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Summary

In a randomized block design MANOVA model, for tests for the homogeneity
of treatments against restricted alternatives based on intra-block rankings
and on ranking after alignment, asymptotic optimality is studied in the 1light
of asymptotically most stringency and somewhere most.powerful character. For
ordered alternatives, the proposed tests are shown to be asymptotically most
powerful within the respective rank class. Tests based on the ranking after
alignment are preferred when the error distributions are homogeneous accross
the blocks.

1. Introduction
We consider the usual randomized block design model consisting of n blocks

each containing p plots where p treatments are assigned at random ; the response

is possibly multivariate. Let Xij = (xg}),...,xgg)) be the response (vector) of

the jth treatment in the ith block, for j=1,...,p; i=1,...,n. We assume that

(§i1""’£ip) has a pg-variate continuous distribution function (d.f.) F?(x),
. - (ol1) (@)y' . = (a

where letting B; (Bj RPN} ) , j=1,...,p and 8 Qﬁ]""’.@p) ,
0 - - - Pq

(1.1) Fi(fl""’fp) = Fi(fl ?1 seeen X ?p) . (§1""’§p) e E°T

and the d.f. Fi is symmetric in its p arguments ( each a gq-vector); although, the
form of the Fi may not remain the same for every i(=1,....,n). Thus, we consider
independent blocks, and within each block, interchangeable errors. The case of
independent and identically distributed (i.i.d.) error vectors is thus included

as a particular one. In (1.1), the §j stand for the vector of treatment effects
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while the dlock effects may not be additive and may even be stochastic in nature.

Generally, in a MANOVA( multivariate analysis of variance), the null hypothesi.
relates to the homogeneity of the treatments i.e.,

(1.2) H0 PoBy =S §p (= 0 , without any lToss of generality).

-~

A global alternative relates to the non-homogeneity of the 8. . In this study, we

~

shall be specifically interested in suitable restricted alternatives. For the uni-
variate case ( i.e., g = 1), the most common form of such a restricted alternative
is the so called ordered alternative

(1.3) HS . By < By <... < Bp , with at Teast one strict inequality.

A general account of rank tests for ordered alternatives in randomized blocks is
given in Chapter 7 of Puri and Sen (1971). Later on, De (1976) extended the method
of Sen (1968) by effectively incorporating the union-intersection (UI-) principle of
Roy (1953) to form an aligned rank test for Hy against H® when the r.v.'s Xij have

i.i.d. error components. Boyd and Sen (1984) used the concept of locally most powerful

rank (LMPR) tests of Hoeffding (1950) and incorporated the UI-principle to construc‘
UI-LMPR tests based on intra-block rankings as well as on ranking after alignments.
However, in either of these studies, no attempt was made to establish any possible
optimal properties of the proposed tests. For the ordered alternative problem, Araki
and Shirahata (1981) and Shirahata (1984) considered some rank tests ( for q = 1)
which are analogues of the usual Tikelihood ratio tests. Interestingly, their proposed
tests may also be characterized as UI-LMPR tests, and hence, the question on their
asymptotic optimality properties remains open. The main objectives of the current
study are the following:

(i) To establish the asymptotic superiority (in terms of power) of the ranking
after alignment procedure to the intra-block ranking procedure for general forms of
restricted alternatives ,

(i1) to show that the UI-LMPR tests are asymptotically UMP against the class of

ordered alternatives within the respective class of rank tests. and

(i11) to characterize that the UI-LMPR tests have the property of asymptotically
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most stringency and somewhere most powerful character within the respective class of
rank tests for testing H, in (1.2) against a general form of restricted alternative
(1.4)  H:g e r={BeEP AvecE > 0,A € <(a,pq) } ,
where vecB denotes the pg-vector obtained by stacking the rows of B under each
other and -¢(a,pq) is the set of axpq matrix of rank a : 1<a< pq ,

The basic regularity conditions and preliminary notions are presented in Section
2. UI-LMPR tests based on intra-block rankings and ranking after alignment ( for testing
H0 against H* ) are considered in Sections 3 and 4. Asymptotic compariosons of the
power properties of these two procedures are made in the last section.
2. Preliminary notions

We make the following regularity assumptions :

[Al1] Let O be an open setlcontaining 0 and define fi(x—ﬁw) as in (1.1) with B=6v,

i 2 1. Then (i) for every i (2 1), fi(x-ﬁv) is absolutely continuous for almost

a 6
3(§ E) 5‘;;;‘E‘f (x—61) and f (x 61) f (x 57)

~

all x and 1 € 0, so that f

~

then for B = &v, fiq(x—év) = (vec v)’ fiB(x—B). v~ €0, x € EPY, (ii) For almost

all x and v, the limit f, (x) = lim G-I[f.(x—ﬁv) - f.(x)] exists. (iii) For
~ ~ 17 A 50 1A A 1%,

every ¥ € 0, lim ftm |fiq(x-61)|dx = ffm Ifiq(x)ldx is finite. (iv) The
~e H ~ o~ ~ ~ ~

~ ~

a d .
largest characteristic root of l(f) = 80{?_;;;_§ log f(X)L;T;;;;ﬂ log f(i)} is
finite, where 80 stands for the expectation under the null hypothesis.

[A2] For the pg-variate p.d.f. fi(x—ﬁ). we denote the conditional p.d.f. of

(j&)th coordinate, given the others by f e(x(e) - B(e)lx )} and let

3
(2.1) g[J]e(x) = log £ e(x) > J=l,...,ps =1,...,Q.

Also, let f[j]g denote the marginal p.d.f. of the (j,2)th coordinate, and let

(2.2) ij]z(x) = (3/9x)1og f[j]g(x) . J =l =T, q .
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*
We denote the pg-vectors with the elements in (2.1) and (2.2) by 9(5) and f (5),

respectively, and assume that there exists a p.d. matrix H , such that '
(2.3) S(f) =H f*(§) » for almost all x .
[A3] We assume that for each j( =1,...,p) and £ (=1,...,q), [3]2( x) is differen-

*
i X = (9/9 .
tiable on the support of the p.d.f f[J]2 . We denote by f[ ]2( x) = (3/ x)f[J]g(x)
and assume that there exists a positive r : 0 < r < 1/2 ,such that

sup sup sup (2) _ r e
(2.4) 1<i<n 1<j<p 1<4< q lf[J]g(X )] =o(n) a.s., as n

3. UI-LMPR tests based on intra-block rankings
Intra-block rank tests for MANOVA against global alternatives were considered
by Gerig (1969), and we shall follow the same notations along with general scores.
(2) (2) (2) (2)
Let Rij be the rank of Xij among X.17,.. X ip
and & = 1,...,q. By virtue of the assumed continuity of the d.f,'s, ties among the

, for j =1,...,p5 1 =1,...,n

observations may be neglected, with probability 1. Let then

RH) ng))

(3.1) Ro = | eeeiiiiiiieean, , fori=1,....n, o
(q) (q)
RV R;

*
and define Bi to be the matrix derived from Ri by permuting the columns in such a

*
way that the top row is in the natural order. Let S(Ri), i=1,...,n be the set of

~

*
[(p!)n ] matrices which are permutationally equivalent to the Bi’ i=1,...,n. Since

under HO’ Xi]"""xip are interchangeable random vectors, their joint distribution

remains invariant under any permutation of these p-vectors among themselves. This
*
implies that under HO’ given a particular realization of Ri , the (conditional)
*
distribution of Ri will be uniform over the p! possible realizations in S(Ri)' That

*
is, for any r. e S(Ri)’ we have

~

(3.2) PR = r. | S(R), H

r; = ()7, for all F, . i= T,...un .

0!
Moreover, the rankings are made independently for the different blocks. Hence

(3.3) P{R, =

. * . -n
R, =r; i=1,...,n | S(Bi)’ i=1,...,n, HO}=(p!) s
S(

b ]
* . .
for every r. e 1), i=1,...,n , whatever be the Fi , i=1,...,n.
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We denote by Epg]) the probability measure over the (p!)n conditionally equally

1ikely realizations in (3.3), and define the matrix of linear rank statistics by

0 0 PP (2)
Ty = (Tge)) = (g 2 aygp(Riy")) (3.4)
j=1.....p; &=1,....q -
where
%
aNje(r) = g{-f[j]e(UNi)}’ i=1,....,n; j=1,....p: &=1,....q. (3.5)
with UNl""'UNn being the ordered random variables of a sample of size n from

(0,1) uniform d.f. It is thus easily seen that

0 (1) ¢ .0 =
N3e|9 } = Vj=1,....p: 8=1,....q (3.§)

Also, it is easy to verify that

0 (1) Y |
Cov(Ty Nger Thgree ¥ ) = (855 = P v (3.7
for j.j' =1,...,p: &.2' =1,...,q, where ij. is the usual Kronecker delta and
Vi = (v 0p)) (3.8)
is defined by
13 3 () (e )
né¢' ~ n(p-1) i 1 aNJe(R )aNJe (R ) (3.9)
j=1
Thus, if we write
Ty, = vec TO' (3.10)
N1 N )
then
(1) _1 "y o=
8{~N1~N1|9 } = (Ep = 1plp) = 3y say. (3.11)

where ® denotes the Kronecker product.

-1
Now we consider a sequence {Kn: B =n 2v, v is fixed} of alternative

~

N
hypothesis where Kn specifies that the random vectors X.. —a, — n zwj.

j=1,...,p are interchangeable for i = 1,...,n and A ERREE 7p are p real q
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vectors with 2 v, = 0. Thus under {Kn}

=~ o

Fypy7e() = Fi[.]e(x-n'i'wge)) VY j=1.....p; e=1.....q. (3.12)

Firjjee ) = Fif-qee (x - n'é*§”- y - n—%ﬂfge.)) (3.13)

Moreover., we assume that the following limits exist

Lo -1 3
F[.]e(x) = i:: n ilei[.]e(x). (3.14)
-1 B
F[.]geo(xvY) = ;i: n iilFi(.]ee.(x.y), : (3.15)
and let
(3.16)

1 . . .
"l(ze? = J‘:” J‘_:[_f[-]e(x)/f[.]g(x)]['f[.]e(Y)/f[.]e(Y)]dF[.]ee-(X'Y)

Then, under assumption [Al] and following Lemma 7.3.10 of Puri and Sen (1971)..

have, as n - o,
P

_ (1)
an -)!1 = ((Dee.)) (3.17)
and
9
INI —HI’pq(m 311\'.51). b = vec ¥ (3.18)
{K }
where
1
L, =V, (I -=11 3.19
~1 7 Al (~ p ~p~p) ( )

Based on INI' we then can derive a suitable test statistic for testing HO

against H* defined in (1.4). First we note that the set I' in (1.4) is positively

homogeneous in the sense that for every vy € 'and 6 > 0, 6 v € I". So for a given

~

7 > 0, under the assumptions [Al] through [A3]. by mimicking the proof of Theorem

4.2 of Tsai and Sen (1987), the LMPR test for testing Ho against H‘v is based or'

~

—1 . .
fg(ﬁu)ﬁvﬁnr where E(Em) denotes the block diagonal matrix of le. Namely,
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B(3y,) = Diag Yoy © (I, - ; L,1) (320
where Diag an is the diagonal matrix of an. and Eﬁ{ stands for the generalized

inverse matrix of ENI' Furthermore, for every v+ € I', we may write

oy -1 . =T
Ty = MBSy /N B SEGr) 3.1
By noting that H* = U H7 and making the use of Ul-principle, then the overall
~€r

test statistic for Ho versus H* is granted as
QN1 = sup{TN(Z), v €T} (3.22)
For the computation of QN1 in (3.22), we need to maximize b'E(ENl)zgiINl
subject to A\ > O and A'B(3y;)3y;BCy)A = 1. If we let h(}) = -b'g(le)zgile,
El(b) = -ﬁi and h2(§) = b'E(ENl)Eﬁi E(El)b-l, then for this non-linear
programming problem, the Kuhn-Tucker-Lagrange (K.T.L.) point formula theorem can

be used to arrive at the following result: Let

= A B (ENI) (3.23)
and
-1 -1 2
A =8B G2 B GyoA (3.24)
also, let J be any subset of AO = {1,2,...,a} and J' be its complement. For each
of the 22 set J., we partition HNI and ANI as
_ By KO _ Pman A
U, = and A, = (3.25)
SNy k(J') AL A
~N1(J") N1(J'T) WN1(J'J')

where k(J) denotes the cardinality of set J. Also, for each J($C J C Ao). we

let
-1
Ui:r) = Wy ~ s oty o
-1
iy = an T sy e

(3.26)
(3.27)

Then, we have
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. . -1
%1’&1&1&1'5«1&1%1*& {u l(JJ)ﬁNl(JJJ)A,Nl(JJ)}
(0]

-1
Wiy 2 2 sy gy €9 (3"’9

where 1(B) stands for the indicator function of the set B.

Theorem 3.1. Let n = AB (z )2\ and 4, = lim £(4y, IHO). For each
n—-x°
(1) _ +a (1) _ _ -1
J(pcJc Ap). assume I'}"! = {n, € E™; T5:3 =My ﬁl(JJ')ﬁl(J'J')ElJ' 2 0

and Fél) = N FSI). where E'2 is a-dimensional positive orthant space. If the

dcich,

family fi(x—B) satisfy the assumptions [Al] through [A3], then for testing HO vs.
y B € I' (under (Kn}) Qﬁl in (3.28) is asymptotically most stringent for I' and

asymptotically UMP for Fgl) within the class of intrablock rank tests at the
respective level of significance a.
Proof. The proof follows directly from Theorem 4.4 of Tsai and Sen (1987) and

hence is omitted.

Corollary 3.2. For q = 1, under {Kn} and Assumptions [A1] and [A2], within the.

class of intra-block rank tests, the UI-LMPR test based on (3.28) 1is asymptoti-
cally UMP at the significance level o .

Outline of Proof. The testing (1.2) against (1.3) can be written as for testing

(1.2) against (1.4), where A = Iq ® L with

-1 1 0 0O o
0 -1 1 0O o
L= - - o (3.29)
0 O 6 -1 1
Then we have
3 3
277
I k]
< T -
n = : : (3.3(‘
e
Y -9
~P ~p-1

with
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»* . -1 .
:j = (Diag !1 )Xl Ij' j=1,2,...,p - (3.31)
And A, = (Diag V 1) V. (Diag V.1) ® A%
where
A" = ((aij))i.j=1 ..... -1 with 055 = tl if |i-j| =1 (3.33)
if |i-j] > 1
Let # = {q.2q,....(p-1)q} and J be any subset of #, J' be its complement, then
for any J (pc JC¥)
(1) i 34
PJiJ'Zg 1f2129. (3.34)
By noting that if q=1, then ‘7; = -rj. V j=1,...,p. hence the corollary is proved.

Note that for q = 1 and i.i.d. errors, the condition (2.3) is not needed
( as there H is an identity matrix); however, for q > 1, (2.3) is a sufficient

condition to ensure the stated optimality properties in Theorem 3.1.

4. UI-LMPR tests and ranking after alignment

In intra-block ranking , because of the lack of information from the inter-
block comparisons, the tests are generally less efficient than the aligned
rank tests which incorporate the inter-block information through the alignment
procedure. For the standard MANOVA model in two-way layouts, Sen (1969) formulated
aligned rank tests based on generdl scores and studied their asymptotic efficiency
in a unified manner. Here, we extend the results to testing against general forms
of restricted alternatives [ as in (1.4)] and show that under fairly general
reqularity conditions, aligned rankings lead to more efficient tests for such
alternatives too. To do this, we need to eliminate the (nuisance) block effects
by simple alignment procedures; namely, we subtract suitable estimates of the
block effects ( vectors) from the respective ng)and on the residuals, we
make an overall ranking ( ignoring blocks) of all the treatments ( in a coor-
dinatewise manner). We may use any trans]atjon-equivariantestimator of the

block effects; for simplicity, we take them as the block averages.  Thus, we
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define the aligned random vectors as

1
X . -=3X,,, di=1,....n; j=1.....p. 4.ﬂ’l’
Yii %575 j21~11 n: P (

0
ij’
Vi=1,....n; §=1.....p. Let sgg) be the rank of Ygg) among the N (= np)

For convenience, we assume that Yij has a gq-variate continuous c.d.f F

observations Y(e) Y(e) ....Yéﬁ) for j=1,...,p, i=1,...,n, € =1,...,q. Thus,

11 *"12 °
corresponding to the aligned observation Yij' we have a rank vector
(S(l) S(q)) »1=1,...,n, j=1,...,p. We also define the rank

~

collection matrix §N by (S '§np)' Note that under H,., Yil'Yi2""'Y' are

Si10---
interchangeable random vectors, so the joint distribution of

= (Yll"' Yip "'Iﬁp) remains invariant under the finite group @n of

~N
0
transformation {gn} (which maps the sauple space onto itself). Thus for any g €

Qn. there exists I; = ggIN which is permutationaslly equivalent to IN' If we

denote 5’; the rank collection matrix corresponding to }'; then AS‘: = ggﬁu and i’

permutationally equivalent to EN' Thus, under Hb, the conditional distribution

of §N over the (p!)n realization {§; = ggEN; gg € Qn}' is uniform, each
realization having the conditional probability (p!)_n. Let us denote this

conditional probability measure by 9&2) and define the scores gg(k). k=1,...,N,

. s 1 O
as in (3.5) with F[j]e being replaced by F[j]é' Similarly define QN2 Tho- ~N2

.2 . .
§N2' HN2 and AN2 the same as in QNI' INI' an. ENI’ ENI and éNl respectively with

aNje(k) being replaced by agje(k) for j=1....,p; &=1,...,q. k=1.....N.
Furthermore, consider a restricted (contiguous) alternative
-+ P
: =N . €T, . = . .
W f=N"rver 27;=0) (4.2)
J_
Then we have
0 _ 0 _N3.(8) '
Fi[j]e(x) = Fi[°]8(x N " ). (4.3)

and
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0 - F° - N3, (8 o _ yz,(8)
Fi[j]ee.(x.y) = Fi[.]ee.(x N IR N ;5 ). (4.4)
Finally, we define 22 and 22 the same as in Xl and El with Fi[.]e(x) and

0

. 0 .
Fi[.]ee.(x.y) being replaced by Fi[°]e and Fi[-]eE'(x’Y) respectively. Then under

parallel arguments as in the previous section we have

Tne {KN} RyT ("7 222-25) | | (4.5)
Theorem 4.1.. Let Ny = AB 1(22)§2§ and 22 = liﬂ 8{A IHO}. For each
(2) (@) -1
J(PCJCA. assume T = (ny €E & mpy = my; = Ay qpydypipiymop 2 0}
and F(z) = N F(2). If the family F?(y—B) satisfy the assumption [Al] through

°  doiea, J
[A3]. then for testing (1.2) against (1.4) (under {KN} defined in (4.2)),
UI-LMFR test Q N2 is asymptotically most stringent for I' and asymptotically UMP
for féz) within the class of aligned rank tests at the respective level of
significahce a.
Corollary 4.2. Under the same regularity assumptions as in Corollary 3.2, the
corresponding UI-LMPR test is asymptotically UMP (under {KN}) within the class of
aliéned rank tests for testing (1.2) against (1.3) when g=1 at the same level of
significance a..

Note that both the proofs of Theorem 4.1 and Corollary 4.2 are very
similar to the proof of Theorem 3.1 and Corollary 3.2, and hence, are omitted.
Also note that the last condition in (2.4) is needed for the aligned rank tests
but not for the intra-block rank tests ( only in the context of the asymptotic

optimality study).
. . 2 2
5. Asymptotic power comparison of QN] and QN2

- The optimal property of Q§1 may not generally hold when we extend the
domain to the class of tests based on rankings after alignment. Since the
rankings of QN2 bases on the aligned observations which dlsregard blocks, so QN2

should have the optlmal property within a more broad class. For testing

homogeneity against global alternatives, Hodges and Lehmann (1962) were
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successful in establishing the'superiority of the rankings after alignment
procedure over the intrablock ranking procedure when the underlying distributi(.
is normally distributed. For a wider class of distribution, this result was
extended by Sen (1968) and studied in detail by Puri and Sen (1971). The
assertion of the superiority of the aligned rank tests to the intrablock rank
tests can be easily extended to the testing against alternatives which put
constraints on the parameters in the linear forﬁ of lower dimensional hyperspace.
However, for a wider class of restricted alternatives, this assertion may not be
true. The following Theorem provides a partial answer when the aligned rank tests
are asymptotically power-superior to the intrablock rank tests in the restricted
alternative space.

Theorem 5.1. Let n = Al . Bl(‘v 3 ) = lim P{QNI 2 X(I)IK } and 32(’1 ~2) =
n—x°

tim P(QZ, 2 x|k}, 1f Lin P{QY, 2 x(l)lﬂo) Lin P (@, 2 x® |1} = a. then

N-»o

B('fE)ﬁBz(WJ) whenever‘reﬂ {n €E ;n §Jc(z , 1,...,a} .

Outline of the proof. Let us define

..‘},11 = Var 5 iy ~21 = Cov()(:Lj ) (5.1)
for j #j' =1,...,p; i =1,...,n, and
-1 2 -1 12
A, =limn " Z A ., A, =1limn ~ 3 A,. (5.2)
~1 n-—xo ]°.=1"'11 ~2 n—xo i=1"'21
Then via Theorems 3.1 and 4.1, we have
-1, - -1 _pzl -
R A R S
Namely,
_p-1 = 2 - -
215 2 A =p7dy andny =ny =0 say. (5.4)
Next, we define
2 . -1
%= o2 B sy B iy > O (5.5)
¢ciea,

<0} Vk=1,2, ‘."

-1
% 15U €

where
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It suffices to show that if P{Qﬁ > (k)l' =a, Vk=1,2, then

2 1 2
P{Q] 2 ( )IK } < P(Qz x{ )IKN} Without any loss of generality we assume

Al = I and note that
2 2 1
P& 2 x P kg - pe? > Mk ) (5.6)
P_. - :
¢CJCA [ By(J)¥alZ’ [Er2 I8, (n%%a(Z 2.0

where

Bk(J) = {z € B3, Zy. < 2' zZg > 2, "fJ" 2 xgk)} Vk=1,2. (5.7)

Since P{Qﬁ 2 x(k)l } =a, Vk =1,2, therefore it is obvious that
xél) (2). Furthermore, we write x( ) =X, and n5 =mn + 61, where 6.> 0. For
n € QO’ (i) if a = 1, then we have

untA fh (J) dd (z, n I) - dé (z n, I) (5.8)

2 6,2 2
= ‘2(2‘77 ) - ‘i‘(z‘ﬂ) d _é(z_'n ) - '12'(2‘77) d: > 0;
var io[e © 1z +z>£§—[e © ] 2} -

(ii) if a = 2, by regrouping the sums and symmetric arguments, we have

) é :
ch IBI(J)LEE‘E; l 'E) - dga(f; E'E)]

a

CJCA,

. T i P PP M g0 gy
= 5 { J {w e dz,dz, - I—é {w e dz,dz,

vx_-n,-6 U
a 'l

T P PR Ty MO gy
+ I {m e dzldz2 - _nf_é {w e dzldz2}

v§a—6—n2 2
+ o(1) 2 O. (5.9)

By mathematical induction, thus P{Q% 2 xalKn} is non-decreasing in n*

whenever v € QO' Therefore we have, 7 € QO'

P 2 %7 Iy 2 POQY 2 ) 1K)
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and hence the theorem follows.

Remark. For a = 2, let Q% = {n* € E2; n* 2 l-v§'l n* {0} U {n*e E2; n* <0,
E— ~ 153 % M2 >0 ¥0 1.

n; 2 %-VQ;} U {n* € E2; nT <0, n; < 0} U 2., then under parallel arguments as in
(ii) of Theorem 5.1, we have
%
BI(Z’EI) < 32(:.52). v v € Q. (5.10)

Generalizing this result to the higher dimensions is still an open problem.
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