
ABSTRACT 

FLEMING, NINA COLBY. Advanced Methods of Thermal Neutron Scattering Analysis for 

Reactor Multi-Physics Applications. (Under the direction of Dr. Ayman I. Hawari). 

 

The advancement of nuclear technology has resulted in new and unique thermal reactor 

designs beyond the typical light water reactors which currently dominate the reactor fleet. The 

verification and validation advanced thermal reactor performance require an accurate 

understanding of the neutronic contributions from each material, especially moderator and fuel 

materials. Thermal neutron cross sections which largely define the reaction rates (e.g. scattering 

and fission) in the core are directly dependent on the material structure. The thermal scattering law 

(i.e. TSL, S(Ŭ,ɓ)) quantifies the structure impact and defines energy and momentum transfer 

between a material and a low energy neutron at a given temperature. The contribution of lattice 

structure to particle interactions is observed in the phenomena of thermal neutron scattering and 

low energy resonance absorption Doppler broadening. 

In this work, the historical, approximated methods of calculating the TSL are improved by 

including directional dependence of the material lattice and interference (1-phonon) effects to 

accurately predict the TSL. A generalized, non-cubic S(Ŭ,ɓ) formulation is derived and 

implemented to calculate the non-cubic S(Ŭ,ɓ) and the related cross sections for reactor materials. 

This generalized methodology is implemented within the Full Law Analysis Scattering System 

Hub (FLASSH) and can be used for any material structure. The generalized TSL and impacts to 

cross sections are demonstrated in both a moderator and fuel material.  

The generalized TSL for ideal graphite, a highly non-cubic system, has been evaluated 

based on ab initio lattice dynamics (AILD) simulations. Impacts from the non-cubic and 1-phonon 

contributions in graphite are necessary for low momentum exchanges. These contributions give 

TSL improvements which exactly agree with TSL measurements. From the generalized TSL, total 



scattering cross sections are calculated and shown to improve the cross section in comparison to 

experimental measurements from 27.7% deviation to less than 2.5%. To further verify the 

generalized graphite thermal scattering kernel, the library produced in this work is implemented 

within the HTR-PROTEUS pebble bed reactor physics benchmarks. The benchmarks demonstrate 

expected reactivity impacts from the non-cubic and distinct structure in the TSL.  

For fuel materials, low energy cross sections must consider both scattering and absorption 

reactions. As such, the TSL is applied to both thermal scattering and Doppler broadening of low 

energy absorption resonances. The impact of material structure is demonstrated using uranium 

metal at various temperatures. Both AILD and molecular dynamics (MD) techniques are used to 

develop uranium metal models. The temperature dependence from MD is found to be necessary to 

capture the low frequency modes of the phonon density of states (DOS). The MD model is used 

to generate forces for a lattice dynamics calculation from which a novel thermal scattering cross 

section library is created.  

The structural information of the TSL is used to Doppler broaden the low energy absorption 

resonances for 238U. However, only considering lattice impacts in broadening is insufficient to 

capture the resonance cross section. Rather, the resonance must be reparameterized to account for 

material structure effects. The results from the generalized TSL method accurately reproduce 

experimental data in both thermal scattering and low energy resonance cross sections for uranium 

metal. By consistently introducing structure impacts to the resonances, the … from comparison 

with experimental data at 23.7 K was reduced from 18.8 to 1.8 for the 6.7 eV resonance of 238U.  

The application of the generalized TSL to both thermal scattering and Doppler broadening 

introduces material structure consistently across the scattering and absorption resonance cross 

sections. The methods and tools designed here introduce fundamental physics into the cross 



sections and provide the data needed for the design, benchmarking, and implementation of the next 

generation of advanced reactors and advanced reactor materials. 
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CHAPTER 1. INTRODUCTION  

 

1.1 Advancements in Thermal Reactor Design 

The fundamental design of thermal, fission-based nuclear reactors reduces to three basic 

components: fuel, moderator, and coolant. Various methods throughout the decades have sought 

to optimize reactor design by taking advantage of different material characteristics. The first 

experimental nuclear reactors date back to Enrico Fermi in 1942 and his graphite pile reactor. This 

structure combined large quantities of graphite moderator with natural uranium fuel to create the 

first man-made critical system. Today, the U.S. nuclear reactor fleet is primarily composed of light 

water moderated and cooled systems with UO2 fuel pellets. The next generation of reactor designs 

feature a broad spectrum of materials ranging from molten fuels to solid moderators like graphite. 

These non-traditional designs offer advanced features such as walk-away-safe and modular design.  

Through the influence of historical figures such as Hyman G. Rickover, the U.S. made 

design decisions to pursue light water reactors. The design decisions dating back to the 1950s 

resulted in water being the primary moderator in the power reactor fleet to date. However, the next 

generation of advanced nuclear reactors will fundamentally differ from the current fleet and will 

promote additional reactor concepts with moderators such as graphite and molten salts. After 

decades of conceptual designs, the advanced reactor concepts are becoming a reality with U.S. 

Department of Energy awards to build and test designs such as the X-energy graphite moderated 

pebble bed design [1].  The X-energy high-temperature pebble bed system features a graphite 

moderated, pebble fuel, and thermal spectrum; while designs such as the Molten Salt Reactors 

operate in the thermal energy region but liquid fuel salts flowing through the system. Examples of 

these next generation reactors are shown in Figure 1-1.  

 



   

2 

 

  

  

Figure 1-1. Advanced reactor design for the X-energy high-temperature gas reactor, featuring a 

pebble bed design to the left [2]. To the right, the Molten-Salt Reactor Experiment design from Oak 

Ridge National Laboratory was one of the first large-scale demonstrations of MSRs [3].  

 

These advanced reactor designs and novel materials require high fidelity modeling 

capabilities to predict core behavior. To capture and predict core performance, the interaction of 

the neutrons must be properly characterized. In fast reactors, neutrons remain at high energies, but 

in thermal reactors, the phenomena of slowing down and thermalization drive reactor operations 

and dynamics. Thermal nuclear reactor systems are broadly defined as systems characterized by a 
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low energy (thermal) neutron spectrum resulting from the slowing down of fast-born fission 

neutrons.  

 

1.2 Neutron Cross Section Data 

Design of any reactor system begins with a proper understanding of the fundamental 

reactions occurring within the system which define the reactorôs behavior. Many different types of 

reactions are possible depending on the material structure, energy of the neutron, etc. As a general 

description, neutrons born from fission have energies on the order of 20 MeV, which is part of the 

fast energy regime. As these neutrons begin to interact with their surroundings, they either lose 

energy as they collide, are absorbed into the system, or are lost as they exit (leak) from the system 

as shown in Figure 1-2.  

  
Figure 1-2. Typical neutron life cycle within a thermal reactor core. 
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All types of interactions within a reactor can be classified as absorption or scattering. 

Absorption interactions involve the formation of a compound nucleus composed of the initial 

neutron and the original atomôs nucleus. Typically, this compound nucleus is formed at an excited 

energy state. Examples of absorption reactions include resonance absorption but also fission and 

capture events. Alternatively, in scattering interactions a neutron collides with a scattering nucleus, 

and a neutron will emerge. The properties of the emerging neutron will be characterized by the 

type of scattering interaction. Scattering interactions can be characterized broadly to be either 

elastic or inelastic. Inelastic scattering interactions result in a change of the scattererôs quantum 

states induced by the neutronôs collision. Elastic scattering has no such change in quantum states. 

The likelihood of interaction for a neutron, whether absorption or scattering, is given by 

cross sections. Combining the likelihood or rate constant for interaction (cross section) with the 

concentration of incoming neutrons (neutron flux) and concentration of atoms within the material 

(number of atoms) gives the reaction rate within a material. Reaction rate is then used to define 

criticality and the keff of a system. In equation form, the reaction rate is equal to  

 
3 3

0 0

Reaction Rate ( ) ( , ) ( ) ( ) ( ) ( , ) ( )
R R

N r r E n r v r d rdE N r r E r d rdEs s f

¤ ¤

ò ò
ó ó
ô ô
= =ñ ñ   (1.1) 

where N is the spatially-dependent number density of atoms, ů is the rate constant termed a cross 

section, n is the neutron spatially-dependent density, v is the neutron speed, and ʟ  is the neutron 

flux (n(r)·v). When the rates of neutron creation and destruction are balanced throughout a reactor, 

then the system is defined to be critical with a keff of unity.  

Beginning at high energies where the neutron is born, high energy cross sections are 

represented with smooth curves modeled from high energy physics including nuclear inelastic 

scattering and non-elastic interactions as shown in Figure 1-3.  
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Figure 1-3. Total free atom cross section for 235U from the ENDF/B-VIII.0  evaluation spanning thermal to high energies [4]. Plotted 

concurrently is an example neutron energy spectrum from a room temperature, thermal graphite moderated, UO2 fueled reactor (HTR-

PROTEUS reactor). Peaks occur in the flux around 20 MeV where fast fission neutrons are born and at approximately 0.06 eV as neutrons 

slow down to form the large thermal peak.
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For fast neutrons, inelastic scattering will result in an excited energy state of the scatterer. These 

collision interactions serve to reduce the neutron energy from the fast energy region into what is 

termed the slowing-down region. 

As the neutrons slow down, they enter the main absorption region for heavy nuclei (e.g. 

fuel materials) which can be observed between approximately 1 eV and 100 keV as shown in 

Figure 1-3. This region termed the resonance absorption region is further subdivided into two 

sections: resolved resonances and unresolved resonances. This distinction is largely due to the 

energy difference between resonance peaks as the difference approaches the width of the actual 

resonances. This hinders the ability to individually resolve the peaks using the experimental and 

theoretical methods. These resonance peaks are introduced by the nuclear structure of the material 

and available excitation and de-excitation modes of the nucleus itself. As the temperature of the 

material increases, the resonance peaks are broadened due to the increased thermal motion of the 

nuclei. This effect is known as Doppler broadening. For the heavy nuclei, while scattering events 

can occur, absorption will dominate in the resonance region. 

In order to slow down neutrons born from fission all the way to the thermal range, many 

collision (scattering) events must transpire with minimal absorption. These scattering interactions 

occur largely within the moderator, defining a characteristic neutron energy distribution within the 

core. Typical moderator materials will be lighter nuclides, and absorption resonances are not 

typically present. Rather, the slowing-down energy region (eV to MeV energy range) will be 

defined by completely nuclear optical elastic scattering. This allows for neutron energy loss 

through down scattering which thermalizes or moderates a system. In contrast to the heavy nuclei 

in Figure 1-3, Figure 1-4 demonstrates the cross section regimes for graphite, a light moderator 

material.  
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Figure 1-4. Total graphite cross section from thermal to high energies [4]. The various interaction 

regimes are labeled, demonstrating the modes of interaction for various neutron energies. As a light 

nucleus, resonances are absent from the cross section. Rather, scattering will dominate at epithermal 

energies. Absorption for carbon is negligible as seen in the flat cross section of the free atom structure 

in the thermal region (i.e. no 1/v absorption visible). The structure of graphite results in the featureful 

thermal region with sharp defined peaks from the graphite lattice structure. The difference between 

free atom and bound, structure dependent cross sections can be seen in the thermal energy range.  

 

Above approximately 1 eV, free nucleus interactions will occur. As the energy of the 

neutron approaches 1 eV, the de Broglie wavelength of the neutron approaches the interatomic 

spacing of solid crystalline structures. The relationship of neutron energy to wavelength is defined 

as  
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where h is Planckôs constant, m is the mass of the neutron, and E is the neutron energy (eV) [5].  

For energies of 1 eV, the neutron will have a wavelength of 0.286 Å and will begin to interact with 

both the individual materialôs atoms and also the lattice structure. This regime where both 

individual atoms and bound structure contribute is defined as the thermal energy range. 

At low energies (eV range neutrons), nuclear excitation is not possible. However, the 

rotational and vibrational states of the atom (or molecule) bound within the system are associated 

with discrete quantum energy states. Inelastic scattering in the low energy region will affect these 

vibrational/ rotational states resulting in either energy gain or loss for the neutron. Low energy 

elastic scattering will not impact these quantum states, but the low energy elastic interaction may 

result in either energy gain or loss as the recoil of the system will respond to maintain conservation 

of energy and momentum.  

The vibrational energy quanta of the lattice are referenced as phonons. For atoms bound 

within a material structure, the available modes of phonon energy exchange are captured in the 

thermal scattering law (TSL, i.e. S(Ŭ,ɓ)) and are determined by the structure of the material. The 

TSL is a fundamental material property which quantifies the available energy and momentum 

modes for interaction. The TSL is then used as primary input to determine the thermal scattering 

cross sections. If the structure information is neglected, the cross section will be artificially inflated 

at low energies, resulting in non-physical behavior (see comparison in Figure 1-4). Within the 

thermal range, both elastic and inelastic interactions can occur, and energy will be exchanged 

through up and down scattering events (gain and loss of phonons). 

As seen in Figure 1-4, the crystalline structure will begin to introduce the sharp features of 

lattice elastic scattering. These sharp peaks are due to the neutron interaction with a bound atom 

and the excitation levels of the lattice structure of the material. Lattice elastic scattering is still 
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defined as an interaction where no phonons are exchanged between the neutron and atomic lattice. 

However, the arrangement of the atoms will make specific modes energetically favorable as 

defined by Braggôs diffraction law:  

 2 sinn dl q=   (1.3) 

where n is any integer, ɚ is the neutron wavelength, d is the interatomic spacing of the lattice, and 

ɗ is the angle between the incoming neutron and the scattering lattice plane. As the neutron further 

decreases in energy, a sharp drop occurs in the cross section corresponding to the Bragg cutoff. 

For crystalline solids, this point is defined as the lowest energy possible for elastic scattering where 

Equation (1.3) can hold true. Below the Bragg cutoff, only inelastic lattice scattering will occur.  

Inelastic scattering is defined by an exchange of one or more phonons between the neutron 

and atomic lattice. At such low energies, inelastic up scattering of the neutrons is most common 

as the energy exchange of the neutron and lattice results in an equilibration of the neutron with its 

surroundings. As an aside, for unbound or free atoms below the Bragg cutoff, the absorption cross 

section will take the form of inverse velocity (1/v) while scattering will remain nearly constant 

since lattice binding can be neglected. This 1/v behavior can be seen in the free atom 235U cross 

section in Figure 1-3, and the free atom scattering cross section is shown for carbon in Figure 1-4.  

The up and down scattering of neutrons at these low energies will define a distribution of 

neutron energies in equilibrium with their surroundings and informed by the temperature of the 

system. These neutrons are defined to be thermal neutrons. When absorption is minimal, thermal 

neutrons can be approximated by a Maxwellian distribution for neutron flux  
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where ʟ  is the neutron flux, ʟth is the total thermal neutron flux, E is the neutron energy, kB is 

Boltzmannôs constant, and T is the temperature [6]. Within a reactor setting, it is important to 
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consider not the neutron density but the neutron flux distribution since the reaction rate seen in 

Equation (1.1) is ultimately dependent on flux and not density. These thermal neutrons will hover 

around a mean energy set primarily by the temperature of the system. Using the distribution in 

Equation (1.4), the most probable thermal neutron energy would be equal to kBT which is 0.025 

eV at room temperature. The exact distribution of thermal neutrons will result from the particular 

cross sections present within the system and will be largely defined by the moderator material. The 

material structure informs the cross section and thereby the expected thermal neutron energy 

distribution.  

The materialôs unique chemical binding will not only determine the neutronôs low energy 

scattering interactions but also beyond the thermal energy range up through the epithermal range 

where Doppler broadening occurs. Doppler broadening has been conducted historically assuming 

free gas material structure with a Maxwellian distribution to describe the neutron velocity and 

atom interaction. This will not capture the correct temperature effects for structured fuel materials.  

The binding information found in the TSL accurately defines the low energy absorption 

resonance cross sections where the crystalline structure of the material contributes to the Doppler 

temperature response. Various fuel types such as uranium metal, which was historically used at 

reactors such as the Experimental Breeder Reactor-I (EBR-I), and even uranium dioxide will exert 

lattice impacts through the low and mid-energy range to varying degrees depending on the type of 

structure present in the fuel. Regardless of the energy region, accurate descriptions of the cross 

sections are required, and a proper understanding of the material TSL is essential, particularly for 

thermal scattering and absorption resonance Doppler broadened cross sections.  
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1.3 Cross Section Evaluations  

To accurately model the neutron reaction rate behavior, the cross sections must accurately 

reflect the physics of the materials. Beginning in 1968, the first standardized cross section libraries 

were released in the Evaluated Nuclear Data Format-B (ENDF/B) files [7]. The ENDF/B libraries 

became the world standard for tabulated neutron cross section data, used today as input into various 

calculations and codes. The historical process for evaluating cross sections was defined as the 

combination of experimental measurements with nuclear theory, using these combined results to 

inform the search for the true cross section value [7].  Example codes used today for cross section 

evaluations based generally on a least-squares method include TALYS, EMPIRE, and ALICE-

IPPE [8-10].  

In the thermal cross section region, a more theoretical approach was taken throughout the 

history of the ENDF libraries. Experimental measurements will only capture a fraction of the 

thermal range interactions. Instrumentation resolution, limitation of angular measurements, and 

interpolation methods used to transform the double differential cross sections to TSL data result 

in an incomplete representation of a material. These cross sections could then be refined based on 

feedback from integral experiments. This approach sufficed to calculate effects for the first 

generation of reactors.  

However, as technology advanced, theoretical equations which had been computationally 

impractical became possible on local desktop machines. The understanding of materials began to 

address the quantum definitions and derive impacts on the macroscopic scale. It became possible 

to resolve accuracy from theory with higher resolution than experiment could provide. These 

advancements led to new developments in the production of cross section libraries. Now, rather 

than ñevaluationò being a term to describe the convolution of experimental and theoretical values, 
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cross section evaluations, especially in the low energy ranges, can be defined purely from 

fundamental equations.  

These equations at the TSL level are implemented in codes such as NJOY or the Full Law 

Analysis Scattering System Hub (FLASSH) [11,12]. These codes take a materialôs available 

phonon exchange modes as fundamental input and output the TSL in ENDF format. Other codes 

such as SAMMY are used in the resonance region to resolve the resonance peaks and perform 

Doppler broadening [13]. SAMMY is explicitly able to combine experimental data with resonance 

parameters (either experimental or derived) in order to determine cross section values.  

 

1.3.1 Current Status of Cross Section Evaluations 

Within the aforementioned codes, the methods for calculating thermal scattering cross 

sections and the TSL have historically relied on three main approximations: the incoherent 

approximation, cubic approximation, and atom site approximation. The incoherent approximation 

neglects coherent inelastic effects. The cubic approximation assumes an isotropic crystalline 

structure. The atom site approximation assumes all atoms can be treated equivalently within a 

lattice. An example comparing the TSL for graphite as calculated under the incoherent, cubic, and 

atom site approximation with experimental data is given in Figure 1-5. Under these 

approximations, these codes fail basic benchmarking tests.  

Benchmarking requires both verification and validation. Verification is the process of 

assuring correspondence between a code or output and the real world. This entails correspondence 

with physical equations, consistency with observed behavior, and completeness of any models. 

Validation is concerned with accuracy of implementation. A validated system will not have any 

bugs or mathematical errors. A verified system will contain all pertinent physics. Under the 
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approximations listed above, TSL codes currently used in reactor applications fail to capture the 

physics defined in explicit equations and observed in experiment as seen in Figure 1-5. These 

approximations sufficed to capture the neutronic impact of the TSL. However, to evaluate cross 

sections for novel materials such as those considered for advanced reactor designs, a complete and 

accurate representation of the TSL is desirable.  

 

 

Figure 1-5. Graphite TSL at 533 K calculated and experimental values [14]. Calculated values for the 

TSL are given under the cubic and incoherent approximations, and therefore, they do not show the 

structure clearly evident in the experimental data at low momentum exchanges (Ŭ). The calculated 

data corresponds to NJOY output. Without coherent effects, the calculation approximately averages 

the effects seen from experiment.  
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1.3.2 Modern Methodologies for Cross Section Evaluations 

Rather than relying on experimental data or approximated relationships, both the cross 

section and available phonon modes (quantified by the density of states (DOS)) are defined using 

theoretical relationships which can be benchmarked using experimental data. To predictively 

calculate cross sections begins at the molecular level and ends with reactor implementation as 

shown in Figure 1-6. At each step, calculated values can be tested and verified with experimental 

data.  

 

 

Figure 1-6. Process of connecting atomistic simulations to predictive reactor physics calculations. By 

beginning with predictive models and verifying each step along the way, high fidelity predictive cross 

sections can be evaluated.  

 

As a result of this foundational, stepped approach to understanding the reactor, the multiple layers 

of physics contributions to the reactor simulation are fundamentally taken into account. Reactor-
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level phenomena such as temperature change can therefore be understood to be the result of 

atomic-level variations. True multi-physics reactor simulations will then take into account the 

multiple physics contributions within the reactor operation, in particular material properties which 

are quantified by the TSL.  

Modern methodologies implemented for thermal scattering cross sections utilize material 

science methods to represent the atomistic structure. Two primary examples are molecular 

dynamics (MD) and ab initio lattice dynamics (AILD) which model the atoms and determine the 

forces within a material structure from fundamental quantum mechanics [15]. At the atomistic 

level, the models can be compared with measured bulk properties such as the lattice constants and 

bulk, shear, and Youngôs moduli. Additionally, it is vital to capture the electronic structure which 

can be verified by comparing with XPS or BIS measurements which capture the electronic density 

of states.  

Increasing in scale, the generated forces are used to calculate the phonon DOS for a given 

material. The DOS represents the available energy exchange modes for a material and is directly 

related to the TSL and cross section [15]. The calculated phonon DOS and its directional 

counterpart, the dispersion relations, can be compared with measured data. The dispersion data 

demonstrates the directional dependence of the material. Using the verified DOS as input, cross 

section data can then be generated and compared with experimental integral and differential 

measurements. At each step in the evaluation, calculated values are compared with experimental 

measurements. This approach demonstrates the modelôs ability to consistently replicate properties 

correlated to the TSL which gives credence to the final cross section result.  

Variations to the molecular structure will impact cross section values and then show 

repercussions in observables such as keff, detector response, and neutron energy spectrum. 
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Additionally, benchmarking the phenomena of slowing down and thermalization is required for 

these new materials to ensure safety qualifications and design validation. Many such experimental 

reactor systems have been designed and developed to allow integral experimental benchmarking 

of cross section data.  As an example, the HTR-PROTEUS reactor, an experimental pebble bed 

design, was used to benchmark impacts to criticality for pebble bed reactors. This pebble bed 

design is now one of the primary advanced reactor concepts. More importantly to cross section 

benchmarks, this reactor is dominated by graphite thermal scattering. The impact from graphite 

cross sections can be isolated from the HTR-PROTEUS response in order to benchmark the cross 

section data. This type of experimental system allows for quantifiable validation of the cross 

section data for reactor modeling and simulations for reactor design.  

 

1.4 PROTEUS Graphite Pebble Bed Reactor  

PROTEUS is an experimental reactor located at the Paul Scherrer Institute in Switzerland. 

The PROTEUS system was used to test many reactor concepts including pebble bed designs. The 

various core configurations were arranged within the central cylindrical cavity surrounded by a 

graphite annulus as shown in Figure 1-7.  

The HTR-PROTEUS program specifically analyzed a pebble bed design and key core 

parameters such as criticality and water ingress effects consistent with high temperature gas 

reactors [16]. The meticulous measurements conducted at PROTEUS were documented in the 

form of reactor physics benchmarks through the International Reactor Physics Benchmark 

Experiments (IRPhE) Project [17-20].  

The IRPhE benchmarks consist of compiled experimental data, documentation of 

procedures, and detailed uncertainty analysis of measured quantities. In the case of HTR-
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PROTEUS, these measurements included criticality, spectral characteristics, reactivity effects, 

reactivity coefficients, and many more. This data was originally compiled for PROTEUS with the 

express intent of supplying experimental data to benchmark reactor physics codes and nuclear data 

[17]. Given this stated purpose, every effort was made by the original scientists to understand, 

quantify, and reduce uncertainty both in core components and experimental data collection. The 

HTR-PROTEUS benchmarks therefore have some of the lowest uncertainty for reactor criticality 

measurements.  

        

 

 

Figure 1-7. Schematic overview of the HTR-PROTEUS core configuration [17]. The graphite annulus 

(yellow) surrounds the cylindrical core area. Graphite moderator pebbles and UO2 fueled pebbles 

were arranged (either hand-placed or randomly filled) within the cavity. An example hand-placed 

pebble arrangement is shown to the right.  
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The IRPhE benchmarks include eleven unique core configurations tested at PROTEUS. 

These different core loadings varied the ratio of fuel to moderator, the height of the core, simulated 

water ingress effects with polyethylene rods, and varied packing fraction of the core pebbles. The 

moderator pebbles were comprised of graphite, and the fuel pebbles consisted of TRISO particles, 

enriched to 16.7 wt% 235U dispersed within a graphite matrix [17]. Above, below, and around the 

core, graphite blocks served as core reflectors [17]. Given the low uncertainty in keff and the 

dependence of the HTR-PROTEUS system on graphite scattering, the HTR-PROTEUS 

benchmarks provide experimental data needed to validate graphite thermal scattering cross 

sections for reactor physics applications.  

 

1.5 Motivation  

Moving forward, this work seeks to implement a more complete theory for low energy 

neutron interactions as defined by the TSL. This includes application of the resulting TSL into 

cross section calculations for both thermal scattering and low energy absorption resonances to 

capture the bound atom effects. Historical approximations to the TSL will  be replaced with the 

generalized equations containing fully explicit coherent and incoherent terms. Codes and methods 

will be developed both for the generalized TSL evaluation and the application into Doppler 

broadening. These results will be compared with experimental data beginning at the atomistic scale 

and extending to reactor impacts in pertinent benchmark examples. This work will provide not 

only validated TSL and cross section data but also an improved methodology which can be 

systematically applied to both moderator and fuel cross sections.  

These approaches will support the accurate modeling and implementation of advanced 

reactor concepts. The cross section data required to represent these new systems, particularly 
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pebble bed reactor implementations, rely heavily on the moderator (graphite) and fuel cross 

sections which will be addressed directly in this work. Application of the benchmarked cross 

section libraries will allow for accurate models of such systems in support of both criticality safety 

and reactor design implementation.  
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CHAPTER 2. THERMAL NEUTRON PHYSICS  

 

The neutron cross section in the low energy range is characterized by the material structure 

in which the interaction takes place. The thermal scattering law (i.e. TSL, S(Ŭ,ɓ), S(ʆᴆ,ɤ), or 

dynamic structure factor) is used to define potential interaction modes and the relationship between 

momentum and energy transfer within a material. The TSL is a fundamental material property 

independent of the type of interaction. The total thermal scattering law is divided into coherent 

and incoherent effects such that  

 ( ) ( ) ( ), , ,s dS S Sk w k w k w= + . (2.1) 

S is the total; Ss is the self term; and Sd is the distinct term. The self effects correlate an initial time 

position of an atom with a later timeôs position of the same atom. The distinct effects represent the 

correlation of an atomôs position at some initial time with the other surrounding atomsô positions 

(not including the initial atom). The TSL in Equation (2.1) is given in terms of the scattering vector 

‖ᴆ and frequency ɤ which are directly related to their unitless counterparts Ŭ and ɓ, dimensionless 

momentum and energy respectively.  These parameters are defined such that  

 

2 2

2 n BAm k T

k
a=   (2.2) 

and  

 
'

B B

E E

k T k T

w
b
- -
= =   (2.3) 

where ə is the magnitude of the scattering vector,  is Plankôs constant, kB is Boltzmannôs constant, 

T is the temperature, mn is the neutron mass, and A is the neutron weighted mass of the material. 

Additionally, the energy Eô corresponds to the final energy and E to the initial energy. Given this 

relationship, the TSL can be used to define the likelihood of interaction.  
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The definitions for the TSL using the self and distinct terms are typically translated into 

coherent and incoherent effects when applied to traditional cross section terminology. Coherent 

effects correlate an atom at some initial time with itself plus the other surrounding atoms at some 

later time. This correlation of an atom with all the atoms of the lattice at a later time introduces 

interference effects into consideration. The coherent scattering law is equal to both the self and 

distinct contributions added together. Incoherent scattering correlates an atom at some initial time 

with itself at some later time. It is purely a time correlation which accounts for non-interference 

effects. The self scattering law and incoherent scattering law represent the same physics. In 

equational form,  

 
.

inc s

coh s d

S S

S S S S

=

= = +
  (2.4) 

The forms of incoherent and coherent scattering laws are more common within the literature such 

as Squiresô derivation in Ref. [5]. However, various resources have used the definitions of 

coherence to reference different portions of the TSL. As such, this work will continue under the 

notation of self, distinct, and total TSL for improved clarity in the process of derivation.  

As previously stated, the scattering law correlates the atoms within a lattice at various 

times. These measures of real space distance and time can then be transformed into their reciprocal 

space counterparts of momentum and energy, respectively. The scattering law which is typically 

represented in inverse space is equal to  

 ( )1
( , ) ( , )

2

i r tS G r t e drdtk wk w
p

Ö -= ñ   (2.5) 

where G is the time-dependent pair-correlation function defined in real space and translated into 

inverse space measures of ‖ and ɤ [5]. The pair-correlation function defines the relationship 

between two atoms j and jô such that 
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'

1
( , ) ' (0) ' ( ) 'j j

jj

G r t r r R r R t dr
N

d dò
ó
ô
è ø è ø= - + -ä ê ú ê ú  (2.6) 

where r is the distance between the two atoms with the atom at time zero at position rô [21]. N is 

the total number of atoms within the crystal and scales the pair-correlation to be per atom. The 

vectors Ὑὸ give the time-dependent location of the atom in terms of the Heisenberg operator for 

the atomôs displacement. These equations representing the atomsô relationship within the lattice 

can be expanded to describe fully the available energy and momentum space for particle 

interactions.  

  

2.1 Development of a Generalized TSL Formulation 

2.1.1 The Total Scattering Law 

The TSL as defined in Equation (2.1) is a function of the self and distinct components 

correlating atom positions as a function of time [5]. The generalized form of the TSL per atom 

correlating an atom jô at time zero with all other atoms j at time t is expressed generally as  

 ( )'

'

1 1
( , ) exp (0) exp ( ) exp

2
j j

jj

S i R i R t i t dt
N

k w k k w
p

¤

-¤

è ø è ø= - Ö Ö -ê ú ê úäñ   (2.7) 

where the TSL is defined as a function of the time-dependent vector position of the atom ( )jR t , 

the scattering vector ‖, frequency ɤ, Plankôs constant , and time t. The total scattering law in 

Equation (2.7) can be divided to include self and distinct components. The self portion will be 

defined for an atom with itself. For the distinct component of the total S given in Equation (2.7), 

the double sum over the j and jô atom positions must be limited to only when j does not equal jô. 

This then limits the relationship to the interaction of one atom with other (not self) atoms. Using 

the notation in Equation (2.7), the self and distinct components can be generally defined as   
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The expression of the total scattering law can be rewritten in terms of the repeated lattice 

of unit cells such that 

 ( )', ' ,

''

1 1
( , ) exp (0) exp ( ) exp

2
l d l d

ddll

S i R i R t i t dt
N

k w k k w
p

¤

-¤

è ø è ø= - Ö Ö -ê ú ê úääñ .  (2.9) 

In mathematical terms, the time averaging is represented by ộ Ớ. The scattering law is defined 

specifically for a non-Bravais lattice. A non-Bravais lattice consists of more than one atom per 

unit cell, and to capture the full effects from all the atoms, a summation over the atoms d occurs 

in addition to the summation over the lattice vectors ὰ. Each unique atom position d may vary in 

type of atom (e.g. different elements). Some atom types may have more than one unique atom 

position, depending on the material.  

The atom position is defined as  

 , ( ) ( )l d ldR t l d u t= + + , (2.10) 

the sum of the unit cell equilibrium position ὰ, the equilibrium position of the atom Ὠ (i.e. ὰ Ὠ is 

the equilibrium position of the atom), and ό  the time-displacement. This is represented by Figure 

2-1.  
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Figure 2-1. Atom position with the lth unit cell as measured from the origin and from the undisplaced 

atom position (dark heavy dot) to the displaced position (open dot) [5]. 

 

Assuming harmonic interatomic forces within the crystal lattice, the displacement vector 

can be written as  

 

1/2
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ç ÷
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Here, the mass M is specified for a given atom site d, Nl is the number of unit cells in the crystal, 

and ǩ is Plankôs constant. The displacement is defined in terms of the summation of states defined 

by ή the wave vector and j the mode (not to be confused with the atom index j in Equation (2.7)) 

[5]. The polarization vector for a given state is notated as Ὡ  and the corresponding frequency as 

‫ . The states Ὦή are then operated on by creation and annihilation operators ὥ  and ὥ , 

respectively. 

Expanding in terms of the definition of the atom position, 
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Recognizing that only the difference in atom position ὰ ὰᴂ contributes, the summation over ὰ and 

ὰᴂ will be identical and the double sum can be reduced to a single sum with ὰᴂ set to zero multiplied 

by the number of unit cells. The reduced formulation is then equal to 
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 (2.13) 

where Nd is the number of atoms in a unit cell.  

Defining two terms U and V to represent the exponentials simplifies notation of the TSL. 

U and V then are the initial and final time correlation terms respectively. This definition allows the 

distinct scattering law to be written as 
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  (2.14) 

Assuming a harmonic oscillator and resulting Gaussian function, the exponentials can be reduced 

to  

 

2 2

exp exp exp exp exp
2 2

U V
U V UV= .  (2.15) 

Because U and V are evaluated for different atom positions, U2 is not equal to V2, and both terms 

must remain. The distinct TSL is then equal to  
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Expanding the exponential terms, the physical significance is better understood. The first 

exponential terms with the squared U and V terms make up the time-independent term and are 

defined to be the Debye-Waller term. Whether averaging at initial times (U) or at later times (V), 

the average squared displacement will be the same for a given atom. Therefore, the Debye-Waller 

term will  drive the overall shape of the function. Temperature is an example of an effect which 

specifically contributes through the Debye-Waller term to determine the magnitude of the long-

term average of the TSL. The Debye-Waller term expanded in terms of Equation (2.14) is equal 

to  

 

2
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d d
jq
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e
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k w
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The Debye-Waller function can also be written in matrix notation, decomposing the polarization 

vectors and combining the constants such that 

 2 d dW Bk k=   (2.18) 

where B is the Debye-Waller matrix equal to  
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correlating the x and y directions, where x and y can be replaced with any combination of the 

coordinate directions x, y, and z. The Debye-Waller matrix is a 3x3 matrix representing the 

displacement of each atom in the x, y, and z directions along with the correlation between the 

different directions. For the distinct TSL, the Debye-Waller term is split between the U and V 
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components. Both would be equal if taken from the same atom position. For the distinct term, 

however, U and V are determined based on dȭ and d, respectively. The only resulting difference in 

the Debye-Waller function is the use of d versus dȭ. The TSL can then be generally written as 
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The second exponential correlates the atom at time zero with the other atoms in the lattice 

at time t as the lattice exchanges phonons with the incoming particle. This can either be a phonon 

absorption or phonon emission interaction. Expanding the time-dependent term using Equation 

(2.14),  
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 Here, the phonon emission is defined as 
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and phonon absorption as 
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 . (2.23) 

The derivation of the TSL up to this point has assumed correlation of an atom with other 

atoms such that the difference between  ὰ Ὠ and ὰᴂ Ὠᴂ can be non-zero. In order to represent 

the self contribution, only the time-dependence of an atom with itself will be taken into 

consideration.  
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2.1.2 The Self Scattering Law 

The self scattering law only considers the correlation of the atom with itself. Therefore, the 

difference in the undisplaced atom position at time zero and time t ( ὰ Ὠ minus ὰᴂ Ὠᴂ) equals 

zero. By substituting in the definition of the atom position, the self scattering law is equal to  

 { } { } ( ),0 ,0

1 1
( , ) exp (0) exp ( ) exp

2
s d d

dd

S i u i u t i t dt
N

k w k k w
p

¤

-¤

= - Ö Ö -äñ .  (2.24) 

Comparing Equations (2.13) and Equation (2.24), the only difference is a summation over a single 

atom position d and the removal of the exponential terms including ὰ and Ὠ as they now are equal 

to unity. The derivation for the self TSL continues as before with the distinct TSL by defining the 

U and V terms.  

Because only one atom position is considered, the exponential form of U and V can be 

written as  

 
2exp exp exp expU V U UV=   (2.25) 
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The self TSL is then equal to  

 ( )21 1
( , ) exp exp exp

2
s d d d

dd

S U U V i t dt
N

k w w
p

¤

-¤

= -ä ñ .  (2.27) 

Equation (2.17) still defines the Debye-Waller term. The time average of the phonon creation and 

annihilation terms UV is still equal to Equation (2.21) but reduces to  
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The TSL as defined thus far is written in terms of the asymmetric TSL. The asymmetric 

TSL is defined for the full frequency range for both positive and negative frequency values. The 

positive and negative components are related, however, through the process of detailed balance 

(see APPENDIX C for more details). Detailed balance assumes that gains and losses must be equal, 

and the TSL definition can be shown to adhere to detailed balance. As a result, the asymmetric 

TSL holds to 

 ( , )exp( / 2) ( , )exp( / 2)S Sk w w k w w= - - .  (2.29) 

Using the symmetry of the TSL demonstrated by detailed balance, a symmetric form of the TSL 

can be derived. This symmetric form is also used in ENDF formatting to reduce the number of 

data points to be stored. The symmetric TSL is related to the asymmetric TSL as 

 ( , ) ( , )exp( / 2)sym asymS Sk w k w w=   (2.30) 

and  

 ( , ) ( , )sym symS Sk w k w= - .  (2.31) 

The exact equations derived for both the self and distinct scattering laws explicitly define the 

interactions of atoms within a lattice. Within these equations, the effect of temperature will have a 

significant role.  

 

2.1.3 The Effect of Temperature 

Temperature is found in two key aspects of the TSL evaluation. The first is in the phonon 

dispersion data (or DOS, cf. Section 2.3) itself. The particular modes available for phonon 

exchange within a lattice are temperature-dependent. For most materials, the temperature 
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dependence of the phonon dispersion data is negligible, and the primary effects of temperature 

result from the phonon occupation number. The thermal average phonon occupation number 

represents the likelihood that a phonon mode will be excited or de-excited as given by Equations 

(2.22) and (2.23). When represented in the symmetric formulation, the occupation number n is 

defined for phonon emission (upscattering) as  
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and phonon absorption (downscattering) as  
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where ᴐ.equals the energy of the particular phonon mode and T is the temperature [5] ‫  

In the TSL evaluation, these phonon emission and absorption terms are directly multiplied 

by the phonon dispersion data to give the scattering probability density function. As such, the 

phonon occupation number introduces one of the primary means of temperature dependence of the 

TSL and also informs the importance of the various phonon modes.  These individual phonon 

contributions to the TSL can be defined independently. For application purposes, the equations 

defining the TSL have been manipulated to represent the interaction potential for a given number 

of phonons through a process termed the phonon expansion.  

 

2.2 Phonon Expansion of the TSL 

Previously, the assumption has been made that the forces within the lattice are 

approximately harmonic. This assumption allows the equations for the self and distinct scattering 

law to be carried through a conventional Taylor series expansion. This expansion translates the 
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formal equations above into individual phonon exchange terms. Within the summation, a given 

term will then represent the interaction potential which creates or destroys p number of phonons. 

The sum of all phonon contributions is the total TSL. This process is termed the phonon expansion.  

The Taylor series expansion of the exponential term is equal to   

 
0

exp
!

p

d d

d d

p

U V
U V

p

¤

=

=ä  . (2.34) 

Substituting this definition into the self and total TSL equations gives 
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Manipulating these equations allows us to write the following terms which simplifies the above 

equation:  
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This then defines a recursive formula for each piece within the time-dependent integral in terms 

of the p phonon order. Substituting in Equation (2.39), 
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for the self TSL, and the total TSL is equal to 
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In the event the direction of ‖ is held constant, it can be shown that for the self component (d=dȭ) 

phonon expansion terms can be normalized. The traditional derivation of the TSL equations 

assumes approximations which will enforce a Gaussian shape (e.g the self pair-correlation function 

is inherently a Gaussian). However, when additional structure information is included in the 
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evaluation, deviations from a true Gaussian may occur. The base function however will be 

Gaussian-like, and the normalization result should still hold in the limit.  

These equations are represented as an infinite sum from zero to infinity. Each additional 

term represents a phonon order contribution added to the total interaction. For example, the first 

phonon term represents the effects from an interaction creating a single phonon. The second 

phonon term represents the effects from two phonon interactions within the lattice. Increasing the 

number of terms improves the accuracy of the calculation but with exponentially decreasing 

improvement.  

When translating the TSL into a cross section, the zeroth phonon order corresponds to 

elastic scattering.  Both self and distinct zero-order terms exist and represent the potential for 

coherent and incoherent elastic interactions. The zeroth term neither creates nor destroys a phonon, 

rather a collision of the two particles occurs with no energy exchange to the lattice and therefore 

no phonon creation or destruction. The remaining terms represent inelastic operations.  

 

2.3 Approximations to the Scattering Law 

To this point, every effort has been made to capture the materialôs TSL with full accuracy. 

The only approximations have been to assume a harmonic oscillator which will dictate how the 

phonons in the lattice propagate. Historically, there are three additional approximations to the TSL 

which have been made throughout the development of these equations. These were briefly noted 

earlier in Chapter 1, but we will now discuss them in more detail to solve for the equational 

approximated forms. This will allow for a clear comparison of the generalized equations and the 

approximated versions commonly used in historical codes.  
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The first approximation to the TSL has been termed the incoherent approximation. This 

approximation assumes that distinct effects are negligible and only the self effects are of 

significance. This will not impact the incoherent scattering law since the incoherent scattering law 

is equal only to the self scattering law. The coherent scattering law, however, is equal to the 

combined effects from both self and distinct effects. Under the incoherent approximation, the 

coherent and incoherent scattering laws are set equal. The distinct effects are neglected with only 

self effect remaining for inelastic contributions. In other words,  

 . .incoh approx inc coh sS S S S S= = = =.  (2.42) 

The materialôs structure is captured by the distinct contribution. By removing the distinct effects, 

structure impacts from the lattice are reduced. There will no longer be interference effects which 

would traditionally cause undulations to the ñaverageò TSL value set by the self component. 

Without distinct contributions, the effects for a given atom are not based on the atomôs 

surroundings. The impact from the distinct effects would be expected to impact low energy (long 

wavelength) type interactions.  

The second approximation is the cubic approximation. The cubic approximation assumes 

that all material structures can be represented as a cubic solid lattice structure rather than the exact 

materialôs structure. This approximation is largely valid for materials where the forces within the 

structure are approximately symmetric even if the actual lattice structure may vary from cubic. 

Historically, the cubic approximation was applied to make the multi-crystalline assumption in 

cross section evaluation [22]. Rather than assuming a perfect crystal lattice, the assumption was 

that the crystalline structure was sufficiently mixed (e.g. powder material rather than perfect single 

crystal). As such, the crystal itself was assumed to have effective averaging of all directions and 

that directionality could therefore be removed.  
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 Mathematically, the cubic approximation directionally averages the Debye-Waller and 

energy exchange effects (as seen in the DOS) producing the symmetrical response typical of a 

cubic structure. By using cubic symmetry, directionality becomes unimportant since all directions 

are treated equally. This allows us to reduce the dot product of vectors to magnitudes.  

The main terms which hold directional information for the TSL are the dot product of the 

polarization and scattering vectors summed over the states Ὦή. Correlating a given coordinate 

direction (e.g. x, y, z) with another direction, the partial summation is defined to be the partial 

phonon density of states (DOS). The partial DOS for a given atom position d is equal to  
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where r is the number of degrees of freedom in the materialôs unit cell (typically 3 for the x, y, and 

z-directions), ȹɤ represents the frequency interval for the binning of the DOS, and Nq the number 

of wave vectors sampled. The number of wave vectors is approximately that of the number of unit 

cells. Applying the definition of the partial density of states to the dot product with the scattering 

vector 
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In this context, Ὡ is the unit vector for the scattering vector. To this point, the equation is still in 

exact form with no approximations regarding direction. Now, applying the cubic approximation, 

the directional partial DOSs along the main diagonal elements (e.g. the xx, yy, and zz components) 
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are assumed to be equal. The off-diagonal elements correlating the different directions are assumed 

to be negligible. Under this approximation,  
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where ɟd(ɤ) is defined to be the total phonon DOS which is the sum of the xx, yy, and zz 

components. The DOS is a distribution in frequency space of the modes s. While the polarization 

vectors give the modeôs distribution in both frequency and direction, the total DOS calculation 

removes the directional component and tallies only based on frequency. The use of the cubic 

approximation provides the basis for the use of the DOS in calculation of the TSL. This 

methodology is assumed in the historical codes such as NJOY in the TSL evaluation process.  

Introducing cubic approximation into the TSL affects both the Debye-Waller term and the 

correlation term. Beginning with the exact Debye-Waller term, Equation (2.17) under the cubic 

approximation would equal 
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Depending on the material, the removal of direction can change the magnitude of the Debye-

Waller factor such that the decay of the TSL varies. This will affect the higher energy 

contributions. The correlation term in Equation (2.28) (since distinct effects have already been 

removed due to the incoherent approximation) would then be equal to  
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Cubic effects on the TSL will therefore affect the entirety of the calculation.  

While the cubic approximation has been able to capture the atom structure for many 

materials, for those with strongly directional forces, mixed bond types, and a non-cubic lattice, 

this approximation is insufficient. For example, graphite is a hexagonal moderator material with 

strong covalent bonds within the hexagonal plane. Between the planes, weak Van der Waals bonds 

exist, resulting in a lattice structure which is elongated in the z-direction. One means of examining 

the non-cubicity of a material is to analyze the Debye-Waller matrix B to see the correlation of the 

xx, yy, and zz-directions and their magnitudes. For an ideal graphite structure, the Debye-Waller 

matrix at 296 K is given in Table 2-1 calculated based on Equation (2.19). As seen in the data, the 

zz-component of the Debye-Waller matrix is nearly an order of magnitude larger than the xx and 

yy-components, clearly pointing to directionality within the lattice. If removed, inaccuracies will 

be introduced to the development of the lattice structure factor and also any applications such as 

cross sections.  

 

Table 2-1. Debye-Waller matrix for an ideal graphite structure at 296 K. The off-diagonal 

components are negligible. The zz-direction dominates. 

 Graphite (296 K) 
 x y z 

x 2.33E-03 -1.65E-06 2.15E-09 

y -1.65E-06 2.33E-03 -5.65E-09 

z 2.15E-09 -5.65E-09 1.35E-02 

 

The historical basis for applying the cubic approximation is well-founded; however, by 

applying the directional averaging to each term (DOS and Debye Waller) independently, errors 
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are introduced. Rather, directional averaging applied to the whole of the TSL will more accurately 

represent the scattering potential for a given energy and momentum and maintain the directionality 

of the material structure (cf. Section 3.4).  

The third and final approximation to be considered here is the atom site approximation. 

The atom site approximation uses identical information for each atom site in the evaluation of the 

Debye-Waller and correlation terms. In other words, rather than specifying unique atom positions 

with unique properties, an average value for all the atoms is applied. Under the atom site 

approximation, the TSL would be equal to  
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Individual unit cells would be related to each other rather than atom by atom. Material symmetry, 

however, would suggest that not all atoms are indeed equal, and an exact representation of the 

system is required.  

These approximations, while valid in some cases and for some materials, detract from the 

goal of capturing accurate material lattice physics. Directionality, structure effects, and full atom 

representation are required to evaluate the full suite of materials found in a reactor. These 

approximations were historically introduced with the purpose of reducing computational expenses, 

but in the modern computing era, accurate equational forms must be used to meet the material 

needs in the reactor design and benchmark communities. By maintaining the fully generalized 

equational forms and not introducing these approximations, the new codes developed will meet 

qualifications for verification with known physics and move one step closer to completely 

predictive modeling.  
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2.4 Application of the TSL in Cross Section Evaluation 

The TSL defines relationships between atoms within a given material lattice. The bound 

atom cross sections translate the TSL material information to a neutron-specific interaction. The 

bound atom cross section is proportional to the neutron scattering length for a material. The 

scattering length bj is nucleus dependent and is defined for a fixed nucleus, independent of lattice 

arrangement. A system may contain different nuclei, and so, defining the average bound scattering 

length such that  
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allows for the following definitions of the coherent (ůcoh) and incoherent (ůinc) bound scattering 

cross section respectively:  
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Typically, hydride materials will have a significant incoherent cross section while other elements 

will have a larger coherent cross section. While this is not always true, generally, the trend is 

consistent. These values of the bound cross section provide the neutron information needed to 

develop the interaction potential.  

  

2.4.1 TSL in Thermal Scattering  

The double differential thermal scattering cross section is related to the TSL as 
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where k and kȭ are the incident and scattered wave vector magnitudes, respectively, for a neutron 

scattered through the solid angle Ý with final energy Eȭ [15]. The scattering law is a function of 

‖ᴆ, the scattering vector equal to kȭ-k, and ɤ, the frequency. These terms are multiplied by the bound 

atom coherent and incoherent scattering cross sections. The total scattering cross section can then 

be found by integrating over angle and energy giving 
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Using Equation (2.1), the double differential scattering cross section is equal to  
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The double differential cross section in Equation (2.53) is related to the solid angle and scattering 

vectors. This can be translated to scattering cosine by integrating over 2ˊ and translating to energy 

such that 
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which relates more directly to reactor physics applications. Both equations hold true only 

formulated to address different variables more explicitly. The translation can also be made from 

‖ᴆ and ɤ space to the dimensionless counterparts Ŭ and ɓ. The TSL itself would be  

 ( , ) ( , ) BS S k Ta b k w= Ö   (2.55) 

which gives a cross section of  
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This form of the TSL as a function of Ŭ and ɓ is required for ENDF formatting. The ENDF 

formatted TSL is then  

 ( , )ENDF

symS S a b= .  (2.57) 

Writing the TSL in terms of phonon order based on the phonon expansion gives a cross 

section of total phonon order p:  
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Since the elastic cross section corresponds to the 0th TSL terms (no phonons), the elastic cross 

sections can be defined in terms of the TSL such that  
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The remaining processes which create or destroy phonon(s) are inelastic interactions. The inelastic 

cross section is then equal to  
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Note that throughout these equations, the full scattering law is used without approximation. The 

distinct effects, specifically, are retained for the cross section.  

 

2.4.1.1 Elastic Scattering  

Elastic scattering occurs in both a coherent and incoherent manner as seen in Equation 

(2.59). The coherent elastic scattering is structure dependent due to the distinct term and will 

produce sharp Bragg peaks based on the material structure. The incoherent elastic is most common 
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in hydride-type materials. Whether a material is a significant coherent or incoherent scatterer is 

defined by the bound atom cross sections. For most materials, the total bound atom cross section 

will be nearly equivalent to the coherent cross section. However, for materials such as hydrogen, 

this is not the case, and incoherent elastic (and potentially coherent elastic as well) must be 

included in the cross section evaluation.  

Expanding the terms in the elastic cross section equations, the coherent elastic is equal to  
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The bound atom cross section becomes dependent on the atom position d since each atom position 

may contain a unique atom type and therefore have a different cross section and Debye-Waller 

term. Because it is elastic scattering, k will equal kȭ (in the center of mass reference frame), 

reducing that fraction to unity. The summation for the coherent elastic is over all d atoms, not just 

d Í dȭ. By having the inclusive sum, the self component is expressed also in this formulation.  

Summing over the lattice l, scattering will only occur when the scattering vector ‖ is equal 

to the reciprocal lattice vector †. This translates the summation to a volume averaged limiting delta 

function,  
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where v is the volume of the unit cell and † is the reciprocal lattice vector from the origin to the 

reciprocal lattice point. In terms of the cross section, the coherent elastic is equal to  
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In order for scattering to therefore occur, the conditions on the energy and scattering vector must 

be met. The delta function on the scattering vector is written in terms of reciprocal space. Written 

in real space, the condition is equal to  

 2 sin( )n dl q=   (2.64) 

which is the traditional form of Braggôs law for elastic scattering. Within Braggôs law, the 

wavelength (ɚ) is determined by the integer n, the atomic spacing of the lattice planes d, and the 

scattering angle ɗ.  

Incoherent elastic scattering follows much the same form; however, the distinct component 

is not present since incoherent effects only correlate the time-dependent behavior of a given atom. 

The incoherent elastic scattering is then equal to  
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Again, the incoming and outgoing energy of the neutron remains constant, and so the ratio of k to 

kȭ will reduce to unity. The incoherent elastic double differential cross section simply equals  
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The incoherent elastic scattering is only dependent on the Debye-Waller term and not the full  

lattice structure as seen before in the coherent elastic cross section.  

These equations for the elastic cross section have been implemented in codes such as NJOY 

using the cubic approximation. Even still, NJOY only contains a few select materials for which 

the elastic contribution can be evaluated. In the elastic cross section, whether coherent or 

incoherent, only the Debye-Waller factor will be impacted by the cubic approximation. The 
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remainder of the calculation of the elastic cross section is independent of the TSL. The difference 

between the cubic and exact Debye-Waller factor will affect the exponential decay term in the 

elastic cross section. The rate of decay when set by the cubic will not equal the non-cubic, resulting 

in a mismatch at the higher energy cross sections where the Bragg peaks will be minimal. This can 

cause non-physical effects such as improper asymptotes of the total cross sections at the energy 

limits. For the most accurate results, the generalized non-cubic formulation must be consistently 

used throughout the cross section evaluation both in the elastic and also inelastic terms.  

 

2.4.1.2 Inelastic Scattering  

Inelastic scattering contributions arise from phonon creation and destruction. Both self and 

distinct terms once again arise in the cross section definition. However, under the incoherent 

approximation, only self effects have been considered historically in cross section evaluations. The 

historical inelastic cross section was defined under the harmonic approximation of the phonon 

expansion to be  
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Codes such as NJOY then allowed users to select the maximum phonon order for the summation 

of the self TSL. Beyond the last phonon order, the short collision time approximation was used to 

represent the atoms in the lattice as a free gas with a temperature equal to the effective temperature 

of the lattice. The various phonon orders are calculated recursively using the phonon expansion 

terms in Equations (2.36) and (2.39). The TSL is tabulated in Ŭ/ɓ space and translated to the 

symmetric formulation. The ENDF TSL based on Equation (2.48) is equal to 
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where 
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The TSL is unitless and a function of unitless variables. The conditions of detailed balance and 

normalization hold for this equation (see APPENDIX C for more details).  

The application of the inelastic cross section in NJOY and other codes uses the cubic and 

incoherent approximations to evaluate the inelastic cross section. As with the elastic cross section, 

the impact of the cubic approximation will be seen in the Debye-Waller decay term. Additionally, 

with the inelastic cross section, the non-cubic effects will contribute to the correlation term as 

discussed in conjunction with Equation (2.47). To avoid non-physical behavior of the cross 

section, consistent application of the non-cubic generalized formulation must occur through the 

whole evaluation. 

A generalized formulation of the incoherent inelastic begins with Equation (2.40). 

Expanding the phonon expansion terms with the definition of the partial DOS from Equation (2.44) 

and converting from frequency to ɓ space gives  
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where 
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This then gives a directional TSL for a given energy exchange. To then reduce to the standard Ŭ/ɓ 

dimensionless variables, the whole of the TSL must be averaged over all directions. By 

maintaining the scattering direction through the evaluation of the TSL, the materialôs ability to 

transfer phonons along a given direction is maintained. The TSL as a function of Ŭ and ɓ is then  
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where ὔ  is the number of directions sampled for a given Ŭ magnitude. This exact approach to 

introducing the multi-crystalline approximation removes the cubic approximation and maintains 

the physical phenomena due to the crystal structure. Of particular note, Equation (2.72) does not 

reduce to the cubic approximation. Because the directional Debye-Waller term and directional 

DOS are multiplied with each other,  
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The left side of Equation (2.73) represents the generalized formulation where the right represents 

the cubic approximation. Expanding the right side, additional cross terms will arise where the 

Debye-Waller the DOS terms will be dependent on different scattering vectors. These additional 

cross terms are not present in the exact, structure-dependent TSL formulation. The generalized 
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formulation preserves the mechanics for energy and momentum exchange for the materialôs lattice 

and more accurately applies the multi-crystalline assumption.  

In order to capture the distinct effects, the incoherent approximation can be improved by 

introducing the first phonon order of the distinct TSL into the cross section calculation. No 

historical cross section evaluation codes (including NJOY) include distinct effects. Rather, the 

historical codes stop short with the incoherent approximation. In order to improve the TSL and 

cross section evaluation, the first phonon order of the distinct TSL can be added to the incoherent 

approximation. The first phonon order will be the most significant contribution to the total TSL 

and cross section. It will also re-introduce the structure effects into the cross section. The ñ1-

phononò version of the inelastic cross section can be written as  
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The first order total TSL then takes the form  
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Summing over the lattice ὰ, scattering will only occur when the scattering vector ‖ meets 

certain criteria. This translates the summation to a volume averaged delta function where 
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and the wave vector ή will now contribute as well. This specifies the momentum requirement for 

interaction to occur.  

Making use of the definition of a Dirac delta function,  
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° - =ñ   (2.77) 

allows for a simplification of the integral terms now that time is explicitly stated in the equation. 

This delta function now in energy space sets the change in energy required for interaction. 

Together, these two delta functions specify the conditions for scattering. The delta function in 

energy space (ɤ) appears for both the self and total scattering and corresponds to conservation of 

energy. For the total, an additional limitation on momentum transfer can be a form of conservation 

of momentum (not to be confused with a conservation of momentum for the scattering system as 

a whole).  The TSL is then equal to  
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In order to represent a symmetric form of the 1st phonon order distinct TSL, the approximation 

that  
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t t
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must be made. This approximation effectively assumes that the magnitude of ή is small relative to 

†. With this approximation, detailed balance of the distinct TSL then holds. To translate into Ŭ-

space then allows the integration over all ‖ resulting in [23] 
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This then allows for the manipulation of Equation (2.78) into ENDF format such that 
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where the additional term NŬ notes the number of ‖ points contributing to a given Ŭ (as in Equation 

(2.72)). This generalized coherent 1-phonon TSL is implemented in the FLASSH code, offering 

improve methods for TSL evaluation beyond the historical incoherent approximation (cf. Section 

3.1.2 for more details). Using Equations (2.21) and (2.39), additional distinct terms could be 

derived based on the phonon expansion for a more precise cross section. However, the 1-phonon 

approximation inclusion of distinct effects will offer much needed improvement already to the 

cross section evaluation.  

 

2.4.2 TSL in Doppler Broadening 

Doppler Broadening 

Similar to thermal scattering, the Doppler effect also originates from the fact that the atomic 

system being observed by the neutron is in motion. Target nuclei are not at rest. Rather they are in 

constant motion defined by the environmentôs temperature. The relative motion of the incoming 

neutron and the nuclei of the system will have meaningful impact at thermal energies where these 

effects result in comparable energies. The impact is also observed in resonances where the sharp 

cross section shape can be drastically shifted by even small energy differences [24]. This energy 

shift due to atomic motion is defined as Doppler broadening. As with thermal scattering, the 
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chemical binding and temperature effects will drive the atomic motion and therefore Doppler 

broadening.  

Doppler broadening of the cross section can be defined by evaluating the interaction rate 

for incident neutrons with velocity ὺ and a target nucleus with velocity ὺᴂ [24]. The average 

reaction rate given the relative velocities is  

  () ( ), , 0( ') ' ' ( ')n x n xP v v v v v v v dP vs sòó
ô
= - - .  (2.82) 

For this conservation relationship, ὖὺᴂ is the distribution of velocities for the target nuclei. 

Defining ὺ ὺ ὺ   the velocity of the incident neutron relative to the target nucleus, the 

associated energy of the neutron and relative energy are defined as 

 
2 / 2nE m v=   (2.83) 

and 

 
2 / 2n n nE m v=  (2.84) 

where the velocities both of the incident neutron and target are taken in the laboratory frame. 

Continuing with Equation (2.82), the relation which defines Doppler broadening can be reduced 

to the more common expression  
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where the relationship of dP/P gives the normalized distribution of the velocities of the target 

nuclei.  

The cross section described in Equation (2.85) can reference any cross section. For 

example, at thermal energies when the neutron speed is approaching zero, the reduction of 

Equation (2.85) results in the ñ1/vò shape attributed to thermal absorption cross sections (see 

example in Figure 1-3 for 235U). The Doppler broadening of cross sections with increasing energy 
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will have negligible impact as the thermal motion of the nuclei will be outweighed by the energy 

contributions from the incoming neutron. The exception, as mentioned previously, is observed in 

resonance cross sections where the sharp features of the cross section are highly impacted by small 

changes to the relative energy of the system. 

 

Resonance Cross Sections 

Resonance cross sections occur at discrete energies in the thermal and epithermal energy 

range. The sharp resonance peaks result when the energy of the incoming neutron allows for the 

formation of a compound nucleus corresponding to one of its excited quantum states. The 

individual peaks represent possible excitation and de-excitation modes for the nucleus and are 

common for large, unstable nuclei such as fuel materials. The resonance peaks begin to widen as 

the atoms within the structure vibrate, adding energy to the system. These vibrations are seen as 

velocities of the atoms which translates into the physical observable of temperature changes. For 

a system at 0 K, the ideal resonance structure would appear as many sharply peaked functions. The 

motion, even at room temperature, of the atoms will cause broadening and reduction of peak 

magnitude for these resonances. The widening of the peaks due to different velocity (i.e. 

temperatures) is called Doppler broadening.  

The broadening of such large magnitude peaks (despite any reduction in height) will 

significantly alter the neutron flux. The broader peaks will typically result in increased absorption 

and therefore lower reaction rates. This temperature response of the cross section has a very short 

time scale. As such, it is often utilized as a safety mechanism in reactor design as a passive, 

immediate safety mechanism for reactivity control.  
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The resonance cross section „ȟ is defined for any interaction where x can be either 

absorption (ɔ) or scattering (n). The unbroadened resonance cross section „ȟ  is most simply 

derived using the Single-Level Breit-Wigner (SLBW) formulism and is equal to [25] 
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where for an absorption reaction [26,27] 
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The resonance cross section in Equation (2.86) is a function of „ȟ , the peak value of the 

resonance [26,27]. For these definitions, ɚ is the reduced de Broglie wavelength of the neutron, g 

is a factor representing the probability of realization of the compound nucleus state, p is the 

momentum of the system, E is the incoming neutron energy, E0 is the resonance energy, ũ is the 

total half-width of the resonance, ũn is the half-width for neutron emission, and ũx is the half-width 

for a reaction of type x where x can be scattering (s) or absorption (ɔ). Further, the recoil energy R 

is included for energy balance in the denominator. The recoil energy is typically defined by the 

ratio of the masses to the kinetic energy of the neutron. It is often neglected for most derivations 

since the ratio of masses typically reduces the recoil energy to minor significance [25].  

This derivation of the SLBW formula assumes resonances which are well spaced from 

surrounding resonances and for s-wave neutrons. The SLBW formulation for a resonance is by far 

the most simplified understanding. Here, it will be used for simplicity of notation in the following 

discussion. The general equations for Doppler broadening, however, still hold even if a more 

accurate description of the resonance natural line shape is used.  
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Doppler Broadening Resonances 

In evaluating the Doppler broadened cross sections, an accurate description of the targetôs 

velocity must be defined. As with thermal scattering, the Doppler cross sections are dependent on 

the nature of the binding and the temperature which is captured by the TSL. The TSL which 

represents atomic displacement as a function of time is then directly correlated to velocity which 

determines Doppler broadening. However, as neutron energy increases (wavelength decreases), 

the binding effects will become less important as the neutron energy results in wavelengths far 

smaller than the interatomic spacing of the lattice. At this point, the neutron only sees effects from 

the nucleus with which it is interacting, and the contributions of the lattice are negligible. 

Given this understanding of Doppler interactions, two potential treatments of the target can 

be considered. The first is the assumption that the target atoms can be considered as free, unbound 

atoms. This is commonly referred to as free gas (FG) Doppler broadening. Under the free gas 

approximation, the distribution of the velocities of the target can be represented by a Maxwellian 

velocity distribution. The Maxwellian velocity distribution is equal to  
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where M is the mass of the target, kB is Boltzmannôs constant, and T is the temperature of the target.  

Writing the Doppler broadening process in terms of Equation (2.86), the recoil energy can 

be assumed negligible for free gas scattering. The free gas representation of the velocity 

distribution can be formulated in terms of a TSL resulting in a FG Doppler broadened cross section 

given as  
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Translating the integral to be over the energy imparted to the nuclei, the integral can be written in 

terms of En. Converting the TSL to energy space and using the distribution in Equation (2.88) 

integrated over the angular distribution, the resulting  distribution for a FG is equal to [26,27] 
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with the following definition applied:  
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This then gives the FG Doppler broadening in the SLBW form as   
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The approximation is made that the term [26] 
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can be dropped for large nuclei where this term is vanishingly small, and the simplified Doppler 

broadened cross section is then 
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This form of FG Doppler broadening is the most common implementation. However, for low 

energy absorption resonances, the FG Maxwellian distribution will not capture the binding effects 

which impact Doppler broadening.  

The second treatment of the generalized Doppler broadening in Equation (2.85) considers 

the modes of energy gain and loss within the lattice of the target to explicitly define the velocity 

distribution. Rather than using a Maxwellian distribution for dP/P, the actual modes of energy 

exchange within the lattice can be used to define the velocity/energy distribution for the target. In 

the most general case, the energy distribution for the atoms is described as the probability of certain 

energy states occurring for a material lattice.  

The first derivations by Lamb [25] and then followed by Nelkin and Parks [28] based on 

the quantum mechanics of the system began by assuming harmonic oscillators with the goal of 

separating the compound nucleus formation from lattice effects. With these assumptions, Lamb 

began with the transition probability of capture of a neutron in a lattice nucleus type A to form a 

nucleus type B and emitting a gamma ray with a crystal lattice transition from state {Ŭs} to state 

{ɓs} and intermediate compound nucleus C with state {ns}. The derivation of this probability begins 

first with perturbation theory, and it is explicitly for absorption resonances.  

As a neutron enters the system, the initial lattice state is excited into some intermediate 

state. For an absorption resonance, the lattice is fundamentally changed as the excited state with a 

compound nucleus configuration returns to a stable state. In the case of an absorption resonance, 
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the third state of the lattice (second transition) is some new state with the addition of a neutron. 

Other types of resonances can be described using the same logic. For example, a scattering 

resonance would transition not to a final state with an additional neutron but back to the initial 

state, and this interaction would be represented using a transition matrix approach. However, for 

the absorption resonances, these initial, intermediate, and final states are described using 

perturbation theory.   

Using second order perturbation theory, the transition probability c(t) is [29] 
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Here the initial states are given as  
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t is equal to time, and ɤ is the frequency. The potential V is assumed to be harmonic, and therefore,  

 ( ) t i tV t e Vee w-= .   (2.97) 

The first exponential term gradually ñswitches onò the harmonic oscillator which causes gradual 

transition or decay. For a resonance, that gradual transition is set by the resonance width such that  

 / 2e=-G.  (2.98) 

Taking the t0 initial time to negative infinity gives 
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which reduces to  
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The transition rate is then  
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Using the notation in Equation (2.96), Lamb gives the transition probability for capture as equal 

to  
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W({ɓs},{Ŭs}) is the probability of capture of a neutron with momentum ὴ by a nucleus A which 

then transitions to nucleus B. The Hamiltonian H1 represents the interaction of the incident neutron 

and target nucleus, and the Hamiltonian H2 represents the radiative decay of the compound 

nucleus. By writing the velocity (and therefore momentum) probability distribution in terms of the 

available states of the target nuclei (rather than using a Maxwellian), the exact distribution within 

the system is included.  

Conservation of energy gives that the initial energy state E({Ŭs}) to intermediate energy 

state E({ns}) is 

 ( ) ( )0{ } { }s sE n E E Ea+ = +   (2.103) 

where E0 is the resonance energy and E is the incoming neutron energy. The interaction of the 

neutron with the nucleus results in a change in the phonon occupation numbers such that it is 

possible to say that 
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At this point, it can be assumed that ũ in Equation (2.102) is independent of the 

intermediate state. Further, assuming that the particles within the nucleus move independently of 

the center of mass of the nucleus within the lattice, the state transitions can be represented as  
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ὶ is the position of the nucleus, ὴ is the momentum of the initial neutron, Ὧ is the wave vector of 

the gamma ray, Mcomp is the matrix element for the formation of a compound nucleus, and Mrad is 

the matrix element for the decay of the compound nucleus. The exponential terms represent the 

transfer of momentum Ὧ to the lattice from the decaying compound nucleus and the transfer of 

momentum ὴ of the incident neutron to the crystal and excitation from the initial state to the 

intermediate state. 

To obtain the total probability, not only must all the intermediate states be considered but 

also all the initial and final states. The neutrons, assumed to be in thermal equilibrium with the 

target nuclei system, will interact with the lattice at initial distribution of states g(Ŭs) set by the 

lattice. The total probability would then be equal to the sum over these possible states [25]:  
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The probability that the lattice will be in a particular final state after transitioning from a particular 

intermediate state ns is  

 { }{}
2

P( ; ) exp( / )s s s sn ik r nb b= - Ö .  (2.107) 

Since all final states are considered and all intermediate states go to a final state, the summation 

over P({Bs};{n s}) is unity. Finally, using the definition of a delta function  
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the line shape of a resonance is most generally defined as 
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where 
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The scattering law S defined here is the same as that defined by Van Hove and used for the 

thermal scattering cross sections [21]. The application of the TSL in Doppler broadening clearly 

connects the impacts from the nucleusô resonance structure and the materialôs lattice structure. The 

nucleusô quantum structure observed in the resonance peaks will interfere and combine with lattice 

excitation modes represented in the TSL. The TSL will cause the distribution and broadening of 

the resonance peaks to shift from perfectly symmetrical Maxwellian broadening. At low energies 

and low temperatures, this effect will be most pronounced since lattice impacts will dominate the 

velocity distribution.  

To relate this more directly with the previous thermal scattering discussion, some change 

of variables will be made. The defined S scattering law in Equation (2.109) is in terms of 

momentum and frequency. These are directly proportional to Ŭ and ɓ as defined in Equations (2.2) 

and (2.3). Using this definition of ɓ, the recoil energy will be equivalent to the energy imparted to 

the lattice defined by the dimensionless energy variable ɓ (same as in the TSL) such that  

 B A BR E E k Tb= - = . (2.111) 
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The Doppler broadened absorption resonance cross section is then the cross section magnitude 

multiplied by the natural cross section. Written in general terms [30],  
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The TSL used for the evaluation must include the S0 (no recoil, i.e. elastic) contributions in order 

to accurately capture all possible interactions. Because the elastic portion is typically not included 

in the TSL evaluation and can be directly calculated, it is explicitly included for the sake of 

evaluation clarity.  

The generalized form of the TSL with distinct and self impacts gives the correlation of the 

atoms in the lattice. Historically, the assumption has been made that only self and not distinct 

impacts are of importance for Doppler broadening, following the same incoherent approximation 

seen in thermal scattering [25,26]. However, since the atoms within the lattice are correlated by 

nature, phonon exchanges with the lattice will be impacted by distinct contributions in the TSL. 

These contributions are expected to be minor compared with the self effects. For completeness, 

both self and distinct terms should be included.  

In summary, if the approximation is made that the neutronôs velocity can be represented 

using an unbound, free atom distribution, the thermal motion of the nuclei can be approximated 

using a Maxwellian velocity distribution. This method of representing Doppler broadening is 

termed the FG Doppler broadening given in general terms in Equation (2.89). In contrast, the 

Doppler broadening form which takes into account the lattice structure can be referenced as bound 

atom Doppler broadening, and it uses the lattice phonon exchange information of the TSL as given 

in Equation (2.112) to define the velocity distribution.  
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The historical derivation of the generalized form for Doppler broadening relied on the 

simplified SLBW, but modern codes such as SAMMY implement the general form of the Reich-

Moore approximation of the multilevel R-matrix theory. The Reich-Moore approximation 

provides more accurate definition of the various interaction channels allowing for more accurate 

representation of interference effects. The Reich-Moore formulation is recommended for 

resonance analysis. The previous discussion of Doppler broadening still applies and uses the more 

generalized descriptions given in Equations (2.89) and (2.112).    

The application of the TSL into cross section calculations has been described thus far in 

the context of the generalized equations. For implementation of these concepts, new methods and 

codes are required to allow for application to specific material evaluations. In order to analyze 

impacts both in thermal scattering and Doppler broadening, both a moderator and a fuel material 

will be analyzed using the generalized equations for the TSL and Doppler broadening outlined 

here. 
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CHAPTER 3. DEVELOPMENT AND BENCHMARKING GENERALIZED THERMAL 

SCATTERING METHODS USING GRAPHITE  

 

Historical implementation of the TSL has been limited by the inclusion of many 

approximations (cf. Section 2.3). With the generalized formulations being clearly defined as in 

Chapter 2, the Full Law Analysis Scattering System Hub (FLASSH), a modern thermal scattering 

code, has been developed to implement these improved formulations. Specifically, modules have 

been created to allow users to calculate distinct effects approximated using the generalized 

structure 1-phonon approximation (cf. Section 2.4.1.2), generalized structure non-cubic elastic 

scattering, and generalized structure non-cubic incoherent inelastic scattering. Each module has 

been optimized using OMP parallelization over appropriate variables. Because a larger number of 

calculations is required to capture the full reciprocal space for these directionally-dependent 

calculations, parallelization is required in order to reach results in reasonable computation times. 

Unless otherwise noted, the inputs for these modules rely on calculations of the lattice system 

(typically through the dynamical matrix codes such as PHONON or phonopy) which are able to 

generate the directionally-dependent phonon dispersion and wave vector data for a given material. 

The models which are developed for a given material evaluation begin with unit cell simulations 

which provide the necessary inputs to calculate the TSL within FLASSH. 

 

3.1 Implementation of the Generalized Scattering Theory into the FLASSH Code 

The FLASSH code has been developed to improve the methods of generating thermal 

scattering data [12]. FLASSH has been built using Fortran 99 with OMP parallelization. The first 

beta releases of FLASSH demonstrated the ability to reproduce historical approximations and 

results from codes such as NJOY [12]. Features including the calculation of the TSL with the 



   

63 

 

phonon expansion, calculation of both coherent and incoherent elastic scattering, and evaluation 

of the inelastic cross section were improved as compared with historical codes. The methods 

implemented in FLASSH utilize generalized formulations without approximations to allow users 

to easily produce high fidelity evaluations.  

The modular design of FLASSH separates the various components of the cross section into 

individual modules within the code and evaluates the various elastic and inelastic components of 

the cross section. Output is provided in both ENDF-6 format and user readable tables. The main 

modules within FLASSH are displayed in Figure 3-1.  

The first main module evaluates the elastic contributions for a material. The coherent 

elastic calculation in FLASSH was developed with generalized crystal structure contributions to 

allow users to evaluate any material. This crystal structure information defines the Bragg edges as 

defined in Section 2.4.1.1. Historically, codes such as NJOY only allowed users to evaluate elastic 

cross sections for predefined, hard-coded materials under the cubic approximation. In addition to 

generalized crystal structure, FLASSH users may also choose to evaluate under the cubic 

approximation or using the generalized structure factor. Details on the generalized structure factor 

are given below in Section 3.1.1.  

Incoherent elastic contributions in addition to coherent elastic are available within FLASSH 

as described by Section 2.4.1.1. Users may choose to include both coherent and incoherent 

contributions in a single evaluation, or if limited by current ENDF-6 formatting, FLASSH will 

automatically divide the compoundôs elastic components between two libraries to maintain the 

correct reaction rate. The evaluation of the incoherent elastic cross section itself is again 

generalized to apply to any material and implemented without the atom site approximation.  
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Figure 3-1. FLASSH code flowchart demonstrating the main modules and methods of evaluation. 

 

After evaluation of the elastic components, users may choose to either read in an existing 

TSL from a previous evaluation or to calculate the TSL. The evaluation of the TSL is completed 

based on the input DOS using the phonon expansion technique as described in Sections 2.2 and 
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2.3. These formulations within FLASSH have removed historical approximations (c.f. Section 2.3) 

including the atom site approximation. Users can specify the number and type of atoms within the 

unit cell, and with the provided input, users can calculate either atom-specific or atom-type 

averaged TSLs and cross sections. For the TSL evaluation, users may choose to calculate either 

with or without the short collision time (SCT) approximation. SCT simplifies the TSL evaluation 

at high energies and approximates the structure using free gas limits to the equations. This reduces 

the number of phonon order terms required in the TSL evaluation. Historical codes always forced 

the SCT approximation in the TSL evaluation. Because of the significant computation time savings 

(especially for liquid materials), FLASSH allows the user to select whether or not to include the 

SCT approximation or calculate exact TSL data.  

Once the standard cubic TSL has been evaluated, specific user options to improve the TSL 

can be implemented. These options include liquid diffusive contributions, 1-phonon Sd 

contributions, and generalized non-cubic formulations of the TSL. FLASSH liquid physics options 

extend beyond NJOY to include both the free gas and Schofield models as well as options for the 

Langevin diffusion model [31]. These different diffusion models allow users to most accurately 

represent their unique material. Details for the 1-phonon and generalized one cubic modules are 

given in Sections 3.1.2 and 3.1.3, respectively. Final combination with all these various features 

is summarized also in Section 3.1.2. 

Additional features in FLASSH include both GUI input options (which significantly 

reduces user error) and both numerical and analytical integration schemes (cf. APPENDIX E for 

FLASSH GUI input examples). Because of this foundational work and modular organization, 

FLASSH was used to implement the generalized methodologies for evaluation here.  
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3.1.1 Generalized Debye-Waller Term  

In both elastic and inelastic applications, the Debye-Waller term, which drives the 

asymptotic behavior of the cross section, must be represented in the generalized form. In 

equational form, the generalized formulation (Equation (2.18)) 

 2 d dW Bk k= Ö Ö  (3.1) 

is evaluated either with an input Debye-Waller matrix or with a derived matrix evaluated using the 

partial DOSs (c.f. Section 2.3) to maintain a fully generalized form. The Debye-Waller matrix in 

terms of the partial DOSs is given as  
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and is specifically used for the generalized non-cubic TSL evaluation. Historical codes 

implemented the cubic approximation which reduced the dot product (i.e., directional 

multiplication) to the linear form as a function only of the total phonon DOS. The generalized form 

is reduced to the cubic form  
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using the approximation described in Section 2.3. In terms of the unitless variables Ŭ and ɓ, the 

cubic Debye-Waller term is 
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and ɚd is the Debye-Waller constant [32].  
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This form of the Debye-Waller factor assumes that each direction, x, y, and z, are all 

equivalent (i.e., cubic). The effect is exacerbated by the reflection of the non-cubicity in the 

directional dependence of the Debye-Waller matrix itself. In other words, both the directional 

variance in the material lattice (e.g. a Í b Í c) as well as the non-equivalent phonon propagation 

availability (e.g. ɟx Í ɟy Í ɟz) will impact the final Debye-Waller factor. Therefore, to capture the 

directional dependence, the generalized Debye-Waller factor must be calculated with the inclusion 

of the directionality [32].  

The method of evaluation within the FLASSH system is demonstrated in Figure 3-2.  

 

Figure 3-2. FLASSH coherent elastic routine flowchart. 

 

Both the cubic in Equation (3.4) and generalize in Equation (3.1) Debye-Waller terms have been 

implemented in FLASSH. User input of the Debye-Waller matrix B or phonon DOS is taken to 
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calculate the Debye-Waller factor. Whichever method of Debye-Waller constant is chosen, the 

nuclear structure factor Ὂ‖ must be evaluated. The structure factor is defined to be  

 ( ) dWi d

d
d

F b e ekk -
=ä   (3.5) 

defined based on Equation (2.63). The dot product over various scattering magnitudes and 

directions gives directionally dependent results. The scattering vectors are then converted to Ŭ-

space, which is non-directional, effectively averaging over all available ‖ directions.  

 

3.1.2 Generalized 1-Phonon Effects 

The 1-phonon module in FLASSH follows the form of Equation (2.74) where only the first 

phonon expansion term is included explicitly in the evaluation. This approximation introduces 

generalized coherent effects into the TSL evaluation using the polarization and wave vector 

information as primary inputs. Historical investigations into the coherent inelastic effects have 

been limited to specific materials, namely graphite and beryllium [23,33]. The implementation of 

the 1-phonon formulation into FLASSH has been generalized to allow for any material with any 

crystal symmetry to be evaluated.  

The 1-phonon formulation begins with the form of Equation (2.81). Evaluation of the 1-

phonon distinct effects occurs over an evenly spaced k-mesh in reciprocal space. At higher Ŭ 

values, the distinct contributions will be negligible. Therefore, to reduce computational time, users 

may select the maximum Ŭ value for the 1-phonon calculation. This maximum alpha restricts the 

extent of the reciprocal space sampling to reasonable limits. The delta function for ɓ is 

approximated as 1/ȹɓ where ȹɓ is the resolution of the ɓ-grid used in the evaluation. The Debye-

Waller term for each atom site is calculated from the appropriate Debye-Waller matrix. The same 

Debye-Waller matrix for coherent elastic generalized calculations is used for the coherent inelastic 
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here in the 1-phonon module. Inputs for the polarization and wave vectors are input by the user for 

each atom site following the form shown in Figure 3-3.  

 

 

Figure 3-3. Example input for the polarization and wave vectors to calculation 1-phonon (coherent) 

effects for the TSL.   

 

The input polarization information can be directly generated from the PHONON code [34]. For 

example inputs, see APPENDIX E. Because a limited grid of polarization wave vectors can be 

input into the simulation, interpolation options were added for users to allow calculation over a 

finer k-space mesh. This interpolation can introduce errors up to approximately 1% in the final 

cross section. For improved resolution, a more detailed initial grid is required.  

The outline of the components of the 1-phonon module are described in Figure 3-4. The 

structure factor is defined to be  
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a similar relationship as the structure factor in Equation (3.5) used for coherent elastic calculations. 

For the purposes of generalization, the bound atom cross section for each atom site is then pulled 

into the equation to maintain a complete and unique representation for each atom site.  
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Figure 3-4. FLASSH 1-phonon module flowchart. 

 

This then allows for the equation to take the form of  
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where ὦ is the coherent scattering length for a particular atom site [33]. In order to evaluate the 

real and imaginary parts of the structure factor, the equational form is translated into  
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  (3.8) 

The structure factor is then calculated using the original user input wave vector grid. Then, the 

grid is extended to the user specified resolution by interpolating the structure factor (using a 3-D 
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interpolation algorithm) to the refined k-mesh to improve resolution in both ‖ and ɤ space. With 

a sufficiently fine input original wave vector gird, the structure factor will follow well-defined 

trends such that interpolation will not introduce erroneous features. However, users may choose to 

test improve original grids or turn off interpolation. For final TSL evaluations, interpolation or a 

sufficiently refine wave vector grid is required to capture both Ŭ and ɓ space fully to avoid 

underrepresented grid regions.  

Historical codes which considered distinct effects for the scattering law were specific to 

certain materials, namely graphite and beryllium [23,33]. These codes required users to input space 

group and reduced Brillouin zone information to utilize crystallography space group symmetries. 

The FLASSH 1-phonon module uses similar inputs already taken for the cross section evaluation 

to capture the structure of the material and ensure proper symmetry is observed. These include the 

primitive cell vector data, numbers of equivalent atoms within the primitive cell, and atom 

positions. This primitive cell information must be supplied in addition to the unit cell equivalent 

data. If using the PHONON code to generate inputs, both primitive and unit cell information is 

printed in the ñ*.d07ò file and can be directly used as input for FLASSH 1-phonon. The 1-phonon 

module allows any material to be evaluated, regardless of space group or type of symmetry.  

Once the structure factor is calculated, the final total scattering law is evaluated. This is 

done by multiplying by the associated occupation number for a given ɓ value and appropriate 

constants. Additionally, the structure factors which are calculated for given scattering vectors are 

then binned into correct Ŭ values. The number of contributing scattering vectors to a given Ŭ value 

is defined as NŬ and is divided from the resulting TSL. The final 1-phonon distinct TSL is then 

equal to  
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where Natom is the number of atoms per primitive cell since the evaluation is conducted per 

primitive cell. This formulation implemented in the 1-phonon module produces the symmetric 

distinct TSL for any material, provided the appropriate Debye-Waller matrices, polarization 

vectors, and wave vectors are given.  

By nature, coherent effects represent the interference of different atom types. As such, the 

characteristic scattering cross section must be inclusive of effects from all the atom types. For a 

typical coherent cross section analysis, the total TSL for a unit cell will first be calculated. Then, 

the total is divided by the number of atoms within the unit cell to provide a ñper atomò TSL. This 

average will then contain effects from all types of atoms within the unit cell as well as the 

interference effects between the atoms. Referencing back to Equation (2.74), it is clear that the 

total scattering law is only multiplied by the coherent bound atom cross section in the thermal 

scattering cross section evaluation. Therefore, in order to allow users to output both the self and 

distinct contributions of the scattering law into traditional ENDF-6 formatting, the TSL is 

automatically manipulated within the FLASSH code. Beginning with the inelastic cross section in 

Equation (2.74) the form can be manipulated to 
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The bracketed term with the scaled S total component can then be stored in the traditional ENDF-

6 format on MT 4 with the total bound atom cross section reported in the section header (see Ref. 

[35] for additional details). When the TSL and bound atom cross section are then expanded, each 

term will be appropriately weighted by the correct bound atom cross section.  
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3.1.3 Generalized Incoherent Inelastic Effects  

Similar to the 1-phonon calculation, a generalized formulation for the self scattering law 

has also been implemented in the FLASSH code [36]. Under the phonon expansion, the incoherent 

or self scattering law can be manipulated from Equations (2.40) and (2.72) to be written as  

 ()2

1

1
( , ) e

!
d

p
W p

s d

d p

S F
N pka

a
a b b

¤
-

=

å õ
= æ ö

ç ÷
ä ä ä   (3.11) 

where the phonon expansion terms can be written as  
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Again, p is the phonon order, ɟi,j is the partial DOS for a given x/y/z direction, and Ὡ is the unit 

vector direction of the scattering vector. Here we must recognize that while the phonon expansion 

terms are not directly dependent on Ŭ (scattering vector magnitude) they are directly dependent on 

the direction of the scattering vector ‖ as is the Debye-Waller term. To allow for high precision 

result, the Ŭ-value was factored from the phonon expansion term and paired with the factorial. This 

allows for higher phonon orders to be calculated accurately without resulting in numerical errors 

due to the competing values in the numerator and denominator. The individual phonon terms can 

therefore be resolved computationally without artifacts arising due to numbers outside machine 

precision.  

The convolution in Equation (3.12) is calculated using the linear ɓ grid. The DOS input 

information is given on a linear grid as a function of energy. That energy is converted to ɓ, and the 

smallest resolution of the input DOS is used to form the linear ɓ grid for the convolution. The first 

phonon expansion term will be non-zero for all values of ɓ corresponding to the original input 

DOS. Therefore the limits of the convolution integral can be reduced from ÑÐ to Ñ the number of 
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points in the DOS. Writing the integral as a summation, the convolution as implemented in the 

code is then  

 () ( ) ( )
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The implementation into FLASSH for the generalized non-cubic TSL is demonstrated in 

Figure 3-5. 

 

Figure 3-5. FLASSH generalized non-cubic TSL routine flowchart. 
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In order to capture the true effects of the scattering vector, the TSL for a given Ŭ-value must be 

calculated for all scattering directions and then averaged as shown in Equation (2.72). Prematurely 

averaging either Debye-Waller or DOS components will result in the cubic approximation. Since 

there is no limitation on the scattering vector for the self component of the TSL, all scattering 

vectors (of relevant magnitude) are considered. The reciprocal space is sampled on an evenly space 

mesh with equally spaced points along the sphere corresponding to a radius length ə and in the 

positive octant. Additional sampling in the remaining octants would be redundant due to reciprocal 

space symmetry. This module is parallelized over the scattering vector variable to improve the 

codeôs efficiency. Since the partial DOSs can be used, sufficient resolution in ɓ-space is already 

inherent in the partial DOSs and interpolation to finer k-spacing is not required.  

Because of the sheer number of scattering vector directions which must be sampled, the 

generalized non-cubic self TSL is extremely computationally intensive. However, higher order 

terms can be (and usually are) necessary as they vary from the cubic counterparts. For consistency 

in evaluation, generalized non-cubic inelastic should be paired with the generalized non-cubic 

elastic cross section. Mixing cubic and non-cubic methods can introduce mismatch. Since the 

Debye-Waller term drives cross sectionôs approach to the free atom cross section (at approximately 

5 eV), using cubic terms for one piece and non-cubic terms for the other portion of the cross section 

will shift the decay of the elastic contribution and the rise of the inelastic contribution such that 

the approach to the free atom cross section will not follow known, physical behavior.  

The first phonon order is calculated explicitly using Equation (3.12) and (3.13) with 

successive phonon orders derived recursively. The user must input all nine partial phonon DOSs 

(xx, xy, xz, yx, yy, yz, zx, zy, zz) for the material to be evaluated. These partial DOSs will be 
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integrated internally to generate the Debye-Waller matrix for both inelastic and elastic portions of 

the calculation as shown in Equation (3.2). The Debye-Waller matrix is first evaluated such that 
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and then the Debye-Waller term can be calculated using Equation (2.18). This ensures that the 

Debye-Waller matrix input for the coherent elastic calculation is consistent with the inelastic.  

 

3.2 Methods for Generating Inputs to Calculate the Generalized TSL 

Traditional inputs for TSL evaluations require the atomôs mass and total phonon DOS. 

Codes using the phonon expansion would typically require user input of the phonon order for the 

evaluation. For the generalized methods implemented here, additional inputs of the polarization 

and wave vectors, Debye-Waller matrix, partial DOSs, and crystal structure are required.  

This information is not readily available from measurement. Measurements also suffer 

from approximations in their methodologies which will impact the final TSL evaluation. For 

example, the phonon DOS can be derived from measured differential cross section measurements. 

No measurement can fully capture the full energy/moment (e.g. 4ˊ, full angle) phase space. The 

resulting DOS will therefore have the potential to miss certain directional information. Further, the 

resolution of detector instrumentation will limit results, especially at low energies (which is the 

most impactful region to TSL evaluations). Approximations also made in the interpretation of 

experimental data assume the form of the DOS by evaluating the measured DOS in the limit as Ŭ 

goes to zero. In other words, the DOS cannot be directly measured. Rather than relying on 

experimental methods to generate the inputs, predictive methodologies have been implemented 

using computational tools [15,37]. Computational methods provide information for the full inverse 
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space of a material. Measured data then supports the evaluation process in providing verification 

of the evaluated results [38]. 

To understand the lattice dynamics of a structure begins with a correct model of the 

materialôs unit cell. For the purposes of this work, ab initio lattice dynamics (AILD) and molecular 

dynamics (MD) will be used to generate material information. AILD methods offer the quantum 

benefits of ab initio within the well-defined space of crystalline lattices using density functional 

theory (DFT). The AILD approach is based on the adiabatic Born-Oppenheimer approximation 

where the inter-atomic forces are calculated using the Hellmann-Feynman theorem.  For materials 

which are not ideal crystalline (i.e. break crystalline symmetry rules) or are liquid or gaseous, the 

AILD method fails. Rather, MD or even ab initio molecular dynamics (AIMD) can be used to 

determine the interactions between the materialôs constituents. MD methods can also relax the 

harmonic approximation which may be necessary for strongly temperature-dependent materials. 

Examples of MD and AIMD methods for generating TSL inputs have been documented for 

materials such as beryllium and graphite [39]. The process of utilizing MD methods to reach 

phonon dynamics is detailed later (cf. Section 4.2.2).  

The process of generating the inputs with AILD techniques for TSL evaluation are 

demonstrated in Figure 3-6. The AILD methods begin with the unit cell optimization and 

convergence of an appropriate electronic structure. These calculations are completed using VASP 

5.4 [40,41]. The unit cell is optimized first allowing lattice parameters and atom positions to be 

relaxed. The appropriate space group and experimental lattice constants and atom positions are 

input to generate the initial unit cell. VASP using DFT methods requires the user input of a k-

space mesh and plane wave energy cutoff. These parameters are varied to optimize the total unit 

cell to an energetically equilibrated state. Once the unit cell lattice constants and atom positions 
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are optimized the first step is to compare with experimental values for those variables. These 

should typically agree to within 1% deviation of experimental values.  

 

 

Figure 3-6. Process of generating input DOS information using VASP and PHONON. 

 

The optimized structure is then used to create an optimized charge density distribution for 

the unit cell. From this charge density, electronic properties such as the electron density of states 

can be calculated. The electronic structure should be verified against available experimental data 

before continuing. This electronically and structurally optimized system is then strained to evaluate 

elastic properties. Depending on available experimental data, parameters such as bulk modulus, 

shear modulus, Youngôs modules, and elastic constants should be compared and verified to be 

within reasonable agreement of experimental data. These checks for the unit cell verify that the 

structure and forces within the system will accurately represent the real material.  

Once the unit cell has been verified, a larger system (supercell) is created. The supercell 

size should reflect the structure of the material lattice. In other words, a cubic and orthorhombic 
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system would require different supercell sizes to account for equivalent interaction zones in 

reciprocal space. Additionally, elongation in a specific direction may be required to capture low 

energy (long wavelength) effects. The supercell should be large enough to represent the whole of 

the available energy modes without boundary interference effects.  

The supercell charge density is then optimized. Using the charge optimized supercell, the 

perturbation method is applied to calculate the Hellmann-Feynman forces. One atom within the 

supercell is displaced in each coordinate direction as required by the crystal symmetry. These 

displaced supercells are then used as input to VASP to calculate the resulting Hellmann-Feynman 

forces within the system. These forces are then compiled together to create the Hellmann-Feynman 

forces input for the dynamical matrix method to calculate phonon properties. For this work, the 

PHONON code will be used to calculate phonon properties including the dispersion relations and 

density of states [34]. PHONON is also able to derive the Debye-Waller matrices for a material at 

selected temperatures. The crystal structure data from VASP is copied into PHONON as input.  

The generalized methods used to represent the exact crystalline structure of materials 

within a reactor will impact non-cubic fuel and moderator materials most significantly. In order to 

analyze the impact on thermal scattering, a moderator material was selected. Graphite, which plays 

an important role in advanced reactor moderation has a hexagonal structure which is elongated in 

the z-direction.  

 

3.3 Crystalline Graphite Material Modeling  

Graphite is a moderator material which has a hexagonal crystal structure (space group 186, 

P63mc) and an elongated crystal unit cell. Experimental lattice parameters are a=2.462 Å and 

c=6.678 Å with angles of 90Ü, 90Ü, and 120Ü for Ŭ, ɓ, and ɔ, respectively [42,43]. In its ideal form, 
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the graphite structure will be arranged with sheets of hexagonally arranged carbon atoms which 

will be strongly bonded together with covalent bonds within the planes. Between the planes, weak 

Van der Waals forces hold the sheets together. This structure results in an ideal graphite density 

of 2.25 g/cm3 [44]. However, the crystalline graphite structure is often distorted with vacancies 

which can be represented as porosity in the structure [44]. This porosity will result in a range of 

potential densities of graphite. In nuclear applications, these densities can range from 

approximately 1.5 to 1.8 g/cm3. The density of the graphite can be correlated to porosity as [45] 
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This work will primarily reference the ideal crystalline graphite impacts and compare results in 

the context of the porous data and historical crystalline graphite.  

The ideal crystalline graphite model was developed using PAW pseudopotential with the 

GGA-PBE approximation in VASP 5.4 [39-41,46-48]. This model for ideal graphite was the same 

as that used for the ENDF/B-VIII.0  evaluation for crystalline graphite. For the unit cell as shown 

in Figure 3-7, a 15x15x15 Monkhorst-Pack k-space mesh with a 650 eV plane-wave basis energy 

cutoff was required to optimize the structure.  

 

 
 

Figure 3-7. Graphite unit cell (left) and 4x4x4 supercell (right). Bonds within the plane are shown to 

demonstrate the layered nature of graphite. 
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DFT does not properly account for Van der Waals (VDW) forces since they are not local effects. 

In graphite, these forces are significantly smaller than the inter-planar covalent bonds. The VDW 

forces are introduced to the DFT model using the DFT-D2 force field (Grimme) [49]. This semi-

empirical dispersion potential is included in the DFT solution for the Kohn-Sham energy to correct 

for the inadequacies of the density functional [50]. This correction takes the form of  
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where N is the number of atoms, L is the translation of the unit cell, C6
ij is the dispersion coefficient 

for atom pair ij , r ij,L is the distance between atom i and j, and f(r ij) is a damping scaling function. 

The scaling function f is then dependent of the variable R0, the VDW radius. The VDW function 

can be parametrized using the C6 (dispersion coefficients) and R0 (VDW radii) variables which are 

material specific. These variables correspond to the VDW_C6 and VDW_R0 terms within VASP. 

For graphite, the default VDW_C6 value of 1.75 was used. The VDW radius (VDW_R0) was 

optimized to a value of 1.65 to reproduce the experimental c lattice parameter [39]. Because the 

system used in application is not at absolute 0 K, the symmetry of the graphite was increased to 

P63/mmc to reduce computation time.  

The atom positions were first relaxed, and then the cell volume to optimize the system. The 

convergence criteria were set such that the unit cell volume varied by less than 0.2% and the system 

energy converged to less than 5 meV. The resulting lattice constants compared with experimental 

values are given in Table 3-1.  

 

Table 3-1. Calculated graphite lattice constants compared with experimental values [39,42,43,51]. 

  a (Å) c (Å) R0 (Å) 

VASP 2.461 6.671 1.65 

Exp. [42,43,51] 2.462 6.678 1.7 
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Since this optimization showed reasonable agreement with experimental data, the 

electronic structure was calculated after optimizing the charge density. The calculated data was 

specifically compared with experimental values taken from x-ray photo-electron spectroscopy 

(XPS) for energies below the Fermi (Ef) energy and electron energy loss spectroscopy (EELS) 

measurements above Ef [52,53]. The ratio of s to p shell electrons is cited to range between 15:1 

and 35:1 for the XPS measurements. A consistent ratio of 15:1 was used to plot the calculated data. 

As shown in Figure 3-8, the calculated and measured structures agree well, further verifying the 

modeled system.  

 

Figure 3-8. Electron density of states for graphite compared with experimental measurements 

[52,53]. The eDOS is shown with a ratio of 15:1 s-orbital to p-orbital electrons to be able to compare 

with experimental data.  

 

With reasonable agreement between experiment and model results observed, the unit cell 

was expanded to a 4x4x4 supercell as shown in Figure 3-7 and reduced k-mesh of 4x4x2 

corresponding to the increase in the lattice size. Using the perturbation method, the Hellmann-

Feynman forces were calculated for the supercell and then used to generate the phonon dispersion 
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and density of states for graphite. The large supercell, specifically elongated in the z-direction, is 

required for graphite specifically to capture the interplanar wave propagation which would 

correspond to the lowest portion of the energy spectrum. The resulting dispersion relations are 

compared against the measured spectrum in Figure 3-9. 

 

 

Figure 3-9. Graphite phonon dispersion (left) and density of states (right)  calculated in PHONON 

and compared with experimental data [54-59]. 

 

The agreement shown at the lowest energies of the phonon dispersion curves demonstrates 

sufficient supercell size and implementation of the VDW forces. The dispersion relations are 

pictorially the closest correspondence to the polarization vectors and associated wave vectors. 

These dispersion relations show the behavior along specific high symmetry directions within the 

crystal lattice. However, a complete mapping of the inverse space is recorded for the full 

polarization vector data to be used in TSL evaluation. The agreement noted here for the dispersion 

relations directly corresponds with the ability of the phonon polarization vectors to capture the 

inverse space of the lattice.  
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These dispersion relation curves can then be integrated in each of the coordinate directions 

giving x, y, and z-components of the DOS. The in-plane (x and y portions) of the DOS contribute 

mostly at higher energies while the out-of-plane (z portion) of the DOS dominates the low energy 

region of the total DOS. These partial density of states directly correspond to the Debye-Waller 

matrix calculation for graphite. Due to the vastly different in-plane and out-of-plane DOSs, the 

corresponding components of the Debye-Waller matrix will also deviate. At 296 K, the Debye-

Waller matrix calculated for this graphite configuration is given in Table 3-2 where the xx and yy-

directions agree well. However, the zz-component is significantly larger with dominating impact.  

 

Table 3-2. Debye-Waller matrix for graphite at 296 K calculated by PHONON. 

 
 x y z 

x 2.33E-03 -1.65E-06 2.15E-09 

y -1.65E-06 2.33E-03 -5.65E-09 

z 2.15E-09 -5.65E-09 1.35E-02 

 

These models were used as input to generate the ENDF/B-VIII.0  libraries for crystalline 

graphite [4]. The crystalline structure, phonon DOS, Debye-Waller matrix, and polarization 

vectors are required to determine the full scattering law.  

 

3.4 Generating the Thermal Scattering Law and Cross Sections for Graphite 

The thermal scattering law and therefore thermal scattering cross sections are directly 

proportional to the phonon density of states, under the incoherent and cubic approximations. 

Similarly, the generalized formulations for both TSL and thermal scattering cross sections are 

directly proportional to the polarization vectors. The model which has been created represents the 
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crystalline graphite system and can accurately describe the phonon modes of interaction for 

graphite. Additionally, graphite has already been shown to be a non-cubic material. This is clearly 

demonstrated in the non-equivalent Debye-Waller matrix elements, particularly along the diagonal 

elements. Therefore, to capture interactions with graphite, the generalized treatment must be used 

to evaluate the TSL and later cross sections to accurately capture the crystal structure of graphite.  

The density of states shown in Figure 3-9 only shows the main diagonal components of the partial 

density of states for graphite (e.g. in-plane and out-of-plane). However, to calculate the generalized 

scattering law, all nine components including the correlation between different directions (e.g. x 

and y directions) must be included as inputs. For graphite, Figure 3-10 demonstrates that the off-

diagonal terms are negligible compare with the diagonal terms which dominate the behavior of the 

material. The off-diagonal terms are so nearly zero they do not appear notably in the figure. These 

partial DOSs are then used to calculate the generalized non-cubic TSL for graphite following the 

formulism defined by Equations (3.11) through (3.14).  

Using the partial density of states as input, the FLASSH code was used to calculate the 

Debye-Waller matrix and then the resulting TSL for graphite. These results are shown in Figure 

3-11 below and compared with a traditional incoherent and cubic approximated TSL. The 

generalized treatment can be seen in Figure 3-11 to modify the long-range behavior of the TSL 

such that the high Ŭ range, where the Debye-Waller effects will be most clearly seen, is higher 

than its cubic counterpart. This effect while shown here for specific ɓ-values is consistent through 

the whole of Ŭ/ɓ space. The increase in the TSL at higher Ŭ-values corresponds to Debye-Waller 

effects, specifically as the x, y, and z directions will have different impacts in different energy 

ranges. This is seen in the partial DOSs where the z component dominates the low energy range 
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of the distribution. The TSL here still utilizes the incoherent approximation but reflects a 

generalized formulation of the self component of the TSL.  

 

 
Figure 3-10. Partial DOSs for graphite. The XX and YY components nearly identical overlap and 

dominate the high energy. The ZZ component appears only the low energy. The off-diagonal terms 

are effectively zero and lie on top of the bottom axis.  

 

 
Figure 3-11. Graphite TSL calculated under the cubic approximation and compared with the 

generalized formulation. Impact to the TSL is largely seen at higher values of Ŭ. 
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FLASSH was then used to integrate the TSL into cross section values to generate a non-

cubic graphite inelastic cross section to be compared with the incoherent and cubic approximated 

equivalent as shown in Figure 3-12.  

 

 

Figure 3-12. Graphite inelastic cross section at 296 K calculated under the cubic approximation and 

generalized formulation and compared with room temperature experiments [60,61]. 

 

The low energy region of the cross section is not impacted by the non-cubic formulation. However, 

as energy increased to around 0.01 eV, the two begin to diverge and the non-cubic falls below the 

cubic cross section. This effect is the compounded with similar non-cubic and cubic comparisons 

seen in the elastic cross section.  

Using FLASSHôs coherent elastic capabilities, cubic and generalized non-cubic elastic 

cross sections were generated for graphite. The FLASSH implementation follows the form of Eq. 
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(3.4) for the cubic elastic and Eq. (3.1) for the non-cubic Debye-Waller elastic. Graphite is a 

coherent scatterer and incoherent elastic effects are negligible. Therefore, the coherent elastic 

represents the total elastic cross section. As seen in Figure 3-13, divergence begins almost 

immediately between the two elastic cross sections. 

 

 

Figure 3-13. Graphite elastic cross section at 296 K calculated under the cubic approximation and 

generalized Debye-Waller formulation .  

 

Beginning around 0.03 eV, the consistent difference between the cubic and generalized methods 

mirrors that seen in the inelastic cross section. The two elastic cross sections both decay to zero at 

the same rate (same slope seen in the cross section). The divergence between the cubic and non-

cubic methods for the elastic directly corresponds to the effects seen in the inelastic cross section. 
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Overall, the use of the generalized non-cubic formulation changes the ratio of elastic to inelastic 

scattering which occurs for the material.  

The total scattering cross section for graphite equals the sum of the inelastic and elastic 

components. In order to produce physically consistent evaluations, the cubic elastic must be used 

with cubic inelastic, and non-cubic elastic together with non-cubic inelastic. Mixing the cubic and 

non-cubic elastic and inelastic cross sections will result in non-physics ñdipsò or ñbumpsò in the 

total cross section. The impact from inconsistently combining the cross sections can result in 

hundreds of pcm of deviation in reactor calculations, and as such, it cannot be stressed enough that 

consistent methods for evaluating the cross section must be applied. When properly combining the 

cubic inelastic and elastic cross sections, the resulting total asymptotically approaches the free 

atom cross section following a very smooth flat line. Combining the non-cubic components 

reproduces the same effect in approaching the free atom cross section demonstrating a consistent 

and expected method of reaching the free atom cross section. These two total cross sections are 

compared with experiment in Figure 3-14. While the approach to the free atom cross section must 

be consistent between the cubic and non-cubic methods, deviations where Bragg peaks dominate 

is expected. The percent difference between the two total cross sections is shown in Figure 3-14. 

As shown previously, both the elastic and inelastic components diverge at higher energies 

with increase seen in elastic and decrease in inelastic. These effects largely result in the same total 

cross section and no difference above 0.6 eV as seen in Figure 3-14. Below this energy, impacts 

from the non-cubic elastic will impact the total cross section. A maximum of -2.5% difference is 

seen in the 10-3 to 10-2 eV range. This slight decrease in the cross section could result in a decrease 

in scattering; however, impact for a given reactor system will vary due to the nature of the thermal 

spectrum of the core.   
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Figure 3-14. Total scattering cross section for graphite comparing the cubic and non-cubic methods. 

Both total cross sections smoothly approach the free atom cross section as expected and show 

reasonable agreement with experiment above the Bragg cutoff. Deviations below the Bragg cutoff 

indicate structural deviations which have not yet been accounted for. The percent deviation between 

the two methods is shown below the cross section. Maximum deviation is seen where the Bragg peaks 

dominate the cross section. Total cross section experimental data at and above the Bragg cutoff is 

taken from Ref. [62] with total cross section data for ideal crystalline graphite below the Bragg cutoff 

[60,61].  

 

In general, the total scattering cross section for graphite show reasonable agreement with 

experimental data above the Bragg energy cutoff. Above the Bragg cutoff, the cross section is 

primarily elastic. The combination of non-cubic inelastic and elastic allows for consistent results 

in the energy region above the Bragg cutoff. Below the Bragg cutoff, elastic effects are removed, 

and only inelastic effects are seen. It is in this region where the structure of the material seen in 
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the TSL will directly impact the cross section most notably. In this sub-Bragg region, the cross 

sections under the incoherent approximation are still insufficient and fall well below the 

experimental data. To further improve the TSL and thereby the cross section, distinct effects must 

be added.  

The non-cubic formulation is primarily necessarily to accurately capture the graphite 

structure. The impact of structure has been defined for the inelastic cross section also within the 

context of the distinct contributions to the scattering law. The distinct component of the TSL is by 

nature generalized and non-cubic. As such, to evaluate the 1-phonon impacts for graphite, it must 

be evaluated within the context of a non-cubic self TSL. As already noted previously, combining 

cubic and non-cubic methods will result in non-physical cross sections.  

In order to define the impact of distinct effects in graphite, the 1-phonon method described 

in Equations (3.10) to (3.9) was applied. These equations have been implemented within FLASSH 

and require as input the polarization vectors and frequencies along with partial DOSs to generate 

the Debye-Waller matrices. The structure of these inputs is described in Section 3.1.2.  

Using the AILD model for graphite, the 1st Brillouin zone was evenly sampled to generate 

the polarization vectors and associated frequencies for scattering vectors corresponding to a 

100x100x100 point grid ranging from scattering vectors of (0, 0, 0) to (1, 1, 1).  The 1-phonon 

effects were calculated up to an Ŭ-value of 5. The remainder of Ŭ-values were evaluated using the 

non-cubic formulation. This first phonon order term was then added to the 2nd through 200th non-

cubic phonon order terms as described by Equation (3.10). This TSL is then shown in comparison 

with the non-cubic, incoherent approximation TSL and the cubic, incoherent approximated TSL 

in Figure 3-15.  
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Figure 3-15. Graphite S(Ŭ,ɓ) at 296 K comparing the effects from 1-phonon coherent contributions 

with non-cubic and cubic incoherent values. 1-phonon coherent contributions introduce structure to 

the TSL, especially the low Ŭ range. 

 

Impacts from the distinct contribution are most clearly seen in the low Ŭ range. Structure 

is introduced by the distinct effects resulting in structure within the TSL. Increasing in Ŭ, the 

structure seen in the TSL smoothly converges to the incoherent approximated non-cubic 

formulation. This demonstrates that the distinct effects will dominate at low Ŭ values and will 

become decreasingly important as Ŭ increases. The trends demonstrated in these figures 

correspond with the expected behavior estimated by Egelstaff [63]. The agreement between the 1-

phonon results and the non-cubic incoherent TSLs between the range of Ŭ=1.0 and Ŭ=5.0 

demonstrates the importance of using the generalized, non-cubic formulation of the TSL with the 

1-phonon distinct effects. The 1-phonon formulation is inherently generalized, and mixing the 

generalized 1-phonon with the cubic approximated TSL can result in inconsistent behavior.  

This structure given by the 1-phonon coherent effects is seen in the experimental TSL 

values, and the two show reasonable agreement as demonstrated in Figure 3-16 and Figure 3-17. 
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Figure 3-16. Graphite TSL at 533 K compared with experimental data [14]. 
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Figure 3-17. Graphite TSL at 296 K compared with experimental measurements [63,64]. 
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Introducing distinct effects causes large deviations from the incoherent approximation at low ɓ 

values and also low Ŭ values. This would relate to large impact to the lowest energy range of the 

cross section. The structure demonstrated in the experimental data is clearly reflected in the 

calculated values. The inclusion of the distinct effects allows for direct comparison with 

experimental data and verification and validation of the codes and methods used to generate the 

data. 

To demonstrate the impact of distinct effects, measurements were historically plotted as 

S(Ŭ,ɓ)/Ŭ versus Ŭ. Under the incoherent approximation, the quantity S(Ŭ,ɓ)/Ŭ will tend towards a 

linear nearly flat response as Ŭ goes to zero. However, experimental data show an exponentially 

increasing trend as Ŭ goes to zero. As demonstrated in Figure 3-17, the introduction of 1-phonon 

coherent effects begins to improve upon the discrepancy with experimental data. This 

improvement over the incoherent approximation is particularly noted for low ɓ values. Deviations 

as ɓ increases may be due to the approximation of coherent effects using only the 1st order term. 

Integrating the TSL to cross section values, the impact of the distinct contribution can be 

clearly seen in the sub-Bragg energy region. Comparing the fully generalized non-cubic plus 1-

phonon cross section with the incoherent approximated cross sections, the distinct contribution is 

dominant in the lowest energy region as seen in Figure 3-18 and Figure 3-19. At sub-Bragg 

energies, the 1-phonon impacts increase the inelastic cross section by 41%, significantly improving 

agreement with experimental data. This cross section shift is directly correlated to the 

improvement of the low Ŭ region of the TSL. Inclusion of the distinct contribution brings the 

graphite cross sections up to the experimental values measured by Ref. [60] and Ref. [61]. Under 

the incoherent and cubic approximations, the calculated cross section deviates by -27.7% from 
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these experimental data sets. With 1-phonon and non-cubic contributions, the deviation is reduced 

to 2.5%, which is well within expected experimental uncertainties.  

 

 

Figure 3-18. 1-Phonon impacts to the inelastic cross section of graphite at 296 K compared with 

experiment [60,61]. 

 

 

Figure 3-19. 1-Phonon impacts to the total scattering cross section of graphite at 296 K compared 

with experiment [60-62]. 
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As energy increases, the 1-phonon impact declines, and the cross section smoothly 

transitions to the generalized, non-cubic values around 0.05 eV. Combining the generalized non-

cubic treatment with the 1-phonon distinct effects, the graphite thermal scattering cross section 

now shows agreement with experimental data across the entire thermal energy range for ideal 

crystalline graphite. As a primary moderating material, these graphite cross sections can be 

implemented in reactor physics calculations to demonstrate the impact of various evaluation 

methods.  

 

3.5 Graphite Cross Section Benchmark using HTR-PROTEUS 

The HTR-PROTEUS experiments feature a graphite moderated, graphite reflected, and 

graphite pebble design. The system is very well thermalized. Further, the concept of moderation 

relies on energy loss through scattering events. For the HTR-PROTEUS reactor, the only material 

with a significant scattering cross section is the moderator material, graphite. As such, the graphite 

will define the thermal spectrum of the core. The hardening and softening of the thermal spectrum 

will directly correspond to reaction rates as the neutron spectrum moves into more efficient or less 

efficient energies for fissioning. This type of system where the primary and dominate effects are 

clearly due to a single material makes the HTR-PROTEUS experiments ideal for performing cross 

section benchmarks. This core not only directly responds to the features of the graphite scattering 

but it is also reflective of advanced reactor pebble bed designs, specifically those currently pursued 

by Xenergy.  

From 1992 to 1996, the PROTEUS core was setup to model the high temperature gas 

reactor concepts [17]. These experiments were termed HTR-PROTEUS. The moderator and fuel 

pebbles were arranged in various core configurations within the central cylindrical cavity 
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surrounded by a graphite annulus. These core configurations aimed to test key reactor physics 

concepts and safety concerns from water ingress effects associated with pebble bed designs. 

The core configurations were arranged with varying packing fractions ranging from 0.6046 

with a columnar hexagonal point-on-point lattice (CHPOP) to 0.7405 with a hexagonal close 

packed lattice (HCP). Additionally, a completely random arrangement of pebbles was considered 

with an approximate packing fraction of 0.61. An example of the top down view of the core pebble 

arrangement is shown in Figure 3-20. Noted in the benchmark documentation, the random packing 

fraction has special difficulty in modelling using traditional MCNP geometry declaration methods 

[16]. When analyzing final results, the randomly packed core shows the largest deviation from 

average when comparing computed and measured results.  

 

 

Figure 3-20. Cross sectional view of the HTR-PROTEUS core configuration with fuel pebbles (green), 

moderator pebbles (blue), and polyethylene rods (red) from Ref. [17]. The pebbles are arranged in a 

HCP lattice.  
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Each arranged packing fraction was tested with various placement of polyethylene rods 

through the core. The polyethylene rods were placed between the pebbles to simulate water ingress 

effects as shown in Figure 3-20 by the red dots. While the additional thermalization due to the 

polyethylene will impact reactivity, the core spectrum will still be defined by the graphite slowing 

down. The third main perturbation between core configurations was the ratio of the number of 

moderator to fuel pebbles. A summary of the various core configurations is shown in Table 3-3.  

 

Table 3-3. Eleven core configurations of HTR-PROTEUS noting key elements to the core 

arrangement. Each grouping has a ñreference coreò to which perturbations were compared. Inserts 

included ZEBRA rods (Cd/Al control rods), polyethylene rods, and copper wire.  

Core Characteristics 
Mod: Fuel 

Ratio 
Packing 

1 
Core 1A - control rods replaced with ZEBRA 

rods 

1:2 HCP 
1A Reference Core  

2 Core 1A + upper graphite reflection 

3 Core 1A + poly. rods 

4 Random pebble loading 1:1 Random 

5 Reference Core  

1:2 

CHPOP 

6 Core 5 + poly. rods + copper wire 

7 Core 5 + poly. rods  

8 Core 5 + short poly. rods 

9 Reference Core (similar to Core 5) 
1:1 

10 Core 9 + poly. rods 

 

 

Within the core, the fuel pebbles are comprised of TRISO particles dispersed in a graphite 

matrix. The UO2 fuel in the TRISO particles is enriched to 16.7% 235U [17]. The moderator pebbles 
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are also made of graphite. Above, below, and around the core, graphite blocks served as core 

reflectors and spacers. These various graphite components have densities as shown in Table 3-4. 

 

Table 3-4. Graphite components of HTR-PROTEUS core configurations. 

Component Density (g/cm3) 

Moderator Pebbles 1.68 Ñ 0.013 (1ů) 

Fuel Pebbles 1.73 Ñ 0.0018 (1ů) 

Core Reflectors 1.75 Ñ 0.012 (1ů) to 1.76 Ñ 0.012 (1ů) 

 

 

The resulting benchmark keff values for HTR-PROTEUS take into account the uncertainties 

in the core. The largest contributors to the uncertainty arise from the impurity content in the 

moderator pebbles and radial graphite reflector, 235U content, location of the upper axial reflector, 

and radial reflector graphite density [17]. The resulting benchmark keff values with uncertainties 

are shown in Figure 3-21.  

 

 

Figure 3-21. Benchmark values for the 11 core configurations including the total uncertainty [17-20]. 
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For all eleven core configurations, the total benchmark keff uncertainty ranges from 0.0030 

to 0.0041, giving a very well-defined total reactor system. The HTR-PROTEUS benchmarks were 

evaluated using MCNP 6.1, a Monte Carlo code [65]. Models were generated to replicate the 

materials and geometry exactly as recorded for the original experiments. The results from these 

models are then compared with experimental data to quantify uncertainties and overall agreement 

of the modelôs results against reality.  

For the HTR-PROTEUS benchmark experiments, great effort was made to minimize 

experimental uncertainty and to record each detail in procedure. These efforts resulted in the very 

low reactor uncertainties for the various core configurations. However, even with the inclusion of 

the uncertainties, the benchmark reports note that calculated values for the critical HTR-

PROTEUS cores are systematically shifted from experiment. Possible attributions to this shift have 

been accredited to the graphite cross sections [16]. These calculations were completed using 

ENDF/B-VII and ENDF/B-VII.1 cross section libraries in which graphite was represented as an 

ideal crystalline material and carbon was modeled as ñnaturalò carbon having a mix of both 12C 

and 13C. Given the low uncertainty in keff and the dependence of the HTR-PROTEUS system on 

graphite scattering, the HTR-PROTEUS benchmarks provide the experimental data needed to 

validate graphite thermal scattering cross sections for reactor physics applications. 

 

3.5.1 HTR-PROTEUS Simulations 

The HTR-PROTEUS core configurations were modeled in MCNP6.1 as a part of the 

benchmarking efforts of Bess et al. [17-20]. These models were not only used to generate the 

uncertainties for the reactor but to also evaluate criticality of the system. In order to represent the 

system well, the HTR-PROTEUS cores were modeled using the free atom carbon cross sections 
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combined with the S(Ŭ,ɓ) for graphite. Additionally, S(Ŭ,ɓ) libraries were used for polyethylene 

and the fuel along with the trace amounts of aluminum, iron, and water found throughout the 

system. Next to graphite, polyethylene is the largest contributor to slowing down scattering within 

the system, if the core configuration contains the polyethylene rods. The various amounts of 

polyethylene, while a significant reactivity component, are not the primary moderator and do not 

drive the system thermalization. All the remaining materials are modeled with free atom cross 

sections. 

In this work, both the ENDF/B-VII.1 and ENDF/B-VIII.0  libraries are used [4,66]. All 

MCNP calculations were evaluated using 150 skipped cycles, 450 active cycles, and 100,000 

particle histories per cycle to achieve a statistical absolute uncertainty of 0.0001 in keff.  

 

3.5.2 HTR-PROTEUS Benchmark Impact from Free Atom Cross Sections 

The original HTR-PROTEUS benchmark models were created using the ENDF/B-VII.1 

cross section libraries. These libraries use natural carbon for the free atom cross section. Natural 

carbon is a pre-mixed 12C and 13C. 12C dominates the natural abundance for carbon, but 13C has a 

significantly lower absorption cross section than 12C. The ratios used to mix these two cross 

sections will then drastically impact the total absorption for a reactor system. With the advent of 

the ENDF/B-VIII.0  libraries, 12C and 13C were split into separate libraries allowing users to mix 

as they saw fit to represent their system. According to the published ENDF/B-VIII.0  report, a 

suggested ratio of 1.1% 13C and 98.9% 12C should be used [4].  

Comparing the absorption cross sections for the various libraries and isotopes, the impact 

of the absorption is clear. As shown in Table 3-5, the absorption cross section varies by 0.7% from 
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ENDF/B-VII.1 to ENDF/B-VIII.0  when using the combination of 12C and 13C recommended by 

ENDF/B-VIII.0 . 

 

Table 3-5. Absorption cross sections for carbonôs isotopes for various libraries. 

Library  Cross Section (b) at 0.0253 eV 

ENDF/B-VII.1 natC 3.86 x 10-3 

ENDF/B-VIII.0  12C 3.86 x 10-3 

ENDF/B-VIII.0  13C 1.50 x 10-3 

ENDF/B-VIII.0  12C + 13C 3.83 x 10-3 

 

 

The absorption cross sections in ENDF/B-VII.1 natural carbon and ENDF/B-VIII.0 .1 12C are 

consistent. The deviation arises from 13C absorption. The scattering component of the 12C and 13C 

free atom cross sections is nearly identical. Impact within reactor systems will be due solely to 

change in absorption [45].  

To quantify the impact of these free atom cross section changes, the HTR-PROTEUS 

benchmark suite of core configurations was considered. To isolate the impact of the carbon free 

atom cross section, the graphite thermal scattering library was modeled using ENDF/B-VII.1. 

Criticality calculations were completed varying between ENDF/B-VII.1 and ENDF/B-VIII.0  

libraries and the respective carbon free atom cross sections. The variations include ENDF/B-VII.1 

C-natural, ENDF/B-VIII.0 .1 12C only, and ENDF/B-VIII.0 .1 12C and 13C mixed (98.9% and 1.1% 

respectively). Each of the 11 core configurations were calculate for each cross section set.  

The initial base case to be considered is the evaluation using all ENDF/B-VII .1 data for all 

libraries including carbon. This data set is shown with solid black squared connected by solid black 

lines in Figure 3-22. Plotted with the calculated data is the benchmark measurements along with 
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their uncertainty as a grey band. This band represents the 1ů uncertainty in the measurement. The 

calculations using ENDF/B-VII.1 consistently fall below the experimental band.  

Next, the ENDF/B-VIII.0  12C was substituted into the models, retaining ENDF/B-VII.1 

graphite S(Ŭ,ɓ) but switching all other libraries to ENDF/B-VIII.0  (both free atom and other S(Ŭ,ɓ) 

for other materials). These calculation results are shown with red diamonds with a dashed red line 

in Figure 3-22.  

 

 
Figure 3-22. HTR-PROTEUS core configurations calculations with ENDF/B-VII.1 and ENDF/B-

VIII.0  libraries compared with the benchmark values. All three sets of calculations held the graphite 

S(Ŭ,ɓ) library constant and used the ENDF/B-VII.1 graphite S(Ŭ,ɓ). Uncertainties in the calculated 

keff are less than 0.0001.  

 

This change from natural carbon to 12C and ENDF/B-VII.1 to ENDF/B-VIII.0  resulted in 

negligible impact to the benchmark. The solid black and dashed red lines are nearly on top of each 
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other. This corresponds with the absorption data shown in Table 3-5. Both ENDF/B-VII.1 natural 

carbon and ENDF/B-VIII.0  12C have similar absorption which for HTR-PROTEUS results in 

similar keff values. Additionally, changes within the various libraries from ENDF/B-VII.1 to 

ENDF/B-VIII.0  have negligible impact on the benchmark.  

The third permutation was to split the carbon within the HTR-PROTEUS models into 12C 

and 13C and using the respective ENDF/B-VIII.0  libraries. Again, the ENDF/B-VII.1 graphite TSL 

was used, and all other free atom and TSL cross sections were modeled with ENDF/B-VIII.0 . The 

results within HTR-PROTUES are given as the open black circles with dotted black line in Figure 

3-22. This line is markedly above the previous two evaluations. Combing 12C with 13C results in a 

lower effective absorption cross section (see Table 3-5) leading to higher reaction rates. These 

results isolate the cause of the shift in the benchmark to the change in the absorption of carbon 

between ENDF/B-VII.1 and ENDF/B-VIII.0 . Other changes between the ENDF/B-VII.1 and 

ENDF/B-VIII.0  libraries prove to have negligible impact within HTR-PROTEUS. The 

improvement in the benchmark from updated absorption cross sections still falls significantly short 

of the HTR-PROTEUS benchmark.  

 

3.5.3 HTR-PROTEUS Benchmark Impact from Thermal Scattering Cross Sections 

Previous permutations of the HTR-PROTEUS benchmark isolated the graphite TSL to be 

held constant throughout. However, with ENDF/B-VIII.0 , additional graphite TSLs were 

introduced. Nuclear grade graphite commonly used in reactors has a density typically ranging from 

1.5 g/cm3 to 1.8 g/cm3. Ideal crystalline graphite has a density of 2.25 g/cm3 [44]. This difference 

in density was hypothesized to result from microstructural difference between ideal and nuclear 

grade graphite which could be approximated as porosity within the material structure [44]. In order 
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to capture the effects of the non-ideal structure of nuclear graphite, porous molecular dynamics 

(MD) models were developed for 10% and 30% porous graphite to generate the DOS and resulting 

cross sections. These porosities of 10% and 30% correspond to the possible density range for 

ñnuclearò graphite [44]. These DOSs were used to develop the graphite TSLs in the ENDF/B-

VIII.0 library. Additionally, the ideal crystalline graphite DOS was updated from ENDF/B-VII.1 

using the predictive ab initio model described above in Section 3.3 [39]. Based on the systematic 

behavior of the 10% and 30% DOSs, a synthesized 20% porous graphite DOS was also established 

[45]. The resulting libraries range from ideal crystalline to 30% porous to allow users to represent 

their system as accurately as possible.  

As shown in Figure 3-23, the ideal crystalline graphite library published in ENDF/B-VIII.0  

while an improvement over ENDF/B-VII.1 does not contain the distinct or non-cubic effects of 

graphite. Comparing the ENDF/B-VII.1 and ENDF/B-VIII.0  ideal crystalline graphite cross 

section with crystalline graphite experimental cross sections, the cross section below the Bragg 

cutoff is significantly lower than experimental data. In this range, the cross section is directly 

dependent on the TSL. ENDF/B-VIII.0  offers some improvement over ENDF/B-VII.1 but both 

are unable to capture the true structure of the material.  

Introducing the non-cubic and distinct effects to the ideal graphite TSL, the resulting cross 

section shown now in Figure 3-23 is markedly improved. The inelastic cross section, purely a 

function of the TSL at the lowest energies, agrees with experimental data. Above the Bragg cutoff, 

the structure of the graphite will contribute to elastic peaks in the cross section, but both reactor 

and crystalline graphite binding effects will be overwhelmed by the elastic scattering. As such, 

both reactor and crystalline graphite will compare well with experimental data above the Bragg 
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cutoff. The distinct contribution takes into account the necessary structure information, vital for 

graphite, to accurately capture the cross section.  

 

 

Figure 3-23. ENDF/B-VII.1 and ENDF/B-VIII.0  ideal crystalline graphite cross sections compared 

with experimental data [60-62]. 

 

In the perturbation of the free atom cross carbon cross section, HTR-PROTEUS was shown 

to be highly sensitive to the graphite cross section. Implementing these various graphite thermal 

scattering cross sections while holding all the free atom and other TSL libraries constant allows 

isolation of the various graphite thermal scattering effects on a reactor system. From this data, 

quantifiable impacts from thermal scattering can also be discussed in terms of the reactor physics.  

Beginning again with the HTR-PROTEUS benchmark models with all ENDF/B-VII.1 

cross sections (same as the solid black square with solid black line case above), the keff values for 
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each core configuration were calculated. This generates the line shown before in Figure 3-22 which 

falls well below the known benchmark values for the actual HTR-PROTEUS system. This data is 

replotted in Figure 3-24. 

Changing only the graphite TSL, the core configuration models were then adjusted with 

the ENDF/B-VIII.0  ideal crystalline graphite TSL library. As seen in Figure 3-24, this cross section 

is similar to ENDF/B-VII.1 with slight improvement compared to experimental data. The resulting 

HTR-PROTEUS results are shown in Figure 3-24 with pale blue stars with a solid line. Comparing 

with the ENDF/B-VII.1 TSL, the core reactivity is increased slightly. This corresponds with the 

decrease in the reactor average thermal energy spectrum due to improved thermalization with the 

ENDF/B-VIII.0  library (cf. Section 3.5.4). As the energy spectrum softens, the reaction rate within 

the core will increase.  

The same graphite model used for the ENDF/B-VIII.0  crystalline graphite was discussed 

earlier in Section 3.3 for the further development of the non-cubic, generalized 1-phonon graphite 

cross sections. The generalized graphite cross section (without Sd effects) shows only small 

deviations at the total cross section level compared with the cubic counterpart (c.f. Figure 3-14). 

When implemented in the HTR-PROTEUS system, the impact on keff is small, as would be 

expected. Using the ENDF/B-VII.1 free atom cross sections and substituting the non-cubic 

graphite libraries, the resulting keff values are compared in Figure 3-24 and shown with an open 

black circle and solid black line. The average deviation of the non-cubic crystalline from the 

ENDF/B-VIII.0  cubic crystalline is -36 ± 2 pcm. 

Adding in the 1-phonon Sd impacts, the HTR PROTEUS models were evaluated with the 

generalized non-cubic and Sd contributions. The results are given in Figure 3-24 with solid 

lavender triangles and lavender connecting lines. 
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Figure 3-24. HTR PROTEUS keff calculations for crystalline graphite compared with benchmark 

values. Uncertainties in the calculated keff are less than 0.0001.  

 

While the non-cubic impact results in a minor decrease in keff, the introduction of the Sd correction 

offers slight increase to keff compared with the ENDF/B-VIII.0  cubic crystalline. The average 

deviation of the non-cubic with Sd correction from the ENDF/B-VIII.0  cubic crystalline is 24 ± 2 

pcm. The Sd contribution increases the reaction rate by 61 ± 2 pcm when compared with the non-

cubic, incoherent evaluation. The HTR-PROTEUS core spectrum, while very thermal, does not 

have large flux contributions below energies of 10-2 eV (see neutron spectrum in Figure 1-3).  The 

greatest cross section impacts from the Sd correction are seen below the Bragg cutoff at ~2x10-3 

eV. As such, drastic increase in the core reaction rate is avoided and smaller changes are observed.  

This is consistent with analysis of graphite systems through the years. All thermal 

scattering libraries to date used in reactor calculations have neglected the Sd contribution with 
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reasonable ability to capture the reactor dynamics. However, the improvement to the cross sections 

as a function of distinct effects and non-cubicity reflect a level of accuracy in both understanding 

and benchmarking of the cross section libraries which verifies the resulting libraries and provide 

accurate, benchmarked libraries for the community. The accuracy of these libraries is required to 

inform design decision and predict expected outcomes. 

The non-cubic plus 1-phonon TSL provides crystalline graphite libraries which accurately 

define the cross section for ideal graphite. However, a second class of graphite, nuclear graphite, 

most commonly occurs in reactor applications. Nuclear graphite, as described previously (cf. 

Section 3.3) varies from ideal graphite. The ideal crystalline form results in a material with a 

density of 2.25 g/cm2 while the nuclear graphite commonly found in reactors typically ranges from 

1.5 to 1.8 g/cm3 [44].   It was proposed that this difference in density could be represented at the 

atomic level by porosity [44]. As such, MD models were developed with atoms removed such that 

the range of nuclear graphite densities were represented. The porous graphite model, as shown in 

Figure 3-25, was used to generate the TSL and thermal scattering cross sections for the 10% and 

30% porous graphite libraries in ENDF/B-VIII.0  [44].  

 

Figure 3-25. Porous graphite model for MD simulation and TSL evaluation [44]. 
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A third 20% porous graphite DOS was then synthesized from the 10% and 30% systematics 

to create a 20% porous graphite library [45]. These cross sections are plotted together with the 

ideal crystalline graphite in Figure 3-26.  From the experimental data shown in Figure 3-26, the 

cross section behavior of reactor graphite is clearly increased from that of crystalline graphite. 

Comparing the ENDF/B-VIII.0  porous reactor graphite cross sections with the crystalline data, the 

increased porosity is reflected with increasing values of the cross section and improved agreement 

with experimental data.  

 
Figure 3-26. ENDF/B-VIII.0  nuclear graphite cross sections and the non-cubic, 1-phonon crystalline 

graphite cross sections compared with experimental data [60-62]. 

 

Introducing the porosity of nuclear graphite into the considered structure and binding 

results in cross sections which bound the experimental reactor graphite measured cross sections. 

These graphite cross sections were implemented in the HTR-PROTEUS benchmark to further 

display the impact of various graphite cross section components on the reactor physics. 
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The ENDF/B-VIII.0  TSLs for reactor graphite along with the 20% reactor graphite were 

substituted into the HTR-PROTEUS models. These results are plotted in Figure 3-27 as the green, 

red, and royal blue lines for the 10%, 20%, and 30% nuclear reactor graphite libraries, respectively. 

As the porosity increases, the reaction rate across the various core configurations of HTR-

PROTEUS also increases. This results in a systematic shift upwards of the plotted data with 

increasing porosity in Figure 3-27. This systematic shift of the curves demonstrates the impact of 

the graphite structure on thermalization with in the core. As porosity increases, the thermal cross 

section increases as shown in Figure 3-27. The increase in the cross section results in increased 

reaction rates and improved agreement with experimental benchmark values for the reactor system.  

 

 

Figure 3-27. HTR-PROTEUS benchmark calculations using the various ENDF/B-VII.1, ENDF/B-

VIII.0 , non-cubic with 1-phonon, and 20% porous nuclear graphite TSLs with ENDF/B-VII.1 free 

gas libraries and compared with the experimental benchmark values.  
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Up to this point, the analysis has been completed using the ENDF/B-VII.1 free atom 

libraries. Updating the data in Figure 3-27 with calculations completed with ENDF/B-VIII.0  free 

gas libraries and still perturbing the various TSLs, a systematic shift in the keff values is seen in 

Figure 3-28. This shift in all the calculated values is consistent with the discussion previously 

regarding the carbon absorption cross sections (cf. Section 3.5.2). The ENDF/B-VIII.0  free gas 

calculations were completed using thee recommended 12C and 13C ratio which will reduce the 

overall carbon absorption cross section, thereby increasing keff.  

 

 

Figure 3-28. HTR-PROTEUS benchmark calculations using the various ENDF/B-VII.1, ENDF/B-

VIII.0 , non-cubic with 1-phonon, and 20% porous nuclear graphite TSLs with ENDF/B-VIII.0  free 

gas libraries and compared with experimental benchmark values. 

 

Consistent among all the core evaluation methods, there is a notable shape trend along the 

distribution of core configurations. Of particular note, Core 4 is consistently evaluated higher than 
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the other core configurations, and it is the only randomly packed pebble core. The methods for 

modeling such a randomized system, specifically within MCNP which dictates exact geometry, 

may result in additional uncertainty not included in the PROTEUS benchmark [18,45]. This 

additional uncertainty from modeling methodology is not captured in Figure 3-22, Figure 3-24, 

Figure 3-27, or Figure 3-28. 

Notable trends also occur between the remaining other core configurations. The various 

core loadings are noted below with the calculated results in Figure 3-29.  

 

 
Figure 3-29. HTR-PROTEUS calculated values (compared with benchmark values) using the 20% 

porous graphite libraries and ENDF/B-VIII.0  free gas libraries and labeled according to core loading 

type.  

 

Cores 1 through 3 were arranged with a packing fraction of 0.7405 [17]. These four core 

configurations (the 4th including core loading 1A) show consistent results when modeled using the 

HCP 

CHPOP 

Random 
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porous reactor graphite TSLs. Cores 5 through 10 were arranged with a reduced packing fraction 

of 0.6046 [17]. Again, these six cores show consistent agreement with the benchmark and with 

each other when using the porous libraries. The shift between the first set of cores with a higher 

packing fraction and the second set of cores further validates the hypothesis that the modeling 

method used for Core 4 with the random packing may have contributed to the artificially high 

predicted value.  

These trends noted between core configurations cannot be as clearly seen when compared 

core configurations using the ideal crystalline graphite TSL. With the ideal graphite TSL, 

insufficient thermalization occurs which lowers the reaction rate (keff) and also makes the system 

far more sensitive to other possible means of thermalization. The higher values in keff for the ideal 

crystalline case occur when polyethylene rods were inserted into the core configuration. 

Referencing back to Table 3-3, Cores 1, 1A, 2, 5, and 9 do not have polyethylene rods. These cores 

also calculated the lowest keff values. This trend can be observed from the results in Figure 3-28. 

Cores 3, 6, 7, 8, and 10 which all had polyethylene rods resulted in higher evaluated keff values. 

This demonstrates just from the ideal crystalline evaluation that the ideal graphite library does not 

accurately capture the thermalization of the core for this reactor system.  

The graphite within HTR-PROTEUS has a density averaging approximately 1.7 g/cm3. 

This corresponds to a porosity of approximately 25% as calculated using Equation (3.15). The 

calculated keff data for the 20% porous library shows reasonable agreement with experimental data 

with the exception of Core 4 falling outside the 1ů bounds for the benchmark. The 20% library 

consistently shows the most consistent results compared to experiment. In order to capture the 

behavior of the pebble bed HTR-PROTEUS system accurate, nuclear graphite libraries are 

required.  
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3.5.4 Temperature Impacts from Thermal Scattering Cross Sections 

As a part of any reactor system, the ability to predict temperature response is vital. HTR-

PROTEUS was only operated as a room temperature test reactor; however, typical pebble bed 

designs traverse temperatures ranging from room temperature at startup to an excess of 1000 K 

during operation.  The neutronic impacts due to temperature effects must be accurately quantified 

in order to provide accurate feedback to the multiple phenomena which drive the reactor behavior. 

The hardening of the neutron spectrum in response to the increase in temperature is a direct result 

of the graphite thermalization in the core, demonstrating the need for high-fidelity TSLs for 

accurate multi-physics simulations. Using the HTR-PROTEUS benchmark as a model pebble bed 

reactor, the impact in the thermal spectrum due to a temperature shift can be investigated.  

The thermal spectrum within PROTEUS depends on the thermal scattering within graphite 

as shown by the keff calculated results and also the theory of moderation within a core. To 

demonstrate the impact of the TSL in predicting the thermal spectrum, the thermal spectrum of the 

PROTEUS reactor was calculated with the various graphite thermal scattering libraries. Using the 

Core 9 configuration which contains no polyethylene, a thermal spectrum for HTR-PROTEUS 

was calculated using the ENDF/B-VIII.0  free gas libraries and the ENDF/B-VII .1 graphite, 

ENDF/B-VIII.0  crystalline graphite, non-cubic with Sd
1 crystalline graphite, and the 10%, 20%, 

and 30% porosity graphite thermal scattering libraries. Examples of these thermal spectra 

distributions are given in Figure 3-30. From these thermal spectra, the average thermal energy was 

calculated for each case at room temperature. These average thermal energies are given in Table 

3-6. Calculations were completed with 100,000 cycles (total 225 million particle histories) to 

reduce the uncertainty in keff to less than 0.00006.  
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These results display a consistent trend as noted in the benchmark results above (see Figure 

3-28 for example). The shift to lower average energies with increasing porosity will result in 

increased reactivity and therefore improved benchmark results for the HTR-PROTEUS system.  

Crystalline graphite and the non-cubic plus 1-phonon libraries produce the same average energies. 

Given the benchmark results, this behavior in the average thermal energy is to be expected. The 

major impact at the reactor level results from the use of the porous graphite libraries to capture the 

appropriate lattice dynamics.  

 

 

Figure 3-30. Thermal spectra in the middle of the HTR-PROTEUS reactor calculated at 296 K. The 

spectra calculated with the ENDF/B-VII.1 graphite and the ENDF/B-VIII.0  30% porous libraries are 

shown to demonstrate the impact of the libraries on the distribution. Vertical lines at the average 

thermal energy are drawn to visually display the shift in the spectrum.  

 



   

118 

 

Table 3-6. Average thermal energy (eV) for HTR-PROTEUS core 9 calculated using varying thermal 

scattering libraries for graphite. 

S(Ŭ,ɓ) Library 296 K (eV) 600 K (eV) Difference (eV) 

ENDF/B-VII .1  0.07612 ± 0.00002 0.10317 ± 0.00002 0.02705 ± 0.00003 

ENDF/B-VIII.0  Crystalline 0.07566 ± 0.00002 0.10313 ± 0.00002 0.02747 ± 0.00003 

Non-Cubic + Sd
1 0.07575 ± 0.00002 0.10314 ± 0.00002 0.02739 ± 0.00003 

ENDF/B-VIII.0  10% Porous 0.07425 ± 0.00002 0.10284 ± 0.00002 0.02859 ± 0.00003 

Nuclear Graphite 20% Porosity  0.07300 ± 0.00002 0.10237 ± 0.00002 0.02937 ± 0.00003 

ENDF/B-VIII.0  30% Porous 0.07191 ± 0.00002 0.10197 ± 0.00002 0.03007 ± 0.00003 

 

Additionally, the same libraries were used to calculate the thermal spectrum at 600 K which 

corresponds to low operating temperature for a graphite pebble-bed core. These average energies 

are also given in Figure 3-31 below displays the hardening of the thermal spectrum for the 30% 

porous graphite library. This behavior was seen for each evaluation. 

 

 

Figure 3-31. Thermal spectrum hardening as calculated for the HTR-PROTEUS reactor using the 

ENDF/B-VIII.0  30% porous graphite library. The average energy at each temperature is drawn to 

visually display the shift in average energy due to temperature. 
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The resulting difference in average energy as a function of energy, i.e. the hardening of the thermal 

spectrum, shows marked increase in comparing the crystalline and nuclear graphite results. This 

impact on the thermal energy spectrum is directly reflected in reactivity seen in keff as demonstrated 

in Table 3-7 and even just a room temperature as displayed in the general HTR-PROTEUS results 

in Figure 3-28.  

 

Table 3-7. Keff values calculated for HTR-PROTEUS core 9 at room temperature and 600 K 

demonstrating the reactivity impact form increasing temperature and thermal spectral shifts. The 

difference between the 296 K and 600 K results is reported in pcm. The uncertainty in the difference 

is less than 8 pcm.  

S(Ŭ,ɓ) Library 
keff 

Diff. (pcm) 
296 K 600 K 

ENDF/B-VII.1 0.99300 0.96046 -3254 

ENDF/B-VIII.0  Crystalline 0.99494 0.96093 -3401 

Non-Cubic + Sd
1 0.99519 0.96091 -3428 

ENDF/B-VIII.0  10% Porous 0.99801 0.96169 -3632 

Nuclear Graphite 20% Porosity 0.99922 0.96220 -3702 

ENDF/B-VIII.0  30% Porous 1.00059 0.96250 -3809 

 

 

These effects demonstrate the necessity of capturing the graphite structure accurately 

within the cross section. The temperature response varies by more than 400 pcm between the 

ENDF/B-VIII.0  crystalline graphite and the 30% porous nuclear graphite. Even the non-cubic with 

1-phonon correction keff results show notable deviations in temperature response. Without accurate 

material structure, the thermal scattering will not predict criticality and other necessary safety 

responses for reactor systems. For a graphite moderated system, especially advanced pebble bed 

designs, the temperature responses within the graphite slowing-down plays a key role in inherent 

safety measures. The deviations in the temperature response of the system will contribute to safety 
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and design for graphite critical systems, further underpinning the importance of accurate and 

appropriate graphite TSLs to represent each system.  
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CHAPTER 4. INVESTIGATION OF ADVANCED THERMAL SCATTERING LAW 

EVALUATION METHODS AND DOPPLER ANALYSIS FOR URANIUM  

  

Up to this point, the application of the TSL has described the thermal scattering cross 

sections. For moderator materials like graphite, thermal scattering cross sections are the dominant 

means of interaction. However, for fuel materials, the whole of the energy spectrum is vital as 

fission neutrons born within the fuel will by necessity interact within the fuel from birth to final 

absorption. The chemical binding effects, defined by the TSL, are not limited to the thermal region. 

The generalized formulations used in the bound atom region apply also for the higher energies 

such as the epithermal resonance region.  

Thermal scattering and Doppler broadening are driven by the chemical binding properties 

and temperature of the system, and both effects arise from the correlation of atomic movement 

defined by the TSL. The methods developed here apply the generalized TSL analysis for both 

thermal scattering and Doppler broadened cross sections, demonstrated using uranium metal. As 

energy continues to increase, the explicit structured, binding treatment will asymptote to physics 

defined for free, individual atoms, allowing for a smooth and consistent transition in the total cross 

section.  

 

4.1 TSL Implementation for Doppler Broadening 

Once the TSL has been evaluated with all the required details to generalize structure and 

introduce distinct effects, the TSL can be used in cross section evaluations including Doppler 

broadening operations. The process of Doppler broadening a cross section requires first an 

appropriate TSL Ŭ and ɓ grid. In order to capture the lattice effects for particular resonances of 

interest, the gridding must extend to appropriate energy and momentum exchanges. For some 



   

122 

 

materials, resonances lie well within the thermal energy range and will not require additional 

resolution. However many materials have resonances at the upper end of the thermal range and 

into the epithermal energy range. For these materials, the gridding must be extended for the TSL 

evaluation.  

The ɓ gridding will directly correspond to the user requested energy grid and the energy of 

the resonance to be broadened. The maximum energy input by the user should correspond to well 

above the resonance energy. A linear ɓ grid is formed with ȹɓ equal to the energy resolution of 

the DOS divided by Boltzmannôs constant and the temperature. The maximum energy exchange 

for ɓ is then   

 
max

max

B

E

k T
b = .  (4.1) 

The TSL at this maximum ɓ value, however, will typically be very small and will have negligible 

contributions to any integral cross section evaluation. As such, the maximum ɓ can be manually 

scaled by the user to cut off the TSL evaluation after a certain minimum is reached. This grid will 

then be automatically re-centered around the resonance energy such that the energy exchange is 

representative for the particular resonance in question.  

The corresponding Ŭ values are based on the incident energy. Because these are absorption 

interactions being considered, the final neutron energy is zero. Additionally, there is no scattering 

angle so the ɛ term will also go to zero. The Ŭ value of interest for a given energy is then strictly 

equal to  

 
B

E

Ak T
a=   (4.2) 

where E is the incident neutron energy. This Ŭ value will then be scaled by mass weighting to 

appropriately transform to the correct coordinate system for Doppler broadening.  
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Once the TSL has been evaluated on a grid reflective of the Doppler broadening process, 

the convolution of the TSL with the resonance cross section occurs. The process of generating the 

resonance cross section occurs within SAMMY 8.1.0: Code System for Multilevel R-Matrix Fits 

to Neutron and Charged-Particle Cross-Section Data Using Bayesô Equations [13]. For the 

purposes of Doppler broadening, SAMMY typically evaluates the resonance cross section using 

the R-matrix formulation with the Reich-Moore approximation. Other methods including the 

SLBW, multilevel Breit-Wigner, and a version of the Reich-Moore approximation to simulate the 

full R-matrix evaluation are available. The calculation requires the input of material specific 

information, energy range, temperature, and spin group. Resonance parameters including the 

capture width and particle width for each channel along with quantum numbers are required. Most 

of these inputs can be derived from the ENDF evaluations for a given isotope. The ENDF File 2 

can be used to produce the parameter file containing the resonance parameters. This reduces the 

number of required inputs and allows for consistent analysis with published libraries.  

Based on the user input energy range, the resonance cross section is then evaluated in 

SAMMY. The absorption cross section is then Doppler broadened using the TSL such that (see 

Equation (2.112) [13,30]) 

 () ( )
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The integral over ɓ is approximated as the summation of terms from the linear ɓ grid multiplied 

by ȹɓ. The user must supply the appropriate TSL on the appropriate Ŭ/ɓ grid and energy range for 

evaluation to Doppler broaden. For this work, the FLASSH code was coupled with SAMMY to 

provide the TSL for the Doppler broadening process. This allows the user to utilize the high-

fidelity TSL results from FLASSH with the evaluation tool in SAMMY such as resonance fitting.  
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By using the parameters from the ENDF File 2, the energy of a resonance will be specified 

and parameterized consistent with currently published analysis. However, these parameters are 

often generated based on free gas models rather than crystal structure models. Introducing 

crystalline effects will result in a shifting of the peak energy in addition to a non-symmetric 

Gaussian broadened shape. These effects, especially at low temperatures, will be most pronounced 

for lower energy resonances. For these resonances, the resonance energy, ũn, and ũɔ must be 

reparametrized to be consistent with the crystal structure. Within SAMMY, this is accomplished 

by providing an experimental data set (either transmission or cross section data) with the command 

option to solve Bayesô equations. SAMMY can then fit the selected resonance parameters (in this 

case the absorption width and resonance energy) based on the userôs model of the system.  

The process of Doppler broadening is especially important for fuel materials. Uranium is 

commonly used in many reactor designs. Specifically, uranium metal is often used in cross section 

measurements to define the cross section data available for modeling and simulation. As such, 

these methods for structure-dependent broadening will be demonstrated for uranium metal using 

FLASSH and SAMMY to evaluate both the thermal scattering and resonance parameters.  

 

4.2 Uranium Metal (Ŭ-U) Material Modeling  

In order to analyze the thermal scattering effects and Doppler broadening for uranium, a 

model of uranium metal must first be developed. Historically, uranium has only been considered 

as a free atom for cross section evaluation and the appropriate lattice conditions have not been 

introduced. Uranium metal structure transitions as temperature rises shifting from the 

orthorhombic Ŭ-phase to the tetragonal ɓ-phase around 662 ºC [67]. The presence of 5f orbital 
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electrons results in less tightly packed, less high symmetric type structures for actinide materials, 

resulting in the unique structures and many phase transitions as seen in Figure 4-1 [68].  

 

 

Figure 4-1. Phase transition states for the actinides (Figure from Ref. [68]). For uranium with 

increasing temperature, the different phases proceed from orthorhombic Ŭ-U to tetragonal ɓ-U to 

body-centered cubic ɔ-U before finally becoming a liquid. At room temperature, uranium will then 

take on the orthorhombic Ŭ-U phase.  

 

For uranium in particular, this means an orthorhombic unit cell with four atoms (two atoms within 

the primitive cell) at room temperature. Ŭ-U is base-centered orthorhombic in structure with a 

crystal symmetry Cmcm (space group 63). Lattice constants for uranium metal have been measured 

to be a=2.836Å, b=5.867Å, and c=4.936Å [69]. The atoms will be offset from whole fractional 

positions as measured by an additional parameter y. The basis position of the atoms are then (0, y, 

¼), (0, y, ¾), (½, ½+y, ¼), and (½, ½-y, ¾) with y experimentally measured to be 0.102 [69]. This 

structure can be seen in Figure 4-2.  
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Figure 4-2. Ŭ-Uranium unit cell.  The atom positions of the four atoms per unit cell are shown.  

 

Room temperature uranium metal will have a density of approximately 18.9 g/cm3 [70]. For the 

purposes of comparison with cross section measurements, Ŭ-U best describes the material 

structure. Measurements of cross sections routinely occur at room temperature which would imply 

an Ŭ-phase uranium.  

In its natural state, Ŭ-U is a non-magnetic metal [71]. Like many of the other actinide 

materials, the effects of the f-orbital electrons on uranium is still a continuing field of study. The 

binding effects from these outer electrons shape the characteristics of the material. In particular, 

for Ŭ-U, lattice parameters, atomic positional parameter y, and magnetic susceptibility exhibit 

temperature dependence and exhibit anomalies at 43 K [70]. The effects of temperature on the 

unique structure of Ŭ-U would seem to indicate a phase transition at 43 K; however, experimental 

data clearly demonstrates a consistent structure through that temperature change. While the 

structure remains unaffected, the phonon dispersion relationship and lattice constants clearly 

deviate at this 43 K transition. Experimental data for specifically the lattice constants, atom 

position y, and phonon impacts have been measured as a function of temperature to help broaden 

the understanding of temperature effects on uranium metal.  
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Lattice constants for single crystal Ŭ-U and the effects of temperature were measured using 

both x-ray and neutron diffraction in Barrettôs work and shown in Figure 4-3 [69]. The sharp 

change at 43 K is evident in both the lattice constants and atom position from these measurements. 

The structure remains orthorhombic through the whole of the temperature range shown.  

 

     

Figure 4-3. Temperature dependence of the atom position y and volume (lattice constants) for Ŭ-U 

(Figures from Ref. [69]). 

 

While the exact reasons for these effects are not understood, theories have included impacts 

of the 5f electrons in bonding as well as the possibilities of charge density wave (CDW) and spin 

density wave (SDW) effects [70,71]. For Ŭ-U, the effect of changing electron density particularly 

from a CDW would result in transition of the electronic structure resulting in magnitude shifts of 

the lattice structure. As such, both the atomic lattice and electronic structure would be considered 

stable after 43 K.  

Using modern methods, Ŭ-U can be modeled [15]. In order to capture the room temperature 

structure and the effects from the outer f-orbital electrons, more advanced methods have been 

considered. Ab initio lattice dynamics (AILD) offers a fundamental physics approach which will 

yield the most accurate solution to represent the electronic structure of the materials. For solid 
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materials, AILD typically produces high fidelity predictions of lattice behavior. Models using 

these fundamental techniques will be employed to produce the most accurate representation of the 

Ŭ-U structure to predict the phonon behavior within the lattice. From these results, the best 

representation of Ŭ-U will be implemented for TSL and cross section evaluation.   

 

4.2.1 AILD  Model of Uranium Metal  

In this work, the generalized gradient approximation (GGA) is used within the VASP 5.4 

package [40,41,47]. GGA has been documented to outperform LDA for f-electron metals [72]. 

Calculations were completed without spin-orbit coupling (SOC) and with no Hubbard (+Ueff) term. 

Initial testing of SOC and Hubbard terms for uranium metal agreed with other published results 

showing minimal or negligible improvements in the overall modeling capabilities when using SOC 

or Hubbard corrections for uranium metal [67,73]. The Perdew-Burke-Enzerhof (PBE) 

implementations of generalized gradient approximation was implemented [48]. PBE was 

parameterized to produce accurate energetics of the system. As such, this functional tends toward 

volumes which are too large and phonon frequencies which are too soft [74].  

Lattice parameters and atom positions were optimized using the GGA-PBE functional with 

a plane-wave basis cutoff of 550 eV and a 21x21x13 Monkhorst-Pack k-space mesh. The total 

energy convergence criteria was set to 1x10-8 eV with a criteria of 0.001 eV/Å for each ionic step. 

These rigorous criteria are required to converge the structure to an accurate representation and 

avoid false magnetization of the crystal. Additionally, as a metal, a dense k-mesh is required to 

correctly capture electron occupation at and around the Fermi energy.  

While uranium metal is a non-magnetic material, in order to properly treat the outer 

electrons, spin polarized (collinear) calculations were performed with the magnetic moments 
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automatically set to 1.0 ɛB. Within the VASP system, it is advised to preset the magnetic moments 

larger than experimental values. All unit cell calculations within this work were converged to result 

in a total magnetic moment of 0.0 ɛB. However, introducing the spin polarization into the 

calculation allows the electron distribution, particularly for the f-orbital electrons, to be distributed 

without restriction to share a spatial orbital with the opposite spin. Since for uranium metal, the 5f 

orbital is not filled, the spin polarized calculation is needed.  

The unit cell was optimized for uranium metal using the criterion outline above. The 

resulting electronic structure is compared against measured data in Figure 4-4 along with the unit 

cell parameters in Table 4-1. The f-electrons will dominate the total electron density of states 

(eDOS) in the energy region around the Fermi energy (Ef). The model correctly captures the 

metallic behavior and shows reasonable agreement with the experimental values.  

 

 

Figure 4-4. Total eDOS for uranium compared with experimental measurements. XPS measurements 

below the Fermi energy (Ef) and BIS measurements above Ef were normalized to demonstrate the 

energy modes comparison between calculated and measured values [75]. 

 

Many other methods of modeling actinide materials have been implemented to capture these large 

and complex systems. Other computational methods published for Ŭ-U have included full potential 
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linear muffin-tin orbital (FP-LMTO) models, GGA-PW91 (Perdew-Wang 1991 functional) 

models, GGA-PBE models, and norm-conserving (NC) pseudopotentials with and without SOC 

and Hubbard (+U) terms [73,76-80]. The results from these other works are compared in Table 

4-1.  

 
Table 4-1. Lattice constants (a, b, and c) and atom position (y) for Ŭ-U as predicted with VASP AILD 

methods in this work and other previously published methods compared with experimental data. 

Other methods of calculation include GGA-PBE [76], GGA-PW91 [77], GGA-PW91 + SOC [77], 

GGA-PBE + U [78], GGA-PBE + U + SOC [78], FP-LMTO [73], and NC in both GGA [79] and LDA 

[80]. Experimental data is reported at 50 K and room temperature, both of which are after the 

electron structure transition that occurs at 43 K [69]. All data is compared against the experimental 

room temperature values and reported as a percent difference.  

 

 

Because the lattice constants will impact phonon properties, the percent difference between 

calculated and experimental values are shown compared with the room temperature. Comparing 

the results from this work with previous calculations with experimental values, the DFT simulation 

captures the pertinent aspects of the uranium metal structure consistent with other previously 
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published methods. The predicted lattice constants while reasonable show greater deviation from 

experiment than expected for ab initio methods.  

A secondary point of comparison is the uranium metal elastic constants measured using 

high-frequency ultrasonic wave velocity techniques by Fisher and McSkimin [81,82]. Because of 

the difficulty in capturing the various directional components of uranium metal, the elastic 

constants provide a key indicator of a modelôs ability to correctly capture the uranium metal 

structure. Using VASP with a displacement of 0.015 Å and IBRION=6, the elastic constants were 

calculated for the unit cell system. The resulting elastic constants are given in Table 4-2 and 

compared with other evaluations and experimental measurements.  

 
Table 4-2. Elastic constants for single crystal Ŭ-U VASP AILD  compared with predicted values from 

various computational methods and experimental data [81,82]. Uncertainties of the experimental 

values range from 0.10% to 1.5%. These methods compared here include GGA-PBE [76], GGA-

PW91 [77], GGA-PW91 + SOC [77], and FP-LMTO [73]. 
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The values for bulk properties were then derived using the Voigt-Reuss-Hill approximation 

for an orthorhombic system (see APPENDIX B) [83]. Values for the moduli as derived for this 

work are given in Table 4-3. Additional measurements including the bulk modulus (B), shear 

modulus (G), Youngôs modulus (E), and Poissonôs ratio (ů) are also included with additional 

experimental references. If an experimental publication provided values for the elastic constants 

(but not a certain parameter), the bulk properties were evaluated using the Voigt-Reuss-Hill 

approximation as well. Experimental values were gathered from available sources to demonstrate 

the range of values typical of Ŭ-U. 

 
Table 4-3. Properties of bulk modulus (B), shear modulus (G), Youngôs modulus (E), and Poisonôs 

ratio (ů) as calculated in this work with VASP AILD  and compared with other published methods 

and experimental data.  

  B (GPa) G (GPa) E (GPa) ů (Å) 

Experiment at 50 K [81] 111 --- --- --- 

Experiment [68] 97.9 73.1 --- 0.20 

Experiment [84] 135.5 --- --- --- 

Experiment [85] --- 59-84 152-200 0.19-0.28 

This Work (PBE) 146 113 269 0.19 

Beeler (PBE) [76] 151 111 267 0.21 

Taylor (PW91) [77] 149 107* 257* 0.21* 

Taylor (PW91+SOC) [77] 147 113* 269* 0.19* 

Söderlin (FP-LMTO) [73] 133 112* 261* 0.16* 

Freyss (GGA-NC) [79] 143 --- --- --- 

Crocombette (LDA-NC) [80] 182 --- --- --- 

*Calculated from provided elastic constants     
 

Effects from SOC and +Ueff terms are demonstrated in the other published results in Table 

4-1 through Table 4-3. The impact of the lattice constants due to SOC are minor. The results 

demonstrating the Hubbard term produce lattice constants in good agreement with experiment. 

However, these effects seem to be a beneficial cancelation of errors and also introduces negative 
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impacts on the evaluation of other key factors such as formation enthalpies as documented in Ref. 

[84]. In the elastic constants and bulk moduli, the impact of SOC is negligible and does not 

improve agreement with experimental data. The model in this work with no additional SOC or 

Hubbard terms performs well further demonstrating that these modifiers are not required. The 

resulting elastic constants and bulk properties compare well with experimental data and 

demonstrate the expected and required fidelity to capture lattice phonon properties. 

The VASP model was used to generate phonon information through traditional AILD 

methods (see Section 3.2). The unit cell model, having been verified to show reasonable agreement 

with experimental properties for uranium metal, was then extended to generate the Hellman-

Feynman forces within a larger supercell system. A supercell of 64 atoms (4x2x2 conventional 

cell shown in Figure 4-5) was used in order to remove size effects.  

 

 

Figure 4-5. 4x2x2 supercell for VASP AILD phonon calculations. 

 

Because the uranium b and c lattice constants are nearly double the length of a, the supercell must 

be elongated along the x-direction in order to capture all effects. A 4x2x2 supercell results in 

overall dimensions of the supercell which are nearly equivalent in each direction and corresponds 

to an interaction range of approximately 12 Å or 0.57 meV. This helps to improve accuracy of 
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results and ensure certain frequency modes are not neglected particularly at the lowest energies of 

the phonon DOS. A reduced Monkhorst-Pack k-mesh of 7x7x7 was used for the supercell 

calculations.  

The AILD supercell structure was then re-optimized by allowing the atom positions and 

cell volume to change. This did not result in notable changes to the structure but allowed the 

residual forces within the system to be minimized. The supercell electronic structure was then 

optimized. Using this fully optimized supercell, six displacements of 0.04 Å were performed, and 

the forces due to the displacement tabularized.  

The phonon dispersion relations were calculated from the resulting forces using the DFT 

code phonopy [86]. Results explicitly along three directions of high symmetry are compared with 

experimental data in Figure 4-7, and the directions of symmetry for the Cmcm space group are 

demonstrated in Figure 4-6. The dispersion results are integrated over the whole 1st Brillouin zone 

to generate the total phonon DOS given in Figure 4-8. 

 

 

Figure 4-6. First Brillouin zone for the Ŭ-U structure corresponding to the measurements and 

calculations in Figure 4-7 (Figure from Ref. [87]). 
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Figure 4-7. Phonon dispersion relations calculated from VASP AILD and compared with 

experimental measurement [87]. Different symbols are used to represent the various modes identified 

in the measurement.  

 

 

Figure 4-8. Phonon DOS calculated from VASP AIMD and compared with experimental DOS 

measurement [88]. Negative modes in the calculated DOS are indications of imaginary results 

introduced from the DFT simulation. 
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From these plots, one can clearly see the impact of the AILD methodology on the phonon 

results. VASP GGA-PBE produces dispersion relations with negative frequencies. Negative 

frequencies either represent a phase transition or non-physical results. Since the orthorhombic 

structure of Ŭ-U is stable, these negative frequencies are non-physical. This trend for PBE has been 

documented for other materials as well [74,89].  

Functionals like PBE which are parameterized to produce accurate energetics consistently 

produce volumes which are too large and phonon frequencies which are too soft [74]. While LDA 

will tend to underestimate volume and overestimate the bulk modulus, the phonon frequencies will 

tend toward higher frequencies [89]. This has led some to attribute the differences in the phonon 

band structure to structural differences cause by LDA and GGA-PBE predictions [89].  

In the case of the Ŭ-U dispersion relations, the imaginary frequencies appear in the [1 0 0] 

direction near the unit cell boundary notated by the dashed vertical line in Figure 4-7. This is 

consistent with surface effects deviations noted for PBE in comparison with other functionals [90]. 

Upon investigation, the negative modes are produced as the result of forces from atoms directly in 

line in the x-direction with the perturbed atom. This further supports the understanding of surface 

impacts from the functional. Other than the differences in the lowest energy modes, AILD 

produces results with reasonable agreement with experimental data, following consistent trends 

with the data. The deviations which are seen can be attributed, in some part, to temperature effects. 

This is particularly true in the [100] direction for the Ɇ4 mode.  

In the [100] direction, the mode near the unit cell boundary shows drastic deviations. From 

experimental data, it can be seen that this mode is strongly temperature-dependent. The measured 

data presented in Figure 4-7 was taken at room temperature. However, additional measurements 

of this direction were later taken at temperatures ranging from 30 K to 300 K which are shown 
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below in Figure 4-9. These measurements were conducted only for the one mode as accuracy at 

such low temperatures is difficult. The trends, however, denote both a temperature dependence of 

the Ŭ-U phonon modes and a trend towards a transition state as the temperature decreases. As the 

frequencies approach zero, a transition of the structure is implied by the experimental phonon 

dispersion measurements. This is consistent with the hypothesized CDW at 43 K. DFT calculations 

such as those performed here using VASP are considered 0 K calculations. As such, the models of 

Ŭ-U would reasonably tend towards an unstable state, and therefore negative frequencies.  

 

 

Figure 4-9. Temperature response of the phonon dispersion relations for Ŭ-U in the [100] direction 

compared with VASP AILD. Temperature-dependent data was only measured for the Ɇ4 mode with 

sufficient accuracy to denote clear trends [87,91]. 






























































































































































































