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1. INTRODUCTION

Log-linear models provide a useful framework for analyzing many
types of multi-dimensional contingency tables. As such, they have
received considerable attention in the recent statistical literature.
In this regard, two general methodological strategies exist for
estimating the parameters associated with such models. These are

I. Iterative Proportional Fitting (IPF) of marginal configurations
which are statistically sufficient for the log-linear model

II. Weighted Least Squares (WLS) fitting of asymptotic regression
models to log-linear functions of cell proportions.

Method I is discussed extensively in Bishop, Fienberg, and Holland

[1975] (Hereafter, abbreviated BFH) as well as many other references.
including Goodman [1970] and Ku and Kullback [1974]; various aspééég—ﬁm

of Method II are outlined in Grizzle and Williams [1972] as an application

of the general approach of Grizzle, Starmer, and Koch [1969] (Hereafter,

abbreviated GSK).

For lérge samples, these two methods of analysis are asymptotically
equivalent in the sense that their respective vectors of estimated
parameters are both asymptotically unbiased and have the same asymptotic
covariance matrix for models which do indeed adequately characterize
the data. Thus, as indicated in Appendix 3 of Koch and Tolley [1975],

the choice between them in such cases is largely a matter of personal



tastes and computational convenience. However, log-linear models are

often of interest for situations involving moderate size samples in

which many of the individual cell frequencies are very small (i.e.,

less than 5). In these cases, the GSK approach is not strictly

applicable because the vector of observed cell proportions cannot

be presumed as approximately having a multivariate normal distributionm.

On the other hand, if the log-linear model to be fitted is known

a priori to be valid, then the IPF approach is appropriate within the
context of the less restrictive assumptions that the vector of estimated
parameters can be regarded as approximately having a multivariate

normal distribution. However, these estimatgd parameters may be represented
as certain functions of the vector of observed cell proportions and thus

can be further analyzed by the GSK approach as extended in Tolley and Koch [1974]

Koch and Tolley[1975], and Koch, Tolley, and Freeman [1976]. This type

of parameter oriented methodology is motivated by growth curve model concepts
as described in Potthoff and Roy [1964], Allen and Grizzle [1969], and

Koch and Greenberg [1971]; and henceforth it will be referred to as
Functional Asymptotic Regression Methodology (FARM). As such, FARM is

useful for the following types of applications:

1. Thercharacterization of the multivariate relationships
among a specific set of attributes and their variation
across a set of sub-populations in terms of their inherent
main effects and interactions
2. The analysis of functions of log-linear model based predicted
(smoothed) values for cell probabilities; e.g.,
a. first order marginal probabilities in repeated measure-
ment situations as described in Koch, Freeman, Freeman, ‘
and Lehnen [1974]

'b. measures of agreement based on diagonal probabilities

as described in Landis and Koch [19?6].



3. The analysis of data from complex sample survey designs and
other situations for which the multinomial-based, maximum

likelihood formulation of IPF estimators is not applicable

Although such FARM analyses may often appear difficult, they can be undertaken

in a straightforward manner through the use of matrix operations similar
to those described by GSK. In this regard, a fundamental component of
this general methodology is the estimated covariance matrix for the esti-
mated parameters based on IPF. Thus, the primary purpose of this paper

is to present a matrix formulation for the covariance matrix of these IPF
estimators and the corresponding set of cell probability predicted values.
These results are obtained via the well~known §-method as based on the
first order linear Taylor series approximating counterparts to such esti-
mators with the required matrix of first derivatives being determined by

implicit function differentiation methods.

2. THEORY

In this section, attention is initially focused on the statistical
properties of IPF estimators for the situation where a simple random

sample has been selected from a population in which the multivariate

attributes under study are a ﬁfiori known to be characterized by arﬁ

specific log-linear model. Such assumptions are then relaxed, and

results are subsequently given under more general conditions.
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2.1 Simple Random Sampling From a Single Population of Known Structure

For a particular population, suppose the multivariate relationships
among a specific set of d attributes is of interest. Let jg=l,2,...,L
index the set of categories which correspond to the possible responses
for the g-th attribute where g=1,2,...,d. If a simple random sample
of size n is selected from this population, the resulting data can be

summarized with a d-dimensional contingency table in which nj j j
1727 Y4

denotes the observed frequency of the multivariate response profile

(J‘lijz"" !jd)'
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element from the population is classified into the (jl,jz,...,jd)—th

response profile. Thus, the relevant product multinomial probability

model is
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with the constraint

L, L Ly

Zl "jljz...jd =1 . (2.4)

1=l 37 g
The population is also assumed to have known structure in the sense
that the variation among the elements of T is assumed to be characterized

=

“by the: log-linear model

m = 1r(§)={exp( X B IM{ 17 [exp( X B )1} (2.5

(rx1) (rxt) (tx1) (1xr) (rxt) (tx1)
d
where r = H L denotes the total number of possible multivariate
g=1

response profiles, X denotes an appropriate (rxt) design (or independent
variable) matrix of known coefficients whose t columns are linearly
independent and represent a basis for the main effects and interactions
which constitute the model, g denotes the corresponding (txl) vector

of unknown parameters, }r denotes an (rxl) vector of 1's, and exp
transforms a vector to the corresponding vector of exponential

functions. Finally, the columns of the matrix X are assumed without

loss of generality to be orthogonal to 1r; i.e.,

' 3
X }r gt (2.6)

where Ot is a (txl) vector of O's.
The method of maximum likelihood will be used to form estimators
8 for B. These estimators are characterized implicitly by the following

set of equations

£ 08¢ | B=B 1 =0 (2.7)



where the likelihood ¢ 1s defined by (2.3). By matrix differentiation
methods similar to those used by GSK and Forthefer and Koch [1973],

it follows that

3o [og, 01 = v [n'XBnlog, (1] [exp®)1N  @2.B)

nlexp XB)1'X

=n'X -
T Wlepae)
-a'X - alt®rx

Thus, the equations (2.7) may be compactly written as

Xl

3>

= §'E (2.9

~

where 7 = E(B) represents the maximum likelihood estimator for T based

~
N

on § via (2.5), and p = (n/n) represents the observed vector of sample

proportions which correspond to the unrestricted maximum likelihood

estimator for T for the situation where there is no assumed model like (2.5).
Although the equations (2.9) appear straightforward, their non-

linear structure often does not permit explicit solution. In those

cases, iterative methods like IPF or successive search algorithms

are required to determine g and ﬁ. If these computational problems

are presumed manageable, another important consideration is the estimation

of the asymptotic covariance matrix for §. Since the vector m has

~

been assumed to be characterized by the log-linear model (2.5),

this question can be handled here by determining the Fisher Information

Matrix
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By matrix differentiation methods similar to those used to obtain

(2.8) it follows that

A (n(p)} = S { —1} (2.11)
as' T dB' 1 lexp(X8)]

LY T

~aA A

{}£[3§2(§§)J}Qexp(xs)§r[eXP(XB)][§§E(§§)] X

= ~ O

~An A

where Dy is a diagonal matrix with the elements of the vector y

~

on the main diagonal. However, by using the assumed model structure
(2.5), expression (2.11) may be simplified to

4[] = D X1 - [TBIT®)]'X (2.12)
g - R e

]
= [, - }X

~

1f the result in (2.12) is substituted into (2.10), then.thes Fisher

Information:.Matrix is given by

d  [log ¢] = -n X'[D_- X . (2.13)
dBdB’ e T

Thus, the asymptotic covariance matrix Vg(ﬁ) for é is obtained by forming

the negative inverse of the Fisher Information Matrix as shown in (2.14).

o=t &, - T (2.1

~



~

~ ~
Since T = m(B) is a consistent estimator for B, a consistent estimator

for the covariance matrix VE(E) in (2.14) is

~

vg = Vp(® = o tx'Iny - Fi'1m h (2.15)

Although the results given for the equations (2.9) and the covariance
matrix (2.14) are applicable to any design matrix X satisfying (2.6),
they are of particular interest for the special case in which the
columns of the matrix § can be expressed in terms of the following
types of indicator functions of the response profile indexes 1 where
3= Upadgeeenniy)
1 1if jl=k1

Xlk (1) = J=1 if jl=Ll
0 otherwise

for kl=l,2,...,(L1—1)

(2.16)

1 if j =k,
1f § =L

|
!
[

00...k. 3 = Fg Q) =

for k,=1,2,...,(L,~1)
d d

d d
0 otherwise

and their respective higher order cross-products as generally
represented by
d

x. @) = n{x N} (2.17)
koo ks g=1 8Ky~

where xgo(j) = 1 by definition. 1In addition, X is required to have a

hierarchical structure that includes with any given interaction variable

X Kk Kk (3), all interaction variables of the same order and all
1Ko ky =

corresponding lower order interaction terms; i.e., it includes all terms

in the family




fc(k) = {all * h....h (3) with hg-O,l,...,[G(hg)][Lg-ll for g=1,2,...,d}
oz 172 d (2.18)

0 if h =0
g

1 if hg>0 (2.19)

S(hg) =

and where k and §(E) are defined by E' = (kl’kz""’kd) and

Q'(E) = {a(kl),é(kz),...,é(kd) . Thus, the'family FQ(E) contains
d {8@k)}
vk} =[nL &

~ T~ g=1g

] -1 (2.20)

such variables in all; and their simultaneous sets of values for all
response profiles j may be represented by the {rx['v{§(k)}]} submatrix
Eﬁ(k) of § which has the respective members of Fé(k) as its columns.
A; ; consequence of these considerations, it folio;s that the maximum
likelihood equations (2.9) for such hierarchically structured X
matrices can be partitioned into a series of subset equations

v
X

1 ~
T80T 280k N

corresponding to the distinct families Fé(k), where any such family

which is entirely contained within some other family is excluded
from further consideration without loss of generality since those

equations based on it are a subset of those based on the larger family

which contain it. However, by adjoining the constraint

1

1

=1lp=1 (2.22)

1= 4

to each of the equation sets (2.21), it follows that there exist non-

singular [V{&8(k)} + 1]-dimensional square matrices gﬁ(k) which
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can be used to transform the augmented equation sets (2.21) - (2.22)

into the sets

~1

=X
£k

~1 ~

1
X C -
”Q(B)E

Cs () %é(k) (2.23)

~

where the columns of the matrix Xd(k) correspond to the following types

-~

of indicator functions

P (336 (k) =
“hyhye. RN 0 otherwise (2.24)

1 if jgﬂ-hg for all g=1,2,...,d such that §(k )=1
g

0 if §(k )=0
with h = & for g=1,2,...,d .
g 1,2,...,Lg if a(kg)nl

Since the definition (2.24) implies that the matrix'ga(k) generates the

d
9 () = T sk

2.25
YORIRLN (2.25)

dimensional sub-tables (which correspond to the attributes with

1= I

6(kg)=l) for the observed and predicted proportion vectors p and

~

then the equations (2.23) mean that the maximum likelihood parameter

estimator g must produce predicted values ﬁ which have guch marginal

distributions identical to those based on p. This structural

aspect of the maximum likelihood equations (2.9) was initially presented

by Birch [1963] in the context of three-dimensional contingency tables;

and subsequently, it has been discussed by many other authors concerned

with the analysis of log-linear models since it provides much of the

theoretical justification for the use of the IPF algorithm to determine ‘

f. Briefly stated, the IPF algorithm starts with an initial pseudo-

estimator like

e
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n 1
EO = (;' }r (2.26)

which clearly satisfies the model (2.5), and then 1terativel§ adjusts
it to conform successively with the observed marginal configurations
based on p which are associated with the respective sets of equations
(2.23) until convergence to the stable estimator E which satisfies
all of the equations (2.9) has occurred. A more detailed description
of the IPF algorithm together with its computational and statistical
properties is given in BFH. In particular, the IPF procedure is known
to converge to the solution ﬁ which satisfies the relationships
implied by (2.5) and (2.9) provided such a solution exists; and as
the sample size n becomes increasingly large, the probability of
observing vectors p for which solutions E exist approaches certainty

~

when (2.5) is known to be valid; i.e., as n > <

Pr{IPF convergence given (2.5) is valid} >~ 1 . 2.27)

Thus, the IPF algorithm may be regarded as a methodologically effective
computing procedure for solving the equations (2.9) for situations involving
hierarchical models X as defined by (2.16) - (2.18). Moreover,

expression (2.15) can be used to obtain the consistent estimator Y@

for the estimated parameter vector If the sample size n is

1T (T

sufficiently large that the vector can be presumed approximately to
have a multivariate normal distribution, then further analysis can

be undertaken by means of the extended GSK approach described im Koch
and Tolley [1975] which involves the testing of various linear hypotheses
of interest involving E by generalized Wald [1943] statistics and the

fitting of corresponding linear regression models by weighted least
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squares. In particular, an abpropriate test statistic for the hypothesis

Ho: 9§ = gq (2.28)

where C is a known (qxt) matrix of full rank q<tis

Q, = QC(B) = § c chrgc']“1 cB (2.29)

~

which has approximately a chi-square distribution with D.F.=q in large
samples. If QC is sufficiently small to suggest that the data are
supportive for~(i.e., do not clearly contradict) the hypothesis (2.28),
it then follows that the vector g may be characterized by the linear

regression model

{8} = B =X_B (2.30)

~BR~R

~

where XBR is an [tx(t-q)] full rank matrix which is the orthocomplement
2 . th -
of C in (2.28) (i.e., CXER ~q,(t—q) wi gq,(t Q) being a [qx(t-q)]

matrix of 0's) and "EA" means "asymptotic expectation."

Within the context of this formulation, the GSK weighted least squares

computational algorithms can be used to determine a BAN estimator

be = NBR g xBR) XBR B B (2.31)

~

for BR and its corresponding estimated covariance matrix

v, = (XBR~B XBR) (2.32)

~

~R

In addition, the weighted least squares residual statistic
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~

A N 1 “'1 A
Q = Q(Xgg,8) = (B - b ) Vg (B - bp) (2.33)

~

is identically eéuaL to Qc(é) in (2.29) , which may be interpreted as an
operational reflection ofvthe equivalence between the goodness of

fit of the model (2.30) and the validity of the hypothesis (2.28)

with respect to @. On the basis of this equivalence, the statistic
(2.29) can be used to test hypotheses pertaining to the goodness of
fit of corresponding models (2.30) in a framework which does not
require the actual fitting of such models; and, in certailn cases,

its effective application permits substantial savings in computational
costs for those analyses that require interactive model building as
opposed to the direct fitting of a specific model which is known
prriori to be valid. However, it has the obvious disadvantage of

only indicating whether the data are supportive for such models, but

gives no information regarding the estimation of corresponding model

parameters and their respective covariance matrices. Thus, given that

an appropriate reduced model XBR has been identified by either a priori

considerations or the interactive application of (2.29), the weighted

least squares fitting procedures (2.31) - (2.33) can be used for
N
such estimation purposes. After having fitted the model X to B,

further analysis of the data can be undertaken by applying to bR
the same basic methodological strategy which was outlined for § in
(2.28) - (2.33). This successive reduction process can then be continued

until an appropriate overall final model has been formulated.

Since the ultimate results bR and vy of this analysis are based
~ TR

on a two-stage estimation process involving IPF initially and then WLS,

its computational and statistical properties merit further clarification
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with respect to the original log-linear model framework (2.5) from which
all of this discussion originated. From a conceptual point of view, this
can be accomplished simply by introducing the structure of the model

(2.30) for B into the model (2.5) for T to obtain

~

T = (@)

[
-
e
w0
N
—
~
~—
¢ =
M -
fmanny
?
Q
2
~~
]
[ oS
A
o}
—

(2.34)
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=~
g
—
(o]

{exp G 111 Texp (X, 81}

T

where %R = §§BR is a reduced [rx(t-q)] design matrix satisfying the same
conditions as X in (2.5), although not necessarily the hierarchical
family structure summarized by (2.18). 1In other words, this two-stage
estimation procedure yields estimators b, for the parameters gR which
correspond to a log-linear model of the type (2.5); and as such,

it represents an effective method for fitting such models for situations
where the IPF algorithm is not applicable because the corresponding
design matrix §R does not have the hierarchical structure (2.18).

Additional insights can be gained by substituting expression (2.15)

for VE into expression (2.31) for bR to obtain

o
)

] -1 =1t ~1A
by = (XgpVa ¥gg) X RY§ 8 (2.35)

t 1 1 -
OEBR{( 113%"’3% J}gfek) ]Xﬁ'aRx'[Dﬁ"%']Xg

O[04~ 1) ™ g [0~ 1 10g I B}
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where loge transforms a vector to the corresponding vector of natural

logaritims , and relating this result to theose given by Grizzle and
Williams [1972] for the standard one-stage application of the GSK
procedure for fitting the log-linear model (2.34) directly to p
(although as mentioned previously, much larger sample sizes are requircd
to ensure the validity of this approach than for the two-stage method
currently under discussion, given that (2.34) is a priori known to be
appropriate). In this regard, 1et.§RC be an [rx(r-u-1)] full rank
matrix which 1s orthogonal to both §R and }R where u = (t-q).

From (2.34), it then follows that the log-linear functions E

of the observed proportion vector p which are defined by

~

F " | [1log (p)]
F= | = )“(‘f e ® (2.36)
2 Aré
may be characterized by the model
* 1
[X.B.]
E,{F} = ]&f R | TR By (2.37)
~ Xre Lg_(r—u—l) U

Given this formulation, a BAN estimator Eﬁ for BR can be obtained by
using the GSK weighted least squares computational algorithms as

summarized in (2.31) - (2.33), but with F replacing B and the consistent

e ]

Xre

estimator

=R

-1 . ~-1
DB IPp—EE ]Dp D—SR)ERC] (2.38)

L ]

i
=P

-1
EE I§R’§RC]
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for its covariance matrix replacing VB. Thus,

' -1 v -1
- [§R§R’9u,(r-u—l)]VF §R§R IXRXR ~u, (r-u- 1)]YF F

9 (r-u-1) ,u (2.39)

Since it can be verified that

-1 XR X ) XR [D o PR ][XR('XRXR) Lch(chch

A" =n (2.40)

- XRCXRC) e
by using direct multiplication together with the identity
[ %) Xty e Bl = L7 L1

it follows that tle expression (2.39) for Ek can be simplified to

o
]

By = ORID,pe 1) T ORI P ) iy ) T K (g ) X Log, (1)

~I T ~IYIT

{ﬁlgg-gg']&}_l{{%w pp' UL - 21 1llog, @)1}

{ijl'z[lgg-gg'])}R}_l{{(I'{[Q o722 1log, @)1). (2.42)

However, this result demonstrates that expression (2.42) for the standard
GSK estimator Eﬁ and expression (2.35) for the two-stage estimator E are
identical except for the fact that the former involves the observed pro-
portion vector P while the latter involves the IPF predicted proportion
vector E(g) based on the first stage model X with the hierarchical family
structure (2.18). Thus, ER may be obtained by applying the standard one-

stage GSK procedure for fitting log-linear models outlined in (2.36) - (2.38)

to the pseudo-contingency table involving the set of IPF predicted fre-

quencies nf(@). Similar remarks of this type also apply to the estimated
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covariance matrix V in (2.32) for b, which may be written as

~bp R

- j n oAy -1
Yy = alpllg - 1 TI%S (2.43)
and the correspondingly analogous estimated covariance matrix

-~

1 ' -1
V5 = nxlD, - B 'R (2.44)

for by. With these considerations of computational equivalence in mind,

it then follows that the various aspects of interactive model fitting
described for @ in the context of (2.28) - (2.33) can be undertaken by
the suitable application of the GSK procedures to the pseudo-contingency
table involving the IPF predicted frequencies ng(%). Moreover, one of the
useful by-products of such analysis are the estimators § and Y@ themselves
as they pertain to the first stage hierarchical model § since ;he IPF
algorithm is specifically directed at determining nf(g) rather than these
quantities. Thus, this two-stage extended GSK approach provides a useful
framework for
i. Computing the estimated parameter vector E and its corresponding
estimated covariance matrix V& for hierarchical log-linear models
X for which predicted values ;f(g) have been previously deter-
mined by IPF;

ii. Fitting non-hierarchical models %R by first identifying an appro-
priate hierarchical model EH from which §R can be obtained by a
non-singular transformation §R = §H §HR’ and then fitting §H by
IPF to determine ng(éu) which are then analyzed by WLS to deter-

mine the estimators b, and Vb in (2.31) - (2.32).
~ ~~R

However, (1) may be regarded as a special case of (ii) by assuming.XR = XH
where §H is hierarchical. In addition, 1if XH is complete (or saturated) in

the sense of containing all the main effects and interactions (2.16) - (2.17), then
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(ii) becomes identical with the standard one stage GSK procedure since
nH(EH) =n for this situation. Finally, although the estimators E have
reasonable statistical properties (f.e., they can be shown to be BAN
estimators by arguments like those given in Koch and Tolley [1975], Appen-
dix III), they are not the strict maximum likelihood estimators §R which:
are defined by (2.9). 1If the sample size n is sufficiently large that b
can be presumed approximately to have a multivariate normal distribution,
this consideration poses no real difficulty because the asymptotic equi-

A

valence of b, and B

R R under such conditions causes their respective results

to be suitably similar for most practical purposes. On the other hand,
if such assumptions are not realistic, them b, is no longer valid; and
hence §R must be determined. For this purpose, one useful method is direct

maximization of the likelihood function (2.3) itself by successive approx-

imation numerical methods like those given in Kaplan and Elston [1972] with

bR representing an initial starting value which should be in most applica-

~

for convergence to occur rapidly. As soon as B

tions adequately close to g PR

~R
has been obtained by this procedure, its corfesponding predicted frequency
vector nf(é ) can then be analyzed by the extended GSK approach in the
sense of (ii) in order to compute its estimated covariance matrix YA. Thﬁs,
regardless of whether the estimation of model parameters is considé;ed

from the point of view of the standard GSK procedure, IPF, the extended

GSK procedures, or strict maximum likelihood, a consistent estimator for
the corresponding covariance structure can be determined by using the two-
stage procedure based on b, and V, as formulated in (2.35) and (2.43)

- “<R
respectively, which may be conceptually regarded as predicted pseudo-con-

tingency table oriented Functional Asymptotic Regression Methodology (FARM). .
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To complete this part of the discussion, an estimator for the covar-
iance matrix of the vector of predicted proportions ﬁ = H(g) will be given
to supplement the est;pator Y@ given in (2.15) for the vector of estimated
parameters ?. This result is~obtained via the well-known §-method as
based on the first order linear Taylor series approximating counterpart

function vector

o dr (y)

~~Z
n® - 1® + g

Zggl'[(g - B)1. (2.45)

Thus, it follows that the asymptotic covariance matrix of T is given by

dr .(y) 911( y)
vA(p) = o a5 |y (2.46)

which may be rewritten as
A = ;1_ - ] 1 - t -1 t t
vatm = ¢, - m rtixHXtip, - wortix}h XD, - 7wl
- ¥ ~ - (2.47)

by applying (2.11). Since T is a consistent estimator for 7, a consistent

A
estimator for the covariance matrix of 7 is

A=AA=}_ M TIMA = 7t s _ 2
Vi=Va(m = o {Dp - T TIKHR DG - T TIXN X! [Dp - W TN
v ~ ~ ~ (2.48)

Thus, T and V% can be subsequently used as the basis for other FARM
rnalyses. In this regard, one class of examples would be repeated

measurement research designs as discussed in Koch et al. [1974] where

linear hypotheses

H .

o' Am= 9 (2.49)

are of interest with A being a known coefficient matrix which produces linear

functions of the first order marginal probabilities for. the d-dimensional
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contingency table under censideration. For theek .situations, attention

would then be directed at the estimators

A = A A o
Peaf Yp-avha (2.50)

~

with V_ being assumed to be asymptotically non-singular by suitable con-

-~

struction of A.

2.2 Stratified Simple Random Sampling from Multiple Populations of Known Structure

Ihis section 1is concerned with the covariance structure of estimators
based on log-linear models pertaining to the multivariate relationships among
a specific set of d attributes and their variation across a set of
s sub-populations. 1In this regard, let $=t,2.,,,,8 index the sub-

populations and let j=(j1,j2,...,jd) index the response profiles as in

Section 2.1. If a stratified simple random sample involving n, ,n2 RETTLN ‘

elements from the i=1,2,...,s sub-populations respectively is selected, the resulting

data can be summarized with a (d+l)-dimensional contingency table in which nij

~

denoteg the observed frequency of the multivariate response profile j for the

~

elements from the i-~th sub-population. The observed frequency vectors {E }

where ' ( (2.51)
pert ni,ll...l"'"ni,jljz...jd"'"ni,Lle...Ld) y

are assumed to be statistically independent and to follow corresponding

multinomial distributions with parameters {ni.} and {ﬂi} where

m, = (m seeesT

) (2.52)
q 1,L.L....L

,ot.,‘"‘
i,11,...1 1,373,043 RPN

with representing the probability that a randomly selected
~15373,0 00y

element from the i~th sub-population is classified into the j-th response
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profile. Thus, the relevant product multinomial model for the overall

frequency vector n where

' ' 1 1
n = (31’52""’25 (2.53)
is given by
L, L L .
r Poor.T o 2 1} 1
¢=1I [n ! ‘o ﬂ n !
A SR R R th PR PR 1,333,434
1 2 d
(2.54)

with the s constraints
Ll L2 Ld

vee L M
3,71 4,1 3 1,3435:++34

=1 for i=1,2,...,8 . (2.55)

Each of the sub-populations is assumed to be characterized by log-linear

models as defined in (2.5); i.e.,
My =T ®) = {exp(x E)}/{lr[952(51§)]} (2.56)

for 1=1,2,...,8 with X, being the corresponding sub-matrix for the i-th

sub-population of an appropriate (rs x t) design matrix X where

15' = (&],X5, 00K (2.57)

In addition, each of the Xi are assumed without loss of generality to be

orthogonal to 1r which means that X satisfies
' =
XML, @ I =9 (2.5

where (::)denotes Kronecker product matrix multiplication. Finally,

the separate models (2.56) may be simultaneously expressed for the overall
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response profile vector 7w where

'
11 - (ﬂl, 2,...,118) (2.59)
by the composite log-linear model
m=m(8) = {ggg()j@)} (2.60)

where n= [1rr x I ]{ggg(§§)}

As in Section 2.1, the method of maximum likelihood will be used

to form estimators é for B. From (2.54) - (2.60), it follows that

—g—'— [log ¢] = —g— [n XB—n (log {[1 ® I 1lexp(xp) 1]

48 dB (2.61)
= E'N‘E'P 1 c ® Lo xp (x8)%
“nxn'll @ 1 ]Dn(B)x
DX -1 (@ 0.0 DX

]
where n.=(nl.,n2.,...,ns ) represents the vector of sample sizes from

the respective sub-populations. Thus, if
m(p) = []~)T~r(§)][1'r ® n.] (2.62)

denotes the expected frequency vector for n under the model (2.54) - (2.60),

~

then the maximum likelihood equations for B may be compactly written as

X

= X n (2.63)

3=

where m = m(B); and thus have the same general form as the equations

(2.9) which pertained to a single population. As a consequence of this
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result, it follows that their solution may be undertaken in terms of
computational algorithms which are similar to those given in Section 2.1,
More specifically, IPF may be used to solve the equations (2.63)

whenever X has an hierarchical structure analogous to that outlined in
(2.16) - (2.18) with respect to indicator functions based on the composite
(sub-population x response profilé) indexesb(i,i). In this context,

the scope of such considerations also applies to-situations which allow
the further partition of i as a vector subscript 1=(il,12,...,ic) to
reflect a c-dimensional factor classification of the sub-populations.

The covariance matrix YA(E) for E may be obtained by forming the
negative inverse of the Fish;r Information Matrix via methods like those
shown in (2.11). Thus,

& -1
va(m = -1 g8qgT [Log ¢1} Q.64)

A oy

= {8 x -1

' -1 -1
= X P(Er (:)3')[ Y {E(ﬁ)}]}

-1
' - '
X101, @2, | @ -7 WX
- '
= (Bn T2 T )§
~2
@, -7 m)X

s ~8'~s
L~_js

{ ¥ a. XD x. 1L
= - -m, T
1§1n Jiln T Tl ’

which is directly analogous to the result given for a single population in

(2.14). Since 7= ﬂ(ﬁ) is a consistent estimator for g, a consistent
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estimator for the covariance matrix YE(E) in (2.64) is

s
~ A A -1
= S = ' N = ' 2.65
‘~'§ Yg(l') {izl“i)fimgi ’fil'i]’fi} ( )

s .
If the overall sample size n= Z ni. is sufficiently large that the
~ i=1
vector B can be presumed approximately to have a multivariate normal

~

distribution (which can result from either each of the ni. being large or
from the extent to which the structure of X links the data from the

separate sub-populations together through §), then its further analysis
with respect to various linear hypotheses and models of interest can be
undertaken by the FARM approach described in Sectien 2.1. Moreover,

the corresponding computations can be formulated in terms of the application
of the standard one-stage GSK procedure for such models to the pseudo-
contingency table involving the set of IPF ( or otherwise determined )

predicted frequencies m. In this regard, the analysis is directed at the

functions

Val - a2y - ' ~

SN AR LI XCY (2.66)
Ea '
F, X

where §C is an (rs x u), where u=(rs-s-t), full rank matrix which is
orthogonal to both X and [1rr (:) Is]. Then, the estimator é is
obtained by using the GSK weighted least squares computational algorithms

to fit the model

5,6 - |@o| 8 (2.67)
0
~ut|

to F with weights being based on the pseudo-variance matrix VP where

~
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= [yr -1 -1
Ve = || @ x D )OI K] (2.68)
L o’ R
%e

Finally, the covariance matrix Vﬁ(ﬂ) for the predicted proportions ﬁ = E(g)

for this model (2.60) can be obtained by applying the §-method as outlined

Ay

in (2.45) - (2.46). Thus,

S '
@ = w1 ] oax i, - mm X T M 2.69)

jm=l
where
~— -
@, - mm)¥
~1
_ 1
O, = 17X
H(m) = ~ (2.70)
L
- X
(Pﬂs ESHB)~S

Since ## is a consistent estimator for %, a consistent estimator for the covar-
iance matrix of % is

S
' n Ny -1
Y@ = Y@(@) = [H()] {121 Ei%i[PIi mymylXgd T BRI @271

Other FARM analyses of interest can then be subsequently formulated in terms of

f and V,.

~

In concluding this discussion, it is worthwhile to note that the models
like (2.60) considered here can also be fitted to data from the simple random
sampling situation considered in Section 2.1 by directing attention at the
conditional distribution of one set of attributes (which are the response pro-
files in (2.60)) given the respective fixed levels of another (which are the
sub-populations in (2.60)). Since such conditional distributions have the

form (2.54) if the overall joint unconditional distribution has the form (2.3),
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it then follows that the results (2.61) N (2.71) can be applied to this condi- .
tional situation in exactly the same manner as if the sample had been strati-
fied originally. Thus, with this point of view in mind, the models like (2.5)
pertain conceptually to joint response profile probabiltty distributions
whereas the models like (2.60) pertain to conditional response profile prob-
ability distributions. When the sample is not restricted by stratification,
both of these can be fitted by appi&ing the methods described in Section 2.1
since conditional probabilities are simple ratio functions of joint prob-
abilities for which the structure (2.60) is implied by (2.5). However, if

the sample is stratified, then the observed data only provide: information
about within sub-population distributions; and hence the class of log-linear

models which are applicable is correspondingly restricted to (2.60). This

does not mean that models like (2.5) cannot be fitted in such situations, but

rather that they cannot be fitted in the context outlined in Section 2.1.
The critical issue is that if the relative distribution of the sub-populations
is known in the sense of stratum weights Wl,Wz,...,WS, then the predicted
proportion vector ﬁ can be transformed to an estimator of the joint prob-

ability distribution in the overall population by the matrix multiplication
ﬁJ =[1 ®@D,] ® (2.72)
~ ~r ~ ~

where y' = (wl,wz,...,ws). Thus, the model (2.5) can be used to characterize
joint probabilities in populations from which stratified samples have been
selected to the extent that the structure of the corresponding stratum weight
vector W governs their application to @J in (2,72). Other aspects of this

type of analysis will be considered in the context of "raking' procedures in

sub-section 2.5.
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2.3 Complex Probability Random Sampling from a Population of Known Structure

Many applications where log-linear models are useful involve data
obtained from complex stratified multi-stage cluster random samples. In
these situations, contingency tables are constructed in terms of weighted
frequencies that reflect the extent to which the sample contains elements
with unequal probabilities of selection. As such, they cannot be assumed
to follow either the multinomial distribution (2.1) or the product multi-
nomial distribution (2.54). Moreover, whatever distribution does character-
ize thege weighted frequenciés may not permit straightforward maximum like-
1ihood estimation. However, an alternative heuristic method for fitting
log-linear models to such data is to use the same estimators for weighted
contingency tables as would have been determined if the same identical
table had arisen from a (possibly stratified) simple random sample. Although
such estimators are not optimal, they may be satisfactory for most practical
purposes because of their reasonable statistical properties (consistency
and asymptotic normality) and their ease of computation. Thus, this sec-
tion is concerned with the covariance structure of the log-linear model
estimators which are the solutions to either the equations (2.9) or the
equations (2.63) within the framework of complex probability random sam-
ples.

To be specific, let i = 1,2,...,s index a set of sub-populations of
interest within which stratified random sampling has been undertaken. Let
2 = (jl’j2’°"’jd) index the response profiles as in Sections 2.1 and 2.2.
Let £ = 1,2,...,N, index all of the elements in the i-th sub-population

i

where Ni denotes the total number of such elements. Define element-wise

response profile indicator random variables
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1 if element & from sub-population i is classified as
having response profile j = (jl’jZ""’jd)

N =
1,313,0 - 452
0 otherwise 2.73)

which represent potential observations; and sample design indicator random

variables

1 if element £ from sub-population i is in sample
Uil = (2.74)
0 otherwise
which characterize the possibly multi-stage selection process including
both the nature of any clustering as well as further stratification within
the sub-populations according to other known partitions for either cost
or other purposes. Thus, if ¢i£ = E{Uil} denotes the probability of selec-

tion for element £ in sub-population i, then the data pertaining to the

multivariate relationships among the d attributes and their variation across '
the set of s sub-populations can be summarized in terms of the (d + 1)-th
dimensional contingency table of weighted frequencies

Ny

N,, =N = 7T v

2.
i} Ni’jljz"'jd g=1 ®ig .75

N .
1071,313,- -3 452

Although the {Nij} can be analyzed in their own right, attention here will
be directed at their re-allocation to the respective within sub-population
sample sizes Ny, 50y, se ey, via the transformation

~ _ nio ~
nij —<ﬁ-; Nij (2.76)

~

in order to maintain parallelism with the discussion in Section 2.2.

Given this framework, let @ denote the vector of weighted frequencies

{nij} in the same format as (2.51) and (2.53). 1In addition, let T be the

~
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corresponding vector of probabilities

W, o= - 2 (N } (2.77)
11 i!jljz"'jd Ni i,jljzc..jd
N
1
= —%—- } BN

i ge1 Lhdpdpeecige?

that reflect the average distribution of the various response profiles in the
respective sub-populations. If the vector T 1s assumed to be cha;acterized
by the log-linear model (2.60), then the pertinent vector of parameters

8 can be estimated by solving the equations (2.63) with n being replaced

~

~ 9
by n; i.e., the heuristic estimators B is obtained by solving the equations
2, ~
X'[m(g)] = X'n (2.78)

Since the equations (2.78) implicitly define the estimators g
as a function of the weighted frequencies ﬁ, its covariance matrix can be
determined by applying the §-method as outlined in (2.45) - (2.46).
However, in this case, the required first derivative matrix must be obtained
by applying implicit differentiation techniques. To be specific, if both

sides of (2.78) are differentiated with respect to n and the respective

functions are evaluated at the point

p=EE} = (1 () a.dr (2.79)
it follows that
S L | ] dB 80
- -#——‘NN = = ! 2.
{121 ng X [0 - mmIx )} 5 ly=p} = X (2.80)
s
Thus, the asymptotic (in the sense of large sample sizes n = z n,,
1=1
L2
and extremely large sub-population sizes {Ni}) covariance matrix for B
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is given by

S '
vgw ={]n XD -m 7 ]x 3t X v~x{ Z ni.§ [D - ™ ]x -t

i=1 - 7" TL4g ~ i=1 ~1
(2.81)

where Vﬁ is the sample survey design based covariance matrix of the
linear sample statistics n. As a by-product of the discussion, it can
be noted that (2.81) can be simplified to expression (2.64) for the special

case of stratified simple random sampling.

Since the

- (e BIAL e, H1) (2.82)

=124
[

are satisfactory estimators of the m, (within'the context of this discussion
and the validity of the survey design for such purposes - i,e., absence

of certein sources of non-sampling errors like interviewer variance,

etc.), an appropriate estimator for the covariance matrix of E is
a ' -
Va = Vi@ = { Z ny [Ds - ]x } x v~x{ E n, X, Dz - 7 % x, 37t
= F 1.5 m i.% T1 T4y
B - _ ~i l ~i
(2.83)

where Vﬁ is the sample survey design based estimated covariance matrix
for ﬁ. With this framework in mind, additional analyses can be sub-
”
sequentlv formulated in terms of B and V2 by applying FARM procedures
~ B

~

as described in Sections 2.1 and 2.2.
Finally, it can be noted that Koch, Freeman, and Freeman [1975] and

Brock, Freeman, Freeman, and Koch [1975] discuss. khe analysis of

contingency tables based on complex sample survey data from a somewhat

different point of view. 1In this regard, they consider the application .

of FAR methodology to certain general types of ratio estimators for situations

where the pertinent covariance matrix is estimated by balanced repeated

¢ .

BEPRS .
[z

-
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replication procedures as described in Kish and Frankel [1970] and McCarthy

[1969].

2.4 Sampling from Populations of Unknown Structure

In many situations where log-linear models are of interest, the
specific nature of the cérresponding X matrix is not known a priori. ./hen
the sample sizes nlo,nz.,...,ns. from the respective sub-populations are
very large in the sense that nearly all of the individual cell frequencies
of the contingency table under study exceed 5 (in expectation), such
structural {jgnorance causes no real difficulty because the interactive
model building strategies described in reference to (2.28) - (2.33) can
be applied de novo by formulating the first stage of analysis in terms of
the constrained identjty model

E(r—l)
X

~CI = —l' Es
~(x-1)

which in combination with (2.55) involves no reduction in dimensionality

(2.84)

for the characterization of T since both 7 and 8 are s (r-1)-dimensional.
Thus, by definition, such models provide a perfect fit to the data with
the corresponding implied vector of expected frequencies being identical

to the observed frequencies; i.e.,

By = 2y = 2 (2.8)

Accordingly, various linear hypotheses of the type (2.28) can be tested
via (2.29) to identify appropriate reduced models X, which can be fitted
via (2.30) - (2.33) and can then be refined to an overall final model §FM
by the appropriate continuation of the successive reduction precess.

Once this has been done, then the corresponding WLS estimators based on
the standard GSK procedures can be used either in their own right or as

the starting values for the determination of corresponding maximum
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likelihood estimators by successive approximation numerical methods
(e.g., those in Kaplan and Elston [1972]). However, as indicated
previously (and also in Koch and Tolley [1975]), the choice between
these two methods of estimation in the context of such very large sample
sizes is largely a matter of personal tastes and computational convenisnce
because their respectivg results are suitably similar for most practical
purposes in the sense that
1. statistical tests of significance based on these two methods
of estimation yield similar conclusions at the a=0.05 level
2. for models which provide satisfactory fits, the specific
estimators from the two procedures tend to agree within the
limits of accuracy implied by their standard errors (i.e., the
difference between them does not exceed either of their
separate estimated standard errors)
On the other hand, for those situations where many of the cell
frequencies for the contingency table under study are small (i.e., less

8+
than 5 in expectation) even though the overall sample size n= 2 »,
i=1 =

is large, the log-linear model X._ cannot be validly analyzed within the

~CI
scope of the standard GSK methodology because neither the observed
frequency vector n nor its logarithmic transform f= lgge n (ignoring
all the difficulties associated with O-frequencies) can ;e assumed
approximately to have multivariate normal distributions. Thus, an
alternative approach is required. For this purpose, one potentially
effective strategy is to analyze the data in terms of reasonable pseudo-

models §PM which are based on the "most important" effects with all other

effects like higher order interactions and/or gradient irregularities

in the categorical scales for the respective attributes (e.g., the non-
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linear effects associated with quantitative attributes) being excluded.
Of course, the definition of "most important" is necessarily unclear
because of the unknown structure of the population. However, either
substantive considerations or variable screening procedures (e.g., as
described by Clarke and Koch [1975] in terms of statistics based on
marginal tables and/or the combination of sub-tables) can often be used
to identify those variables which must be included simply because they
are variables of practical interest., Moreover, other variables like
certain lower order interaction effects may also be included provided
that once a reasonable pseudo-model X has been formulated, the sample
size n is sufficiently large to justify the assumption that the corresponding

~

estimated parameter vector BFM

distribution. Thus, the sample size places a definite limitation on the

approximately has a multivariate normal

number of effects that can be put into X in the sense that the inclusion
of too many effects restricts such analysis to descriptive purposes only
by contradicting the multivariate normality assumption on which inferences
regarding the corresponding estimators are based. In summary, %EM

should include as many "most important" effects as possible within the
scope of these sample size considerations.

Although such pseudo-models X_  do not in general characterize the

m
vector of probability parameters m, they may nevertheless be fitted to

the observed frequency vector n by solving the equations (2.63) to
estimate the corresponding parameters gB&' However, the resulting
estimators EPM' are not maximum likelihood estimators unless §PM
fortuitously happens to be identical in structure to the true model ETM'

(m) for cannot be obtained

For this reason, the covariance matrix V éPM

~Bem
by the Fisher Information Matrix approach (2.64), but instead must be
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derived by a direct application of the S-method similar to that outlined .

in (2.78) - (2.80). As a result, it follows that

Vg (0 = (BT (8p)) ALLNCI (2.86)
where
BT (B = ) oy. ’f;[l)n*(ap )" {7y B Hy By 1 '351}—1’5'_’
= . (2.87)

x *
Vn is the covariance matrix of n, and =¥ (BPM) =T [BPM(H)] is the vector

~

of pseudo probability parameters corresponding to the pseudo-model XPM'

Thus, if the true model §TM is contained within_XPM(i.e., the columms

of §TM are linear combinations of the columms of §PM)’ then

*
m [BPM(H)] = T so that (2.87) becomes identical to (2.81) for general

'samples and to (2.64) for stratified simple random samples. Otherwise, as long as.

*
Xpy includes the "most important" effects, T [Bpy(M)] will be sufficiently
*

X A
close to T that their corresponding estimators %PM =T [BPM] are also
reasonable estimators of T in moderate size samples. In this sense,

EPM can provide an effective basis for the further analysis of the data

in such situations by FARM methodology with V%?M(ﬂ) being estimated by

* *
replacing T [§PM(H)] with @PM and replacing Yn by a similarly appropriate

~

estimator Vn. These considerations as well as other statistical issues

pertaining to pseudo-models are discussed in a somewhat different context

pertaining to generalized measures of locatiom or association in Koch, Tolley,

and Freeman [1976].

2.5 Marginal Adjustment (Raking) of Contingency Tables

Whenever a sample is selected from a specific population, two types .

of information are obtained:

A. the marginal distributions of certain subsets of attributes WITHIN

the respective sub-populations,

[ ———
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B. higher order measures of association which reflect the relation-
ships among the attributes in the sense of interactions ACROSS
the marginal subsets in (A).
In this context, Type (A) information will be called "allocation structure"
while. Type (B) information will be called "agsociation structure." W.th
these considerations in mind, the sample can be adjusted to provide esti-
mators for other target populations of interest if the following assump-
tions hold:
1. the target population has KNOWN "allocation structure' via census
or other sample survey data,
2. the target population has the SAME ''association structure" as
the sampled population.
Examples of such target populations include
a. various local (county or state) sub-divisions of a nationally
sampled population for which local data do not provide suffi-
ciently reliable estimators, if any at all;
b. other local, national, or international target populations which
may or may not partially overlap a sampled local population.
More specifically, let E denote the vector of log-linear model based
predicted probabilities for the respective response profiles i within the
respective sub-populations 1 = 1,2,...,8. Let ﬁT denote the corresponding
vector to be determined for the target population. Let éT denote a matrix
of coefficients whose columns generate the pertinent marginal distribu-
tions comprising the known "allocation structure," and let §T denote their

corresponding known values. Thus, assumption (1) means that %T satisfies

Ar ﬁT =& (2.88)

~

where, without loss of generality, éT will be regarded as having full rank
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by deletion of unnecessary rows. Let X denote the log-~linear model on which
|

T is based and let XC denote an ortho-complement matrix to [lrr X ES),X] "

which is also necessarily orthogonal to AT because of assumption (2) and
the nature of the definitions (A) and (B) of "allocation structure" and "asséciation
structure." Finally, let K denote an ortho-complement matrix to [AT?X]'

Then, assumption (2) via the formulation (2.66) - (2.67) implies that ﬁ

-

satisfies
K' ”~ K' ~ (K'x)é
X, {log (M)} = X} {log (M} = 0 (2.89)

where § is the vector of estimated parameters which corresponds to the
model § and i. Given this formulation, the estimators ﬁ may be deter-
mined (provided assumption ( 2) is true) by applying IPF to adjust the
initial within sub-population conditional probability estimator ﬁ or its
joint probability analogue 7. via (2.72) to conform successively with the
X @
marginal configurations corresponding to (2.88) since such operations |
preserve the "association structure" required by (2.89). Such marginal
adjustment uses of IPF are sometimes referred to as ‘raking' procedures.
To obtain the covariance matrix of the raking estimators ﬁT’
S-method as outlined in (2.45) - (2.46) will be used with the required

the

first derivative matrix being obtained by implicit techniques. In this

regard, if both sides of the equations (2.88) - (2;89) are differentiated

with respect to é, it follows that

*r | 9
4
kot == kx| (2.90)
SN ' X
-1
X'D 0
° T "

The equations (2.90) may be solved to yield
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— ¥
X K'DLIK, K'D'lxC 1 0|
$1 (arpzia gL | ST ~T \
— = |Da A’D , [K,X K'X
48 ~ET§T ~T-Ap-T =7~ xonk, xinztx v
~ ~C-R_~' ~C<ft_~C
~T ~T 0
L — 4 ~d(2.91)
K'Dﬂ K K'Dﬁ XC
DA A K'X
= [K, X.] T
PR -1 -1
' \
§c9ﬂT§ §CQﬁT§c 0
L'—'—~ ~--—.— )
Thus, if T denotes the target population probability parameter vector,

then the covariance matrix for its estimator ft. is given by

S —_—
K'D;lK, K'D;lxC -1
~olrT T T K'X
V. (m_;m) = [K,X.] T Hva(m XK, 0]
BT~ ot ol B | , BRI 2 L
T XD Ko Xn Xo| | 0 )

where V3

B

~

sampled population probability vector T as given for general samples in

(7) is the covariance matrix of the estimator B pertaining to the

(2.81) and for stratified simple random samples in (2.64). As in the pre-
vious sub-sections, a reasonable estimator for the covariance matrix

7) is obtained by replacing 7, with ft., and

~

V4 (m) with the appro-

‘n’ .
YﬁT(NT’ A

priate Vg in (2.92). Finally, this discussion has assumed that §T is a

vector of known constants. However, these results may be extended

to account for the case where £ 1is replaced by an estimator £, by

applying implicit differentiation to (2.88) - (2.89) with respect to

"

ET’ augmenting (2.91) ac

~

cordingly, and substituting the overall

first derivative matrix into (2.92) with Vg(g) being. replaced by the

- n 8]
joint covariance matrix of B and §T' Otherwise, for an alternative
formulation of the covariance matrix Va (WT;ﬂ) from a somewhat different
T~

point of view, see Causey [1972].
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Thus, on the basis of these considerations "raking'" estimators can
also be further analyzed by FARM procedures. In this regard, the fol- ‘
lowing special case is of interest both for purposes of simplification

as well as clarification of the nature of a potentially typical application.

>u: the target population is identical to the sampled popuiétion which
is the case when the "allocation structure' of the population under
study is known a priori (e.g., samples of subjects from registra-
tion systems like licensed drivers)

b. simple random sampling is used

c. the log-linear model for @ involves no reduction; i.e., § is any matrix

which is an ortho-complement to lr; and thus XC is not defined.

Gilven the conditions (a) - (c), it can be verified that the covariance

matrix in (2.92) becomes

~

1 -
VﬁT(E) - K[K'D ™ K] "K (2.93)

3. EXAMPLES

In this section, four different types of examples involving log-linear
models are presented. Section 3.1 is concerned with data from a single popu-
lation, but pertaining to a repeated measurement experiment. Log-linear models
are used to characterize the association structure among the responses to three
drugs, prior to the comparison of their equivalence. Section 3.2 deals with a
multiple population problem involving the relationship between driver injury in
automobile accidents and selected variables characterizing the accident environ-
ment. Attention here i1s also directed at philosophical issues pertaining to the
interpretation of model parameters. In Section 3.3, an incomplete contingency
table involving paired comparison data is considered with emphasis being given

to the problem of model formulation for such situations. Finally, Section 3.4

illustrates the reduction in variance which can be achieved by using “raking"

procedures to estimate cell probabilities.
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3.1 A Single Population Drug Comparison Example

The hypothetical data in Table 1 have been previously analysed in
several references including BFH (pages 308-309), GSK, Koch and Reinfurt
[1971], and Koch et al. [1974] to illustrate the construction of test
statistics for the comparison of first order marginal probabilities ir
the setting of repeated measurement experiments. They are being reanal-
yzed here to demonstrate how such tests can be undertaken in terms of
log-linear model based predicted values for cell probabilities which have
been obtained via (2.50) by excluding certdin "unimportant" higher order
interaction.

The experimental design for this example involves n = 46 subjects
from s = 1 population, each of whom is observed with respect to the occur-
rence of a favorable response for each of three treatments (e.g., having
a positive effect on a bacteria culture for some specific type of throat
infection). Thus, there are d = 3 attributes which represent the three
drugs (Drug A, Drug B, and Drug C); and each of these has L = Lg = 2
response categories so that there are r = Ld = 2% = 8 possible multivariate
response profiles.

Since an appropriate log-linear model for these data was not known
a priori, the first stage of analysis is formulated in terms of the complete

(or saturated) hierarchical model

——

11111 1 1

1 1 1-1-1-1-1
1-1-1 1 1-1-1
1-1-1-1-1 1 1

3=-1 1-1 1-1 1-1]° (3.1)

1 1-1-1 1-1 1
1-1 1 1-1-1 1
.11 111 14

whose respective columns are defined by the indicator functions (2.16) - (2.17)
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1. TABULATLON OF RESPONSES TO DRUGS A, B, AND C

Response profile for Drug A vs Drug B vs Drug C

Drug A F F F F U U U U
Drug B F F U U F F U U
Drug C F u F v F u F U
Overall group observed
cell frequency 6 16 2 4 2 4 6 6

Observed proportions 0.130 0.348 0.043 0.087 0.043 0.087 0.130 0.130
Estimated s.e. 0.050 0.070 0.030 0.042 0.030 - 0.042 0.050 0.050

F denotes favorable response; U denotes unfavorable response.

2. A 'IV'AI'IS'J‘ STATISTICS FOIl LOCG-LINEAR MODE], EFFECTS

Complete model §H Reduced model §R2
Source of variation D.F. GSK test GSK test FARM test
statistic statistic statistic
Drug A main effect 1 0.47 0.71 0.79
Drug B main effect 1 0.47 0.71 0.79
A x B interaction 1 7.71%% 9.08*% 8.59%%*
Drug C main effect 1 2.72 _ 3.74 4.,12%
A x C interaction 1 0.47 (--) (--)
B x C interaction 1 0.47 (--) (--)
A x B x C interaction 1 0.08 (--) (--)
Residual lack of fit 3 --) 1.73 1.75¢t

* means significant at a = .05;
** means significant at o = .01;
(--) corresponds to sources of variation which are not defined.

t This is Log-likelihood Ratio Chi-Square Statistic from ECTA .




and pertain to the corresponding effects shown in the rows of Table 2.
Before proceeding further, it should be noted that several of the observed
cell frequencies in Table 1 are very small (i.e., less than 5); and this
consideration implies that the overall sample size n = 46 is not really
large enough to ensure the statistical validity of all the results based

on §H' Nevertheless, such analysis ig of interest as a '"screening pro-
cedure" for identifying "unimportant" sources of variation for elimination
from the model in terms of their corresponding QC-statistics. These quan-
tities, which are given in the third column of T;ble 2, suggest that the

A x B x C interaction is clearly "unimportant" and can be excluded from the
model. Although the small sample size for these data does not permit a
valid probability statement to be attached to this decision, it can be
justified from a practical point of view by arguing that such test stat-
istics increase linearly as a function of the sample size n; and thus,

this source of variation would still have been "unimportant" in a relative
sense, even if the sample size had been sufficiently large that its test
statistic could have been regarded as approximately having a chi-square dis-
tribution under the corresponding null hypothesis; e.g., if the cell fre-
quencies in Table 1 were all multiplied by 3, then the sample size would
have been large enough to exclude the A x B x C interaction effect from the
model on the basis of the non~significance (o = .25) of its test statistic
(which in this case, would be 3 times as large as the corresponding result
in Table 2). 1In summary, the primary objective of this first stage of anal-

ysis is to indicate that a reasonable reduced model for the data in Table 1 is

| m—e —

1111 11
11 1-1-1-1
1-1-1 1 1-1
1-1-1-1-1 1
17 ]-1 1-1 1-1 1]° (3.2)
1 1-1-1 1-1
1-1 1 1-1-1
-1-1 1-1 1 1

—_— —)
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which is obtained from }fﬂ by excluding the A x B x C interaction effect. ‘ |
In view of the previous discussion, §R1 will be regarded as a legitimate
model as opposed to a pseudo-model in the sense of Section 2.4.

Since the log-linear model §Rl has the hierarchical family structure
(2.18), it can be fitted to the data in a maximum likelihood framewcrk by
using IPF in terms of the A vs B, A vs C, and B vs C two-way marginal con-
figurations. More specifically, the University of Chicago computer program
ECTA is used for this purpose, and the corresponding Log-Likelihood Ratio
Chi Square Statistic for the goodness of fit of this model is QL(§R1) = 0.08
with D.F. = 1, which is comparable to the GSK complete model result in
Table 2, which is based on the linearized Neyman Chi-Square criterion. How-
ever, it should also be interpreted with caution because the sample size is
not large enough for it to be regarded as approximately having a chi-square
distribtuion because its asymptotic behavior is linked to the individual cell ‘
frequencies. On the other hand, the estimated parameters which are obtained
on the basis of §R can reasonably be presumed as approximately having a mul-
tivariate normal distribution because their asymptotic behavior is linked
to the cell frequencies for the pertinent marginal tables which are fitted
by IPF and all of these can be noted to exceed §.

Aside from these considerations, the model §Rl is, for the most part,
of only intermediate interest; and thus, estimated parameters are not shown.

Alternatively, more specific attention is directed at the reduced model

1T 1 171]
11 1-1
1-1-1 1
1-1-1 -1
2 = -1 1-1 1l ¢ (3.3)
1 1 -1-1
-1-1 1 1
-1-1 1-1)

which is obtained from XH by excluding the A x C and B x C interaction
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effects as well as the A x B x C interaction. The use of this model can

be initially motivated by appealing to the same types of arguments which led
to §R1' However, more rigorous justification can be based on the Log-
Likelihood Ratio Chi-Square Statistic for the fit of §R2 relative to §Rl'

In this regard, §R2 is fitted to the data in a maximum likelihood framework
by using IPF in terms of the A vs B and C marginal configuratioms, for
which the corresponding Log-Likelihood Ratio Chi-Square Statistic for good-
ness of fit is QL(ERZ) = 1.75 with D.F. = 3. Hence, the Log-Likelihood
Ratio Chi-Square Statistic for the fit of §R2 relative to §Rl (i.e., the

exclusion of the A x C and B x C interaction effects from XRl) is

QL(§R2|§R1) = Q (Xp,) - Q (¥;) = 1.75 - 0.08 = 1.67 (3.4)

with D.F. = 2, which is non-significant (o = .25). Thus, the log~linear
model §R2 provides a satisfactory characterization for the distribution of
the data in Table 1.

The IPF predicted frequency contingency table corresponding to the
model §R2 is given in Table 3. As indicated in Section 2.1, the maximum

likelihood estimator é

Bro for the parameters associated with §R2 and its cor-

responding estimated covariance matrix Vj can be determined by applying
' ~Br2

the GSK weighted least squares computational procedures (2.36) - (2.44) to

these IPF predicted_ frequencies. Thus, it follows that

0.152 B 2.8883 Symmetric
5~ _ |o0.152 va = |"1-2784  2.8883 (3.5)
B2 = | 0.408| » B, T |-0.2367 -0.2367 2.8883 - (3.
-0.314 ~ | 0.0000 0.0000 0.0002 2.3958|

The estimators §R3

in a more formal fashion in Table 4 under the heading "FARM Analysis."

A

Corresponding test statistics for the respective components of BRZ’ which

and their respective standard errors are also displayed
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3. IPF LOG-TLINEAR MODLL PREDICTED CONTINCENCY TABLE

Response profile for Drug A vs Drug B vs Drug C

Drug A F F F F U U U U
Drug B ¥ F U u F F U o
Drug © F U F U F U F U

Overall group
IPF log-linear
model predicted
cell frequency

7.65 14.35 2.09 3.91 2.09 3.91 4.17 7.83

F denotes favorable response; U denotes unfavorable response.

4., ESTIMATED PARAMETERS FOR REDUCED LOG-LINEAR MODEL X

~R2
GSK Analysis FARM Analysis

Parameter Estimated Estimated Estimated Estimated
parameter s.e. parameter S.e.
Drug A main effect 0.144 0.171 0.152 0.170
Drug B main effect 0.144 0.171 0.152 0.170
A x B interaction 0.513 0.170 0.498 0.170
Drug C main effect -0.305 0.158 -0.314 0.155

5. LOG-LINFAR MODEL PREDICTED PROPORT1ONS BASED ON X s e

R2
Response profile for Drug A vs Drug B vs Drug C

Drug A F F F F U 8] U U

Drug B F F U U F F U U

Drug C F U F U F U F U
MLE estimates 0.166 0.312 0.045 0.085 0.045 0.085 0.091 0.170
Estimated s.e. 0.042 0.059 0.020 0.0.5 0.020 0.034 0.029 0.046
GSK estimates 0.167 0.308 0.045 0.083 0.045 0.083 0.094 0.174
Estimated s.e. 0.046 0.055 0.020 0.033 0.020 0.033 0.027 0.051

F denotes favorable response; U denotes unfavorable response.
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are based on the FARM statistic (2.29), are given in the last column of
Table 2. These latter results imply that no further model reduction is
appropriate from the hierarchical family point of view since the signif-
jcance (o = .01) of the A x B interaction implies that both this source
of variation and the underlying main effects for Drug A and Drug B be
maintained in the model. Otherwise, predicted values ﬁ = H(E) for the
probabilities of the respective response profiles and their corresponding
estimated covariance matrix V based on (2.48) are obtained by using the
compounded function methods o; Forthofer and Koch [1973]. For this pur-

pose, f is computed according to the matrix formulation

# = A, {expla, (logla,lexp(a,B)IDIY , (3.6)
where
Ay = Xgor 4 " » Ay = [Igs -1g), 4, =14 (3.7)
so that V. can be determined as the matrix product
Vo = AD A3D;lA2D A1V§AiD AéD_lAéD A, (3.8)
SEER S £ 007 Rt A Tl bt Iatnitor Rt &
where
7y = @B, 2y = Ayyys 3y = emisyllog(a)l) 3.9

These computations can be performed by the computer program GENCAT which

is documented in Landis, Stanish, and Koch [1975], and specific results for
the predicted proportions ﬁ and their estimated standard errors are given
in Table 5. Corresponding first order marginal probability estimators

based on (2.49) - (2.50) with

11110000
A=1(11001100 (3.10)
~ (10101010
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are given in Table 6 together with an appropriate QC—statistic. Thus, it
follows that there are significant (o = .05) differ;nces among the three
drugs, with the probability of a favorable response being less for Drug C
than for Drug A and Drug B which are essentially the same.

For purposes of comparison, Table 2 and Tables 4-6 also contain anal-
ogous results based on the applieation of the standard one-stage GSK approach
(2.36) - (2.44) to the actual observed data in Table 1. For the most part,
these quantities are very similar to their maximum likelihood based counter-
parts. Thus, even though the sample size is not large enough to support
the validity of the standard GSK approach for fitting the log-linear model
§R2 from a rigorous point of view, it still may be regarded as being of
practical interest either in its own right or as a procedure for obtaining

reasonable approximations for maximum likelihood results.

Finally, Table 6 contains estimates and test statistics based on
applying the GSK procedure directly to the observed first order marginal
proportions without the use of any log-linear model. This type of analysis
is described in more detail in GSK, Koch and Reinfurt [1971], and Koch et al.
[1974]}. 1Its principal advantage is that no underlying log-linear model
assumptions or preliminary testing are required for its use. Moreover,
the sample size is large enough to support the validity of such statistics
for the data in Table 1 since their asymptotic behavior is linked directly
to the first order marginal configurations on which they are based. On the
other hand, the test statistics associated with this direct approach may
not be as powerful as those based on a preliminary log-linear model like §R2'
This type of conclusion is suggested by the results given in Table 6, but

additional research is required before a definitive statement can be made .

with respect to this issue.




6. ESTIMATES AND TEST STATLISTICS FOR COMPARING DRUGS
Mareinal Model Reduced Model XRz

T GSK Analysis GSK Analysis FARM Analysis
Drug Estimated . Estimated . Estimated Estimated

proportion Estimated proportion Est;mzted proportion S s.e.

favorable S.€- favorable o favorable
Drug A 0.609 0.072 0.604 0.073 0.609 0.072
Drug B 0.€09 0.072 0.604 0.073 0.609 0.072
Drug C 0.348 0.070 0.352 0.072 0.348 0.070
Q. statistic
S 6.58 8.54 7.83
(D.F. = 2) for
comparing drugs

7. TATZULATION OF DRIVER INJURY
PY WEATUER, TIME OF DAY, AND MODEL YEAR

FOR 1966, 1968-1972 NORTIH CAROLINA, SINGLE VEHICLE ACCIDENTS
INVOLVING NON-DRINKING MALES
AND OCCURRING AT MEDIUM SPEED IN AN OPEN COUNTRY LOCATION

Sub-population

Observed frequencies
for driver injury

IPF predicted frequencies
for driver injury

Weather Time Model

year Not severe Severe Not severe Severe
Good Day -1966 5633 898 5621.65 909.35
Good Day 1967-1969 2371 259 2371.18 258.82
Good Day 1970-1973 1022 100 1022.05 99.95
Good Night ~1966 7583 1526 7584.64 1524.36
Good Night 1967-1969 ~ 3314 451 3315.38 449.62
Good Night 1970-1973 1308 168 1316.09 159.90
Bad Day -1966 3915 428 3924.01 418.99
Bad Day 1967-1969 2006 149 2010.16 144.84
Bad Day 1970-1973 700 43 697.95 45.05
Bad Night -1966 3793 504 3793.70 503.30
Bad Night 1967-1969 1924 166 1918.27 171.73
Bad Night 1970-1973 718 51 711.90 57.10
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3.2 A Multiple Population Investigation of Driver Injury in Automobile
Accidents

This example is based on a research project undertaken at the Univ-
ersity of North Carolina Highway Safety Research Center by Stewart [1975]
for the purpose of studying the relationship between the severity of driver
injury in automobile accidents and selected variables characterizing the
accident environment with respect to crash configurations, location, time,
and weather conditions, automobile type, and driver demographic status. In
this regard, the data in Table 7 are from a specific, isolated modular com-

ponent of that investigation which involved the accident (sub-)population with

Single Vehicle,

Crash Configuration = Medium Speed

Location = Open Country (3.11)

Non-Drinking (When Accident Occurred),

Driver Demographic Status = Male

Calendar Year of Occurrence = 1966 or 1968 - 1972

and its further partition into more refined sub-populations corresponding

to the cross-classification of Weather (Good vs Bad), Time (Day vs Night),
and Model Year (Before 1966 vs 1967-1969 vs 1970-1973). The attribute under
study is whether or not the driver experienced "severe" injury where "severe"
means either an "A"-injury (serious visible injury - a bleeding wound, dis-
torted member, or any injury that requires the victim to be carried from the
scene) or a '"Fatal'-injury (an injury that results in death within 12 months
of the accident). Given this framework, the questions of primary statistical
interest pertain to the relationship between the conditional probability of
"severe" injury and the "Weather," "Time," and "Model Year" characteristics
of the accident. Thus, the analysis will be formulated in terms of the

multiple population log-linear models in Section 2.2. For this purpose,

the data in Table 7 are regarded as coming from a "stratified simple random
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sample" from a hypothetical super-population of accidents (which might have
been) within which driver injury severity is a stochastic outcome variable
(which might have been different from what it actually was with respect to
a series of conceptually repeated trials for the same accident environment)
even though they actually have come from an observational (or convenience
sample) of all North Carolina police reportéd accidents for the years 1966
and 1968-1972. The validity of this basic assumption does not really affect
the specific nature of the analysis to be given subsequently, but rather its
interpretation either in an inferential context with respect to the hypo-
thetical super-population of accidents (if this point of view is realistic)
or in a limited descriptive context restricted to the observational popula-
tion under study. Other aspects of these philosophical considerations with
respect to the super-population interpretation of observational data are
discussed in Koch et al. [1975].

As was the case with the example in Section 3.1, an appropriate log-
linear model for the data in Table 7 was not known a priori. For this rea-
son, the first stage of analysis was formulated in terms of the complete

(or saturated) hierarchical model

|

T 11110101010

1 11101010101

111 1-1-1-1-1-1-1-1-1

1 1-1-1 1 0 1 0-1 0-10

1 1-1-1 01 0 1 0-1 0-1 _

3 |1 1-1-1-1-1-1-1 1 1 1 1| _[+0.5 3.1
%= [;;;J @71 111 1 0-101 0-10 ~|-05® 3.12)

1-1 1-1 01 0-101 0-1

1-1 1-1-1-1 1 1-1-1 1 1

1-1-1 11 0-110-1010

1-1-1 1 0 1 0-1 0-1 0 1

1-1-1 1-1-1 1 1 1 1-1-1

whose respective columns pertain to the corresponding effects shown in the

rows of Table 8. Tests of significance for these effects are undertaken by
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fitting the model XH via the standard one-stage GSK approach (which is iden-
tical to the maximum likelihood approach since XH is complete) and using
QC—statistics. However, instead of using the formulation outlined in

(2.66) ~ (2.68), this analysis was directed at the logit functions

F = F(p) = Kllog (A p)]

where (3.13)

A=1,, K=1[+ -1] @ I,,

~

because the model (3.12) for 7 induces the asymptotic linear regression model

Fm = EE@D - Xy e

onto the observed logit functions F. Hence, the GSK estimated parameter™

vector b for B may be determined by fitting the model XHL to the logit func-

tion vector E by weighted least squares. The QC—statistics for testing
various hypotheses pertaining to § within the f;amework of this model are
given in the third column of Table 8. These results suggest that only

the main effects for Weather, Time, and Model Year are significant (o = .01).

Thus, the analysis is directed at the reduced model

1 1 1 1 o] )

11101

11 1-1-1

1 1-110

1 1-1 0 1

+0.5 1 1-1-1-1f _[+0.5

’fR‘J;J,s ®l1-111 0 'Eo.—g-l@@ XL (3.15)

- - 1-1 1 0 1

1-1 1-1-1

1-1-1 1 0

1-1-1 0 1

1-1-1-1-1]

and its logit analogue

F(m) = gé{b:(g)} = X By - (3.16)



8. TEST STATISTICS FOR LOG-LINEAR MODEL EFFECTS

[ "

Complete model §H

Reduced model §R

Source of variation D.F. GSK test GSK test FARM test
statistic statistic gtatistic
Weatler 1 79.74%% 146.10%* 146 .67%*
Time 1 16.25%* 46.52%% 46.53%*
Weatler x time 1 0.61 --) --)
Model year 2 135.90%*% 157.79%* 158.26%*
Weather x model year 2 1.02 (--) (--)
Time x model year 2 0.12 (--) -=)
Weather x time x model year 2 0.13 (-=) (--)
Model year: -1966 vs 1967-1969 1 91.73%* 107.91** 107.93%*
Model year: =-1966 vs 1970-1973 1 65.14%* 74.12%% 74,.74%%
Model year: 1967-1969 vs 1970-1973 1 3.63 2.84 2.93
Residual lack of fit 7 --) 1.98 '1.99+

* means significant at a = .05
** means significant at & = .01
(--) corresponds to sources of variation which are not defined

+ This is Log-likelihood Ratio Chi-Square Statistic from ECTA.
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The standard one-stage GSK estimators b, for BR and its corresponding esti-
mated covariance matrix Vg can be determined by fitting the model XRL

~bp ~
directly to F by weighted least squares. Thus,

— ot ey

2.2190 5.5506
-0.2075 -1.1858 2.9461 Symmetric
= | 0.1086] , w==| 0.3979 0.2279 2.5355 x 1074,
~0.2983 ~b 1_3.8139 -0.0141 -0.0049 6.1373
0.0949 ~1.4226  0.1466 0.0067 0.2028 8.6008

(3.17)
Corresponding QC—statistics for testing hypotheses pertaining to §R fire
given in the fo;rth column of Table 8 and indicate that no further reduc-
tion is necessary (except for possibly re-structuring the model year effects
to show no difference between the 1967-1969 vehicles and the 1970-1973
vehicles). Finally, predicted values f. for the conditional probabilities
of severe injury based on §-can be formulated in the compounded function

framework of Forthofer and Koch [1973] as

Tg = Tg(® = 4, {expla, (log 1A, [exp A, BID D) (3.18)
where
A, = A =91 I A, = [1 -1] I A, =1
Al =X A= 1| ® L1y 83 ® I, 44,= I
(3.19)

with the corresponding estimated covariance matrix being obtained via
matrix product operations analogous to (3.8). The estimatorszr.S obtained
by this approach and their corresponding estimated standard errors are
given in the sixth and seventh columns of Table 9. Similarly, the fourth
and fiftl columns of Table 9 contain the original observed proportions
(which pertain to the model §H) and their estimated standard errors. Thus,
it can be noted that the predicted proportions i- are very similar to the

original observed proportions (as would be anticipated on the basis of the

acceptable goodness of fit statistic in Table 8), but have substantially
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smaller estimated standard errors. This gain in statistical efficiency is ‘
one of the major advantages of the log-linear modeling process.
Alternatively, the model §R in (3.15) can be fitted by maximum like-
lihood methods. For this purpose, the observed data are initially trans-
formed to IPF predicted frequencies by fitting the Weather vs Time vs Model
Year, Weather vs Severity, Time vs Severity, and Model Year vs Severity
marginal configurations. Then the maximum likelihood estimators §R and its

corresponding estimated covariance matrix V, are obtained by applying the

~R
same GSK procedures used to determine b and its companion results to the

contingency table based on these predicted frequencies. Thus, it follows

that
2.2197 5.5157
n -0.2077 -1.1506  2.9408 Symmetric -4
Bg= | 0.1086| , Vs =| 0.4095 0.2014  2.5322 x 10 .
N -0.2989 ~§R -3.7857 -0.0679 -0.0091 6.1319
0.0945 -1.3982 0.1176 0.0254 0.1933 8.5911

(3.20)

Corresponding QC—statistics based on BR are given in the last column of

Table 8; predicted values for the conditional probabilities of severe injury

based on é

R and their corresponding estimated standard errors are given in

the last two columns of Table 9. Thus, it can be seen that the maximum
likelihood approach and the standard one-stage GSK approach yield very
similar results for this example. However, this conclusion could have been
anticipated in view of the asymptotic equivalence of these two procedures
and the very large sample #%favolved with this example. As stated previously,
when the sample size is sufficiently large to support the validity of the
standard GSK approach, the choice between it and maximum likelihood is more

a matter of personal taste and computational convenience than statistical ‘

efficiency.
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A more critical issue is the interpretation of the log-linear model
itself and its justification for specific problems. For these data, a log-
linear model can be justified by regarding the relationship between Injury
Severity and the accident environment variables in the context of a gen-
eralized "dose-response' relatiomship analogous to those used in quantal
bioassay models. This point of view gains further support from the fact
that no interaction is detected among the variables Weather, Time, and Model
Year with respect to their effects on Injury Severity in this framework.
Thus, the conceptual "dose" is an additive function of the pertinent main
effect parameters for the respective sub-populations. Moreover, these
parameters can be interpreted as measures of relative risk which are asso-
ciafed with the specific effects of one of the actident environment vatiables
after controlling for the others. On the other hand, the major disadvantage
of the use of log-linear models for the analysis of conditional distributions
like those under study here is that researchers often prefer to interpret
interaction directly with respect to the quantities being analyzed rather
than some transformation of it. For this reason, the actual analysis given
in Stewart [1975] uses straight linear models which are fitted by the GSK
approach directly to the observed proportions of severe injury. As with the
log-linear model, only the main effects for Weather, Time, and Model Year
are important so that higher order interaction effects can be excluded.
However, in this framework, such main effects can be interpreted directly
as increments (or decrements) in the estimated probability of severe injury
corresponding to the respective accident environment variables. Moreover,
if interaction is present, it can be readily handled in this framework by
partitioning the interacting variables into components which correspond to

specific combinations of other non-interacting variables and then linking
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them back together again. On the other hand, interaction with respect to the
log-linear model tends to cloud the relative risk interpretation of the
parameters and, as a consequence, also contradicts its "dose-response"
justification. Thus, caution should be used in interpreting the results
based on log-linear models in such situations.

In summary, both log-linear models and straight linear models may be
regarded as appropriate analytical strategies for many situations involving
the relationship between conditional probabilities and their corresponding
control variables. The major advantage of the straight linear model is
ease of interpretation for its parameters; the major disadvantage 1is its
possibly poor or uncertain mathematical properties for small samples for
which manyrof the cell frequencies are less than 5 (e.g., predicted values

outside the 0-1 range can be obtained). Conversely, the major advantages

of the log-linear model are its robust and stable mathematical properties
while its major disadvantage is the possibly unclear interpretation of its
parameters. Thus, for any specific application, the researcher should
choose the model which is most appropriate with respect to these considera-

tions as opposed to having an unconditional commitment to one or the other.

3.3 An Incomplete Contingency Table Involving Paired Comparison Data

The data in Table 10 represent the responses of 213 white North Carolina
women (between 31 - 44 years of age, with less than 12 years of education,
and married to their firsﬁ husband) to the following question concerning
"{deal family size"':
"Let's suppose, for a moment, that you have just been
married and that you are given a choice of having,

during your entire life-time, either x or y children.
Which would you choose, x or y?"

(3.21)

Each woman was queried only with respect to one pair (x,y); and all 42 possible
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10. DESIRED FAMILY S1Z4E PAIRED CHOICES
OF 213 WHLTL NORTII CAROLINA WOMEN 31-44 YEARS OLD
WLTH LESS THAN 12 YEARS O EDUCATION
AND MARRIED TO THEIR IFIRST HUSEAND

Pair Choice
X y 0 1 2 3 4 5 6+ Total
0 1 0 7 - -— - - - 7
0 2 1 - 6 - - - - 7
0 3 1 - - 6 - - —- 7
0 4 1 - - - 12 - - 13
0 5 1 - - - — 3 - 4
0 6+ 3 - - - - - 8 11
1 2 - 1 12 - - - — 13
1 3 - 1 - 15 —-— - - 16
1 4 - 2 - - 9 - — 11
1 5 - 0 — - - 7 —— 7
1 6+ - 5 - - —_ - 6 11
2 3 — - 4 9 - - - 13
2 4 - - 7 - 0 - - 7
2 5 - - 11 - - 5 - 16
2 6+ - - 8 - - - 4 12
3 4 - - - 7 3 - - 10
3 5 - - - 5 - 2 - 7
3 6+ - - - 12 - - 2 14
4 5 - - - - 9 2 - 11
4 6+ - - - - 4 - 3 7
5 6+ - - - - — 6 3 9

Total 7 16 48 54 37 25 26 213
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ordered pairs (x,y) from the set S = {0,1,2,3,4,5,6+} were randomly assigned

to the women, although responses to the pair (x,y) and the pair (y,x) are pooled

here since order of presentation is assumed to be unimportant. These data were
gathered during the 1968 North Carolina Abortion Survey as described in Abernathy,
Greenburg, and Horvitz [1970].

For purposes of simplicity, the data in Table 10 are assumed to con-
stitute a simple random sample of the indicated (sub-)population of women
throughout North Carolina. However, they are actually based on a complex !

prqbability sample. Thus, the results of the analyses presented in this
section should be interpreted with some caution. On the other hand, suéh
analysis can be justified by using the same types of super-population argu-
ments outlined in Section 3.2. Moreover, the relatively refined partition
of the women into sub-groups on the basis of demographic variables and

assigned pair (x,y) and the multiple regression flavor of the model fitting

procedures which are to be used, both tend to minimize the complex sample

survey design effect. For this reason, the results obtained here are
regarded as reasonable approximations to those which might have been obtained
in a complex sample survey framework (this not being done because an esti-
mator for Yﬁ in (2.81) is not currently available).

The d;ta array in Table 10 is called an incomplete contingency table
because certain of its cells, by definition, correspond to impossible
responses and hence are empty. Such incomplete contingehcy tables are dis-
cussed extensively in BFH (Chapter 5) with respect to log-linear models.

In addition, they are discussed with respect to a broad class of multivar-
iate paired comparison experiments in Imrey, Johnson, and Koch [1975]); and

with respect to the "ideal family size" type of data presented in Table 10, in Koch,

Abernathy, and Imrey [1975]. For the most part, log-linear models may be fitted to

such incomplete tables in the same spirit as described for complete tables in Sect‘

2.1-2.2 because from an analytical point of view (as opposed to a conceptual one), suc
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tables are really not incomplete at all since the empty cells simply do

not exist. Thus, corresponding to the incomplete contingency table in
Table 10 is a transformed complete contingency table analogue in Table 11
for which the choice dimension is defined as "lower" vs. "upper.'" Although
this complete contingency table is more difficult to interprét than its
incomplete counterpart, it does nevertheless represent the data array to
which the log-linear model is fitted and the context in termé of which

the corresponding parameters must be defined. For this reason, the
principal conceptual problem associated with the analysis of incomplete

contingency tables is model choice rather than model fitting.

One useful framework for the analysis of paired comparison data is
the Bradley-Terry [1952] model. If ﬂxy x represents the probability that
’ .

a randomly selected subject chooses x when presented the pair (x,y), then

the Bradley-Terry model is formulated as

(3.22)

" "
where }\0 A l’>‘ 2 ,)\3 sA 4 ,)\5 sA 6+ 2Te preference parameters which provide an
indication of the relative strengths of the respective choices for desired

family size. However, the model (3.22) implies that the logit functions

ny(“xy,x) = 1°ge{“xy,x/'"xy,y} = 1ogeQx) - 1oge0\y) . (3.23)
Thus, if parameters By are defined by
By = log Ovg) - loge(xy) (3.24)

for y = 1,2,3,4,5,6+, it follows that the observed logit functions for the

complete contingency table data in Table 11

F = F(p) = Kllog (A p)] (3.25)

~
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11. OBSEFRVED AND LOG-~LINEAR MODEIL PRFDICTED
COMPLETE CONTINGENCY TABLE ANALOGUE FOR PAIRLED CHOICE DATA

Observed IPF ~ MLE

Pair choice predicted choice
x y Lower Upper Lower Upper
0 1 0 7 2.16 4.84
0 2 1 6 0.44 6.56
0 3 1 6 0.29 6.71
0 4 1 12 1.33 11.67
0 5 1 3 0.55 3.45
0 6+ 3 8 2.22 8.78
1 2 1 12 1.71 11.29
1 3 1 15 1.40 14.60
1 4 2 9 2.24 8.76
1 5 0 7 1.84 5.16
1 6+ 5 6 3.98 7.02
2 3 4 9 5.05 7.95
2 4 7 0 4.40 2.60
2 5 11 5 11.23 4.77
2 6+ 8 4 9.47 2.53
3 4 7 3 7.26 2.74
3 5 5 2 5.51 1.49
3 6+ 12 2 11.97 2.03
4 5 9 2 6.40 4.60
4 6+ 4 3 4.83 2.17
5 6+ 6 3 5.53 3.47

12. ESTIMATLED BRADLEY-TERRY PREIFERENCE PARAMETERS
FOR PAIRED CHOICL DATA

GSK Analysis IPF~MLE Analysis

Choice Estimated Estimated Estimated Estimated

parameter s.e. parameter s.e.
0 0.025 0.010 0.017 0.007
1 0.040 0.015 0.037 0.012
2 0.213 0.054 0.245 0.056
3 0.379 0.076 0.386 0.077
4 0.170 0.051 0.145 0.041
5 0.102 0.031 0.104 0.030
6+ 0.071 0.020 0.065 0.019
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where

A=1,, KR=0 -1 @ I, (3.26)

are characterized by the model

B () = F@) = Xy (3.27)
where

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1l 0 0 4]

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1 FE ]
-1 1 0 0 0 0 1
-1 0 1 0 0 0 8
-1 0 0 1 0 0 2
-1 0 0 0 1 0 8

-1 0 0o 0o o 1 I
XBrL 6 -1 1 0 o of® °f 6 S

o -1 0 1l 0 0 4

0 -1 0 0 1 0 8

0 -1 0 0 0 1 5

0 0 -1 1 0 0 )

0 0 -1-0 1 0 | 6+

0 o -1 0 0 1

0 0 0 -1 1l 0

0 0 0 -1 0 1

0 0 0 0o -1 1

Given this framework, the one-stage standard GSK estimated parameter vec-
tor E.for § and its corresponding estimated covariance matrix Y— can be
determined by fitting the model §BTL directly to F (where O—fre;uencies
are replaced by (1/2) as described in Berkson [1955] in order to avoid

"loge(O)" computations) by weighted least squares. This approach yields

—y

~0.48 0.2861
-2.16 0.1528 0.2376 Symmetric
T - -2.73 V— = 0.1544 0.1636 0.2450
~ -1.93] ’* b 0.1624 0.1459 0.1589 0.2555
~-1.42 ~ 0.1500 0.1704 0.1576 0.1%51 0.2497
~-1.06 0.1562 0.1478 0.1434 0.1425 0.1460 0.2001

(3.29)
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In addition, this model apparently provides a reasonable fit to the data .

since the goodness of fit statistic from (2.33), Q = 11.99 with D.F, = 15,

is non-significant (a = .25). However, all of these results should be interpreted
cautiously because of the relatively small sample size on which this

example is based and the presence in Table 11 of many cell frequencies

which are less than 5.

Alternatively, the parameters § can be estimated by using a maximum
likelihood approach. For this purpose, it is initially noted that the
Bradley-Terry model (3.21) is equivalent to the model of quasi-independence
of the rows and columns of the incomplete contingency table data in Table 10.
However, as indicated in BFH, maximum likelihood predicted frequencies
based on the quasi-independence model for the incomplete contingency table

data in Table 10 can be obtained by using IPF in terms of its separate row and

column marginal configurations with cells corresponding to impossible responses ‘
being constrained to O (by being assigned 0-initial values,. The resulting

predicted frequencies are shown in the last two columns of Table 11 in the

complete contingency table analogue format. The logit model (3.27) is then

fitted to these predicted frequencies by the same weighted least squares

procedures used for the GSK estimator E-in order to compute the maximum

likelihood estimator § and its corresponding estimated covariance matrix YA.

~

Thus, it follows that

T’ =
-0.80 0.2355
-2.69 0.1638 0.2595 Symmetric
é - -3.15 VA = 0.1648 0.1959 0.2801
b -2.17 ’ ~B 0.1556 0.1734 0.1773 0.2429
~-1.84 ~ 0.1617 0.1917 0.1827 0.1771 0.2601
-1.37 0.1532 0.1664 0.1671 0.1534 0.1653 0.2221
(3.30)
Maximum likelihood estimators 5\\ (which are normalized to add to 1) for the ’

preference parameters of the Bradley-Terry model can be formulated in the
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compounded function framework of Forthofer and Koch [1973] as

X = 4, lempla,(log (4, [exp (4,811} (3.3
where
1! 1
é[‘ = (l o1 s éz l' ’ é3 [279 1—7] ’ 64 Ei
7x6 ~66 ~6 8x7 7 7x8 7x7
(3.32)

with the corresponding estimated covariance matrix being determined via

matrix operations analogous to (3.8). The estimators S obtained by this approach
and their corresponding estimated standard errors are given in thé last

two columns of Table 12. Analogous results based on the GSK estimator E

are also given in Table 12 and are relatively similar to the maximum like-

1ihood estimators (i.e., the differences between them tend to be less than

the corresponding estimated standard errors). Thus, as in Section 3.1,

the standard GSK approach provides reasonable results even though the

sample size is not large enough to support its validity from a rigorous

point of view.

For the sake of completeness, it should be noted that the Log-Like-
1ihood Ratio Chi-Square Statistic (from the IPF computer program ECTA) for
the goodness of fit of the Bradley-Terry model is QL,BT = 24,31 with
D.F. = 15. However, this result should be interpreted with the same caution
as its much smaller GSK counterpart because the asymptotic behavior of each
of these statistics is linked to the individual cell frequencies, and thus
the sample size is not large enough for either to be regarded as approxi-
mately having a chi-square distribution. Since neither the GSK approach
nor the maximum likelihood approach provide a valid goodness of fit statis-
tic for evaluating the suitability of the Bradley-Terry model for this

example, alternative descriptive criteria will be used. In this regard, it
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can be noted that the observed frequencies in Table 11 are relatively sim- .
ilar to the corresponding IPF predicted frequencies for the Bradley-Terry

model with no difference between them exceeding 3 and two-thirds of such

differences being less than 1. Alternatively, it can be noted that the

QC—statistic for testing the hypothesis

~

=62=63=84:85=B6=0 (3-33)

of equal preference for all choices in terms of the maximum likelihood
estimator % is QC(E) = 53.29. Thus, it can be argued that the Bradley-
Terry model is s;itable for this example since its estimated parameters
account for considerably more variation than its lack of fit. This same
conclusion applies if the hypothesis in (3.33) is tested in terms of the
GSK estimator b for which Q,(b) = 46.59. .
Finally, all of the p;evious discussion is concerned with estimating
the parameters g by fitting logistic models rather than fitting log-linear
models to the probability vector m itself as described in Sections 2.1 - 2.2.
This latter method of analysis is more difficult to formulate because it
requires attention to be directed at the structure of the incomplete con-
tingency table data array in Table 10 rather than its complete contingency
table analogue in Table 11. For this reason, models with the hierarchical
family structure (2.18) are not necessarily applicable since their defini-
tion is linked to the structure of complete contingency tables. Thus, other
appropriate models must be formulated in their own right, and this can pre-
sent substantial conceptual problems for certain types of incomplete contin-

gency tables as discussed in BFH as well as computational difficulties. 1In

the case of Bradley-Terry models for paired comparison data, an appropriate ‘

incomplete contingency table formulation can be based on the indicator functions
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where y = 0,1,2,3,4,5,6+ (3.34)

1 if y = k is chosen
1 1if y = 0 is chosen

0 otherwise

xk(y) = {-

for k = 1,2,3,4,5,6+.

The corresponding matrix formulation for this model is

-1]

-1-1-1-1-1

(3.35)

1 0 0 0 0O

-1-1-1-1-1-1

010000

-1-1-1-1-1-1
001000

-1-1-1-1-1-1

0 00100

-1-1-1-1-1-1

o
—~
o
o
o
o

J._1000000000100000001000001000101

1_.‘0000000010000000100000100010010

.ﬂ_o000001000000010000010000101000

1_._0000100000001000000101010000000

4.0010000000010101010000000000000

1_..0101010101000000000000000000000

|

pr

which can be fitted to either the observed frequencies of the IPF predicted

However, it should

frequencies by the methods outlined in (2.66) - (2.68).
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b2 noted that the parameters Y associated with this model are different

from the parameters B for the logit model XBTL,although it can be verified

that they are related to each other by the equation
Y = § + (}' g)}6 (3.36)

by transforming §BT to its logit amalogue by operations similar to (3.13).
In summary, the logit formulation of Bradley-Terry models provides the most
straightforward framework for analysis; but the incomplete contingency
table nature of the observed paired comparison data is of considerable
interest because it provides the justification by which IPF can be used to

obtain maximum likelihood estimators for the predicted frequencies.

3.4 A "Raked" Contingency Table

The data in Table 13 have been used by Ireland and Kullback [1968] to
illustrate the application of IPF for the adjustment of a contingency table
to a known marginal "allocation structure." They are being reanalyzed here
to indicate the reduction in variance which is achieved by using such
"raking" procedures to estimate the cell probabilities .

These data originally come from a study undertaken by Roberts et al.
[1939]. The experimental design involves n = 3734 mice from s = 1 popula-
tion, each of which is classified with respect to the presence or absence
ol the attributes A, B, and D. The "allocation structure'" of interest is
defined in terms of the hypothesis that the probability of the presence
(or absence) of each separate attribute is (1/2). Thes, with respect to

the matrix notation in (2.88), it follows that

1 1 11 0 0 0°0] 0.5
A,}:=11001100,ET= 0.5 (3.37)
~ i1 010101 0f ° 0.5
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13. TABULATION OF MICE ACCORDING TO ATTRIBUTES A, B, AND D

Response profile for attributes A vs B vs D

Attribute A Y Y Y Y N N N N
Attribute B Y Y N N Y Y N N
Attribute D Y N Y N Y N Y N
Overall group
observed cell 475 460 462 509 467 440 494 427
frequency
Observed pro- 0.1272 0.1232 0.1237 0.1363 0.1251 0.1178 0.1323 0.1144
portions
Estimated s.e. 0.0055 0.0054 0.0054 0.0056 0.0054 0.0053 0.0055 0.0052
Y denotes presence of the attribute; N denotes absence.
14. "RAKED" PREDICTED CONTINGENCY TABLE FOR ATTRIBUTES A, B, AND D
Response profile for attributes A vs B vs D
Attribute A Y Y Y Y N N N N
Attribute B Y Y N N Y Y N N
Attribute D Y N Y N Y N Y N

Overall group
"raked" pre-

dicted cell 463.3 464.5 438.7 500.5 475.4 463.8 489.6  438.2

frequency
Predicted

P ; 0.1241 0.1244 0.1175 0.1340 0.1273 0.1242 0.1311 0.1174
roportions

Estimated s.e. 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041 0.0041

Y denotes presence of the attribute; N denotes absence.
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The "association structure' which is to be preserved in the sense of (2.89) .

corresponds to the log-linear functions

F(p) = K'[log_(p)] (3.38)
where
1 1-1-1-1-1 1 1 (3.39)
' o= (171 1-1-1 1-1 1
~ 1-1-1 1 1-1-1 1} °
1-1-1 1-1 1 1-1

By using IPF to adjust the observed frequencies in Table 13 to the
"allocation structure" specified by (3.37), Ireland and Kullback [1968]
obtain the "raked" predicted cell frequencies shown in Table 14. The cor-
responding predicted proportions ﬁT are also given there together with

their respective standard errors based on (2.93). Thus, by comparing these

results with their counterparts in Table 13, it can be noted that the pre- ‘
dicted proportions ﬁ are very similar to the original observed proportions,
but have substantially smaller estimated standard errors.

Finally, since the "allocation structure" (3.37) corresponded to an
hypothesis rather than a priori known constraints, Ireland and Kullback
[1968] indicate that its acceptability for these data is supported by a
non-significant (o = .25) Minimum Discrimination Information Chi-Square

Statistic for goodness of fit QMDI(ﬁTlp) = 3.42 with D.F. = 3.

ACKNOWLEDGMENTS

The authors would like to thank Stephen E. Fienberg for several comments
which were helpful to us during the initial stages of this research. Addi-
tional insights were gained as part of general discussions of statistical method-
ology during the Social Science Research Council, 1975 Summer Workshop on Crime
and Criminal Justic@ Statistics. Finally, we would like to thank Alcinda Lewis ‘
and Jane Beth Markley for computational assistance, and Karen McKee and Rebecca
Wesson for their cheerful and consclentious typing of the manuscript.




-61-

REFERENCES

Abernathy, James R., Greenberg, Bernard G., and Horvitz, Daniel G. [1970].
Estimates of induced abortion in urban North .Carolina.. -Demogrpphy 7,
19-29.

Allen, D. M. and Grizzle, J. E. [1969]. Analysis of growth and-dose
response curves. Biometrics 25, 357-82.

Berkson, Joseph. {[1955]. Maximum_ likelihood and minimum x2 estimates of
the logistic function. Journal of the American Statistical Associa-
tion 50, 130-62.

Birch, M. W. [1963]. Maximum likelihood in three-way contingency
tables. Journal of the Royal Statistical Society 25B, 220-33.

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. [1975]. Discrete
Multivariate Analysis:: Theory and Practice, The MIT Press, :
Cambridge, Massachusetts.

Bradley, Ralph A. and Terry, Milton E. [1952]. Rank analysis of incomplete
block designs: I. The method of paired comparisons. Biometrika 39,
324-45.

Brock, D. B., Freeman, D. H., Jr., Freeman, J. L., and Koch, G. G. [1975].
An application of categorical data analysis to the National Health
Interview Survey. To appear in 1975 Proceedings of the Social
Statistics Section of the ASA.

Causey, B. D. [1972]. Sensitivity of raked contingency table totals
to changes in problem conditions. The Annals of Mathematical
Statistics 43, 656-58.

Clarke, S. H. and Koch, G. G. [1974]. What determines whether persons
arrested for burglary and larceny go to prison? Submitted to
Journal of Crishinal Law and Criminology.

ECTA. [1974]. University of Chicago Computer Program for fitting log~linear
models to contingency tables.

Forthofer, R. N. and Koch, G. G. [1973]. An analysis for compounded
functions of categorical data. Biometrics 29, 143-57.

Goodman, L. A. [1970]. The multivariate analysis of qualitative data:
interactions among multiple classificationms. Journal of the
American Statistical Association 55, 226-56.

Grizzle, J. E., Starmer, C. F., and Kokh, G. G. [1969]. Analysis of
categorical data by linear models. Biometrics 25, 489-504.

Grizzle, J. E. and Williams, O. D. [1972]. Log linear models and tests
of independence for contingency tables. Biometrics 28, 137-56.




-62-

Imrey, P. B., Johnson, W. D., and Koch, G. G. [1976]. An incomplete
contingency table approach :o paired comparison experiments,
Institute of Statistics Mimeo Series, No. 1004. Submitted to the
Journal of the American Statistical Association.

Ireland, C. T and Kullback, C. T. [1968]. Minimum discrimination information
estimat con. Biometrics 24, 707-13.

Kaplan, E. B. and Elston, R. C. [1973]. A subroutine package for: maximuam
likelihood estimation {MAXLIK). North Carolina Institute of S%. tisties
Mimeo Series, No. 823.

7ki§h, L. and Frankel, M. R. [1970]. Balanced repeated répiicationsrfbr
standard errors. Journal of the American Statistical Association 65,
1071-9¢.,

Koch, G. G., Abernathy, J. R., and Imrey, P. B. [1975]. On a method for
studying family size preferences. Demography 12, 57-66.

Koch, G. G., Freeman, D. H., Jr., and Freeman, J. L. [1975]. Strategies
in the multivariate analysis of data from complex surveys.
International Statistical Review 43, 59-78.

Koch, G. G., Freeman, J. L., Freeman, D. H., Jr., and Lehnen, R. G. [1974].
A general methodology for the analysis of experiments with repeated
measurement of categorical data. University of North Carolina
Institute of Statistics Mimeo Series No. 961. Submitted to Biometrics.

Koch, G. G. and Greenberg, B. G. [1971]. The growth curve model approach
to the statistical analysis of large data files. University of
North Carolina Institute of Statistics Mimeo Series No. 786.

Koch, G. G. and Reinfurt, D. W. [1971]. The analysis of categorical data
from mixed models. Biometrics 27, 157-73.

Koch, G. G. and Tolley, H. D. [1975]. A generalized modified x? amalysis

of categorical data from a complex dilution experiment. Biometrics 31,
59-92,

Koch, G. G., Tolley, H. D. and Freeman, J. L. [1976]. An application
of the clumped binomial model to the analysis of clustered attribute
data. To appear in Biometrics.

Ku, H. H. and Kullback, S. [1974]. Log-linear models in contingency
table analysis. The American Statistician 28, 115-22.

Landis, J. R. and Koch, G. G. [1976]. Compound function measures of

observer aigreement for multivariate categorical data. To appear in
Biometric:.

Landis, J. R., Stanish, W. M., and Koch, G. G. [1975]. A computer program
for the generalized chi-square analysis of categorical data using
weighted least squares to generate Wald statistics. Documentation in
the Department of Biostatistics, University of Michigai, Ann Arbor,
Michigan. To be submitted to Computer Programs in Biomedicine.




-63-

McCarthy, P. J. [1969]. Pseudo-replication: half samples. Rev. Int.
Statist. Inst. 37, 239-64.

Potthoff, R. F. and Roy, S. N. [1964]. A generalized multivariate analysis
of variance model useful especially for growth curve problems.
Biometrika 51, 122-27,

Roberts, E., Dawson, W. M., and Madden, Margaret [1939]. Observed and
theoretical ratios in Mendelian inheritance. Biometrika 31, 5%5-66.

Stewart, J. R. [1975]. An analysis of automobile accidents to determine
which variables are most strongly associated with driver injury:
relationships between driver injury and vehicle model year. University
of North Carolina Highway Safety Research Center Technical Report.

Tolley, H. D. and Koch, G. G. [1974]. A two-stage approach to the analysis
of longitudinal type categorical data. University of North Carolina
Institute of Statistics Mimeo Series, No. 962,

Wald, A. [1943]. Tests of statistical hypotheses concerning general
parameters when the number of observations is large. Transactions
of the American Mathematical Society 54, 426-82,




