SUPERLINEAR CONVERGENCE AND IMPLICIT FILTERING  *
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Abstract. In this note we show how the implicit filtering algorithm can be coupled with the BFGS quasi-Newton
update to obtain a superlinearly convergent iteration if the noise in the objective function decays sufficiently rapidly
as the optimal point is approached. We show how known theory for the noise-free case can be extended and thereby
provide a partial explanation for the good performance of quasi-Newton methods when coupled with implicit filtering.
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1. Introduction. In this paper we examine the local and global convergence behavior of the
combination of the BFGS [4], [20], [17], [23] quasi-Newton method with the implicit filtering
algorithm. The resulting method is intended to minimize smooth functions that are perturbed
with low-amplitude noise. Our results, which extend those of [5], [15], and [6], show that if
the amplitude of the noise decays sufficiently rapidly near optimality, then the local g-superlinear
convergence results of [5] and, under more restrictive assumptions, the global convergence results
of [6] hold. The results in this paper are theoretical and require strong assumptions. However, we
believe that they represent a important step toward explaining the observations of improvements in
performance when quasi-Newton model Hessians are used with implicit filtering.

The quasi-Newton implicit filtering algorithms differ from other methods in the literature that
use either inaccurate gradient information, only samples of the function, or difference or interpo-
latory approximations to gradients and/or Hessians. While we make assumptions on the decay of
the noise near optimality, we do not assume that we can control the errors in the function evalua-
tion directly, and therefore our results differ from those of [7] and [8], where it was assumed that
control of the errors in function and gradient evaluations was possible and global convergence of a
trust region algorithm that managed these errors separately was proved. The superlinearly conver-
gent algorithm in [22], which combines coordinate search with a difference Hessian, is intended
for noise-free function evaluations and is not applicable here. Our quasi-Newton algorithms do not
attempt to model Hessians with interpolation, as does the trust region/interpolation method of [12],
[10], and [11]. We believe that the quasi-Newton approach has an advantage for noisy problems,
where the errors in a Hessian formed by differences or interpolation can be large.

In § 2, we review implicit filtering and, using an idealized implementation for a model prob-
lem, motivate the assumptions on function/gradient accuracy that we §$e in § 3.1 we apply
the results in [15] to show how the local theory for BFGS convergence from [5] can be extended to
prove superlinear convergence of the idealized methog§l318 we show how a combination of the
assumptions from [19] and the onegi&.1 imply extensions of the global superlinear convergence
results from [6].
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2. Implicit Filtering. Implicit filtering was designed for problems in which the objective
function is a high-frequency, low-amplitude, perturbation of a simple smooth problem. The al-
gorithm is a finite difference steepest descent (or quasi-Newton) method in which the difference
increment is adjusted as the optimization progresses. In this way the algorithm implicitly filters
out the high frequency perturbation. For problems in which the amplitude of the perturbation de-
creases near optimality, a not uncommon event [24], [13], [9], decreasing the difference increment
improves the accuracy of the solution near the optimal point.

Quantitatively we consider an objective functigrdefined onR” that is a perturbation of a
smooth functionf, by a small functiony

(2.1) f(x) = fs(2) + o(2).

The small oscillations could caugdo have several local minima that would trap any conventional
gradient-based algorithms. The perturbatiorould be random, [24], and therefore need not even
be a function. In this paper, we assume thas everywhere defined and bounded to make the
statement of the results simpler.

Throughout this papsf - || will denote the/? norm onR”Y.

2.1. The Basic Algorithm. Forz € RN andh # 0 the forward difference gradient gfwith
scaleh atz is given by
f(x+ he;) — f(x)

(Vif(x): = .,

wheree; is the unit vector in theth coordinate direction an@/ f(z)); denotes théth component
of the difference gradient. Similarly, the centered difference gradient with aalgiven by

f T u T

We will often refer to the difference gradieRt, f when we are discussing a point that applies to
either.
The basic finite difference steepest descent iteration takes a current iteratiotie nexts
by
Ty = 2. — AV f(ze).
If the line search is successful the step leng#atisfies the sufficient decrease condition We use a
simple Armijo [1] line search and demand that the sufficient decrease condition

(2.2) fl@ = AVif(z)) = f(z) < —aX|Vif ()|

Implicit filtering is based on a finite difference steepest descent algofdetaep , which
terminates when
(2.3) IVaf(@)|| < 7h

for somer > 0, when more thakmax iterations have been taken, or when the line search fails
by taking more thammax backtracks. Even the failures fifsteep can be used to advantage

by triggering a reduction ith. The line search parametersj and the parameterin the termi-

nation criterion (2.3) do not affect the convergence analysis that we present here, but can affect
performance.
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ALGORITHM 2.1.fdsteep (z, f, kmazx, 1, h, amazx)
1. Fork=1,..., kmax
(&) Computef andV,, f; terminate if(2.3) holds.
(b) Find the least integeb < m < amaz such that(2.2) holds forA = ™. If no suchm
exists, terminate.
(€) z =12 — AV, f(2).

Algorithm fdsteep  will terminate after finitely many iterations because of the limits on the
number of iterations and the number of backtracks. If the sétf(z) < f(x¢)} is bounded then
the iterations will remain in that set. Implicit filtering cafidsteep repeatedly, reducing after
each termination didsteep . Aside from the data needed filsteep , a sequence of difference
increments, thecales {1, }¢2, is needed for the form of the algorithm given here.

ALGORITHM 2.2. imfilterl (x, f, kmax, T, {h}, amax)

1. Fork =0,...

Call fdsteep (z, f, kmax, T, hy, amax)

The first order estimate,

(2.4) IV fi(@1) = Vaf (@)l + O(h + h"|glls),

whereS* is the set of points on the difference stencil used to compyte and
19]ls = max[(2)],

leads to a convergence result [2], [21].
THEOREM2.1. Leth, — 0 and letf satisfy(2.1). Let{z;} be the implicit filtering sequence.
Assume thaf2.2) holds {. e. there is no line search failure) for all but finitely maky Then if

(2.5) Jim (R + bt ollgx) =0
—00

then any limit point of the sequenge, } is a critical point of f,.
If, for example,f, has a unique minimizer* and

(2.6) |6(2)] < el|lz — 27|

for z nearz* ande sufficiently small, then one can prove global and g-linear convergence [19]. The
requirement that (2.6) hold is very modest, since (2.6) demands only that the noise be smaller than
fs(x)— fs(z*), but allows for the rate of decay (quadratic) to be the same. Superlinear convergence,
as one might expect, will need stronger assumptions.

2.2. Quasi-Newton Methods.Typically the performance of implicit filtering is greatly im-
proved by using a quasi-Newton model Hessian [24], [19], [21]. The SR1 [3], [16] or BFGS
guasi-Newton methods are defaults in the implicit filtering codes described in [18] and [21].

The finite difference quasi-Newton iteration is

Ty = Te+ A,
whereH, is a quasi-Newton approximation to the Hessiarfciind

dc - _Hglvhf(xc)'
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The test for sufficient decrease is
(2.7) f(z+ M) — f(z) < aAV,f(x)"d,.

We will update the model Hessian with the BFGS formula

yy"  (Hes)(H.s)"
(2.8) H,=H.+ JTs THs
The algorithmic description is taken from [21].
ALGORITHM 2.3.fdbfgs (z, f, H, kmax, T, h, amazx)
1. Fork=1,..., kmax
(a) Computef, V,,f.d = —H~'V, f; terminate if(2.3) holds.
(b) Find the least integed < m < amaz such thai(2.7) holds for\ = ™.
(€) = =z + Ad.
(d) UpdateH with (2.8).
If the BFGS update off fails to be positive definite, one must replaflewith a positive
definite matrix, for example by skipping the update or setfihg- 1.
As in the noise-free case, if the model Hessians remain positive definite, well-conditioned,
and bounded, a simple convergence theorem holds.
THEOREM 2.2. Leth, — 0 and letf satisfy(2.1). Let{xz;} be the BFGS/implicit filtering
sequence anflH, } the model Hessians. Assume tf@a®) holds {. e. there is no line search fail-
ure) for all but finitely many:. Assume that alH,, are symmetric positive definite, the sequences
{||He|l} and{||H, ||} are bounded, an¢R.5) holds. Then any limit point of the sequer{ag } is
a critical point of f;.

2.3. A Model Problem and Idealized Method. In this section we show how local and global
assumptions,the structure ¢f, and the size of lead to idealized methods for whig¢hcan be
computed as a function af as the iteration progresses. This leads to estimates on the error in the
gradients which will be used in 3.

As a model problem, we consider the case whrkas a uniqgue minimizer* and no other
critical points. We assume th&® f, (x*) is positive definite and thaf? f, is uniformly Lipschitz
continuous. Hence thereds, > 0 such that

(2.9) Cytlle =" < V(@) < Cyllw — ]|

Assumption (2.6) implies that ;¢ = O(||z—=*||) nearz* with a small constant in the O-term.
Superlinear convergence can not be proved under these conditions. However if

(2.10) (@) = O([la — 2"||**)

for somep > 0 and the sequence of scalgs; } is managed properly, one can prove both local and
global superlinear convergence.

2.3.1. Local Estimates.Therefore, if (2.10) holds then

(2.11) Vif(x) = Vfs(x) + O(h" + WMV fi(@)[|*),
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whered = 1 for forward differences and = 2 for centered differences.
The idealized component of the method is that we assumé tteat be controlled so that

(2.12) Oy Yo — 217 < h < Cyllo — 2% |49,

whenz is sufficiently near:*. One way to realize (2.12) in the case of a convergent{@uasi-
Newton iteration{z; } is to set

s = [V, £ (0)][#7.

Assuming thath, satisfies (2.12) and expecting the convergence to be at worst g-linear and no
better than quadratic, we would have, for sothe> 0 andn sufficiently large,

Cr'llwpsr — a*[|7P < O7 Yo — 2* | < by

< Cillag — ¥ |77 < Cslloggn — 2|72,

which is (2.12).
From (2.11) we obtain, using centered differencés:(2),

(@) = V() +O(e — || 4 [lo — 2|1 7)
(2.13)
=V fi(x) + O([|x — «*||"+?).

We base our analysis 3.1 on (2.13).

In [19] we used (2.6) and (2.9) (a small relative error in the gradient) to show global conver-
gence. (2.13) is much stronger, but the bound of the relative error in the gradient by a power of the
distance from optimality is necessary to prove superlinear convergence.

2.3.2. Global Estimates.We will require estimates for botfy and the noise on the set

Do = {z| f(x) < 2f(w0)}-

In order to extend the global and superlinear convergence theory from [6] we must extend the
assumptions from that paper.

ASSUMPTIONZ2.1.

1. The setDy = {z| f(z) < 2f(xy)} is bounded. and contains the convex hulllof=
{z|f(z) < f(zo)}-

2. There areM, m > 0 such thatm|ju||* < u"V?fs(z)u < M]|u|?® for all z € D, and
u € RN,

Forx € D,, we define, for somg, ¢ > 0,

(2.14) £z :p,e) = min (el|lz — 27|, ||z — 2*||"+7)

and assume that

(2.15) [¢(z)] = O (€(x : p,e)?)

forall x € Dy. Forx nearz* (2.15) is equivalent to (2.10). However, when far fram(2.15) is
much stronger. For sufficiently smallwe have

(2.16) |0()] < e(fs(x) = fo(27))
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forall x € D,.
We replace (2.12) by

(2.17) CT'€(x i poe) < h < Cié(w: p,e)'2.
This could be realized with

hir = min(el| V3, f (@)l [V, f (@) [77)

assuming a convergent iteration.
The estimates (2.17) and (2.15) imply that

(2.18) combines the small relative error estimate, needed for global convergence, from [19] with
(2.13), which is necessary for local g-superlinear convergence.

3. Quadratic Models and Quasi-Newton Methods.Throughout this section we assume that
(2.10) holds and that gradients are approximated by central differences with a difference increment
satisfying (2.12), for: nearz*. Following the notation [15] we lej denote an approximation of
Vs
(3.1) 9(x) = Vfs(z) + N(z).

For example, in the notation 6f1, g = V¢ f and N (z) = O(||lz — z*||**7).
The quasi-Newton implementation ugasstead ofV f, in both the computation of the BFGS
step (we take full steps in a local theory)

(3.2) s=—H.'g(z.)

and in the difference in gradients

(3.3) y=g(xy) —g(ze),

both of which are used in the BFGS update (2.8) of the model Hegkidn this paper we neglect
floating point errors, so in the language of [¥3]= = r4 = 0.

3.1. Local Theory. In this section we show how the estimates in [15] and classical analysis in
[5] can be extended to problems that satisfy (3.1). We begin with the two main results from [15],
specialized to the BFGS update, which satisfies the bounded deterioration inequality.

We make the standard assumptions [14], [21] tHais a local minimum off,, thatV? f(z*)
is positive definite, and thaf? f, is Lipschitz continuous in a neighborhood:of with Lipschitz
constanty.

The basic estimate is a direct consequence of Lemma (2.4) in [15pwith ande, = =
rq4 = 0.

THEOREM 3.1. There ares € (0,||V2f,(z*) '||~'/2) andér > 0 so that if|z — 2*|| < 6,
|H. — V2f,(z*)]] < d,and||N(z)|| < €p||lz — z*|| then

(3.4) ley — ™[] < rllze — 27|

where ) )
(3.5) r =2V fo(a) 10+ VP i (") e — 2| + Erk(V2 fo(a").
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In (3.5), x is the/? condition number.
We will need estimates of the difference between the update (2.8) using inaccurate data and a
fully accurate BFGS update éf.,

(3.6) A, = H + Zi _ (HfT)(}Zj)T.

In (3.6)s = —H_ 'V f,(z.) andy = V fs(z, + 5) — V fs(x.). We define
(3.7) M,=H,—H,.

The estimates af/, will be in terms ofe(x), which we define by
(3.8) IN@)[| = llz = 2" [les (z).

Our assumptions imply that there arg 6 andp > 0 such that

(3.9) ef(z) < Cel|lz — =P

whenevel|z — z*|| < 4.

LEMMA 3.2. Assume thaf2.10) holds and that gradients are approximated by central dif-
ferences with a difference increment satisfyfadl2) Then there are’); and§ > 0 such that if
|z. — 2*|| < § and||H. — V2 fs(z*)|| < 6 then

(3.10) 10| < Callze — °”.

Proof. We write M. = M, + M, where

__T — T T

yy" gy (Hc5)(H:5)"  (Hes)(Hes)

M, =22 —Z— andM, = — .
P yTs TS 2 s'H, s sTH,s

We will show thatM; = O(||z. — z*||?). The bound on/, can be obtained in a similar fashion.
Let § be small enough so that the hypotheses of Theorem 3.1 hold with

r < 2epk(V2f(2*)) < 208 k(V? fo(z¥)) < 1/2.

Since
y=g(ry) —glee) =7+ N(zy) — N(zo),
and||z, — z*|| < ||z, — z*[|/2, we have

(3.11) ly — gl < 2Cc||ze — =*|P*.
Hence,

(3.12) yy" =gy + O(|Jx. — 2*||P*?).

Similarly

(3.13) y's = 5 + Ol — a*|*2).
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The standard assumptions imply (reducinifinecessary) that there g
17l > ¢z — 2*|| and|5" 5| > ¢,[|zc — 2*|1%,

hencelM; = O(||z. — z*||P), as asserted]

One can use Lemma 3.2 to obtain a g-linear convergence from Theorem 3.1 via a bounded
deterioration result. To do this we will invoke Theorem (2.5) of [15], which we will state in the
context of this paper. In Theorem 3|3 || is the Frobenius norm.

THEOREM 3.3. Assume thaf2.10) holds and that gradients are approximated by central
differences with a difference increment satisfy(@d.2) Letr € (0,1). Then there ar€' > 0 and
§ such that ifl|zy — z*|| < 6 and ||Hy — V?fs(z*)|| < 6 then for alln > 0,

1. H, is nonsingular,

2. ||H, — V?f,(z%)]| < Cé?, and

3. [Jensr —a*|| < rllzn — 2.

Moreover there arev;, a, > 0 such that a bounded deterioration inequality,

(3-14) || Hypr = V2i(a)llr < (L + aillan — 2" )| Ho — V2 fo(2") |F + azllzn — 2",

holds.

In order to obtain superlinear convergence, we need a more refined version of (3.14) and will
extend the results of [5].

LEMMA 3.4. Let the assumptions of Theorem 3.3 hold. Then therexgre;, a3 such that
for ¢ sufficiently small andjzy — z*|| < 6 and||Hy — V2 fs(z*)|| < 6

1H = V2 fo®) e < [\/1 — O} + on ||z — 2P| || H ' = V2 fo(a*) e
(3.15)

+OZ2||IL’k — IL’*HP,

where »
_ N = VP () el '
1He ' = V2 fo(a*) el

k

Proof. The exact BFGS,, update satisfies (3.15) with= 1. The two termsg, ||z, — z*||?
andayl|z; — x*||P, on the right side of (3.15) account for the difference between the exact update
(using (3.10)) and{y ;. O

With Lemma 3.4 in hand, the proof of local superlinear convergence in [5] can be used in this
case.

THEOREM 3.5. Let the assumptions of Theorem 3.3 hold. Then thefiexs0 such that if
|lzo — z*|| < 6 and||Hy — V2fs(z*)|| < ¢ the quasi-Newton iteration given i§8.2) and (2.8)
converges g-superlinearly to'.

3.2. Global Theory. In this brief section we describe how some of the results in [6] can be
extended to the class of noisy problems considered in this paper. In the noisy case we must treat
as assumptions two critical estimates that can be proved in the noise-free case. Having made those
assumptions, the proof of global convergence in [6] requires only modest modifications.
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The assumptions for the local theory do not imply good performance when fanfroeven
when combined with Assumption 2.1. The reasons for this are that because of the noise in the
function the line search may fail and the inequalities

(3.16) y's > mlls||* andy”s > M~ ||y”

may not hold. However, (3.16) follows from Assumption 2.1 and (2.16)sfsufficiently small.
Success of the line search and (3.16) were the critical components of the r-linear convergence result
(Theorem 3.1) in [6].

Success of the line search is not guaranteed for noisy problems and convergence theorems for
implicit filtering, such as Theorem 2.1 must assume that the line search fails only finitely often and
that the scale is reduced when the line search fails. We must make the same assumption in order to
prove the r-linear convergence theorem from [6].

With these new assumptions, the proof in [6] of r-linear convergence can be applied in the
noisy case.

THEOREM 3.6. Let Assumption 2.1(2.17) and (2.15) hold withp > 0 and e sufficiently
small. LetH, be symmetric positive definite. Lgt,} be the BFGS/implicit filtering iterations.
Assume that the line search fails at most finitely many times. Thgnhconverges r-linearly to
T*.

Proof. The proof is exactly the same as that in [6] witbhosen small enough so that (2.16)
holds and (2.17) and (2.15) used to conclude that convergence of the function values and (2.7)
imply convergence af, to z*. [0

The success of the line search will follow from (2.17) and (2.15) provided the BFGS model
Hessians are uniformly bounded and uniformly well-conditioned and the paramgtdf.15)
is sufficiently small [19]. One could replace the assumption thia¢ sufficiently small in the
statement of Theorem 3.6 with the assumption that (3.16) fails only finitely many times and that
the update is skipped when that happens.

The proof of superlinear convergence from [6] can be extended to the noisy case in the same
way that the one from [5] was extendedsi.1 by using (2.15) and (2.17) to derive (3.11), (3.12),
and (3.13).

THEOREM 3.7. Let Assumption 2.1(2.17) and (2.15) hold withp > 0 and ¢ sufficiently
small. LetH, be symmetric positive definite. Lgt,} be the BFGS/implicit filtering iterations.
Assume that the line search fails at most finitely many times. Jlhgnconverges g-superlinearly
to x*.
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