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Abstract. In this note we show how the implicit filtering algorithm can be coupled with the BFGS quasi-Newton
update to obtain a superlinearly convergent iteration if the noise in the objective function decays sufficiently rapidly
as the optimal point is approached. We show how known theory for the noise-free case can be extended and thereby
provide a partial explanation for the good performance of quasi-Newton methods when coupled with implicit filtering.
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1. Introduction. In this paper we examine the local and global convergence behavior of the
combination of the BFGS [4], [20], [17], [23] quasi-Newton method with the implicit filtering
algorithm. The resulting method is intended to minimize smooth functions that are perturbed
with low-amplitude noise. Our results, which extend those of [5], [15], and [6], show that if
the amplitude of the noise decays sufficiently rapidly near optimality, then the local q-superlinear
convergence results of [5] and, under more restrictive assumptions, the global convergence results
of [6] hold. The results in this paper are theoretical and require strong assumptions. However, we
believe that they represent a important step toward explaining the observations of improvements in
performance when quasi-Newton model Hessians are used with implicit filtering.

The quasi-Newton implicit filtering algorithms differ from other methods in the literature that
use either inaccurate gradient information, only samples of the function, or difference or interpo-
latory approximations to gradients and/or Hessians. While we make assumptions on the decay of
the noise near optimality, we do not assume that we can control the errors in the function evalua-
tion directly, and therefore our results differ from those of [7] and [8], where it was assumed that
control of the errors in function and gradient evaluations was possible and global convergence of a
trust region algorithm that managed these errors separately was proved. The superlinearly conver-
gent algorithm in [22], which combines coordinate search with a difference Hessian, is intended
for noise-free function evaluations and is not applicable here. Our quasi-Newton algorithms do not
attempt to model Hessians with interpolation, as does the trust region/interpolation method of [12],
[10], and [11]. We believe that the quasi-Newton approach has an advantage for noisy problems,
where the errors in a Hessian formed by differences or interpolation can be large.

In x 2, we review implicit filtering and, using an idealized implementation for a model prob-
lem, motivate the assumptions on function/gradient accuracy that we use inx 3. In x 3.1 we apply
the results in [15] to show how the local theory for BFGS convergence from [5] can be extended to
prove superlinear convergence of the idealized method. Inx 3.2 we show how a combination of the
assumptions from [19] and the ones inx 3.1 imply extensions of the global superlinear convergence
results from [6].
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2. Implicit Filtering. Implicit filtering was designed for problems in which the objective
function is a high-frequency, low-amplitude, perturbation of a simple smooth problem. The al-
gorithm is a finite difference steepest descent (or quasi-Newton) method in which the difference
increment is adjusted as the optimization progresses. In this way the algorithm implicitly filters
out the high frequency perturbation. For problems in which the amplitude of the perturbation de-
creases near optimality, a not uncommon event [24], [13], [9], decreasing the difference increment
improves the accuracy of the solution near the optimal point.

Quantitatively we consider an objective functionf defined onRN that is a perturbation of a
smooth functionfs by a small function�

f(x) = fs(x) + �(x):(2.1)

The small oscillations could causef to have several local minima that would trap any conventional
gradient-based algorithms. The perturbation� could be random, [24], and therefore need not even
be a function. In this paper, we assume that� is everywhere defined and bounded to make the
statement of the results simpler.

Throughout this paperk � k will denote thè 2 norm onRN .

2.1. The Basic Algorithm. Forx 2 RN andh 6= 0 the forward difference gradient off with
scaleh atx is given by

(rf
hf(x))i =

f(x+ hei)� f(x)

h

whereei is the unit vector in theith coordinate direction and(rf
hf(x))i denotes theith component

of the difference gradient. Similarly, the centered difference gradient with scaleh is given by

rc
hf(x) =

r
f
hf(x) +r

f
�hf(x)

2
:

We will often refer to the difference gradientrhf when we are discussing a point that applies to
either.

The basic finite difference steepest descent iteration takes a current iterationxc to the nextx+
by

x+ = xc � �rhf(xc):

If the line search is successful the step length� satisfies the sufficient decrease condition We use a
simple Armijo [1] line search and demand that the sufficient decrease condition

f(x� �rhf(x))� f(x) < ���krhf(x)k
2:(2.2)

Implicit filtering is based on a finite difference steepest descent algorithmfdsteep , which
terminates when

krhf(x)k � �h(2.3)

for some� > 0, when more thankmax iterations have been taken, or when the line search fails
by taking more thanamax backtracks. Even the failures offdsteep can be used to advantage
by triggering a reduction inh. The line search parameters�; � and the parameter� in the termi-
nation criterion (2.3) do not affect the convergence analysis that we present here, but can affect
performance.
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ALGORITHM 2.1. fdsteep (x; f; kmax; �; h; amax)

1. For k = 1; : : : ; kmax

(a) Computef andrhf ; terminate if(2.3)holds.
(b) Find the least integer0 � m � amax such that(2.2)holds for� = �m. If no suchm

exists, terminate.
(c) x = x� �rhf(x).

Algorithm fdsteep will terminate after finitely many iterations because of the limits on the
number of iterations and the number of backtracks. If the setfx j f(x) � f(x0)g is bounded then
the iterations will remain in that set. Implicit filtering callsfdsteep repeatedly, reducingh after
each termination offdsteep . Aside from the data needed byfdsteep , a sequence of difference
increments, thescales, fhkg1k=0 is needed for the form of the algorithm given here.

ALGORITHM 2.2. imfilter1 (x; f; kmax; �; fhkg; amax)

1. For k = 0; : : :

Call fdsteep (x; f; kmax; �; hk; amax)

The first order estimate,

krfs(x1)�rhf(x1)k+O(h+ h�1k�kSk);(2.4)

whereSk is the set of points on the difference stencil used to computerhkf and

k�kSk = max
z2Sk

j�(z)j;

leads to a convergence result [2], [21].
THEOREM 2.1. Lethk ! 0 and letf satisfy(2.1). Letfxkg be the implicit filtering sequence.

Assume that(2.2)holds (i. e. there is no line search failure) for all but finitely manyk. Then if

lim
k!1

(hk + h�1k k�kSk) = 0(2.5)

then any limit point of the sequencefxkg is a critical point offs.
If, for example,fs has a unique minimizerx� and

j�(x)j � �kx� x�k2(2.6)

for x nearx� and� sufficiently small, then one can prove global and q-linear convergence [19]. The
requirement that (2.6) hold is very modest, since (2.6) demands only that the noise be smaller than
fs(x)�fs(x

�), but allows for the rate of decay (quadratic) to be the same. Superlinear convergence,
as one might expect, will need stronger assumptions.

2.2. Quasi-Newton Methods.Typically the performance of implicit filtering is greatly im-
proved by using a quasi-Newton model Hessian [24], [19], [21]. The SR1 [3], [16] or BFGS
quasi-Newton methods are defaults in the implicit filtering codes described in [18] and [21].

The finite difference quasi-Newton iteration is

x+ = xc + �dc;

whereHc is a quasi-Newton approximation to the Hessian offs and

dc = �H�1
c rhf(xc):
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The test for sufficient decrease is

f(x+ �dc)� f(x) < ��rhf(x)
Tdc:(2.7)

We will update the model Hessian with the BFGS formula

H+ = Hc +
yyT

yTs
�

(Hcs)(Hcs)
T

sTHcs
:(2.8)

The algorithmic description is taken from [21].
ALGORITHM 2.3. fdbfgs (x; f;H; kmax; �; h; amax)

1. For k = 1; : : : ; kmax

(a) Computef , rhf . d = �H�1rhf ; terminate if(2.3)holds.
(b) Find the least integer0 � m � amax such that(2.7)holds for� = �m.
(c) x = x + �d.
(d) UpdateH with (2.8).

If the BFGS update ofH fails to be positive definite, one must replaceH with a positive
definite matrix, for example by skipping the update or settingH = I.

As in the noise-free case, if the model Hessians remain positive definite, well-conditioned,
and bounded, a simple convergence theorem holds.

THEOREM 2.2. Let hk ! 0 and letf satisfy(2.1). Let fxkg be the BFGS/implicit filtering
sequence andfHkg the model Hessians. Assume that(2.7)holds (i. e. there is no line search fail-
ure) for all but finitely manyk. Assume that allHk are symmetric positive definite, the sequences
fkHkkg andfkH�1

k kg are bounded, and(2.5)holds. Then any limit point of the sequencefxkg is
a critical point offs.

2.3. A Model Problem and Idealized Method. In this section we show how local and global
assumptions,the structure offs, and the size of� lead to idealized methods for whichh can be
computed as a function ofx as the iteration progresses. This leads to estimates on the error in the
gradients which will be used in 3.

As a model problem, we consider the case wherefs has a unique minimizerx� and no other
critical points. We assume thatr2fs(x�) is positive definite and thatr2fs is uniformly Lipschitz
continuous. Hence there isCg > 0 such that

C�1g kx� x�k � krfs(x)k � Cgkx� x�k:(2.9)

Assumption (2.6) implies thatrh� = O(kx�x�k) nearx� with a small constant in the O-term.
Superlinear convergence can not be proved under these conditions. However if

j�(x)j = O(kx� x�k2+2p)(2.10)

for somep > 0 and the sequence of scalesfhkg is managed properly, one can prove both local and
global superlinear convergence.

2.3.1. Local Estimates.Therefore, if (2.10) holds then

rhf(x) = rfs(x) + O(hd + h�1krfs(x)k
2+2p);(2.11)
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whered = 1 for forward differences andd = 2 for centered differences.
The idealized component of the method is that we assume thath can be controlled so that

C�11 kx� x�k1+p � h � C1kx� x�k(1+p)=2;(2.12)

whenx is sufficiently nearx�. One way to realize (2.12) in the case of a convergent (tox�) quasi-
Newton iterationfxkg is to set

hk+1 = krhkf(xk)k
1+p:

Assuming thathk satisfies (2.12) and expecting the convergence to be at worst q-linear and no
better than quadratic, we would have, for someC1 > 0 andn sufficiently large,

C�11 kxk+1 � x�k1+p � C�11 kxk � x�k1+p � hk+1

� C1kxk � x�k1+p � C3kxk+1 � x�k(1+p)=2:

which is (2.12).
From (2.11) we obtain, using centered differences (d = 2),

rc
hf(x) = rfs(x) +O(kx� x�kd(1+p)=2 + kx� x�k1+p)

= rfs(x) +O(kx� x�k1+p):

(2.13)

We base our analysis inx 3.1 on (2.13).
In [19] we used (2.6) and (2.9) (a small relative error in the gradient) to show global conver-

gence. (2.13) is much stronger, but the bound of the relative error in the gradient by a power of the
distance from optimality is necessary to prove superlinear convergence.

2.3.2. Global Estimates.We will require estimates for bothfs and the noise on the set

D0 = fx j f(x) � 2f(x0)g:

In order to extend the global and superlinear convergence theory from [6] we must extend the
assumptions from that paper.

ASSUMPTION 2.1.
1. The setD0 = fx j f(x) � 2f(x0)g is bounded. and contains the convex hull ofD =

fx j f(x) � f(x0)g.
2. There areM;m > 0 such thatmkuk2 � uTr2fs(x)u � Mkuk2 for all x 2 D0 and

u 2 RN .
Forx 2 D0, we define, for somep; � > 0,

�(x : p; �) = min
�
�kx� x�k; kx� x�k1+p

�
(2.14)

and assume that
j�(x)j = O

�
�(x : p; �)2

�
(2.15)

for all x 2 D0. Forx nearx� (2.15) is equivalent to (2.10). However, when far fromx� (2.15) is
much stronger. For sufficiently small�, we have

j�(x)j � �(fs(x)� fs(x
�))(2.16)
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for all x 2 D0.
We replace (2.12) by

C�11 �(x : p; �) � h � C1�(x : p; �)1=2:(2.17)

This could be realized with

hk+1 = min(�krc
hk
f(xk)k; kr

c
hk
f(xk)k

1+p)

assuming a convergent iteration.
The estimates (2.17) and (2.15) imply that

rc
hf(x)�rfs(x) = O(�(x : p; �)):(2.18)

(2.18) combines the small relative error estimate, needed for global convergence, from [19] with
(2.13), which is necessary for local q-superlinear convergence.

3. Quadratic Models and Quasi-Newton Methods.Throughout this section we assume that
(2.10) holds and that gradients are approximated by central differences with a difference increment
satisfying (2.12), forx nearx�. Following the notation [15] we letg denote an approximation of
rfs

g(x) = rfs(x) +N(x):(3.1)

For example, in the notation ofx 1, g = rc
hf andN(x) = O(kx� x�k1+p).

The quasi-Newton implementation usesg instead ofrfs in both the computation of the BFGS
step (we take full steps in a local theory)

s = �H�1
c g(xc)(3.2)

and in the difference in gradients
y = g(x+)� g(xc);(3.3)

both of which are used in the BFGS update (2.8) of the model HessianH. In this paper we neglect
floating point errors, so in the language of [15]�A = � = rA = 0.

3.1. Local Theory. In this section we show how the estimates in [15] and classical analysis in
[5] can be extended to problems that satisfy (3.1). We begin with the two main results from [15],
specialized to the BFGS update, which satisfies the bounded deterioration inequality.

We make the standard assumptions [14], [21] thatx� is a local minimum offs, thatr2f(x�)

is positive definite, and thatr2fs is Lipschitz continuous in a neighborhood ofx� with Lipschitz
constant.

The basic estimate is a direct consequence of Lemma (2.4) in [15] withp = 1 and�A = � =

rA = 0.
THEOREM 3.1. There are� 2 (0; kr2fs(x

�)
�1
k�1=2) and��F > 0 so that ifkx � x�k < �,

kHc �r2fs(x
�)k < �, andkN(x)k � ��Fkx� x�k then

kx+ � x�k � rkxc � x�k(3.4)

where
r = 2kr2fs(x

�)
�1
k� + kr2fs(x

�)
�1
kkxc � x�k+ ��F�(r

2fs(x
�)):(3.5)



SUPERLINEAR CONVERGENCE 7

In (3.5),� is the`2 condition number.
We will need estimates of the difference between the update (2.8) using inaccurate data and a

fully accurate BFGS update ofHc,

�H+ = Hc +
�y�yT

�yT �s
�

(Hc�s)(Hc�s)
T

�sTHc�s
:(3.6)

In (3.6)�s = �H�1
c rfs(xc) and�y = rfs(xc + �s)�rfs(xc). We define

Mc = H+ � �H+:(3.7)

The estimates ofMc will be in terms of�f (x), which we define by

kN(x)k = kx� x�k�f(x):(3.8)

Our assumptions imply that there areC�; � andp > 0 such that

�f(x) � C�kx� x�kp(3.9)

wheneverkx� x�k < �.
LEMMA 3.2. Assume that(2.10)holds and that gradients are approximated by central dif-

ferences with a difference increment satisfying(2.12). Then there areCM and� > 0 such that if
kxc � x�k < � andkHc �r2fs(x

�)k < � then

kMck � CMkxc � x�kp:(3.10)

Proof. We writeMc = M1 +M2 where

M1 =
yyT

yTs
�

�y�yT

�yT �s
; andM2 =

(Hc�s)(Hc�s)
T

�sTHc�s
�

(Hcs)(Hcs)
T

sTHcs
:

We will show thatM1 = O(kxc � x�kp). The bound onM2 can be obtained in a similar fashion.
Let � be small enough so that the hypotheses of Theorem 3.1 hold with

r � 2��F�(r
2fs(x

�)) � 2C��
p�(r2fs(x

�)) < 1=2:

Since
y = g(x+)� g(xc) = �y +N(x+)�N(xc);

andkx+ � x�k � kxc � x�k=2, we have

ky � �yk � 2C�kxc � x�kp+1:(3.11)

Hence,
yyT = �y�yT +O(kxc � x�kp+2):(3.12)

Similarly
yTs = �yT �s +O(kxc � x�kp+2):(3.13)
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The standard assumptions imply (reducing� if necessary) that there iscy

k�yk � cykxc � x�k andj�yT �sj � cykxc � x�k2;

henceM1 = O(kxc � x�kp), as asserted.
One can use Lemma 3.2 to obtain a q-linear convergence from Theorem 3.1 via a bounded

deterioration result. To do this we will invoke Theorem (2.5) of [15], which we will state in the
context of this paper. In Theorem 3.3k � kF is the Frobenius norm.

THEOREM 3.3. Assume that(2.10) holds and that gradients are approximated by central
differences with a difference increment satisfying(2.12). Letr 2 (0; 1). Then there areC > 0 and
� such that ifkx0 � x�k < � andkH0 �r2fs(x

�)k < � then for alln � 0,
1. Hn is nonsingular,
2. kHn �r2fs(x

�)k � C�p, and
3. kxn+1 � x�k � rkxn � x�k.

Moreover there are�1; �2 > 0 such that a bounded deterioration inequality,

kHn+1 �r2fs(x
�)kF � (1 + �1kxn � x�k)kHn �r2fs(x

�)kF + �2kxn � x�kp;(3.14)

holds.
In order to obtain superlinear convergence, we need a more refined version of (3.14) and will

extend the results of [5].
LEMMA 3.4. Let the assumptions of Theorem 3.3 hold. Then there are�0; �1; �3 such that

for � sufficiently small andkx0 � x�k < � andkH0 �r2fs(x
�)k < �

kH�1
k+1 �r2fs(x

�)
�1
kF �

�q
1� �0�

2
k + �1kxk � x�kp

�
kH�1

k �r2fs(x
�)
�1
kF

+�2kxk � x�kp;

(3.15)

where

�k =
k(H�1

k �r2fs(x
�)
�1
)ykk

kH�1
k �r2fs(x�)

�1
kFkykk

:

Proof. The exact BFGS�H+ update satisfies (3.15) withp = 1. The two terms,�1kxk � x�kp

and�2kxk � x�kp, on the right side of (3.15) account for the difference between the exact update
(using (3.10)) andHk+1.

With Lemma 3.4 in hand, the proof of local superlinear convergence in [5] can be used in this
case.

THEOREM 3.5. Let the assumptions of Theorem 3.3 hold. Then there is� > 0 such that if
kx0 � x�k < � and kH0 � r2fs(x

�)k < � the quasi-Newton iteration given by(3.2) and (2.8)
converges q-superlinearly tox�.

3.2. Global Theory. In this brief section we describe how some of the results in [6] can be
extended to the class of noisy problems considered in this paper. In the noisy case we must treat
as assumptions two critical estimates that can be proved in the noise-free case. Having made those
assumptions, the proof of global convergence in [6] requires only modest modifications.
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The assumptions for the local theory do not imply good performance when far fromx�, even
when combined with Assumption 2.1. The reasons for this are that because of the noise in the
function the line search may fail and the inequalities

yT s � mksk2 andyT s �M�1kyk2(3.16)

may not hold. However, (3.16) follows from Assumption 2.1 and (2.15) if� is sufficiently small.
Success of the line search and (3.16) were the critical components of the r-linear convergence result
(Theorem 3.1) in [6].

Success of the line search is not guaranteed for noisy problems and convergence theorems for
implicit filtering, such as Theorem 2.1 must assume that the line search fails only finitely often and
that the scale is reduced when the line search fails. We must make the same assumption in order to
prove the r-linear convergence theorem from [6].

With these new assumptions, the proof in [6] of r-linear convergence can be applied in the
noisy case.

THEOREM 3.6. Let Assumption 2.1,(2.17), and (2.15) hold with p > 0 and � sufficiently
small. LetH0 be symmetric positive definite. Letfxkg be the BFGS/implicit filtering iterations.
Assume that the line search fails at most finitely many times. Thenfxkg converges r-linearly to
x�.

Proof. The proof is exactly the same as that in [6] with� chosen small enough so that (2.16)
holds and (2.17) and (2.15) used to conclude that convergence of the function values and (2.7)
imply convergence ofxk to x�.

The success of the line search will follow from (2.17) and (2.15) provided the BFGS model
Hessians are uniformly bounded and uniformly well-conditioned and the parameter� in (2.15)
is sufficiently small [19]. One could replace the assumption that� be sufficiently small in the
statement of Theorem 3.6 with the assumption that (3.16) fails only finitely many times and that
the update is skipped when that happens.

The proof of superlinear convergence from [6] can be extended to the noisy case in the same
way that the one from [5] was extended inx 3.1 by using (2.15) and (2.17) to derive (3.11), (3.12),
and (3.13).

THEOREM 3.7. Let Assumption 2.1,(2.17), and (2.15) hold with p > 0 and � sufficiently
small. LetH0 be symmetric positive definite. Letfxkg be the BFGS/implicit filtering iterations.
Assume that the line search fails at most finitely many times. Thenfxkg converges q-superlinearly
to x�.
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