Proceedings of the 1995 Winter Simulation Conference
ed. C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman

COMPOSE: AN OBJECT-ORIENTED ENVIRONMENT FOR PARALLEL
DISCRETE-EVENT SIMULATIONS

Jay M. Martin
Rajive L. Bagrodia

Computer Science Department
University of California at Los Angeles
Los Angeles, CA 90024

ABSTRACT

Existing environments for parallel discrete-event sim-
ulation provide support for either conservative or op-
timistic algorithms, with very few supporting both.
This paper describes a parallel simulation environ-
ment that supports the execution of a model using
an existing adaptive simulation algorithm where sub-
models may be synchronized using conservative or op-
timistic algorithms, and an object may dynamically
change its mode of synchronization. The environment
has been designed as a C++ class library and has
been implemented on an IBM SP2 multicomputer.

1 INTRODUCTION

Parallel simulation languages (PSLs) and libraries
provide programmers with a set of model definition
primitives together with a set of parallel program-
ming primitives for process (or thread) definition, cre-
ation, and interprocess communication and synchro-
nization. Researchers have provided these constructs
either as language extensions or as functions imple-
mented as library routines. The former approach has
the advantage that the compiler or preprocessor can
provide strict type checking and sophisticated code
generation and optimization capabilities. However,
it has the distinct disadvantage of requiring the pro-
grammer to learn new constructs and perhaps an en-
tirely new set of program development tools. The pri-
mary advantage of a library-based approach is that
the programmer can continue to use a familiar pro-
gramming environment.

COMPOSE (Conservative, Optimistic and Mixed
Paralle] Object-oriented Simulation Environment)
is a new object-oriented environment for parallel
discrete-event simulations. A number of languages
and libraries for parallel simulation have been defined
including YADDES (Preiss 1989), OLPS (Abrams
1988), SPEEDES (Steinman 1991), Sim++ (Baezner,

763

et al. 1990), Maisie (Bagrodia and Liao 1994),
MOOSE (Waldorf and Bagrodia 1994), ModsimlIl
(Bryan 1989) and SCE (Gill, et al. 1989). Almost all
preceding environments support either conservative
or optimistic approaches, with very few supporting
both. To the best of our knowledge, no existing sim-
ulation environment allows a model to be executed
using an adaptive protocol, where individual simu-
lation objects in the model may dynamically change
their execution mode from conservative to optimistic
and vice-versa.

The environment is designed around the C++ lan-
guage and the simulation facilities are provided as
library routines rather than language enhancements.
This allows a C++ programmer to use the simula-
tion system without learning new constructs. The
programmer may also use an existing C++ program
development environment to design parallel simula-
tions. The library-based simulator has been imple-
mented on a 128-node IBM SP2 distributed memory
parallel computer. The implementation can use ei-
ther conservative (Misra 1986) or optimistic synchro-
nization (Jefferson 1985; Jefferson and Sowizral 1985)
algorithms, and may also use a mixed synchronization
scheme where different subsystems of the model are

synchronized using conservative or optimistic mecha-
nisms (Jha and Bagrodia 1994).

A parallel simulation environment must provide
parallel programming facilities that include process
(or object) creation, and interprocess communication
and synchronization, together with event scheduling
constructs. The computation model used by COM-
POSE assumes that a parallel program is composed of
a set of processes that do not share state and commu-
nicate exclusively by asynchronous message passing
(i.e., we conservatively assume a distributed memory
model). The class library provides routines for (re-
mote) process creation, termination, communication,
and synchronization. Methods are also provided to
schedule conditional and unconditional events.



764 Martin and Bagrodia

2 CLASS LIBRARY FRAMEWORK

Simulation Entities It is natural Lo represent an
object in the simulation (henceforth referred to as
an “entity”) as a C++ object which is an instance
of some C++ class. For this purpose, the COM-
POSE library provides a base entity class called
Base EntityType which provides a sct of uscful mem-
her functions (operations) and encapsulates informa-
tion necessary for the simulation environment. All
entities in the simulation must be derived from this
Base EntityType. The following is an outline of this
class:

class BaseEntityType {
protected:
// Simulation operations used by deriving entities.
// Such as getting and advancing simulation time,
// sending messages, etc.
SimTimeType CurrentTime() const;
void Hold(SimTimeType);
void SendMessage(...);
void IAmOptimistic();

private:
. // Environment implementation details.

};

Messages COMPOSE uses messages as the pri-
mary communication mechanism among entities.
Messages are implemented as C++ objects, where
each message type is derived from a base class called
BaseMessageT ype:

class BaseMessageType {
TimeType Timestamp;
EntityIDType Sender;
EntityIDType Receiver;
// And other COMPOSE system message parameters
// common to all messages.

Message types used in the program are derived
from the base type as illustrated by the following ex-
ample:

class UserMessageType: public BaseMessageType {
public:
// User-specified parameters.
int Parmi;
char Parm?2;

}

COMPOSE messages must be self-contained and
thus must not contain pointers.

Sending Messages To send messages among enti-
ties, the BaseEntityType provides a method called
SendMessage:

void SendMessage(const EntityIDType& EntityID,
const BaseMessageType& AMessage);

Mecthod SendM cssage gives the message to the un-
derlying communication system which computes the
location of the receiver process (by looking at its
Entityl D) and transmits the message to the desti-
nation.

The SendM essage method is overloaded to provide
an alternate implementation which instead accepts a
pointer to the message so that extra copying can be
avoided. This pointer is set to NULL to prevent the
sent message from being modified.

void SendMessage(const EntityIDType& EntityID,
BaseMessageType*& AMessagePtr);

Each message type can provide a constructor to al-
low for easy initialization of message parameters prior
to transmission. For example:

SendMessage(EntityID,
new UserMessageType(Parmi,Parm2...));

Message Processing COMPOSE uses the concur-
rent object model for message processing. When a
message is received, a method of the object is exe-
cuted to completion. This is in contrast to the process
model which has explicit receive statements and thus,
the program-counter is part of its state. The code to
be executed by an object on receipt of a message is
specified as a method of that object with a parameter
matching the type of the message. A runtime bind-
ing mechanism is needed to associate a message type
with its corresponding method. This binding frame-
work, which takes control of method invocation, is
necessary because of the need to schedule events in
simulation order and because the simulation objects
are distributed. These capabilities could be transpar-
ently provided in a concurrent language by a com-
piler, but this would conflict with COMPOSE’s main
design goal of a completely library-based implemen-
tation with no special compilers or preprocessors.

The library provides a routine BindMethod for
runtime message to method binding which is usually
called in the object’s constructor:

BindMethod (UserEntityType, JobMethod, JobMessageType);



COMPOSE 765

Failure to properly bind a method or sending a
message to an entity that it does not recognize will
result in a runtime error message. Note that this
makes COMPOSE’s message passing mechanism dy-
namically typed.

Entity Creation and Initialization To create
an entity, we simply execute the following statement
which creates an entity on a certain node and returns
an entity ID:

CreateEntity(UserEntityType, WhichBode, EntityID);

After creation, the entity must be initialized
by sending an initialization message. The en-
tity indicates the initialization message type and
method to the runtime by executing a variant of the
BindM ethod routine called BindInitMethod.

Example Entity Class Definition To illustrate
these features we show a class definition for a simple
FIFO server:

class ServerEntityType: public BaseEntityType {
public:
COMPOSE_EntitySetup(ServerEntityType);
private:
// Define entity methods.
void InitMethod(const InitMessageType& InitMessage);
void JobMethod(const JobMessageType& JobMessage);

// Define constructor with BindMethod statements.
ServerEntityType() {
BindInitMethod(ServerEntityType, InitMethod,
InitMessageType);
BindMethod(ServerEntityType, JobMethod,

JobMessageType) ;
}

// Declare state variables.

};//ServerEntityType//

The structure of a COMPOSE entity is the same
as that of a C++ class, with public and private
data and member functions. In this class defi-
nition two methods, InitMethod and JobMethod,
are declared with message parameters of type
ServerInitMessageType and JobMessageType, re-
spectively (these types can be defined elsewhere
or can be nested in this class). The constructor
Server EntityType() is defined and contains two bind
statements which bind the two methods to their
message types. The state variables are declared at
the end of the class (omitted for brevity). The
COM POSE _EntitySetup macro inserts declarations
into the class needed by COMPOSE for entity cre-
ation.

Given aset of entity class definitions, the program-
mer can build a static topology simulation by first
creating the entitics using Create Entity in a simula-
tion “driver” routine. Topology information is then
passed to these entities in the initialization messages.

The driver can then issue events to start the simula-
tion.

More Advanced Features To this simple base,
COMPOSE adds boolean guard methods which can
be used by an object to implement selective receives.
Each bound method can be specified with an optional
guard function using the BindM ethodW ithGuard
operation instead of BindMethod. The COMPOSE
runtime will automatically buffer messages for an en-
tity if the corresponding guard function for that mes-
sage returns FALSE. COMPOSE also provides meth-
ods to provide conditional timeout events. A timeout
event is one that is executed only if another event
does not occur during the timeout duration. Time-
outs can be used at any point during the execution of
the simulation and are called from an entity’s meth-
ods as follows:

SetupTimeout (TimeoutMethod, TimeoutTime) ;

This code indicates that the entity will execute the
Timeout Method at TimeoutTime unless it is inter-
rupted by an intervening event.

3 SYNCHRONIZATION PROTOCOLS

In a parallel discrete-event simulation, each simula-
tion process or entity must eventually process incom-
ing messages in their global timestamp order. Enforc-
ing this requirement, referred to as the causality con-
straint, is the central problem in efficient execution of
parallel simulations. Two primary approaches have
been suggested to solve the synchronization problem:
conservative and optimistic.

Conservative algorithms do not permit any causal-
ity error: each object in the simulation processes
an incoming message only when the underlying syn-
chronization algorithm can guarantee that it will
not subsequently receive a message with a smaller
timestamp. This constraint may introduce deadlocks,
which are typically avoided by using ‘null messages.’
A null message is a timestamped signal sent by a
LP to indicate to other LPs a lower bound on the
timestamp of its future messages. In general, the
greater this interval, the better its performance with
conservative protocols. Efficient implementation of
null messages is also facilitated if each LP maintains



766 Martin and Bagrodia

the set of its source and/or destination LPs. (Other-
wise, null messages may be needlessly broadcast to
all LPs).

In optimistic protocols, a LP is allowed to process
events in any order; however, the underlying syn-
chronization protocol must detect and correct viola-
tions of the causality constraint. The simplest mech-
anism for this is to have each LP periodically save
(or checkpoint) its state. Subsequently, if it is dis-
covered that the LP processed messages in an incor-
rect order, it can be rolled back to an appropriate
checkpointed state, following which the events are
processed in their correct order. The rollback may
also require that the LP unsend or cancel the mes-
sages that it had itself sent to other LPs in the sys-
tem. An optimistic algorithm is also required to peri-
odically compute a lower bound on the timestamp
of the earliest global event, also called the Global
Virtual Time or GVT. As the model is guaranteed
to not contain any events with a timestamp smaller
than GVT, all checkpoints timestamped earlier than
GVT can be reclaimed. Thus, the primary facili-
ties needed to implement optimistic methods include
checkpointing, message cancellation, rollback and re-
computation, and GVT computation.

Recently, a new protocol has been suggested that
allows each LP to individually select either the con-
servative or the optimistic execution mode (Jha and
Bagrodia 1994). This protocol defines a local metric
called EIT (for Earliest Input Time) for each LP. Con-
servative LPs can process all events that are times-
tamped earlier than its EIT, whereas optimistic LPs
can use EIT to reclaim memory. A separate global
control mechanism is defined to allow each LP to pe-
riodically update its EIT. The global control mecha-
nisms could use algorithms similar to the ones used
to compute GVT, or be based on null messages, or
even use a combination of the two techniques.

A COMPOSE simulation model can be executed
using an optimistic synchronization protocol like
Time Warp, a conservative null message protocol,
or an adaptive protocol. In the last case, each ob-
Ject specifies whether it will execute in conservative
or optimistic mode; further, its execution mode may
be changed dynamically. When a model executes in
mixed-mode, the EIT of each entity may be computed
using existing GVT algorithms or using new asyn-
chronous algorithms based on null messages. Proto-
cols are dynamically switched in COMPOSE by ex-
ecuting the IAmOptimistic and IAmConservative
operations.

Additional operations are provided to control the
efficiency of each protocol. For null message proto-
cols, there are operations to specify the lookahead

value and the topology. A number of alternatives for
checkpointing the state of an optimistic entity are also
defined. A C++ object’s variables can be contained
inside the object or can be on the heap (dynamic
variables). An entity can be checkpointed by copying
the entire state or by using incremental state saving
where the state is compared and only the differences
are saved. It is also possible for an object to option-
ally specify that only a part of its state need be saved
when the object is checkpointed.

Detailed performance evaluation of the COMPOSE
environment with conservative, optimistic, and adap-
tive algorithms is in progress.

4 COMPLETE EXAMPLE

The following is the complete C++ source for a sim-
ple FIFO queue server entity. The server simply ac-
cepts jobs (messages) in FCFS order and forwards
them to another entity after delaying them by a
duration that corresponds to its service time. The
Init Method sets up the communication topology for
the network for use by conservative and adaptive al-
gorithms.

const ServiceTime = 10;
class JobMessageType: public BaseMessageType {};

class ServerEntityType: public BaseEntityType {
public:

COMPOSE_EntitySetup(ServerEntityType);
private:

class InitMessageType: public BaseMessageType {
public:
EntityIDType PredecessorEntity;
EntityIDType SuccessorEntity;
};

// Define entity methods.
void InitMethod(const InitMessageType& InitMessage);
void JobMethod(const JobMessageType& JobMessage) ;

// Define constructor with BindMethod statements.
ServerEntityType() {
BindInitMethod(ServerEntityType, InitMethod,
InitMessageType);
BindMethod(ServerEntityType, JobMethod,

JobMessageType) ;
}

// State Variables
EntityIDType SuccessorEntity;
};//ServerEntityType//

// InitMethod initializes the entity’s variables
// and provides the topology and lookahead information
// for conservative or adaptive algorithms.

void ServerEntityType::InitMethod(
const InitMessageTypek InitMessage) {



COMPOSE 767

SuccessorEntity = InitMessage.SuccessorEntity;
AddSuccessorEntity(SuccessorEntity);
AddPredecessorEntity(InitMessage.PredecessorEntity);
SetLookahead(ServiceTime) ;

}//InitMethod//

void ServerEntityType::JobMethod(
const JobMessageType& JobMessage) {
Hold(ServiceTime) ;
SendMessage(SuccessorEntity, JobMessageType) ;
}//JobMethod//

ACKNOWLEDGMENTS

The authors gratefully acknowledge use of the Ar-
gonne High-Performance Computing Research Facil-
ity (128 node IBM SP2). The HPCRF is funded prin-
cipally by the U.S. Department of Energy, Mathemat-
ical, Information and Computational Sciences Divi-
sion (ER-31).

This work was supported by the U.S. Department
of the Air Force/Advanced Research Projects Agency
ARPA/CSTO, under Contract F-30602-94-C-0273,
“Scalable Systems Software Measurement and Eval-
uation.”

REFERENCES

Abrams, M. 1988. The object library for parallel sim-
ulation (OLPS). In Proceedings of the 1988 Winter
Simulation Conference, San Diego, CA, 210-219.

Baezner, Dirk, Greg Lomow, and Brian W. Unger.
1990. Sim++: The transition to distributed simu-
lation. In Proceedings of the 1990 SCS Multicon-
ference on Distributed Simulation, San Diego, CA,
211-218.

Bagrodia, R., W. Liao. 1994. Maisie: A language
for the design of efficient discrete-event simulations.
IEEE Transactions on Software Engineering 20(4):
225-238.

Bryan, Otis. 1989. MODSIM II - an object oriented
simulation language for sequential and parallel pro-
cessors. In Proceedings of the 1989 Winter Simu-
lation Conference, Washington, D.C., 172-177.

Gill, D. H., F. X. Maginnis, S. R. Rainier, and
T. P. Reagan. 1989. An interface for program-
ming parallel simulations. In Proceedings of the
1989 SCS Multiconference on Distributed Simula-
tion, Tampa, FL, 151-154.

Jefferson, D. 1985. Virtual Time. ACM TOPLAS
7(3):404-425.

Jefferson, D. and H. Sowizral. 1985. Fast concur-
rent simulation using the time-warp mechanism.
In Distributed Simulation 1985, Society for Com-
puter Simulation Multi-conference, San Diego, CA,

63-69.

Jha, V. and R. Bagrodia. 1994. A unified framework
for conservative and optimistic distributed simula-
tion. In 8th Workshop on Parallel and Distributed
Simulation - PADS’94, Edinburgh, Scotland, 12-19.

Misra, J. 1986. Distributed discrete-event simulation.
ACM Computing Surveys 18(1):39-65.

Preiss, B. R. 1989. The Yaddes distributed discrete
event simulation specification language and execu-
tion environments. Distributed Computing, 139-
144,

Steinman, Jeff. 1991. SPEEDES: Synchronous par-
allel environment for emulation and discrete event
simulation. Advances in Parallel and Distributed
Simulation, SCS Multiconference, Anaheim, CA,
95-103.

Waldorf, J. and R. Bagrodia. 1994. MOOSE:
A concurrent object-oriented language for simula-

tion. International Journal of Computer Simula-
tion 4:235-257.

AUTHOR BIOGRAPHIES

JAY MARTIN is a Ph.D. student at UCLA. His
research interests include parallel processing and sim-
ulation, programming languages and software design
and construction.

RAJIVE L. BAGRODIA received the B.Tech. de-
gree in Electrical Engineering from the Indian Insti-
tute of Technology, Bombay in 1981 and the M.A. and
Ph.D. degrees in Computer Science from the Univer-
sity of Texas at Austin in 1983 and 1987, respectively.
He is currently an Associate Professor in the Com-
puter Science Department at UCLA. His research in-
terests include parallel languages, parallel simulation,
distributed algorithms, and software design method-
ologies. He was selected as a 1991 Presidential Young
Investigator by NSF.



