
 

 

ABSTRACT 

HSU, CHIA-CHUN. A Genetic Algorithm for Maximum Edge-disjoint Paths Problem and Its 

Extension to Routing and Wavelength Assignment Problem. (Under the direction of Dr. 

Shu-Cherng Fang.) 

Optimization problems concerning edge-disjoint paths in a given graph have attracted 

considerable attention for decades. Lots of applications can be found in the areas of call 

admission control, real-time communication, VLSI (Very-large-scale integration) layout and 

reconfiguration, packing, etc. The optimization problem that seems to lie in the heart of these 

problems is the maximum edge-disjoint paths problem (MEDP), which is NP-hard. In this 

dissertation, we developed a novel genetic algorithm (GA) for handling the problem. The 

proposed method is compared with the purely random search method, the simple greedy 

algorithm, the multi-start greedy algorithm, and the ant colony optimization method. The 

computational results indicate that the proposed GA method performs better in most of the 

instances in terms of solution quality and time.  

Moreover, a real-world application of the routing and wavelength assignment problem 

(RWA), which generalizes MEDP in some aspects, has been performed; and the 

computational results further confirm the effectiveness of our work. Compared with the 

bin-packing based algorithms and particle swarm optimization, the proposed method can 

achieve the best solution on all testing instances. Although it is more time-consuming than 

the bin-packing based methods, the differences of computational time become small on large 

instances.  
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Chapter 1 Introduction 

Assigning paths to connection requests is one of the basic operations in the modern 

communication networks. Each connection request is a pair of physically separated nodes 

that require a path for information transmission. Given such a set of connection requests, due 

to the capacity restrictions, one may want to assign paths to requests in such a way that no 

two paths share an edge in common. These paths are called edge disjoint paths (EDPs). A 

natural question to ask is: What is the maximum number of requests that are simultaneously 

realizable as edge disjoint paths? This is called the maximum edge-disjoint paths (MEDP) 

problem, which turns out to be one of the classical combinatorial problems in the 

NP-complete category. It has been extensively studied for decades and can be extended to 

many real-world applications, e.g., the routing and wavelength assignment (RWA) problem, 

the call admission problem, the unsplittable flow problem, and the very large-scale 

integration (VLSI) problem, etc. In this dissertation, we propose a novel genetic-based 

algorithm to solve the MEDP problem. Moreover, the proposed algorithm is extended for 

solving the RWA problem. Computational results show that in either case, the proposed 

method exhibits good performance compared with other existing solution methods. 

This chapter intends to introduce some background information on the problems we are 

going to tackle. The first four sections provide the descriptions, formulation, importance and 

difficulties of the MEDP problem, respectively. Then an overview and background 

information on the RWA problem is given in Section 1.5. Following that is an outline of the 

dissertation in Section 1.6. 
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1.1 Problem Description 

The physical architecture of the network is given in the form of an undirected and connected 

graph        , which consists of a finite set   of vertices and a finite set   of edges, 

where       and      . Each edge           is said to be incident to   and to 

 , and       are called endpoints of  . A sequence of edges                such that 

             for some          , is called a path of length      , with endpoints    

and     . We say that two paths are edge-disjoint (or edge-independent) if they do not have 

any edge in common. A set of paths is said to consist of edge-disjoint paths (EDPs) if any 

two paths in the set are edge-disjoint.  

Let                                   be a set of   connection requests. 

Each request         in a graph   is a pair of vertices that asks for a path that establishes 

the connection between    and   . We often use “request        ” and “request  ” 

interchangeably.  

An instance of the maximum edge-disjoint paths (MEDP) problem consists of an 

undirected graph         and a request set      . A feasible solution of MEDP is 

given by a subset    , such that each request in   is assigned a path. The assigned paths 

are pairwise edge-disjoint and denoted by  . More precisely, a path    between    and    

is assigned to each           such that no two paths   ,      (             ) have 

an edge of the graph in common. The goal of the maximum edge-disjoint paths problem is to 

maximize the cardinality of  . The requests in   are called realizable (or accepted) requests, 

those in     are the rejected requests. MEDP can be stated in a compact way as follows: 



 

3 

Problem: maximum edge-disjoint paths (MEDP) problem. 

Input: undirected graph        , connection requests                  

                . 

Feasible Solution: a realizable subset     such that there is an assignment of 

edge-disjoint paths to the requests in  . 

Goal: maximize    . 

 

1.2 The Integer Linear Programming Model for Maximum 

Edge-disjoint Paths Problem 

MEDP has a natural IP formulation based on multicommodity flows. We use an 

exponentially sized path formulation for convenience. The notations of the MEDP model are 

defined as follows: 

    the set of all simple (cycle-free) paths in   from    to   , for        . 

  : the set of all simple (cycle-free) paths in   that pass along edge  . 

  : a binary variable indicating whether path   is chosen in the solution, for each 

      . 

  : a binary variable indicating whether the request   is realizable, for        . 

The formulation of MEDP is the following linear integer program: 

 

            

 

   

 (1.1) 

    

    

              (1.2) 
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       ,            (1.3) 

                    (1.4) 

 
               

 

   

 (1.5) 

The objective function (1.1) maximizes the number of realizable connection requests. 

Constraint (1.2) ensures that each realizable request is assigned a path. Constraint (1.3) 

ensures that each edge can only be used by at most one path. Constraints (1.4) and (1.5) 

ensure that all variables are binary. 

Enumerating all possible simple paths for each of the connection requests makes solving 

the model extremely time consuming. Considering the case on a complete graph (in which 

every pair of distinct vertices is connected by an unique edge), the number of all-possible 

simple paths that connects a pair of node is  

                                                   

             
           , where                           .  

For instance, in a complete graph which has 10 nodes, enumerating all possible simple 

paths for a pair of nodes has order of     time complexity. Thus solving this integer linear 

programming model is not an efficient way for tackling the MEDP problem. 

 

1.3 Importance and applications 

Research on the maximum edge-disjoint paths (MEDP) problem has a long history and the 

corresponding literature is extensive [3, 8, 14, 20, 25, 30, 31]. In recent years, the advent of 
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the modern high-speed communication networks has brought more focus to the MEDP 

problem [11]. Many modern network architectures establish a virtual path between any two 

vertices. In order to achieve guaranteed service quality, the network must reserve sufficient 

resources (capacity or bandwidth) on the edges along that path. Some requests are rejected if 

the path does not have sufficient capacity. We want to know how many requests are 

realizable in a round using edge-disjoint paths, and how many rounds of communication are 

required to satisfy all requests. The MEDP problem is the essence of these types of problems.  

In the real world, the maximum edge-disjoint paths problem has a multitude of 

applications in the areas of call admission control [37, 38], real-time communication, VLSI 

(very-large-scale integration) layout [3] and reconfiguration [42], packing [1, 30, 31], etc. In 

addition, the routing and wavelength assignment (RWA) problem [2, 11, 27], unsplittable 

flow problem (UFP) [14, 30, 33, 39], and the call admission problem [37, 38] are direct 

extensions of MEDP. These real-world applications of the maximum edge-disjoint paths 

problem generalize the original MEDP in one or more aspects. In fact, MEDP is essentially in 

the heart of several network optimization problems and therefore, its importance is 

significant. The three classical applications of MEDP are further introduced below. 

The routing and wavelength assignment (RWA) problem 

Optical networks that apply the wavelength division multiplexing (WDM) technology have 

attracted enormous attention due to its capability of satisfying the increasing capacity 

requirements in telecommunication networks [2, 11, 27]. WDM networks allow the 

simultaneous transmission of different channels along the same optical fiber, by assigning 

each of them a different wavelength. An optical connection between two nodes is called a 
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lightpath, which can be characterized by its route and the assigned wavelength.  

Given an optical network and a set of lightpath requests, the routing and wavelength 

assignment (RWA) problem attempts to route and assign a wavelength to each lightpath 

request subject to the following constraints: (a) wavelength continuity constraint: the same 

wavelength must be assigned to the entire route if there are no available wavelength 

converters; and (b) wavelength clash constraint: two lightpaths sharing the same edge have to 

use different wavelengths.  

The objectives of RWA include the minimization of the required number of wavelengths 

to satisfy all lightpath requests, or maximization of the number of realizable lightpath 

requests subject to a given number of wavelengths. In later chapters, more details including 

problem background and related works will be further introduced. 

The unsplittable flow problem (UFP) 

The unsplittable flow problem is one of the most extensively studied optimization problems 

in the field of networking [14, 30, 33, 39]. It is essentially a generalization of MEDP in 

several aspects. For a given undirected graph        , each edge   now has a capacity 

    . With respect to the set of connection requests  , each request   has a demand    and 

a profit   , assuming that the edge capacities, demands and profits are positive real numbers. 

A feasible solution is given by selecting a subset of requests and assigning a path from    to 

   for each realizable request  , subject to the following constraints: (i) for an edge  , the 

sum of demands of all the accepted requests that pass through   cannot exceed the capacity 

    ; (ii) for an accepted request  , it must send    units of demand through a single route. 

One can gain the profit    if request   is accepted. The goal is to maximize the total profit. 



 

7 

It is easy to see that MEDP is a special case of UFP in which        for every    , 

and         for every request  . 

Call admission control problem  

The call admission control problem is a vital optimization problem encountered in the 

operations of communication networks [37, 38]. Given an undirected graph and a set of 

connection requests, each request has a certain bandwidth requirement and time specification 

of its starting time and duration. If a request is accepted, then a path has to be routed between 

the pair of nodes and the required amount of bandwidth is reserved on all links along that 

path during the time period.  

In addition, each call is associated with some profits, which the network provider will 

gain if the desired connection is established. The goal is to maximize the total profits 

obtained from the accepted requests without violating the edge capacity constraints at any 

time. 

 

1.4 Difficulties of the maximum edge disjoint paths problem 

Most of the early works on the edge-disjoint paths problem have focused on the version of a 

decision problem, which determines either all the connection requests can be realizable by 

edge-disjoint paths or certifies that such a routing does not exist. This decision problem is 

one of the classical NP-complete problems [1, 24]. Substantial efforts have been made to the 

identification of polynomial solvable cases for the decision problem, we refer to the surveys 

by Frank [3] and Vygen [16] for more details.  

The investigation of MEDP started in the 1990s and is still ongoing [3, 14, 16, 30, 31]. 
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Some classes of graphs are able to be checked whether all requests are realizable in 

polynomial time, but if the answer is no, it is NP-hard to compute the maximum number of 

realizable requests. Reference [33] provides some examples. Since MEDP is an NP-hard 

problem on general graphs [39], many studies were devoted to obtaining good approximation 

algorithms and exploring more tractable classes. For instance, MEDP on chains can be solved 

in polynomial time since the routing for each request in a chain is uniquely determined by its 

endpoint (this fact also holds for arbitrary trees). Hence, the connection requests can be 

treated as a set of intervals on the real line and the problem of finding a maximum number of 

disjoint intervals is known to be solvable in linear time. We refer to the survey in [33] for 

more details and other tractable graphs (e.g., bidirected chains, undirected trees, bidirected 

stars). 

1.5 Routing and wavelength assignment problem 

In recent decades, the number of bandwidth-intensive applications in telecommunications 

such as HD video, video conferencing, HD digital broadcasting and streaming over the 

internet, have grown rapidly. The technology of fiber-optics can be an attractive candidate for 

meeting the above-mentioned needs because of its huge transmission bandwidth (~50 Tbps), 

low signal attenuation, low signal distortion, low power requirement, small space 

requirement, and low cost. This section starts with the background of optical fibers and 

WDM networks, and then gives a precise description of the routing and wavelength problem.  

1.5.1 Background 

Corning Glass Works developed commercial optical fibers successfully in 1970, with 
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attenuation low enough for communication purposes. In the meanwhile, GaAs semiconductor 

lasers were developed, which were suitable for transmitting light through optical cables for 

long distances. Starting from 1975, the first commercial fiber-optics communications system 

was developed, and it operated at a bit rate of 45 Mbps with repeater spacing up to 10 km. 

The second generation of fiber-optics communication was developed for commercial use in 

the early 1980s. By 1987, these systems were operating at bit rates up to 1.7 Gbps with 

repeater spacing up to 50 km.  

Later, scientists developed dispersion-shifted fibers which allowed the third-generation 

fiber-optics systems operating commercially at a bit rate of 2.5 Gbps with repeater spacing in 

excess of 100 km. Finally, the fourth generation of fiber-optics communication systems used 

optical amplification to reduce the need for repeaters and wavelength-division multiplexing 

to increase data capacity. These two technologies improved the system capacity dramatically 

since 1992. By 2001, such systems operated at a bit rate of 10 Tbps. Finally, a bit-rate of 14 

Tbps was reached over a single 160 km line using optical amplifiers in 2006. 

In telecommunications or computer networks, multiplexing is a method to combine 

multiple analog message or digital data streams into one signal over one shared medium. The 

use of such a technique can further increase the capacity of optical fibers. Four main types of 

multiplexing are available: (a) space-division multiplexing (SDM); (b) time-division 

multiplexing (TDM); (c) code-division multiplexing (CDM); and (d) frequency-division (or 

wavelength-division) multiplexing (FDM).  

SDM simply implies different point-to-point wires for different channels, for instance, 

stereo audio cable with one pair of wires for the left channel and another for the right channel. 
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For TDM, two or more bit streams or signals are transferred as sub-channels in one 

communication channel, but are physically taking turns on the channel. The time domain is 

divided into several recurrent time slots of fixed length, one for each sub-channel. The 

optical TDM bit rate is the aggregate rate over all channels in the system. A disadvantage of 

TDM is that it requires that each node has to be perfectly synchronized to the same time 

clock and be capable of handling the aggregate bit rate of all channels. On the other hand, 

CDM assigns a code to each transmission and also requires the source and destination nodes 

to synchronize to the same time base.  

FDM combines several digital signals into one medium by sending signals in several 

distinct frequencies over that medium. One of the most common applications is cable 

television. Only one cable reaches a customer's home but the service provider can send 

multiple television channels or signals simultaneously over that cable to all subscribers. 

Receivers must tune to the appropriate frequency (channel) to access the desired signal. 

Wavelength-division multiplexing (WDM) is a variant technology used in optical 

communications. Since wavelength and frequency are tied together through a simple directly 

inverse relationship, the two terms actually describe the same concept. WDM operates by 

dividing the optical transmission spectrum into many non-overlapping wavelengths and each 

wavelength supports one communication channel. It allows multiple channels to coexist on a 

single fiber and does not require nodes to synchronize to the same time clock. Hence WDM 

has become the favorite multiplexing technique for optical networks. 

1.5.2 WDM networks 

Wavelength-division multiplexing (WDM) is a technology which multiplexes a number of 
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optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colours) 

of laser light. The number of wavelengths that each fiber can carry simultaneously is limited 

by the physical characteristics of fibers and the optical technology of combining the 

wavelengths and separating them off. In early WDM systems, each fiber could only provide 

two channels. Modern systems can handle up to 370 signals and can thus expand a basic 273 

Gbps system over a single fiber pair to a bit rate over 101Tbps. 

Figure 1 [17] is a block diagram of a basic WDM transmission system. The transmitter 

comprises a laser and a modulator. The laser is the light source, which generates an optical 

carrier signal at either a fixed or a tunable wavelength. The carried signal is modulated by an 

electronic signal and is sent to the multiplexer (MUX). The multiplexer combines several 

optical signals on different wavelengths (denoted by                 in Figure 1) into a 

single optical signal, which is transmitted to a common output port or optical fiber. The 

network medium can be a simple fiber link, a passive star coupler, or any type of optical 

network. The demultiplexer (DMUX) uses optical filters to separate the received optical 

signal into multiple optical signals on different wavelengths, which are then sent to the 

receivers. The receiver has a detector that can convert an optical signal to an electronic signal. 

Optical amplifiers are used at appropriate locations in the transmission system to maintain 

the power strength of an optical signal. 
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Figure 1 A WDM transmission system [17] 

A wavelength-routed optical WDM network typically consists of routing nodes 

interconnected by WDM fiber links in an arbitrary physical topology. Each routing node 

employs several transmitters and receivers for transmitting signals to and receiving signals 

from fiber links, respectively. Each link operates in WDM and supports a certain number of 

optical channels (or wavelengths). A routing node can be connected to an access node, which 

is an interface between the optical network and the electronic client networks. An access 

node performs traffic aggregation and E/O conversion functions on the source side. On the 

destination side, traffic deaggregation and O/E conversion are performed. The architecture of 

a wavelength-routed WDM network is shown in Figure 2 [17]. In the remainder of this work, 

we assume that each routing node is connected to an access node, and we refer to this 

integrated unit as a node. 
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Figure 2 A wavelength-routed WDM network [17] 

1.5.3 Problem description 

In a wavelength-routed WDM network, end users communicate with each other via 

all-optical WDM-channels, which are referred to as lightpaths. A lightpath is used to establish 

a connection between two nodes, and it can be characterized by its route and the occupied 

wavelength. In the absence of wavelength converters, a lightpath must use the same 

wavelength on all fiber links which it traverses, which is known as the wavelength continuity 

constraint. In addition, lightpaths that share a common physical link cannot use the same 

wavelength, which is known as the wavelength clash constraint. Figure 3 illustrates a 

wavelength-routed network in which three lightpaths have been set up on two different 

wavelengths. 
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Figure 3 A wavelength-routed network with three lightpaths 

Given a set of connection requests, the problem of setting up lightpaths by routing and 

allocating a wavelength to each connection is called the routing and wavelength assignment 

(RWA) problem. In general, connection requests are of three types: static, incremental and 

dynamic. We only consider the static case, which means the entire set of connection requests 

is known in advance. The routing and wavelength assignment operations are performed 

off-line.  

The RWA problem is to establish routes and assign wavelengths for the connections 

while minimizing network resources such as the number of wavelengths or the number of 

fibers in the network. Alternatively, one may attempt to connect as many requests as possible 

for a given number of wavelengths. In this work, we consider the former case assuming that 

the available number of wavelengths is unlimited. The objective is to minimize the number of 

wavelengths used to establish connections for all requests. 
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To be precise, given an undirected graph         in which each edge     is an 

optical fiber link in the physical network, and a request set                  

                , the routing and wavelength assignment (RWA) problem searches for a 

set of lightpaths                in  , each corresponds to one request          , and 

assigns a set of wavelengths                to these paths. Path    and   ,    , 

cannot be assigned the same wavelength if they share a common edge. The objective is to 

minimize the number of wavelengths required to satisfy all requests in  . 

A feasible solution to the RWA problem consists of a path set   and the assigned 

wavelength set  . Each path      connects the request         and is assigned the 

wavelength      such that the wavelength clash constraints hold. The RWA problem can 

be stated in a compact way as follows: 

Problem: routing and wavelength assignment (RWA) problem. 

Input: undirected graph         and a set of connection requests              

                    . 

Feasible Solution: a path set   to connect all requests and a corresponding wavelength set   

such that the wavelength clash constraint holds. 

Goal: minimize the number of required wavelengths. 

 

1.5.4 Mathematical model of RWA 

In reference [2], the RWA problem is formulated as an integer linear programming problem 

with a general multicommodity flow formulation. The authors assume that the number of 
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available wavelengths is limited and the goal of their model is to maximize the number of 

accepted requests. In our work, we assume there are   units of available wavelengths (  is 

the number of requests). Thus in the worst case, where each wavelength is assigned to 

exactly one request, all connection requests can still be satisfied. The goal of our model is to 

minimize the number of utilized wavelengths to satisfy all requests. Some notations are 

defined below. 

 

L: set of indices of available wavelengths (on each edge),           . 

    : a binary variable,    if wavelength     is assigned to path  ; and    

otherwise. 

  : the set of all simple (cycle-free) paths in   from source    to terminal   , for 

       . 

  : the set of all simple paths in   that pass along edge  . 

  : a binary variable,    if wavelength     is utilized; and    otherwise. 

 

The problem formulation is given by 

            

 

   

  (1.6) 

Subject to 

     

    

        ,     (1.7) 

      

 

       

             (1.8) 

             
 
         (1.9) 

 

The objective (1.6) minimizes the total number of utilized wavelengths. Constraint (1.7) 
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is the wavelength clash constraint, that is, for the paths in   , the wavelength   is assigned 

to at most one of them. In other words, paths using the same edge must employ different 

wavelengths. Constraint (1.8) represents the demand constraint, which ensures each request 

is assigned exactly a path and a wavelength. Constraint (1.9) ensures    will equal 1 if 

wavelength   is used by one or more paths.  

As mentioned in Section 1.2, enumerating all-possible paths is extremely 

time-consuming and only applicable in very small-sized networks. The number of 

all-possible paths that connect a pair of nodes in a complete graph is        . Thus it is 

unlikely to tackle the RWA problem by solving the above integer linear programming due to 

its rapidly increasing number of variables and constraints.  

 

1.6 Outline of the dissertation 

The dissertation is organized as following: Chapter 2 includes two parts. The first part is the 

literature review of the MEDP problem, where some known approximation ratios, existing 

methods and genetic algorithms for path-related problems are reviewed. The second part is a 

survey of the RWA problem, where the background, related works, two existing methods and 

lower bounds of the problem are provided. In Chapter 3, we propose a novel genetic 

algorithm for solving the MEDP problem, including the encoding/decoding scheme, a 

method to produce the initial population, a fitness function, three reproduction operators, an 

improvement heuristic, and the population management method. The testing instances and 

comparisons of computational results obtained by using existing methods and the proposed 

genetic algorithm are provided in Chapter 4. In Chapter 5, we develop a heuristic method 
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which employs the proposed GA-based method to solve the RWA problem. The 

computational results show that the proposed methods outperform the bin-packing based 

methods and the particle swarm optimization (PSO). Concluding remarks and future research 

directions are given in Chapter 6. 
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Chapter 2 Literature Review 

In this chapter, we provide a review of the maximum edge-disjoint paths problem (MEDP) 

and one of its extended real-world applications – routing and wavelength assignment 

problem (RWA). In Section 2.1, a special case of MEDP known as edge-disjoint Menger 

problem, in which all connection requests are composed by repetitions of the same pair      , 

is discussed. Section 2.2 summarizes the approximation ratios of most well-known 

approximation algorithms for MEDP on a general graph. Detailed descriptions of these 

approximation algorithms are given in Section 2.3. In Section 2.4, some encoding schemes 

and genetic operators for solving path-related problems are introduced. Related works on the 

RWA problem are reviewed in Section 2.5, particle swarm optimization (PSO) and the 

state-of-art bin-packing based methods are given in Sections 2.6 and 2.7, respectively. Finally, 

lower bounds of solving the RWA problem are provided in Section 2.8. 

 

2.1 A special case: Menger’s Theorem 

One extreme case of MEDP is that all of the   pairs of connection requests are the same, i.e., 

all requests are between two vertices      . In this case, the number of edge-disjoint paths 

can be viewed as a measurement of how well a given pair of vertices is connected. A 

different way of measuring the connectivity is to determine the smallest number of edges 

whose deletion from the graph disconnects every path between the pair. In 1927, Karl 

Menger [19] proved an elegant theorem, which states that the maximum number of 

edge-disjoint paths between a given pair of connection requests in a graph equals the 
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minimum number of edges whose deletion disconnects the pair.  

To be more precise, given       in graph  , let set   be a collection of edges. We 

say   is an “    edge-separating set” if every     path contains an edge of  . We 

denote the minimum cardinality of an     edge-separating set by        and the 

maximum number of edge-disjoint     paths in   by       . Since each edge-disjoint 

    path must contain at least one edge in the     edge-separating set, we have 

             . Menger further proved that               in his theorem. 

Theorem 1 (Karl Menger, 1927) In an undirected graph  , if vertices   and   are not 

adjacent,              . 

 

2.2 Known approximation ratios for MEDP 

Since the maximum edge-disjoint paths problem with connection requests on a general graph 

is proven to be NP-hard, many works have proposed approximation algorithms for solving 

the problem [1, 8, 14, 20, 23, 30, 31, 32, 33]. A good approximation algorithm runs in 

polynomial time to reach a solution guaranteed to be close enough to the optimal solution. 

The sense of “closeness’’ can be described by the “approximation ratio”  . 

A  -approximation algorithm for MEDP runs in polynomial time to output a feasible solution 

R satisfying          , where OPT is the optimal objective value and     is the 

approximation ratio.  

For a general graph, known approximation algorithms for MEDP include the simple 

greedy algorithm, bounded greedy algorithm and shortest-path first greedy algorithm can be 

found in Kleinberg [14]. The bounds of approximation ratios are summarized below, while 
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the detailed descriptions of each algorithm will be given in Section 2.3. 

Theorem 2 (Erlebach, 2006 [33]) The simple greedy algorithm has an approximation 

ratio of     for MEDP in a directed or undirected graph with   vertices, and the bound 

is tight. 

Theorem 3 (Kleinberg, 1996 [14]) The bounded greedy algorithm with a parameter 

         has an approximation ratio of       for MEDP in a directed or 

undirected graph with   edges. 

Chekuri and Khanna [8] showed that for MEDP, the shortest-path-first greedy algorithm 

gives an         approximation for undirected graphs and an         approximation for 

directed graphs. In the same article, an           approximation algorithm was also 

shown for acylic graphs. In Varadarajan and Venkataraman’s work [20], the approximation 

ratio for directed graphs was improved to              . The next theorem provides the 

best known approximation ratio for MEDP in terms of the number of vertices.  

Theorem 4 (Chekuri and Khanna, 2003 [8]; Varadarajan and Venkataraman, 2004 

[20]) The shortest-path-first greedy algorithm for MEDP achieves an approximation ratio of 

                 for undirected graphs and                        for directed 

graphs. 

Lastly, an essential inapproximabilty result for directed graphs has been obtained by 

Guruswami et al. [39]. 

Theorem 5 (Guruswami et al., 1999 [39]) For MEDP in a directed graph with   edges, 

there cannot be an       -approximation algorithm for any     unless     . 

Very few metaheuristics algorithms have been proposed for solving MEDP. The ant 

colony optimization (ACO) approach presented in [23] is the only known metaheuristic for 

MEDP. The details of ACO approach will be given in Section 2.3.3. 
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2.3 Existing solution methods for MEDP 

Known solution methods for the MEDP include the “LP relaxation and rounding” method, 

the “greedy algorithms”, and the “Ant Colony Optimization” approaches, which are 

presented in this section.  

2.3.1 LP relaxation and rounding method 

The formulation of MEDP shown in Section 1.2 is an integer linear program whose 

complexity grows exponentially in terms of the problem size. Relaxing (1.4) and (1.5) by 

         and          respectively, leads to an LP relaxation such that an optimal 

fractional solution can be acquired in polynomial time. Then the rounding techniques are 

applied to covert the fractional solution into an integral solution. However, the gap between 

the fractional optimum and integral optimum can be large. A brick-wall graph shown in 

Figure 4 is a simple example demonstrating this phenomenon. 

 

 

Figure 4 The brick-wall graph 
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Assume there are six connection requests {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} in Figure 

4. When the capacity of each edge is 1, any two paths interfere with each other. We can easily 

see that only 1 request is realizable. However, solving the LP relaxation will obtain an 

objective value of 3, since it routes 0.5 of each request without violating any constraint. This 

shows that the fractional solution obtained by using the LP relaxation cannot guarantee much 

about the original problem. The rounding approach may result in an integral solution far 

away from desired. However, the situation becomes better as the edge capacity increases. We 

refer to reference [33] for more details. 

 

2.3.2 Greedy algorithms 

A greedy algorithm starts with an empty solution set and constructs a feasible solution step 

by step utilizing a greedy strategy. Due to its ease and speed in execution, a greedy algorithm 

is usually implemented for on-line real practice. In this case, the requests are presented one 

by one and the algorithm has to accept or reject the request sequentially without knowing 

future requests. 

The pseudocode of the simple greedy algorithm (SGA) for MEDP is given in Algorithm 

1. It starts with empty sets   and  , then iteratively assigns a shortest path, if there is one, 

to a connection request following the order that the request set is given. Each time a path is 

assigned, all the edges along that path are removed from the graph. The algorithm halts after 

  iterations. Unfortunately, SGA does not achieve a good approximation ratio in general. The 

work in [3] shows that SGA has the approximation ratio     for MEDP in general graphs. 
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Algorithm 1 Simple Greedy Algorithm (SGA) 

Input:         and                     

Begin: 

1.        ; 

2. for          

3. if                           then 

4.                                       ; 

5.       ; 

6.             ; 

7.              ; 

8. end if 

9. end for 

End 

Output: Realizable requests R and edge-disjoint paths S 

 

It is easy to see that the solution quality of SGA highly depends on the order of 

connection requests. In the worst case, SGA may route the first request on a very long path 

that interferes with all other requests. This is the main drawback of SGA. An intuitive way to 

solve this problem is applying the multi-start simple greedy (MSGA) algorithm [23], shown 

in Algorithm 2. MSGA runs SGA for   times, in each iteration the order of connection 

requests is randomly regenerated. The algorithm then outputs the best solution of the   

possible solutions.  
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Algorithm 2 Multi-start simple greedy algorithm (MSGA) 

Input:     and  , where   is the number of restarts 

Begin: 

1.                ; 

2.     ; 

3. for          

4.                                          ; 

5. if              then 

6.          ; 

7.          ; 

8. end if 

9.   random permutation of          ; 

10.                             ; 

11. end for 

End 

Output: Realizable requests       and edge-disjoint paths       

 

Another improved greedy algorithm is the bounded-length greedy algorithm shown in 

Algorithm 3, proposed by Kleinberg [14]. It takes an extra parameter   to denote the 

threshold of route length. A request is accepted only if it can be routed on a path of length at 

most  . In other words, requests whose endpoints are at distance larger than   will be 

rejected. The algorithm has an approximation ratio of   if every request can only be routed 

with length at least    . If this happens, the algorithm will increase   by one and run 

again. Kleinberg proved that the bounded-length greedy algorithm with parameter   

       can achieve an approximation ratio of       for MEDP in a directed or 

undirected graph with   edges. 
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Algorithm 3 Bounded-length Greedy Algorithm (BGA) 

Input:        ,                     and   

Begin 

1. do 

2.        ; 

3. for          

4.                                       ; 

5. if                          and         then 

6.       ; 

7.             ; 

8.              ; 

9. end if 

10. end for 

11.      ; 

12. while       

End 

Output: Realizable requests R and edge-disjoint paths S 

 

A further modification of the greedy algorithm is the shortest-path-first greedy algorithm 

proposed by Kolliopoulos and Stein [30, 31], shown in Algorithm 4. First, the algorithm 

acquires the shortest path for each connection request. The request that has the path with the 

shortest length among all paths is accepted and removed from the request set. Then the 

algorithm repeats the same “greedy” strategy until no path can be found for all remaining 

requests. Obviously, the algorithm accepts requests in a non-decreasing order of the path 

length. It has been shown that the worst-case approximation ratio of Algorithm 4 is at least 

as good as that of bounded greedy algorithm. Kolliopoulos and Stein [30, 31] proved that the 

algorithm achieves an approximation ratio of      in a directed or undirected graph with 

  edges.  
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Algorithm 4 Shortest-path-first Greedy Algorithm 

Input:         and                     

Begin: 

1.        ; 

2. While   contains a request that can be routed in    

3.         a request in   such that its shortest path has minimum length among all requests 

in  ; 

4.              ; 

5.              ; 

6.                                       

7.             ; 

8. end while 

End 

Output: Realizable requests R and edge-disjoint paths S 

 

2.3.3 Ant-colony optimizationn 

Ant colony optimization (ACO) was initially proposed by Marco Dorigo in 1992 in his PhD 

dissertation [21]. The idea of ACO comes from observing the exploitation of food resources 

by ants. In the beginning, ants wander randomly. If an ant finds food, it leaves pheromone on 

the trail back to the colony. Other ants are likely to follow the trail instead of keep travelling 

at random. If one eventually finds food, it also leaves pheromone to reinforce the path. On 

the other hand, the pheromone on paths evaporates gradually, thus reducing its strength of 

attraction. The pheromone density becomes higher on the shorter paths than the longer ones, 

therefore a shortest path between the food source and the ants’ nest may be found eventually.  

The application of ant colony optimization (ACO) to solving MEDP is the only known 

metaheuristic method. In [23], MEDP is decomposed into   subproblems             . 

Each subproblem          , where           , is trying to find a path for request    on 
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  by an ant. In other words,   ants are assigned for the   connection requests. 

A constructed ant solution    contains   paths which are not necessarily edge-disjoint. 

An edge-disjoint solution   is generated by iteratively removing the path that has the most 

edges in common with other paths, until the remaining paths are mutually edge-disjoint. Let 

          denote the number of edge-disjoint paths obtained from   . Since two 

solutions   
  and   

  may have the same number of EDPs, i.e.,     
       

  , a second 

criterion is introduced to quantify the non-disjointness of an ant solution. Define       as 

follows: 

                                       , (2.1) 

 
                 

             

            
  

 

 

For an ACO intermediate solution   ,         measures the usage of edges that are 

covered by more than one path. That means       is zero if all paths are mutually 

edge-disjoint. Generally speaking, a decrease of       may imply an increase of the 

number of EDP. Thus we can define an ordering      as follows: For two ACO intermediate 

solutions   
  and   

 , we say that     
       

   if and only if 

 

     
       

  , (2.2) 

 Or      
       

           
       

     

 

The pheromone model is critical for the ant colony optimization approach. Since the 

problem is decomposed into   subproblems, a pheromone model    is applied for each 
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subproblem   . Each pheromone model    consists of a pheromone value   
  for each edge 

   . All pheromone values are in the range            , where      and      are 

user-defined parameters. We denote the set of   pheromone models by            . 

Algorithm 5 carries the pseudocode of a basic ACO algorithm. The procedure 

                             sets all the initial pheromone values to be value     . In 

each iteration,      ant solutions are constructed by applying the function 

                     
    

    times (with   ants), where   is a permutation of 

         . During the process of path construction, an ant iteratively moves from one node 

to another along an available edge, the choice of destination can be made either 

deterministically or stochastically. We randomly draw a number       between 0 and 1. If 

          , the next step destination is chosen deterministically. Otherwise, the choice is 

made stochastically.  

After   paths are constructed, the value of the variable        will be updated if the 

solution improves. Finally, the pheromone values are updated depending on the edges 

included in       . We refer readers to [23] for the details of the path construction and 

pheromone updating procedures. 
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Algorithm 5 Basic ACO Algorithm 

Input:      

Begin: 

1.         ; 

2.                            ; 

3. while termination condition is false 

4.   (1,2…, ); 

5. for              

6.   
   ; 

7. for          

8.    
                 h    

    
 ; 

9.   
    

     
; 

10. end for 

11.   random permutation of          ; 

12. end for 

13. Choose      
     

              such that 

       
                

              

14. if        
           

   then 

15.       
       

 ; 

16.        h                      
  ; 

17. end if 

18. end while 

End 

Output: Realizable requests       and disjoint paths        generated from       
  

 

 

In [23], the author also proposed an enriched version of ACO for MEDP. The following 

four features are added to modify the way of exploring the solution space.  

Sequential versus parallel solution construction: While constructing an ACO solution, 

instead of establishing a path for one request after another, the paths are built in parallel. That 

is, in each step, an ACO procedure either adds exactly one more edge, or takes a 
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backtracking move. This feature changes the dynamics of the searching process that may lead 

to different results. 

Candidate list strategy: This is a mechanism to restrict the number of available choices 

for consideration at each construction step. For instance, when applying ACO to the traveling 

salesman problem, a restriction on checking a few nearby nodes only may significantly 

improve the solution efficiency and quality. The modified ACO for MEDP considers only 

“good” choices at each construction step to speed up the process.   

Different search phases: The pheromone update scheme is an important component of 

ACO. In the basic algorithm, all the paths (including the non-disjoint paths) of the ant 

solution        are used for updating the pheromone values. The author of [23] proposed a 

two-phase scheme. In the first phase, only the edge-disjoint paths are used for updating the 

pheromone values. The second phase kicks in when no improvement can be found over a 

certain period of time by using all paths to update pheromone values. Once the second phase 

results in any improvement, the algorithm returns to using the first phase.  

Partial destruction of solutions: This mechanism helps the algorithm escape from the 

local solutions by removing and reconstructing some paths of the solution. This procedure is 

initiated once the algorithm fails to improve over a certain period of time. 

In general, ACO approach has advantages over MSGA in terms of solution quality as 

well as computational time. The details of comparison on several benchmark instances can be 

found in [23]. 
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2.4 Genetic algorithms for path-related problems 

The genetic algorithm (GA) is a stochastic search method for optimization problems. It 

mimics the natural evolution processes using crossover, mutation and selection mechanisms 

to gradually improve the solution. Let      denote a population set of individuals in 

generation   and      the set of offspring generated by genetic operators. A general 

structure of the genetic algorithm is given below.  

 

Genetic Algorithm 

Begin: 

1.      ; 

2. initialize     ; 

3. evaluate     ; 

4. while (terminal condition not met) do 

5. recombine      to yield     ; 

6. evaluate     ; 

7. select        from      and     ; 

8.        ; 

9. End 

End 

 

Since MEDP considers the paths between several terminal pairs, we review the 

application of genetic algorithms for the shortest path problem in this section. The shortest 

path problem is to find a path between two nodes such that the path length is minimized. It is 

a fundamental problem involved in many applications on transportation, routing, and 

communications. For real-world applications, multiple and conflicting objectives are taken 

into consideration. Gen and Cheng [22] proposed a genetic algorithm to solve the shortest 
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path problem. The encoding schemes and genetic operators are summarized below. 

 

2.4.1 Encoding methods 

A gene in a chromosome is characterized by two factors: “locus” denotes the position of the 

gene within the structure of the chromosome, and “allele” represents the value of the gene. In 

[22], three different encoding schemes are investigated:  

Variable-Length encoding 

The variable-length encoding method is a straightforward method which consists of a 

sequence of positive numbers that represent the indices of nodes through which a path passes. 

Given a graph with   nodes, the length of the chromosome is between 1 and  . The 

advantage of this approach is that the mapping from a chromosome to a solution is a 1-to-1 

mapping. The disadvantage is that, in general, the genetic operators shown in the next section 

may generate an infeasible chromosome, or in other words, a path that does not exist. Thus 

repairing techniques are usually applied to ensure the feasibility of the chromosome. Figure 5 

shows an example of variable-length chromosome and its decoded path. 
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Figure 5 An example of variable-length chromosome and its decoded path 

Fixed-Length encoding 

This method uses a fixed-length chromosome to represent a path. To encode an arc node   to 

 , put   in the     locus of the chromosome. This process is reiterated from the source node 

and terminated at the sink node. If a node   is not passed by the route, randomly select a 

node from the set of nodes that connect with  , and put it in the     locus. The advantages 

of fixed-length encoding method are: (1) any permutation of the encoding corresponds to a 

path; (2) any path has a corresponding encoding. The disadvantages are : (1) some different 

chromosomes may correspond to the same path ( -to-1 mapping); (2) special genetic 

operators are required to generate a feasible chromosome. Figure 6 shows an example of 

fixed-length encoding and its decoded path. 

  

Locus : 

Node IDs : 

1 2 3 4 5 

2 4 5 8 9 

2 4 5 8 9 Path : 
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Figure 6 An example of fixed-length chromosome and its decoded path 

Priority-based encoding 

The priority-based method also uses a fixed length chromosome to represent a path. Given 

that there are   nodes, a path is encoded by a chromosome with   genes. The “locus” 

denotes the node ID and the “allele” represents the priority of the node. The priorities of 

nodes are used for constructing the path. The decoding procedure starts from scanning the 

source node and labeling the node with the highest priority among all nodes that are adjacent 

to the source node. The labeled node is put into the path. This scanning procedure restarts at 

the labeled node and continues until the path reaches the sink node. Illustration of the 

priority-based encoding method and its decoded path is shown in Figure 7. Let node 1 and 

node 9 be the source and sink node. At the beginning, node 2 and 4 are candidates for the 

next node and their priority values are 4 and 1, respectively. Since node 2 has greater priority, 

it is labeled and put into the path. The nodes adjacent to node 2 are node 1, 3 and 5. Node 1 is 

removed from the candidate set since it is already in the path. Compared with node 3, node 5 

has a higher priority and, hence, it is put into the path. Repeat the process until a complete 

Locus : 

Node IDs : 

2 4 5 8 9 Path : 

6 7 8 9  1 2 3 4 5 

2 4 9 8 2 4 5 5 8 
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path (1-2-5-8-9) is found.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 An example of priority-based chromosome and its decoded path 

The priority-based encoding has several advantages: (1) any permutation of the encoding 

corresponds to a path; (2) most of the existing genetic operators can be applied; (3) any path 

has a corresponding encoding; (4) any point in the solution space is accessible through 

genetic operations. The disadvantage is also the  -to-1 mapping which lowers the searching 

efficiency. For instance, [2,4,5,3,8,7,1,9,6] and [3,4,5,2,8,7,1,9,6] both denote the same path 

(1-2-5-8-9) in Figure 7. The comparison of the three encoding methods is made in [22] and 

shown in Table 1. 

  

Node IDs : 7 3 9 6 2 4 5 1 8 

Locus : 6 7 8 9  1 2 3 4 5 

1 2 3 

4 5 6 

7 8 9 

source 

sink 
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Table 1 Summary of the performance of the three encoding methods 

Chromosome 

Design 
Space Time Feasibility Uniqueness Locality Heritability 

Variable-length            poor 1-to-1 worse worse 

Fixed-Length            worse  -to-1 worse worse 

Priority-based            good  -to-1 good good 

 

2.4.2 Genetic operators 

Genetic operators mimic the process of heredity of genes to create new offspring at each 

generation. Using different operators may cause a huge difference in the performance of the 

GA procedure, therefore we reviewed below some different operators for the shortest path 

problem encoded by the priority-based representation. 

Order Crossover 

Order-crossover can be viewed as an extension of two-point crossover. It avoids the illegality 

caused by the simple two-point crossover. The procedure is described as follows and is 

illustrated in Figure 8. 

Input: Two parents. 

Step1: Select one substring from one parent randomly. 

Step2: Generate a proto-child by copying the substring into the corresponding  

position of it. 

Step3: Delete the nodes which are already in the proto-child from the second parent.  

Step4: Place the nodes into the unfixed position of the proto-child according to the order 

of the sequence in the second parent. 

Output: offspring. 
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Figure 8 An illustration of Order Crossover 

Position-based Crossover 

Position-based crossover is essentially a uniform crossover for the permutation representation 

together with a repairing procedure. It can also be viewed as a variation of the order 

crossover where the nodes are selected separately. The procedure is illustrated in Figure 9. 

Input: Two parents. 

Step1: Select a set of positions from one parent randomly. 

Step2: Generate a proto-child by copying the nodes on the positions into the 

corresponding position of it. 

Step3: Delete the nodes which are already in the proto-child from the second parent. 

Step4: Place the nodes into the unfixed position of the proto-child according to the order 

of the sequence in the second parent. 

Output: offspring. 

  

7 3 9 6 2 4 5 1 8 

7 3 9 2 5 4 6 1 8 

6 8 9 2 1 5 7 3 4 

Parent 1 : 

Parent 2 : 

Offspring : 
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Figure 9 An illustration of Position-based Crossover 

Inversion Mutation 

This operator randomly selects two positions on an individual and then inverts the substring 

between these two positions. It is illustrated in Figure 10. 

 

 

 

 

 

 

 

 

Figure 10 An illustration of Inversion Mutation 

  

7 3 9 6 2 4 5 1 8 

7 3 9 6 1 4 5 2 8 

6 8 3 9 1 5 7 2 4 

Parent 1 : 

Parent 2 : 

Offspring : 

inverted substring 

7 3 9 2 5 4 6 1 8 Parent : 

8 1 9 2 5 4 6 3 7 Offspring : 

selected substring 
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Insertion Mutation and Swap Mutation 

Insertion mutation selects an element at random and inserts it in a random position as 

illustrated in Figure 11. Swap mutation randomly selects two elements and swaps the 

elements on the position as illustrated in Figure 12. 

 

 

 

 

 

 

 

 

Figure 11 An illustration of Insertion Mutation 

 

 

 

 

 

 

 

Figure 12 An illustration of Swap Mutation 

  

7 3 9 2 5 4 6 1 8 Parent : 

7 6 9 2 5 4 3 1 8 Offspring : 

select two elements at random 

swap the elements on the positions 

7 3 9 2 5 4 6 1 8 Parent : 

Offspring : 3 4 9 2 5 6 1 8 7 

insert it in a random position 

select an element 
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2.5 Related works on RWA 

The RWA problem was proven to be NP-complete [13] in 1992. The first heuristic method 

was proposed in [13]. Since then, different heuristic methods have been developed. 

Reference [12] covers different approaches and variants developed in the 1990s for RWA. A 

functional classification of RWA heuristics can be found in [15]. In the literature, the 

approaches for solving the RWA problem can be divided into two main categories. One 

decomposes the problem into two subproblems, the routing subproblem and wavelength 

assignment problem [4, 9, 10, 35, 41] to be solved separately. The other one solves the two 

subproblems simultaneously [26, 36, 27, 45].  

Bannerjee and Mukherjee [9] employed a multicommodity flow formulation combined 

with randomized rounding to calculate the route for each request. After that, the wavelength 

assignment subproblem is solved based on the graph-coloring techniques. In which the graph, 

called “the conflict graph”, is built with one node corresponding to each request (and its route) 

and an edge exists between two nodes if their associated routes share one edge. Reference 

[10] also used the two-phase decomposition strategy to solve the RWA problem. First, one or 

more candidate routes are determined for each request by the kth-shortest path algorithm. 

Then the wavelength assignment problem is tackled by solving an instance of the partitioning 

coloring problem (PCP) defined over a partitioned conflict graph. The authors proved that the 

decision version of PCP is NP-complete, and proposed six heuristic methods for solving PCP. 

In [35], the same decomposition scheme was employed, but new algorithms for each phase 

were proposed. In the routing phase, candidate routes are precomputed by an 

edge-disjoint-paths based approach. That is, several edge disjoint paths are precomputed as 
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path candidates for each request. Next, a Tabu-search for solving PCP was proposed to solve 

the wavelength assignment problem. The initial feasible solution of PCP is provided by one 

of the six methods provided in [10], then a Tabu-search attempts to improve the solution by 

removing one color. The computational results indicated that the proposed Tabu search 

outperforms the best heuristic for PCP. 

Generally speaking, the routing problem may be solved by using a shortest-path 

algorithm, an EDP-based algorithm, or a combinatorial optimization algorithm [15]. The first 

two types are sequential algorithms, while the last one tales a combinatorial approach. 

Consequently, the wavelength assignment problem can be handled by a sequential or 

combinatorial approach. The sequential approach sorts routes according to different schemes. 

For example, routes can be sorted in descending order of their lengths. Then a wavelength is 

assigned to the sorted routes. For the combinatorial approach, a number of heuristic methods 

based on well-known graph coloring methods have been proposed. 

Although dividing RWA into two subproblems allows the use of existing algorithms, 

good solutions for each subproblem do not guarantee a good solution to the RWA problem. 

Hence some algorithms treat the RWA problem as an integral problem. The first such 

heuristic method called Greedy-EDP-RWA was developed in [27]. It employs the solution 

technique in [14] to solve the maximum edge-disjoint paths problem. Compared with the one 

in [9], Greedy-EDP-RWA was reported to run much faster to reach an equally good solution. 

The state-of-art heuristic for RWA was proposed in [26]. The author adapted some ideas 

from bin-packing heuristics to the RWA problem by considering each connection request as 

an item and copies of the original graph as bins. The weight of an item is set to be the number 
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of links in routing a request. To say that a bin does not have enough capacity for two items is 

equivalent to saying that two requests cannot be routed on the same copy of the original 

graph with edge-disjoint paths. Four bin-packing based heuristics were proposed in [26]: (i) 

first fit heuristic (FF-RWA), (ii) best fit heuristic (BF-RWA), (iii) first fit decreasing heuristic 

(FFD-RWA) and (iv) best fit decreasing heuristic (BFD-RWA). Computational results 

showed that FFD-RWA and BFD-RWA both outperform Greed-EDP-RWA [27]. Detailed 

descriptions of the bin-packing based algorithms will be provided later. 

In [34], BFD-RWA is embedded into a biased random-key genetic algorithm. A 

chromosome is a vector of real numbers in the interval [0, 1]. Each gene is associated with a 

connection request. The requests are sorted in a non-decreasing order in terms of the sum of 

their lengths and genes before BFD is applied. Computational results indicate that better 

solutions can be found than those obtained by a multistart variant of BFD in less time on 

average. In recent years, other soft computing techniques such as the particle swarm 

optimization (PSO) [4], artificial bee colony (ABC) [44] and memetic algorithm [36] were 

applied to solve the RWA problem. For the PSO and ABC algorithms, several route 

candidates are precomputed for each request using the kth-shortest paths algorithm. A 

particle or a population of bees represents a set of   route IDs. Each ID represents a route 

which connects the corresponding connection request. During the search process, the route 

IDs are recombined according to different evolutionary scheme. Then a bin-packing based 

method is used to solve the wavelength assignment problem. 

Different local search approaches were proposed in [36] and [7]. Both references 

construct the initial solution by BFD-RWA [26]. In [7], a variable neighborhood descent 
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(VND) and an iterated local search (ILS) were developed. The experimental results showed 

that VND-ILS is able to improve the solution quality significantly. In [36], a memetic 

algorithm which includes the ILS, mutation, and recombination operators was proposed. In 

addition, a multilevel algorithm was applied to address large size instances. The results 

showed that this method can be considered as the most sophisticated heuristic algorithm 

known in the literature. 

 

2.6 Particle swarm optimization for RWA 

2.6.1 Introduction of PSO 

Particle Swarm Optimization (PSO) is an evolutionary and population based optimization 

algorithm, which was developed by Kennedy and Eberhart in 1995 [28]. It was inspired by 

the simulation of social behavior, such as bird flocking and fish schooling to find food 

sources. Swarm optimization takes advantages of the cooperation between individuals. In 

PSO, each member of the swarm is called a particle (or an individual), which utilizes two 

pieces of important information in a decision process. The first is their own experience; that 

is, the best position and its fitness value they have experienced so far. The second is other 

individuals’ experience; that is, they have knowledge of how their neighbor individuals 

perform. Namely, they know the best position and its fitness value their neighbors have found 

so far. 

The PSO algorithm initially places a number of particles in the search space randomly. 

Each particle evaluates its current location, and then determines its movement through the 

search space by combining its own current and best-fitness locations with those of one or 
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more members of the swarm, with some random perturbations. Specifically, the velocity of 

each particle is iteratively adjusted according to the best position visited by itself so far 

(denoted by      ) and the best position obtained so far by any particle among the 

neighbors of the particle (denoted by      ). Then the next iteration starts after all particles 

have been moved. The swarm eventually is likely to move close to an optimum location 

(food source). The pseudocode of PSO is given as below. 

 

Particle swarm optimization 

Begin: 

1. Random initialization of the whole swarm; 

2. Repeat 

3. Evaluate each particle; 

4. Update the current best (      and      ) positions; 

5. For each particle  

6. Update velocities; 

7. Move to the new position; 

8. End for 

9. Until Stopping criteria 

End 

 

Let    ,    , and   
  denote the previous best, global best, and current position of 

particle  , respectively. The velocity   
   , is updated according to the following equations 

(the superscripts denote the iteration): 

 

   
        

               
                

   (2.3) 

   
      

    
    (2.4) 

 



 

46 

where        , and   is the population size. The parameter   is the inertia weight, 

which controls the impact of the previous velocity. The parameters    and    are two 

positive constants, where    is the cognitive learning factor that represents the attraction 

toward the best position it had searched so far; and    is the social learning factor that 

represents the attraction that a particle has toward the success of its neighbors. Two random 

numbers    and    are uniformly distributed in the range      . Equation (2.3) determines 

the  th particle’s new velocity   
   , while (2.4) moves the particle   to the new position 

  
    by adding the new velocity to the current position   

 . Figure 13 shows the description 

of the velocity and position updates of a particle in a two-dimensional space. 

 

 

Figure 13 The velocity and position updates of a particle in a two-dimensional space 

2.6.2 PSO for RWA 

A PSO technique for solving RWA was proposed in [4]. In order to apply PSO for solving the 

RWA problem, the general PSO equations are modified so that PSO can be mapped for RWA. 

The velocity of movement is either influenced according to the global best or local best 
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position, but not both at the same time. The equations are as follow: 

 

   
                

                   
   (2.5) 

   
      

    
    (2.6) 

 

where        , and   is the population size. The parameter   is either 0 or 1;    and 

   are social learning parameters (here we let   =  ),     and     represent the global 

best position and local best position, respectively. 

In the PSO for RWA, the position and velocity of a particle is represented as vectors of 

route ids. Before the PSO starts, a k-shortest paths algorithm is used to produce several path 

candidates for each of the connection requests. Each path is identified by a given unique 

route-id. The particle and its velocity are represented as 1-by-  vectors of route ids. Each 

particle is attached with an edge usage table which shows the edge usage in terms of routes 

traversing over an edge in the network. This table helps determine which edges of the 

network will be overloaded if the routes of the current particle are chosen. 

In the PSO for RWA, velocity is also a vector of route-ids that will be replaced in the 

current particle according to the global or local best particle. The minus operator is redefined 

as follows:        
   denotes the different routes between the gbest and the current 

particle. Similarly,        
   represents the routes that are different in the lbest and the 

current particle. Two social learning parameters    and    determine the number of routes 

that will be replaced. The parameter   is used to determine whether the new velocity is 

affected by the global best or local best particle, but not both in a single iteration for a 



 

48 

particle. 

The add operator in equation (2.6) is redefined: the application of velocity   
    to the 

particle   
  means the routes in   

    will replace the corresponding routes in   
 . The 

particle will move to the next position   
    which represents a new candidate solution to 

the problem. 

Equation (2.7) is used to quantify the quality of the solution represented by each particle 

of the swarm in terms of their fitness value. 

 
     

 

       
 

(2.7) 

 

where     is the average path length and     is the number of wavelengths required to 

satisfy all requests. The value of     is obtained by calculating the number of edge 

disjoint path sets among the predetermined paths. The pseudocode of PSO algorithm for 

RWA is given below. 

 

Particle swarm optimization for RWA 

Begin: 

1. For each connection request, randomly select a route from the k-shortest paths. 

2. Repeat 

3. Evaluate each particle; 

4. Update the current best (gbest and lbest) positions; 

5. For each particle  

6. Find the differences routes between the current best particles; 

7. Among the route set, find a given number of routes that traverse the most 

congested edges; 

8. Replace those routes in the current particles; 

9. End for 

10. Until Stopping criteria 
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End 

 

In addition, some strategies are proposed to improve searching ability: First, while 

applying velocity to a current particle, the routes that traverse the most congested edges of 

the network should be selected. Second, instead of replacing the route by the route of gbest 

(lbest), replace it with an alternative route from gbest (lbest). We refer readers to [4] for the 

detailed descriptions about the strategies. 

 

2.7 BIN-packing based methods for RWA 

The bin packing problem is a classical combinatorial optimization problem that has been 

widely studied in the literature. Given is a list of   items of various sizes, and identical bins 

with a limited capacity. To solve the problem, it is necessary to pack these items into the 

minimum number of bins, without violating the capacity constraints. Four classical 

algorithms for the bin packing problem are the First Fit (FF), Best Fit (BF), First Fit 

Decreasing (FFD) and Best Fit Decreasing (BFD) algorithms. The FF algorithm packs each 

item into the bin with the lowest index. On the other hand, the BF algorithm packs each item 

into the bin which leaves the least room left over after packing the item. The FFD and BFD 

algorithm first place larger items into bins and then fill up remaining space with smaller 

items. 

To apply bin-packing methods to solve the RWA problem, we must define bins, items, 

and their corresponding size in terms of optical networks. Skorin-Kapov of [26] considered 

using lightpath requests to represent items and using duplicates of graph   to represent bins. 



 

50 

Each copy of  , i.e.,              corresponds to one wavelength. Let the size of each 

lightpath    be represented by the length of its shortest path     in graph   . To solve the 

RWA problem, we wish to pack as many items (lightpaths) into a minimum number of bins 

(copies of  ), and hence the number of used wavelengths is minimized. 

The FF algorithm runs as follows. Fisrt, only one copy of  , bin   , is created. Higher 

indexed bins are created as needed. Lightpath requests are selected and routed on the lowest 

indexed copy of   if the length of the shortest path on such graph is less than the threshold 

 , which is set to be                    as suggested in [27]. If a lightpath is routed in 

bin   , the lightpath is assigned wavelength   and the edges along such path are removed 

from   . A new bin is created if no existing bin can accommodate the request. On the other 

hand, the FFD sorts the requests in a nonincreasing order in terms of the lengths of their 

shortest paths in  . The motivation is that, the connection request with the longest shortest 

path is usually harder to route. Therefore the strategy of considering these requests first then 

filling up the remaining space with the requests having the shortest routes may lead to fewer 

wavelengths used. The pseudocode of FF and FFD algorithms are shown as below. 

 

Algorithm 6 FF_RWA (FFD_RWA) algorithm 

Input: 

       ; 

                   ; 

 ; 

Begin: 

1. (ONLY FOR FFD_RWA: sort demands   in a non-increasing order in terms of the lengths 

of their shortest paths in  ) 

2.    ; 
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3. Create     ; 

4.          ; 

5. For     to   

6.     ; 

7. For     to        

8. Find shortest path    
 
 for         in   ; 

9. If     
 
    then 

10.       
 
; 

11.     ; 

12. Remove edges in    from   ; 

13. Break; 

14. End if 

15. End for 

16. If      then 

17.             ; 

18. Create       ; 

19.                 ; 

20. Find shortest path    
    for         in     ; 

21.       
   ; 

22.       ; 

23. Remove edges in    from     ; 

24. End if 

25.       ; 

26.            ; 

27. End for 

End 

Output:   and   

 

The Best Fit bin packing algorithm routes requests in the bin which they fit “best”. The 

best bin is considered to be the one in which the request can be routed on the shortest path. In 

other words, assume there are   existing bins, bin   is the best bin for lightpath request   

if and only if                    
 
 , where    

 
 denotes the shortest path of request   in 

  . The pseudocode of BF and BFD algorithm are shown as follows. 
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Algorithm 7 BF_RWA (BFD_RWA) algorithm 

Input: 

       ; 

                   ; 

 ; 

Begin: 

1. (ONLY FOR BFD_RWA: sort demands   in a non-increasing order in terms of the 

lengths of their shortest paths in  ) 

2.    ; 

3. Create     ; 

4.          ; 

5. For     to   

6.      ,        ; 

7.           ; 

8.  For     to        

9.   Find shortest path    
 
 for         in   ; 

10.   If     
 
    and     

 
       then 

11.          
 
; 

12.        ; 

13.             ; 

14.   End if 

15.  End for 

16.  If      then 

17.   Remove edges in    from         ; 

18. else 

19.               ; 

20.   Create       ; 

21.                   ; 

22.   Find shortest path    
    for         in     ; 

23.         
   ; 

24.         ; 

25.   Remove edges in    from     ; 

26.  End if 

27.        ; 

28.             ; 
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29. End for 

End 

Output:   and   

 

2.8 Known lower bounds 

Since the known algorithms for the RWA problem are heuristics, it is useful to have a good 

lower bound in order to assess the quality of suboptimal solutions. Finding good lower 

bounds is not trivia. The task may still be time-consuming. Different approaches have been 

developed to determine lower bounds. We can either estimate a lower bound according to the 

problem instance’s properties, or relax constraints of the problem formulation to solve an 

easier problem. Usually, estimations are easily available but are often far below the optimal 

solution. Lower bounds obtained by relaxation can be tighter, but at the cost of computational 

time.  

For simplicity, we only introduce an easy lower bound for the RWA problem using the 

estimation approach provided in [26] as below. 

                
     

     
   

      
 
   

   
   (2.8) 

where       is the logical degree of node  , i.e., the number of requests in which node   

is the source node;       represents the physical degree of node  ;       is the length of 

the shortest path in   of request (      . The lower bound has two elements. The first one 

represents the maximum ratio of logical to physical degree of any node in  , rounded up to 

the first higher integer. If a node   has       adjacent edges and is one of the endpoints 

for       requests, at least one physical link will have  
     

     
  requests routed over it. 
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Therefore a number of  
     

     
  wavelengths are required due to the wavelength clash 

constraint. The second component of (2.8) is the distance (assume each edge has one unit of 

cost) of each request’s shortest path divided by the number of edges available in the graph. 

Two other lower bounds were proposed in [5, 36]. In [36], the lower bound is obtained 

by relaxing the wavelength continuity constraint, thus the RWA becomes a multicommodity 

flow problem, where each request is a unique commodity with one unit of demand. The 

commodity need to be routed through the problem instance’s network  . The other lower 

bound introduce in [5] also relaxes the wavelength continuity constraint and translates the 

problem into a maximum cut problem. Both are more sophisticated methods to obtain 

stronger lower bounds than the one provided in (2.8), but they are not applicable for large 

instances due to their prohibitive computation time.  
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Chapter 3 Proposed genetic algorithm for MEDP 

In this chapter, we propose a genetic algorithm for solving the maximum edge-disjoint paths 

problem. A typical genetic algorithm has four basic components: (i) a genetic representation, 

(ii) a method to find an initial solution, (iii) an evaluation function in terms of the fitness of 

an individual and (iv) genetic operators that produce offspring. A good genetic representation 

is a key issue while using the genetic algorithm. Here we adopt the priority-based encoding 

method to represent a path by an     vector, in which each element is a real value in 

     . Each individual includes   paths with such representation method. Throughout the rest 

of the chapter, we will use the terms “individual,’’ “solution,’’ and “chromosome’’ 

interchangeably. 

In Section 3.1, we discuss how to transform MEDP with pre-determined paths into a 

maximum independent set (MIS) problem. A greedy algorithm for solving MIS can be 

applied to extract the edge-disjoint paths from a set of given paths. In Section 3.2, the 

encoding/decoding procedures are given. A simple heuristic is proposed to generate the initial 

population in Section 3.3. The genetic operators are described and some small examples are 

provided in Section 3.4. In Section 3.5, we present a simple heuristic to improve the solution 

after evaluating the offspring. Finally, the evaluation and selection mechanisms are given in 

Sections 3.6 and 3.7, respectively. 
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3.1 MEDP with pre-determined paths  

The objective of MEDP is to maximize the realizable connection requests through 

edge-disjoint paths. Two questions arise naturally:  

1. How to construct the path between two terminals of a connection request?  

2. If the paths are known, how to decide whether a request should be accepted or rejected?  

Most of the existing methods are greedy algorithms which usually apply the shortest 

path algorithm to construct the path, then remove all edges along that path from the graph. 

Therefore the second question is not relevant. Since greedy algorithms build the paths one by 

one corresponding to a given order of the connection requests, the quality of the solution 

depends heavily on the given order. In our work, instead of removing edges from the graph 

after a path is built, we begin with relaxing the edge-disjoint constraint and assigning a path 

to every request, then obtain the maximum number of EDPs among all of these paths.  

Here we describe a key idea of the proposed approach. Given an undirected graph   

and a set of connection requests                                  . A set of paths 

              } is also given (these paths are not necessarily edge-disjoint), where each 

path    connects the terminal pair       ). How do we find the maximum number of 

edge-disjoint paths from   ? A conflict graph            is built with each node      

corresponding to a connection request         in the original MEDP. Hence       . And 

there is an edge between two nodes        if the two paths    and    have some edges 

in common in  . In this way, solving MEDP with pre-determined paths is equivalent to 

finding a so-called “maximum independent set (MIS)” on   .  
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In graph theory, we call a set of nodes an independent set in a graph, if there are no two 

of which are adjacent. A maximum independent set (MIS) is the largest independent set for a 

given graph. Finding an MIS in a graph is a well-known NP-complete problem. Two greedy 

algorithms, GMIN and GMAX, have been investigated in [32]. GMIN selects a vertex of the 

minimum degree and removes it and its neighbors from the graph. This process is iterated on 

the remaining graph until no vertex remains. The set of selected vertices then form an 

independent set. In contrast, GMAX deletes a vertex of the maximum degree until no edges 

remain. In this case, the set of remaining vertices is an independent set. In our proposed 

method, GMIN is applied to find the MIS on    since it can achieve a better lower bound 

than GMAX [32]. 

 

3.2 Encoding/Decoding procedures 

Representing paths in a graph is critical for developing a genetic algorithm for MEDP. 

Different methods for encoding a path on a graph were reviewed in Section 2.4.1. The 

priority-based encodings method uses a fixed-length code to represent a path. Although 

several encodings may correspond to the same path ( -to-1 mapping), priority-based 

encoding has some good characteristics compared to other methods (see Table 1). Thus we 

adopt this scheme to represent a path. The priority values are assigned in the interval      .  

A solution of MEDP involves several paths, which means that an individual needs to 

carry the information of these paths. Each individual contains   vectors, with each vector   

has   elements (or priority values) representing the specific path corresponding to the 

connection request        . Let   
 
 denote the  th vector of individual  ,  
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Figure 14 shows the structure of the chromosomes. Each individual  , denoted by   , is 

a collection of vectors    
 
   

 
     

 
     

 
 , where   

 
 is a     vector of priority values 

representing the path that connects        . 

 

Figure 14 The structure of a chromosome 

Algorithm 8 describes the details of the decoding procedures. Basically, decoding is a 

procedure of path construction. At the beginning, the path   only contains the source node 

 . The current node, denoted by    , is set to be  . All the unlabeled and neighbor nodes of 

  r, which are the candidates for the next move, are denoted by  . If   is not empty, the 

node with the greatest priority value in   is added into   and becomes the current node. 

The label of the current node is set to be 1. If   is empty, the path backtracks by setting the 

second last node in   to be the current node and removing the last node of  . The path 

construction procedure stops when the path reaches the destination node (     ). If two or 

more nodes have the same priority, choose the one with the smallest node index to break the 

tie. For example, if nodes 1, 3, 7 have the same priority values, then node 1 is chosen to be 

the next node 
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Algorithm 8 Decoding Procedure 

Input: a     vector   denoting a path from   to  ,  

source  ,  

sink  , 

     is a set of nodes adjacent to node    . 

Begin: 

1.      ,      ,      ,      ; 

2. while       

3.                  ; 

4. if     then 

5.          ; 

6.                    ; 

7.       ; 

8.          ; 

9. else 

10.       ; 

11.          ; 

12.         ; 

13. end if 

14. end while 

End 

Output: a path   between   and   

 

Algorithm 9 shows the pseudocode of the encoding procedure. Given a node sequence  , 

the encoding procedure generates a priority vector            . Starting from    , 

the element    
 is assigned the priority value 

     

 
. Thus the starting node will have the 

highest priority, and the second node in   will be assigned the second highest priority, and 

so on. For the nodes that are not in the path, their priority values are randomly generated 

within the range [0, 
     

 
). In this way any of the nodes in   has higher priority than those 
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that are not. For instance, the encoding procedure of the path             on a graph with 9 

nodes is as follows: For nodes 1, 2, 5, 8, 9, their priority values are    
     

 
,    

     

 
, 

   
     

 
,    

     

 
,    

     

 
, respectively. For the nodes not in the path (nodes 3, 4, 

6 and 7), their priority values are randomly drawn from    
   

 
 . A code representing the path 

can be                                      . 

 

Algorithm 9 Encoding Procedure 

Input: a node sequence   denoting a path, 

  is the number of nodes in the graph. 

Begin 

1.      . 

2. for  =1 to     

3. if    
   then 

4.    
 

     

 
 ; 

5. end if 

6. end for 

7.           ; 

8. for     

9.                            
     

 
  ; 

10. end for 

End 

Output: encoded path   

 

As described in the previous section, the   paths in an individual are not necessarily 

edge-disjoint. Once the paths are determined, an     path relation matrix   can be 

generated, where       if path   and   share the same edge; otherwise      . A 

simple heuristic GMIN is applied for obtaining the paths that are actually edge-disjoint. At 
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each iteration, the request that has the least number of interfering requests is accepted (two 

requests interfere if their paths have an edge in common). Then the request and all the 

interfering requests are removed from the request list. Repeat the iteration until the request 

list is empty. The detail of GMIN is described in Algorithm 10, where   is a set of request 

indices, and    is the set of indices of the requests interfering with request  . 

 

Algorithm 10 GMIN for MEDP 

Input:   is a  x  matrix.  

Begin: 

1.    ,            ,            ; 

2. while     

3.       

4.                  

5.               

6.        ; 

7.             ; 

8. set the     column and row of   to zeros,            ; 

9. end while 

End 

Output: a realizable set   

 

3.3 Initial population 

The initial priority values of all the individuals are generated randomly by drawing values 

from      . A total of   individuals are further modified by a heuristic method. The heuristic 

method works as follows. First, the shortest path distance    is calculated (letting the 

distance of each edge be one) for each request  . The connection requests is sorted in an 

ascending order of distance and the sorted permutation is denoted by   . The corresponding 
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connection request is denoted by   . Considering the permuted request set   , a realizable 

request set and its corresponding edge-disjoint paths can be obtained by applying the Simple 

Greedy Algorithm (SGA) as described Algorithm 1 in Section 2.3.2. We then encoded these 

edge disjoint paths as the first individual.  

More individuals can be initialized by exchanging the order of two requests in    and 

then run another SGA to obtain a new realizable set of requests and the corresponding 

edge-disjoint path. To avoid swapping the request that has the “longest” shortest path with 

the one has the “shortest” shortest path, which is very likely to generate a worse solution, we 

cut    in half and forbid the swap operation taking place between different halves. Figure 15 

illustrates the swap operation. The pseudocode of initialization heuristic is given in 

Algorithm 11. We denote individual   as       
 
   

 
     

 
     

 
 , where   

 
 is a     

priority vector denoting a path for the request  . 

 

 

 

 

 

 

 

 

 

 

Figure 15 Swap operation generates a new initial individual 

  

swap 

  
     

     
          

  

Request 1 has the “shortest” shortest path. Request   has the “longest” shortest path. 
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Algorithm 11 Initialization Heuristic 

Input:       

  is the number of individuals generated by this heuristic; 

Begin: 

1.    ; 

2.   (1,2…, ); 

3. for          

4.                                          ; 

5. end for 

6.  
 
 SortRequest( , ); 

7.   
          

       
          ; 

8.                                  ; 

9.               ;  

10. while     

11.                   
 
   

12.   
                                 ; 

13.                                    ; 

14.                 ;  

15.      ; 

16. end while 

End 

Output:   initial individuals   ,   ,…,    

 

3.4 Genetic operators 

Genetic operators mimic the process of heredity of genes to create the offspring. Using 

different operators may cause a great impact on GA performance. In Section 2.4.2, we 

examined several operators for priority-based representation. In general, permutation 

representation may yield illegal offspring by using the two-point or multi-point crossover 

because some priority values may be missed or duplicated. Therefore, a repairing procedure 
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is required when these approaches are applied. Here we use the real-valued priorities. Since 

most of the individuals are randomly generated, any two priority values are unlikely to be the 

same. Consequently, the repairing process is unnecessary. Three genetic operators are 

introduced as follows. 

 

3.4.1 Crossover Operator 

The crossover operator generates one offspring by the weighted linear combination of parents. 

The parents are chosen by roulette-wheel and the weight is randomly generated. The essence 

of this operator is blind random search, hence there is no guarantee that the offspring 

generated by this method is better than its parent.  

We use a simple example of a 3x4 mesh graph with the connection requests   

                to illustrate the process. The path set represented by the first individual 

      
    

   is shown in Figure 16, in which   
 ,   

  denote the first individual’s priority 

vectors for the two requests. The bold line and the dashed line denote the paths decoded from 

  
  and   

 , which correspond to the first and second requests, respectively. Figure 17 shows 

the path set of the second individual       
    

  . We can see that the number of EDPs of 

individuals 1 and 2 are both one. Figure 18 is the path set represented by the offspring 

generated by letting   
       

         
        

       
         

  with      . 

Luckily, the number of EDPs is increased by one. 
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Figure 16 Chromosome 1 and its representative path set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Chromosome 2 and its representative path set 
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Figure 18 The offspring and its representative path set 

3.4.2 Mutation Operator 

The mutation operator generates one offspring from an individual. In some sense, the priority 

value of a node represents the “preference’’ of a node while we are building the path. The 

offspring generated by the mutation operator (denoted by    ) has the same priority vectors 

as its parent, except for a randomly picked vector   
   is mutated by letting   

       
 
, 

where   is an     vector of 1s,    is the parent individual and   is an integer randomly 

draw from      . The mutation operator can be stated as follow: 

 

   
    

    
        

  
                     

 , for          (3.1) 

1 2 3 4 5 6 7 8 9 10 11 12 

  
    

  
    

0.22 0.67 0.315 0.21 0.535 0.85 0.775 0.61 0.36 0.305 0.58 0.56 

0.415 0.44 0.625 0.68 0.425 0.50 0.845 0.57 0.265 0.22 0.575 0.45 
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9 10 11 
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12 
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For instance, mutating   
  in Figure 16 gives a new priority vector   

   as follows. 

  
       

  

                                                               

                                                                

                                                               and 

  
     

 . 

The new offspring is shown in Figure 19, the path decoded from   
   is in bold line. 

Obviously, two edge-disjoint paths can be found now.  

 

 

 

 

 

 

 

 

 

 

 

Figure 19 The offspring generated by mutation operator 

3.4.3 Self-Adaption Operator 

The self-adaption operator generates one offspring     from a randomly selected individual. 

Similar to the mutation operator, it randomly selects and reroutes a rejected request  , where 

           , by assigning new priority values to   
  . The priority vectors for other 
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0.69 0.08 0.70 0.78 0.87 0.20 0.26 0.37 0.85 0.79 0.57 0.50 

0.51 0.48 0.73 0.68 0.41 0.90 0.82 0.43 0.30 0.33 0.21 0.10 
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requests stay the same as its ancestor. Two factors are taken into consideration in order to 

construct a better solution: First, a longer path (assume that the distance of each edge is 1) is 

less preferred because its “intersection” with other paths carries a higher probablility. The 

all-pairs shortest distance matrix   obtained at the initialization stage provides useful 

information for this priority adjustment.  

Second, if we want to reroute a path, the new path better not include an occupied edge 

(which is already taken by other paths). In other words, we want this new path to be 

composed by the edges that are seldom used. However, edge preferences are hard to 

manipulate since the chromosome is encoded as node priorities. An alternative way to serve 

the purpose is to assign a higher priority value to a node, which is adjacent to more available 

edges.  

To apply the self-adaption operator, the all-pairs shortest path matrix     , the 

incidence matrix      and the     indicator vector    obtained in the evaluation 

process are required. We define    as follows: 

The new priority vector   
      in block   is determined by a weighted average of 

distance and usage factors: 

          (3.3) 

                   (3.4) 

    
   

    

      
 

 

   
 (3.5) 

   
   

   
  

    
   

 (3.6) 

   
   

                        
           

 , for          (3.2) 
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Here we use the maximum norm                            to control the priority 

value in the interval      . In (3.3),   is a     vector representing the number of 

available adjacent edges of each node. In (3.4),     denotes the   
   row of  . We subtract 

the one-to-all (node    to all nodes) shortest distance value from the maximum value of    . 

In (3.5), the weighted average of two factors is assigned to    
  . Equation (3.6) normalizes 

the    
   to [0,1] and assigns it to   

  . 

Take the individual in Figure 16 as example. If we apply the operator to the second 

request, that is,                   , we have 

                            

                             

                              

   
    

  

  
 
  

  
 
 

 
 
 

 
 
 

 
 
  

  
 
  

  
 
  

  
 
 

 
 
 

 
 
 

 
 
  

  
  

  
    

  

  
 
  

  
   

  

  
 
 

 
 
  

  
 
  

  
 
  

  
 
  

  
 
 

 
 
 

 
 
  

  
  

Figure 20 illustrates the paths represented by the new individual. We can see that the 

self-adaption operator reroutes the second request to a better path (in dash line). 
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Figure 20 The offspring generated by self-adaption operator 

3.5 Improvement heuristics 

Researchers have shown that local improvement heuristics add a great deal of benefit to GA. 

In our algorithm, the proposed heuristics are performed after an offspring is evaluated. In the 

evaluation process, an individual is decoded into   paths. Then GMIN is performed to 

acquire the maximum number of EDPs and a realizable set  . A residual graph, denoted by 

  , which is the graph after removing all edges involved with the EDPs from the original 

graph  , is obtained. Note that in the residual graph   , there may exist some paths which 

can connect some of the rejected requests. The purpose of the improvement procedure is to 

find some new paths for the unrealizable connection requests in   . If such paths can be 

found, they must be edge-disjoint to all other paths in   since the routes are build in   . The 

1 2 3 4 5 6 7 8 9 10 11 12 
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new paths are then encoded to the offspring and the solution is improved. The pseudocode of 

the improvement heuristic is shown in Algorithm 12. 

 

Algorithm 12 Improvement Heuristics 

Input:    is the residual graph, 

  is the unrealizable set, 

  is the connection requests 

Begin: 

1. if    >0 

2. for             

3.      PathConstruction(   
    

); 

4. if      exists 

5.    
     ; 

6. Encode    
 to the offspring; 

7. Remove edges in    
 from   ; 

8. end if 

9. end for 

10. end if 

End 

Output: an improved offspring 

 

The function PathConstruction, which constructs a path between the endpoints of the 

unrealizable request     
    

 , is similar to Algorithm 8. The only difference is that, instead 

of moving to the node with the highest priority, it selects the node with the smallest index as 

the succeeding node.  

An example of employing this heuristic is shown in Figure 21, Figure 22 and Figure 23. 

An instance of a 3x4 mesh graph with given connection requests                         

and some pre-determined paths are illustrated in Figure 21. In Figure 22, two EDPs are 

obtained by applying GMIN. The unrealizable request       can be reconnected by using the 
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subroutine PathConstruction. A new path (9, 5, 1, 2, 3) is found as shown in the dotted lines 

in Figure 23. The new path is then encoded and the improved offspring has three EDPs now. 

 

 

 

 

 

 

 

 

Figure 21 Three paths of corresponding requests 

 

 

 

 

 

 

 

 

 

Figure 22 Two EDPs found by GMIN 
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Figure 23 A new EDP found by the improvement heuristics 

3.6 Fitness function and evaluation  

Let   denote a set of edge disjoint paths extracted from a path set               } by 

GMIN. The path set    represents the paths decoded from an individual       

               . The fitness function is similar to the bicriteria scheme in Section 2.3.3, 

where the first objective           is the number of EDPs and the second criterion       

measures the usage of edges that are traversed by more than one path.  

 

                          
 
           ,  

 
                 

             
            

  
 

 

The second criterion measures the degree of “non-disjointness” of an individual. If all 

paths in    are edge-disjoint,       is zero. In general,       increases while paths in    

have more edges in common. A comparison operator       is defined as follows. For the 

two path sets   
  and   

 , which are decoded from two individuals    and   , respectively, 

we say that               if and only if 
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  ,  

 or      
       

           
       

   .  

 

3.7 Population management and selection method 

Two issues are worth mentioning regarding the population management. First, duplicate 

individuals are forbidden. Two individuals are considered identical if the decoded solutions 

are identical (i.e., the decoded   paths are the same, but not the priority values). Each time a 

new individual is generated, it is compared to the individuals in the population; if there 

already exists the same individual, the new individual is discarded and another individual is 

generated. The duplicate-checking is performed after the improvement heuristic (Algorithm 

12) is executed. 

The second issue iWith   individuals generated in each generation, let     and     

represent the number of individuals generated by the mutation and crossover operators, 

respectively. To avoid being trapped in local solutions, we let     and     vary as follows:  

    round(            
             

      
  , 

         , 

where       ,        are parameters that indicate the minimum and maximum number 

of the individuals generated by the mutation operator in each generation. The quantity     

denotes the number of consecutive iterations that the algorithm has failed to improve the 

best-known solution. The quantity        is the maximum tolerable iteration, the 

algorithm terminates when           .  

For the selection method, we apply the       selection method which picks the best 
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  individuals from the parents and   individuals from the offspring. Many researchers 

prefer to use this method to deal with combinatorial optimization problems. Note that the 

duplicate-checking is also adopted to prevent the selection of identical individuals.  

 

3.8 Summary 

Putting together all procedures designed in Sections 3.2 to Section 3.7, we now have a 

proposed GA based algorithm for solving the maximum edge-disjoint paths problem. Each 

connection request is assigned a path and each path is encoded into an  -element vector by 

the priority-based encoding scheme. An individual is composed of   such vectors, in which 

the  th vector represents the path connecting        . A heuristic called GMIN is employed 

to solve a MIS problem to obtain the edge-disjoint paths among the   paths. For the 

reproduction procedure, three genetic operators were proposed to produce offspring by 

manipulating the priority values of one or two individuals. The self-adaption operator 

reroutes the path according to two factors: distance and edge usage rate. The main idea is that, 

a node which is closer to the terminal point and adjacent to more unused edges is more likely 

to have higher priority. Moreover, a heuristic method is proposed to further improve the 

quality of solution. 
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Chapter 4 Computational results 

In this chapter, we intend to investigate the performance of the proposed genetic algorithm. 

In order to achieve this goal, we apply the proposed algorithm to various instances with 

different network structure and connection requests. The design of experiment is presented in 

Section 4.1. Features of the testing instances and the way to conduct experiments are outlined 

in Section 4.2. We also compare the proposed algorithm with the random search method, 

greedy algorithms and ant colony optimization in Section 4.3. Concluding remarks are made 

in Section 4.4. 

 

4.1 Design of experiment 

An instance of MEDP consists of a graph   and a set of connection requests  . To compare 

the proposed GA approach with the existing algorithms, we considered seven graphs 

representing different networks, in which two of them are parts of real telecommunication 

networks and others are randomly generated. The characteristics of these graphs will be 

given in the next section. For each graph, we generate different instances with 0.10   , 

0.25    and 0.40    requests, separately. Consequently, we have 3 instances for each graph 

and 21 instances in total. We applied each algorithm on every instance for 30 runs to obtain 

the best, worst, mean and standard deviation of the objective values. The average 

computational times are also recorded. With this information we can compute confidence 

intervals for the objective values obtained by the three algorithms for every instance. For a 

given instance, we say that the performance of two algorithms are significantly different if 
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their confidence intervals do not overlap. 

GA is a stochastic optimizer since it involves some random factors during the search 

process. Hence the first thing we want to know is that whether our GA procedure performs 

better than the pure random search. The result is presented in Section 4.3.1. Secondly, we 

would like compare the performance of GA with state-of-the-art optimization algorithms for 

MEDP. Here we choose the multi-start simple greedy algorithm and ACO as described in 

Sections 2.3.2 and 2.3.3, respectively.  

 

4.2 Problem generation and computational experiments 

A set of benchmark instances for MEDP was given in [23]. Seven graphs are considered 

in our experiment. The first two graphs, graph3 and graph4, were created by researchers of 

the Computational Optimization & Graph Algorithm group at the Technische Universität 

Berlin. The structures of these two graphs are from the communication network of the 

Deutsche Telekom AG in Germany. The other three graphs, AS-BA.R-Wax.v100e190, 

AS-BA.R-Wax.v100e217 and bl-wr2-wht2.10-50.rand1, are generated with the network 

generator BRITE. In addition, 2 mesh graphs composed of mesh10x10, mesh15x15 are also 

included. The main features and quantitative measures are shown in Table 2. We refer to [23] 

for the parameters used for the generation of the network topologies using BRITE. 
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Table 2 Main quantitative measures of the instances 

Graph         Min. Avg. Max. Diameter 

graph3 164 370 1 4.51 13 16 

graph4 434 981 1 4.52 20 22 

AS-BA.R-Wax.v100e190 100 190 2 3.80 7 11 

AS-BA.R-Wax.v100e217 100 217 2 4.34 8 13 

bl-wr2-wht2.10-50.rand1 500 1020 2 4.08 13 23 

mesh10x10 100 180 2 3.60 4 18 

mesh15x15 225 420 2 3.73 4 28 

(Min., Avg. and Max. denote the minimum, average and maximum degree, respectively) 

 

All the algorithms in our experiment were implemented in MATLAB. The experiments 

have been conducted on a PC with Intel®  Core i7 CPU @1.6GHz and 4 Gb of memory 

running the Windows 7 operating system. All the algorithms were implemented on the same 

data structures. Information about the shortest paths in the respective graphs is provided to all 

of them as input. Notice that the greedy algorithms need to partially recompute this 

information iteratively in the solution construction process, but this work is not necessary for 

GA and ACO approaches.  

 

4.3 Experimental results 

In this section, we report and analyze the computational results. In the first section, the 

performance of the pure random search vs. GA is given in Section 4.3.1. Section 4.3.2 

provides the computational results of SGA, MSGA and the proposed GA. We can observe the 

clear advantages of the proposed GA over the other two greedy algorithms. Section 4.3.3 

shows the experimental results of ACO. The confidence intervals of the solution quality 
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obtained by MSGA, ACO and the proposed GA are plotted for comparisons. 

 

4.3.1 Random search vs. GA 

The comparison between the proposed GA method and a purely random search method is 

given in this section. Note that the initial population of GA is randomly generated in order to 

make a fair comparison. The steps of the random search method are described as follows: 

Step 0. Set the current best objective value to 0. 

Step 1. Randomly generate 10 solutions. 

Step 2. Evaluate the solutions. 

Step 3. Update the current best solution if there is any improvement. 

Step 4. Stop if the termination conditions are met. Otherwise repeat Steps 1 to 3. 

As described in Chapter 3, the proposed GA method generates 10 offspring in each 

iteration and terminates when no improvement can be found for several iterations. We 

observed that in general, GA terminates in less than 200 iterations. In other words, less than 

2000 solutions were investigated in each run of GA. Therefore, we let the random search 

algorithm halt after generating 2000 solutions (or 200 iterations). Both algorithms were 

executed for 30 times and the mean values and confidence intervals of their solution quality 

are stored. The choice of the executing times is because that the number 30 is the boundary 

between small and large samples. 

Figure 24 and Figure 25 show the evolution of the current best solution generated by the 

proposed GA and the random search method on the instances of AS-BA.R-Wax.v100e190 

with 40 connection requests and mesh10X10 with 40 requests. The solid line and dash line 

are the mean values of the current best solution obtained by GA and the random search 
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during the search process, respectively. The dotted lines above and under the mean values 

show the upper and lower bounds of the 95% confidence intervals. The confidence intervals 

are calculated         
 

   
 , where   ,   are the mean and standard deviation of objective 

values, respectively. 

Some observations can be made from these two figures. At the beginning, two 

confidence intervals overlap (since both methods have their initial solutions randomly 

generated). The best solution obtained by GA is enhanced rapidly in the next few iterations, 

and the progress slows down after 10 iterations but the improvement is still ongoing. From 

the two figures, we can see that the proposed GA method has a clear advantage over the 

random search algorithm. 
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Figure 24 Evolution of the solution quality obtained by GA and random search on 

AS-BA.R-Wax.v100e190 with 40 connection requests (upper and lower dot lines denote the 

boundaries of 95% confidence intervals) 
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Figure 25 Evolution of the solution quality obtained by GA and random search on 

mesh10X10 with 40 connection requests (upper and lower dot lines denote the boundaries of 

95% confidence intervals)  

4.3.2 Greedy algorithms vs. GA 

The comparison of the greedy algorithms and the proposed Genetic Algorithm is shown 

in Table 3. The first column gives the name of the graph tested and the second column shows 

the number of connection requests, which are the 10, 25, and 40% of the number of nodes of 

the graphs. For the simple greedy algorithm (SGA), the first column shows the number of the 

EDPs obtained from the instance and the second column provides the computational time. 

For the multi-start simple greedy algorithm (MSGA) and the genetic algorithm with 3 initial 
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solutions, the first three columns show the maximum, minimum and average value of the 

number of EDPs in 30 runs. The 4
th

 and 5
th

 column provide the standard deviation and the 

average computational time for each instance. The average value is underlined and in 

boldface when the result is the best among the three. The last column shows the values of 

             , where     and     stand for the average value obtained by the proposed GA 

and MSGA, respectively. 

We observe that MSGA has a clear advantage over SGA. This shows that the order of the 

connection requests is crucial in achieving good performance. However, since there is no 

obvious way to predetermine a good order, we apply MSGA which permutes the order of the 

connection requests in random and run SGA with the new request list. The price we have to 

pay for running MSGA is the significantly increased computational time.  

Comparing the performance of MSGA vs. the proposed GA, we observe that in generally, 

GA obtains better solution quality in less computational time. More specifically, in all 21 

instances, GA obtains average values either equal to or better than MSGA. Moreover, in 16 

out of 21 instances, GA spent less computational time than MSGA did. In the last column of 

Table 3, we can observe that for the same graph, the advantage of the proposed GA is more 

distinct when the number of connection requests grows. This phenomenon occurs in 

AS-BA.R-Wax.v100e190, graph3, graph4, mesh10X10 and mesh15X15. 
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Table 3 Comparison of the results obtained by SGA, MSGA and proposed GA with 3 initial populations 

Graph 

Number 

of  

requests 

SGA   MSGA   GA with 3 initial  
         

   
 

  t   max min     std t   max min     std t 
 

AS-BA.R-Wax.v100e190 10 8.0 0.8 
 

8 8 8.0 0.0  19.5  
 

8 8 8.0 0.0  10.0   0.0% 

AS-BA.R-Wax.v100e190 25 12.0 2 
 

14 13 13.4  0.5  48.6  
 

14 13 13.9 0.3  43.0   3.7% 

AS-BA.R-Wax.v100e190 40 16.0 3 
 

20 18 19.1  0.6  76.9  
 

21 20 20.3 0.5  98.1   6.1% 

AS-BA.R-Wax.v100e217 10 6.0 0.7 
 

7 6 6.8  0.4  19.5  
 

7 7 7.0 0.0  15.1   2.3% 

AS-BA.R-Wax.v100e217 25 9.0 1.8 
 

13 10 11.5  0.6  48.1  
 

13 12 12.6 0.5  54.3   10.0% 

AS-BA.R-Wax.v100e217 40 19.0 2.8 
 

22 19 19.9  0.8  77.0  
 

22 21 21.7 0.5  93.0   9.1% 

bl-wr2-wht2.10-50.rand1 50 21.0 57.2 
 

25 22 23.7  0.7  1081.0  
 

26 24 25.0 0.8  788.3   5.7% 

bl-wr2-wht2.10-50.rand1 125 34.0 121.2 
 

40 36 38.1  0.9  2746.1  
 

43 39 41.5 0.8  1661.4   9.1% 

bl-wr2-wht2.10-50.rand1 200 55.0 194.6 
 

57 55 55.1  0.4  4182.0  
 

61 58 60.0 0.8  3592.2   8.9% 

graph3 16 15.0 2.3 
 

15 15 15.0 0.0  81.7  
 

15 15 15.0 0.0  32.4   0.0% 

graph3 41 32.0 5.7 
 

33 32 32.1  0.3  173.8  
 

33 32 32.2 0.4  92.6   0.3% 

graph3 65 29.0 9.2 
 

34 29 32.3  1.1  270.4  
 

39 35 36.4 1.0  152.8   12.9% 

graph4 43 42.0 44.8 
 

42 42 42.0 0.0  1210.4  
 

42 42 42.0 0.0  291.0   0.0% 

graph4 108 60.0 104.2 
 

68 62 64.6  1.2  3420.5  
 

71 68 69.7 0.9  1093.1   7.9% 

graph4 173 73.0 175 
 

75 73 73.1  0.4  5146.1  
 

85 83 84.3 0.7  1664.6   15.2% 

mesh10X10 10 10.0 0.6 
 

10 10 10.0 0.0  18.2  
 

10 10 10.0 0.0  11.0   0.0% 
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Table 3 Continued 

Graph 

Number 

of  

requests 

SGA   MSGA   GA with 3 initial  
         

   
 

  t   max min     std t   max min     std t 
 

mesh10X10 25 14.0 1.4 
 

17 15 16.3  0.5  50.2  
 

19 17 17.5 0.6  45.0   7.4% 

mesh10X10 40 17.0 2.2 
 

22 18 19.7  0.8  88.3  
 

24 21 22.6 0.8  94.1   14.5% 

mesh15X15 23 19.0 6.2 
 

22 19 20.4 0.7  194.1  
 

21 20 20.4 0.5  90.2   0.0% 

mesh15X15 57 23.0 14.9 
 

28 26 27.1  0.6  510.2  
 

32 29 30.7 0.7  392.0   13.2% 

mesh15X15 90 32.0 22.9   35 32 32.6  0.8  725.4    41 39 39.4 0.6  768.0   20.9% 
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4.3.3 MSGA/ACO vs. GA 

The results obtained by MSGA, Ant Colony Optimization (ACO) and the proposed GA are 

shown in Table 4. The five columns under each method show the maximum, minimum, 

average value, standard deviation and the average computational time of 30 runs, respectively. 

The average values are underlined and in boldface when the result is the best among the 

three.  

Some observations can be made from the results shown in Table 4. First, the solution 

quality of the proposed GA obtained in the experiment is comparable with, or in most cases 

surpasses, that of the other two algorithms. More in detail, GA achieves the best solution in 

18 out of 21 instances, in which GA beats MSGA and ACO in 15 instances. In particular, all 

instances on graph4 and mesh15X15 strongly favor the proposed GA over ACO in both 

computational time and solution quality. For graph4 with 43 pairs, 108 pairs and 173 pairs, 

GA obtains 11.2%, 13.8% and 7% better values than ACO does, respectively. For 

mesh15X15 with 23, 57 and 90 pairs, GA performs 14%, 6.3% and 9.0% better than ACO, 

respectively. On the other hand, although ACO performs better than GA in the three instances 

on graph bl-wr2-wht2.10-50.rand1, the performance differences are small (3.2% in the case 

of 50 pairs, 2.2% in the case of 125 pairs and 0.7% in the case of 200 pairs). 
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Table 4 Comparison of the results obtained by MSGA, ACO and the proposed GA with 3 initial populations 

Graph 

Number 

of  

requests 

MSGA   ACO   GA with 3 initial 

max min     std t   max min     std t   max min     std t 

AS-BA.R-Wax.v100e190 10 8 8 8.0 0.0  19.5  
 

8 8 8.0 0.0  19.1  
 

8 8 8.0 0.0  10.0  

AS-BA.R-Wax.v100e190 25 14 13 13.4  0.5  48.6  
 

14 12 13.5  0.6  50.6  
 

14 13 13.9 0.3  43.0  

AS-BA.R-Wax.v100e190 40 20 18 19.1  0.6  76.9  
 

21 19 20.0  0.4  69.6  
 

21 20 20.3 0.5  98.1  

AS-BA.R-Wax.v100e217 10 7 6 6.8  0.4  19.5  
 

7 6 6.7  0.4  30.2  
 

7 7 7.0 0.0  15.1  

AS-BA.R-Wax.v100e217 25 13 10 11.5  0.6  48.1  
 

13 11 11.2  0.5  49.6  
 

13 12 12.6 0.5  54.3  

AS-BA.R-Wax.v100e217 40 22 19 19.9  0.8  77.0  
 

22 20 21.2  0.5  73.9  
 

22 21 21.7 0.5  93.0  

bl-wr2-wht2.10-50.rand1 50 25 22 23.7  0.7  1081.0  
 

26 25 25.8 0.4  938.0  
 

26 24 25.0  0.8  788.3  

bl-wr2-wht2.10-50.rand1 125 40 36 38.1  0.9  2746.1  
 

43 42 42.5 0.5  1802.3  
 

43 39 41.5  0.8  1661.4  

bl-wr2-wht2.10-50.rand1 200 57 55 55.1  0.4  4182.0  
 

61 59 60.4 0.7  2753.2  
 

61 58 60.0  0.8  3592.2  

graph3 16 15 15 15.0 0.0  81.7  
 

15 15 15.0 0.0  23.8  
 

15 15 15.0 0.0  32.4  

graph3 41 33 32 32.1  0.3  173.8  
 

33 28 30.1  1.0  118.7  
 

33 32 32.2 0.4  92.6  

graph3 65 34 29 32.3  1.1  270.4  
 

38 33 35.2  1.1  253.4  
 

39 35 36.4 1.0  152.8  

graph4 43 42 42 42.0  0.0  1210.4  
 

40 36 37.8  1.2  678.4  
 

42 42 42.0 0.0  291.0  

graph4 108 68 62 64.6  1.2  3420.5  
 

63 58 61.3  1.7  2464.0  
 

71 68 69.7 0.9  1093.1  

graph4 173 75 73 73.1  0.4  5146.1  
 

82 76 78.8  1.8  4494.2  
 

85 83 84.3 0.7  1664.6  

mesh10X10 10 10 10 10.0 0.0  18.2  
 

10 9 9.9  0.3  20.3  
 

10 10 10.0 0.0  11.0  
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Table 4 Continued 

Graph 

Number 

of  

requests 

MSGA   ACO   GA with 3 initial 

max min     std t   max min     std t   max min     std t 

mesh10X10 25 17 15 16.3  0.5  50.2  
 

19 15 16.5  1.0  58.3  
 

19 17 17.5 0.6  45.0  

mesh10X10 40 22 18 19.7  0.8  88.3  
 

24 20 21.8  1.0  92.9  
 

24 21 22.6 0.8  94.1  

mesh15X15 23 22 19 20.4 0.7  194.1  
 

20 16 17.9  0.9  239.5  
 

21 20 20.4 0.5  90.2  

mesh15X15 57 28 26 27.1  0.6  510.2  
 

31 27 28.9  1.1  638.7  
 

32 29 30.7 0.7  392.0  

mesh15X15 90 35 32 32.6  0.8  725.4    38 34 36.2  1.2  966.1    41 39 39.4 0.6  768.0  
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In addition to comparing the maximum, minimum and average values, we plot the 

confidence intervals in Figure 26—46 to show a clearer picture. Each figure has three 

segments indicating the 95% confident intervals of the performance of the three algorithms 

on the same instance. The middle of each segment denotes the average value. We can observe 

that, in 14 out of 21 instances, the solution quality of GA is significantly better than that of 

ACO (their confidence intervals do not overlap). For the two instances 

AS-BA.R-Wax.v100e190.bb with 40 requests and AS-BA.R-Wax.v100e217.bb with 40 

requests, we further performed a paired t-test to determine if the results obtained by the 

proposed GA and ACO are significantly different. For the first instance, the mean difference 

is -0.17, SD=0.14, N=30, t(29)=1.15, two-tail p=0.26. A 95% C.I. of the mean difference is 

(-0.46, 0.13). For the second instance, the mean difference is -0.13, SD =0.11, N= 30, 

t(29)=-1.16, two-tail p=0.25. A 95% C.I. of the mean difference is (-0.37, 0.1). Therefore 

there are no significant differences between the performances obtained by GA and ACO on 

both instances. On the other hand, ACO outperforms GA significantly on two instances: 

bl-wr2-wht2.10-50.rand1 with 50 and 125 pairs. At last, the proposed GA also has significant 

advantage over the MSGA in 14 out of 21 instances.  
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Figure 26 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e190.bb with 10 requests 

 

Figure 27 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e190.bb with 25 requests 
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Figure 28 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e190.bb with 40 requests 

 

Figure 29 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e217.bb with 10 requests 
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Figure 30 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e217.bb with 25 requests 

 

Figure 31 Confidence intervals of the solution quality obtained by three algorithms on 

AS-BA.R-Wax.v100e217.bb with 40 requests 
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Figure 32 Confidence intervals of the solution quality obtained by three algorithms on 

bl-wr2-wht2.10-50.rand1.bb with 50 requests 

 

Figure 33 Confidence intervals of the solution quality obtained by three algorithms on 

bl-wr2-wht2.10-50.rand1.bb with 125 requests 
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Figure 34 Confidence intervals of the solution quality obtained by three algorithms on 

bl-wr2-wht2.10-50.rand1.bb with 200 requests 

 

Figure 35 Confidence intervals of the solution quality obtained by three algorithms on 

graph3.bb with 16 requests 
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Figure 36 Confidence intervals of the solution quality obtained by three algorithms on 

graph3.bb with 41 requests 

 

Figure 37 Confidence intervals of the solution quality obtained by three algorithms on 

graph3.bb with 65 requests 
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Figure 38 Confidence intervals of the solution quality obtained by three algorithms on 

graph4.bb with 43 requests 

 

Figure 39 Confidence intervals of the solution quality obtained by three algorithms on 

graph4.bb with 108 requests 
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Figure 40 Confidence intervals of the solution quality obtained by three algorithms on 

graph4.bb with 173 requests 

 

Figure 41 Confidence intervals of the solution quality obtained by three algorithms on 

mesh10X10 with 10 requests 
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Figure 42 Confidence intervals of the solution quality obtained by three algorithms on 

mesh10X10 with 25 requests 

 

Figure 43 Confidence intervals of the solution quality obtained by three algorithms on 

mesh10X10 with 40 requests 
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Figure 44 Confidence intervals of the solution quality obtained by three algorithms on 

mesh15X15 with 23 requests 

 

Figure 45 Confidence intervals of the solution quality obtained by three algorithms on 

mesh15X15 with 57 requests 
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Figure 46 Confidence intervals of the solution quality obtained by three algorithms on 

mesh15X15 with 90 requests 

4.4 Summary 

We have compared the proposed genetic algorithm with a purely random search method to 

confirm the effectiveness of GA_MEDP. In addition, compared with the simple greedy 
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GA method performs better or much better in most of the cases in terms of the solution 

quality and computation time. 
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Chapter 5 Solving the RWA problem 

In this chapter, we develop a heuristic method based on the GA approach proposed in 

Chapter 3 to solve the routing and wavelength assignment problem. To evaluate its 

performance, we compare the proposed method with the state-of-art bin-packing based 

methods [26] and the particle swarm optimization approach [4].  

In Section 5.1, we describe the details of the proposed heuristic method for solving the 

RWA problem. An illustration on a small instance is given in Section 5.2. Features of the 

testing instances and parameter-tuning are outlined in Section 5.3. The comparison of the 

performance of the proposed algorithm with the bin-packing based methods and particle 

swarm optimization are given in Section 5.4. Concluding remarks are made in Section 5.5. 

 

5.1 Proposed method 

Finding edge-disjoint paths can be useful for solving the RWA problem since a set of EDPs 

can be assigned to the same wavelength. In addition, more requests assigned to one 

wavelength may lead to fewer wavelengths required to satisfy all requests. Therefore an 

MEDP solution algorithm can be useful for solving the RWA problem. In Chapter 3, we have 

developed a GA-based method to solve the MEDP problem, the subroutine is called 

       , which has two inputs       and two outputs      , where   denotes the set 

of realizable (or accepted) requests and   is the edge-disjoint paths set. 

A set of edge-disjoint paths can be assigned to the same wavelength since no two paths 

share any edge. Thus an intuitive idea of solving the RWA problem can be developed as 
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follows. Solve the MEDP problem with       and assign one wavelength to the accepted 

requests and remove these requests from  . Then solve another MEDP in   with the rest of 

  and assign another wavelength to these accepted requests. The procedure is repeated until 

  is empty. The pseudocode of this basic algorithm is given in Algorithm 13. 

 

Algorithm 13 basic MEDP-RWA algorithm 

Input:         and                     

Begin: 

1.        ; 

2.    ; 

3. While     

4.                    

5.          ; 

6.           ; 

7.      ; 

8.      ; 

9. end while 

End 

Output:   and   

 

This basic algorithm was used for solving the RWA problem in [27]. Since it takes all 

requests in   into consideration at each step, the efficiency is low, especially when     is 

large. In our proposed method, instead of dealing with the whole request set, we divide   

into several batches and solve the MEDP problem with only one batch at a time. The batch 

size   is a user-defined value. The tuning process of   is given in Section 5.3.2. 

Similar to the preprocessing on the order of   in bin-packing algorithm (FFD and BFD), 

the shortest path of each request in   is precomputed, then   is sorted in a non-decreasing 

order of the shortest path distances. Although these paths are unlikely to be the final routes, 
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they still provide good information about the minimum units of resources (edges) they 

occupy in  . Thus a better solution could be secured if we first consider the request with 

longer shortest path distance and then fill up the remaining space with the request with 

shorter shortest path length. 

After the adjustment of   is made, the first   requests in   are selected. The current 

wavelength is denoted by the variable    initialized to be 1. Then GA_MEDP is executed to 

find the maximum number of edge disjoint paths among the selected requests in  . The 

current wavelength    is assigned to the accepted requests and each of the obtained 

edge-disjoint paths is assigned to the corresponding lightpaths. The residual graph, where all 

edges used by the paths are removed, is stored in the variable    . The rejected requests at 

this stage remain in   and will be included in the next batch.  

Before starting GA_MEDP with the next batch, the algorithm scans all the remaining 

requests in   in a backward manner. Starting from the last request, which has the shortest 

distance of shortest path in  , the algorithm tries to find a shortest path to route the request 

in    . If such path exists, the request is assigned wavelength    and removed from  . 

After the backward-scanning process is done,    is increased by 1. Another batch of 

requests is selected and GA_MEDP is executed again. The algorithm halts when   becomes 

empty. We call this proposed method the GA_MEDP_RWA algorithm, whose pseudocode is 

shown in Algorithm 14. 
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Algorithm 14 GA_MEDP_RWA algorithm 

Input:        ,                     and batch size   

Begin: 

1.                         ; 

2.    ; 

3. Sort   in non-increasing order of their shortest paths distance in   

4. While     

5.                ; 

6.                        ; 

7.          ; 

8.           ; 

9.                 ; 

10.           ; 

11. for            

12. Find shortest path     
 for     

    
  on    ; 

13. If      
    then 

14.    
  ; 

15.    
     

; 

16.         
    

 ; 

17.       ; 

18. end if 

19. end for  

20.      ; 

21. end while 

End 

Output:   and   

 

5.2 An illustration 

We use a small instance to demonstrate how GA_MEDP_RWA works. The National Science 

Foundation (NSF) Network with 16 nodes and 25 edges has been taken as the benchmark 

graph in many papers. It is shown in Figure 47. There are 17 randomly-generated requests 
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listed in Table 5. The third column of Table 5 shows the shortest-path length of each request 

(assuming each edge has 1 unit cost). The permutation has been adjusted accordingly.  

 

 

(a) 

 

(b) 

Figure 47 Illustration of NSF network with 16 nodes and 25 edges 
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Table 5 The randomly generated connection request set 

Index  Request  length Index  Request  length 

1  (10, 16)  4  10  (11, 12)  2  

2  (7, 12)  3  11  (8, 16)  2  

3  (13, 16)  3  12  (8, 13)  2  

4  (9, 12)  3  13 (7, 8)  1  

5  (1, 9)  3  14  (1, 4)  1  

6  (3, 16)  2  15 (2, 8)  1  

7  (5, 9)  2  16  (2, 16)  1  

8  (4, 14)  2  17  (1, 3)  1  

9  (5, 16)  2     

 

Initially, the current wavelength is set to be one. Given the batch size of 5, the algorithm 

employs          to solve an MEDP problem on   with the first five requests, which 

are the requests 1, 2, 3, 4 and 5. As a result, requests 1, 3, 4, 5 are accepted. The output 

edge-disjoint paths are the lightpath routes and the current wavelength is assigned to them. 

The residual graph is kept in memory and the accepted requests are removed from  . The 

updated table is shown below. 
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Table 6 The updated request set after the first run of GA_MEDP 

Index  Request  wavelength Index  Request  wavelength 

1  (10, 16)  1 10  (11, 12)   

2  (7, 12)   11  (8, 16)   

3  (13, 16)  1 12  (8, 13)   

4  (9, 12)  1 13 (7, 8)   

5  (1, 9)  1 14  (1, 4)   

6  (3, 16)   15 (2, 8)   

7  (5, 9)   16  (2, 16)   

8  (4, 14)   17  (1, 3)   

9  (5, 16)      

 

Next, starting from the last request in  , which is request 17, the algorithm is trying to 

find a shortest path in the residual graph for each request. In this case, shortest paths for 

request 17, 14, and 12 have been found successfully. They are also assigned to the current 

wavelength, which is 1, and removed from  . The updated table is shown in Table 7. 
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Table 7 The updated request set after the backward-scanning process 

Index  Request  wavelength Index  Request  wavelength 

1  (10, 16)  1 10  (11, 12)   

2  (7, 12)   11  (8, 16)   

3  (13, 16)  1 12  (8, 13)  1 

4  (9, 12)  1 13 (7, 8)   

5  (1, 9)  1 14  (1, 4)  1 

6  (3, 16)   15 (2, 8)   

7  (5, 9)   16  (2, 16)   

8  (4, 14)   17  (1, 3)  1 

9  (5, 16)      

 

So far, we have decided the routes for the requests using the first wavelength. Since the 

request set is not empty yet, the second run of         is initiated. The current 

wavelength is set to two and a new batch of 5 requests, which includes requests 2, 6, 7, 8 and 

9, are selected. Fortunately, all of them can be accepted and routed in edge-disjoint paths. 

Followed by the backward-scanning process, it turns out only request 15 can fit into the 

current residual graph, hence requests 2, 6, 7, 8, 9 and 15 are assigned to wavelength 2 as 

shown in Table 8.  
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Table 8 The updated request set after the second run of         and the 

backward-scanning 

Index  Request  wavelength Index  Request  wavelength 

1  (10, 16)  1 10  (11, 12)   

2  (7, 12)  2 11  (8, 16)   

3  (13, 16)  1 12  (8, 13)  1 

4  (9, 12)  1 13 (7, 8)   

5  (1, 9)  1 14  (1, 4)  1 

6  (3, 16)  2 15 (2, 8)  2 

7  (5, 9)  2 16  (2, 16)   

8  (4, 14)  2 17  (1, 3)  1 

9  (5, 16)  2    

 

Finally, the third batch including all the remaining requests 10, 11, 13 and 16 is selected. 

As a result, all of them can be accepted and assigned to wavelength 3. Then the algorithm 

halts. For this small example, the lower bound shown in (2.8) is 3, which means the proposed 

methods found an optimal solution. 
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Table 9 The result of applying GA_MEDP_RWA on the small example 

Index  Request  wavelen Index  Request  wavelen 

1  (10, 16)  1 10  (11, 12)  3 

2  (7, 12)  2 11  (8, 16)  3 

3  (13, 16)  1 12  (8, 13)  1 

4  (9, 12)  1 13 (7, 8)  3 

5  (1, 9)  1 14  (1, 4)  1 

6  (3, 16)  2 15 (2, 8)  2 

7  (5, 9)  2 16  (2, 16)  3 

8  (4, 14)  2 17  (1, 3)  1 

9  (5, 16)  2    

 

5.3 Testing instances and parameter tuning 

A testing instance       of the RWA problem contains an undirected graph   and a 

request set  . In Section 5.3.1 we outline some basic characteristics of the testing graphs and 

the procedure to generate the requests. There are 67 testing instances in total. In Section 5.3.2, 

the fine tuning process of the parameter   is provided.  

 

5.3.1 Testing instances 

In order to evaluate the performance of the proposed method for solving RWA, numerical 

testing is conducted in comparison with the bin-packing method and the PSO method 

reported in the literature [4, 26]. An instance of RWA consists of an undirected network   

and a set of connection requests  . For the network topology, we use 15 benchmark 

networks provided in [36, 44, 46] which assume the patterns and sizes of some real-life 
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telecommunication networks. The topology of NSFNET and EON are the most studied 

realistic networks in the literature. Network CHNNET and ARPANET are provided by [46], 

USAnet is given by [44], and other instances are taken from [36]. The main quantitative 

characteristics of these networks are shown in Table 10. 

Table 10 Main quantitative characteristics of the instances 

Graph         Min. Avg. Max. Diameter 

CHNNET 15 27 3 3.6 5 5 

NSFNET 16 25 2 3.1 4 4 

NewYork 16 49 2 6.1 11 3 

ARPANET 20 32 3 3.2  4 6 

EON 20 39 2 3.9 7 5 

France 25 45 2 3.6 10 5 

Norway 27 51 2 3.8 6 7 

cost266 37 57 2 3.1 5 8 

janos-us-ca 39 61 2 3.1 5 10 

giul 39 86 3 4.4 8 6 

piro40 40 89 4 4.5 5 7 

USAnet 46 75 2 3.3 5 11 

Germany50 50 88 2 3.5 5 9 

zib54 54 80 1 3.0 10 8 

ta2 65 108 1 3.3 10 8 

(Min., Avg. and Max. denote the minimum, average and maximum degree, respectively) 

 

Regarding the connection requests, for each network, different numbers of connection 

requests are randomly generated according to a given probability  , i.e., the probability that 

there is a request between a pair of nodes is  . The mechanism to generate the requests is 

provided in Algorithm 15. Four instances are generated for each network with   equals to 

0.2, 0.4, 0.6 and 0.8, respectively. For the networks of smaller size, namely, CHNNET, 

NSFNET, NewYork, ARPANET, EON, France and Norway, one more instance with     
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is generated. That means every pair of different nodes of the network requests a connection 

between them. There are 67 testing instances in total, which are listed in Table 11. The last 

two numbers of the instance’s name indicate the value   that is used to generate the instance. 

For example, instance CHNNET_02 is generated on network CHNNET with       and 

CHNNET_1 is generated with    . 

 

Algorithm 15 Request generator 

Input:        ,   

Begin: 

1.    ; 

2. for            

3. for            

4. if     and             

5.            ; 

6. end if 

7. end for 

8. end for 

9.   random permutation of          ; 

10.                          ; 

End 

Output:   
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Table 11 Testing instances 

name graph             

CHNNET_02 

CHNNET 15 27 

22 

CHNNET_04 36 

CHNNET_06 71 

CHNNET_08 97 

CHNNET_10 105 

NSF_02 

NSFNET 16 25 

28 

NSF_04 54 

NSF_06 63 

NSF_08 101 

NSF_10 120 

NewYork_02 

NewYork 16 49 

20 

NewYork _04 47 

NewYork _06 66 

NewYork _08 96 

NewYork _10 120 

ARPANET_02 

ARPANET 20 32 

46 

ARPANET_04 75 

ARPANET_06 112 

ARPANET_08 169 

ARPANET_10 190 

EON_02 

EON 20 39 

33 

EON_04 85 

EON_06 106 

EON_08 147 

EON_10 190 

France_02 

France 25 45 

62 

France _04 109 

France _06 177 

France _08 237 

France _10 300 
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Table 11 Continued 

name graph             

Norway_02 

Norway 27 51 

76 

Norway_04 136 

Norway_06 199 

Norway_08 283 

Norway_10 351 

cost266_02 

cost266 37 57 

121 

cost266_04 259 

cost266_06 391 

cost266_08 528 

janos-us-ca_02 

janos-us-ca 39 61 

144 

janos-us-ca_04 299 

janos-us-ca_06 463 

janos-us-ca_08 604 

giul_02 

giul 39 86 

147 

giul_04 312 

giul_06 427 

giul_08 585 

piro40_02 

piro40 40 89 

169 

piro40_04 302 

piro40_06 459 

piro40_08 607 

USAnet_02 

USAnet 46 75 

208 

USAnet_04 427 

USAnet_06 619 

USAnet_08 825 

Germany50_02 

Germany50 50 88 

237 

Germany50_04 519 

Germany50_06 774 

Germany50_08 954 
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Table 11 Continued 

name graph             

zib54_02 

zib54 54 80 

269 

zib54_04 577 

zib54_06 851 

zib54_08 1127 

ta2_02 

ta2 65 108 

432 

ta2_04 836 

ta2_06 1218 

ta2_08 1656 

 

5.3.2 Tuning the batch size 

In Algorithm 14, the batch size   is the only parameter to be tuned and is indeed an 

important factor affecting the performance. A bigger value of   means that the algorithm 

considers more requests at the same time and tries to route them in the same graph by 

edge-disjoint paths, thus may yield a better solution at the cost of longer computational time. 

Two instances USAnet_08 and janos-us-ca_08 are tested to decide the best batch size 

from six possible settings of  :                   . Figure 48 and Figure 50 show the 

95% confidence intervals of the number of wavelengths obtained on janos-us-ca_08 and 

USAnet_08 with different settings of  , respectively, while Figure 49, Figure 51 indicate the 

95% confident intervals of computational time. It is obvious that the solution quality gets 

better and the computational time increases with bigger batch size. We finally decided that 

     is a good balance between the solution quality and computation time. All the results 

shown in Section 5.4 are outcomes by setting       
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Figure 48 95% C. I. of the objective value obtained with different   on janos-us-ca_08 

 

Figure 49 95% C. I. of the computational time with different   on janos-us-ca_08 
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Figure 50 95% C. I. of the objective value obtained with different   on USAnet_08 

 

Figure 51 95% C. I. of the computational time with different   on USAnet_08 
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5.4 Computational experiments 

The computational results and comparisons with the bin-packing based heuristic and PSO are 

reported in Sections 5.4.1 and 5.4.2, respectively. The three algorithms were implemented in 

MATLAB and the experiments were conducted on a PC with Intel®  Core i7 CPU @1.6GHz 

and 4 Gb of memory running the Windows 7 operating system. The experiments were 

conducted by applying PSO and the proposed method on each instance for 30 runs to obtain 

the best, worst, mean and standard deviation of the objective values. The average 

computational time are also recorded. Regarding the four bin-packing methods, each method 

only needs to be executed once, and the results and computational time are recorded.  

 

5.4.1 GA_MEDP_RWA vs. bin-packing based methods 

The comparison of the proposed method and the four bin-packing based methods is shown in 

Table 12. The first column gives the name of the tested instance. For the FF, FFD, BF and 

BFD methods, the objective value, which is denoted by # wl, and the computation time    , 

    ,     and      were recorded, respectively. The first three columns under 

GA_MEDP_RWA show the maximum, average, and minimum objective values that were 

obtained in 30 runs. The fourth column is the mean computation time. The objective value is 

underlined and in boldface when it is the best among the five. Here we say that a solution 

method achieves the best objective value on an instance if the value obtained is less than or 

equal to that obtained by other methods. We also say that a solution method achieves the 

worst objective value if the value obtained is greater than that obtained by other methods. 
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Table 12 Results of GA_MEDP_RWA and bin-packing based methods (time unit: sec) 

time unit (sec)             FF FFD BF BFD 

instance max avg min    # wl     # wl      # wl      # wl       

CHNNET_02 4 4.0  4 2.07 4 0.24  4 0.14  4 0.11  5 0.14  

CHNNET_04 5 4.4  4 3.02 5 0.18  4 0.15  5 0.23  4 0.26  

CHNNET_06 11 11.0  11 10.66 11 0.70  11 0.62  11 0.81  11 0.96  

CHNNET_08 14 14.0  14 13.50 15 1.02  14 1.17  14 1.21  14 1.51  

CHNNET_10 16 15.0  15 16.31 15 1.48  15 1.42  16 1.75  15 2.20  

NSF_02 5 5.0  5 2.41 6 0.34  5 0.17  6 0.19  6 0.18  

NSF_04 8 7.3  7 5.80 9 0.37  9 0.35  8 0.52  8 0.50  

NSF_06 9 8.8  8 7.97 10 0.46  10 0.49  9 0.59  9 0.64  

NSF_08 14 13.2  13 15.11 17 1.06  15 1.10  14 1.50  14 1.47  

NSF_10 17 16.6  16 22.89 19 1.70  17 1.45  17 1.96  17 2.08  

NewYork_02 2 2.0  2 1.37 2 0.14  2 0.08  2 0.07  2 0.08  

NewYork_04 3 3.0  3 2.65 3 0.23  3 0.20  3 0.23  3 0.23  

NewYork_06 5 4.1  4 3.93 4 0.33  4 0.34  4 0.34  4 0.33  

NewYork_08 7 6.0  6 6.75 7 0.64  6 0.58  7 0.62  6 0.81  

NewYork_10 8 8.0  8 7.03 8 0.73  8 0.80  8 1.02  8 2.30  

ARPANET_02 10 9.1  9 10.58 9 0.55  9 0.53  9 0.64  9 0.86  

ARPANET_04 13 12.1  12 16.96 12 1.05  12 1.29  12 1.31  12 1.76  

ARPANET_06 21 21.0  21 25.98 21 2.70  21 2.68  21 3.39  21 4.58  

ARPANET_08 29 29.0  29 32.31 30 5.46 29 6.14 30 7.82 29 10.94 

ARPANET_10 33 33.0  33 62.85 34 6.85  33 7.77  34 10.19  33 12.68  

EON_02 4 3.1  3 3.19 3 0.22  4 0.17  4 0.34  4 0.36  

EON_04 9 8.3  8 14.74 10 1.10  9 1.14  8 1.53  8 1.54  

EON_06 11 11.0  11 17.52 13 1.21  11 1.18  11 1.94  11 1.90  

EON_08 14 13.7  13 26.63 16 2.20  13 2.99  13 3.61  13 3.72  

EON_10 19 18.1  18 38.17 22 3.64  18 3.58  18 5.77  18 5.73  

France_02 8 8.0  8 8.87 8 1.30  8 1.27  8 1.57  8 1.72  

France_04 13 12.8  12 16.05 14 4.29  13 4.90  13 5.14  13 6.03  

France_06 22 22.0  22 39.07 22 8.73  22 10.55  22 11.69  22 15.27  

France_08 27 26.3  26 47.09 28 13.25  27 14.00  27 18.53  26 24.20  

France_10 34 34.0  34 60.09 34 22.54  34 23.99  34 29.93  34 35.84  
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Table 12 Continued 

              FF FFD BF BFD 

instance max avg min    (s) # wl     # wl      # wl      # wl       

Norway_02 9 8.6  8 9.26 10 1.67  8 1.78  9 1.90  8 2.17  

Norway_04 15 14.6  14 18.47 15 3.75  15 4.12  15 4.56  15 5.43  

Norway_06 22 21.4  21 32.84 22 7.87  22 8.20  22 9.73  22 12.32  

Norway_08 30 29.5  29 46.41 31 15.05  30 16.59  31 19.79  30 24.59  

Norway_10 37 36.6  36 63.77 37 21.99  36 23.75  38 28.58  36 36.13  

cost266_02 19 18.2  18 46.68 19 7.34  18 7.44  19 10.38  19 12.40  

cost266_04 35 34.1  33 159.69 35 27.28  33 28.58  36 36.35  35 47.28  

cost266_06 54 53.1  53 237.55 54 67.18  53 70.90  55 98.00  53 117.30  

cost266_08 68 67.2  67 275.29 67 120.73  68 144.22  69 190.55  68 273.40  

janos-us-ca_02 26 26.0  26 54.75 27 16.61  26 16.53  27 27.40  27 27.58  

janos-us-ca_04 40 39.6  39 97.42 42 49.52  39 59.49  43 70.75  40 88.45  

janos-us-ca_06 68 67.8  67 210.36 71 110.99  69 124.10  72 157.50  68 200.32  

janos-us-ca_08 89 88.2  88 326.39 92 199.09  92 212.16  93 257.39  91 345.67  

giul_02 11 10.3  10 26.93 10 7.40  10 8.11  10 8.89  10 11.24  

giul_04 21 20.2  19 82.66 19 29.10  19 31.70  19 37.42  19 46.16  

giul_06 25 24.6  24 150.73 25 48.91  25 55.96  25 59.10  24 73.12  

giul_08 36 34.9  34 226.85 35 113.85  34 125.20  36 134.25  34 181.70  

piro40_02 17 17 17 55.51 17 10.67  17 12.58  17 15.20  17 18.50  

piro40_04 28 28 28 118.50 28 34.98  28 38.00  28 43.05  28 54.44  

piro40_06 46 46 46 208.81 46 61.98  46 68.00  46 84.33  46 109.15  

piro40_08 60 60 60 338.61 60 105.97  60 119.35  60 140.20  60 181.52  

USAnet_02 25 24.0  23 86.13 25 35.62  26 37.95  26 45.15  25 56.09  

USAnet_04 47 45.9  45 355.64 47 130.43  45 147.76  48 176.43  45 228.50  

USAnet_06 67 66.1  65 422.63 68 244.00  65 287.58  68 346.66  66 432.89  

USAnet_08 88 86.5  85 490.20 88 475.69  85 544.98  89 587.11  86 791.38  

Germany50_02 21 20.7  20 109.28 21 35.86  21 36.10  21 46.10  22 58.58  

Germany50_04 45 44.2  43 350.24 45 152.90  44 163.00  48 217.60  48 276.50  

Germany50_06 61 60.5  60 584.92 63 347.70  61 410.61  63 430.89  65 544.74  

Germany50_08 76 74.7  73 921.59 77 552.50  75 725.90  79 843.70  76 1098.40  
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Table 12 Continued 

              FF FFD BF BFD 

instance max avg min    # wl     # wl      # wl      # wl       

zib54_02 32 31.1  30 149.44 33 52.28  31 55.01  35 77.70  33 91.67  

zib54_04 67 65.7  65 406.90 67 209.80  65 220.50  73 304.64  71 379.55  

zib54_06 92 90.0  88 762.56 91 442.95  89 522.85  99 696.78  98 889.98  

zib54_08 122 119.2  117 1446.41 117 994.60  117 939.60  130 1229.60  127 1457.22  

ta2_02 35 34.6  34 411.59 35 148.93  34 163.00  35 188.75  35 250.99  

ta2_04 72 70.1  69 945.79 72 507.30  69 542.50  73 635.57  70 813.04  

ta2_06 99 97.4  96 1865.20 98 1311.70  98 1484.00  100 1881.30  97 2047.40  

ta2_08 131 129.7  128 2835.57 130 1935.30  129 2577.90  135 2644.43  128 3713.46  

 

Some observations can be made based on Table 12. First, the numbers of times that each 

method achieved the best objective values among the 67 instances are summarized in Figure 

52. GA_MEDP_RWA achieved the best objective value on all instances, while the FFD 

method reaches the best value on 53 instances. Both performed better than the other three 

bin-packing based methods. Concerning the worst case shown in Figure 53, 

GA_MEDP_RWA found the solution with the worst objective value for 5 instances. This 

shows the effectiveness and robustness of the proposed method.  
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Figure 52 Number of times that the best value is achieved by different methods among 67 

instances 

 

Figure 53 Number of times that the worst value is achieved by different methods among 67 

instances 
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The second observation is that, bin-packing based methods have clearly advantages in 

terms of the computation time, especially, on those relatively small instances. For example, 

the average computational time of GA_MEDP_RWA on network CHNNET and NSF can be 

ten to twenty times that of bin-packing based methods. However, the difference of 

computation time becomes smaller as the problem size grows. We use the instances on the 

four networks: Norway, giul, Germany50, and ta2, whose sized are in an ascending order, to 

demonstrate how the computation time changes with the problem size. Define the relative 

differences to be                , where    is the average computation time of 

GA_MEDP_RWA and         is the computation time of one of the four bin-packing based 

methods (       can be FF, FFD, BF or BFD, etc). The relative differences for all the 

instances on the four networks are shown in Figure 54 -57, respectively.  
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Figure 54 Relative difference of computational time on graph “Norway” 

 

Figure 55 Relative difference of computational time on graph “giul” 
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Figure 56 Relative difference of computational time on graph “Germany” 

 

Figure 57 Relative difference of computational time on graph “ta2” 
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In Figure 54, we can observe that the relative difference tends to go down as the number 

of connection requests increases. The trend also exists in Figure 55, Figure 56 and Figure 57 

and most of other instances. In addition, the relative difference becomes smaller as the 

network size grows. In Figure 56 we can see that the proposed method spent less time on 

Germany50_08 than BFD did. In Figure 57, the same situation happened on ta2_06 and 

ta2_08. Since the four networks of Norway, giul, Germany50 and ta2 are in an ascending 

order of the network size, by observing Figure 54-57, we can see the phenomenon that the 

relative differences drop as the network size grows. 
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5.4.2 GA_MEDP_RWA vs. PSO 

The comparison of the proposed method and PSO is shown in Table 13. The minimum 

objective value is underlined and in boldface if it is the better one. Notice that in this 

comparison the computation time can be neglected, since we set a weak termination 

condition to let PSO explore more possible solutions. Therefore, PSO always spends more 

computation time. We can observe that PSO achieved the best values on 3 relatively small 

instances while             achieved the best objective values on all instances. On 

bigger instances, the performances of PSO are not comparable at all to that of 

GA_MEDP_RWA. The obtained objective values of PSO are twice more than that obtained 

by GA_MEDP_RWA. 

The difference in the path construction methods of PSO, GA_MEDP_RWA and 

bin-packing based methods is crucial for distinct performance. Briefly speaking, in 

GA_MEDP, a path can be adjusted by manipulating the priority values. These priority values 

can be changed during the reproduction and local improvement procedures according to 

different network conditions and request topologies. In bin-packing based methods, the 

shortest paths are established iteratively to fit into the residual graphs. Therefore, the number 

of network resources (edges) to route each request is minimized. On the contrary, in PSO, 

recombining route ids from predetermined path candidates is lacking of ability to adapt 

different situations. The deficiency becomes more significant on instance of bigger networks 

or with more requests. 
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Table 13 Results obtained by GA_MEDP_RWA and PSO (time unit: sec) 

  GA_MEDP_RWA PSO 

instance max avg std min avg time max avg std min avg time 

CHNNET_02 4 4.0  0.00 4 2.07  7 5.9  0.55 5 12.97  

CHNNET_04 5 4.4  0.50 4 3.02  9 7.5  0.63 7 18.60  

CHNNET_06 11 11.0  0.00 11 10.66  18 15.5  1.36 13 30.39  

CHNNET_08 14 14.0  0.00 14 13.50  24 20.4  1.28 18 48.95  

CHNNET_10 16 15.0  0.18 15 16.31  25 21.5  1.63 18 78.96  

NSF_02 5 5.0  0.00 5 2.41  7 6.0  0.10 5 6.75  

NSF_04 8 7.3  0.48 7 5.80  10 9.0  0.16 8 13.75  

NSF_06 9 8.8  0.38 8 7.97  11 10.0  0.20 9 16.19  

NSF_08 14 13.2  0.38 13 15.11  17 15.5  1.48 14 29.02  

NSF_10 17 16.6  0.49 16 22.89  20 18.9  0.69 18 36.03  

NewYork_02 2 2.0  0.00 2 1.37  3 2.9  0.31 2 7.37  

NewYork_04 3 3.0  0.00 3 2.65  6 5.2  0.46 4 18.78  

NewYork_06 5 4.1  0.35 4 3.93  8 6.8  0.50 6 25.51  

NewYork_08 7 6.0  0.18 6 6.75  10 9.1  0.69 8 38.35  

NewYork_10 8 8.0  0.00 8 7.03  12 10.7  0.60 10 50.17  

ARPANET_02 10 9.1  0.31 9 10.58  10 9.1  0.74 9 10.58  

ARPANET_04 13 12.1  0.31 12 16.96  19 16.3  1.27 14 62.15  

ARPANET_06 21 21.0  0.00 21 25.98  28 24.9  1.26 22 93.86  

ARPANET_08 29 29.0  0.00 29 32.31  40 36.5  1.48 33 133.70  

ARPANET_10 33 33.0  0.00 33 62.85  46 41.2  2.47 36 172.60  

EON_02 4 3.1  0.31 3 3.19  5 4.3  0.09 4 10.40  

EON_04 9 8.3  0.48 8 14.74  12 10.6  0.49 10 35.34  

EON_06 11 11.0  0.00 11 17.52  15 13.0  0.62 12 46.61  

EON_08 14 13.7  0.47 13 26.63  20 18.2  3.75 17 48.92  

EON_10 19 18.1  0.25 18 38.17  25 22.9  3.74 22 73.32  

France_02 8 8.0  0.00 8 8.87  14 11.5  0.86 10 50.60  

France_04 13 12.8  0.38 12 16.05  22 19.3  1.26 17 86.48  

France_06 22 22.0  0.00 22 39.07  34 30.4  1.67 27 129.16  

France_08 27 26.3  0.48 26 47.09  45 40.3  1.82 38 290.72  

France_10 34 34.0  0.00 34 60.09  54 48.9  2.36 45 236.64  
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Table 13 Continued 

  GA-MEDP-RWA PSO 

instance max avg std min avg time max avg std min avg time 

Norway_02 9 8.6  0.50 8 9.26  15 13.1  0.92 11 61.56  

Norway_04 15 14.6  0.50 14 18.47  25 22.5  1.31 20 101.40  

Norway_06 22 21.4  0.49 21 32.84  37 32.6  2.06 29 202.11  

Norway_08 30 29.5  0.51 29 46.41  48 43.6  1.70 40 254.75  

Norway_10 37 36.6  0.50 36 63.77  59 54.1  2.60 49 323.64  

cost266_02 19 18.2  0.41 18 46.68  26 23.8  1.09 21 105.22  

cost266_04 35 34.1  0.45 33 159.69  54 50.9  1.81 47 239.95  

cost266_06 54 53.1  0.31 53 237.55  79 73.2  2.07 70 436.38  

cost266_08 68 67.2  0.43 67 275.29  99 93.4  2.81 88 703.53  

janos-us-ca_02 26 26.0  0.00 26 54.75  40 36.1  2.23 31 288.18  

janos-us-ca_04 40 39.6  0.49 39 97.42  66 60.5  2.79 56 529.74  

janos-us-ca_06 68 67.8  0.41 67 210.36  111 102.7  4.02 94 959.93  

janos-us-ca_08 89 88.2  0.38 88 326.39  144 134.1  5.88 122 1239.46  

giul_02 11 10.3  0.48 10 26.93  16 14.5  0.86 13 294.44  

giul_04 21 20.2  0.50 19 82.66  32 28.8  1.56 26 451.61  

giul_06 25 24.6  0.49 24 150.73  42 38.3  2.02 34 738.65  

giul_08 36 34.9  0.51 34 226.85  59 53.5  2.57 49 990.63  

piro40_02 17 17 0.00 17 55.51  22 20.0  0.74 19 159.88  

piro40_04 28 28 0.00 28 118.50  36 33.7  0.99 32 300.88  

piro40_06 46 46 0.00 46 208.81  66 58.7  3.27 52 474.73  

piro40_08 60 60 0.00 60 338.61  86 79.4  2.85 73 684.40  

USAnet_02 25 24.0  0.49 23 86.13  40 36.4  2.03 32 446.56  

USAnet_04 47 45.9  0.50 45 355.64  76 69.5  2.91 65 983.93  

USAnet_06 67 66.1  0.58 65 422.63  106 98.1  3.74 92 1418.73  

USAnet_08 88 86.5  0.68 85 490.20 139 126.5  4.18 120 1715.20  

Germany50_02 21 20.7  0.45 20 109.28  37 33.5  1.72 31 379.56  

Germany50_04 45 44.2  0.48 43 350.24  74 69.4  2.11 66 683.95  

Germany50_06 61 60.5  0.51 60 584.92  102 95.7  2.70 91 969.87  

Germany50_08 76 74.7  0.77 73 921.59  126 120.5  3.21 115 1271.90  
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Table 13 Continued 

  GA-MEDP-RWA PSO 

instance max avg std min avg time max avg std min avg time 

zib54_02 32 31.1  0.51 30 149.44  75 64.1  4.23 58 619.63  

zib54_04 67 65.7  0.70 65 406.90  159 141.6  6.80 133 1462.19  

zib54_06 92 90.0  0.96 88 762.56  208 195.2  5.29 187 2955.29  

zib54_08 122 119.2  1.05 117 1446.41  289 266.3  8.90 250 4147.09  

ta2_02 35 34.6  0.49 34 411.59  75 70.3  2.59 66 1453.68  

ta2_04 72 70.1  0.71 69 945.79  152 141.8  4.05 133 2852.21  

ta2_06 99 97.4  0.79 96 1865.20  208 198.7  5.49 181 3867.39  

ta2_08 131 129.7  0.69 128 2835.57  284 271.0  5.56 258 5953.52  

 

5.5 Summary 

We have developed the heuristic method GA_MEDP_RWA for solving the RWA problem. It 

combines the idea of bin-packing method and edge-disjoint paths together. The method 

considers a batch of requests at a time and solves the corresponding MEDP problem. The 

remaining requests are then scanned backward such that the one with shorter shortest paths 

tries to fit into the existing wavelengths first. In such manner, the algorithm constructed a 

solution consequently.  

The computational result confirmed the effectiveness of the proposed method. Compared 

with the bin-packing based methods and the PSO approach, GA_MEDP_RWA can find the 

best solution on all instances. Although the proposed method takes longer time than the 

bin-packing methods for small instances, the relative difference of computational time 

becomes smaller as the problem size grows. We also pointed out that different 

route-establishing mechanism might be a crucial factor causing the differences of 

performance between the three methods.  
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Chapter 6 Conclusion and future research 

In this chapter, we summarize our work and point out some possible directions for future 

research. 

6.1 Summary of work done 

The maximum edge-disjoint paths (MEDP) problem plays an important role in modern 

communication networks. Real-world applications of MEDP include VLSI layout, the 

routing and wavelength assignment problem, call admission control problem, etc. In the first 

two chapters, the background and complexity of MEDP are provided. Some existing solution 

methods and their approximation ratios are also reviewed. In Chapter 3, we proposed a novel 

genetic-based algorithm called GA_MEDP for solving the MEDP problem. Each individual 

in GA_MEDP is a collection of paths, in which each path is associated with one connection 

request and is encoded as a vector of priority values in the range of      . To generate a 

feasible solution, a heuristic called GMIN is used to obtain a set of edge-disjoint paths from 

the path set that the individual represents. Then a bicriteria fitness function is used to 

evaluate the individual. In the reproducing stage, three genetic operators are proposed to 

create offspring by manipulating the priority values. In addition, an improvement heuristic is 

provided to further enhance the offspring. The computation results reported in Chapter 4 

show that, compared with the multi-start greedy algorithm and ant colony optimization 

method, the proposed method performs better in most instances in terms of solution quality 

and time. 

We further apply GA_MEDP for a real-world application on optical communication 
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networks – routing and wavelength assignment (RWA) problem. The RWA problem is a 

graph optimization problem which generalizes MEDP in some aspects and has been 

extensively studied for decades. In Section 1.5, the background and formulation of RWA are 

provided. Related works and two solution methods are reviewed in Chapter 2. Firstly, the 

state-of-the-art bin-packing based method, which has four variants: FF, FFD, BF and BFD. It 

considers the requests to represent “items” and copies of the graph to represent “bins”. Then 

classic solution methods for the bin-packing problem are used to tackle RWA. Secondly, the 

particle swarm optimization (PSO), in which each particle is represented by a set of route-ids. 

For each request, a route-id selected from a set of predetermined route candidates for the 

request is assigned. The wavelength assignment is taken care of by evaluating the number of 

sets of edge-disjoint paths among the routes that the particle represents. In Chapter 5, we 

proposed a method called GA_MEDP_RWA for RWA. It combines the idea of the 

bin-packing method and edge-disjoint paths together. The method considers only a number of 

requests at a time and solves the corresponding MEDP problem. The remaining requests are 

then scanned backward such that the one with shorter shortest paths tries to fit into the 

existing wavelengths first. In such manner, the algorithm solves RWA back and forth until a 

solution is constructed. The experimental results show that, compared with the other two 

methods, GA_MEDP_RWA can find the best solution among all testing instances. Although 

the proposed method takes longer computational time than the bin-packing methods for small 

instances (e.g., ten to twenty times that of bin-packing based methods on network CHNNET 

and NSF), the relative difference of computational time becomes smaller as the problem size 

grows.  



 

133 

6.2 Future research 

In this dissertation, we have developed a genetic algorithm for solving the MEDP problem; 

and we have extended the proposed method to tackle the RWA problem. Both methods for 

solving the MEDP and RWA problems have demonstrated their effectiveness as shown in 

Chapters 4 and 5. There are some possible directions that may lead to the improvement of 

these methods. For GA_MEDP, although its application to MEDP has shown some promising 

results, applying additional features to the search process or trying different encoding 

schemes to enhance the solution quality and efficiency may be worthwhile for investigation. 

On the other hand, it would be of high interest to explore potential advantages of employing 

other metaheuristics such as electromagnetism-like mechanism (EM) method, particle swarm 

optimization (PSO) and artificial bee colony (ABC) for solving MEDP problems.  

For the RWA problem, the performance of the proposed GA_MEDP_RWA has been 

verified by several experiments on realistic network topologies. The algorithm is able to 

solve small and medium size instances in reasonable time. However, for very large instances 

(for example,              ) , finding a solution is extremely time-consuming. A 

divide-and-conquer approach called the multilevel algorithm may be worth studying to 

enhance the proposed method for solving large-size problems. Finding different ways to 

identify good permutations of the request set and developing local search methods are also 

needed to further improve the algorithm.  

Further studies on extending the proposed GA to tackle other generalizations of MEDP, 

for example, the unsplittable flow (UF) problem and the call admission control problem, are 

also interesting research topics.   
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