
ABSTRACT

ASHISH SUREKA. Techniques For Finding Nash Equilibria In Combinatorial Auctions.

(Under the direction of Dr. Peter Wurman).

Auctions that allow participants to bid on a combination of items rather than

just the individual items are called combinatorial auctions. For items that exhibit comple-

mentarity and substitutability, combinatorial auctions can be used to reach economically

efficient allocations of goods and services. There has been a surge of recent research on

combinatorial auctions because of the wide variety of practical situations to which they can

be applied. There are several instances in which combinatorial auctions have already been

applied to allocate scares resources, but there are still some challenging issues that need

to be addressed before combinatorial auctions can be much more widely used in practice.

Many different combinatorial auctions designs have been proposed by researchers and re-

cently there has been a lot of work on studying the computational and strategic aspects

of these auction designs. In this thesis, I analyze combinatorial auctions from a game the-

oretic perspective and propose techniques for determining pure strategy Nash equilibrium

of combinatorial auctions. For a variety of reasons, combinatorial auctions pose serious

computational challenges to compute Nash equilibria using current techniques. One prob-

lem is that the size of the strategy space in combinatorial auctions is very large and grows

exponentially with the number of bidders and items. Another computational issue is that

for combinatorial auctions it is computationally expensive to compute the payoffs of the

players as a result of the joint actions. This makes it computationally expensive to de-

termine the complete payoff matrix upfront and then determine Nash equilibrium. In this

dissertation, we present techniques to overcome these problems. We present algorithms

based on meta-heuristic search techniques, best response dynamics and linear programming

to tackle these problems. We present empirical and theoretical results to support our claim

that the algorithms perform well.
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Chapter 1

Introduction

Game theory is the study of interactive decision making and was founded by the

great mathematician John von Neumann. Game theory helps us to understand situations

in which decision-makers interact and in which the outcome of the interaction depends

on the interactive strategies of two or more persons who have opposed, or at best, mixed

incentives. Those involved in the decisions are affected by their own choices as well as by

the choices of others. Equilibrium (in this study, Nash equilibrium) is a stable outcome

of the game in the sense that given that the other players adhere to their strategies, no

single player wants to unilaterally deviate from its strategy. Any outcome that is reached

by the play of strategies which do not form an equilibrium is an implausible way of playing

the game because at least one player could improve by selecting another strategy. Nash

equilibrium is the most widely used solution concept in game theory and is named after

the Nobel Laureate John Nash. Game theory has been applied applied to a wide range of

situations: firms competing for business, political candidates competing for votes, auctions,

bankruptcy, arms races, cartel behavior, animals fighting over prey and more. Game theory

can also be used to analyze the outcome and strategies of bidders competing in a type of

auction called combinatorial auctions.

Auctions that allow participants to bid on a combination of items are called com-

binatorial auctions. For items that exhibit complementarity and substitutability, combina-

torial auctions can be used to reach economically efficient allocations of goods and services.

Recently, there has been a surge of research on combinatorial auctions, and many combi-
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natorial auction designs have been proposed. In recent years, combinatorial auctions have

gained a lot of interest because there are many situations in which combinatorial bidding

seems natural, such as the series of FCC spectrum auctions [24, 4]. There are several in-

stances in which combinatorial auctions have been applied to allocate scares resources, but

there are some challenging issues that need to be addressed before combinatorial auctions

can be much more widely used in practice. In order to analyze the effect of various com-

binatorial auction designs we need to study combinatorial auctions from a game theoretic

perspective and determine equilibrium bidding strategies of bidders participating in the

auction.

We model combinatorial auctions as multi-player, complete information games and

assume that the bidders participating in the auction follow a myopic best response bidding

strategy. Myopic best response bidding is a simple bidding strategy in which, in each round,

the myopic bidder bids on the bundle that gives it the highest surplus as if this were the last

round of the auction. Even in a restricted case of bidders following a myopic best response

bidding strategy, the size of the strategy space is infinite and it is impossible to compute

Nash equilibria by representing the game in normal form and populating the payoff matrix

for each strategy profile. Thus, one of the problems that makes it hard to compute Nash

equilibrium of combinatorial auctions is the very large size of the strategy space and the

resultant normal form game. Another computational issue is that combinatorial auctions

fall into a class of N-person games where it is computationally expensive to compute the

payoffs of the players as a result of the joint actions. Previous algorithms to compute Nash

equilibria are based on mathematical programming and analytical derivation and requires

a complete payoff matrix before computing the Nash equilibria. However, determining

a payoff matrix can itself be computationally intensive. In this dissertation, we present

techniques to overcome these problems. We begin by first providing background information

to the reader and then define the research problem. We then present a high level overview

of our proposed solutions and describe each solution in detail in the later chapters of the

dissertation.
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1.1 Background

In order to understand the contributions of the dissertation, it is necessary to

have some background in game theory. We provide a brief introduction to strategic form

representation of a game, Nash equilibrium, combinatorial auctions, proxy bidding and best

response dynamics.

1.1.1 Strategic form games

A strategic game is a model of interactive decision-making in which each decision-

maker simultaneously chooses his plan of action from its strategy set and receives a payoff

based on its utility function as well as the moves selected by the other players. A strategic

form game is described by the list of players, the strategies available to each player, and the

payoffs to any strategy combination, one strategy for each player. For example, the strategic

form of the well known prisoner’s dilemma game in Table 1.1 can be represented in a table in

which the two rows correspond to the strategies of player 1 and the two columns correspond

to the strategies of player 2. Each cell of the table represents the payoffs associated with

that pair of strategies. The four possible strategy combinations in the game of prisoner’s

dilemma are (Don’t Confess, Confess), (Don’t Confess, Don’t Confess), (Confess, Don’t

Confess) and (Confess, Confess). Similarly, the four possible strategy combinations in the

game of matching pennies in Table 1.2 are (Heads, Heads), (Heads, Tails), (Tails, Heads),

and (Tails, Tails). The payoffs are specified for each player for every one of the four strategy

combinations. In the matching pennies game of Table 1.2, (1,-1) are the payoffs to the two

players if the strategy combination (Heads, Heads) is played

Formally, a strategic game consists of:

• a finite set N , containing the set of players, i ∈ N .

• for each player i ∈ N , a nonempty set Ai (the set of actions available to player i). Ai

is the list of strategies that player i can adopt

• for each player i ∈ N a preference relation �i on A = χj∈NAj (the preference relation

of player i). For each possible combination of strategies there is a list of payoffs for

every player.
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Don’t Confess Confess

Don’t Confess 3,3 0,4

Confess 4,0 1,1

Table 1.1: The game of prisoner’s dilemma represented in strategic form.

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Table 1.2: The game of matching pennies represented in strategic form.

The high level of abstraction of the strategic form model allows it to be applied to a

wide variety of situations. A player may be an individual human being or any other decision-

making entity like a government, a board of directors, the leadership of a revolutionary

movement, or even an animal [30]. For the purpose of our study we use the strategic form

to represent games in which bidders (players) participate in combinatorial auctions and

submit their bids (strategy or actions) simultaneously (or without the knowledge of other

bidder’s bid).

1.1.2 Nash equilibrium

Nash equilibrium is the most widely used solution concept in game theory and

is named after the Nobel-prize winning mathematician John Nash. The notion of Nash

equilibrium captures a steady state of the play of a strategic game in which each player

holds the correct expectation about the other players’ behavior and acts rationally [30]. If

there is a set of strategies with the property that no player can benefit by changing her

strategy while the other players keep their strategies unchanged, then that set of strategies

and the corresponding payoffs constitute the Nash Equilibrium. In other words, we can say

that Nash equilibrium of a game is a profile of strategies such that each player’s strategy is

an optimal response to the other players’ strategies.

Formally, a Nash equilibrium of a strategic game [N, (Ai), ( � i)], is a profile a∗ ∈ A

of actions with the property that for every player :
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(a∗−i, a
∗
i ) � i (a∗−i, ai) for all ai ∈ Ai. (1.1)

For each player there is a nonempty set Ai (the set of actions available to player

i). Thus for a∗ to be a Nash equilibrium it must be that no player i has an action yielding

an outcome that he prefers to that generated when he chooses a∗i , given that every other

player j chooses his equilibrium action a∗j .

Let’s apply the definition of Nash equilibrium to the game of prisoner’s dilemma

shown in the Table 1.1. We can see that the strategy pair (Don’t Confess, Don’t Confess) for

each player is not a Nash-equilibrium. From (Don’t Confess, Don’t Confess), each player can

benefit by chosing the action of Confess, if the other player keeps her strategy unchanged.

Applying the same logic we can see that the strategy pair (Confess, Don’t Confess) and

(Don’t Confess and Confess) are also not Nash equilibrium. We can eliminate any strategy

pair except the bottom right (Confess, Confess), at which both players get a payoff 1. The

joint action (Confess, Confess) is the unique Nash equilibrium in the game.

Another example shown in Table 1.2 is the game of matching pennies which is

classified as a zero-sum game with two players. A zero-sum game is a game in which players

make payments only to each other. One player’s loss is the other player’s gain, so the total

amount of money available remains constant. Each player shows either heads or tails from

a coin. If both are heads or both are tails then player 1 wins, otherwise the player 2 wins.

The payoff matrix is shown in the Table 1.2. We see that there is no Nash equilibrium to

this game.

1.1.3 Best Response Functions

In small games where each player has only a few actions and the payoff matrix

is small, we can sometimes find the Nash equilibria by examining each action profile in

turn to see if it satisfies the conditions of equilibrium. But when the games become more

complicated and when the strategy space is large or infinite, we can sometimes find the

Nash equilibria using the best response functions of each player. Formally, a strategy, a, of

player, i, is called a best response to the other player’s strategy if a has greater payoff to

i than any of i′s other strategies given the other player’s strategy. In the following section

we illustrate how Nash equilibria can be found by working with the best response function

of the players.
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Figure 1.1: Figure showing a two player game in strategic form. The figure has two tables
that lists each player’s best response function by finding the action that maximizes its payoff
for any given action of the other player.

Consider the strategic game in Figure 1.1 in which there are two players. The set

of actions for player 1 is s1, s2 and s3 and the set of actions for player 2 is t1, t2 and t3 .

We are interested in finding the best response or best actions for each player. We determine

the best actions of each player from the payoff matrix of the game. Figure 1.1 lists each

player’s best response function by finding the action that maximizes its payoff for any given

action of the other player. We denote the best response function of player i for an action a

of another player by βi(a). For example the action of player 1 that maximizes her payoff,

given that player 2’s action is t1, is called player 1’s best response to t1 and is denoted

by β1(t1). The value of β1(t1) in our example is s3. It is not necessary that each player

has a single best response. In our example in figure 1.1 the best response of player 2 given

that player 1’s action is s3, is denoted by β2(s3) and its value is the set {t2, t3}. Both t2

and t3 are best actions for player 2 if player 1 chooses s3 because both yield a payoff of 0,

and player 2 has no other action that yields a higher payoff. The best response function is

set-valued, that is, it associates a set of actions with any list of the other player’s actions.

Once we have the best response functions for each player we determine the Nash

equilibria by plotting the best response functions and looking at their intersection. In Figure

1.2 we use a graphical approach to find the pair (a1, a2) of actions with the property that
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Figure 1.2: Finding Nash equilibria by plotting the best response functions and looking at
its intersection. Player 1’s best action is denoted by a oval and player 2’s best action is
denoted by a square. The game has a unique Nash equilibrium denoted by the action profile
s2, t2

.

player 1’s action is a best response to player 2’s action, and player 2’s action is a best

response to player 1’s action: a1 = β1(a2) and a2 = β2(a1). Player 1’s actions s1, s2 and

s3 are plotted on the horizontal axis and player 2’s actions t1, t2 and t3 are plotted on the

vertical axis. In Figure 1.2, player 1’s best action is denoted by a oval that associates the

best action of player 1 with every action of player 2. Similarly, player 2’s best action is

denoted by a square and is plotted on the graph. Now we find points on the graph where

we have square as well as oval. Each such point is a Nash equilibrium. We conclude that

the game has a unique Nash equilibrium denoted by the action profile {s2, t2}.

We can restate the definition of Nash equilibrium in terms of the best response

function. For any a−i ∈ Ai we define βi(a−i) to be the set of player i′s best actions given

a−i:

βi(ai) = {ai ∈ Ai : (a−i, ai) � i (a−i, a
′

i) for all a
′

i ∈ Ai} (1.2)

A Nash equilibrium is a profile a∗ of actions for which

a∗i ∈ βi(a
∗
−i) for all i ∈ N. (1.3)

This alternative formulation of the definition points us to a another method of
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Figure 1.3: The best response functions of a two-player game where each player has infinitely
many actions.

finding Nash equilibria: first calculate the best response function of each player, then find

a profile a∗ of actions for which a∗i ∈ βi(a
∗
−i) for all i ∈ N .

A strategic game may have no pure strategy Nash equilibrium, may have a single

Nash equilibrium, or may have many Nash equilibria. Moreover, if the strategy space

for each player is continuous, then each player has infinitely many actions and we cannot

represent the game in a table like those used in Figure 1.1. In this case we construct and

analyze the best response functions that can be represented by mathematical equations.

In Figure 1.3, we plot each player’s best response function and find the intersection points

of the two player’s best response function. Figure 1.3 shows the best response functions

of a two-player game where each player has infinitely many actions. The first diagram

on the left plots the best response functions of a two player game where the best response

function for both the player is a straight line. In the game in this example, each player has a

unique best response to every action of the other player, so that the best response functions

are lines. The game has a unique Nash equilibria and is a point where both the straight

lines intersect. The diagram on the right in Figure 1.3 is an example of the best response

functions of a two-player game in which, the players have many best responses to some of

the other player’s actions. Thus her best response function is thick at some points. The

action profiles corresponding to the intersection point of the players best response function

are the multiple Nash equilibrium of the game. There are multiple Nash equilibria in this

example because the best response functions cross each other more than once.
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Figure 1.4: An example where applying the process of best response dynamics converges to
a Nash equilibrium from the initial action profile (S1,T1).

Figure 1.5: Another example where applying the process of best response dynamics con-
verges to a Nash equilibrium. The intial action profile and the Nash equilibrium are different
from that of the previous example in Figure 1.4
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1.1.4 Best Response Dynamics

Best-response dynamics is an iterative process of determining a Nash equilibrium

where each bidder iteratively select the best response to their opponent’s best strategies. An

example of how the process of iteratively computing the best response functions converges

to a Nash equilibrium is depicted in Figure 1.4. Figure 1.4 shows a game in normal form

where each player’s action set contains 5 actions. Assume the search starts from the initial

action profile (S1, T1). The payoff to the players for this action profile is (6, 8). The action

profile (S1, T1) is clearly not a Nash equilibrium as each player can benefit by choosing

another action, if the other player keeps her strategy unchanged. Let us say it is player

2’s turn to first find the best response. Player 2 finds T3 as the best response to player

1’s action of S1. Now it is player 1’s turn to find the best response to player 2’s action of

T3. This process of finding the best responses continues between the two players until a

point in the space of outcomes is reached where both player’s actions form best responses

to one another. The point where the steady state is reached is the Nash equilibrium. For

the example in Figure 1.4, the action profile (S5, T4) is the Nash equilibrium reached as a

process of applying the best response dynamics starting from the action profile (S1, T1) with

player 1’s turn to first find the best response. A game can have multiple Nash equilibria and

the Nash equilibrim reached by applying the process of best response dynamics depends on

the starting or initial action profile . It also depends on the order in which players find the

best responses. Figure 1.4 and Figure 1.5 refer to the same game but the Nash equilibria

reached by applying the best response dynamics are different because of the starting point

(cell of the payoff matrix).

It is important to note that the best response dynamics may not converge to a

Nash equilibrium even if one exists. Figure 1.6 is an example of a normal-form game where

applying the process of best response dynamics does not converges to a Nash equilibrium

because of getting stuck in an endless cycle.

1.1.5 Combinatorial Auctions

Auctions involve trading of variety of different items, provide a useful mechanism

for resource allocation problems and enable dynamic pricing. Various types of single and

multi-unit auctions such as English, Dutch, Vickrey and First-Price Sealed-Bid auctions
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Figure 1.6: An example where applying the process of best response dynamics does not
converges to a Nash equilibrium because of getting stuck in an endless cycle.

have been used as a trading mechanism for allocation of resources [3]. These auctions

which involve selling of a single or multiple unit of a single type of item at a time have a

limited capability that bidders cannot bid on combination or groups of items which may lead

to inefficient outcomes because of the exposure problem [38] wherein a bidder is exposed

to the risk that it may acquire unwanted items or may fail to acquire items for which it

has the highest value. Many trading scenarios and problems like allocation of airport time

slots [34], delivery routes, distributed scheduling, task assignment, allocation of segments

of radio frequency spectrum and sale of furniture [5] involve agents that have non-additive

values (valuation of a particular bundle of items may not equal to the sum of valuations of

the individual items) for the resources being traded. For example the value of a property

to a bidder is increased if another property or group of properties is won by that bidder

because of a super-additive or synergistic effect [19]. Auctions that allow participants to

bid on combination of items are called combinatorial auctions (CA). For items that ex-

hibit complementarity and substitutability, combinatorial auctions can be used to reach an

economically efficient allocation of goods and services and eliminate the exposure problem.

The gold standard for combinatorial auctions is the Generalized Vickrey Auction

(GVA) [44]. Generalized Vickrey Auction is a sealed-bid combinatorial auction in which

truthful bidding is the optimal strategy for the bidder. The Generalized Vickrey Auction

has received wide attention in the literature and is considered to be a benchmark against
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which other combinatorial auctions are compared. Since the GVA is a single-shot auction,

every bidder reports her valuation to the auctioneer who then computes final allocation

and prices. The GVA is an economically efficient mechanism because it finds the socially

optimal allocation by selecting the combination of bids that results in the maximum value.

Computing an allocation that maximizes total value is called the combinatorial allocation

problem (CAP). The GVA is incentive compatible as no bidder can unilaterally improve

its outcome by deviating from reporting its true value. One of the drawbacks of GVA

is that it requires the bidders to compute and reveal their values for all combinations of

items. This drawback of the GVA is considered to be a fundamental problem as the agents

have limited computation resources and are considered to be bounded rational. When

there are large number of items and agents it is computationally demanding for every agent

to reveal its true value for all possible combination of items. For this reason a variety

of iterative combinatorial auctions have been suggested by the research community. The

iterative combinatorial auctions does not require the agents to have complete information

about their valuations up-front and can elicit information from the agents dynamically

during the course of the auction. There has been a surge of recent research on combinatorial

auctions and many iterative combinatorial auctions have been proposed including Ascending

k-Bundle Auction [46, 47], Ascending Package Auction [2] and iBundle [31, 32]. These

proposed iterative or progressive auctions differs from each other in the way by which the

allocations and prices are computed and the type of information revealed to the bidders

after each round of the auction. We have chosen these three auctions for our study.

1.1.6 Proxy Bidding

Proxy bidding is an automatic bidding process and is common in online auction

sites like eBay. The proxy bidding system is very common in online auctions as it increases

performance by reducing the amount of time spent by the bidders in participating in the

auction. As shown in Figure 1.7, the proxy bidder sits between the bidder and the auction.

Each bidder decides the maximum it is willing to pay for the item and conveys this amount

to the proxy bidder. The proxy bidder then bids on behalf of the bidders. The proxy

bidder will automatically place bids for the bidders up to the highest price the bidders

have specified. The proxy bidder uses only as much of the maximum bid as is necessary to

maintain the bidders position as a high bidder. The advantage of proxy bidding is that the
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bidder does not have to watch every minute of the auction. Once the auction is over, the

bidders pay only the lowest possible winning bid, which may be less than the value they

gave to their agent. The proxy bids are also kept confidential and are not disclosed to the

seller or other bidders participating in the auction.

For example in Figure 1.7, bidder 1 specifies [(A 20), (B 30), (AB 60)] as the maxi-

mum amount that the proxy bidder should offer. The proxy bidding process is implemented

in standard auctions at online sites like eBay, and the same concept can be extended to

combinatorial auctions. We have implemented a proxy bidding system that can be tied to

various combinatorial auctions. The proxy agent increases the bids for each bundle by the

minimum bid increment only when the bidder has been outbid by another bidder.

1.1.7 Myopic bidding

In our study we assume bidders interact with the auction through a proxy agent

and the proxy agent bids myopically. Myopic bidding is also called straightforward bidding.

In each round, the myopic bidder bids on the bundle that gives it the highest surplus as

if this were the last round of the auction. In iterative combinatorial auctions, at the end

of each round the auctioneer announces the winning bids and the prices for each bundle.

A myopic bidder behaves as if it can win any bundle that it is currently not winning by

bidding δ more than the announced price where δ is the minimum bid increment. Let τb

denote the price for bundle b. Let b̆ denote agent i′s tentative allocation announced by the

auctioneer in round t. The myopic agent’s strategy is to bid on the bundle b
′

that maximizes

its surplus at the given prices. The bundle, b
′

, to bid on in the round t + 1 is determined

according to the following equation:

b
′

= arg maxb







vi(b̆) − τb̆ if b = b̆,

vi(b) − (τb + δ) otherwise
(1.4)

If the above solution gives strictly more surplus that the agent’s current allocation, the

agent will increase its bid on b
′

to τb
′ + δ.
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Figure 1.7: Figure showing the interaction of the bidders with the combinatorial auction
system through proxy agents.

1.1.8 XOR Bidding Language

In our system the proxy bid is expressed in terms of logical connectives. We use the

exclusive-or (XOR) bidding language in which the bid [(τ1, b1)XOR(τ2, b2)XOR...XOR(τk, bk)]

has the meaning that the bidder will buy at most of the bundles (b1, b2..bk) at the stated

price of (τ1, τ2..τk) for each other bundles where τi represents the maximum amount the

bidder is willing to pay for the bundle bi.

1.2 Combinatorial Auctions as Normal Form Games

In our model, we assume that agents follow a myopic best response bidding strat-

egy. The bid vector representing an agents maximum willingness to pay for a bundle

constitutes a strategy as long as the bid vector satisfies the condition of free disposal. Free

disposal is a standard assumption which means the value of a subset of a bundle is less than

or equal to the value of the bundle. It is natural to expect the bidders in the auction act

strategically and it is not necessary that agents reveal their true valuations for the bundles.
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A B AB

Agent 1 25 15 45
Agent 2 10 25 40

Table 1.3: Valuations of agents for the bundles for a two-agent two-item combinatorial
auction problem

The agents have an incentive to misrepresent their values to obtain a higher surplus. We

also assume that each bidder (decision maker) has perfect knowledge of the game and of

his opposition; that is, he knows in full detail the rules of the game as well as the payoffs

of all other bidders for all combination of joint actions. Table 1.3 shows a combinatorial

auction problem with two agents and two items where agent 1’s and agent 2’s valuations

on bundles exhibit complementarity.

Figure 1.8 is a normal form representation of the combinatorial auction in Table

1.3 with a restricted strategy space. The payoffs for each agent is determined by running

the Ascending k -bundle auction [46, 47] for a restricted set of strategy profiles and using

a bid increment of 0.25. Strategy profiles that are Nash Equilibrium are represented in

parenthesis and bold letters. Agent 1 is the row player and Agent 2 is the column player.

Figure 1.8: Normal form game for the combinatorial auction problem of Table 1.3

1.3 Research problem and solution approaches

Figure 1.9 illustrates two challenges that makes it hard to compute the Nash equi-

libria of combinatorial auctions. As shown in panel (a) of Figure 1.9, one of the challenging

computational issue making it hard to compute Nash equilibrium is that combinatorial auc-

tions fall into a class of N-person games where it is computationally expensive to compute
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Figure 1.9: Panel (a): Figure illustrating a normal from game where NP-hard optimization
problems are required to be solved to determine the values in every cell. Panel (b): Figure
illustrating the very large size of strategy space of a bidder participating in a combinatorial
auction.

the payoffs of the players as a result of the joint actions. As shown in panel (b) of Figure

1.9, another problem that makes it hard to compute Nash equilibrium of combinatorial

auctions is the very large size of the strategy space and the resultant normal form game.

The size of the strategy space is of the order of k2n

where n denotes the number of items

and k denotes the number of discrete bid values allowed for each bundle.

The research question that we address in this dissertation is: How do we effi-

ciently find Nash equilibrium for games of very large size and for which it is

computationally expensive to compute the payoffs ?

The study approaches the problem from four different angles. The ultimate goal is

to reduce the amount of time required to compute Nash equilibria in combinatorial auctions.

The four different solution approaches I study to addresses the research problem are:

Approach 1 To compute pure strategy Nash equilibria of a game without computing the

whole pay-off matrix. This reduces the amount of time required to compute the

payoff matrix thereby reducing the total amount of time required to compute the

Nash equilibrium

Approach 2 To determine an approximate Nash equilibrium.

Approach 3 To take advantage of the structure and pattern of the payoff matrix to identify

Nash equilibria without actually running the auction and creating a payoff matrix.
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Approach 4 To reduce the amount of time required to determine the payoffs for a joint

action thereby reducing the total amount of time required to compute Nash equilibria.

Following is an outline of the dissertation. This is Chapter 1 and each of the

remaining five chapters are devoted to one of the four solution approaches and a list of

dissertation contributions. In Chapter 2, we present a technique based on best-response

dynamics and tabu search to compute pure-strategy Nash equilibria (Approach 1). In

Chapter 3, we present an application of metaheuristic techniques like genetic algorithms

and tabu search to explore the space of bidding strategies in order to find the best response

strategy (Approach 2). In Chapter 4, we present a geometric approach for determining

Nash equilibria of combinatorial auctions (Approach 3). Finally in Chapter 5, we present a

linear programming approach to directly compute the outcome of a specific type of auction

(Approach 4). A high level overview of my dissertation contributions are presented in

Chapter 6.
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Chapter 2

Tabu Search for Finding Pure

Strategy Nash Equilibria in Very

Large Normal Form Games

In this chapter, we present a new method for computing pure strategy Nash equi-

libria for a class of N-person games where it is computationally expensive to compute the

payoffs of the players from the joint actions. Previous algorithms to compute Nash equilibria

are based on mathematical programming and analytical derivation and require a complete

payoff matrix before computing the Nash equilibria. However, determining a payoff matrix

can itself be computationally intensive. One example of the problem arises from combina-

torial auctions which requires solving many hard optimization problems to determine the

payoffs of the bidder. Many other real world market scenarios and multi-agent decision

making situations fall into the category. This chapter proposes an approach, based on best

response dynamics and tabu search, that resolves the constraint of having a complete payoff

matrix upfront, and instead computes the payoffs only when it is required. The proposed

method can find pure strategy Nash equilibria in a multi-player by computing the values of

the cells of a payoff matrix at runtime. We test the algorithm on several classes of standard
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and random games, and present empirical results that show the algorithm performs well.

We also present empirical results of the runtime behavior of the algorithm on varying the

distribution of the game. We present a list of performance indicators for evaluating the

performance and efficiency of this type of algorithm.

2.1 Introduction

Computing Nash equilibria of a game is a hard problem and several algorithms

have been proposed over the years to solve this problem [22]. The current state-of-the-art

algorithms for computing Nash equilibria are the Lemke-Howson algorithm [20] for two-

player games, the Govindan-Wilson algorithm [16] and an algorithm based on simplical

subdivision [17] for n-player finite games. Several other algorithms for solving finite games

are implemented in Gambit [23], which is a library of game theory software and tools for

the construction and analysis of finite extensive and normal form games. The appropriate

algorithm for computing the Nash equilibria for a game depends on a number of factors,

such as, whether you want to find pure strategy equilibria or mixed strategy equilibria, or

whether you want to find just one equilibrium or find all the equilibria.

The underlying assumption in current algorithms is the availability of a complete

payoff matrix. The first task that a user who wants to compute Nash equilibria will do is

to describe a game in normal or extensive form and store it in a text file in a prescribed

format for the algorithm to operate on. However, determining a payoff matrix can itself

be computationally expensive. For example , if it requires an hour to determine the values

of each cell of the payoff matrix in a normal form game, then it can take many days to

just enter the entire game matrix for a 2 player game in which each player has 10 actions.

Despite the small size of the game, determining Nash equilibria becomes time consuming.

This happens because the cost of computing the payoffs dominates the cost of computing

the Nash equilibria. Another difficulty arises when there are large number of players and

actions. In this situation, the file that serves as an input data to the algorithm for computing

Nash equilibria can be very large, easily of the order of mega-bytes. For example, in a game

with 6 players each with 10 actions to chose from, there are more than one million entries

in the normal form game. Computing the payoffs and storing this type of game as a text

file can be very time consuming and can consume many mega-bytes of disk space.
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One example of the problem arises from combinatorial auctions [2, 5, 32, 38, 47].

Combinatorial auctions can be represented as noncooperative games in which bidders act

strategically. We can model combinatorial auctions as a multi-player game where the bids

submitted by the bidders represent the actions and the surplus to the bidders at the end of

the auction represents the payoffs. In order to determine the payoffs to each bidders, we need

to run the auction, thus determining the outcome of Combinatorial Auctions requires solving

many hard optimization problems. It is a well recognized issue that in general combinatorial

auctions are NP-hard to clear [5, 42, 8]. For combinatorial auctions computing the payoff

for each cell in the normal form game is NP-hard and the size of the normal form game

grows exponentially with the number of bidders and items. Even for a small and moderate

size combinatorial auction problem, it is not possible to determine Nash equilibria using

current tools. In order to relieve the burden of first running the auction for every strategy

combination and then finding Nash equilibria, we propose a novel technique based on tabu

search and best response dynamics that computes the payoffs only when it is required.

Many other real world market scenarios and multi-agent decision making situations

are areas to which the current work is applicable. One such example is the Trading Agent

Competition (TAC) [45]. TAC is a test-bed developed by researchers at University of

Michigan to develop and experiment with various protocols and strategies of multi-agent

systems. TAC describes two games, one a supply-chain management scenario and the other

an E-Commerce trading scenario. In both type of games several software agents compete

against each other to maximize their individual utility. Each TAC game takes around 15-

55 minutes (depending on the type of TAC game) to run and report the payoffs of each

participating agent at the end of the game. When viewed as a normal form game, it can be

quite time consuming to compute the game matrix for a small to moderate size game even

though computing the pure strategy Nash equilibria can be trivial task.

This work is an effort to develop solution methods for finding the pure strategy

Nash equilibria where methods based on mathematical programming and analytical deriva-

tions cannot be used. Any algorithm that does not require to have a complete payoff matrix

for computing the pure strategy Nash equilibria can be useful for these types of applica-

tions. It is important to note that the proposed algorithm should not be viewed as another

method for computing Nash equilibria of a general finite N-person game. The current work

is a step in a different direction and is advantageous for games in which it is computationally

expensive to compute the complete payoff matrix upfront. Our main result is that for a class
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of games where it computationally expensive to compute the payoffs, vast computational

savings can be realized by determining the payoffs only when it is required.

Following is an outline for the rest of the chapter. Section 2.2 gives an overview

of tabu search. Best response dynamics and tabu search are the two main ingredients of

the proposed algorithm. In section 2.3, we describe the underlying concepts behind the

algorithm and present a formal description of the algorithm. Section 2.4 is devoted to

experimental setup and results. Finally, section 2.5 are the conclusions.

2.2 Tabu Search

Tabu search has been widely used to solve approximately complex combinatorial

optimization problems encountered in a variety of real-life applications. Tabu search was

first presented by Glover [11, 12] and additional efforts of formalization are reported by

Hansen [18] and de Werra & Hertz [6]. It is a local (neighborhood) search technique that

can escape local optima. It makes use of adaptive memory to keep track of information

obtained in the previous part of the run. Each time a move is made, it is placed on

a list called the tabu-list. When considering a next move, it is deemed unchoosable, or

tabu, if it is on the tabu-list [11, 12]. Old moves are typically removed from the tabu-

list after some number of iterations. Other methods that have been applied to solve a wide

variety of optimization problems are simulated annealing and evolutionary approaches using

genetic algorithms. Unlike tabu search, both simulated annealing and genetic algorithms

are memory-less methods in the sense that they do not make use of memory to record

information related to solutions visited during the search process.

There are two types of adaptive memory used in tabu search: explicit memory

and attributive memory. Explicit memory records complete solutions visited during the

search. Explicit memory records exact solutions and is used to guide the search to avoid

visiting solutions more than once. Since the complete solution is recorded, explicit memory

structure may have excessive memory requirements depending on the memory required to

store a solution and the number of solutions required to be stored in the tabu list. The

total memory requirement increases with the increase in the length of the tabu list and the

increase in the size of the solution. The amount of memory required by explicit memory

version of the algorithm can be limited by setting an appropriate value of the length of the
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Figure 2.1: An example of best response dynamics and tabu search showing the use of
adaptive memory in preventing cycles during the search process.

tabu-list. A good value of the length of tabu-list depends on the nature of the problem that

we are trying to solve and can be determined empirically.

Another form of adaptive memory that tabu search makes use of is called at-

tributive memory. Attribute-based memory, like explicit memory is used to avoid visiting

solutions more than once. Rather than recording the exact solutions, attribute-based mem-

ory records information about solution attributes that change in moving from one solution

to another. For example, in a graph or network setting, attributes can consists of nodes

or arcs that are added, dropped or repositioned by the moving mechanism. In production

scheduling, the index of jobs may be used as attributes to inhibit the method from following

certain search directions. In our experiments we test both explicit memory and attributive

memory and compare the results obtained.

2.3 The Algorithm

Tabu search begins in the same way as ordinary local or neighborhood descent

search, proceeding iteratively from one solution to another until a chosen termination crite-

ria is satisfied. Each point (solution) in the solution space has an associated neighborhood

and each neighborhood solution is reached from the preceding solution by a move operation.
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One difference between the other descent methods and tabu search is the use of

adaptive memory in tabu search which keeps track of the exploration process. The efficiency

of the exploration process in tabu search is improved by keeping track of not only the local

information (like the current value of the objective function) but also of some information

related to the exploration process.

Figure 2.1 illustrates a two player game in normal form and shows how the process

of applying best response dynamics and tabu search converges to a Nash equilibrium. Using

Figure 2.1 we illustrate the use of adaptive memory in preventing cycles in the search

process. Let the initial action profile (starting solution for the search process) be (0, 0).

The payoff to the agents for this action profile is (9, 5). Let agent 0 be the first to find

the best response. Agent 0 is not able to find the best response to agent 1’s action of 0

because if agent 1 chooses to play action 0, then the payoff maximizing action for agent

0 is the action 0 yielding a surplus of 9. Figure 2.3 shows the management of the tabu

list with explicit memory. At the beginning of the search process, the tabu list is empty.

The solution (0,0) is added to the tabu list of agent 0 because a transition from any other

solution to solution (0,0) will return the search to a previously explored solution and will

result in a cycle. Now it is agent 1’s turn to find the best response to player 0’s action of 0.

As shown in Figure 2.1 and Figure 2.3, the process of finding the best responses continues

between the two players and the tabu lists are updated. When the search process reaches

the action profile (3, 0) and it is agent 0’s turn to find the best response, the use of the

tabu list comes into the picture. Even though action 0, resulting in surplus of 9, is the best

response for agent 0, it is not chosen because it is in the tabu list. Instead, the next best

action, 1, is chosen. Selecting action 0 would have resulted in a cycle. Continuing further,

the search process reaches the action profile (1, 1). The action profile (1, 1) is a point in

the space of outcomes where both player’s actions form best responses to one another. The

solution where both the row player and column player choose action 0 is marked as tabu

for the row player (shown as shaded cell in the Figure 2.1).

Another point of departure between the simple descent methods and tabu search is

that in simple descent methods moves are permitted to the neighbor solutions that improve

the current objective function value and ends when no improving solution is found whereas

in tabu search non improving moves are also permitted. The simple descent method can

get stuck on a local optimum which might not be a global optimum, while tabu search can

escape from local optimum. Figure 2.2 and 2.4 shows temporary acceptance of new inferior
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Figure 2.2: An example where tabu search process takes a non-improving move to come
out of the local optima.

solutions, in order to avoid paths already investigated. Agent 0 chooses a non-improving

move to move from (0, 0) to (1, 0) instead of (2, 0). Figure 2.4 shows the functioning of the

algorithm with attribute based memory. The actions are used as an attribute and are tabu

for a limited period as specified by the tabu tenure. In the example of Figure 2.4 we use

the tabu tenure of 2.

2.3.1 Formal description of the algorithm

Consider an n player game in normal form where N is the set of players. For

each player i ∈ N there is a nonempty set Ai (the set of actions available to player i).

The number of actions available to each player is |Ai|. Every possible combination of joint

actions is a point in the search space and thus the size of the search space will be
∏N

i=1 |Ai|.

Let x ∈ X be a solution in the search space and X is a set of all solutions. The element

x is an action profile consisting of one action from each player. Let xi denote the action

of player i for the action profile x and x−i denote the actions of all other players for the

action profile x. For x∗ to be a Nash equilibrium it must be that no player i can profitably
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Figure 2.3: The status of the tabu list (explicit memory) after each iteration for the search
process shown described in Figure 2.1.

Figure 2.4: The status of the tabu list (attribute based memory) after each iteration for the
search process shown in Figure 2.2.
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deviate, given the actions of the other players i.e. the following condition holds:

(x∗
−i, x

∗
i ) �i (x∗

−i, xi) for all xi ∈ Ai, (2.1)

The steps of the algorithm are as follows:

[1] Initialization Randomly generate a starting solution xcurrent ∈ X.

Initialize the tabu list Ti for each player i . The length of the tabu list is L and

initially all the tabu lists are empty for the explicit memory type.

For attribute based memory the length of tabu list for each player is equal to the

number of actions available to him. Initially, all the attributes have a value of 0 (i.e,

no action is marked as tabu). The maximum value for an element in the tabu list is

equal to the tabu tenure t.

[2] Finding best response This step is performed once for player i. The solution ob-

tained as a result of applying the best response for player i serves as the initial solution

for the next player’s search of finding the best response. Determine βi(x
current), the

best response of player i. If the player is not able to find a better response then we

skip the rest of the steps and move on to the next player.

If the player is able to find a better response then we denote xtrial ∈ X as the solution

resulting from changing the strategy from xi in xcurrent to βi(x
current).

IF explicit memory:

Check to see if the solution xtrial is in the tabu list Ti of player i (i.e, xtrial ∈ Ti). If

the solution xtrial is not in the tabu list then skip rest of step [2] and move on to the

next step of Update and termination.

SET flag = true

While (flag) {
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If !(xtrial ∈ Ti), Then flag = false

Chose the next best solution x
′

and set xtrial = x
′

.

}

IF attribute based memory:

Let the index of the strategy for player i in the strategy profile xtrial be j. Let the

value of an element in the tabu list Ti for index j be T j
i . Check to see if the solution

xtrial is in the tabu list Ti of player i (i.e, T j
i > 0). If the solution xtrial is not in

the tabu list then skip rest of step [2] and move on to the next step of Update and

termination.

IF attribute-based memory:

SET flag = true

While(flag) {

If !(T j
i > 0), Then flag = false

Chose the next best solution x
′

and set xtrial = x
′

.

}

The resulting solution xtrial can lead to an improvement in the surplus for player i. If

surplusi(x
trial) > surplusi(x

current) then we say that the search accepts a improving

move else the search moves to a non-improving solution.

[3] Update and termination Set xcurrent = xtrial chosen from the previous step.

If explicit memory:

Update the tabu list Ti by adding xcurrent to the front of the list and removing a

solution from the back of the list if there exists one to maintain the length of Ti to L.

If attribute based memory:

The tabu list are updated by changing the values of the tabu tenure for each action.

T j
i = T j

i + 1 and ∀k 6=j, T k
i = T k

i − 1.
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If T k
i < 0 Then SET T k

i = 0.

SET terminate = false

IF (∀i, xcurrent = βi(x
current)) AND (∀i, !(xcurrent ∈ Ti) {

terminate = true

}

If (terminate=true), then stop

else go to step [2] finding best response.

2.4 Experimental Results

To evaluate the algorithm, we ran a series of experiments. Before discussing the

results, we present a list of criteria for evaluating the performance and efficiency of this type

of algorithm. The amount of time required to converge to a Nash equilibrium is definitely

one of the most important performance indicators, but just recording the absolute time is

not sufficient as it is dependent on the type of the problem and cannot be used as a common

benchmark for comparing across problems of different types. For example, if we say that

it takes on average 20 minutes to converge to a Nash equilibrium for a problem of type 1

and 40 minutes for a problem of type 2, we are not taking into account the time required

to compute each payoff. It might turn out that the time required to find solution in the

problem of type 2 is high because it is more computationally expensive to compute the

payoff values than for problem of type 1, even though the actual number of steps required

to converge and the number of cells visited are fewer. We present two evaluation criteria

that are independent of the problem types and are directly proportional to the speed of

convergence or the total amount of time required to find the solution. The two criteria are

as follows:

1. Average percent of solution space explored

We propose that the average number of solutions explored, or the percentage of the

search space explored in order to converge to a Nash equilibrium, is the most im-

portant performance indicator for the algorithm. The main emphasis for the search
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algorithm is to find a Nash equilibrium by minimum evaluation of the game matrix

as the algorithm is specifically designed for situations where it is computationally ex-

pensive to obtain a payoff matrix.

Average percent of solution space explored = (average number of solutions visited)/(size

of the solution space)

The minimum value of the percentage solution space explored =

1 +
∑N

i=1(|Ai| − 1)
∏N

i=1 |Ai|
(2.2)

2. Average Number of steps to converge

When an agent transitions from one solution to another during the search process, it

it counted as one step. We record the average number of steps to converge to a Nash

equilibrium. The minimum number of steps is zero and will occur for the case where

the starting solution itself is a Nash equilibrium.

We also record the maximum number of steps to converge and the maximum

percentage of strategy space explored to keep track of the worst case performance of the

algorithm. Tabu search parameters like the number of tabu conditions encountered and

the number of times non-improving moves made are also recorded to study the effect of

tabu search control parameters like the type of memory used and the tabu tenure on the

effectiveness of the search

For testing our algorithm we generated normal form games using GAMUT, a suite

of game generators designated for testing game-theoretic algorithms [29]. The proposed

algorithm requires a normal form game as input and we used different parameterization

options of GAMUT to generate random games and some well known games in normal form.

Figures 2.5, 2.6, 2.7 and 2.8 show the experimental results of applying the algorithm for

random games generated by GAMUT. We generated many random games of 5 players and

10 actions. The size of the solution space is 105. Keeping the size of the solution space

constant, we vary the the number of Nash equilibria that exists. We run the algorithm 105

times starting once from each solution and track the average number of steps to converge

and the average amount of the solution space explored for each game. The performance

of the algorithm depends heavily on the number of Nash equilibria that exists. As shown
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Figure 2.5: Effect of varying the number of pure strategy Nash equilibria on the average
and maximum number of steps to converge for explicit memory version of the algorithm.

Figure 2.6: Effect of varying the number of pure strategy Nash equilibria on the average and
maximum number of steps to converge for attribute based memory version of the algorithm.
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Figure 2.7: Effect of varying the number of pure strategy Nash equilibria on the average
and maximum number of solutions explored as a percentage of strategy space for attribute
based memory version of the algorithm.

in Figures 2.5, 2.6, 2.7 and 2.8, the algorithm converges faster as the number of Nash

equilibria in a game increases. We observe that the worst case performance for the explicit

memory version of the algorithm is better than the attribute based memory version of

the algorithm. On the other hand, on average the attribute based memory version of the

algorithm performs well.

Figure 2.9 shows the performance of the algorithm for four different input sizes

of the Traveler’s Dilemma, Minimum Effort and Covariant games. The y-axis represents

the average percentage of the strategy space explored. The number of experimental runs

were equal to the size of the solution space. Each point in the search space was used as a

starting solution. For example, in the 11-player, 5-action game, the number of times the

algorithm was run to compute the Nash equilibrium was 511 = 48828125. We observe

that the algorithm’s performance depends on the distributions of the payoffs and the input

sizes. For example, keeping the input size the same, the algorithm exhibits a highly different

behavior between the Covariant game and the Traveler’s Dilemma game. The difference

between the runtime behavior is less visible for the Traveler’s Dilemma and the Minimum

Effort game.

For every run of the algorithm we record the number of times the search encounters

a solution marked as tabu and the number of times the search accepts non-improving moves.
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Figure 2.8: Effect of varying the number of pure strategy Nash equilibria on the average
and maximum number of solutions explored as a percentage of strategy space for explicit
memory version of the algorithm.

Figure 2.9: Effect of the type of the game and the size of the game on the average percentage
of strategy space explored to find the Nash equilibrium.
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Equilibrium action profile 36473 64598 80337 91904

Number of times found 2550 96240 1050 160

Number of times found (%) 2.5 96.2 1.0 0.1

Average number of steps to converge 8484.0 5915.1 5763.9 2789.9

Maximum number of steps to converge 11477 12137 10116 77

Average number of solutions explored 55848.1 44081.0 41810.9 21905.4

Average number of solutions explored (%) 55.8 44.0 41.8 21.9

Maximum number of solutions explored 68116 69990 63385 53564

Maximum number of solutions explored (%) 68.1 69.9 63.3 53.5

Average Number of tabu conditions 817.3 398.3 433.0 154.2

Average Number of non-improving moves 103.8 54.1 59.6 22.0

Table 2.1: Simulation results of running the explicit memory version of the algorithm on a
5-Player 10-Action random game consisting of four Nash equilibria.

Equilibrium action profile 02835 19745 36200 42559 46903 49660

Num Times 30 1210 740 40 830 95270

Num Times (%) 0.03 1.1 0.7 0.04 0.8 95.2

Av. steps 1.5 1114.1 1067.2 2.1 1032.9 2085.3

Max Num of steps 2 2861 3065 4 2729 3649

Av solutions explored 52 9857.0 9614.7 59.5 9797.3 18698.7

Av solutions explored (%) 0.05 9.8 9.6 0.06 9.8 18.7

Max Num solutions explored 55 25031 26336 82 23926 30693

Max Num explored (%) 0.05 25.0 26.3 0.08 23.9 3.0

Av Num tabu cond 0 35.3 27.3 0.0 18.7 58.9

Av Num non-improving 0 4.4 3.3 0.0 1.2 5.8

Table 2.2: Simulation results of running the explicit memory version of the algorithm on a
5-Player 10-Action random game consisting of six Nash equilibria

Table 2.1 and 2.2 present simulation results of running the explicit memory version of the

algorithm on a 5-player, 10-action random normal form game consisting of four and six

Nash equilibria respectively. We notice that there are several instances where the algorithm

encounters solutions marked as tabu and moves to an alternate solution (possibly non-

improving) required to break a cycle in best response dynamics.

We model combinatorial auctions as multi-player complete information games and

assume that the bidders participating in the auction uses a proxy agent that follows a myopic

best response bidding strategy. Myopic best response bidding is a simple bidding strategy

in which in each round, the myopic bidder bids on the bundle that gives it the highest

surplus as if this were the last round of the auction. We applied the proposed algorithm on
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normal form games generated by running the Ascending Package Auction and Ascending

k -Bundle Auction [2, 47]. We notice that the performance of the algorithm depends on the

type of the auction and the valuation profile of the bidders. We applied the algorithm on

a number of problem instances in which we varied the number of players and number of

actions available to each player. The results of the simulations so far shows that the average

number of solution space explore varies from 13% to 39%.

2.5 Conclusion

We looked at a relatively unexplored area of finding pure strategy Nash equilibria

using heuristic search techniques. These approaches are applicable in situations where

the size of the strategy space is very large and where it is computationally expensive to

compute the payoffs. We presented a list of criterion for evaluating the performance and

efficiency of this type of algorithm and argue that the ratio of the number of cells of the

normal form game visited to the total number of cells is an important metric to measure

the effectiveness of the algorithm. Although it is difficult to produce theoretical guarantees

about the performance of this type of algorithm, our empirical tests on standard, random

and combinatorial auctions games show that the algorithm can significantly reduce the

computational cost.
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Chapter 3

Metaheuristic Techniques for

Finding Nash Equilibria In

Combinatorial Auctions

As mentioned in Chapter 1, one of the problems making it computationally expen-

sive to find Nash equilibria of combinatorial auctions is the large size of bidder’s strategy

space. The large size of strategy space results in an increases in the number of cells of the

normal form game thereby making an exhaustive search infeasible. Chapter 1 describes best

response dynamics and explain its usefulness in finding a Nash equilibrium. In Chapter 2,

we described a novel algorithm inspired from tabu search and best response dynamics to

find an equilibrium of a normal form game by evaluating payoff matrix at runtime. The

algorithm uses an exhaustive search (enumeration) to find the best response strategy at

each iteration of the best response dynamics. The difficulty arises when the size of the

strategy space becomes very large, making it computationally expensive to find the best

response strategy by enumeration. When enumeration over the entire space of solutions is

not possible, heuristics like genetic algorithms and tabu search can be used to find a good

solution by sacrificing completeness in return of efficiency. Metaheuristic search algorithms
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such as genetic algorithms and tabu search have been applied successfully to a number of

optimization problems in many engineering disciplines [15, 37]. The work presented in this

chapter describes our design and experiences in applying metaheuristic search techniques to

find the best response strategy at each step of the best response dynamics process. Figure

3.1 depicts the application of heuristic techniques in the overall process of finding a Nash

equilibrium using best response dynamics. Figure 3.1 also shows the limitation of using

heuristic technique: the algorithm converges to a candidate equilibrium with payoffs (r,c)

which is not a Nash equilibrium. The row player can unilaterally deviate and improve his

surplus from r to r∗ and similarly the column player can unilaterally deviate and improve

his surplus from c to c∗. The best solution is not reached because some of the solutions

were unevaluated during the search process as shown by the unshaded cells corresponding

to the rows and columns of the equilibrium found. As shown in Figure 3.1, the application

of heuristic techniques resulted in a solution that is not a Nash equilibrium but close to

the ideal solution in the sense that each player has a small incentive to deviate from the

solution found. The solution found can be arbitrary close to the best solution as no proof

or theoretical guarantee is provided of the solution quality. It is important to note that a

solution is not a Nash equilibrium if any player has an incentive to deviate irrespective of

the magnitude of the incentive.

To carry out search by means of metaheuristic techniques, several elements of the

problem and search strategy must be defined: a model of the problem and a representation of

possible solutions, transformation operators that are capable of changing an existing solution

into an alternative solution and a strategy for searching the space of possible solutions using

the representation and transformation operators [28]. We designed two algorithms inspired

from genetic algorithms and tabu search to explore the space of strategies with the objective

of finding a strategy that maximizes the surplus to a bidder. We configure the parameters

of metaheuristics to adapt to the problem of finding the best response strategy and present

how it can be helpful in finding Nash equilibria of combinatorial auctions.

Following is an outline of the chapter. Section 3.1 presents a mathematical formu-

lation of finding best response strategy as a combinatorial optimization problem. Section

3.2 presents a binary string representation of bidding strategies so that metaheuristic tech-

niques can be applied. A metaheuristic technique is a top-level general strategy and the

actual implementation of the technique depends on the context within which the technique

will be used. In Sections 3.3 and 3.4, we describe our adaptation of tabu search and ge-
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Figure 3.1: Figure depicting the application of metaheuristic search at each step of the best
response dynamics.

netic algorithm to tackle the specific problem of searching the space of bidding strategies

in combinatorial auctions. In Section 3.5, we present experimental results. Finally Section

3.6 and 3.7 are the conclusions and future work.

3.1 Best response strategy as combinatorial optimization prob-

lem

In this section, we use mathematical notation to formulate the problem of finding

the best response strategy as a combinatorial optimization problem. Let us denote the set

of agents by I = {1, ..., n}. Agent i′s strategy space is Si. In our model, we assume a

discrete strategy space. The size of the strategy space is |Si| and is finite. Let bj
i ∈ Si

denote the proxy bid vector (strategy) for agent i, and j denote the index of a strategy in

the strategy set Si. Finding a best response strategy can be formulated as an optimization

problem. Agent i′s task is to find the surplus maximizing strategy b∗i from the set Si given

the strategies of all other agents. Let the surplus of agent i be denoted by the function
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f(bj
i , b−i) where bj

i represents the proxy bid vector of agent i with an index j in the strategy

set Si and b−i represents the proxy bid vector of all other agents. The combinatorial

optimization problem is a maximization problem where agent i wishes to find a bidding

strategy b∗i from the set Si such that:

f(b∗i , b−i) ≥ f(bj
i , b−i), ∀ bj

i ∈ Si (3.1)

Nash equilibrium of the strategic form game is a strategy profile b∗ ∈ S such that

every agent is playing a best response to the strategy choices of his opponents. Formally,

we can say that b∗ is a Nash equilibrium if (∀i ∈ I) b∗i ∈ βi(b
∗
−i) where βi(b

∗
−i) denotes

the best response of agent i given the best responses of all other agents. Hence, finding

the best response strategy involves solving one maximization problem and finding the Nash

equilibrium to the game using best response dynamics involves solving many maximization

problems.

3.2 A binary string representation of bidding strategies

It is important to encode the solution and solution space in a format so that heuris-

tic search techniques can be applied. In this section, we present our design of transforming

a bidding strategy into a vector of binary variables in a form applicable to metaheuristic

search. The bidding strategy for an agent participating in the auction is represented as a

candidate solution for the metaheuristic search and the objective is to efficiently explore the

space of bidding strategies and find a surplus maximizing strategy. We represent candidate

solutions as a binary string encoding the proxy bid vector. The binary string determines

the fraction of the agent’s value submitted as a proxy bid to the auctioneer. Each agent

i strategy denoted as ci is translated into the proxy bid vector bi. ci(b) is a string of 0′s

and 1′s representing the strategy of agent i for bundle b. G is the set of all the bundles

i.e. b ∈ G. The length of ci(b) is equal to r (resolution). Similarly, bi(b) denotes the bid

of agent i for bundle b . Let vi denote the vector representing the true value of agent i for

all the bundles and let vi(b) denote the value of agent i for bundle b. In order to calculate

the proxy bid vector we first need to calculate the fraction vector fi where fi(b) denotes

the fraction computed by diving the decimal number generated from ci(b) by the maximum

decimal number with r bits. For example if cb = 10 then fi(b) = (10/11)2 = 2/3 = 0.667.
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Figure 3.2: Example illustrating the encoding scheme to map the strategy (string of 0’s and
1’s) to a proxy bid vector.

The proxy bid vector is a vector multiplication of the fraction vector fi with the true value

vector vi i.e. bi = fi . vi. Figure 3.2 shows an example computation for the proxy bid

vector from the strategy vector and true valuation vector. The length l of the strategy ci is

a function of the number of items m and the resolution. The length l is equal to r(2m).

In Figure 3.2 we see that the length of the candidate solution is a function of the

resolution and number of items. All unique combinations of binary variables of length l

constitute a strategy and hence the size of the strategy space is 2l. The decision variable

constituting the solution vector are discrete. As we increase the resolution the size of the

strategy space increases exponentially. The strategy space also increases exponentially with

the increase in the number of items. The number of candidate solutions is very large and

grows exponentially with the problem size so that simple enumeration scheme are rendered

impractical.

3.3 Genetic Algorithms

In this section we apply genetic algorithm (GAs) as an optimization tool for solving

the problem of finding the best response strategy and Nash equilibrium. Genetic algorithms

are a rapidly growing area of artificial intelligence, inspired by Darwin’s theory of evolution.
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It was invented by John Holland at University of Michigan in the 1960s and has been shown

to work very well on some types of discrete combinatorial optimization problems. They are

less susceptible to getting stuck at local optima than gradient search methods. We used

genetic algorithms to search for the best response strategy and Nash equilibrium. Our

problem requires searching through a huge number of possibilities in a search space whose

structure is not well known and GA’s have shown to perform well under such situations.

Figure 3.3 and 3.4 provides a high level overview of genetic algorithms. Figure 3.3

shows that GA’s are modelled loosely on the principles of the evolution via natural selection,

employing a population of individuals that undergo selection in the presence of variation-

inducing operators such as mutation and recombination (crossover). A fitness function is

used to evaluate individuals, and reproductive success varies with fitness. As shown in

Figure 3.3, a genetic algorithm starts by randomly generating an initial population. It then

computes and saves the fitness for each individual (solution) in the current population.

Based on the fitness of the population, the algorithm stochastically selects individuals from

the population to produce offspring via genetic operators like mutation and crossover.

3.3.1 Genetic operators

In the following section we describe and explain the most important and common

elements of GAs: populations of chromosomes (Figure 3.5), crossover as a genetic operator

to produce new offspring (Figure 3.6), and random mutation of new offspring (Figure 3.7).

Genetic algorithms assume that high-quality parent candidate solutions from different re-

gions in the space can be combined via genetic operators to produce high-quality offspring

candidate solutions. Figure 3.5 shows the chromosomes in a GA population taking the form

of bit strings. The chromosome is divided into genes (single bits) that encode a particular

element of the candidate solution.

Population

A population of individuals are maintained within search space for a GA, each

representing a possible solution to a given problem, as shown in the Figure 3.5.
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Figure 3.3: Figure showing GA as a method for moving from one population of chromosomes
(strings of ones and zeros) to a new population by using natural selection together with the
genetics-inspired operators of crossover and mutation.
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Figure 3.4: Figure showing the high-level overview of GA

Figure 3.5: Figure showing a population of chromosomes encoded as a bit string that refers
to a candidate solution to a problem. The chromosome is divided into genes (single bits)
that encode a particular element of the candidate solution. Each chromosome maps to a
proxy bid vector.
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Figure 3.6: Figure showing a crossover operation

Crossover

Crossover in biological terms refers to the blending of chromosomes from the par-

ents to produce new chromosomes for the offspring. The GA selects two strings at random

from the mating pool. Then a random splicing or crossover point is chosen in a string, the

two strings are spliced and the spliced regions are mixed to create two (potentially) new

strings. These child strings are then placed in the new population.

Mutation

Mutation is a genetic operator that alters one ore more gene values in a chromo-

some from its initial state. This can result in entirely new gene values being added to the

gene pool. With these new gene values, the genetic algorithm may be able to arrive at
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Figure 3.7: This operator randomly flips some of the bits in a chromosome. For example,
the string 01101011 might be mutated in its fourth position to yield 01111011. Mutation
can occur at each bit position in a string with some probability, usually very small (e.g.,
0.001).

better solution than was previously possible and which is not represented in the current

population. Mutation is an important part of the genetic search as it helps to prevent the

population from stagnating at local optima. The GA has a mutation probability, m, which

dictates the frequency with which mutation occurs. For each bit in each string in the mat-

ing pool, the GA checks to see if it should perform a mutation. If it should, it randomly

changes the element value to a new one. In our binary strings, 1s are changed to 0’s and

0’s to 1’s. Mutation is performed after the crossover operation.

3.4 Tabu Search

Figure 3.8 shows a high level overview of tabu search. Tabu search begins in the

same way as ordinary local or neighborhood descent search, proceeding iteratively from

one solution to another until a chosen termination criteria is satisfied. Each point in the

search space has an associated neighborhood reached by a move operation. The point of

departure between the simple descent methods and tabu search is that, in simple descent

methods, moves are permitted to the neighbor solutions that improve the current objective

function value and ends when no improving solution is found. In tabu search as in simulated

annealing non improving moves are also permitted. The simple descent method can get

stuck on a local optimum which in most cases might not be a global optimum. On the
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Figure 3.8: A high level overview of tabu search.
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other hand tabu search which allows non improving moves can cross the boundaries of

local optimum. Another difference between the other descent methods and tabu search is

use of adaptive memory in tabu search which keeps track of the exploration process. The

efficiency of the exploration process in tabu search is improved by keeping track of not only

the local information (like the current value of the objective function) but also of some

information related to the exploration process. It is thus based on procedures designed

to cross boundaries of local optimality and explores forbidden regions by systematically

imposing and releasing constraints.

3.4.1 Tabu search parameters

The important components of tabu search are the definition of neighborhood func-

tion, structure of the memory, aspiration criteria, tabu tenure and termination criteria. The

way we define these components or parameters and their values have a strong impact on

the quality of the search process.

Neighborhood function

The neighborhood function is applied at every iteration of tabu search to construct

a set of solutions from reachable current solution. Let x be a feasible solution belonging

to a set of feasible solutions X. A neighborhood function can be defined as N(x) where

j ∈ N(x) is a neighbor of x. The definition of a neighborhood function is a crucial factor

in tabu search and has a strong influence on the search procedure [1]. The choice of a

neighborhood function influences the trajectory followed in moving from one solution to

the next [14]. If a solution x is better than any other solution in its neighborhood then x

is a local optimum with respect to its neighborhood. A solution can be a local optimum if

we apply one neighborhood function but the same solution might not be a local optimum if

we apply another neighborhood function. Applying different neighborhood function to the

same problem provides different search trajectories. Tabu search is a flexible framework,

and depending on the nature of the problem and the representation of the solution, it allows

us to define neighborhood function in several different ways. In our experiments we have

used two different neighborhood functions. The first is called as toggle-bit and the second

k-deviation. We assume neighborhoods to be symmetric i.e. x′ is a neighbor of x if and
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Figure 3.9: Current solution and its neighboring solutions that can be reached by apply-
ing the toggle-bit neighborhood function. The shaded cell in the neighborhood solutions
specifies the bit that was toggled.

only if x is a neighbor of x′.

Toggle-bit neighborhood function

When we apply toggle-bit neighborhood function, the neighborhood of a solution

is a set of solutions that can be reached by toggling one bit in the solution. Figure 3.9

illustrates the results of applying toggle-bit neighborhood function on the binary vector

(010001). Since the solution in Figure 3.9 is represented by 6 bits, there are 6 neighbors.

The bit that has been toggled is shown by shading the background cell of the neighbor in

the figure 3.9.

Figure 3.10 shows the proxy vectors translated from the solutions in Figure 3.9.

The shaded cell in Figure 3.10 shows the value of the bundle that was changed as the result

of applying the toggle-bit neighborhood function.

K-deviation neighborhood function

We define the k-deviation neighborhood function is a systematic way of finding

neighbors of a solution in the proxy vector encoding by increasing and decreasing the value
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Figure 3.10: Proxy vectors translated from the solutions in figure 3.9.

of the agent for each bundle by a fixed value. Figure 3.11 shows the current solution and

its neighboring solutions that can be reached by applying the k-deviation neighborhood

function. In the k-deviation neighborhood function we increase and decrease the value of

the agent for each bundle by a constant amount equal to k. In Figure 3.11 the value of k

is 1. The current solution is (010001) and the resolution is 2. Since the resolution is 2 the

value for each bundle is represented by 2 bits. We take these 2 bits and increase its value

by 1 to find the upper neighbors. Similarly, to find the lower neighbors we decrease the

value of these 2 bits by k. In the example in Figure 3.11, the upper and lower neighbors of

the solution (010001) if we take the right most two bits as the agent’s value for a bundle

will be (010010) and (0100000). Unlike the toggle-bit neighborhood function, more than

one bit can be changed to get the neighboring solutions. In the example in Figure 3.11, the

value of k is 1. The shaded cells in the neighborhood solutions specifies the bit(s) that were

changed as a result of applying the neighborhood function.

Figure 3.12 shows the proxy vectors translated from the solutions in figure 3.11.

The shaded cell in figure 3.12 shows the value of the bundle that was changed as the result

of applying the toggle-bit neighborhood function.
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Figure 3.11: Current solution and its neighboring solutions that can be reached by applying
the k-deviation neighborhood function. The shaded cells in the neighborhood solutions
specifies the bit(s) that were changed as a result of applying the neighborhood function.

Figure 3.12: Proxy vectors translated from the solutions in figure 3.12.
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Figure 3.13: Figure showing the functioning of attribute based memory. The neighborhood
function used is toggle-bit. The attribute of the solution are the bit indices.

Memory mechanism

Tabu search makes use of memory to classify a subset of the moves in a neighbor-

hood as forbidden (or tabu). The notion of exploiting certain forms of flexible memory to

control the search process is the central theme underlying tabu search [35].

There are two types of adaptive memory used in tabu search: explicit memory and

attributive memory. As mentioned in Chapter 2, explicit memory records exact solutions

and is used to guide the search to avoid visiting solutions more than once. Since the complete

solution is recorded, explicit memory structure can have excessive memory requirements

depending on the memory required to store a solution and the number of solutions required

to be stored in the tabu list. The total memory requirement increases with the increase

in the length of the tabu list and the increase in the size of the solution. The amount of

memory required by explicit memory version of the algorithm can be limited by setting an

appropriate value of the length of the tabu-list. A good value of the length of tabu-list

depends on the nature of the problem that we are trying to solve and can be determined

empirically.

Another form of adaptive memory that tabu search makes use of is called attribu-

tive memory. The attribute based memory like explicit memory is also used to guide the

search to avoid visiting solutions more than once but rather than recording the exact so-

lutions, attribute based memory records information about solution attributes that change

in moving from one solution to another.
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Figure 3.13 demonstrates the functioning of attribute based memory in our im-

plementation. As shown in the example of Figure 3.13, the attribute of the solution when

we apply the toggle bit neighborhood function are the bit indices. In order to prevent the

search from toggling the same bit tried in the recent past, potentially reversing the effects

of previous moves, we will classify as tabu all indexes of the solution that have been used

previously, for a certain number of most recent moves. The index of the bit will be kept

tabu for a duration of a certain number of iterations called the tabu tenure. Figure 3.13

shows the content of a tabu list of size eight for two iterations. At iteration k the content

of the tabu list is (0, 3, 0, 2, 1, 0, 2, 0) which means that the bit at index 6 will be tabu for 3

iterations. Similarly, the bit at index 1 will not be allowed to flip for 2 more iterations. At

the next iteration k +1, we see that a better solution is reached by toggling bit 5. Since bit

5 was not a tabu, we proceed by toggling bit 5 and setting the tabu tabu tenure of bit 5 to

3 and decreasing the tabu tenure of all other bits by 1.

The structure of the attribute based memory in tabu search is dependent on the

type of the neighborhood function used. Figure 3.14 shows the functioning of attribute

based memory when the neighborhood function used is k-deviation. There are two at-

tributes of the solutions in this case. One attribute is the index of the bundle and the other

attribute is whether the value at that index is increased or decreased. As shown in Figure

3.14 there are two tabu list maintained for each bundle. One keeping track of the value

increments and the other keeping track of the decrements. Lets say that iteration at k + 1

as shown in the figure 3.14, a better solution is found by increasing the value of the bundle

at index 2. As a result of this the search process moves to iteration k + 1 by updating

the tabu list that is keeping track of the decrements. The value of the decrement tabu list

at index 2 is set to the tabu tenure of 3 in order to prevent the search from increasing its

value again on the next 3 iterations. Similar, logic can be applied to the next iteration k+2.

Aspiration criterion

Aspiration criteria is an important component of tabu search and is used to de-

termine when the tabu restrictions can be overridden. If a neighbor is found to be better

than the best solution found so far, it can be selected as a move even when it is tabu if it
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Figure 3.14: Figure showing the functioning of attribute based memory. The neighborhood
function used is k-deviation. There are two attributes of the solutions. One attribute is the
index of the bundle and the other attribute is whether the value at that index was increased
or decreased.
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Figure 3.15: Figure showing the affect of aspiration criteria during the search process. The
figure shows a solution and its neighboring solutions that can be reached by applying the
toggle-bit neighborhood function. The figure also shows the value of each solution, the
contents of the tabu list and sample aspiration values.

meets the aspiration criteria.

The affect of aspiration criteria can be shown with the help of an example in Figure

3.15. Figure 3.15 shows a solution and its neighbors that can be reached by applying the

toggle-bit neighborhood function. In the table on the right side of each solution is its value.

For example the value of solution (101010) is 50. Figure 3.15 also shows the contents of

the tabu list. The value of the current solution is 50 and the best neighboring solution,

with value is 42 is in the tabu list. Normally, if the solution is in the tabu list it cannot be

selected but the aspiration condition overrides that. In the example if the aspiration value

is 0.8 then any solution whose value is greater that 80 percent of the current value will be

selected if it is in the tabu list and is the best neighboring solution. Figure 3.15 shows the

current solution and next solution under two different aspiration values.
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Termination criterion

Just like the neighborhood function, the memory technique, and the aspiration cri-

teria, the termination criteria also influences the search procedure and the results. Following

are the two most common termination criteria used.

• The number of iterations is fixed to some value k.

• The number of iterations since the last improvement of the best solution is larger than

a specified number k.

3.4.2 Steps of tabu search

The many ways to define the neighborhood function, memory mechanism, aspira-

tion criteria and termination criteria provide a lot of parameters with which to fine tune the

search. We have implemented four variations to test in our experiments. The two types of

adaptive memory that we implement are expicit memory and attribute-based memory and

the two types of neighborhood functions that we implement are toogle-bit and k-deviation.

This results in four variations of the tabu search algorithm. The following sections presents

a formal description of the algorithm along with the four variations.

Algorithm

Initialization Randomly generate a starting solution xcurrent ∈ X. The number of bits in

the solution is equal to 2(number of goods) ∗ resolution and the size of the search space

will be 2(number of bits in the solution).

Record the current best known solution by setting xbest = xcurrent and the best surplus =

surplus(xbest).

IF explicit memory : Initialize the tabu list Tr. The length of the tabu list is equal to

the tabu tenure r and insert xcurrent as all the elements of the tabu list.

IF attribute-based memory AND toggle-bit neighborhood function : Initialize the tabu

list Tr. The length of the tabu list is equal to the number of bits in the solution. Set

each element of the tabu list to 0.
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IF attribute-based memory AND k-deviation neighborhood function : There are two

tabu lists denoted as T inc
r and T dec

r . Initialize the tabu list T inc
r and T dec

r . The length

of each of the tabu lists is equal to the number of bundles (i.e, 2number of goods). Set

each element of the tabu list to 0.

Choice of neighbor Determine N(xcurrent), the neighbors of the current solution.

IF toggle-bit neighborhood function : The neighborhood of a solution is a set of so-

lutions that can be reached by toggling one bit in the solution. The total number

of neighbors is equal to the number of bits in the solution (i.e, 2(number of goods) ∗

resolution).

IF k-deviation neighborhood function : The neighborhood of a solution is a set of

solutions that can be reached by deviating (increasing and decreasing) the value of

proxy bid for each bundle by k. The total number of neighbors is equal to two times

the number of bundles (i.e, 2(number of bundles)+1).

Find the objective function value for each of the neighbors xtrial ∈ N(xcurrent). The

objective is to maximize the function, f(x), which denotes the surplus to the agent

as a result of choosing the strategy x.

IF explicit memory : Choose the best xtrial ∈ N(xcurrent) such that either the

tabu condition (xtrial ∈ Tr) is violated or the aspiration criteria (surplus(xtrial) >

best surplus) is met.

IF attribute-based memory AND toggle-bit neighborhood function : Choose the best

xtrial
i ∈ N(xcurrent) such that either the tabu condition Tr(i) > 0 is violated or the

aspiration criteria (surplus(xtrial
i ) > best surplus) is met where Tr(i) represents the

value in the tabu list for index i.

IF attribute-based memory AND k-deviation neighborhood function : Choose the best

xtrial
i (inc/dec) ∈ N(xcurrent) such that either the tabu condition T

inc/dec
r (i) > 0 is vio-

lated or the aspiration criteria (surplus(xtrial
i (inc/dec)) > best surplus) is met where

Tr(i) represents the value in the tabu list for index i.

Update and termination Set xcurrent = xtrial chosen from the previous step.

Set xbest = xcurrent and best surplus = surplus(xcurrent) if surplus(xcurrent) >

best surplus.
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A B AB

Agent 1 25 15 45
Agent 2 20 20 45
Agent 3 10 25 40

Table 3.1: An example combinatorial auction problem with three agents and two items

IF explicit memory : Update the tabu list Tr by inserting xcurrent and removing the

solution that crossed its tabu tenure. The new solution is added to the front of the

list and the solution from the back of the list is removed.

IF attribute-based memory AND toggle-bit neighborhood function : Update the tabu

list Tr by setting the value of Tr(i) to the tabu-tenure r and decreasing the value of

Tr(−i) by 1.

IF attribute-based memory AND k-deviation neighborhood function : Update the tabu

list Tr by setting the value of T
inc/dec
r (i) to the tabu-tenure r and decreasing the value

of T
inc/dec
r (−i) by 1.

If a termination condition is met, then stop. Else go to the previous step: Choice of neighbor.

3.5 Results

To test the metaheuristic algorithms, we designed a set of problems and classified

them into different types depending on the size of the strategy space and the size of the

outcome space. Table 3.2 is a list of 13 problem types in increasing order of the size of the

outcome space. The size of the outcome space is |Si|
n where |Si| is the size of the strategy

space for agent i and n denotes the total number of agents. In our model, we assume that

the size of strategy space for each agent is the same. The size of the strategy space is

2l where l denotes the encoding length. The problem size grows exponentially with the

number of agents, items and resolution. Table 3.1 is an example problem with three agents

and two items. All the agents in the example of Table 3.1 have complementary preferences

(valuation of a particular bundle of items is greater than the the sum of valuations of the

individual items) and two of the agents are part of the optimal allocation. For a fixed

number of items and agents, there are several possible variations in constructing a problem
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Problem Num Resolution Num Encoding Strategy Outcome
Size Agents Items Length Space Space

1 2 1 2 3 8 102

2 2 2 2 6 64 4 ∗ 103

3 2 1 3 7 128 2 ∗ 104

4 2 3 2 9 512 2 ∗ 105

5 3 2 2 6 64 2 ∗ 105

6 3 3 2 9 512 2 ∗ 108

7 2 2 3 14 1.6 ∗ 104 2 ∗ 108

8 2 3 3 21 2 ∗ 106 4 ∗ 1012

9 3 2 3 14 1.6 ∗ 104 4 ∗ 1012

10 4 2 3 14 1.6 ∗ 104 4 ∗ 1016

11 3 3 3 21 2 ∗ 106 8 ∗ 1018

12 4 3 3 21 2 ∗ 106 2 ∗ 1025

13 4 2 4 30 109 1036

Table 3.2: Classification of problem types based on the number of agents, items and
resolution

by changing the valuation profile of the agents. For example, we can construct a problem

where the agents have sub-additive1 preferences and every item is allocated to a different

agent. We designed several problems by varying the number of agents, the number of items,

the resolution and the valuation profiles of the agents to make sure that the results are not

an artifact of a particular problem type.

Figure 3.16 and 3.17 are plots of the amount of time (in seconds) and the amount

of memory allocated (in MB) to search the space of bidding strategies of one agent and

find the surplus maximizing strategy using tabu search algorithm. For the graphs in Figure

3.16 and 3.17, we used an explicit memory version of the algorithm with the toggle bit

neighborhood function. We applied the algorithm on several problems with random starting

solutions and averaged out the results. The experiments were conducted on a single Apple

Macintosh machine. The processor was a 1 GHz PowerPC G4 with 1024MB memory. The

development environment was Macintosh Common Lisp version 5.0 on a Mac OS X version

10.2.8. It takes the tabu search algorithm approximately 30 minutes to do a heuristic search

on the space of bidding strategies of size of the order of 109.

Figure 3.18 and 3.19 are simulation results obtained by applying the search based

on genetic algorithm. We observed that the absolute running time required by genetic

1valuation of a particular bundle of items is less than the the sum of valuations of the individual items
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Figure 3.16: Convergence speed of tabu search as a function of problem size.

Figure 3.17: Memory Allocated by tabu search algorithm as a function of problem size.
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Figure 3.18: Convergence speed of genetic algorithm as a function of problem size.

Figure 3.19: Memory Allocated by genetic algorithm as a function of problem size.
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algorithm is more than what is required by tabu search. There are several factors that have

an effect on the total amount of time required by the program to run, such as the efficiency

of algorithm implementing the metaheurisct technique or the way memory is managed or

released within a program. We believe that the overall time can be reduced further by

improving the efficiency of the algorithm implementing the heuristic search. The results

in Figures 3.16, 3.17, 3.18 and 3.19 provides a general idea of an increasing trend of the

amount of time and memory required as the size of the problem grows. It is important

to note that even though the results indicate that tabu search is a superior metaheuristic

technique than genetic algorithm for the problem that we are trying to solve, we do not make

that conclusion. Further experiments needs to be carried out in order to do a comprhensive

comparison between the two techniques.

It is important to note that the actual time taken also depends on other factors

like the bid increment and the type of the auction. Increasing the bid increment results in a

faster convergence of the auction and hence can reduce the overall time. Therefore, we also

recorded the number of rounds taken to converge to the solution which is independent of

the configuration of the machine used, available memory and parameters like bid increment.

Figure 3.20 is a plot of the average and maximum number of rounds taken to converge to

an equilibrium by tabu search (explicit memory and toggle-bit neighborhood function).

Searching the space of bidding strategy once for each agent while keeping the strategies

of all other agents fixed is referred to as a single round. Applying the process of best

response dynamics can take several such rounds to converge to a Nash equilibrium. The

actual number of rounds taken to converge varies with the type of the problem, the starting

solution and the auction type. But we can estimate the maximum and average number of

rounds to converge for a problem of fixed size. We observe that the average and maximum

number of rounds to converge to a equilibrium remains the same till the problem of type

8 and then increases. The largest problem to which we applied the algorithm was of type

13 (refer to Figure 3.2) and it takes on an average 8.3 rounds to converge to a solution.

For the results in Figure 3.20 we used an explicit based memory version of the algorithm

with toggle-bit neighborhood function. The number of rounds elapsed for termination also

increased with the problem size. As shown in the Figure 3.20, we observed that the number

of rounds since the last improvement of the best solution for any agent becomes jumps

from 2 to 4 as we increase the problem size. We did not observe any noticeable difference

between the k-deviation and toggle-bit neighborhood functions. We parameterized the
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Figure 3.20: Simulation results of applying tabu search on various problem types.

tabu search algorithm and used explicit as well as attribute-based memory version of the

algorithm but our experience shows no noticable difference between the memory types and

the neighborhood function. The path taken to converge to a equilibrium depends on the

type of memory and neighborhood function used by the algorithm but we did not observe

any consistant evidence of one type of adpaptive memory or neighborhood function being

better than the other. We plan to do further tests on the effect of tabu search parameters

on the search trajectory and convergence time.

We carried out experiments to see the effect of the number of tabu search iterations

or the number of moves required by tabu search in each run on the quality of solution found.

An increase in the number of moves results in an increased coverage of the search space

but may not improve the quality of the solution found. If the number of moves are very

small then we are just searching a very small portion of the search space. We conducted

simulations to find an optimal value of the number of tabu search iterations for a specific

problem type. Figure 3.21 shows the experimental results of changing the numIter (number

of neighborhood moves) parameter on the number of rounds require to converge to a Nash

equilibrium. The experiment was performed on problems of various sizes. We observe

that for problems of type 9 and 10 the value of optimal numebr of iterations is 4. Setting
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Figure 3.21: Effect of number of neighborhood moves parameter on the number of rounds
require to converge

the number of iterations to more than 4 has no additional benefit and does not make the

algorithm converge faster whereas a value less than 4 leaves some part of the strategy space

uncovered.

We verified the results obtained from tabu search using enumeration. Based on

our simulation results we conclude that the quality of the solution found depends on tabu

search parameters like the termination criteria and the number of neighborhood moves. We

performed experments to find an optimal value of these parameters for a specific problem

type. Once the optimal value of these parameters are set, we observed that the candidate

equilibrium found is a Nash equilibrium. We verified our results using enumeration and

tested it for problems of size up to 13. In future we plan to verify the results for problems

of size more than 4 agents and 4 items. Figures 3.22 and 3.23 show the amount of strategy

space explored by tabu search to find the best response strategy for problems of various size.

For example, we notice that for problems of type 9 and 10 approximately 600 strategies

are evaluated from a space of 16000 strategies to find an optimal strategy. We verified this

using an exhaustive search and also noticed that there are several optimal solutions and not

just one. Figure 3.22 and 3.23 shows the size of the strategy space as a sum of evaluated

and unevaluated strategies.

We applied genetic algorithm to problems of various sizes. The path taken to

converge to a Nash equilibrium depends on the GA parameters like the population size,

number of generations and mutation probability. We conducted experiments to determine
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Figure 3.22: Amount of strategy space explored by tabu search to find the best response
strategy for problem size 2, 5 and 6.

Figure 3.23: Amount of strategy space explored by tabu search to find the best response
strategy for problem size 9 and 10.
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the optimum population size and the number of generations for a problem of a particular

type. We tried a range of population sizes and observed that a population size of 20 works

best for problems of type 9 or less. For problems of size 9 to 13, the population size increases

as the size of the strategy space increases. We tried a range of population sizes in multiples

of 10 before settling on a size that works best with a problem of a particular size.

3.6 Conclusion

We present an application of metaheuristic techniques for solving complex opti-

mization problems in the field of combinatorial auctions and game theory. Tabu search

and genetic algorithms prove to be a good approximate technique to solve the optimization

problem of finding the best response strategy in combinatorial auctions. The limitation of

this approach is that both tabu search and genetic algorithms are heuristic search tech-

niques and are not guaranteed to find the optimal solution. No clean proof of convergence

is known but our experiments show that the technique can be used to find good bidding

strategies in cases where it is computationally expensive to find an optimal bidding strat-

egy by enumeration. Our experiments show a significant reduction in the amount of search

space that needs to be explored.

3.7 Future work

There are several issues for future research. Investigating the application of other

search algorithms such as ant colonies, simulated annealing, scatter search and their hybrids.

Analyzing the effect of the search process and performance gains by tuning the various

genetic algorithm and tabu search parameters. We also plan to conduct further tests of

the algorithms on other possibly more complex and larger combinatorial auction problem

instances.
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Chapter 4

Geometric Approach for Finding

Nash Equilibria in Combinatorial

Auctions

In this chapter, we present a geometric approach for finding Nash equilibrium of

combinatorial auctions. In the previous two chapters, we formulated the problem of finding

a Nash equilibrium as a search through the space of best responses. The search algorithms

that we presented so far work on discrete strategy space. The techniques were based on the

assumption that combinatorial auctions can be formulated as a normal form game and the

algorithm requires that we run the auction to determine the payoff matrix. In this chapter,

we present a technique to compute the Nash equilibrium without running the auction and

without representing auctions as normal form games for every instance of a combinatorial

auction problem. The proposed technique requires analyzing normal form game represen-

tations of combinatorial auction problems of a particular type and then determines a closed

form solution. Once a general closed form solution of a particular problem size is deter-

mined then we do not need to construct a payoff matrix for every instance of a problem for

finding a Nash equilibrium. Nash equilibria can be determined by setting the appropriate
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parameters of the closed form solution. The technique that we present in this chapter is

based on an analytical approach and works on continuous strategy space. The analytical

technique that we refer to as the geometric approach exploits the structure of the game

and computes the Nash equilibrium. The advantages of the analytical approach is that we

have a closed form solution and the technique can be computationally more efficient than

a search on a discrete solution space. The drawback of the analytical approach is that

currently we can apply it to a limited set of problems and it works for problems of smaller

size whereas the search based approach is computationally intensive but can be applied

to a problem of arbitrary size. We think that both the search based and the analytical

approach are useful depending on the nature of the problem we are trying to solve. If

we can take advantage of the structure of the game then it is certainly useful to have a

closed form solution but in cases where there not much structure that can be exploited, the

search based approach on discrete solution space can serve as a useful tool to compute the

Nash equilibrium. The advantage of the discrete search is that we can apply it to arbitrary

problems without understanding the outcome space. On the other hand, the geometric

approach that we present in this chapter has the potential to give us exact solutions, but

it requires a much deeper understanding of the combinatorial auctions in order to apply

it. Once we have that, however, we don’t need to solve a large number of instances to find

the solution. We observed that in combinatorial auctions, the payoffs to bidders as a re-

sult of joint strategies have a structure that can be exploited in determining Nash equilibria.

Before introducing the geometric approach let us clarify what we mean by an ana-

lytical solution with the help of an example based on minimum-effort game. The minimum

effort game [43] is an N-person game in which players are members of a group. Each player i

chooses an effort level ei, i = 1, ..., n. Each player’s payoff equals the difference between the

minimum effort level of any of the group members (including the player himself) and the

cost of that player’s own effort. This game has often been interpreted as modeling the team

production problem in which the minimum effort level in a team is the key determinant

of the team’s output. There is an individual cost of per unit of effort. Thus the payoff is

the minimum effort multiplied by a constant amount minus the cost of one’s own effort.

Equation 4.1 gives the individual’s payoff as a function of his own choice as well as the

choice of other players. Each player chooses an effort from the interval [0, e]. In equation

(4.1), we assume that a > b. Efforts are required to be greater than or equal to a specified
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(1) (2) (3) (4) (5)

(1) (5, 5)∗ 5, 4 5, 3 5, 2 5, 1

(2) 4, 5 (10, 10)∗ 10, 9 10, 8 10, 7

(3) 3, 5 9, 10 (15, 15)∗ 15, 14 15, 13

(4) 2, 5 8, 10 14, 15 (20, 20)∗ 20, 19

(5) 1, 5 7, 10 13, 15 19, 20 (25, 25)∗

Table 4.1: Normal from representation of a minimum effort game.

lower bound, and to be less than or equal to an upper bound.

pi(e1, ..., en) = a ∗ min
j=1,...,n

{ej} − b ∗ ei, i = 1, ..., n (4.1)

Table 4.1 is an example of a minimum-effort game represented in normal form.

The normal form game of Table 4.1 has two players and the action space of each player is

a discrete set of five effort levels. The payoff matrix is computed by using equation (4.1)

and setting the values of a = 6 and b = 1. The game in Table 4.1 has five Nash equilibria

in pure strategies. The pure-strategy Nash equilibria are symmetric and are Pareto-ranked.

The uniform profile with every player using effort level 5 is the Pareto efficient one. The

profile with every player playing effort level 1 is the worst Nash equilibrium in terms of the

social welfare. Table 4.2 shows the payoffs of an individual player in an another example

of a minimum-effort game with more than two players and with values of the constants a

and b of the payoff equation 4.1 equal to 10 and 1, respectively. Table 4.2 shows the payoffs

of any one player with respect to his own effort and the minimum effort of the group. The

payoffs in Table 4.2 can be used to construct a game in normal form and the Nash equilibria

can be easily determined. An interesting question is that is it possible to take advantage

of the properties of the payoff function to determine a closed form solution. Once we have

closed form solution then it can be applied to any game of the same type.

By examining the payoff matrix in Table 4.2, we observe that irrespective of the

number of players and the cost of the minimum effort (as long as a > b in equation 4.1), any

common effort constitutes a Nash equilibrium. An important feature of the payoff function

is that a unilateral increase in effort will not affect the minimum effort and results in a

reduced payoff. A unilateral decrease reduces the minimum by more than the cost savings.
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(8) (7) (6) (5) (4) (3) (2) (1)

(8) 72∗ 62 52 42 32 22 12 2

(7) - 63∗ 53 43 33 23 13 3

(6) - - 54∗ 44 34 24 14 4

(5) - - - 45∗ 35 25 15 5

(4) - - - - 36∗ 26 16 6

(3) - - - - - 27∗ 17 7

(2) - - - - - - 18∗ 8

(1) - - - - - - - 9∗

Table 4.2: Payoffs of the row player with respect to his own effort and the minimum effort
of the group in a minimum effort game.

The dilemma for an individual is that better outcomes require higher effort but entail more

risk. The minimum effort game has a specific structure that can be identified and taken

advantage of and a closed form solution can written without actually creating a normal

form game and computing the payoffs for every strategy combination. Moreover, the set of

equilibria is unaffected by changes in the number of participants, the size of the action space

or the cost of the effort. The magnitude of the payoff to each player depends on factors

like the effort cost, number of players and the action space but the best responses do not

depend on these factors. The payoff structure of the minimum-effort game is such that it

produces a continuum of pure-strategy Nash equilibria. These equilibria are Pareto-ranked

because all individuals prefer the equilibrium with the highest effort levels for all.

The minimum effort game is a simple and well studied game and has an analyt-

ical solution to determine the Nash equilibria. Many other games, including multi-player

prisoner’s dilemma, traveling salesman, arms race, Cournot duopoly, first-price and second-

price sealed-bid auctions have known analytical solutions [30]. The main contribution of

this chapter is a technique to analytically determine the Nash equilibria of combinatorial

auctions. In the following sections, we illustrate our technique using single item auctions

and then extend it to combinatorial auctions.

4.1 Applying geometric approach to single item auctions

Consider a first-price sealed bid auction where the item is allocated to the highest

bidder and the winner pays the price she bids. The first-price sealed bid auction can be
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(0) (1) (2) (3) (4) (5) (6) (7)

(0) 10, 0 0, 6 0, 5 0, 4 0, 3 0, 2 0, 1 0, 0

(1) 9, 0 9, 0 0, 5 0, 4 0, 3 0, 2 0, 1 0, 0

(2) 8, 0 8, 0 8, 0 0, 4 0, 3 0, 2 0, 1 0, 0

(3) 7, 0 7, 0 7, 0 7, 0 0, 3 0, 2 0, 1 0, 0

(4) 6, 0 6, 0 6, 0 6, 0 6, 0 0, 2 0, 1 0, 0

(5) 5, 0 5, 0 5, 0 5, 0 5, 0 5, 0 0, 1 0, 0

(6) 4, 0 4, 0 4, 0 4, 0 4, 0 4, 0 (4, 0)∗ 0, 0

(7) 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 3, 0 (3, 0)∗

(8) 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0 2, 0

(9) 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0 1, 0

(10) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0

Table 4.3: Normal from representation of First-Price Sealed-Bid Auction. The valuation of
bidder is 10 and the valuation of bidder 2 is 7. Bidder 1 is the row player and Bidder 2 is
the column player.

formulated as a normal form game in which the n bidders represent the n players. The

set of possible actions of each player is the set of possible bids. The payoff of player i is

vi − bi if bi is higher than every other bid. Let us assume that if there is a tie for the

highest bid then the bidder having a lower index wins. For example if there is a tie between

bidder 2 and bidder 5 then the item is allocated to bidder 2. The payoff for all other players

who are not winner is 0. In our model, we assume that bidders won’t bid more than their

true valuations. Table 4.3 is the payoff matrix for a 2 player first-price sealed-bid auction

problem where v1 = 10 and v2 = 7 and the bidders can submit bids in increments of 1,

starting from 0, up to their valuations.

Every possible combination of strategies (one strategy from each bidder) and the

corresponding payoffs to each bidder represents an outcome of the auction. In our example,

the strategy space for each bidder has a single dimension, and the outcome space is two

dimensional. There are 70 possible outcomes and we divide the space of the outcomes into

two regions. Region R1 includes outcomes where the item is allocated to bidder 1 (i.e,

outcomes which satisfies the conditions of b1 ≥ b2). The surplus to bidder 1 in region R1

is v1− b1 and the surplus to bidder 2 is 0. Similarly, region R2 includes outcomes where the

item is allocated to bidder 2 (i.e, outcomes which satisfies the conditions of b2 > b1). For

any point within the region R2, the surplus for bidder 2 is v2− b2 and the surplus for bidder

1 is 0. Let the space of outcomes be denoted by Θ. The regions are mutually exclusive and

exhaustive and R1 ∪R2 = Θ. As shown in Figure 4.1, the outcome space is separated into
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regions by the line b1 = b2. The regions plotted on panel (a) of two dimensional Figure of

4.1 follows the same pattern irrespective of the size of the strategy space and the valuations

of the bidder. The regions will exhibit a similar pattern for more than two bidders and for

continuous strategy space. Panel (b) of Figure 4.1, shows the best response strategies of

both the bidders. Best response of bidder 1 is to always bid b2. Best response of bidder 2

is to outbid bidder 1 by the minimum amount permitted by the strategy space up to his

valuations. Let βi(b−i) denote the best responses of bidder i as a function of the all other

agent’s strategy. Equations 4.2, 4.3 and 4.4 is the best response function of the two bidders.

β1(b1) = b2 (4.2)

β2(b2) = b1 + 1 if b1 ≤ (v2 − 1) (4.3)

β2(b2) = [0, v2] if b1 ≥ v2 (4.4)

As we can see from equations 4.2, 4.3 and 4.4, the best response functions of

bidders participating in a first-price sealed-bid auction can be written in a closed form.

Once the best response functions are written in a closed form, then they can be plotted and

visualized or can be solved as a system of simultaneous equations to determine the Nash

equilibrium. This leads us to study best response functions of bidders in combinatorial

auctions. It is a well understood that the intersection of best response functions results in

Nash equilibria. In this chapter, we present preliminary results of deriving closed form best

response functions of bidders in combinatorial auctions. We also propose a novel technique

which we refer to as the geometric approach to determine the Nash equilibrium. Following

is a description of the technique with the help of the same example of first price sealed bid

auction.

Figure 4.2 is a plot of the utility function of each bidder with payoffs defined in

Table 4.3. The x-axis represents the bids of bidder 1 and the y-axis represents the bids of

bidder 2. The z-axis represents the utility. It is evident from Figure 4.2 that the utility

functions are not random and have a structure that can be explained. The utility function

of bidder 1 in region R1 is the equation of a plane with a constant slope, and the utility of

bidder 1 is 0 in region R2. The utility of bidder 1 is highest at the xy-coordinates (0, 0) and

it gradually decreases as we traverse the boundaries from (0, 0) to (10, 0) and (0, 0) to (7, 7).

The utility function of bidder 2 is also a plane with a constant slope. The utility of bidder

2 is highest at the xy-coordinates (0, 1) and it gradually decreases as we traverse from (0, 1)
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(a) (b)

Figure 4.1: Panel (a): Regions in the outcome space of first price sealed bid auction with 2
bidders. , Panel (b): Best response strategies of the bidders and Nash equilibria as a result
of the intersection of the best response strategies.

to (0, 7) and (0, 1) to (6, 7). Figure 4.3 illustrates how we can exploit the structure of the

utility functions to determine the Nash equilibrium. For all the outcomes that fall in the

region R2, the item is allocated to bidder 2. From any point within the region R2, bidder

1 can move to region R1. With reference to Figure 4.3, bidder 2 can move horizontally by

changing its bid amount and bidder 1 can move vertically by changing the value of its bid

b1. The surplus of bidder 1 in region R2 is 0 and the surplus for bidder 1 in region R1 is

always greater than 0. Since, bidder 1 can always move from R2 to R1 and can be better

off, any outcome within region R2 will never be a Nash equilibrium. In this way, we have

identified a portion of the outcome space that will never contain a outcome constituting a

Nash equilibrium. Region R1 can be further partitioned into two regions R1−L and R1−R,

such that R1−L ∪ R1−R = R1. The property of region R1−L is that bidder 2 can move

from any point within the region R1 − L to region R2 by increasing its bid amount and

improve its surplus. Using the basic definition of Nash equilibrium, the set of strategies and

the corresponding payoffs in region R1−L do not constitute the Nash Equilibrium because

bidder 2 can benefit by changing its strategy while bidder 1 keeps its strategies unchanged.

Since v2 < v1, in R1−R, bidder 2 cannot move vertically by increasing its bid to obtain a
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Figure 4.2: Utility function of the bidders for first-price sealed-bid auction.

positive surplus. As shown in Figure 4.2, the utility of bidder 1 in region R1 is such that,

keeping b1 constant, bidder 2 gets the maximum surplus at the boundary line separating

the two regions. The line b1 = b2 dominates any point in region R1 with respect to bidder

1′s surplus. Due to the specific structure of the utility function of bidder 1, only outcomes

at the boundary line can be a Nash equilibrium. The result of the analysis leads us to the

conclusion that there are two Nash equilibria in our example: either both agents bid 6 or

both bid 7.

Based on our analysis, we can provide an analytical solution to the Nash equilib-

rium of first price sealed bid auction with two bidders. Let v1 < v2 and let δ denote the

resolution of the discrete strategy space. The size of the strategy space for each bidder i

is vi

δ + 1. There will be two Nash equilibria for the game with strategy profile (v2, v2)

and (v2 − δ, v2 − δ). We can extend the same analysis to multiple bidders and continuous

strategy space. In all equilibria, the item is allocated to the bidder who values it most

highly. Assuming that there are n players and the player’s valuations of the object are all

different and all positive. For convenience, we number the players 1 through n in such a

way that v1 > v2 > ...vn > 0. Applying the geometric approach allows us to conclude

(v2, v2, v3, ..., vn) to be a Nash equilibrium.

Consider another example of a second-price sealed-bid auction where the item is

allocated to the highest bidder and the winner pays the price equal to the second highest
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Figure 4.3: Results of applying geometric approach to the problem of first-price sealed-bid
auction for computing Nash equilibria.

(0) (1) (2) (3) (4) (5) (6) (7)

(0) 10, 0 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7 0, 7

(1) 10, 0 9, 0 0, 6 0, 6 0, 6 0, 6 0, 6 0, 6

(2) 10, 0 9, 0 8, 0 0, 5 0, 5 0, 5 0, 5 0, 5

(3) 10, 0 9, 0 8, 0 7, 0 0, 4 0, 4 0, 4 0, 4

(4) 10, 0 9, 0 8, 0 7, 0 6, 0 0, 3 0, 3 0, 3

(5) 10, 0 9, 0 8, 0 7, 0 6, 0 5, 0 0, 2 0, 2

(6) 10, 0 9, 0 8, 0 7, 0 6, 0 5, 0 4, 0 0, 1

(7) (10, 0)∗ (9, 0)∗ (8, 0)∗ (7, 0)∗ (6, 0)∗ (5, 0)∗ (4, 0)∗ (3, 0)∗

(8) (10, 0)∗ (9, 0)∗ (8, 0)∗ (7, 0)∗ (6, 0)∗ (5, 0)∗ (4, 0)∗ (3, 0)∗

(9) (10, 0)∗ (9, 0)∗ (8, 0)∗ (7, 0)∗ (6, 0)∗ (5, 0)∗ (4, 0)∗ (3, 0)∗

(10) (10, 0)∗ (9, 0)∗ (8, 0)∗ (7, 0)∗ (6, 0)∗ (5, 0)∗ (4, 0)∗ (3, 0)∗

Table 4.4: Normal from representation of second-price sealed-bid auction. The valuation of
bidder is 10 and the valuation of bidder 2 is 7. Bidder 1 is the row player and Bidder 2 is
the column player.
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(a) (b)

Figure 4.4: Panel (a): Regions in the outcome space of second price sealed bid auction with
2 bidders. , Panel (b): Best response strategies of the bidders and Nash equilibria as a
result of the intersection of the best response strategies.

bid. The second-price sealed bid auction can be formulated as a normal form game in which

the n bidders represent the n players. The set of actions, or strategies, of each player is the

set of possible bids. Each player’s valuations of the object is represented by vi and each

player i submits a sealed bid bi. If player i’s bid is higher that every other, she obtains

the object at a price equal to the second highest bid, say bj, and hence receives the payoff

vi − bj. We assume the same tie breaking rule (i.e, if there is a tie for the highest bid then

the bidder having a lower index wins). The payoff for all other players who are not winner

is 0. Table 4.4 is the payoff matrix for a 2 player first-price sealed-bid auction problem

where v1 = 10 and v2 = 7 and the bidders can submit bids in increments of 1 starting from

0 up to their valuations.

Panel (a) of Figure 4.4 illustrates the two regions based on the whether the item

is allocated to bidder 1 or bidder 2. For all the outcomes in region R1, the item is allocated

to bidder 1 and the surplus of bidder 1 is v1 − b2. Similarly, for all the outcomes in region

R2, the item is allocated to bidder 2 and the surplus of bidder 2 is v2 − b1, whereas the

surplus of bidder 1 is 0. Panel (b) of Figure 4.4 is a plot of the best response functions of the
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Figure 4.5: Utility function of the bidders for second-price sealed-bid auction.

bidders and the Nash equilibria as a result of the intersections of the best response functions.

Figure 4.5 is a plot of the utility function of the bidders and Figure 4.6 shows the

results of applying the geometric approach for computing Nash equilibria. Bidder 1 can

unilaterally move from region R2 to region R1 by increasing its bid and hence any outcome

in region R2 is not a Nash equilibria. Region R1 is further partitioned into region R1− L

and R1−R such that R1− L ∪R1−R = R1. Bidder 2 can unilaterally move from region

R1−L to region R2 by increasing its bid and hence any outcome in region R1−L is not a

Nash equilibria. Regions R2 and R1−L are ruled out as they do not satisfy the conditions

of Nash equilibrium. For any outcome in the region R1 −R, bidder 2 can not unilaterally

move to a different region because all bids by bidder 1 in region R1 − R are greater than

or equal to the valuation of bidder 2. Within region R1 − R and keeping the strategy of

bidder 2 fixed, all strategies for bidder 1 results in the same surplus. Hence, every outcome

within the region R1−R is a Nash equilibrium. The technique can be applied to multiple

players and with a continuous bidding strategy. The game has many Nash equilibria and

one of which is that each player bid is equal to her valuation of the object.
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Figure 4.6: Results of applying geometric approach to the problem of second-price sealed-bid
auction for computing Nash equilibria.

4.2 2-agent 2-item combinatorial auctions

In the previous section, we applied the geometric approach to determine pure

strategy Nash equilibria of single item first-price and second-price sealed bid auctions. In

this section, we apply the geometric approach for determining Nash equilibrium for a gen-

eral 2-agent 2-item combinatorial auction problem. In the later sections of this chapter, we

present problems with more than two agents and two items. We model combinatorial auc-

tions as multi-player complete information game and assume that the bidders participating

in the auction follow a myopic best-response bidding strategy. As in the previous chapters,

we follow the model in which a bid vector representing the bidder’s maximum willingness

to pay over all the possible combination of items submitted to the proxy agent constitutes

a strategy. We adopt an approach that takes advantage of the patterns and structure of the

payoff matrix. The approach partitions the space of outcomes into regions and we derive

equations for the utility of bidders in each region and the conditions under which bidders

have no incentive to deviate from one region to another. We solve a general two agent and

two item combinatorial auction problem using the technique and present the results for one

instantiation of the problem.

For a 2-agent and 2-item problem, there are four possible feasible allocations. The



77

Allocations

A B Regions Utility

b1(AB) ≥ b1(A) + b2(B) u1(R11) = v1(AB) − b2(AB)

R11 Agent 1 Agent 1 b1(AB) ≥ b1(B) + b2(A) u2(R22) = 0

b1(AB) ≥ b2(AB)

b1(A) + b2(B) ≥ b1(B) + b2(A) u1(R12) = v1(A) − [b2(AB) − b2(B)]

R12 Agent 1 Agent 2 b1(A) + b2(B) ≥ b1(AB) u2(R12) = v2(B) − [b1(AB) − b1(A)]

b1(A) + b2(B) ≥ b2(AB)

b1(B) + b2(A) ≥ b1(A) + b2(B) u1(R21) = v1(B) − [b2(AB) − b2(A)]

R21 Agent 2 Agent 1 b1(B) + b2(A) ≥ b1(AB) u2(R21) = v1(A) − [b1(AB) − b1(B)]

b1(B) + b2(A) ≥ b2(AB)

b2(AB) ≥ b1(A) + b2(B) u1(R22) = 0

R22 Agent 2 Agent 2 b2(AB) ≥ b1(B) + b2(A) u2(R22) = v2(AB) − b1(AB)

b2(AB) ≥ b1(AB)

Table 4.5: Division of the outcome space for 2-agent and 2-item problem. The four regions
corresponds to the four possible allocations.
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four feasible allocations are: (AB → Agent 1), (AB → Agent 2), (A → Agent 1, B →

Agent 2) and (A → Agent 2, B → Agent 1) and hence there are 4 base regions.

The strategy space for each bidder is three dimensional (one dimension for each of the

bundle excluding the null bundle). Since there are two bidders and 3 bundles , the space

of outcomes is six dimensional. Each axis of the outcome space ranges from 0 to the

maximum valuations of the bidder for the bundle corresponding the the axis. For exam-

ple, in the 2-agent 2 -item problem, the six axis of the 6-dimensional outcome space are

b1(A), b1(B), b1(AB), b2(A), b2(B)and b2(AB). The value of the axis b1(A) ranges from 0

to v1(A) and similarly the value of the other axis also range from 0 to the agent’s valuations

for the bundle.

Table 4.5 illustrates the division of the 6-dimensional outcome space for 2-agent

and 2-item problem. The four regions correspond to the four possible allocations. We adopt

a notation where R is denoted by the region and the subscript of R is a n-digit number.

The n in the subscript of R corresponds to the set of n items. The value of each digit in

the n-digit number corresponds to the agent id to which the item is allocated. For example

a region R12 means the set of outcomes where item A is allocated to agent 1 and item

B is allocated to agent 2. For a 3-Agent 3-Item problem region R213 signifies item A is

allocated agent 2, item B to agent 1 and item C to agent 3. Table 4.5 shows the equations

for the utility of each agent within every region for the Ascending Package Auction [2].

We derived the equations for the utility within every region by observing the outcome of

several runs of the auction with varying input (valuations). The equations for the utility

functions in Table 4.5 holds true as long as the values of the agents satisfy the free disposal

property. Free disposal means that the value of union of any two bundles is greater than or

equal to the value of any component bundles. This is standard assumption in the literature

on combinatorial auctions. An interesting and useful phenomenon we observed is that the

utility of an agent in a region can be written in a closed form and is dependent on a small

set of variables. For instance, the utility of agent 1 in region R11 is v1(AB) − b2(AB)

and is only dependent on b2(AB) and not on other variables like b1(A) or b1(B). One of

the fundamental assumption for our geometric approach technique to work is to be able to

write closed form utility functions of agents within a region.

The next step is to determine the change in utility of an agent if it moves from one
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Source Destination Change in utility Constraints

R11 R12
△u1(R11 → R12) = b2(B) −
[v1(AB) − v1(A)]

[v1(AB) − v1(A)] ≥ b2(B)

R11 R21
△u1(R11 → R21) = b2(A) −
[v1(AB) − v1(B)]

[v1(AB) − v1(B)] ≥ b2(A)

R11 R22
△u1(R11 → R22) =
b2(AB) − v1(AB)

v1(AB) ≥ b2(AB)

R12 R11
△u1(R12 → R11) =
[v1(AB) − v1(A)] − b2(B)

b2(B) ≥ [v1(AB) − v1(A)]

R12 R21

△u1(R12 → R21) =
[v1(B) − v1(A)] − [b2(B) −
b2(A)]

[b2(B) − b2(A)] ≥ [v1(B) −
v1(A)]

R12 R22
△u1(R12 → R22) =
[b2(AB) − b2(B)] − v1(A)

v1(A) ≥ [b2(AB) − b2(B)]

Table 4.6: Change in the utility of Agent 1 when it moves from one region to another
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Source Destination Change in utility Constraints

R21 R11
△u1(R21 → R11) =
[v1(AB) − v1(B)] − b2(A)

b2(A) ≥ [v1(AB) − v1(B)]

R21 R12

△u1(R21 → R12) =
[v1(A) − v1(B)] − [b2(A) −
b2(B)]

[b2(A) − b2(B)] ≥ [v1(A) −
v1(B)]

R21 R22
△u1(R21 → R22) =
[b2(AB) − b2(A)] − v1(B)

v1(B) ≥ [b2(AB) − b2(A)]

R22 R11
△u1(R22 → R11) =
v1(AB) − b2(AB)

b2(AB) ≥ v1(AB)

R22 R12
△u1(R22 → R12) = v1(A) −
[b2(AB) − b2(B)]

[b2(AB) − b2(B)] ≥ v1(A)

R22 R21
△u1(R22 → R21) = v1(B) −
[b2(AB) − b2(A)]

[b2(AB) − b2(A)] ≥ v1(B)

Table 4.7: Change in the utility of Agent 1 when it moves from one region to another
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region to another. Keeping the bids of all other agents the same, an agent can change the

auction allocation by changing its proxy bid. For example, agent 1 can move from region

R11 to region R22 by bidding lower on b1(AB) such that the condition b1(AB) < b2(AB)

becomes true. For a problem with 2-agents and 2-items there are 6 dimensions in the out-

come space and any one agent has 3 degrees of freedom to transition from one region to

another. Utilizing the utility equations within every region from Table 4.5 we can find out

the change in utility of an agent as it moves from one region to the other. Tables 4.6, 4.7,

4.8 and 4.9 enumerate all the possible transitions of each agent and the change in the utility.

For every transition, Tables 4.6, 4.7, 4.8 and 4.9 also lists the constraints under which the

change in utility is positive. For example, agent 1 will not be better off by moving from re-

gion R11 to R12 if [v1(AB) − v1(A)] ≥ b2(B). If the condition [v1(AB) − v1(A)] ≥ b2(B)

is true then agent 1 does not have an incentive to unilaterally deviate from region R11 to

region R12. Once the utility functions of agents for each region are known then it is straight

forward to compute the change in utility for any transition. The change in utility for agent i

from a source region RS to the destination region RD denoted by △ui(RS → RD) is simply

the difference of ui(RD) and ui(RS). It is also straight forward to compute the constraints

under which the agents have or do not have an incentive to deviate from one region to

another. The constraints under which agent i has an incentive to move from region (RS)

to (RD) can be obtained by solving the equation ui(RD) − ui(RS) ≥ 0. Tables 4.6, 4.7,

4.8 and 4.9 enumerate all the constraints for a general 2-agent 2-item problem.

For a 2-agent 2-item problem there are four possible regions. From any single

region, there are three possible regions for each agent to move to. By combining all the

constraints from Table 4.6 and 4.7 and a similar table for the other agents, we can determine

all the Nash equilibria. Following the definition of Nash equilibrium, we determine a subset

of the outcomes of a region where no agent has an incentive to unilaterally deviate. For

example, the set of Nash equilibria in the region R11 contains outcomes that satisfies the

six constraints: u1(R12) − u1(R11) ≥ 0, u1(R21) − u1(R11) ≥ 0, u1(R22) − u1(R11) ≥ 0,

u2(R12)−u2(R11) ≥ 0, u2(R21)−u2(R11) ≥ 0 and u2(R22)−u2(R11) ≥ 0. Table 4.10 shows

the results of applying the geometric approach to a general 2-Agent 2-Item problem. Nash

equilibria of a 2-Agent 2-Item problem is the set N11 ∪ N12 ∪ N21 ∪ N22.

Following is a high level description of the technique in two steps.

Step 1 : The algorithm begins by first identifying all the possible feasible allocations for n
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Source Destination Change in utility Constraints

R11 R12
△u2(R11 → R12) = v2(B) −
[b1(AB) − b1(A)]

[b1(AB) − b1(A)] ≥ v2(B)

R11 R21
△u2(R11 → R21) = v2(A) −
[b1(AB) − b1(B)]

[b1(AB) − b1(B)] ≥ v2(A)

R11 R22
△u2(R11 → R22) =
v2(AB) − b1(AB)

b1(AB) ≥ v2(AB)

R12 R11
△u2(R12 → R11) =
[b1(AB) − b1(A)] − v2(B)

v2(B) ≥ [b1(AB) − b1(A)]

R12 R21

△u2(R12 → R21) =
[v2(A) − v2(B)] − [b1(A) −
b1(B)]

[b1(A) − b1(B)] ≥ [v2(A) −
v2(B)]

R12 R22
△u2(R12 → R22) =
[v2(AB) − v2(B)] − b1(A)

b1(A) ≥ [v2(AB) − v2(B)]

Table 4.8: Change in the utility of Agent 2 if it moves from one region to another
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Source Destination Change in utility Constraints

R21 R11
△u2(R21 → R11) =
[b1(AB) − b1(B)] − v2(A)

v2(A) ≥ [b1(AB) − b1(B)]

R21 R12

△u2(R21 → R12) =
[v2(B) − v2(A)] − [b1(B) −
b1(A)]

[b1(B) − b1(A)] ≥ [v2(B) −
v2(A)]

R21 R22
△u2(R21 → R22) =
[v2(AB) − v2(A)] − b1(B)

b1(B) ≥ [v2(AB) − v2(A)]

R22 R11
△u2(R22 → R11) =
b1(AB) − v2(AB)

v2(AB) ≥ b1(AB)

R22 R12
△u2(R22 → R12) = b1(A) −
[v2(AB) − v2(B)]

[v2(AB) − v2(B)] ≥ b1(A)

R22 R21
△u2(R22 → R21) = b1(B) −
[v2(AB) − v2(A)]

[v2(AB) − v2(A)] ≥ b1(B)

Table 4.9: Change in the utility of Agent 2 if it moves from one region to another
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agents and m items. For a problem with n agents and m items, the space of outcome is d

dimensional where d = n(2m − 1) . Each agent’s bid for a bundle represents one axis in

the d-dimensional space. The range for each axis is from 0 to the value of the agent for that

bundle. Each feasible allocation represents a region in the d-dimensional space and contains

the set of bids that results in that particular allocation. Within each region, the sum of the

bids for the allocated item is more than the sum of bids for any other feasible allocations.

The regions are mutually exclusive and exhaustive. After the regions are identified, the

next task is to determine the equations for prices of the bundles which result in a particular

allocation within each region. This involves analytically deriving the market clearing bundle

prices. Once the price for each winning bundle is determined the utility of each agent can

be determined in a straightforward manner. An agent’s utility is simply its value for the

allocation f minus the price it pays for the bundle it receives as part of the allocation i.e

ui(f) = vi(f) − pi(f).

Step 2 :Once the space of outcomes is divided into regions and the utility of each

agent within a region is computed, the next step is to compute the change in the utility

of each agent as the agent moves from region to the other. Also, determine the conditions

under which the agent has no incentive to deviate from one region to the other. Finally,

determine the Nash Equilibria as the subset of each region by simplifying the equations

obtained from the first two steps.

4.2.1 Example problem with 2 Agents and 2 Items

Using geometric approach, we provided a solution to a general 2-agent and 2-item

problem. Once we have the solution, it can be applied to any instantiation of a 2-agent

2-item problem. Table 4.11 shows a combinatorial auction problem with two agents and

two items. After simplifying the results obtained for a general 2-agent 2-item problem from

Table 4.10, we can directly get the solution for the problem defined in Table 4.11. The Nash

equilibria for the problem in Table 4.11 is listed in Table 4.12.

For the combinatorial auction problem defined in Table 4.11, any point in the

region R21 can not be a Nash Equilibrium because the constraint b2(A) ≥ [v1(AB) −

v1(B)] defined in Table 4.6 and 4.7 for the region R21 can never be true. The value of

v1(AB) − v1(B) is 30 and the maximum value of b2(A) is v2(A) which is equal to 10.

Agent 1 can always deviate from region R21 to R11 and increase its utility. Another reason
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Nash Agent 1 Constraints Agent 2 Constraints

[v1(AB) − v1(A)] ≥ b2(B) [b1(AB) − b1(A)] ≥ v2(B)
N11 ⊆ R11 [v1(AB) − v1(B)] ≥ b2(A) [b1(AB) − b1(B)] ≥ v2(A)

v1(AB) ≥ b2(AB) b1(AB) ≥ v2(AB)

b2(B) ≥ [v1(AB) − v1(A)] v2(B) ≥ [b1(AB) − b1(A)]
N12 ⊆ R12 [b2(B) − b2(A)] ≥ [v1(B) − v1(A)] [b1(A) − b1(B)] ≥ [v2(A) − v2(B)]

v1(A) ≥ [b2(AB) − b2(B)] b1(A) ≥ [v2(AB) − v2(B)]

b2(A) ≥ [v1(AB) − v1(B)] v2(A) ≥ [b1(AB) − b1(B)]
N21 ⊆ R21 [b2(A) − b2(B)] ≥ [v1(A) − v1(B)] [b1(B) − b1(A)] ≥ [v2(B) − v2(A)]

v1(B) ≥ [b2(AB) − b2(A)] b1(B) ≥ [v2(AB) − v2(A)]

b2(AB) ≥ v1(AB) v2(AB) ≥ b1(AB)
N22 ⊆ R22 [b2(AB) − b2(B)] ≥ v1(A) [v2(AB) − v2(B)] ≥ b1(A)

[b2(AB) − b2(A)] ≥ v1(B) [v2(AB) − v2(A)] ≥ b1(B)

Table 4.10: Nash equilibria in 2-Agent 2-Item problem

A B AB

Agent 1 25 15 45
Agent 2 10 25 40

Table 4.11: Example problem where both the agents have complementary preferences
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Nash Region

0 ≤ b1(A) ≤ b1(AB) − 25
0 ≤ b1(B) ≤ 15
40 ≤ b1(AB) ≤ 45

N11

0 ≤ b2(A) ≤ 10
0 ≤ b2(B) ≤ 20
0 ≤ b2(AB) ≤ 40

15 ≤ b1(A) ≤ 25
0 ≤ b1(B) ≤ 15
35 ≤ b1(AB) ≤ b1(A) + b2(B)

N12

0 ≤ b2(A) ≤ 10
20 ≤ b2(B) ≤ 25
35 ≤ b2(AB) ≤ b1(A) + b2(B)

N21 φ

N22 φ

Table 4.12: Nash Equilibria for problem defined in Table 4.11
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(a) (b)

Figure 4.7: Panel (a): Utility of Agent 2 in the region R22 for the combinatorial auction
problem defined in Table 4.11, Panel (b): Utility of Agent 1 in the region R12 for the
combinatorial auction problem defined in Table 4.11.

for any point in the region R21 not being a Nash Equilibrium is that the constraint b1(B) ≥

[v2(AB) − v2(A)] defined in Table 4.8 and 4.9 for the region R21 can never be true. The

value of v2(AB) − v2(A) is 30 and the maximum value of b1(B) is v1(B) which is equal to

15. Agent 2 can always deviate from region R21 to R22 and increase its utility. Similarly,

for the combinatorial auction problem defined in Table 4.11, we can say that any point in

the region R22 can never be a Nash equilibrium because of the violation of the constraint

b2(AB) ≥ v1(AB) defined in Table 4.6 and 4.7. Figure 4.7 shows the utility gradients of

agent 1 and agent 2 for regions R12 and R22 respectively. The utility go Agent 2 in the

region R22 is only dependent on agent 1’s bid on the bundle AB. As illustrated in panel

(b) of Figure 4.7, the utility of agent 1 in the region R12 is only dependent on agent 2’s bid

for bundle B and AB.

4.3 Preliminary experimental results for 3-Agent 3-Item com-

binatorial auction problem

So far we have provided a solution to a general 2-agent 2-item problem. In order

for the geometric approach to work on problems of larger size, we need to write the utility
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A B AB C AC BC ABC

Agent 0 16 22∗ 27 16 31 23 46

Agent 1 23∗ 13 29 16 29 32 51

Agent 2 13 16 27 18∗ 32 36 54

Table 4.13: Valuations of 3 agents for a 3 item combinatorial auction problem

functions of each agent for each of the regions. The work presented in this section is

our current progress towards understanding problems consisting of 3-agent and 3-item.

Consider a problem defined in Table 4.13. We conducted experiments with the aim to

study the effect of an agent’s change in the bid for a bundle on its utility for a particular

region. In the example problem of Table 4.13, for the allocation [Item B → Agent 0,

Item A → Agent 1, Item C → Agent 2] to be the most efficient allocation in terms of

maximizing the social welfare, the condition v0(AB) < 45 must be true. We study the effect

of changing the value of v0(AB) on the resultant bidding patterns and the utility of each

agent. We perform experiments to gain intuition about the utility of agents in a region.

Figure 4.8 shows the incremental bid values for bundles in the most efficient allocation.

Figure 4.8 contains four panels and each panel has different value of v0(AB) keeping every

thing else the same. The utility of agent 0 in the region R102 depends on its final bid on

bundle B. Similarly, the utility of agent 1 and agent 2 in the region R102 depends on their

final bids for bundle A and C respectively. We performed experiments to see how the final

bid prices change as we modify the proxy bid vector. Figure 4.9 shows the change in the

value of the most efficient allocation and the allocation involving bundle AB (to agent 0)

for different values of v0(AB) in Table 4.13. We conducted these experiments to determine

the utility gradient of agents in each region by using plots shown in Figure 4.10.

We conduct experiments to visualize the strategy space and best response functions

of bidders in the form of 2D and 3D plots. We study the mathematical equations repre-

senting the multi-dimensional figures, showing specific features or patterns in the strategy

space. 2D and 3D plots are used to plot the change in the surplus of a bidder for varying

bids and to plot the best response strategies of a bidder to the fixed strategies of other

bidders in the auction. We notice that there are specific patterns in these graphs.

The strategy space for each agent is high-dimensional where the number of di-

mensions is equal to the total number of bundles. The bid for each bundle represents one
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(a) (b)

(c) (d)

Figure 4.8: Change in the bidding pattern observed after modifying the value of v0(AB)
in Table 4.13. Panel (a): v0(AB) = 27, Panel (b): v0(AB) = 33, Panel (c): v0(AB) = 39,
Panel (d): v0(AB) = 41.
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(a) (b)

(c) (d)

Figure 4.9: Change in the value of the most efficient allocation and the allocation involving
bundle AB to agent 0 observed after modifying the value of v0(AB) in Table 4.13. Panel (a):
v0(AB) = 27, Panel (b): v0(AB) = 33, Panel (c): v0(AB) = 39, Panel (d): v0(AB) = 41.
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(a) (b)

(c) (d)

(a) (b)

Figure 4.10: For the problem in Table 4.13 Panel (a) and (b): Utility of agent 0 as a function
of vA and vAB , Panel (c) and (d): Utility of agent 0 as a function of vC and vAC , Panel (e)
and (f): Utility of agent 0 as a function of vBC and vABC .
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Figure 4.11: Surplus of Agent 1 for varying bids for bundle A and bundle B. The bid for
bundle AB for Agent 1 is fixed at 30.5 and the bid for Agent 2 is fixed at [(A 3.5) (B 8.75)
(AB 14.25)]. The plot is for Ascending k-bundle Auction with valuations defined in Table
4.11

dimension in the strategy space. For example, in a combinatorial auction with 2 items (A

and B) and 3 bundles (A, B and AB), the strategy for an agent is a point in the cube, where

each axis of the cube represents bids for bundle A, bundle B and bundle AB respectively.

For high-dimensions a direct graphic representation of the strategy space is not possible.

However, it is possible to illustrate some features of the strategy space by creating two or

three-dimensional slices. In this section we present the results of slicing using 2-D and 3-D

plots. Landscapes for various combinatorial optimization problems have been studied from

the point of view of geometric properties such as smoothness, ruggedness and neutrality

[36]. One of the reasons for studying the landscapes of optimization problems is that other

combinatorial optimization problems with similar landscapes will tend themselves to similar

solutions. For example, the properties of the landscape of the Travelling Salesman Prob-

lem (TSP) can be used to get a better performance from a heuristic search algorithm like

simulated annealing [36].

In the following equations and graphs we plot the best response functions and

surplus of agents in a multi-dimensional space.
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Figure 4.12: Surplus of Agent 1 for varying bids for bundle AB and bundle B. The bid for
bundle A for Agent 1 is fixed at 21 and the bid for Agent 2 is fixed at [(A 4.75) (B 8.75)
(AB 11.50)]. The plot is for Ascending k-bundle Auction with valuations defined in Table
4.11

s1 = 30.75







0 ≤ b1(A) ≤ 21.75

0 ≤ b1(B) ≤ 15
(4.5)

s1 = 19.75







21.75 ≤ b1(A) ≤ 25

0 ≤ b1(B) ≤ 15
(4.6)

s1 = 22.50







21 ≤ b1(AB) ≤ 29.75

0.0 ≤ b1(B) ≤ 15
(4.7)

s1 = 33.75







29.75 ≤ b1(AB) ≤ 45

0 ≤ b1(B) ≤ 15
(4.8)

Agent 1 has to coordinate its bid for bundle A, B and AB in such a way that

the auctioneer allocates bundle A to agent 1 and bundle B to agent 2. The allocation

f∗ = {A,B} results in the maximum surplus for agent 1, given that the bid for agent 2 is

[(A 10) (B 25) (AB 40)]. The best response strategy for agent 1 is to construct the bid

vector

s1 = 03.00







0.00 ≤ b1(A) ≤ 12.00

13.25 ≤ b1(B) ≤ 15.00
(4.9)
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Figure 4.13: Surplus of Agent 1 for varying bids for bundle A and bundle B. The bid for
bundle AB for Agent 1 is fixed at 23.25 and the bid for Agent 2 is fixed at [(A 10) (B 11.25)
(AB 22]. The plot is for Ascending Package Auction with valuations defined in Table 4.11

s1 = 14.25







12.00 ≤ b1(A) ≤ 25.00

0.00 ≤ b1(B) ≤ 13.25
(4.10)

s1 = 22.75







0.00 ≤ b1(A) ≤ 12.00

0.00 ≤ b1(B) ≤ 13.25
(4.11)

The 3D geometric figure representing the best response strategy of Agent 1 when

Agent 2 bids [(A 6.75) (B 16.75) (AB 26.75)] is a heptahedron1 as shown in the Figure

4.15. The polyhedron of the Figure 4.15 is convex2. The twelve vertices and the seven faces

of the heptahedron can be determined by solving the equations (4.9), (4.10) and (4.11).

Figure 4.17 is one of the face of the heptahedron.

4.4 Conclusion

In this chapter, I present a geometric approach for determining pure strategy

Nash equilibria of combinatorial auctions. We model combinatorial auctions as multi-player

1A heptahedron is a polyhedron with seven faces
2A convex polyhedron can be defined as a polyhedron for which a line connecting any two (non-coplanar)

points on the surface always lies in the interior of the polyhedron
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Figure 4.14: Best response strategies of Agent 1 when Agent 2 bids [(A 10) (B 25) (AB
40)]. The surplus to Agent 1 is 10.25. The plot is for combinatorial auction problem of
Table 4.11

Figure 4.15: Best response strategies of Agent 1 when Agent 2 bids [(A 6.75) (B 16.75) (AB
26.75)]. The surplus to Agent 1 is 18.25. The plot is for combinatorial auction problem of
Table 4.11
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Figure 4.16: Figures showing the pattern for the best response strategy of Agent 1 when
Agent 2 bids [(A 10) (B 25) (AB 40)]. The plot is for combinatorial auction problem of
Table 4.11. The figures are the 2D view of the 3D plot of Figure 4.14
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Figure 4.17: Figures showing the pattern for the best response strategy of Agent 1 when
Agent 2 bids [(A 6.75) (B 16.75) (AB 26.75)]. The plot is for combinatorial auction problem
of Table 4.11. The Figure is a 2D view of the 3D plot of Figure 4.15
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complete information games and assume that the bidders participating in the auction follow

a myopic best response bidding strategy. Myopic best response bidding to prices is a simple

bidding strategy in which, in each round, the myopic bidder bids on the bundle that gives

it the highest surplus as if this were the last round of the auction. Even in a restricted

case of bidders following a myopic best response bidding strategy, the size of the strategy

space is infinite and it is impossible to compute Nash equilibria by representing the game in

normal form and populating the payoff matrix for each strategy profile. For combinatorial

auctions computing the payoff for each cell in the normal form game is NP-hard and the

size of the normal form game grows exponentially with the number of bidders and items.

Even for a small and moderate size combinatorial auction problem, it is not possible to

determine Nash equilibria using current tools. We adopt a geometric approach that takes

advantage of the patterns and structure of the payoff matrix. Our approach partitions

the space of outcomes into regions and we derive equations for the utility of bidders in

each region and the conditions under which bidders have no incentive to deviate from one

region to another. We present a solution to a general two agent and two item combinatorial

auction problem using the technique. We illustrate the underlying fundamentals of our

method using simple first-price and second-price sealed-bid auctions. We observe that the

payoff matrix of a combinatorial auction game has a structure that can be taken advantage

of in determining Nash equilibria. We believe that geometric approach can be applied for

finding Nash equilibria in combinatorial auctions and we are currently working on scaling

the technique to solve bigger problems.



99

Chapter 5

A Linear Programming Approach

to Directly Compute the Outcome

of the Ascending Package Auction

In Chapter 2, I present a search algorithm based on tabu search and best response

dynamics to compute pure-strategy Nash equilibrium of normal-form games. The main

advantage of the algorithm is that it does not require us to know the complete payoff

matrix upfront and is advantageous in situations where it is computationally expensive to

compute the payoff matrix. We observe that computational savings can be achieved if we

compute the payoffs only when it is required. Even though the algorithm is applicable to

any situation where it is time consuming to determine the payoffs of the player as a result

of joint actions, the main research motivation behind the algorithm was the need to devise

an algorithm to quickly compute pure strategy Nash equilibrium of combinatorial auctions.

The motivation behind this chapter is to devise an algorithm to reduce the time to compute

the payoff matrix itself. Unlike the approaches presented in Chapter 2, which are applicable

to a large class of problems, the algorithm presented in this chapter is applicable to a specific

type of combinatorial auction called the Ascending Package Auction [2]. In this chapter,
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we present a linear program to compute the outcome of the Ascending Package Auction

directly without actually running the auction. The advantage of direct computation is the

time saved in computing the payoffs of bidders, enabling faster computation of the values of

the cell in a normal form game. We provide an upper bound on the number of optimization

problems to solve to compute the results of the linear program. Any technique that speeds

the process of computing the payoffs in turn speeds the process of determining the Nash

equilibrium by realizing overall time savings in determining the payoff matrix. Throughout

this chapter our assumption is that the bidders submit a single bid vector to the proxy

agent who in turn bids on behalf of the bidders in a straightforward manner. Any bid

vector satisfying the free disposal property and up to the valuation of the bidder for the

various combinations of items constitutes a strategy.

The problem of determining the outcome (item allocation and payments by the

bidders) of combinatorial auctions with myopic bidders without actually running the iter-

ative auction is referred to as the Proxy Auction Problem (PAP) [48, 49]. Recently, there

has been work on solving the proxy auction problem for the Ascending k -Bundle Auction

and the Ascending Package Auction by exploiting the bidding patterns and the price tra-

jectories obtained as a result of running the auction with proxy bidders [48, 49]. The linear

program presented in this chapter is the result of analyzing the outcome and the proxy

bidding pattern of the Ascending Package Auction. We observed the change in auction

outcome and bidding pattern by varying the number of bidders, items and the valuation

profile of the bidders and derived a linear program.

Following is an outline for the rest of the chapter. Section 5.1 defines the Proxy

Auction Problem and its advantages. Section 5.2 provides a formal description of the lin-

ear program to solve the proxy auction problem for the Ascending Package Auction and

lists some important aspects of the algorithm. In Section 5.3, we present some worked

out examples for 3-Agent 3-Item and 4-Agent 4-Item problems. Section 5.4 is the conclu-

sion and future work. Finally, Section 6 provides a high level overview of the dissertation

contributions to conclude the thesis.
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5.1 Proxy Auction Problem

Consider a setting with one seller and n buyers. The buyers are also referred to

as bidders and the seller as the auctioneer. The set of buyers is denoted by N . The seller

has a set M of indivisible and heterogenous items to sell. The number of items are equal

to m. The buyers are indexed by i and the items by j. Any subset of the items is called

a bundle, and denoted by b ⊆ M . There are 2m − 1 bundles excluding the empty set.

The value of buyer i for bundle b is denoted by vi(b). Each buyer i has a valuation function

for each bundle and a value of zero for the empty set φ (i.e., vi(φ) = 0). We make the

standard assumption of free disposal which means that the value of a subset of a bundle

is less than or equal to the value of the bundle (i.e., ∀b
′

⊂ b, vi(b
′

) ≤ vi(b)). Let ri(b)

denote the proxy bid of agent i for the bundle b. Let C denote a subset of bidders, that is,

C ⊆ N . Let V ∗ denote the value of the optimal allocation based on the reported proxy bids

of all the agents and V ∗
−C denote the value of the optimal allocation based on the reported

proxy bids without the agents in the set C. Let f∗ corresponds to the assignment of items

to the agents for the revenue maximizing allocation based on the reported proxy bids. Let

si be the surplus of agent i based on the reported proxy bids. The proxy bid need not be

qual to the true valuations of the bidder. The proxy bid vector of an agent represents the

agent’s strategy and the agents may have an incentive to misrepresent their proxy bid to

get a higher surplus. Let pi be the payment by agent i to the auctioneer in exchange for

the bundle. The payment pi of agent i is 0 if the agent is not part of the auction allocation.

The surplus si of an agent i is equal to the different between the true valuation and the

payment for the allocation f i.e si(f) = vi(f)− pi(f).

A solution to the proxy auction problem is to determine f∗ (the auction allocation

which in most cases is the optimal allocation based on the reported proxy bids) and ∀i, pi

(the payment of every agent i). Once the auction allocation and payments are known then

the surplus to each bidder and the auction revenue can be easily determined. The surplus

to an agent is the difference between the agent’s valuation for the allocated bundle and its

payment for the allocated bundle. The auction revenue is the sum of the payments from all

the bidders.
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A B AB

Agent 1 8 7 9
Agent 2 1 3 9
Agent 3 2 1 10

Table 5.1: Example problem with 3 agents and 2 items

5.1.1 Advantages of a direct solution over simulation

A natural way to solve the proxy auction problem is to determine the outcome

of the auction by running the auction with myopic bidders. This is referred as solving the

proxy auction problem by simulation. The auction proceeds in rounds and in each round

the buyers place offers on a subset of the bundles. At the beginning of the auction the ask

price for each bundle is 0. The proxy bidders bid myopically and place bids on bundles that

receives the maximum surplus to the bidder it represents. The maximum amount that a

proxy bidder can bid for a bundle is the amount reported in the proxy statement for that

bundle. At each round the auctioneer determines the revenue maximizing allocation and

the ask bid prices for the next round. The proxy bidding policy enables bidders to revise

their bids based on the feedback from the auctioneer (provisional allocation and ask prices).

The auction terminates when no further bids are submitted. Determining the outcome of

the auction through the bidding process is referred to as the simulation approach [48, 49].

Table 5.2 shows the incremental bids placed by the proxy agent for an example problem

of Table 5.1 for the Ascending Package Auction. The bid increment used for the bidding

process shown in Table is 5.2 1 and each column shows the agents proxy bid vector. As

shown in Table 5.2 the number of rounds it took for the auction to terminate is 34.

The number of rounds it takes for the auction to terminate depends on the bid

increment. At each round of the iterative combinatorial auction, the auctioneer solves an

NP-hard problem referred to as the Winner Determination Problem (WDP). Determining

the provisional allocation and prices at each round thus requires solving an optimization

problems and that makes combinatorial auctions computationally complex to clear [5, 42,

8].The number of hard optimization problems to solve in the simulation approach thus

depends on the bid increment. The smaller the bid increment the more number of rounds

are required for the auction to terminate. If the bid increment is increased then the auction

will terminate faster but the results in terms of the bidder payments and surplus will be
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less accurate. Table 5.3 illustrates the effect of the bid increment on the number of rounds

required to terminate for the problem in Table 5.1.

The problem for which the results in Table 5.3 are presented is a very simple

problem with just three agents and two items. Even for such a basic problem the number

of rounds required for the auction to terminate is considerable which means solving a large

number of NP hard optimization problem. As the problem size grows the number of rounds

taken by the auction to terminate also increases. The research motivation is to develop

a technique to solve the proxy auction problem in a more efficiently. In Section 5.2, we

present a linear programming formulation for the Ascending Package Auction to solve the

proxy auction problem.

5.2 LP Formulation

After analyzing the bidding patterns and results for several problems of varying

size, valuations and allocation, we derived a linear program that can be used to directly

predict the outcome of Ascending Package Auction. The objective function of the linear

program is to maximize the sum of surplus of all the agents. Formally, the objective function

can be written as equation (5.1).

Maximize

|N |
∑

i

si (5.1)

where N is the set of agents and si is the surplus of agent i. Let Com(n, k) be a

set of possible combinations of n things taken k at a time i.e for all positive integers n and

k, where k ≤ n. The size of the set Com(n, k) is n!
(n−k)!.k! . Let C be a subset of N . The

number of constraints nC is shown in equation (5.2).

nC =

|N |−1
∑

i=i

Com(n, i) + N (5.2)

The constraints for the linear program are generated using the following pseu-

docode.
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Rounds Agent 1 Agent 2 Agent 3

1 0 0 1 0 0 0 0 0 0
2 0 0 1 0 0 1 0 0 0
3 0 0 1 0 0 1 0 0 1
4 1 0 2 0 0 1 0 0 1
5 1 0 2 0 0 2 0 0 1
6 1 0 2 0 0 2 0 0 2
7 1 0 2 0 0 2 0 0 2
8 1 0 2 0 0 3 0 0 2
9 1 0 2 0 0 3 0 0 3
10 2 1 3 0 0 3 0 0 3
11 2 1 3 0 0 4 0 0 3
12 2 1 3 0 0 4 0 0 4
13 3 2 4 0 0 4 0 0 4
14 3 2 4 0 0 5 0 0 4
15 3 2 4 0 0 5 0 0 5
16 4 3 5 0 0 5 0 0 5
17 4 3 5 0 0 6 0 0 5
18 4 3 5 0 0 6 0 0 6
19 5 4 6 0 0 6 0 0 6
20 5 4 6 0 1 7 0 0 6
21 5 4 6 0 1 7 0 0 7
22 6 5 7 0 1 7 0 0 7
23 6 5 7 0 2 8 0 0 7
24 6 5 7 0 2 8 0 0 8
25 6 5 7 0 2 8 0 0 8
26 6 5 7 0 2 8 0 0 8
27 6 5 7 0 2 8 1 0 9
28 7 6 8 0 2 8 1 0 9
29 7 6 8 0 2 8 1 0 9
30 7 6 8 0 2 8 2 1 10
31 8 7 9 0 2 8 2 1 10
32 8 7 9 0 2 8 2 1 10
33 8 7 9 0 2 8 2 1 10
34 8 7 9 0 2 8 2 1 10

Table 5.2: Example problem with 3 agents and 2 items
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Bid increment Number of rounds

0.1 315

0.2 159

0.4 84

0.8 42

1.0 34

1.5 23

2.0 19

Table 5.3: Effect of bid increment on the number of rounds required for the auction to
terminate

Algorithm 5.2.1: Constraints()

for i← 0 to N − 1for every element C of set Com(n, k)

Generate constraint :
∑

i∈C si ≤ (V ∗ − V ∗
−C)

∀i, si ≥ 0

The number of optimization problems to be solved using the linear programming

approach can be written as equation 5.3

nC =
N−1
∑

i=i

Com(n, i) + 2 (5.3)

5.3 Worked Examples

Following are some worked out problems for 3-agent 3-item and 4-agent 4-item

problems. We implemented the algorithm and the linear program in the Java programming

language and present the results of running the program for three different types of problems.

5.3.1 Example 1

Table 5.5 shows the working of the linear program for the problem defined in

Table 5.4. The value of objective function for the Linear Program in Table 5.5 is 21.

The value of the decision variables are s1 = 4, s2 = 9, s3 = 8. The auction allocation

is {Agent 1 → Bundle B, Agent 2 → Bundle B, Agent 3 → Bundle C}. The payment
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A B AB C AC BC ABC

Agent 1 16 22∗ 27 16 31 23 46

Agent 2 23∗ 13 29 16 29 32 48

Agent 3 13 16 27 18∗ 32 36 50

Table 5.4: Proxy bids

for Agent 1 is p1 = r1(B) − s1 = 22 − 4 = 18. Similarly, the payment for Agent 2 is

p2 = r2(A)− s2 = 23− 9 = 14 and Agent 3 is p3 = r3(C)− s3 = 18− 8 = 10. The revenue

to the auctioneer is
∑N

i=1 pi = 42.

5.3.2 Example 2

Table 5.7 shows the working of the linear program for the problem defined in Table

5.6. The value of optimal solution to the Linear Program in Table 5.7 is 8. The value of the

decision variables are s1 = 7, s2 = 1, s3 = 0. The auction allocation is {Agent 1 → Bundle

A, Agent 2 → Bundle BC}. The payment for Agent 1 is p1 = r1(A) − s1 = 20 − 7 = 13.

Similarly, the payment for Agent 2 is p2 = r2(BC)−s2 = 42−1 = 41 and Agent 3 is p3 = 0.

The revenue to the auctioneer is
∑N

i=1 pi = 54.

5.3.3 Example 3

Table 5.10 shows the working of the linear program for the problem defined in

Table 5.8 and 5.9. The value of optimal solution to the Linear Program in Table 5.10 is 17.

The value of the decision variables are s1 = 8, s2 = 5, s3 = 3, s4 = 1. The auction allocation

is {Agent 1 → Bundle A, Agent 2 → Bundle B, Agent 3 → Bundle C, Agent 4 → Bundle

D}. The payment for Agent 1 is p1 = r1(A) − s1 = 18 − 8 = 10. Similarly, the payments

for all other agents can be determined. The revenue to the auctioneer is
∑N

i=1 pi = 61.

5.4 Conclusion

In this Chapter, I present a linear programming approach to directly compute the

outcome of the Ascending Proxy Auction. The auction allocation, final round bids, auction

revenue, bidder surplus and payments can be determined by solving a linear program.
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Objective Function Maximize
∑N

i si Maximize (s1 + s2 + s3)

Constraints C1 = {1},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C1
) s1 ≤ (63− 59 = 4)

(Without 1 Bidder) C2 = {2},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C2
) s2 ≤ (63− 54 = 9)

C3 = {3},
∑

i∈C3
si ≤ (V ∗ − V ∗

−C3
) s3 ≤ (63− 51 = 12)

Constraints C12 = {1, 2},
∑

i∈C12
si ≤ (V ∗ − V ∗

−C12
) s1 + s2 ≤ (63− 50 = 13)

(Without 2 Bidders) C23 = {2, 3},
∑

i∈C23
si ≤ (V ∗ − V ∗

−C23
) s2 + s3 ≤ (63− 46 = 17)

C13 = {1, 3},
∑

i∈C13
si ≤ (V ∗ − V ∗

−C13
) s1 + s3 ≤ (63− 51 = 12)

Constraints ∀i, si ≥ 0 s1 ≥ 0

(Non-negative surplus) s2 ≥ 0

s3 ≥ 0

Table 5.5: Linear program for problem in Table 5.4

A B AB C AC BC ABC

Agent 1 20∗ 22 27 16 31 23 56

Agent 2 13 13 29 16 29 42∗ 51

Agent 3 13 16 27 19 32 36 54

Table 5.6: Proxy bids
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Objective Function Maximize
∑N

i si Maximize (s1 + s2 + s3)

Constraints C1 = {1},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C1
) s1 ≤ (62− 55 = 7)

(Without 1 Bidder) C2 = {2},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C2
) s2 ≤ (62− 56 = 6)

C3 = {3},
∑

i∈C3
si ≤ (V ∗ − V ∗

−C3
) s3 ≤ (62− 62 = 0)

Constraints C12 = {1, 2},
∑

i∈C12
si ≤ (V ∗ − V ∗

−C12
) s1 + s2 ≤ (62− 54 = 8)

(Without 2 Bidders) C23 = {2, 3},
∑

i∈C23
si ≤ (V ∗ − V ∗

−C23
) s2 + s3 ≤ (62− 56 = 6)

C13 = {1, 3},
∑

i∈C13
si ≤ (V ∗ − V ∗

−C13
) s1 + s3 ≤ (62− 51 = 11)

Constraints ∀i, si ≥ 0 s1 ≥ 0

(Non-negative surplus) s2 ≥ 0

s3 ≥ 0

Table 5.7: Linear program for problem in Table 5.6

A B AB C AC BC ABC

Agent 1 18∗ 19 32 14 37 28 43

Agent 2 14 22∗ 32 16 36 32 44

Agent 3 15 14 31 22∗ 30 33 49

Agent 4 16 12 35 16 33 30 41

Table 5.8: Proxy bids

D AD BD ABD CD ACD BCD ABCD

Agent 1 19 26 38 41 33 45 47 65

Agent 2 17 34 32 44 35 41 44 58

Agent 3 12 33 38 46 31 43 45 74

Agent 4 26∗ 24 39 41 38 42 43 51

Table 5.9: Proxy bids
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Maximize
∑N

i si Maximize (s1 + s2 + s3 + s4)

Constraint 1 C1 = {1},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C1
) s1 ≤ (88 − 80 = 8)

C2 = {2},
∑

i∈C1
si ≤ (V ∗ − V ∗

−C2
) s2 ≤ (88 − 80 = 8)

C3 = {3},
∑

i∈C3
si ≤ (V ∗ − V ∗

−C3
) s3 ≤ (88 − 85 = 3)

C4 = {4},
∑

i∈C4
si ≤ (V ∗ − V ∗

−C4
) s4 ≤ (88 − 75 = 13)

Constraint 2 C12 = {1, 2},
∑

i∈C12
si ≤ (V ∗ − V ∗

−C12
) s1 + s2 ≤ (88 − 75 = 13)

C13 = {1, 3},
∑

i∈C13
si ≤ (V ∗ − V ∗

−C13
) s1 + s3 ≤ (88 − 75 = 13)

C14 = {1, 4},
∑

i∈C14
si ≤ (V ∗ − V ∗

−C14
) s1 + s4 ≤ (88 − 74 = 14)

C23 = {2, 3},
∑

i∈C23
si ≤ (V ∗ − V ∗

−C23
) s2 + s3 ≤ (88 − 76 = 12)

C24 = {2, 4},
∑

i∈C24
si ≤ (V ∗ − V ∗

−C24
) s2 + s4 ≤ (88 − 75 = 13)

C34 = {3, 4},
∑

i∈C34
si ≤ (V ∗ − V ∗

−C34
) s3 + s4 ≤ (88 − 74 = 14)

Constraint 3 C123 = {1, 2, 3},
∑

i∈C123
si ≤ (V ∗ − V ∗

−C123
) s1 + s2 + s3 ≤ (88 − 51 = 37)

C124 = {1, 2, 4},
∑

i∈C124
si ≤ (V ∗ − V ∗

−C124
) s1 + s2 + s4 ≤ (88 − 74 = 14)

C234 = {2, 3, 4},
∑

i∈C234
si ≤ (V ∗ − V ∗

−C234
) s2 + s3 + s4 ≤ (88 − 65 = 23)

C134 = {1, 3, 4},
∑

i∈C134
si ≤ (V ∗ − V ∗

−C134
) s1 + s3 + s4 ≤ (88 − 58 = 30)

Constraint 4 ∀i, si ≥ 0 s1 ≥ 0

s2 ≥ 0

s3 ≥ 0

s4 ≥ 0

Table 5.10: Linear program for problem in Table 5.8 and 5.9
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We provide an upper bound on maximum number of optimization problem required to be

solved by the linear program. The direct approach is independent of the bid increment,

the order of the bidders and the tie breaking rules. We applied the algorithm to a large

number of problems of different sizes and compared the result of the linear program with

the results obtained from simulation. We observed that our algorithm based on the linear

programs gives accurate results. Computing the outcome of combinatorial auction directly

without actually running the auction may enable a faster computation of the payoff matrix

for the purpose of determining the pure strategy Nash equilibrium with discrete strategy

space. We plan to conduct further tests to do a comparison of the amount of time taken

and the number of optimization problems to solve by simulation approach and the linear

programming approach. We present a linear programming approach to solve the Proxy

Auction Problem for Ascending Package Auction and in the future we plan to work on

finding a direct solution to other types of iterative combinatorial auctions like Ascending

k-bundle auction and iBundle auction. We have empirical results to support our claim that

the linear programming approach gives accurate results and in the future we plan to work

on providing a theoretical proof of the correctness of the linear program to solve the Proxy

Auction Problem.
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Chapter 6

Dissertation Contributions

In my dissertation, I developed four novel techniques addressing the problems in

finding Nash equilibria in combinatorial auctions. The work presented in this dissertation

is progress towards algorithms for finding Nash equilibria in a game for which it is com-

putationally expensive to compute the payoffs and for which the size of the payoff matrix

is very large. Following is a high level overview of the four approaches developed in this

dissertation:

Approach 1 An approach to compute pure strategy Nash equilibria of a game without

computing the whole pay-off matrix. This reduces the amount of time required to

compute the payoff matrix thereby reducing the total amount of time required to find

a Nash equilibrium.

Approach 2 An approach to find an approximate Nash equilibrium. The approach is

useful in situations where it is computationally expensive to find a Nash equilibrium

by enumeration because of the very large size of the solution space. The approach

compromises completeness in return for computational efficiency.

Approach 3 An approach that takes advantage of the structure and pattern of the payoff

matrix to find Nash equilibria without actually running the auction and constructing

a payoff matrix.

Approach 4 A linear programming approach to directly compute the outcome of running
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a specific type of combinatorial auction with proxy bidders. The goal of this approach

is to reduce the amount of time required to determine the payoffs for a joint action

thereby reducing the total amount of time required to compute Nash equilibria.
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