn (γ′ · x′) vk ≺Qn x
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We have

0 ≺Qn (γ′ · x′) vk =

(
s∑

j=1

γ′jx
′
j

)
vk =

s∑
j=1

γ′j
(
x′jvk

)
Let j ∈ {1, . . . , s} be arbitrary, but fixed.

Case 1: x′j < 0

Then γ′j > γj . Recall that γj = inf {q ∈ Q : qvk �Qn vj}, so

γ′jvk �Qn vj

Multiplying both sides by the scalar x′j , we have

x′j ·
(
γ′jvk

)
≺Qn x′k · vj

Case 2: x′j > 0

Then γ′j < γj . Recall again that γj = inf {q ∈ Q : qvk �Qn vj}. Then

γ′jvk ≺Qn γjvk �Qn vj

Multiplying both sides by the scalar x′j ,

x′j
(
γ′jvk

)
≺Qn x′jvj

From cases 1 and 2,

0 ≺Qn (γ′ · x′) vk =

(
s∑

j=1

γ′j · x′j

)
vk =

s∑
j=1

(
x′j
(
γ′jvk

))
≺

s∑
j=1

x′jvj = x
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y
1

v
2

x

v

Figure 7.1: Diagram of vectors v1, v2 in example 7.8.

Finally, let x ∈ Nn. Then x �Qn 0. Assume by way of contradiction that m·x < 0.

Then −m · x > 0, whence m · (−x) > 0. This implies that −x �Qn 0, thus 0 �Qn x,

which contradicts x �Qn 0. �

Before proving the theorem, we illustrate concretely how lemma 7.7 works.

EXAMPLE 7.8. Let �= lex (x, y). We construct m for U = Q2.

Following the proof, take

v1 =

(
1 1

)T

v2 =

(
1 −1

)T

(See figure 7.1.) We claim that v1, v2 are an orthogonal basis with

v1 �Q2 v2 �Q2 0
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For the orthogonality (which is geometrically clear),

v1 · v2 = 1− 1 = 0

We can see that the two vectors are linearly independent from∣∣∣∣∣∣∣∣
1 1

1 −1

∣∣∣∣∣∣∣∣ = −2 6= 0

As for the ordering, it is intuitively clear from the geometry: compare how far right

the vectors lie, in case of a tie, how far up. Algebraically,

y2 � 1 ⇒
(

0 2

)T

�Z2
≥0

0 ⇒
(

1 1

)T

−
(

1 −1

)T

�Z2 0

and by extension (
1 1

)T

�Q2

(
1 −1

)T

A similar argument will show that
(

1 −1

)T

�Q2 0.

Following the proof, we set

γ1 = inf {q ∈ Q : qv1 �Q2 v1}

Geometrically, this says that γ1 is the maximum scaling of v1 that is no larger than

itself with respect to �Q2 ; this is obviously 1. Similarly, set

γ1 = inf {q ∈ Q : qv1 �Q2 v2}
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y

2

kv1

x

v

(a) kv1 for k < 1

y

2

kv1

x

v

(b) kv1 for k > 1

Figure 7.2: How lemma 7.7 generates γ1, γ2 for example 7.8.

Geometrically, this says that γ2 is the maximum scaling of v1 that is no larger than

v2 with respect to �Q2 : that is, the scaling of v1 whose rightmost entry is less than

or equal to the rightmost entry of v2. Again, this is 1; see figure 7.2.

Then

m = γ1 ·
vT

1

vT
1 v1

+ γ2 ·
vT

2

vT
2 v2

=

(
1 1

)
(

1 1

)
·
(

1 1

)T
+

(
1 −1

)
(

1 −1

)
·
(

1 −1

)T

=

(
1 1

)
2

+

(
1 −1

)
2

=

(
1 0

)
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Not surprisingly, if we take

m · α

for any exponent vector α, m selects the first co-ordinate as the weight. This is

precisely the first test of the lexicographic ordering. �

7.2.4. PROOF OF THEOREM 7.5. Now we can prove theorem 7.5. We restate it and

present the proof:

THEOREM. (A) and (B) where

(A) Every term ordering on terms in x1, . . . , xn is induced by an admissible matrix

M∈ Rm×n.

(B) Every admissible matrix M ∈ Rm×n induces a term ordering on T (x1, . . . , xn)

(the set of terms in x1, . . . , xn).

PROOF. We prove (A) by construction.

Using lemma 7.7, findM(1) on Qn.

For i > 1, let Vj =
{
x ∈ Qn :M(j) · x = 0

}
for j = 1, . . . , i − 1, and Ui = V1 ∩

· · · ∩ Vi−1. Using lemma 7.7, findM(i) for the non-trivial subspaces Ui of Qn.

Since dim Ui−1 > dim Ui and dim U1 < n, this process must terminate at some

trivial subspace Um = {0}. It is clear from the construction in the proof of lemma

7.7 thatM has full rank; we further haveM · x � 0 for x ∈ Nn\ {0}. HenceM is

admissible; also from the lemma,M induces �.
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To prove (B), letM be arbitrary, but fixed. Define in the following way a rela-

tion �M on T (x1, . . . , xn), the set of terms in x1, . . . , xn: for all t, u ∈ T (x1, . . . , xn),

whose exponent vectors we denote as α, β,

t �M u ⇔ M · α�M · β

We claim that �M is an admissible term ordering. We verify that �M satisfies the

three parts of the definition.

First claim: ∀t 6= u ∈ T (x1, . . . , xn), t �M u or u �M t.

Let t, u ∈ T (x1, . . . , xn). Let α, β be the exponent vectors of t, u, respectively.

We approach by the contrapositive: assume neither t �M u nor u �M t. Then

M · α =M · β.

CertainlyM · α =M · β iffM · (α− β) = 0. SinceM has full rank, α = β.

Hence t = u.

So, t 6= u implies t �M u or u �M t.

Second claim: ∀t ∈ T (x1, . . . , xn), t 6= 1 implies t �M 1.

Let t ∈ T (x1, . . . , xn), and write α for the exponent vector of t. Observe that 0

is the exponent vector of 1.

Assume t 6= 1. We have α ∈ Zn
≥0, and α 6= 0. By definition of an admissible

matrix,M · α� 0. ThusM · α�M · 0.

Hence t �M 1.

Third claim: ∀t, u, v ∈ T (x1, . . . , xn), t �M u implies tv �M uv.
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Let t, u, v ∈ T (x1, . . . , xn), and write α, β, γ for their exponent vectors, respec-

tively.

Assume t �M u. Then

M · α�M · β

M · α +M · γ �M · β +M · γ

M · (α + γ)�M · (β + γ)

It follows that tv �M uv.

We have shown that �M satisfies the three criteria for an admissible term or-

dering. SinceM was an arbitrary admissible matrix, we conclude that every ad-

missible matrix induces a term ordering on T (x1, . . . , xn). �

7.3. SOLVING FOR ADMISSIBLE MATRICES

Suppose we want a term ordering that satisfies a finite number of constraints.

The following theorem shows that we can construct an admissible matrix that in-

duces such a term ordering.

THEOREM 7.9. Let t1, . . . , t2r be terms with exponent vectors α1, . . . , α2r. We have

(A)⇔(B) where

(A) There exists an admissible term ordering � such that

t1 � t2 · · · t2r−1 � t2r
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(B) There exists an admissible matrixM∈ Qn
≥0 whose first row ω satisfies

ω · α1 � ω · α2 · · · ω · α2r−1 � ω · α2r

andM represents a term ordering �M such that

t1 �M t2 · · · t2r−1 �M t2r

We do not claim thatM is an admissible matrix representation of �! It could

be that M represents �, but M may represent another term ordering altogether.

Rather, � and �M both satisfy the given constraints on t1, . . . , t2r.

To prove the theorem, we need some technical lemmas that are interesting on

their own. One of the lemmas requires a definition.

DEFINITION 7.10. Two admissible matricesM and N are equivalent if for all ex-

ponent vectors α, β ∈ Qn

M · α�M · β ⇔ N · α� N · β

The underlying idea is thatM and N represent the same term ordering; even

if they are distinct matrices, they nevertheless behave identically on exponent vec-

tors.

EXAMPLE 7.11. The admissible matrices

M =

 1 1

0 1

 N =

 1 1

−1 0
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are equivalent.

We leave it as an exercise for the reader to show thatM and N are admissible.

Why are they equivalent? Let α, β ∈ Qn. AssumeM · α�M · β. Note that

M · α =

 α(1) + α(2)

α(2)

 M · β =

 β(1) + β(2)

β(2)


and

N · α =

 α(1) + α(2)

−α(1)

 M · β =

 β(1) + β(2)

−β(1)


Case 1: α(1) + α(2) > β(1) + β(2)

It is immediate that N · α� N · β.

Case 2: α(1) + α(2) = β(1) + β(2) and α(2) > β(2).

Then

−α(1) = −α(1) +
(
α(2) − α(2)

)
= α(2) −

(
α(1) + α(2)

)
= α(2) −

(
β(1) + β(2)

)
> β(2) −

(
β(1) + β(2)

)
= −β(1)

Thus N · α� N · β.
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We have shown that

M · α�M · β ⇒ N · α� N · β

A similar argument shows the converse.

Thus,M and N are equivalent. �

Now we present the lemmas. We use the notationM(i,j) to represent the entry

in row i, column j ofM.

The first lemma is proposition 1.4.12 on page 53 of [KR00].

LEMMA 7.12. For any admissible matrixM, the first non-zero entry in every column is

positive.

PROOF. We show the contrapositive. Suppose that entry j is the first nonzero

entry of column i ofM; suppose further thatM(i,j) < 0. Let α be the elementary

column vector ej ; that is, let α have one in the jth entry, and zeros elsewhere. Then

M · α =



0

...

0

M(i,j)

...

M(m,j)


Recall thatM(i,j) is negative. Then 0�M · α, soM is not admissible.
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Hence, ifM is admissible, the first nonzero entry in every column is positive.

�

The following lemma makes use of the previous result; we have found it to be

enormously useful for computational purposes.

LEMMA 7.13. LetM be an admissible matrix. There exists N such that N is equivalent

toM, and all the entries of N are nonnegative.

The strategy for proving lemma 7.13 is quite simple: we add sufficiently large

multiples of upper rows to lower rows to create N . In example 7.11 for instance,

we obtainedM from N by adding the first row ofM to the second. This does not

change the term ordering, since the second row of M is only necessary to order

terms in the null space of the first row; the third row is only necessary to order

terms in the null space of the first two rows; etc.

PROOF. Construct N as follows:

put N(1) =M(1);

for i > 1

choose ρi ∈ N such that ρi · N(i−1,j) ≥
∣∣M(i,j)

∣∣ for j = 1, . . . , n

put N(i) = ρi · N(i−1) +M(i)

Recall from lemma 7.12 that the first nonzero entry of every column of M is

nonnegative; the choice of ρi makes it clear that all the entries of N are nonnega-

tive.
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Now we claim that, for all exponent vectors α, β ∈ Qn,M · α � M · β if and

only if N · α� N · β.

Let α, β ∈ Qn. AssumeM · α�M · β. Thus

M · (α− β)� 0

Hence, ∃R ∈ N such that

M(`) · (α− β)� 0 for ` = 1, . . . , R− 1

M(R) · (α− β) = 0

We claim that N(`) · (α− β) = 0 for ` = 1, . . . , R − 1 and N(R) · (α− β) > 0. We

proceed by induction on `.

Inductive base: SinceN(1) =M(1), it follows thatN(1)·(α− β) ≥ 0. The inequality

is strict only ifM(1) · (α− β) > 0; that is, if R = 1.

Inductive step: Let 1 < ` ≤ R, and assumeN(k) · (α− β) = 0 for 1 ≤ k < `. Recall

N(`) = ρ` · N(`−1) +M(`)

Then

N(`) · (α− β) =
(
ρ` · N(`−1) +M(`)

)
· (α− β)

= ρ` · N(`−1) · (α− β) +M(`) · (α− β)
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Since N(`−1) · (α− β) = 0,

N(`) · (α− β) =M(`) · (α− β)

Hence N(`) · (α− β) ≥ 0; the inequality is strict only ifM(`) · (α− β) > 0; that is, if

` = R.

Thus

N · α� N · β

We have shown thatM · α�M · β implies N · α� N · β. It remains to show

the converse. Assume that

N · α� N · β

Thus

N · (α− β)� 0

Hence, there exists R ∈ N such that

N(`) · (α− β) = 0 ` = 1, . . . , R− 1

N(R) · (α− β) > 0

We claim thatM(`) · (α− β) = 0 for ` = 1, . . . , R − 1, andM(R) · (α− β) > 0. We

proceed by induction on `.

Inductive base: SinceM(1) = N(1), we haveM(1) · (α− β) ≥ 0. The inequality is

strict only if N(1) · (α− β) > 0; that is, if R = 1.
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Inductive step: For 1 < ` ≤ R, assume N(k) · (α− β) = 0 for 1 ≤ k < `. Recall

N(`) = ρ` · N(`−1) +M(`)

Then

N(`) · (α− β) =
(
ρ` · N(`−1) +M(`)

)
· (α− β)

= ρ` · N(`−1) · (α− β) +M(`) · (α− β)

Since N(`−1) · (α− β) = 0, we have

M(`) · (α− β) = N(`) · (α− β) ≥ 0

The inequality is strict only if N(`) · (α− β) > 0; that is, if ` = R. Thus

M · α�M · β

We have shown that for arbitrary α, β ∈ Qn,

M · α�M · β ⇔ N · α� N · β

It follows that N has full column rank over Qn, and that N · α� 0 for all nonzero

α ∈ Qn. Hence N is admissible; it is equivalent toM; and all its entries are non-

negative. �

Now we prove theorem 7.9. At the end of the section, we discuss how the proof

suggests a way to construct a term ordering satisfying the requirements of clause

(A) of the theorem, assuming such a term ordering exists. First we restate the theorem:
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THEOREM. Let t1, . . . , t2r be terms with exponent vectors α1, . . . , α2r. We have (A)⇔(B)

where

(A) There exists an admissible term ordering � such that

t1 � t2 · · · t2r−1 � t2r

(B) There exists an admissible matrixM∈ Qn×n
≥0 whose first row ω satisfies

ω · α1 � ω · α2 · · · ω · α2r−1 � ω · α2r

andM represents a term ordering �M such that

t1 �M t2 · · · t2r−1 �M t2r

PROOF. That (A)⇐(B) is immediate, sinceM induces a term ordering that sat-

isfies (A). It remains to show that (A)⇒(B).

Assume (A). We have an admissible term ordering � such that

τ1 � τ2 τ3 � τ4 · · · τ2r−1 � τ2r

Claim 1: We claim that ∃ω ∈ Rn
≥0 satisfying

ω · α1 > ω · α2 · · · ω · α2r−1 > ω · α2r

LetM be an admissible matrix representation of �. Certainly

M · α1 �M · α2 · · · M · α2r−1 �M · α2r
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(If M · α2i−1 6� M · α2i, then τ2i−1 � τ2i, which contradicts the hypothesis.) By

lemma 7.13, we may assume that the entries ofM are nonnegative. Thus we can

put ω ∈ Rn
≥0 such that

ω = ρ1M(1) + ρ2M(2) + · · ·+ ρmM(m)

where ρm = 1 and for k = 1, . . . ,m − 1 ρk ∈ N is sufficiently large that for every

` = 1, . . . , r

ρk

∣∣M(k) · (α2`−1 − α2`)
∣∣ > ρk+1

∣∣M(k+1) · (α2`−1 − α2`)
∣∣

+ · · ·

+ ρm

∣∣M(m) · (α2`−1 − α2`)
∣∣

We claim that for ` = 1, . . . , r we have

ω · (α2`−1 − α2`) > 0

Let j ∈ {1, . . . , r}. UsingM · α2j−1 �M · α2j , choose R such that such that

M(`) · (α2j−1 − α2j) = 0 ∀` = 1, . . . , R− 1

M(R) · (α2j−1 − α2j) > 0

Then

ω · (α2j−1 − α2j) =
(
ρ1M(1) + · · ·+ ρmM(m)

)
· (α2j−1 − α2j)

= ρ1M(1) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)
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= ρ1M(1) · (α2j−1 − α2j) + · · ·+ ρR−1M(R−1) · (α2j−1 − α2j)

+ ρRM(R) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)

= 0 + ρRM(R) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)

= ρRM(R) · (α2j−1 − α2j)

+ ρR+1M(R+1) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)

RecallM(R) · (α2j−1 − α2j) > 0. Then

ω · (α2j−1 − α2j) = ρR

∣∣M(R) · (α2j−1 − α2j)
∣∣

+ ρR+1M(R+1) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)

> ρR+1

∣∣M(R+1) · (α2j−1 − α2`)
∣∣+ · · ·+ ρm

∣∣M(m) · (α2j−1 − α2`)
∣∣

+ ρR+1M(R+1) · (α2j−1 − α2j) + · · ·+ ρmM(m) · (α2j−1 − α2j)

≥ 0

Since j was arbitrary,

(7.2) ω · α1 > ω · α2 · · · ω · α2r−1 > ω · α2r

for every j = 1, . . . , r.

Claim 2: There is some N ∈ Rn×n
≥0 whose first row ω satisfies

ω · α1 > ω · α2 · · · ω · α2r−1 > ω · α2r
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and N represents a term ordering �N such that

t1 �N t2 · · · t2r−1 �N t2r

Define N as follows:

• Let N(1) = ω, where ω is constructed to satisfy claim 1.

• Let

E = {e1, . . . , en} ⊂ N1×n where ei = (δik)
n
k=1

(By δik, we mean the Kronecker delta.)

• Fill the remaining n − 1 rows of N with E\ej where j is the first

nonzero element of u.

Observe that N has rank n, since the permutation
(

1 j j − 1 · · · 3 2

)
on

the rows of N gives an upper-triangular matrix. Furthermore, all the entries of N

are nonnegative, so N · α � 0 for all vectors α ∈ Zn
≥0. Hence N is an admissible

matrix.

Let �N be the term ordering induced by N . Since ω is the first row of N and ω

was constructed as in claim 1, it follows from (7.2) that

τ1 �N τ2 · · · τ2r−1 �N τ2r

Thus N satisfies (B).

Claim 3: There is some N ′ ∈ Qn×n
≥0 that satisfies (B).
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Let N be constructed as in claim 2, with first row ω. If ω ∈ Qn, then we are

done, for N ∈ Qn×n
≥0 . Otherwise, let R be the number of irrational elements of

ω. We claim that we can construct v ∈ Rn
≥0 with R − 1 irrational elements, and v

satisfies

v · α1 > v · α2 · · · v · α2r−1 > v · α2r

We prove this claim by applying the following algorithm:

Step 1: Let i be such that ω(i) is irrational.

Step 2: For unknown zi define

z =

(
ω(1) · · · ω(i−1) zi ω(i+1) · · · ω(n)

)
Step 3: Let

ε = inf
zi∈R

∃j z·α2j≤z·α2j+1

{∣∣zi − ω(i)

∣∣} ∈ R

Clearly ε > 0, since ω · α2j > ω · α2j+1 for every j = 1, . . . , r.

Step 4: Use the density of the rationals in the reals to choose vi ∈ Q≥0 such that

∣∣vi − ω(i)

∣∣ < ε

Step 5: Put

v =

(
ω(1) · · · ω(i−1) vi ω(i+1) · · · ω(n)

)
Since

∣∣vi − ω(i)

∣∣ < ε,

v · α1 > v · α2 · · · v · α2r−1 > v · α2r
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Step 6: If v ∈ Qn
≥0, we are done; otherwise, repeat steps 1–6 with v in place of ω.

Each iteration finds a vector with R − 1 irrational elements, so this algorithm

terminates in at most n iterations with v ∈ Qn
≥0 satisfying

(7.3) v · α1 > v · α2 · · · v · α2r−1 > v · α2r

Construct N ′ from N by replacing N(1) with v. Since we have replaced ω by v,

N ′ ∈ Qn×n
≥0 . Since v satisfies (7.3), N ′ satisfies (B). �

We conclude with a brief discussion on how to construct a term ordering to

satisfy clause (A) of theorem 7.9.

First, we determine constraints on the exponent vectors of the terms in (A);

these constraints are as given for ω in (B). By the theorem, a term ordering satisfy-

ing (A) exists only if there exists a row vector ω ∈ Qn
≥0 that satisfies (B). Further-

more, the proof of claim 2 shows how to construct a matrix M satisfying (B) by

adjoining elementary row vectors to ω: if j is the first non-zero entry of ω, adjoin

E\ej , where ej are the elementary row vectors described.

Thus, for given t1, . . . , t2r−1, the problem reduces to solving the inequalities

in (B) for ω(1), . . . , ω(n): that is, finding a rational solution to a system of integer

inequalities. The solution to this latter problem is well-established in the literature.



Chapter 8

Gröbner basis detection: general solution by

polytopes

8.1. PROBLEM

In 1993, Peter Gritzmann and Bernd Sturmfels [GS93] used Minkowski sums

of Newton polyhedra to find an algorithm for Gröbner basis detection. That is,

they found an algorithm that solves

∃ � GB� (f1, . . . , fm)

This chapter serves as a review of their result; we contribute nothing new to

their research. Readers familiar with Newton polyhedra and Minkowski sums

may choose to skip to section 8.3.

200
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8.2. POLYTOPES, POLYHEDRA AND MINKOWSKI SUMS

The reader may need to review the background material on term diagrams; see

section 2.5 on page 71.

A two-dimensional Newton polytope is similar to a term diagram, in that we

plot terms in the positive quadrant of an x-y axis. However, rather than represent

the leading terms of several polynomials, a Newton polytope encloses all the terms

of one polynomial in the smallest possible convex polygon.

The following definition is adapted from those found on pages 290 and 291 of

[CLO98] and page 247 of [GS93].

DEFINITION 8.1. For any finite set A = {m1, . . . ,mr} ⊂ Rn, its polytope is{
λ1m1 + · · ·+ λrmr : λi ≥ 0,

r∑
i=1

λi = 1

}

The Newton polytope N (f) of the polynomial f is the polytope enclosing the

points corresponding to the exponent vectors of the terms of f .

EXAMPLE 8.2. Let

f = x2y + 3xy − x + 7y3

The Newton polytope of f is given in figure 8.1.1 �

We can manipulate the Newton polytope to obtain a so-called Newton polyhe-

dron. The following definition comes from page 250 of [GS93]:

1Images of the convex polytopes in figures 8.1–8.4 were generated using [Fra04].
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Figure 8.1: Newton polytope of f in example 8.2.
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Figure 8.2: Newton polyhedron of f in example 8.2 (first quadrant view only).

DEFINITION 8.3. The Newton polyhedron of the polynomial f is the set

Naff (f) =
{
a + b : a ∈ N (f) , b ∈ Rn

≤0

}
Visually, a polynomial’s polyhedron looks as if the corresponding polytope is

casting its shadow onto the axes; see figure 8.2.

Next we introduce the Minkowski sum of polytopes and polyhedra, taken from

pg. 246 of [GS93].
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(a) Newton polytope of f in
8.5

4

4

3

3

2

1

2
0

10

(b) Newton polytope of g in
8.5
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(c) Minkowski sum of the
Newton polytopes of f, g in
8.5

Figure 8.3: The Minkowski sum of the Newton polytopes N (f) and N (g), from
example 8.5

DEFINITION 8.4. The Minkowski sum of two polytopes (or polyhedra) P1 and P2

is

P1 + P2 = {a + b : a ∈ P1, b ∈ P2}

EXAMPLE 8.5. Let

f = x2y + 3xy − x + 7y3 g = x2 + x + xy

We illustrate the Minkowski sum of N (f) and N (g) in figure 8.3; figure 8.4 illus-

trates the Minkowski sum of Naff (f) and Naff (g). �

Finally, we introduce the normal cone of a vertex, from pg. 253 of [GS93]. We can

think of the normal cone as the collection of vectors “inside” the borders created

by the vectors normal to the faces that meet at a vertex.
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(a) Newton polyhedron of
f in 8.5
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(b) Newton polyhedron of
g in 8.5
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(c) Minkowski sum of
Newton polyhedra of f, g
in 8.5

Figure 8.4: The Minkowski sum of the Newton polyhedra Naff (f) and Naff (g), from
example 8.5

DEFINITION 8.6. Let P be a Newton polytope (or polyhedron); let F be a face of P ,

and let v be a vertex of P . The normal cone of F is the relatively open collection of

outer normal vectors of P on the interior of F ; the normal cone of v is the collection

of vectors lying within the limiting faces of the normal cones of each face that meets

at v.

EXAMPLE 8.7. Let P be the Minkowski sum of the Newton polyhedra of

f = x2y + 3xy − x + 7y3 g = x2 + x + xy

(see figure 8.4). The normal cones of P are illustrated in figure 8.5; they lie within

the dotted lines. �
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Figure 8.5: Normal cones of the Minkowski sum illustrated in figure 8.4.

8.3. RESULT

We start with the following observation. It is easy to see that for some polyno-

mials, changing the term ordering may not change the leading term. For example,

if f = x + 1 and g = y + 1, then the leading terms of f and g are x and y regardless

of the term ordering. There are more complicated examples as well; consider 8.8:

EXAMPLE 8.8. Let

f = x3 + 5 g = x2y + y3

There are only two possible pairs of leading terms of f, g:

(
x3, x2y

) (
x3, y3

)
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Let �1= lex (x, y), �2= lex (y, x), and �3= tdeg (x, y). We have

lt�1 (f) = x3 lt�1 (g) = x2y

lt�2 (f) = x3 lt�2 (g) = y3

lt�3 (f) = x3 lt�3 (g) = x2y

We see that �1 and �3 have the same leading terms; we might say that they are

equivalent with respect to {f, g}. On the other hand, �2 has different leading

terms, so it is not equivalent to �1 and �3. �

We can generalize this observation with the following definition:

DEFINITION 8.9. Two term orderings �1 and �2 are said to be equivalent with

respect to F = {f1, . . . , fm} if

lt�1 (f1) = lt�2 (f1) · · · lt�1 (fm) = lt�2 (fm)

It is obvious that this relation satisfies the axioms of an equivalent relation: it is

reflexive, symmetric, and transitive.

A result of Teo Mora and Lorenzo Robbiano [MR88] is that given any set of

polynomials F = {f1, . . . , fm}, there are finitely many equivalence classes of term

orderings with respect to F . The consequence is that we can collect all terms or-

derings into a finite number of equivalence classes with respect to F .

Gritzmann and Sturmfels point out that, since there are finitely many equiva-

lence classes of term orderings, we can solve Gröbner basis detection by choosing
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a representative � from each class, then reducing the S-polynomials with respect

to �. If all of them reduce to zero for a given representative �, then we know that

f1, . . . , fm are a Gröbner basis with respect to �.

The question becomes, how do we find the equivalence classes, then a representa-

tive term orderings of each equivalence class? The answer is found in the following

theorem, which is proposition 3.2.1 of [GS93].

THEOREM 8.10. Let f1, . . . , fm ∈ F[x1, . . . , xn], and let M be the Minkowski sum of

Naff (f1) , . . . , Naff (fm). The vertices of M are in a one-to-one correspondence with the

equivalence classes of term orderings with respect to {f1, . . . , fm}.

Using this fact, one can fashion an algorithm for Gröbner basis detection; see

algorithm 8.1. The algorithm works in the following manner: from the normal

cone of each vertex of M , choose an integer vector ω. The product of ω and the

exponent vectors of f1, . . . , fm gives greatest weight to those terms whose exponent

vectors sum to the given vertex of M . We then extend ω to a term ordering� using

theorem 7.9 on page 186. We calculate the S-polynomials with respect to �. If all

the S-polynomials reduce to zero, we can report success with �; otherwise, we

proceed to the next normal cone. If none of the normal cones produces a term

ordering that gives us a Gröbner basis for f1, . . . , fm, we can report that no such

term ordering exists. We know that the algorithm terminates correctly, because

there are finitely many vertices, hence finitely many normal cones from which to
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Algorithm 8.1 GB_Detection_by_Minkowski_Sums

Inputs: f1, . . . , fm ∈ F[x1, . . . , xn]

Outputs: � such that GB� (f1, . . . , fm) if such � exists; NULLotherwise

M ← N (Naff (f1) + · · ·+ Naff (fm))

Compute v1, . . . , vr, the vertices of M

Loop k = 1, . . . , r

Pick ck from the normal cone of vk

Extend ck to an admissible matrixM

If GB�M (f1, . . . , fm) Then

Return �M

Return NULL

pick a representative, and because the weight vectors from these normal cones

characterize the equivalence classes of term orderings completely.



Chapter 9

Gröbner basis detection of two polynomials

by factoring

9.1. PROBLEM

We consider the following special case of the general Gröbner basis detection

problem: an algorithm for

∃ � GB� (f1, f2)

We present a new solution to this problem in section 9.3.1; it follows from theorem

9.1.

9.2. RESULT

THEOREM 9.1. For all f1, f2 ∈ F[x1, . . . , xn], for all term orderings �, the following are

equivalent:

(A) GB� (f1, f2)

209
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(B) gcd ( c1 , c2 ) = 1 where f1 = c1g, f2 = c2g ∃c1, c2, g ∈ F[x1, . . . , xn]

A brief example before we prove the theorem.

EXAMPLE 9.2. Let �1= lex (x, y), �2= lex (b, x, y),and

f1 = xy + bx f2 = x2 − bx

Note that

f1 = x (y + b) f2 = x (x− b)

The greatest common divisor of f1, f2 is g = x; its cofactors are

c1 = y + b c2 = x− b

Then

lt�1 (c1) = y lt�1 (c2) = x

while

lt�1 (c1) = b lt� (c2) = b

By theorem 9.1, f1, f2 are a Gröbner basis with respect to �1, because the leading

terms of c1 and c2 are relatively prime. Since the leading terms of c1, c2 are not

relatively prime with respect to �2, f1, f2 are not a Gröbner basis with respect to

�2. �

The proof of the theorem is short, because we unload the details into .

PROOF. (of theorem 9.1) Let f1, f2,� be arbitrary, but fixed.
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(B)⇒(A) is a consequence of lemma 1.37 on page 51; the requirement that

Sf1,f2 have a representation modulo f1, f2 is satisfied by the assumption of (B) that

gcd ( c1 , c2 ) = 1 and theorem 2.4 on page 59.

(A)⇒(B): Let f1, f2, � be arbitrary but fixed. Assume GB� (f1, f2). Then ∃h1, h2

such that h1, h2 give a representation of S� (f1, f2) modulo f1, f2. Recall σ12 and σ21

from definition 1.34 on page 48.

We have

S� (f1, f2) = h1f1 + h2f2

σ12f1 − σ21f2 = h1f1 + h2f2

(σ12 − h1) f1 = (σ21 + h2) f2(9.1)

From lemma 1.36 on page 50,

̂σ12 − h1 = σ12
̂σ21 + h2 = σ21

Write

c1 = σ21 + h2 c2 = σ12 − h1

From (9.1),

(9.2) c2f1 = c1f2

Observe that c2 divides the left-hand side of (9.2), so it must divide the right-hand

side. By 1.35 on page 49, their leading monomials σ12 and σ21 are relatively prime
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on their indeterminates. So c1 and c2 have no common factors. Hence

c1 | f1 and c2 | f2

Let g1, g2 be such that

f1 = c1g1 and f2 = c2g2

Recall (9.2):

c2f1 = c1f2

c2 (c1g1) = c1 (c2g2)

g1 = g2

Let g = g1; it is clear that

f1 = c1g and f2 = c2g

and

gcd ( c1 , c2 ) = gcd ( σ21 , σ12 ) = 1

as claimed. �

The proof of (A)⇒(B) has the following interesting corollary:

COROLLARY 9.3. For all f1, f2 ∈ F [x1, . . . , xn] and for all term orderings �, if h1, h2

give a representation of Sf1,f2 modulo f1, f2, then

gcd (f1, f2) =
f1

σ21 + h2

=
f2

σ12 − h1
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PROOF. Let f1, f2,� be arbitrary, but fixed. We saw above that for some g,

f1 = (σ21 + h2) · g

f2 = (σ12 − h1) · g

We also observed that σ21 + h2 and σ12 − h1 were relatively prime. Thus g is the

greatest common divisor of f1, f2. Dividing each equation by the cofactor of g gives

corollary. �

9.3. APPLICATION OF RESULT

9.3.1. AN ALGORITHM FOR THEOREM 9.1. Theorem 9.1 tells us that two polyno-

mials are a Gröbner basis with respect to a term ordering if and only if the leading

terms of the cofactors of their greatest common divisor are relatively prime. For

any pair of relatively prime terms taken from each cofactor, theorem 9.1 provides

us with constraints like those of theorem 7.9 on page 186.

From theorem 7.9 we can find a matrix representationM∈ Qn of a term order-

ing that satisfies the constraints – assuming such a term ordering exists. We rewrite

the constraints as linear inequalities on the first row ofM (called u in the theorem)

and solve the inequalities. We fill the remaining rows of M with appropriately-

chosen elementary row vectors.

We have outlined this as algorithm 9.1.
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Algorithm 9.1 TO_for_GB

Inputs: f1, f2 ∈ F[x1, . . . , xn]

Output: � such that GB� (f1, f2) if such � exists; NULLotherwise

c1 ← cofactor of gcd (f1, f2) in f1

c2 ← cofactor of gcd (f1, f2) in f2

P = {(t1, t2) : tk is a term of ck}

— remove pairs that are not relatively prime

For p ∈ P

If gcd (t1, t2) 6= 1 Then

P ← P\p

— search for the desired term ordering �

For p ∈ P

�← Exists_tord_with_given_leadterms(t1, t2, f1, f2)

If � 6= NULLThen

Return �

— if we get this far, no term ordering exists

Return NULL

Algorithm 9.1 requires an additional algorithm, which we present as algorithm

9.2. Given t1, t2, f1, f2, this latter algorithm finds a term ordering such that f1 = t1

and f2 = t2, assuming such a term ordering exists. Note that the inequalities of

algorithm 9.2 solve for a weight vector ω; to extend this to a full term ordering, we

need to employ the technique indicated in the discussion at the end of section 7.3.
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Algorithm 9.2 Exists_Tord_with_given_leadterms

Inputs: terms t1, t2, polynomials f1, f2 ∈ F[x1, . . . , xn]

Output: � such that t1 = lt� (f1), t2 = lt� (f2) if such � exists; NULLotherwise

For i = 1, . . . , n

αi ← degxi
t1

βi ← degxi
t2

F1 ← {u : u is a trailing term of f1}

F2 ← {v : v is a trailing term of f2}

inequalities ← {}

For u ∈ F1

For i = 1, . . . , n

γi ← degxi
u

inequalities ← inequalities

∪{ω1α1 + · · ·+ ωnαn > ω1γ1 + · · ·+ ωnγn}

For v ∈ F2

For i = 1, . . . , n

γi ← degxi
v

inequalities ← inequalities

∪{ω1β1 + · · ·+ ωnβn > ω1γ1 + · · ·+ ωnγn}

If inequalities are feasible Then

Return solution of inequalities

Else

Return NULL
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Algorithms 9.1 and 9.2 are unoptimized beyond the requirements of theorem

9.1. There is one obvious optimization: terms that divide other terms cannot pos-

sibly be leading terms. Hence they can be left out of the construction of P in al-

gorithm 9.1 and of F1 and F2 in algorithm 9.2. Our Maple implementation [HP04]

includes these optimizations.

9.3.2. EXAMPLES OF THEOREM 9.1.

EXAMPLE 9.4. Let

f1 = x2 + xy

f2 = xy2 + x

Is there a term ordering such that f1, f2 are a Gröbner basis? According to theorem

9.1, they are a Gröbner basis only if the cofactors of the greatest common divi-

sor have relatively prime leading terms. Without going into too many details, we

apply algorithm 9.1.

First we need the cofactors of the greatest common divisor of f1 and f2. In-

spection shows that the greatest common divisor of f1, f2 is x; the cofactors are

thus

c1 = x + y

c2 = y2 + 1
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Construct

P =
{(

x, y2
)
, (x, 1) ,

(
y, y2

)
, (y, 1)

}
One pair is not relatively prime, so we can remove it:

P =
{(

x, y2
)
, (x, 1) , (y, 1)

}
Now we want a term ordering such that one of these pairs contains the leading

terms of c1, c2. We know this is impossible for the last two pairs, since 1 cannot

be the leading term of a non-constant polynomial. Thus, the question rests on

whether there exists a term ordering � such that

lt� (c1) = x lt� (c2) = y2

Clearly lex (x, y) is one such term ordering. �

In example 9.4, computing a Gröbner basis with one of the “routine” term or-

derings with x � y (say a lexicographic or a total-degree term ordering) would

have returned f1, f2. Even if we had tried computing a Gröbner basis with y � x,

the resulting basis would have had only three elements.

The next example, by contrast, is a Gröbner basis with respect to ”non-obvious”

term orderings; a “bad” guess leads to a significant increase in the size of the Gröb-

ner basis.
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EXAMPLE 9.5. Let

f1 = x22y8 + x20y8z − x22 − x20z − x2y8 − y8z + x2 + z

f2 = x10y16w + x11y16z + y16w + xy16z − x10w − x11z − w − xz

Again, we ask ourselves: is there a term ordering such that f1, f2 are a Gröbner

basis? Again, we apply algorithm 9.1, but this time we will need the details.

First we need the cofactors of the greatest common divisor of f1 and f2. Since

f1 =
(
x10 − 1

) (
x2 + z

) (
x10 + 1

) (
y8 − 1

)
f2 =

(
y8 + 1

)
(xz + w)

(
x10 + 1

) (
y8 − 1

)
the cofactors of the greatest common divisor are

c1 =
(
x10 − 1

) (
x2 + z

)
c2 =

(
y8 + 1

)
(xz + w)

Construct

P =
{(

x12, xy8z
)
,
(
x12, y8w

)
,
(
x10z, xy8z

)
,
(
x10z, y8w

)}
(Recall that 1 ≺ x10 and 1 ≺ y8 for every term ordering �.) We eliminate the two

that are not relatively prime; this leaves

P =
{(

x12, y8w
)
,
(
x10z, y8w

)}
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Now we turn to algorithm 9.2 to determine whether there is a term ordering

such that either of these pairs contains the leading terms of c1, c2. Consider the

expansions of c1, c2:

c1 = x12 + x10z − x2 − z

c2 = xy8z + y8w + xz + w

The first pair to try is (x12, y8w). We need

x12 � x10z and x12 � x2 and x12 � z

and

y8w � xy8z and y8w � xz and y8w � w

Recall that for any two terms t1, t2 we know t1 | t2 implies t1 � t2. That means we

can disregard four of the constraints on �, reducing the problem to:

x12 � x10z

and

y8w � xy8z

By theorem 7.9 on page 186, such a term ordering exists if and only if we can find

a weight vector ω that satisfies

ω ·
(

12 0 0 0

)T

> ω ·
(

10 0 1 0

)T

and
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ω ·
(

0 8 0 1

)T

> ω ·
(

1 8 1 0

)T

That is,

12ω(1) > 10ω(1) + ω(3) and 8ω(2) + ω(4) > ω(1) + 8ω(2) + ω(3)

By lemma 7.12 on page 189, we can restrict our search to nonnegative values.

So we want a solution to

2ω(1) − ω(3) > 0

−ω(1) − ω(3) + ω(4) > 0

ω(i) ≥ 0 for i = 1, 2, 3, 4

We can solve this using the Fourier-Motzkin method. Eliminating m11, we ob-

tain

−3ω(3) + 2ω(4) > 0

−ω(3) + ω(4) > 0

ω(i) ≥ 0 for i = 2, 3, 4

Eliminating ω(3), we have

ω(4) > 0

We will take ω(4) = 1.
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Now for ω(3). Back-substituting into the previous inequalities, we obtain

−3ω(3) + 2 > 0

−ω(3) + 1 > 0

ω(3) ≥ 0

These are satisfied by ω(3) = 0.

The only restriction on ω(2) is that it be nonnegative; we may choose ω(1) = 0.1

Finally, we want ω(1). Back-substituting these values into the original system,

we have

2ω(1) − 0 > 0

−ω(1) − 0 + 1 > 0

ω(1) ≥ 0

This is equivalent to

0 < ω(1) < 1

This is satisfied by ω(1) = 1/2.

At this point, we know that a term ordering exists such that f1, f2 are a Gröbner

basis, because we have found a weight vector ω that can serve as the first row of

a matrix representation of a term ordering that, along with f1, f2, satisfies theorem

1We would not necessarily have been able to choose this, had our previous choices been ω(3) =
ω(4) = 0. It is best to take a non-negative value as soon as possible.
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9.1. We fill the remaining rows with elementary row vectors in such a way as to

obtain a nonsingular matrix, as described at the end of chapter 9:

M =



1
2

0 0 1

0 1 0 0

0 0 1 0

0 0 0 1


If we let � be the term ordering havingM as a matrix representation, then f1, f2

will be a Gröbner basis. Indeed,

SM (f1, f2) = h1f1 + h2f2

where

h1 = −w − xy8z − xz

h2 = x10z − x2 − z

and

h1 · f1 = w · x22y8

h2 · f2 = x10z · x10y16w

which, with respect to �M, are less than

lcm
(
f1 , f2

)
= x22y16zw
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(This becomes clear from comparing their weights with respect to the first row of

M.) Notice that the representation corresponds to the trailing terms of c1, c2, which

is consistent with the proof of 2.4. (The reader will recall that theorem 2.4 is used

in the proof of theorem 9.1.) �

Computing a Gröbner basis for f1, f2 of example 9.5 with Maple using either

the term orderings tdeg (x, y, z, w) or plex (x, y, z, w) gives us a set of 13 or 14 poly-

nomials (it depends on the polynomial). Different permutations of the variables

gives us smaller sets; some give a set of only 2 polynomials. However, there is no

clear way to guess which permutation of the variables gives us a “small” Gröbner

basis, apart from the algorithm that we have described.

9.3.3. EXPERIMENTAL RESULTS. We conducted two kinds of tests: unstructured

and structured.

UNSTRUCTURED TESTS. For these tests we ran the algorithm on randomly-gene-

rated polynomials. We timed the algorithm and kept track of how many times we

detected a Gröbner basis. We ran three different tests, varying both the number of

terms, the total degree of each term, and the number of indeterminates.

All the random polynomials had the following features in common:

• coefficients were random, over −99 . . . 99

• exponents for indeterminates were random, over 0 . . . 5
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Table 9.1: Number of times we detected a Gröbner basis for f1, f2 (six terms of total
degree six).

# vars # pairs # detections time per test
2 1000 80 .10s
3 1000 275 .23s
4 1000 489 .48s
5 1000 670 .76s
6 1000 800 0.98s
7 1000 889 1.43s

This leaves it to the experiment to specify the number of indeterminates, the num-

ber of terms, and their total degree, and we experimented with each of these val-

ues.

For the data in table 9.1, we kept the number of terms and the total degree

fixed, varying only the number of indeterminates. As the number increases, the

number of detections skyrocket. By the time we reach n = 7 indeterminates, we are

detecting a Gröbner basis for the vast majority of the generated polynomials. Why?

Maple’s randpoly() appears to generate terms in such a way as to favor single-

indeterminate terms when the total degree is not much higher than the maximum

power of an indeterminate. The resulting polynomials have a large number of

terms in only one indeterminate, so that the polynomials are prime. It is unlikely

that a corresponding percentage of real-world polynomial systems would look like

this, since most real-world problems have some sort of structure; nevertheless, the

data give us some idea about the possibility for success in these cases.
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Table 9.2: Number of times we detected a Gröbner basis for f1, f2 (10% sparse,
total degree 6).

# vars # pairs # detections time per test
2 1000 159 .05s
3 1000 296 .41s
4 1000 569 7.50s
5 1000 855 94.83s

The data of table 9.2 varied the number of terms, while keeping the total degree

constant. The number of terms was kept at 10% sparsity, by which we mean

(9.3) .1×

 # vars + degree

degree


With the total degree fixed at six, this gives us three terms for n = 2 variables, nine

terms for n = 3, twenty-one terms for n = 4, and forty-six terms for n = 5. We did

not proceed beyond n = 5 since at that point it was taking a long time to complete

the tests (94.83 seconds on average).

Despite the increased number of terms, the number of detections continues to

skyrocket; in fact, we find even more detections for a given n than in table 9.1. We

believe that this is due to the fixed low total degree of each polynomial (later data

will bear this out). It is useful to observe how the time per test also skyrocketed.

Since most randomly-generated polynomials will be relatively prime, we believe

that this increase in time is due to the increased complexity of solving the associ-

ated system of linear inequalities (there are more than 80 inequalities for n = 5).
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Table 9.3: Number of times we detected a Gröbner basis for f1, f2 (six terms of total
degree 6×#vars).

# vars # pairs # detections avg time per test (s)
2 1000 45 .06
3 1000 56 .09
4 1000 32 .09
5 1000 21 .08
6 1000 3 .09
7 1000 0 .11

Figure 9.1: Summary of the number of detections of Gröbner bases for different
cases of unstructured systems.

For the data in table 9.3, we fixed the number of terms again, but varied their

total degree. Without the low value for the total degree, the number of detected

Gröbner bases plummets not merely from the heights of tables 9.1 and 9.2, but to

the point where we no longer detect any Gröbner bases for n = 7. This is because

Maple’s randpoly() function is much less likely to generate terms of one variable
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Table 9.4: Number of times we detected a Gröbner basis for gc1, gc2 (three terms in
each of g, c1, c2; maximum degree per term is 10).

# vars # pairs # detections average time per test
2 1000 127 0.000418
3 1000 189 0.010091
4 1000 269 0.023830
5 1000 265 0.048970
6 1000 251 0.100545
7 1000 239 0.158870

with the increased total degree. Correspondingly, the average time per test grows

very slowly.

STRUCTURED TESTS. Erich Kaltofen suggested the following tests. Since we know

that the algorithm works for pairs of polynomials that have a common divisor,

and since it is unlikely that we will generate many such polynomials using the

randpoly() function, we can generate three random polynomials g, c1, c2, then

expand f1 = c1g, f2 = c2g, and try the algorithm on these. All the polynomials had

these features in common:

• random coefficients, range −99 . . . 99

• random power on each variable, range 0 . . . 5

This leaves the number of indeterminates, the number of terms, and the maximum

degree per term free for the experiment.

For the data in table 9.4, we kept the number of terms of g, c1, c2 fixed at three,

and the maximum degree per term fixed at ten. Once again we find the number

of detections increasing as we increase the number of variables. Again, we expect



9.3. APPLICATION OF RESULT 228

Table 9.5: Number of times we detected a Gröbner basis for gc1, gc2 (number of
terms in each of g, c1, c2 fixed at 5% sparsity, minimum two terms for c1, c2; maxi-
mum degree per term is 10).

# vars # pairs # detections average time per test
2 1000 237 0.028550
3 1000 344 0.041150
4 1000 350 0.050120
5 1000 340 0.077490
6 1000 331 0.071000
7 1000 283 0.075450

that this is due to the fixed total degree. We find that the number of detections

does not vary so much as for the unstructured polynomials: from a low of 13%, we

reach a plateau of 30%, compared to a low of 8% and a high of 89% in table 9.4.

Of course, the data of table 9.4 are not entirely comparable to previous tests.

This is due to differences in the polynomials generated; for example, the polyno-

mials in the unstructured case were almost always relatively prime, whereas the

polynomials in the structured case are never relatively prime. Also, we might not

always have six terms in each of f1, f2; we would expect fewer terms on occasion,

due to simplification.

For table 9.5, we kept the maximum degree of the polynomials fixed, while

increasing the number of terms of g, c1, c2 to reflect a sparsity of 5%. We used the

formula of equation (9.3) on page 225. For a low number of variables, however,

this meant that f1, f2 were always monomials; to avoid that, we restricted c1, c2 to

a minimum of two terms.
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Table 9.6: Number of times we detected a Gröbner basis for gc1, gc2 (three terms in
each of g, c1, c2; maximum degree per term is 10×#vars).

# vars # pairs # detections average time per test
2 1000 133 0.017440
3 1000 197 0.049060
4 1000 239 0.089670
5 1000 252 0.139160
6 1000 276 0.259470
7 1000 270 0.361990

There is not very much change in the number of detections, nor do the numbers

vary much. We go from a low of 20% to a high of 40%, but unlike 9.2, the average

time per test remains low. This is probably because f1, f2 are guaranteed to factor,

and the cofactors thus have fewer terms than did those of the unstructured poly-

nomials of table 9.2. Fewer terms means fewer inequalities, which means a faster

solution.

In our final test, we fixed g, c1, c2 at three terms, and we increased the maximum

degree per term. When we did the same for the unstructured polynomials of table

9.3, we encountered a catastrophic drop in the number of Gröbner basis detections.

This time, however, the numbers do not vary much. The only significant difference

from tables 9.4 and 9.5 is for n = 2 indeterminates; we have only 8 detections

out of 100 random polynomials, a value much lower than in the two previous

experiments.

In any case, we detect a high proportion of Gröbner bases for both structured

and unstructured polynomials. In the structured case, adjusting the sparsity, the



9.3. APPLICATION OF RESULT 230

Figure 9.2: Summary of the number of detections of Gröbner bases for different
cases of structured systems.

total degree, and the number of variables appears to keep the behavior fairly con-

sistent; see figure 9.2.

A natural question to ask is, how does Gröbner basis detection compare to the

Gröbner basis computation? Certainly, computing a Gröbner basis always termi-

nates successfully with a Gröbner basis, whereas we will not always detect a Gröb-

ner basis for given f1, . . . , fm. Hence, there is a certain advantage to computing a

Gröbner basis. On the other hand, we can find a term ordering for a Gröbner basis

not infrequently; it would be useful to compare running times in these cases.

While running the experiments documented in tables 9.4, 9.5, and 9.6, we cal-

culated the corresponding Gröbner basis for systems where we succeeded in de-

tecting a Gröbner basis. We noted how many polynomials were in the final result,

as well as the time needed to compute the basis. We used Maple’s gbasis()
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Table 9.7: Detection compared to computation: fixed number of terms and fixed
total degree.

# vars time to detect time to compute size of GB avg size of GB
2 0.000418 .025260 2..9 2.8
3 0.010091 3.329418 2..21 5.2
4 0.023830 5.494907 2..40 5.9
5 0.048970 5.565019 2..48 6.0
6 0.100545 .612988 2..41 6.6
7 0.158870 .515607 2..28 5.9

Figure 9.3: Detection compared to computation (chart of times): fixed number of
terms and fixed total degree.

command to compute the basis with respect to the total degree term ordering; the

general opinion of most researchers is that this ordering gives very good perfor-

mance when computing a Gröbner basis (see also [Tra05]). We present the data in

tables 9.7, 9.8, and 9.9. With only one exception, it always takes longer – and

usually much longer – to compute the Gröbner basis than to detect it. The average
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Table 9.8: Detection compared to computation: fixed sparsity of terms and fixed
total degree.

# vars time to detect time to compute size of GB avg size of GB
2 0.028550 .024430 1..5 2.5
3 0.041150 .058634 2..14 3.8
4 0.050120 .105714 2..18 4.3
5 0.077490 .086529 2..23 4.7
6 0.071000 .134230 1..26 4.5
7 0.075450 .121625 2..23 4.5

Figure 9.4: Detection compared to computation (chart of times): 5% sparsity of
terms and fixed total degree.

Table 9.9: Detection compared to computation: fixed number of terms and increas-
ing total degree.

# vars time to detect time to compute size of GB avg size of GB
2 0.017440 .186617 2..9 2.9
3 0.049060 15.701117 2..25 4.8
4 0.089670 20.773808 2..59 6.2
5 0.139160 1.420317 2..43 6.8
6 0.259470 31.433587 2..37 6.5
7 0.361990 16.906481 2..34 6.1
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Figure 9.5: Detection compared to computation: fixed (chart of times): fixed num-
ber of terms and increasing total degree.

time for detection grows relatively consistently, whereas the average time for com-

putation varies wildly, with the exception of table 9.8. This is possibly due to what

one might call the occasional “unlucky” systems, whose Gröbner bases grow large

out of proportion to most others. Moreover, there are always two polynomials in

a detected basis, whereas the number of polynomials in a computed basis ranges

from as few as two (if we’re lucky) to as many as sixty-nine (if we’re not).

We also computed Gröbner bases for the occasions when we did not detect a

Gröbner basis, and compared the running times. The average time to compute a

Gröbner basis was again much longer than the time to fail to detect one: again, this

is possibly due to unlucky systems.
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The data suggest that Gröbner basis detection could be a viable starting point

for future optimization of Gröbner basis algorithms. Further research to generalize

the algorithms to a larger number of polynomials could be worthwhile.



Conclusion

We have presented combinatorial criteria that allow us to skip:

• all S-polynomial reductions;

• all but one S-polynomial reductions;

• all but two S-polynomial reductions, for a set of three polynomials

f1, f2, f3.

We also presented a new method for Gröbner basis detection for a set of two poly-

nomials f1, f2.

Directions for future research are clear. First, we have the opportunity to gen-

eralize the combinatorial criteria that allow us to skip all but two S-polynomial

reductions. There are two possible paths:

• for m > 3, find criteria that allow us to skip all but two S-poly-

nomial reductions;

• for m > 3, find criteria that allow us to skip exactly one S-poly-

nomial reduction.

235
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These two paths coincide when m = 3.

I have carried out some research on skipping all but two S-polynomial reduc-

tions for m > 3, but so far I cannot even hazard a guess as to what the solution

might be.

Second, we have the opportunity to generalize the method of Gröbner basis re-

duction to m > 2 polynomials. Originally, I believed that this would be based on

combinatorial criteria, just as theorem 9.1 on page 209 depends on Buchberger’s

first criterion. For a while, I believed that the solution embodied in theorem 6.3 on

page 124 (the new combinatorial criterion) would help formulate a characteriza-

tion of Gröbner bases consisting of three polynomials. Subsequent research has

revealed that this is not the case, so we are back at square one.

Third, we have the opportunity to implement the method of Gritzmann and

Sturmfels, and compare its performance on sets of two polynomials to the method

we lay out in chapter 9. This will require the use of a computational package that

can efficiently compute Minkowski sums of polytopes and their polyhedra, as well

as pick representative weight vectors from the normal cones of the vertices of a

polyhedron. The Convex package [Fra04] is a possible candidate; however, the

documentation indicates that its implementation of Minkowski sums is “trivial,

hence slow.” I expect that I will have to spend some time researching ways to

optimize this code and contribute to this project – or else, find a different package.
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