

ABSTRACT

HSU, CHIA-CHUN. A Genetic Algorithm for Maximum Edge-disjoint Paths Problem and Its

Extension to Routing and Wavelength Assignment Problem. (Under the direction of Dr.

Shu-Cherng Fang.)

Optimization problems concerning edge-disjoint paths in a given graph have attracted

considerable attention for decades. Lots of applications can be found in the areas of call

admission control, real-time communication, VLSI (Very-large-scale integration) layout and

reconfiguration, packing, etc. The optimization problem that seems to lie in the heart of these

problems is the maximum edge-disjoint paths problem (MEDP), which is NP-hard. In this

dissertation, we developed a novel genetic algorithm (GA) for handling the problem. The

proposed method is compared with the purely random search method, the simple greedy

algorithm, the multi-start greedy algorithm, and the ant colony optimization method. The

computational results indicate that the proposed GA method performs better in most of the

instances in terms of solution quality and time.

Moreover, a real-world application of the routing and wavelength assignment problem

(RWA), which generalizes MEDP in some aspects, has been performed; and the

computational results further confirm the effectiveness of our work. Compared with the

bin-packing based algorithms and particle swarm optimization, the proposed method can

achieve the best solution on all testing instances. Although it is more time-consuming than

the bin-packing based methods, the differences of computational time become small on large

instances.

© Copyright 2013 by Chia-Chun Hsu

All Rights Reserved

A Genetic Algorithm for Maximum Edge-disjoint Paths Problem and Its Extension to Routing

and Wavelength Assignment Problem

by

Chia-Chun Hsu

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fulfillment of the

requirements for the Degree of

Doctor of Philosophy

Industrial Engineering

Raleigh, North Carolina

2013

APPROVED BY:

________________________________ ________________________________

Dr. Shu-Cherng Fang Dr. James R. Wilson

Chair of Advisory Committee

________________________________ ________________________________

Dr. Salah E. Elmaghraby Dr. Yuan-Shin Lee

Dr. Hsun-Jung Cho

ii

DEDICATION

This dissertation is dedicated to:

God,

my parents Hung-Chi Hsu and Mei-Chiao Peng,

my little sister Pei-Wen Hsu,

my girlfriend Kuan-Lin Chen

and her parents Ho-Ping Chen and Pi-Hsia Chan,

for their endless love and support.

iii

BIOGRAPHY

Chia-Chun Hsu was born in a lovely family on October 25, 1982. He had a happy childhood

and grew up in Taipei, Taiwan. In 2001, he attended National Chiao Tung University and in

2005 received his bachelor degree in Transportation Technology and Management. Then he

started his graduate study and began to pursue the Ph.D. degree in 2006 under the

supervision of Prof. Hsun-Jung Cho. In 2009, he participated in the dual-Ph.D. program

between the College of Management of National Chiao Tung University and the Industrial

and Systems Engineering Department of North Carolina State University. In fall 2009, he

went to NCSU and started his new life in USA under the supervision of Prof. Shu-Cherng

Fang. On March 25
th

 2013, he passed the oral exam in NCSU and he will receive his Ph.D.

degree before the end of 2013 spring semester.

iv

ACKNOWLEDGMENTS

I would like to express my deepest and sincerely gratitude to my advisor Dr. Shu-Cherng

Fang, for his guidance over the past four years. His knowledge, wisdom and character would

benefit me for life. I also thank my advisor of NCTU Dr. Hsun-Jung Cho for his enormous

support and helps during my graduate study. My appreciation also goes to my committee

members: Dr. Salah E. Elmaghraby, Dr. James R. Wilson and Dr. Yuan-Shin Lee for their

valuable suggestions and comments. It is so lucky to work with my colleagues in FANGroup:

Pingke Li, Kun Huang, Lan Li, Tao Huang, Pu Wang, Qingwei Jin, Lu Yu, Yuan Tian, Ye

Tian, Zhibin Deng, Ziteng Wang, Jian Luo, Chien-Chia Huang, Tiantian Nie and many others

whose names are not listed here. Their encouragement and companion is invaluable to me.

Finally, I thank my parents, my sister, and my girlfriend. It is because of them that my years

spent on this work have been such a delight.

v

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

Chapter 1 Introduction ... 1

1.1 Problem description .. 2

1.2 The model for maximum edge-disjoint paths problem ... 3

1.3 Importance and applications ... 4

1.4 Difficulties of the maximum edge disjoint paths problem 7

1.5 Routing and wavelength assignment problem .. 8

1.5.1 Background ... 8

1.5.2 WDM networks ... 10

1.5.3 Problem description .. 13

1.5.4 Mathematical model of RWA .. 15

1.6 Outline of the dissertation ... 17

Chapter 2 Literature Review ... 19

2.1 A special case: Menger’s Theorem ... 19

2.2 Known approximation ratios for MEDP ... 20

2.3 Existing solution methods for MEDP ... 22

2.3.1 LP relaxation and rounding method .. 22

2.3.2 Greedy algorithms ... 23

2.3.3 Ant-colony optimization ... 27

2.4 Genetic algorithms for path-related problems .. 32

2.4.1 Encoding methods ... 33

2.4.2 Genetic operators .. 37

2.5 Related works on RWA ... 41

2.6 Particle swarm optimization for RWA .. 44

2.6.1 Introduction of PSO .. 44

2.6.2 PSO for RWA .. 46

2.7 BIN-packing based methods for RWA .. 49

vi

2.8 Known lower bounds .. 53

Chapter 3 Proposed genetic algorithm for MEDP ... 55

3.1 MEDP with pre-determined paths ... 56

3.2 Encoding/Decoding procedures .. 57

3.3 Initial population ... 61

3.4 Genetic operators .. 63

3.4.1 Crossover Operator ... 64

3.4.2 Mutation Operator ... 66

3.4.3 Self-Adaption Operator ... 67

3.5 Improvement heuristics ... 70

3.6 Fitness function and evaluation .. 73

3.7 Population management and selection method ... 74

3.8 Summary ... 75

Chapter 4 Computational results .. 76

4.1 Design of experiment .. 76

4.2 Problem generation and computational experiments .. 77

4.3 Computational results ... 78

4.3.1 Random search vs. GA ... 79

4.3.2 Greedy algorithms vs. GA .. 82

4.3.3 ACO vs. GA .. 86

4.4 Summary ... 100

Chapter 5 Solving the RWA problem .. 101

5.1 Proposed method ... 101

5.2 An illustration ... 104

5.3 Testing instances and parameter tuning ...110

5.3.1 Testing instances ..110

5.3.2 Tuning the batch size ...115

5.4 Computational experiments ...118

5.4.1 GA_MEDP_RWA vs. bin-packing based methods118

vii

5.4.2 GA_MEDP_RWA vs. PSO ... 127

5.5 Summary ... 130

Chapter 6 Conclusion and future research ... 131

6.1 Summary of work done ... 131

6.2 Future research .. 133

References .. 134

viii

LIST OF TABLES

Table 1 Summary of the performance of the three encoding methods 37

Table 2 Main quantitative measures of the instances .. 78

Table 3 Comparison of the results obtained by SGA, MSGA and proposed GA with 3 initial

populations ... 84

Table 4 Comparison of the results obtained by MSGA, ACO and the proposed GA with 3

initial populations ... 87

Table 5 The randomly generated connection request set .. 106

Table 6 The updated request set after the first run of GA_MEDP .. 107

Table 7 The updated request set after the backward-scanning process 108

Table 8 The updated request set after the second run of and the

backward-scanning ... 109

Table 9 The result of applying GA_MEDP_RWA on the small example110

Table 10 Main quantitative characteristics of the instances ... 111

Table 11 Testing instances ..113

Table 12 Results of GA_MEDP_RWA and bin-packing based methods (time unit: sec)119

Table 13 Results obtained by GA_MEDP_RWA and PSO (time unit: sec) 128

ix

LIST OF FIGURES

Figure 1 A WDM transmission system [17].. 12

Figure 2 A wavelength-routed WDM network [17] .. 13

Figure 3 A wavelength-routed network with three lightpaths ... 14

Figure 4 The brick-wall graph .. 22

Figure 5 An example of variable-length chromosome and its decoded path 34

Figure 6 An example of fixed-length chromosome and its decoded path 35

Figure 7 An example of priority-based chromosome and its decoded path 36

Figure 8 An illustration of Order Crossover ... 38

Figure 9 An illustration of Position-based Crossover ... 39

Figure 10 An illustration of Inversion Mutation ... 39

Figure 11 An illustration of Insertion Mutation .. 40

Figure 12 An illustration of Swap Mutation ... 40

Figure 13 The velocity and position updates of a particle in a two-dimensional space 46

Figure 14 The structure of a chromosome .. 58

Figure 15 Swap operation generates a new initial individual ... 62

Figure 16 Chromosome 1 and its representing path set .. 65

Figure 17 Chromosome 2 and its representing path set .. 65

Figure 18 The offspring and its representing path set ... 66

Figure 19 The offspring generated by mutation operator ... 67

Figure 20 The offspring generated by self-adaption operator ... 70

Figure 21 Three paths of corresponding requests ... 72

Figure 22 Two EDPs found by GMIN .. 72

Figure 23 A new EDP found by the improvement heuristics .. 73

Figure 24 Evolution of the solution quality obtained by GA and random search on

AS-BA.R-Wax.v100e190 with 40 connection requests (upper and lower dot lines

denote the boundaries of 95% confidence intervals) .. 81

Figure 25 Evolution of the solution quality obtained by GA and random search on

mesh10X10 with 40 connection requests (upper and lower dot lines denote the

x

boundaries of 95% confidence intervals) ... 82

Figure 26 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 10 requests ... 90

Figure 27 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 25 requests ... 90

Figure 28 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 40 requests ... 91

Figure 29 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 10 requests ... 91

Figure 30 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 25 requests ... 92

Figure 31 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 40 requests ... 92

Figure 32 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 50 requests ... 93

Figure 33 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 125 requests ... 93

Figure 34 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 200 requests ... 94

Figure 35 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 16 requests ... 94

Figure 36 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 41 requests ... 95

Figure 37 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 65 requests ... 95

Figure 38 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 43 requests ... 96

Figure 39 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 108 requests ... 96

xi

Figure 40 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 173 requests ... 97

Figure 41 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 10 requests ... 97

Figure 42 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 25 requests ... 98

Figure 43 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 40 requests ... 98

Figure 44 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 23 requests ... 99

Figure 45 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 57 requests ... 99

Figure 46 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 90 requests ... 100

Figure 47 Illustration of NSF network with 16 nodes and 25 edges 105

Figure 48 95% C. I. of the objective value obtained with different on janos-us-ca_08 ...116

Figure 49 95% C. I. of the computational time with different on janos-us-ca_08116

Figure 50 95% C. I. of the objective value obtained with different on USAnet_08117

Figure 51 95% C. I. of the computational time with different on USAnet_08117

Figure 52 Number of times that the best value is achieved by different methods among 67

instances ... 122

Figure 53 Number of times that the worst value is achieved by different methods among 67

instances ... 122

Figure 54 Relative difference of computational time on graph “Norway” 124

Figure 55 Relative difference of computational time on graph “giul” 124

Figure 56 Relative difference of computational time on graph “Germany” 125

Figure 57 Relative difference of computational time on graph “ta2” 125

1

Chapter 1 Introduction

Assigning paths to connection requests is one of the basic operations in the modern

communication networks. Each connection request is a pair of physically separated nodes

that require a path for information transmission. Given such a set of connection requests, due

to the capacity restrictions, one may want to assign paths to requests in such a way that no

two paths share an edge in common. These paths are called edge disjoint paths (EDPs). A

natural question to ask is: What is the maximum number of requests that are simultaneously

realizable as edge disjoint paths? This is called the maximum edge-disjoint paths (MEDP)

problem, which turns out to be one of the classical combinatorial problems in the

NP-complete category. It has been extensively studied for decades and can be extended to

many real-world applications, e.g., the routing and wavelength assignment (RWA) problem,

the call admission problem, the unsplittable flow problem, and the very large-scale

integration (VLSI) problem, etc. In this dissertation, we propose a novel genetic-based

algorithm to solve the MEDP problem. Moreover, the proposed algorithm is extended for

solving the RWA problem. Computational results show that in either case, the proposed

method exhibits good performance compared with other existing solution methods.

This chapter intends to introduce some background information on the problems we are

going to tackle. The first four sections provide the descriptions, formulation, importance and

difficulties of the MEDP problem, respectively. Then an overview and background

information on the RWA problem is given in Section 1.5. Following that is an outline of the

dissertation in Section 1.6.

2

1.1 Problem Description

The physical architecture of the network is given in the form of an undirected and connected

graph , which consists of a finite set of vertices and a finite set of edges,

where and . Each edge is said to be incident to and to

 , and are called endpoints of . A sequence of edges such that

 for some , is called a path of length , with endpoints

and . We say that two paths are edge-disjoint (or edge-independent) if they do not have

any edge in common. A set of paths is said to consist of edge-disjoint paths (EDPs) if any

two paths in the set are edge-disjoint.

Let be a set of connection requests.

Each request in a graph is a pair of vertices that asks for a path that establishes

the connection between and . We often use “request ” and “request ”

interchangeably.

An instance of the maximum edge-disjoint paths (MEDP) problem consists of an

undirected graph and a request set . A feasible solution of MEDP is

given by a subset , such that each request in is assigned a path. The assigned paths

are pairwise edge-disjoint and denoted by . More precisely, a path between and

is assigned to each such that no two paths , () have

an edge of the graph in common. The goal of the maximum edge-disjoint paths problem is to

maximize the cardinality of . The requests in are called realizable (or accepted) requests,

those in are the rejected requests. MEDP can be stated in a compact way as follows:

3

Problem: maximum edge-disjoint paths (MEDP) problem.

Input: undirected graph , connection requests

 .

Feasible Solution: a realizable subset such that there is an assignment of

edge-disjoint paths to the requests in .

Goal: maximize .

1.2 The Integer Linear Programming Model for Maximum

Edge-disjoint Paths Problem

MEDP has a natural IP formulation based on multicommodity flows. We use an

exponentially sized path formulation for convenience. The notations of the MEDP model are

defined as follows:

 the set of all simple (cycle-free) paths in from to , for .

 : the set of all simple (cycle-free) paths in that pass along edge .

 : a binary variable indicating whether path is chosen in the solution, for each

 .

 : a binary variable indicating whether the request is realizable, for .

The formulation of MEDP is the following linear integer program:

 (1.1)

 (1.2)

4

 , (1.3)

 (1.4)

 (1.5)

The objective function (1.1) maximizes the number of realizable connection requests.

Constraint (1.2) ensures that each realizable request is assigned a path. Constraint (1.3)

ensures that each edge can only be used by at most one path. Constraints (1.4) and (1.5)

ensure that all variables are binary.

Enumerating all possible simple paths for each of the connection requests makes solving

the model extremely time consuming. Considering the case on a complete graph (in which

every pair of distinct vertices is connected by an unique edge), the number of all-possible

simple paths that connects a pair of node is

 , where .

For instance, in a complete graph which has 10 nodes, enumerating all possible simple

paths for a pair of nodes has order of time complexity. Thus solving this integer linear

programming model is not an efficient way for tackling the MEDP problem.

1.3 Importance and applications

Research on the maximum edge-disjoint paths (MEDP) problem has a long history and the

corresponding literature is extensive [3, 8, 14, 20, 25, 30, 31]. In recent years, the advent of

5

the modern high-speed communication networks has brought more focus to the MEDP

problem [11]. Many modern network architectures establish a virtual path between any two

vertices. In order to achieve guaranteed service quality, the network must reserve sufficient

resources (capacity or bandwidth) on the edges along that path. Some requests are rejected if

the path does not have sufficient capacity. We want to know how many requests are

realizable in a round using edge-disjoint paths, and how many rounds of communication are

required to satisfy all requests. The MEDP problem is the essence of these types of problems.

In the real world, the maximum edge-disjoint paths problem has a multitude of

applications in the areas of call admission control [37, 38], real-time communication, VLSI

(very-large-scale integration) layout [3] and reconfiguration [42], packing [1, 30, 31], etc. In

addition, the routing and wavelength assignment (RWA) problem [2, 11, 27], unsplittable

flow problem (UFP) [14, 30, 33, 39], and the call admission problem [37, 38] are direct

extensions of MEDP. These real-world applications of the maximum edge-disjoint paths

problem generalize the original MEDP in one or more aspects. In fact, MEDP is essentially in

the heart of several network optimization problems and therefore, its importance is

significant. The three classical applications of MEDP are further introduced below.

The routing and wavelength assignment (RWA) problem

Optical networks that apply the wavelength division multiplexing (WDM) technology have

attracted enormous attention due to its capability of satisfying the increasing capacity

requirements in telecommunication networks [2, 11, 27]. WDM networks allow the

simultaneous transmission of different channels along the same optical fiber, by assigning

each of them a different wavelength. An optical connection between two nodes is called a

6

lightpath, which can be characterized by its route and the assigned wavelength.

Given an optical network and a set of lightpath requests, the routing and wavelength

assignment (RWA) problem attempts to route and assign a wavelength to each lightpath

request subject to the following constraints: (a) wavelength continuity constraint: the same

wavelength must be assigned to the entire route if there are no available wavelength

converters; and (b) wavelength clash constraint: two lightpaths sharing the same edge have to

use different wavelengths.

The objectives of RWA include the minimization of the required number of wavelengths

to satisfy all lightpath requests, or maximization of the number of realizable lightpath

requests subject to a given number of wavelengths. In later chapters, more details including

problem background and related works will be further introduced.

The unsplittable flow problem (UFP)

The unsplittable flow problem is one of the most extensively studied optimization problems

in the field of networking [14, 30, 33, 39]. It is essentially a generalization of MEDP in

several aspects. For a given undirected graph , each edge now has a capacity

 . With respect to the set of connection requests , each request has a demand and

a profit , assuming that the edge capacities, demands and profits are positive real numbers.

A feasible solution is given by selecting a subset of requests and assigning a path from to

 for each realizable request , subject to the following constraints: (i) for an edge , the

sum of demands of all the accepted requests that pass through cannot exceed the capacity

 ; (ii) for an accepted request , it must send units of demand through a single route.

One can gain the profit if request is accepted. The goal is to maximize the total profit.

7

It is easy to see that MEDP is a special case of UFP in which for every ,

and for every request .

Call admission control problem

The call admission control problem is a vital optimization problem encountered in the

operations of communication networks [37, 38]. Given an undirected graph and a set of

connection requests, each request has a certain bandwidth requirement and time specification

of its starting time and duration. If a request is accepted, then a path has to be routed between

the pair of nodes and the required amount of bandwidth is reserved on all links along that

path during the time period.

In addition, each call is associated with some profits, which the network provider will

gain if the desired connection is established. The goal is to maximize the total profits

obtained from the accepted requests without violating the edge capacity constraints at any

time.

1.4 Difficulties of the maximum edge disjoint paths problem

Most of the early works on the edge-disjoint paths problem have focused on the version of a

decision problem, which determines either all the connection requests can be realizable by

edge-disjoint paths or certifies that such a routing does not exist. This decision problem is

one of the classical NP-complete problems [1, 24]. Substantial efforts have been made to the

identification of polynomial solvable cases for the decision problem, we refer to the surveys

by Frank [3] and Vygen [16] for more details.

The investigation of MEDP started in the 1990s and is still ongoing [3, 14, 16, 30, 31].

8

Some classes of graphs are able to be checked whether all requests are realizable in

polynomial time, but if the answer is no, it is NP-hard to compute the maximum number of

realizable requests. Reference [33] provides some examples. Since MEDP is an NP-hard

problem on general graphs [39], many studies were devoted to obtaining good approximation

algorithms and exploring more tractable classes. For instance, MEDP on chains can be solved

in polynomial time since the routing for each request in a chain is uniquely determined by its

endpoint (this fact also holds for arbitrary trees). Hence, the connection requests can be

treated as a set of intervals on the real line and the problem of finding a maximum number of

disjoint intervals is known to be solvable in linear time. We refer to the survey in [33] for

more details and other tractable graphs (e.g., bidirected chains, undirected trees, bidirected

stars).

1.5 Routing and wavelength assignment problem

In recent decades, the number of bandwidth-intensive applications in telecommunications

such as HD video, video conferencing, HD digital broadcasting and streaming over the

internet, have grown rapidly. The technology of fiber-optics can be an attractive candidate for

meeting the above-mentioned needs because of its huge transmission bandwidth (~50 Tbps),

low signal attenuation, low signal distortion, low power requirement, small space

requirement, and low cost. This section starts with the background of optical fibers and

WDM networks, and then gives a precise description of the routing and wavelength problem.

1.5.1 Background

Corning Glass Works developed commercial optical fibers successfully in 1970, with

9

attenuation low enough for communication purposes. In the meanwhile, GaAs semiconductor

lasers were developed, which were suitable for transmitting light through optical cables for

long distances. Starting from 1975, the first commercial fiber-optics communications system

was developed, and it operated at a bit rate of 45 Mbps with repeater spacing up to 10 km.

The second generation of fiber-optics communication was developed for commercial use in

the early 1980s. By 1987, these systems were operating at bit rates up to 1.7 Gbps with

repeater spacing up to 50 km.

Later, scientists developed dispersion-shifted fibers which allowed the third-generation

fiber-optics systems operating commercially at a bit rate of 2.5 Gbps with repeater spacing in

excess of 100 km. Finally, the fourth generation of fiber-optics communication systems used

optical amplification to reduce the need for repeaters and wavelength-division multiplexing

to increase data capacity. These two technologies improved the system capacity dramatically

since 1992. By 2001, such systems operated at a bit rate of 10 Tbps. Finally, a bit-rate of 14

Tbps was reached over a single 160 km line using optical amplifiers in 2006.

In telecommunications or computer networks, multiplexing is a method to combine

multiple analog message or digital data streams into one signal over one shared medium. The

use of such a technique can further increase the capacity of optical fibers. Four main types of

multiplexing are available: (a) space-division multiplexing (SDM); (b) time-division

multiplexing (TDM); (c) code-division multiplexing (CDM); and (d) frequency-division (or

wavelength-division) multiplexing (FDM).

SDM simply implies different point-to-point wires for different channels, for instance,

stereo audio cable with one pair of wires for the left channel and another for the right channel.

10

For TDM, two or more bit streams or signals are transferred as sub-channels in one

communication channel, but are physically taking turns on the channel. The time domain is

divided into several recurrent time slots of fixed length, one for each sub-channel. The

optical TDM bit rate is the aggregate rate over all channels in the system. A disadvantage of

TDM is that it requires that each node has to be perfectly synchronized to the same time

clock and be capable of handling the aggregate bit rate of all channels. On the other hand,

CDM assigns a code to each transmission and also requires the source and destination nodes

to synchronize to the same time base.

FDM combines several digital signals into one medium by sending signals in several

distinct frequencies over that medium. One of the most common applications is cable

television. Only one cable reaches a customer's home but the service provider can send

multiple television channels or signals simultaneously over that cable to all subscribers.

Receivers must tune to the appropriate frequency (channel) to access the desired signal.

Wavelength-division multiplexing (WDM) is a variant technology used in optical

communications. Since wavelength and frequency are tied together through a simple directly

inverse relationship, the two terms actually describe the same concept. WDM operates by

dividing the optical transmission spectrum into many non-overlapping wavelengths and each

wavelength supports one communication channel. It allows multiple channels to coexist on a

single fiber and does not require nodes to synchronize to the same time clock. Hence WDM

has become the favorite multiplexing technique for optical networks.

1.5.2 WDM networks

Wavelength-division multiplexing (WDM) is a technology which multiplexes a number of

11

optical carrier signals onto a single optical fiber by using different wavelengths (i.e. colours)

of laser light. The number of wavelengths that each fiber can carry simultaneously is limited

by the physical characteristics of fibers and the optical technology of combining the

wavelengths and separating them off. In early WDM systems, each fiber could only provide

two channels. Modern systems can handle up to 370 signals and can thus expand a basic 273

Gbps system over a single fiber pair to a bit rate over 101Tbps.

Figure 1 [17] is a block diagram of a basic WDM transmission system. The transmitter

comprises a laser and a modulator. The laser is the light source, which generates an optical

carrier signal at either a fixed or a tunable wavelength. The carried signal is modulated by an

electronic signal and is sent to the multiplexer (MUX). The multiplexer combines several

optical signals on different wavelengths (denoted by in Figure 1) into a

single optical signal, which is transmitted to a common output port or optical fiber. The

network medium can be a simple fiber link, a passive star coupler, or any type of optical

network. The demultiplexer (DMUX) uses optical filters to separate the received optical

signal into multiple optical signals on different wavelengths, which are then sent to the

receivers. The receiver has a detector that can convert an optical signal to an electronic signal.

Optical amplifiers are used at appropriate locations in the transmission system to maintain

the power strength of an optical signal.

12

Figure 1 A WDM transmission system [17]

A wavelength-routed optical WDM network typically consists of routing nodes

interconnected by WDM fiber links in an arbitrary physical topology. Each routing node

employs several transmitters and receivers for transmitting signals to and receiving signals

from fiber links, respectively. Each link operates in WDM and supports a certain number of

optical channels (or wavelengths). A routing node can be connected to an access node, which

is an interface between the optical network and the electronic client networks. An access

node performs traffic aggregation and E/O conversion functions on the source side. On the

destination side, traffic deaggregation and O/E conversion are performed. The architecture of

a wavelength-routed WDM network is shown in Figure 2 [17]. In the remainder of this work,

we assume that each routing node is connected to an access node, and we refer to this

integrated unit as a node.

13

Figure 2 A wavelength-routed WDM network [17]

1.5.3 Problem description

In a wavelength-routed WDM network, end users communicate with each other via

all-optical WDM-channels, which are referred to as lightpaths. A lightpath is used to establish

a connection between two nodes, and it can be characterized by its route and the occupied

wavelength. In the absence of wavelength converters, a lightpath must use the same

wavelength on all fiber links which it traverses, which is known as the wavelength continuity

constraint. In addition, lightpaths that share a common physical link cannot use the same

wavelength, which is known as the wavelength clash constraint. Figure 3 illustrates a

wavelength-routed network in which three lightpaths have been set up on two different

wavelengths.

14

Figure 3 A wavelength-routed network with three lightpaths

Given a set of connection requests, the problem of setting up lightpaths by routing and

allocating a wavelength to each connection is called the routing and wavelength assignment

(RWA) problem. In general, connection requests are of three types: static, incremental and

dynamic. We only consider the static case, which means the entire set of connection requests

is known in advance. The routing and wavelength assignment operations are performed

off-line.

The RWA problem is to establish routes and assign wavelengths for the connections

while minimizing network resources such as the number of wavelengths or the number of

fibers in the network. Alternatively, one may attempt to connect as many requests as possible

for a given number of wavelengths. In this work, we consider the former case assuming that

the available number of wavelengths is unlimited. The objective is to minimize the number of

wavelengths used to establish connections for all requests.

15

To be precise, given an undirected graph in which each edge is an

optical fiber link in the physical network, and a request set

 , the routing and wavelength assignment (RWA) problem searches for a

set of lightpaths in , each corresponds to one request , and

assigns a set of wavelengths to these paths. Path and , ,

cannot be assigned the same wavelength if they share a common edge. The objective is to

minimize the number of wavelengths required to satisfy all requests in .

A feasible solution to the RWA problem consists of a path set and the assigned

wavelength set . Each path connects the request and is assigned the

wavelength such that the wavelength clash constraints hold. The RWA problem can

be stated in a compact way as follows:

Problem: routing and wavelength assignment (RWA) problem.

Input: undirected graph and a set of connection requests

 .

Feasible Solution: a path set to connect all requests and a corresponding wavelength set

such that the wavelength clash constraint holds.

Goal: minimize the number of required wavelengths.

1.5.4 Mathematical model of RWA

In reference [2], the RWA problem is formulated as an integer linear programming problem

with a general multicommodity flow formulation. The authors assume that the number of

16

available wavelengths is limited and the goal of their model is to maximize the number of

accepted requests. In our work, we assume there are units of available wavelengths (is

the number of requests). Thus in the worst case, where each wavelength is assigned to

exactly one request, all connection requests can still be satisfied. The goal of our model is to

minimize the number of utilized wavelengths to satisfy all requests. Some notations are

defined below.

L: set of indices of available wavelengths (on each edge), .

 : a binary variable, if wavelength is assigned to path ; and

otherwise.

 : the set of all simple (cycle-free) paths in from source to terminal , for

 .

 : the set of all simple paths in that pass along edge .

 : a binary variable, if wavelength is utilized; and otherwise.

The problem formulation is given by

 (1.6)

Subject to

 , (1.7)

 (1.8)

 (1.9)

The objective (1.6) minimizes the total number of utilized wavelengths. Constraint (1.7)

17

is the wavelength clash constraint, that is, for the paths in , the wavelength is assigned

to at most one of them. In other words, paths using the same edge must employ different

wavelengths. Constraint (1.8) represents the demand constraint, which ensures each request

is assigned exactly a path and a wavelength. Constraint (1.9) ensures will equal 1 if

wavelength is used by one or more paths.

As mentioned in Section 1.2, enumerating all-possible paths is extremely

time-consuming and only applicable in very small-sized networks. The number of

all-possible paths that connect a pair of nodes in a complete graph is . Thus it is

unlikely to tackle the RWA problem by solving the above integer linear programming due to

its rapidly increasing number of variables and constraints.

1.6 Outline of the dissertation

The dissertation is organized as following: Chapter 2 includes two parts. The first part is the

literature review of the MEDP problem, where some known approximation ratios, existing

methods and genetic algorithms for path-related problems are reviewed. The second part is a

survey of the RWA problem, where the background, related works, two existing methods and

lower bounds of the problem are provided. In Chapter 3, we propose a novel genetic

algorithm for solving the MEDP problem, including the encoding/decoding scheme, a

method to produce the initial population, a fitness function, three reproduction operators, an

improvement heuristic, and the population management method. The testing instances and

comparisons of computational results obtained by using existing methods and the proposed

genetic algorithm are provided in Chapter 4. In Chapter 5, we develop a heuristic method

18

which employs the proposed GA-based method to solve the RWA problem. The

computational results show that the proposed methods outperform the bin-packing based

methods and the particle swarm optimization (PSO). Concluding remarks and future research

directions are given in Chapter 6.

19

Chapter 2 Literature Review

In this chapter, we provide a review of the maximum edge-disjoint paths problem (MEDP)

and one of its extended real-world applications – routing and wavelength assignment

problem (RWA). In Section 2.1, a special case of MEDP known as edge-disjoint Menger

problem, in which all connection requests are composed by repetitions of the same pair ,

is discussed. Section 2.2 summarizes the approximation ratios of most well-known

approximation algorithms for MEDP on a general graph. Detailed descriptions of these

approximation algorithms are given in Section 2.3. In Section 2.4, some encoding schemes

and genetic operators for solving path-related problems are introduced. Related works on the

RWA problem are reviewed in Section 2.5, particle swarm optimization (PSO) and the

state-of-art bin-packing based methods are given in Sections 2.6 and 2.7, respectively. Finally,

lower bounds of solving the RWA problem are provided in Section 2.8.

2.1 A special case: Menger’s Theorem

One extreme case of MEDP is that all of the pairs of connection requests are the same, i.e.,

all requests are between two vertices . In this case, the number of edge-disjoint paths

can be viewed as a measurement of how well a given pair of vertices is connected. A

different way of measuring the connectivity is to determine the smallest number of edges

whose deletion from the graph disconnects every path between the pair. In 1927, Karl

Menger [19] proved an elegant theorem, which states that the maximum number of

edge-disjoint paths between a given pair of connection requests in a graph equals the

20

minimum number of edges whose deletion disconnects the pair.

To be more precise, given in graph , let set be a collection of edges. We

say is an “ edge-separating set” if every path contains an edge of . We

denote the minimum cardinality of an edge-separating set by and the

maximum number of edge-disjoint paths in by . Since each edge-disjoint

 path must contain at least one edge in the edge-separating set, we have

 . Menger further proved that in his theorem.

Theorem 1 (Karl Menger, 1927) In an undirected graph , if vertices and are not

adjacent, .

2.2 Known approximation ratios for MEDP

Since the maximum edge-disjoint paths problem with connection requests on a general graph

is proven to be NP-hard, many works have proposed approximation algorithms for solving

the problem [1, 8, 14, 20, 23, 30, 31, 32, 33]. A good approximation algorithm runs in

polynomial time to reach a solution guaranteed to be close enough to the optimal solution.

The sense of “closeness’’ can be described by the “approximation ratio” .

A -approximation algorithm for MEDP runs in polynomial time to output a feasible solution

R satisfying , where OPT is the optimal objective value and is the

approximation ratio.

For a general graph, known approximation algorithms for MEDP include the simple

greedy algorithm, bounded greedy algorithm and shortest-path first greedy algorithm can be

found in Kleinberg [14]. The bounds of approximation ratios are summarized below, while

21

the detailed descriptions of each algorithm will be given in Section 2.3.

Theorem 2 (Erlebach, 2006 [33]) The simple greedy algorithm has an approximation

ratio of for MEDP in a directed or undirected graph with vertices, and the bound

is tight.

Theorem 3 (Kleinberg, 1996 [14]) The bounded greedy algorithm with a parameter

 has an approximation ratio of for MEDP in a directed or

undirected graph with edges.

Chekuri and Khanna [8] showed that for MEDP, the shortest-path-first greedy algorithm

gives an approximation for undirected graphs and an approximation for

directed graphs. In the same article, an approximation algorithm was also

shown for acylic graphs. In Varadarajan and Venkataraman’s work [20], the approximation

ratio for directed graphs was improved to . The next theorem provides the

best known approximation ratio for MEDP in terms of the number of vertices.

Theorem 4 (Chekuri and Khanna, 2003 [8]; Varadarajan and Venkataraman, 2004

[20]) The shortest-path-first greedy algorithm for MEDP achieves an approximation ratio of

 for undirected graphs and for directed

graphs.

Lastly, an essential inapproximabilty result for directed graphs has been obtained by

Guruswami et al. [39].

Theorem 5 (Guruswami et al., 1999 [39]) For MEDP in a directed graph with edges,

there cannot be an -approximation algorithm for any unless .

Very few metaheuristics algorithms have been proposed for solving MEDP. The ant

colony optimization (ACO) approach presented in [23] is the only known metaheuristic for

MEDP. The details of ACO approach will be given in Section 2.3.3.

22

2.3 Existing solution methods for MEDP

Known solution methods for the MEDP include the “LP relaxation and rounding” method,

the “greedy algorithms”, and the “Ant Colony Optimization” approaches, which are

presented in this section.

2.3.1 LP relaxation and rounding method

The formulation of MEDP shown in Section 1.2 is an integer linear program whose

complexity grows exponentially in terms of the problem size. Relaxing (1.4) and (1.5) by

 and respectively, leads to an LP relaxation such that an optimal

fractional solution can be acquired in polynomial time. Then the rounding techniques are

applied to covert the fractional solution into an integral solution. However, the gap between

the fractional optimum and integral optimum can be large. A brick-wall graph shown in

Figure 4 is a simple example demonstrating this phenomenon.

Figure 4 The brick-wall graph

23

Assume there are six connection requests {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)} in Figure

4. When the capacity of each edge is 1, any two paths interfere with each other. We can easily

see that only 1 request is realizable. However, solving the LP relaxation will obtain an

objective value of 3, since it routes 0.5 of each request without violating any constraint. This

shows that the fractional solution obtained by using the LP relaxation cannot guarantee much

about the original problem. The rounding approach may result in an integral solution far

away from desired. However, the situation becomes better as the edge capacity increases. We

refer to reference [33] for more details.

2.3.2 Greedy algorithms

A greedy algorithm starts with an empty solution set and constructs a feasible solution step

by step utilizing a greedy strategy. Due to its ease and speed in execution, a greedy algorithm

is usually implemented for on-line real practice. In this case, the requests are presented one

by one and the algorithm has to accept or reject the request sequentially without knowing

future requests.

The pseudocode of the simple greedy algorithm (SGA) for MEDP is given in Algorithm

1. It starts with empty sets and , then iteratively assigns a shortest path, if there is one,

to a connection request following the order that the request set is given. Each time a path is

assigned, all the edges along that path are removed from the graph. The algorithm halts after

 iterations. Unfortunately, SGA does not achieve a good approximation ratio in general. The

work in [3] shows that SGA has the approximation ratio for MEDP in general graphs.

24

Algorithm 1 Simple Greedy Algorithm (SGA)

Input: and

Begin:

1. ;

2. for

3. if then

4. ;

5. ;

6. ;

7. ;

8. end if

9. end for

End

Output: Realizable requests R and edge-disjoint paths S

It is easy to see that the solution quality of SGA highly depends on the order of

connection requests. In the worst case, SGA may route the first request on a very long path

that interferes with all other requests. This is the main drawback of SGA. An intuitive way to

solve this problem is applying the multi-start simple greedy (MSGA) algorithm [23], shown

in Algorithm 2. MSGA runs SGA for times, in each iteration the order of connection

requests is randomly regenerated. The algorithm then outputs the best solution of the

possible solutions.

25

Algorithm 2 Multi-start simple greedy algorithm (MSGA)

Input: and , where is the number of restarts

Begin:

1. ;

2. ;

3. for

4. ;

5. if then

6. ;

7. ;

8. end if

9. random permutation of ;

10. ;

11. end for

End

Output: Realizable requests and edge-disjoint paths

Another improved greedy algorithm is the bounded-length greedy algorithm shown in

Algorithm 3, proposed by Kleinberg [14]. It takes an extra parameter to denote the

threshold of route length. A request is accepted only if it can be routed on a path of length at

most . In other words, requests whose endpoints are at distance larger than will be

rejected. The algorithm has an approximation ratio of if every request can only be routed

with length at least . If this happens, the algorithm will increase by one and run

again. Kleinberg proved that the bounded-length greedy algorithm with parameter

 can achieve an approximation ratio of for MEDP in a directed or

undirected graph with edges.

26

Algorithm 3 Bounded-length Greedy Algorithm (BGA)

Input: , and

Begin

1. do

2. ;

3. for

4. ;

5. if and then

6. ;

7. ;

8. ;

9. end if

10. end for

11. ;

12. while

End

Output: Realizable requests R and edge-disjoint paths S

A further modification of the greedy algorithm is the shortest-path-first greedy algorithm

proposed by Kolliopoulos and Stein [30, 31], shown in Algorithm 4. First, the algorithm

acquires the shortest path for each connection request. The request that has the path with the

shortest length among all paths is accepted and removed from the request set. Then the

algorithm repeats the same “greedy” strategy until no path can be found for all remaining

requests. Obviously, the algorithm accepts requests in a non-decreasing order of the path

length. It has been shown that the worst-case approximation ratio of Algorithm 4 is at least

as good as that of bounded greedy algorithm. Kolliopoulos and Stein [30, 31] proved that the

algorithm achieves an approximation ratio of in a directed or undirected graph with

 edges.

27

Algorithm 4 Shortest-path-first Greedy Algorithm

Input: and

Begin:

1. ;

2. While contains a request that can be routed in

3. a request in such that its shortest path has minimum length among all requests

in ;

4. ;

5. ;

6.

7. ;

8. end while

End

Output: Realizable requests R and edge-disjoint paths S

2.3.3 Ant-colony optimizationn

Ant colony optimization (ACO) was initially proposed by Marco Dorigo in 1992 in his PhD

dissertation [21]. The idea of ACO comes from observing the exploitation of food resources

by ants. In the beginning, ants wander randomly. If an ant finds food, it leaves pheromone on

the trail back to the colony. Other ants are likely to follow the trail instead of keep travelling

at random. If one eventually finds food, it also leaves pheromone to reinforce the path. On

the other hand, the pheromone on paths evaporates gradually, thus reducing its strength of

attraction. The pheromone density becomes higher on the shorter paths than the longer ones,

therefore a shortest path between the food source and the ants’ nest may be found eventually.

The application of ant colony optimization (ACO) to solving MEDP is the only known

metaheuristic method. In [23], MEDP is decomposed into subproblems .

Each subproblem , where , is trying to find a path for request on

28

 by an ant. In other words, ants are assigned for the connection requests.

A constructed ant solution contains paths which are not necessarily edge-disjoint.

An edge-disjoint solution is generated by iteratively removing the path that has the most

edges in common with other paths, until the remaining paths are mutually edge-disjoint. Let

 denote the number of edge-disjoint paths obtained from . Since two

solutions
 and

 may have the same number of EDPs, i.e.,

 , a second

criterion is introduced to quantify the non-disjointness of an ant solution. Define as

follows:

 , (2.1)

For an ACO intermediate solution , measures the usage of edges that are

covered by more than one path. That means is zero if all paths are mutually

edge-disjoint. Generally speaking, a decrease of may imply an increase of the

number of EDP. Thus we can define an ordering as follows: For two ACO intermediate

solutions
 and

 , we say that

 if and only if

 , (2.2)

 Or

The pheromone model is critical for the ant colony optimization approach. Since the

problem is decomposed into subproblems, a pheromone model is applied for each

29

subproblem . Each pheromone model consists of a pheromone value
 for each edge

 . All pheromone values are in the range , where and are

user-defined parameters. We denote the set of pheromone models by .

Algorithm 5 carries the pseudocode of a basic ACO algorithm. The procedure

 sets all the initial pheromone values to be value . In

each iteration, ant solutions are constructed by applying the function

 times (with ants), where is a permutation of

 . During the process of path construction, an ant iteratively moves from one node

to another along an available edge, the choice of destination can be made either

deterministically or stochastically. We randomly draw a number between 0 and 1. If

 , the next step destination is chosen deterministically. Otherwise, the choice is

made stochastically.

After paths are constructed, the value of the variable will be updated if the

solution improves. Finally, the pheromone values are updated depending on the edges

included in . We refer readers to [23] for the details of the path construction and

pheromone updating procedures.

30

Algorithm 5 Basic ACO Algorithm

Input:

Begin:

1. ;

2. ;

3. while termination condition is false

4. (1,2…,);

5. for

6.
 ;

7. for

8.
 h

 ;

9.

;

10. end for

11. random permutation of ;

12. end for

13. Choose

 such that

14. if

 then

15.

 ;

16. h
 ;

17. end if

18. end while

End

Output: Realizable requests and disjoint paths generated from

In [23], the author also proposed an enriched version of ACO for MEDP. The following

four features are added to modify the way of exploring the solution space.

Sequential versus parallel solution construction: While constructing an ACO solution,

instead of establishing a path for one request after another, the paths are built in parallel. That

is, in each step, an ACO procedure either adds exactly one more edge, or takes a

31

backtracking move. This feature changes the dynamics of the searching process that may lead

to different results.

Candidate list strategy: This is a mechanism to restrict the number of available choices

for consideration at each construction step. For instance, when applying ACO to the traveling

salesman problem, a restriction on checking a few nearby nodes only may significantly

improve the solution efficiency and quality. The modified ACO for MEDP considers only

“good” choices at each construction step to speed up the process.

Different search phases: The pheromone update scheme is an important component of

ACO. In the basic algorithm, all the paths (including the non-disjoint paths) of the ant

solution are used for updating the pheromone values. The author of [23] proposed a

two-phase scheme. In the first phase, only the edge-disjoint paths are used for updating the

pheromone values. The second phase kicks in when no improvement can be found over a

certain period of time by using all paths to update pheromone values. Once the second phase

results in any improvement, the algorithm returns to using the first phase.

Partial destruction of solutions: This mechanism helps the algorithm escape from the

local solutions by removing and reconstructing some paths of the solution. This procedure is

initiated once the algorithm fails to improve over a certain period of time.

In general, ACO approach has advantages over MSGA in terms of solution quality as

well as computational time. The details of comparison on several benchmark instances can be

found in [23].

32

2.4 Genetic algorithms for path-related problems

The genetic algorithm (GA) is a stochastic search method for optimization problems. It

mimics the natural evolution processes using crossover, mutation and selection mechanisms

to gradually improve the solution. Let denote a population set of individuals in

generation and the set of offspring generated by genetic operators. A general

structure of the genetic algorithm is given below.

Genetic Algorithm

Begin:

1. ;

2. initialize ;

3. evaluate ;

4. while (terminal condition not met) do

5. recombine to yield ;

6. evaluate ;

7. select from and ;

8. ;

9. End

End

Since MEDP considers the paths between several terminal pairs, we review the

application of genetic algorithms for the shortest path problem in this section. The shortest

path problem is to find a path between two nodes such that the path length is minimized. It is

a fundamental problem involved in many applications on transportation, routing, and

communications. For real-world applications, multiple and conflicting objectives are taken

into consideration. Gen and Cheng [22] proposed a genetic algorithm to solve the shortest

33

path problem. The encoding schemes and genetic operators are summarized below.

2.4.1 Encoding methods

A gene in a chromosome is characterized by two factors: “locus” denotes the position of the

gene within the structure of the chromosome, and “allele” represents the value of the gene. In

[22], three different encoding schemes are investigated:

Variable-Length encoding

The variable-length encoding method is a straightforward method which consists of a

sequence of positive numbers that represent the indices of nodes through which a path passes.

Given a graph with nodes, the length of the chromosome is between 1 and . The

advantage of this approach is that the mapping from a chromosome to a solution is a 1-to-1

mapping. The disadvantage is that, in general, the genetic operators shown in the next section

may generate an infeasible chromosome, or in other words, a path that does not exist. Thus

repairing techniques are usually applied to ensure the feasibility of the chromosome. Figure 5

shows an example of variable-length chromosome and its decoded path.

34

Figure 5 An example of variable-length chromosome and its decoded path

Fixed-Length encoding

This method uses a fixed-length chromosome to represent a path. To encode an arc node to

 , put in the locus of the chromosome. This process is reiterated from the source node

and terminated at the sink node. If a node is not passed by the route, randomly select a

node from the set of nodes that connect with , and put it in the locus. The advantages

of fixed-length encoding method are: (1) any permutation of the encoding corresponds to a

path; (2) any path has a corresponding encoding. The disadvantages are : (1) some different

chromosomes may correspond to the same path (-to-1 mapping); (2) special genetic

operators are required to generate a feasible chromosome. Figure 6 shows an example of

fixed-length encoding and its decoded path.

Locus :

Node IDs :

1 2 3 4 5

2 4 5 8 9

2 4 5 8 9 Path :

35

Figure 6 An example of fixed-length chromosome and its decoded path

Priority-based encoding

The priority-based method also uses a fixed length chromosome to represent a path. Given

that there are nodes, a path is encoded by a chromosome with genes. The “locus”

denotes the node ID and the “allele” represents the priority of the node. The priorities of

nodes are used for constructing the path. The decoding procedure starts from scanning the

source node and labeling the node with the highest priority among all nodes that are adjacent

to the source node. The labeled node is put into the path. This scanning procedure restarts at

the labeled node and continues until the path reaches the sink node. Illustration of the

priority-based encoding method and its decoded path is shown in Figure 7. Let node 1 and

node 9 be the source and sink node. At the beginning, node 2 and 4 are candidates for the

next node and their priority values are 4 and 1, respectively. Since node 2 has greater priority,

it is labeled and put into the path. The nodes adjacent to node 2 are node 1, 3 and 5. Node 1 is

removed from the candidate set since it is already in the path. Compared with node 3, node 5

has a higher priority and, hence, it is put into the path. Repeat the process until a complete

Locus :

Node IDs :

2 4 5 8 9 Path :

6 7 8 9 1 2 3 4 5

2 4 9 8 2 4 5 5 8

36

path (1-2-5-8-9) is found.

Figure 7 An example of priority-based chromosome and its decoded path

The priority-based encoding has several advantages: (1) any permutation of the encoding

corresponds to a path; (2) most of the existing genetic operators can be applied; (3) any path

has a corresponding encoding; (4) any point in the solution space is accessible through

genetic operations. The disadvantage is also the -to-1 mapping which lowers the searching

efficiency. For instance, [2,4,5,3,8,7,1,9,6] and [3,4,5,2,8,7,1,9,6] both denote the same path

(1-2-5-8-9) in Figure 7. The comparison of the three encoding methods is made in [22] and

shown in Table 1.

Node IDs : 7 3 9 6 2 4 5 1 8

Locus : 6 7 8 9 1 2 3 4 5

1 2 3

4 5 6

7 8 9

source

sink

37

Table 1 Summary of the performance of the three encoding methods

Chromosome

Design
Space Time Feasibility Uniqueness Locality Heritability

Variable-length poor 1-to-1 worse worse

Fixed-Length worse -to-1 worse worse

Priority-based good -to-1 good good

2.4.2 Genetic operators

Genetic operators mimic the process of heredity of genes to create new offspring at each

generation. Using different operators may cause a huge difference in the performance of the

GA procedure, therefore we reviewed below some different operators for the shortest path

problem encoded by the priority-based representation.

Order Crossover

Order-crossover can be viewed as an extension of two-point crossover. It avoids the illegality

caused by the simple two-point crossover. The procedure is described as follows and is

illustrated in Figure 8.

Input: Two parents.

Step1: Select one substring from one parent randomly.

Step2: Generate a proto-child by copying the substring into the corresponding

position of it.

Step3: Delete the nodes which are already in the proto-child from the second parent.

Step4: Place the nodes into the unfixed position of the proto-child according to the order

of the sequence in the second parent.

Output: offspring.

38

Figure 8 An illustration of Order Crossover

Position-based Crossover

Position-based crossover is essentially a uniform crossover for the permutation representation

together with a repairing procedure. It can also be viewed as a variation of the order

crossover where the nodes are selected separately. The procedure is illustrated in Figure 9.

Input: Two parents.

Step1: Select a set of positions from one parent randomly.

Step2: Generate a proto-child by copying the nodes on the positions into the

corresponding position of it.

Step3: Delete the nodes which are already in the proto-child from the second parent.

Step4: Place the nodes into the unfixed position of the proto-child according to the order

of the sequence in the second parent.

Output: offspring.

7 3 9 6 2 4 5 1 8

7 3 9 2 5 4 6 1 8

6 8 9 2 1 5 7 3 4

Parent 1 :

Parent 2 :

Offspring :

39

Figure 9 An illustration of Position-based Crossover

Inversion Mutation

This operator randomly selects two positions on an individual and then inverts the substring

between these two positions. It is illustrated in Figure 10.

Figure 10 An illustration of Inversion Mutation

7 3 9 6 2 4 5 1 8

7 3 9 6 1 4 5 2 8

6 8 3 9 1 5 7 2 4

Parent 1 :

Parent 2 :

Offspring :

inverted substring

7 3 9 2 5 4 6 1 8 Parent :

8 1 9 2 5 4 6 3 7 Offspring :

selected substring

40

Insertion Mutation and Swap Mutation

Insertion mutation selects an element at random and inserts it in a random position as

illustrated in Figure 11. Swap mutation randomly selects two elements and swaps the

elements on the position as illustrated in Figure 12.

Figure 11 An illustration of Insertion Mutation

Figure 12 An illustration of Swap Mutation

7 3 9 2 5 4 6 1 8 Parent :

7 6 9 2 5 4 3 1 8 Offspring :

select two elements at random

swap the elements on the positions

7 3 9 2 5 4 6 1 8 Parent :

Offspring : 3 4 9 2 5 6 1 8 7

insert it in a random position

select an element

41

2.5 Related works on RWA

The RWA problem was proven to be NP-complete [13] in 1992. The first heuristic method

was proposed in [13]. Since then, different heuristic methods have been developed.

Reference [12] covers different approaches and variants developed in the 1990s for RWA. A

functional classification of RWA heuristics can be found in [15]. In the literature, the

approaches for solving the RWA problem can be divided into two main categories. One

decomposes the problem into two subproblems, the routing subproblem and wavelength

assignment problem [4, 9, 10, 35, 41] to be solved separately. The other one solves the two

subproblems simultaneously [26, 36, 27, 45].

Bannerjee and Mukherjee [9] employed a multicommodity flow formulation combined

with randomized rounding to calculate the route for each request. After that, the wavelength

assignment subproblem is solved based on the graph-coloring techniques. In which the graph,

called “the conflict graph”, is built with one node corresponding to each request (and its route)

and an edge exists between two nodes if their associated routes share one edge. Reference

[10] also used the two-phase decomposition strategy to solve the RWA problem. First, one or

more candidate routes are determined for each request by the kth-shortest path algorithm.

Then the wavelength assignment problem is tackled by solving an instance of the partitioning

coloring problem (PCP) defined over a partitioned conflict graph. The authors proved that the

decision version of PCP is NP-complete, and proposed six heuristic methods for solving PCP.

In [35], the same decomposition scheme was employed, but new algorithms for each phase

were proposed. In the routing phase, candidate routes are precomputed by an

edge-disjoint-paths based approach. That is, several edge disjoint paths are precomputed as

42

path candidates for each request. Next, a Tabu-search for solving PCP was proposed to solve

the wavelength assignment problem. The initial feasible solution of PCP is provided by one

of the six methods provided in [10], then a Tabu-search attempts to improve the solution by

removing one color. The computational results indicated that the proposed Tabu search

outperforms the best heuristic for PCP.

Generally speaking, the routing problem may be solved by using a shortest-path

algorithm, an EDP-based algorithm, or a combinatorial optimization algorithm [15]. The first

two types are sequential algorithms, while the last one tales a combinatorial approach.

Consequently, the wavelength assignment problem can be handled by a sequential or

combinatorial approach. The sequential approach sorts routes according to different schemes.

For example, routes can be sorted in descending order of their lengths. Then a wavelength is

assigned to the sorted routes. For the combinatorial approach, a number of heuristic methods

based on well-known graph coloring methods have been proposed.

Although dividing RWA into two subproblems allows the use of existing algorithms,

good solutions for each subproblem do not guarantee a good solution to the RWA problem.

Hence some algorithms treat the RWA problem as an integral problem. The first such

heuristic method called Greedy-EDP-RWA was developed in [27]. It employs the solution

technique in [14] to solve the maximum edge-disjoint paths problem. Compared with the one

in [9], Greedy-EDP-RWA was reported to run much faster to reach an equally good solution.

The state-of-art heuristic for RWA was proposed in [26]. The author adapted some ideas

from bin-packing heuristics to the RWA problem by considering each connection request as

an item and copies of the original graph as bins. The weight of an item is set to be the number

43

of links in routing a request. To say that a bin does not have enough capacity for two items is

equivalent to saying that two requests cannot be routed on the same copy of the original

graph with edge-disjoint paths. Four bin-packing based heuristics were proposed in [26]: (i)

first fit heuristic (FF-RWA), (ii) best fit heuristic (BF-RWA), (iii) first fit decreasing heuristic

(FFD-RWA) and (iv) best fit decreasing heuristic (BFD-RWA). Computational results

showed that FFD-RWA and BFD-RWA both outperform Greed-EDP-RWA [27]. Detailed

descriptions of the bin-packing based algorithms will be provided later.

In [34], BFD-RWA is embedded into a biased random-key genetic algorithm. A

chromosome is a vector of real numbers in the interval [0, 1]. Each gene is associated with a

connection request. The requests are sorted in a non-decreasing order in terms of the sum of

their lengths and genes before BFD is applied. Computational results indicate that better

solutions can be found than those obtained by a multistart variant of BFD in less time on

average. In recent years, other soft computing techniques such as the particle swarm

optimization (PSO) [4], artificial bee colony (ABC) [44] and memetic algorithm [36] were

applied to solve the RWA problem. For the PSO and ABC algorithms, several route

candidates are precomputed for each request using the kth-shortest paths algorithm. A

particle or a population of bees represents a set of route IDs. Each ID represents a route

which connects the corresponding connection request. During the search process, the route

IDs are recombined according to different evolutionary scheme. Then a bin-packing based

method is used to solve the wavelength assignment problem.

Different local search approaches were proposed in [36] and [7]. Both references

construct the initial solution by BFD-RWA [26]. In [7], a variable neighborhood descent

44

(VND) and an iterated local search (ILS) were developed. The experimental results showed

that VND-ILS is able to improve the solution quality significantly. In [36], a memetic

algorithm which includes the ILS, mutation, and recombination operators was proposed. In

addition, a multilevel algorithm was applied to address large size instances. The results

showed that this method can be considered as the most sophisticated heuristic algorithm

known in the literature.

2.6 Particle swarm optimization for RWA

2.6.1 Introduction of PSO

Particle Swarm Optimization (PSO) is an evolutionary and population based optimization

algorithm, which was developed by Kennedy and Eberhart in 1995 [28]. It was inspired by

the simulation of social behavior, such as bird flocking and fish schooling to find food

sources. Swarm optimization takes advantages of the cooperation between individuals. In

PSO, each member of the swarm is called a particle (or an individual), which utilizes two

pieces of important information in a decision process. The first is their own experience; that

is, the best position and its fitness value they have experienced so far. The second is other

individuals’ experience; that is, they have knowledge of how their neighbor individuals

perform. Namely, they know the best position and its fitness value their neighbors have found

so far.

The PSO algorithm initially places a number of particles in the search space randomly.

Each particle evaluates its current location, and then determines its movement through the

search space by combining its own current and best-fitness locations with those of one or

45

more members of the swarm, with some random perturbations. Specifically, the velocity of

each particle is iteratively adjusted according to the best position visited by itself so far

(denoted by) and the best position obtained so far by any particle among the

neighbors of the particle (denoted by). Then the next iteration starts after all particles

have been moved. The swarm eventually is likely to move close to an optimum location

(food source). The pseudocode of PSO is given as below.

Particle swarm optimization

Begin:

1. Random initialization of the whole swarm;

2. Repeat

3. Evaluate each particle;

4. Update the current best (and) positions;

5. For each particle

6. Update velocities;

7. Move to the new position;

8. End for

9. Until Stopping criteria

End

Let , , and
 denote the previous best, global best, and current position of

particle , respectively. The velocity
 , is updated according to the following equations

(the superscripts denote the iteration):

 (2.3)

 (2.4)

46

where , and is the population size. The parameter is the inertia weight,

which controls the impact of the previous velocity. The parameters and are two

positive constants, where is the cognitive learning factor that represents the attraction

toward the best position it had searched so far; and is the social learning factor that

represents the attraction that a particle has toward the success of its neighbors. Two random

numbers and are uniformly distributed in the range . Equation (2.3) determines

the th particle’s new velocity
 , while (2.4) moves the particle to the new position

 by adding the new velocity to the current position

 . Figure 13 shows the description

of the velocity and position updates of a particle in a two-dimensional space.

Figure 13 The velocity and position updates of a particle in a two-dimensional space

2.6.2 PSO for RWA

A PSO technique for solving RWA was proposed in [4]. In order to apply PSO for solving the

RWA problem, the general PSO equations are modified so that PSO can be mapped for RWA.

The velocity of movement is either influenced according to the global best or local best

47

position, but not both at the same time. The equations are as follow:

 (2.5)

 (2.6)

where , and is the population size. The parameter is either 0 or 1; and

 are social learning parameters (here we let =), and represent the global

best position and local best position, respectively.

In the PSO for RWA, the position and velocity of a particle is represented as vectors of

route ids. Before the PSO starts, a k-shortest paths algorithm is used to produce several path

candidates for each of the connection requests. Each path is identified by a given unique

route-id. The particle and its velocity are represented as 1-by- vectors of route ids. Each

particle is attached with an edge usage table which shows the edge usage in terms of routes

traversing over an edge in the network. This table helps determine which edges of the

network will be overloaded if the routes of the current particle are chosen.

In the PSO for RWA, velocity is also a vector of route-ids that will be replaced in the

current particle according to the global or local best particle. The minus operator is redefined

as follows:
 denotes the different routes between the gbest and the current

particle. Similarly,
 represents the routes that are different in the lbest and the

current particle. Two social learning parameters and determine the number of routes

that will be replaced. The parameter is used to determine whether the new velocity is

affected by the global best or local best particle, but not both in a single iteration for a

48

particle.

The add operator in equation (2.6) is redefined: the application of velocity
 to the

particle
 means the routes in

 will replace the corresponding routes in
 . The

particle will move to the next position
 which represents a new candidate solution to

the problem.

Equation (2.7) is used to quantify the quality of the solution represented by each particle

of the swarm in terms of their fitness value.

(2.7)

where is the average path length and is the number of wavelengths required to

satisfy all requests. The value of is obtained by calculating the number of edge

disjoint path sets among the predetermined paths. The pseudocode of PSO algorithm for

RWA is given below.

Particle swarm optimization for RWA

Begin:

1. For each connection request, randomly select a route from the k-shortest paths.

2. Repeat

3. Evaluate each particle;

4. Update the current best (gbest and lbest) positions;

5. For each particle

6. Find the differences routes between the current best particles;

7. Among the route set, find a given number of routes that traverse the most

congested edges;

8. Replace those routes in the current particles;

9. End for

10. Until Stopping criteria

49

End

In addition, some strategies are proposed to improve searching ability: First, while

applying velocity to a current particle, the routes that traverse the most congested edges of

the network should be selected. Second, instead of replacing the route by the route of gbest

(lbest), replace it with an alternative route from gbest (lbest). We refer readers to [4] for the

detailed descriptions about the strategies.

2.7 BIN-packing based methods for RWA

The bin packing problem is a classical combinatorial optimization problem that has been

widely studied in the literature. Given is a list of items of various sizes, and identical bins

with a limited capacity. To solve the problem, it is necessary to pack these items into the

minimum number of bins, without violating the capacity constraints. Four classical

algorithms for the bin packing problem are the First Fit (FF), Best Fit (BF), First Fit

Decreasing (FFD) and Best Fit Decreasing (BFD) algorithms. The FF algorithm packs each

item into the bin with the lowest index. On the other hand, the BF algorithm packs each item

into the bin which leaves the least room left over after packing the item. The FFD and BFD

algorithm first place larger items into bins and then fill up remaining space with smaller

items.

To apply bin-packing methods to solve the RWA problem, we must define bins, items,

and their corresponding size in terms of optical networks. Skorin-Kapov of [26] considered

using lightpath requests to represent items and using duplicates of graph to represent bins.

50

Each copy of , i.e., corresponds to one wavelength. Let the size of each

lightpath be represented by the length of its shortest path in graph . To solve the

RWA problem, we wish to pack as many items (lightpaths) into a minimum number of bins

(copies of), and hence the number of used wavelengths is minimized.

The FF algorithm runs as follows. Fisrt, only one copy of , bin , is created. Higher

indexed bins are created as needed. Lightpath requests are selected and routed on the lowest

indexed copy of if the length of the shortest path on such graph is less than the threshold

 , which is set to be as suggested in [27]. If a lightpath is routed in

bin , the lightpath is assigned wavelength and the edges along such path are removed

from . A new bin is created if no existing bin can accommodate the request. On the other

hand, the FFD sorts the requests in a nonincreasing order in terms of the lengths of their

shortest paths in . The motivation is that, the connection request with the longest shortest

path is usually harder to route. Therefore the strategy of considering these requests first then

filling up the remaining space with the requests having the shortest routes may lead to fewer

wavelengths used. The pseudocode of FF and FFD algorithms are shown as below.

Algorithm 6 FF_RWA (FFD_RWA) algorithm

Input:

 ;

 ;

 ;

Begin:

1. (ONLY FOR FFD_RWA: sort demands in a non-increasing order in terms of the lengths

of their shortest paths in)

2. ;

51

3. Create ;

4. ;

5. For to

6. ;

7. For to

8. Find shortest path

 for in ;

9. If

 then

10.

;

11. ;

12. Remove edges in from ;

13. Break;

14. End if

15. End for

16. If then

17. ;

18. Create ;

19. ;

20. Find shortest path
 for in ;

21.
 ;

22. ;

23. Remove edges in from ;

24. End if

25. ;

26. ;

27. End for

End

Output: and

The Best Fit bin packing algorithm routes requests in the bin which they fit “best”. The

best bin is considered to be the one in which the request can be routed on the shortest path. In

other words, assume there are existing bins, bin is the best bin for lightpath request

if and only if

 , where

 denotes the shortest path of request in

 . The pseudocode of BF and BFD algorithm are shown as follows.

52

Algorithm 7 BF_RWA (BFD_RWA) algorithm

Input:

 ;

 ;

 ;

Begin:

1. (ONLY FOR BFD_RWA: sort demands in a non-increasing order in terms of the

lengths of their shortest paths in)

2. ;

3. Create ;

4. ;

5. For to

6. , ;

7. ;

8. For to

9. Find shortest path

 for in ;

10. If

 and

 then

11.

;

12. ;

13. ;

14. End if

15. End for

16. If then

17. Remove edges in from ;

18. else

19. ;

20. Create ;

21. ;

22. Find shortest path
 for in ;

23.
 ;

24. ;

25. Remove edges in from ;

26. End if

27. ;

28. ;

53

29. End for

End

Output: and

2.8 Known lower bounds

Since the known algorithms for the RWA problem are heuristics, it is useful to have a good

lower bound in order to assess the quality of suboptimal solutions. Finding good lower

bounds is not trivia. The task may still be time-consuming. Different approaches have been

developed to determine lower bounds. We can either estimate a lower bound according to the

problem instance’s properties, or relax constraints of the problem formulation to solve an

easier problem. Usually, estimations are easily available but are often far below the optimal

solution. Lower bounds obtained by relaxation can be tighter, but at the cost of computational

time.

For simplicity, we only introduce an easy lower bound for the RWA problem using the

estimation approach provided in [26] as below.

 (2.8)

where is the logical degree of node , i.e., the number of requests in which node

is the source node; represents the physical degree of node ; is the length of

the shortest path in of request (. The lower bound has two elements. The first one

represents the maximum ratio of logical to physical degree of any node in , rounded up to

the first higher integer. If a node has adjacent edges and is one of the endpoints

for requests, at least one physical link will have

 requests routed over it.

54

Therefore a number of

 wavelengths are required due to the wavelength clash

constraint. The second component of (2.8) is the distance (assume each edge has one unit of

cost) of each request’s shortest path divided by the number of edges available in the graph.

Two other lower bounds were proposed in [5, 36]. In [36], the lower bound is obtained

by relaxing the wavelength continuity constraint, thus the RWA becomes a multicommodity

flow problem, where each request is a unique commodity with one unit of demand. The

commodity need to be routed through the problem instance’s network . The other lower

bound introduce in [5] also relaxes the wavelength continuity constraint and translates the

problem into a maximum cut problem. Both are more sophisticated methods to obtain

stronger lower bounds than the one provided in (2.8), but they are not applicable for large

instances due to their prohibitive computation time.

55

Chapter 3 Proposed genetic algorithm for MEDP

In this chapter, we propose a genetic algorithm for solving the maximum edge-disjoint paths

problem. A typical genetic algorithm has four basic components: (i) a genetic representation,

(ii) a method to find an initial solution, (iii) an evaluation function in terms of the fitness of

an individual and (iv) genetic operators that produce offspring. A good genetic representation

is a key issue while using the genetic algorithm. Here we adopt the priority-based encoding

method to represent a path by an vector, in which each element is a real value in

 . Each individual includes paths with such representation method. Throughout the rest

of the chapter, we will use the terms “individual,’’ “solution,’’ and “chromosome’’

interchangeably.

In Section 3.1, we discuss how to transform MEDP with pre-determined paths into a

maximum independent set (MIS) problem. A greedy algorithm for solving MIS can be

applied to extract the edge-disjoint paths from a set of given paths. In Section 3.2, the

encoding/decoding procedures are given. A simple heuristic is proposed to generate the initial

population in Section 3.3. The genetic operators are described and some small examples are

provided in Section 3.4. In Section 3.5, we present a simple heuristic to improve the solution

after evaluating the offspring. Finally, the evaluation and selection mechanisms are given in

Sections 3.6 and 3.7, respectively.

56

3.1 MEDP with pre-determined paths

The objective of MEDP is to maximize the realizable connection requests through

edge-disjoint paths. Two questions arise naturally:

1. How to construct the path between two terminals of a connection request?

2. If the paths are known, how to decide whether a request should be accepted or rejected?

Most of the existing methods are greedy algorithms which usually apply the shortest

path algorithm to construct the path, then remove all edges along that path from the graph.

Therefore the second question is not relevant. Since greedy algorithms build the paths one by

one corresponding to a given order of the connection requests, the quality of the solution

depends heavily on the given order. In our work, instead of removing edges from the graph

after a path is built, we begin with relaxing the edge-disjoint constraint and assigning a path

to every request, then obtain the maximum number of EDPs among all of these paths.

Here we describe a key idea of the proposed approach. Given an undirected graph

and a set of connection requests . A set of paths

 } is also given (these paths are not necessarily edge-disjoint), where each

path connects the terminal pair). How do we find the maximum number of

edge-disjoint paths from ? A conflict graph is built with each node

corresponding to a connection request in the original MEDP. Hence . And

there is an edge between two nodes if the two paths and have some edges

in common in . In this way, solving MEDP with pre-determined paths is equivalent to

finding a so-called “maximum independent set (MIS)” on .

57

In graph theory, we call a set of nodes an independent set in a graph, if there are no two

of which are adjacent. A maximum independent set (MIS) is the largest independent set for a

given graph. Finding an MIS in a graph is a well-known NP-complete problem. Two greedy

algorithms, GMIN and GMAX, have been investigated in [32]. GMIN selects a vertex of the

minimum degree and removes it and its neighbors from the graph. This process is iterated on

the remaining graph until no vertex remains. The set of selected vertices then form an

independent set. In contrast, GMAX deletes a vertex of the maximum degree until no edges

remain. In this case, the set of remaining vertices is an independent set. In our proposed

method, GMIN is applied to find the MIS on since it can achieve a better lower bound

than GMAX [32].

3.2 Encoding/Decoding procedures

Representing paths in a graph is critical for developing a genetic algorithm for MEDP.

Different methods for encoding a path on a graph were reviewed in Section 2.4.1. The

priority-based encodings method uses a fixed-length code to represent a path. Although

several encodings may correspond to the same path (-to-1 mapping), priority-based

encoding has some good characteristics compared to other methods (see Table 1). Thus we

adopt this scheme to represent a path. The priority values are assigned in the interval .

A solution of MEDP involves several paths, which means that an individual needs to

carry the information of these paths. Each individual contains vectors, with each vector

has elements (or priority values) representing the specific path corresponding to the

connection request . Let

 denote the th vector of individual ,

58

Figure 14 shows the structure of the chromosomes. Each individual , denoted by , is

a collection of vectors

 , where

 is a vector of priority values

representing the path that connects .

Figure 14 The structure of a chromosome

Algorithm 8 describes the details of the decoding procedures. Basically, decoding is a

procedure of path construction. At the beginning, the path only contains the source node

 . The current node, denoted by , is set to be . All the unlabeled and neighbor nodes of

 r, which are the candidates for the next move, are denoted by . If is not empty, the

node with the greatest priority value in is added into and becomes the current node.

The label of the current node is set to be 1. If is empty, the path backtracks by setting the

second last node in to be the current node and removing the last node of . The path

construction procedure stops when the path reaches the destination node (). If two or

more nodes have the same priority, choose the one with the smallest node index to break the

tie. For example, if nodes 1, 3, 7 have the same priority values, then node 1 is chosen to be

the next node

59

Algorithm 8 Decoding Procedure

Input: a vector denoting a path from to ,

source ,

sink ,

 is a set of nodes adjacent to node .

Begin:

1. , , , ;

2. while

3. ;

4. if then

5. ;

6. ;

7. ;

8. ;

9. else

10. ;

11. ;

12. ;

13. end if

14. end while

End

Output: a path between and

Algorithm 9 shows the pseudocode of the encoding procedure. Given a node sequence ,

the encoding procedure generates a priority vector . Starting from ,

the element
 is assigned the priority value

. Thus the starting node will have the

highest priority, and the second node in will be assigned the second highest priority, and

so on. For the nodes that are not in the path, their priority values are randomly generated

within the range [0,

). In this way any of the nodes in has higher priority than those

60

that are not. For instance, the encoding procedure of the path on a graph with 9

nodes is as follows: For nodes 1, 2, 5, 8, 9, their priority values are

,

,

,

,

, respectively. For the nodes not in the path (nodes 3, 4,

6 and 7), their priority values are randomly drawn from

 . A code representing the path

can be .

Algorithm 9 Encoding Procedure

Input: a node sequence denoting a path,

 is the number of nodes in the graph.

Begin

1. .

2. for =1 to

3. if
 then

4.

 ;

5. end if

6. end for

7. ;

8. for

9.

 ;

10. end for

End

Output: encoded path

As described in the previous section, the paths in an individual are not necessarily

edge-disjoint. Once the paths are determined, an path relation matrix can be

generated, where if path and share the same edge; otherwise . A

simple heuristic GMIN is applied for obtaining the paths that are actually edge-disjoint. At

61

each iteration, the request that has the least number of interfering requests is accepted (two

requests interfere if their paths have an edge in common). Then the request and all the

interfering requests are removed from the request list. Repeat the iteration until the request

list is empty. The detail of GMIN is described in Algorithm 10, where is a set of request

indices, and is the set of indices of the requests interfering with request .

Algorithm 10 GMIN for MEDP

Input: is a x matrix.

Begin:

1. , , ;

2. while

3.

4.

5.

6. ;

7. ;

8. set the column and row of to zeros, ;

9. end while

End

Output: a realizable set

3.3 Initial population

The initial priority values of all the individuals are generated randomly by drawing values

from . A total of individuals are further modified by a heuristic method. The heuristic

method works as follows. First, the shortest path distance is calculated (letting the

distance of each edge be one) for each request . The connection requests is sorted in an

ascending order of distance and the sorted permutation is denoted by . The corresponding

62

connection request is denoted by . Considering the permuted request set , a realizable

request set and its corresponding edge-disjoint paths can be obtained by applying the Simple

Greedy Algorithm (SGA) as described Algorithm 1 in Section 2.3.2. We then encoded these

edge disjoint paths as the first individual.

More individuals can be initialized by exchanging the order of two requests in and

then run another SGA to obtain a new realizable set of requests and the corresponding

edge-disjoint path. To avoid swapping the request that has the “longest” shortest path with

the one has the “shortest” shortest path, which is very likely to generate a worse solution, we

cut in half and forbid the swap operation taking place between different halves. Figure 15

illustrates the swap operation. The pseudocode of initialization heuristic is given in

Algorithm 11. We denote individual as

 , where

 is a

priority vector denoting a path for the request .

Figure 15 Swap operation generates a new initial individual

swap

Request 1 has the “shortest” shortest path. Request has the “longest” shortest path.

63

Algorithm 11 Initialization Heuristic

Input:

 is the number of individuals generated by this heuristic;

Begin:

1. ;

2. (1,2…,);

3. for

4. ;

5. end for

6.

 SortRequest(,);

7.

 ;

8. ;

9. ;

10. while

11.

12.
 ;

13. ;

14. ;

15. ;

16. end while

End

Output: initial individuals , ,…,

3.4 Genetic operators

Genetic operators mimic the process of heredity of genes to create the offspring. Using

different operators may cause a great impact on GA performance. In Section 2.4.2, we

examined several operators for priority-based representation. In general, permutation

representation may yield illegal offspring by using the two-point or multi-point crossover

because some priority values may be missed or duplicated. Therefore, a repairing procedure

64

is required when these approaches are applied. Here we use the real-valued priorities. Since

most of the individuals are randomly generated, any two priority values are unlikely to be the

same. Consequently, the repairing process is unnecessary. Three genetic operators are

introduced as follows.

3.4.1 Crossover Operator

The crossover operator generates one offspring by the weighted linear combination of parents.

The parents are chosen by roulette-wheel and the weight is randomly generated. The essence

of this operator is blind random search, hence there is no guarantee that the offspring

generated by this method is better than its parent.

We use a simple example of a 3x4 mesh graph with the connection requests

 to illustrate the process. The path set represented by the first individual

 is shown in Figure 16, in which
 ,

 denote the first individual’s priority

vectors for the two requests. The bold line and the dashed line denote the paths decoded from

 and

 , which correspond to the first and second requests, respectively. Figure 17 shows

the path set of the second individual

 . We can see that the number of EDPs of

individuals 1 and 2 are both one. Figure 18 is the path set represented by the offspring

generated by letting

 with .

Luckily, the number of EDPs is increased by one.

65

Figure 16 Chromosome 1 and its representative path set

Figure 17 Chromosome 2 and its representative path set

1 2 3

5 6 7

9 10 11

4

8

12

1 2 3 4 5 6 7 8 9 10 11 12

0.31 0.92 0.30 0.22 0.13 0.80 0.74 0.63 0.15 0.21 0.43 0.50

0.51 0.48 0.73 0.68 0.41 0.90 0.82 0.43 0.30 0.33 0.21 0.10

1 2 3 4 5 6 7 8 9 10 11 12

0.13 0.42 0.33 0.20 0.94 0.9 0.81 0.59 0.57 0.40 0.73 0.62

0.32 0.40 0.52 0.68 0.44 0.10 0.87 0.71 0.23 0.11 0.94 0.80

1 2 3

5 6 7

9 10 11

4

8

12

66

Figure 18 The offspring and its representative path set

3.4.2 Mutation Operator

The mutation operator generates one offspring from an individual. In some sense, the priority

value of a node represents the “preference’’ of a node while we are building the path. The

offspring generated by the mutation operator (denoted by) has the same priority vectors

as its parent, except for a randomly picked vector
 is mutated by letting

,

where is an vector of 1s, is the parent individual and is an integer randomly

draw from . The mutation operator can be stated as follow:

 , for (3.1)

1 2 3 4 5 6 7 8 9 10 11 12

0.22 0.67 0.315 0.21 0.535 0.85 0.775 0.61 0.36 0.305 0.58 0.56

0.415 0.44 0.625 0.68 0.425 0.50 0.845 0.57 0.265 0.22 0.575 0.45

1 2 3

5 6 7

9 10 11

4

8

12

67

For instance, mutating
 in Figure 16 gives a new priority vector

 as follows.

 and

 .

The new offspring is shown in Figure 19, the path decoded from
 is in bold line.

Obviously, two edge-disjoint paths can be found now.

Figure 19 The offspring generated by mutation operator

3.4.3 Self-Adaption Operator

The self-adaption operator generates one offspring from a randomly selected individual.

Similar to the mutation operator, it randomly selects and reroutes a rejected request , where

 , by assigning new priority values to
 . The priority vectors for other

1 2 3

5 6 7

9 10 11

4

8

12

1 2 3 4 5 6 7 8 9 10 11 12

0.69 0.08 0.70 0.78 0.87 0.20 0.26 0.37 0.85 0.79 0.57 0.50

0.51 0.48 0.73 0.68 0.41 0.90 0.82 0.43 0.30 0.33 0.21 0.10

68

requests stay the same as its ancestor. Two factors are taken into consideration in order to

construct a better solution: First, a longer path (assume that the distance of each edge is 1) is

less preferred because its “intersection” with other paths carries a higher probablility. The

all-pairs shortest distance matrix obtained at the initialization stage provides useful

information for this priority adjustment.

Second, if we want to reroute a path, the new path better not include an occupied edge

(which is already taken by other paths). In other words, we want this new path to be

composed by the edges that are seldom used. However, edge preferences are hard to

manipulate since the chromosome is encoded as node priorities. An alternative way to serve

the purpose is to assign a higher priority value to a node, which is adjacent to more available

edges.

To apply the self-adaption operator, the all-pairs shortest path matrix , the

incidence matrix and the indicator vector obtained in the evaluation

process are required. We define as follows:

The new priority vector
 in block is determined by a weighted average of

distance and usage factors:

 (3.3)

 (3.4)

 (3.5)

 (3.6)

 , for (3.2)

69

Here we use the maximum norm to control the priority

value in the interval . In (3.3), is a vector representing the number of

available adjacent edges of each node. In (3.4), denotes the
 row of . We subtract

the one-to-all (node to all nodes) shortest distance value from the maximum value of .

In (3.5), the weighted average of two factors is assigned to
 . Equation (3.6) normalizes

the
 to [0,1] and assigns it to

 .

Take the individual in Figure 16 as example. If we apply the operator to the second

request, that is, , we have

Figure 20 illustrates the paths represented by the new individual. We can see that the

self-adaption operator reroutes the second request to a better path (in dash line).

70

Figure 20 The offspring generated by self-adaption operator

3.5 Improvement heuristics

Researchers have shown that local improvement heuristics add a great deal of benefit to GA.

In our algorithm, the proposed heuristics are performed after an offspring is evaluated. In the

evaluation process, an individual is decoded into paths. Then GMIN is performed to

acquire the maximum number of EDPs and a realizable set . A residual graph, denoted by

 , which is the graph after removing all edges involved with the EDPs from the original

graph , is obtained. Note that in the residual graph , there may exist some paths which

can connect some of the rejected requests. The purpose of the improvement procedure is to

find some new paths for the unrealizable connection requests in . If such paths can be

found, they must be edge-disjoint to all other paths in since the routes are build in . The

1 2 3 4 5 6 7 8 9 10 11 12

0.31 0.92 0.30 0.22 0.13 0.80 0.74 0.63 0.15 0.21 0.43 0.50

0.41 0.52 1 0.93 0.67 0.59 0.70 0.63 0.37 0.67 0.78 0.52

1 2 3

5 6 7

9 10 11

4

8

12

71

new paths are then encoded to the offspring and the solution is improved. The pseudocode of

the improvement heuristic is shown in Algorithm 12.

Algorithm 12 Improvement Heuristics

Input: is the residual graph,

 is the unrealizable set,

 is the connection requests

Begin:

1. if >0

2. for

3. PathConstruction(

);

4. if exists

5.
 ;

6. Encode
 to the offspring;

7. Remove edges in
 from ;

8. end if

9. end for

10. end if

End

Output: an improved offspring

The function PathConstruction, which constructs a path between the endpoints of the

unrealizable request

 , is similar to Algorithm 8. The only difference is that, instead

of moving to the node with the highest priority, it selects the node with the smallest index as

the succeeding node.

An example of employing this heuristic is shown in Figure 21, Figure 22 and Figure 23.

An instance of a 3x4 mesh graph with given connection requests

and some pre-determined paths are illustrated in Figure 21. In Figure 22, two EDPs are

obtained by applying GMIN. The unrealizable request can be reconnected by using the

72

subroutine PathConstruction. A new path (9, 5, 1, 2, 3) is found as shown in the dotted lines

in Figure 23. The new path is then encoded and the improved offspring has three EDPs now.

Figure 21 Three paths of corresponding requests

Figure 22 Two EDPs found by GMIN

1 2 3

5 6 7

9 10 11

4

8

12

1 2 3

5 6 7

9 10 11

4

8

12

73

Figure 23 A new EDP found by the improvement heuristics

3.6 Fitness function and evaluation

Let denote a set of edge disjoint paths extracted from a path set } by

GMIN. The path set represents the paths decoded from an individual

 . The fitness function is similar to the bicriteria scheme in Section 2.3.3,

where the first objective is the number of EDPs and the second criterion

measures the usage of edges that are traversed by more than one path.

 ,

The second criterion measures the degree of “non-disjointness” of an individual. If all

paths in are edge-disjoint, is zero. In general, increases while paths in

have more edges in common. A comparison operator is defined as follows. For the

two path sets
 and

 , which are decoded from two individuals and , respectively,

we say that if and only if

1 2 3

5 6 7

9 10 11

4

8

12

74

 ,

 or

 .

3.7 Population management and selection method

Two issues are worth mentioning regarding the population management. First, duplicate

individuals are forbidden. Two individuals are considered identical if the decoded solutions

are identical (i.e., the decoded paths are the same, but not the priority values). Each time a

new individual is generated, it is compared to the individuals in the population; if there

already exists the same individual, the new individual is discarded and another individual is

generated. The duplicate-checking is performed after the improvement heuristic (Algorithm

12) is executed.

The second issue iWith individuals generated in each generation, let and

represent the number of individuals generated by the mutation and crossover operators,

respectively. To avoid being trapped in local solutions, we let and vary as follows:

 round(

 ,

 ,

where , are parameters that indicate the minimum and maximum number

of the individuals generated by the mutation operator in each generation. The quantity

denotes the number of consecutive iterations that the algorithm has failed to improve the

best-known solution. The quantity is the maximum tolerable iteration, the

algorithm terminates when .

For the selection method, we apply the selection method which picks the best

75

 individuals from the parents and individuals from the offspring. Many researchers

prefer to use this method to deal with combinatorial optimization problems. Note that the

duplicate-checking is also adopted to prevent the selection of identical individuals.

3.8 Summary

Putting together all procedures designed in Sections 3.2 to Section 3.7, we now have a

proposed GA based algorithm for solving the maximum edge-disjoint paths problem. Each

connection request is assigned a path and each path is encoded into an -element vector by

the priority-based encoding scheme. An individual is composed of such vectors, in which

the th vector represents the path connecting . A heuristic called GMIN is employed

to solve a MIS problem to obtain the edge-disjoint paths among the paths. For the

reproduction procedure, three genetic operators were proposed to produce offspring by

manipulating the priority values of one or two individuals. The self-adaption operator

reroutes the path according to two factors: distance and edge usage rate. The main idea is that,

a node which is closer to the terminal point and adjacent to more unused edges is more likely

to have higher priority. Moreover, a heuristic method is proposed to further improve the

quality of solution.

76

Chapter 4 Computational results

In this chapter, we intend to investigate the performance of the proposed genetic algorithm.

In order to achieve this goal, we apply the proposed algorithm to various instances with

different network structure and connection requests. The design of experiment is presented in

Section 4.1. Features of the testing instances and the way to conduct experiments are outlined

in Section 4.2. We also compare the proposed algorithm with the random search method,

greedy algorithms and ant colony optimization in Section 4.3. Concluding remarks are made

in Section 4.4.

4.1 Design of experiment

An instance of MEDP consists of a graph and a set of connection requests . To compare

the proposed GA approach with the existing algorithms, we considered seven graphs

representing different networks, in which two of them are parts of real telecommunication

networks and others are randomly generated. The characteristics of these graphs will be

given in the next section. For each graph, we generate different instances with 0.10 ,

0.25 and 0.40 requests, separately. Consequently, we have 3 instances for each graph

and 21 instances in total. We applied each algorithm on every instance for 30 runs to obtain

the best, worst, mean and standard deviation of the objective values. The average

computational times are also recorded. With this information we can compute confidence

intervals for the objective values obtained by the three algorithms for every instance. For a

given instance, we say that the performance of two algorithms are significantly different if

77

their confidence intervals do not overlap.

GA is a stochastic optimizer since it involves some random factors during the search

process. Hence the first thing we want to know is that whether our GA procedure performs

better than the pure random search. The result is presented in Section 4.3.1. Secondly, we

would like compare the performance of GA with state-of-the-art optimization algorithms for

MEDP. Here we choose the multi-start simple greedy algorithm and ACO as described in

Sections 2.3.2 and 2.3.3, respectively.

4.2 Problem generation and computational experiments

A set of benchmark instances for MEDP was given in [23]. Seven graphs are considered

in our experiment. The first two graphs, graph3 and graph4, were created by researchers of

the Computational Optimization & Graph Algorithm group at the Technische Universität

Berlin. The structures of these two graphs are from the communication network of the

Deutsche Telekom AG in Germany. The other three graphs, AS-BA.R-Wax.v100e190,

AS-BA.R-Wax.v100e217 and bl-wr2-wht2.10-50.rand1, are generated with the network

generator BRITE. In addition, 2 mesh graphs composed of mesh10x10, mesh15x15 are also

included. The main features and quantitative measures are shown in Table 2. We refer to [23]

for the parameters used for the generation of the network topologies using BRITE.

78

Table 2 Main quantitative measures of the instances

Graph Min. Avg. Max. Diameter

graph3 164 370 1 4.51 13 16

graph4 434 981 1 4.52 20 22

AS-BA.R-Wax.v100e190 100 190 2 3.80 7 11

AS-BA.R-Wax.v100e217 100 217 2 4.34 8 13

bl-wr2-wht2.10-50.rand1 500 1020 2 4.08 13 23

mesh10x10 100 180 2 3.60 4 18

mesh15x15 225 420 2 3.73 4 28

(Min., Avg. and Max. denote the minimum, average and maximum degree, respectively)

All the algorithms in our experiment were implemented in MATLAB. The experiments

have been conducted on a PC with Intel® Core i7 CPU @1.6GHz and 4 Gb of memory

running the Windows 7 operating system. All the algorithms were implemented on the same

data structures. Information about the shortest paths in the respective graphs is provided to all

of them as input. Notice that the greedy algorithms need to partially recompute this

information iteratively in the solution construction process, but this work is not necessary for

GA and ACO approaches.

4.3 Experimental results

In this section, we report and analyze the computational results. In the first section, the

performance of the pure random search vs. GA is given in Section 4.3.1. Section 4.3.2

provides the computational results of SGA, MSGA and the proposed GA. We can observe the

clear advantages of the proposed GA over the other two greedy algorithms. Section 4.3.3

shows the experimental results of ACO. The confidence intervals of the solution quality

79

obtained by MSGA, ACO and the proposed GA are plotted for comparisons.

4.3.1 Random search vs. GA

The comparison between the proposed GA method and a purely random search method is

given in this section. Note that the initial population of GA is randomly generated in order to

make a fair comparison. The steps of the random search method are described as follows:

Step 0. Set the current best objective value to 0.

Step 1. Randomly generate 10 solutions.

Step 2. Evaluate the solutions.

Step 3. Update the current best solution if there is any improvement.

Step 4. Stop if the termination conditions are met. Otherwise repeat Steps 1 to 3.

As described in Chapter 3, the proposed GA method generates 10 offspring in each

iteration and terminates when no improvement can be found for several iterations. We

observed that in general, GA terminates in less than 200 iterations. In other words, less than

2000 solutions were investigated in each run of GA. Therefore, we let the random search

algorithm halt after generating 2000 solutions (or 200 iterations). Both algorithms were

executed for 30 times and the mean values and confidence intervals of their solution quality

are stored. The choice of the executing times is because that the number 30 is the boundary

between small and large samples.

Figure 24 and Figure 25 show the evolution of the current best solution generated by the

proposed GA and the random search method on the instances of AS-BA.R-Wax.v100e190

with 40 connection requests and mesh10X10 with 40 requests. The solid line and dash line

are the mean values of the current best solution obtained by GA and the random search

80

during the search process, respectively. The dotted lines above and under the mean values

show the upper and lower bounds of the 95% confidence intervals. The confidence intervals

are calculated

 , where , are the mean and standard deviation of objective

values, respectively.

Some observations can be made from these two figures. At the beginning, two

confidence intervals overlap (since both methods have their initial solutions randomly

generated). The best solution obtained by GA is enhanced rapidly in the next few iterations,

and the progress slows down after 10 iterations but the improvement is still ongoing. From

the two figures, we can see that the proposed GA method has a clear advantage over the

random search algorithm.

81

Figure 24 Evolution of the solution quality obtained by GA and random search on

AS-BA.R-Wax.v100e190 with 40 connection requests (upper and lower dot lines denote the

boundaries of 95% confidence intervals)

8

10

12

14

16

18

20

1

5

9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

ED

P

iteration

AS-BA.R-Wax.v100e190.bb

40 requests

RND_mean GA_mean

82

Figure 25 Evolution of the solution quality obtained by GA and random search on

mesh10X10 with 40 connection requests (upper and lower dot lines denote the boundaries of

95% confidence intervals)

4.3.2 Greedy algorithms vs. GA

The comparison of the greedy algorithms and the proposed Genetic Algorithm is shown

in Table 3. The first column gives the name of the graph tested and the second column shows

the number of connection requests, which are the 10, 25, and 40% of the number of nodes of

the graphs. For the simple greedy algorithm (SGA), the first column shows the number of the

EDPs obtained from the instance and the second column provides the computational time.

For the multi-start simple greedy algorithm (MSGA) and the genetic algorithm with 3 initial

6

8

10

12

14

16

18

20

22

1

5

9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

ED

P

iteration

mesh 10X10

40 requests

RND_mean GA_mean

83

solutions, the first three columns show the maximum, minimum and average value of the

number of EDPs in 30 runs. The 4
th

 and 5
th

 column provide the standard deviation and the

average computational time for each instance. The average value is underlined and in

boldface when the result is the best among the three. The last column shows the values of

 , where and stand for the average value obtained by the proposed GA

and MSGA, respectively.

We observe that MSGA has a clear advantage over SGA. This shows that the order of the

connection requests is crucial in achieving good performance. However, since there is no

obvious way to predetermine a good order, we apply MSGA which permutes the order of the

connection requests in random and run SGA with the new request list. The price we have to

pay for running MSGA is the significantly increased computational time.

Comparing the performance of MSGA vs. the proposed GA, we observe that in generally,

GA obtains better solution quality in less computational time. More specifically, in all 21

instances, GA obtains average values either equal to or better than MSGA. Moreover, in 16

out of 21 instances, GA spent less computational time than MSGA did. In the last column of

Table 3, we can observe that for the same graph, the advantage of the proposed GA is more

distinct when the number of connection requests grows. This phenomenon occurs in

AS-BA.R-Wax.v100e190, graph3, graph4, mesh10X10 and mesh15X15.

84

Table 3 Comparison of the results obtained by SGA, MSGA and proposed GA with 3 initial populations

Graph

Number

of

requests

SGA MSGA GA with 3 initial

 t max min std t max min std t

AS-BA.R-Wax.v100e190 10 8.0 0.8

8 8 8.0 0.0 19.5

8 8 8.0 0.0 10.0 0.0%

AS-BA.R-Wax.v100e190 25 12.0 2

14 13 13.4 0.5 48.6

14 13 13.9 0.3 43.0 3.7%

AS-BA.R-Wax.v100e190 40 16.0 3

20 18 19.1 0.6 76.9

21 20 20.3 0.5 98.1 6.1%

AS-BA.R-Wax.v100e217 10 6.0 0.7

7 6 6.8 0.4 19.5

7 7 7.0 0.0 15.1 2.3%

AS-BA.R-Wax.v100e217 25 9.0 1.8

13 10 11.5 0.6 48.1

13 12 12.6 0.5 54.3 10.0%

AS-BA.R-Wax.v100e217 40 19.0 2.8

22 19 19.9 0.8 77.0

22 21 21.7 0.5 93.0 9.1%

bl-wr2-wht2.10-50.rand1 50 21.0 57.2

25 22 23.7 0.7 1081.0

26 24 25.0 0.8 788.3 5.7%

bl-wr2-wht2.10-50.rand1 125 34.0 121.2

40 36 38.1 0.9 2746.1

43 39 41.5 0.8 1661.4 9.1%

bl-wr2-wht2.10-50.rand1 200 55.0 194.6

57 55 55.1 0.4 4182.0

61 58 60.0 0.8 3592.2 8.9%

graph3 16 15.0 2.3

15 15 15.0 0.0 81.7

15 15 15.0 0.0 32.4 0.0%

graph3 41 32.0 5.7

33 32 32.1 0.3 173.8

33 32 32.2 0.4 92.6 0.3%

graph3 65 29.0 9.2

34 29 32.3 1.1 270.4

39 35 36.4 1.0 152.8 12.9%

graph4 43 42.0 44.8

42 42 42.0 0.0 1210.4

42 42 42.0 0.0 291.0 0.0%

graph4 108 60.0 104.2

68 62 64.6 1.2 3420.5

71 68 69.7 0.9 1093.1 7.9%

graph4 173 73.0 175

75 73 73.1 0.4 5146.1

85 83 84.3 0.7 1664.6 15.2%

mesh10X10 10 10.0 0.6

10 10 10.0 0.0 18.2

10 10 10.0 0.0 11.0 0.0%

85

Table 3 Continued

Graph

Number

of

requests

SGA MSGA GA with 3 initial

 t max min std t max min std t

mesh10X10 25 14.0 1.4

17 15 16.3 0.5 50.2

19 17 17.5 0.6 45.0 7.4%

mesh10X10 40 17.0 2.2

22 18 19.7 0.8 88.3

24 21 22.6 0.8 94.1 14.5%

mesh15X15 23 19.0 6.2

22 19 20.4 0.7 194.1

21 20 20.4 0.5 90.2 0.0%

mesh15X15 57 23.0 14.9

28 26 27.1 0.6 510.2

32 29 30.7 0.7 392.0 13.2%

mesh15X15 90 32.0 22.9 35 32 32.6 0.8 725.4 41 39 39.4 0.6 768.0 20.9%

86

4.3.3 MSGA/ACO vs. GA

The results obtained by MSGA, Ant Colony Optimization (ACO) and the proposed GA are

shown in Table 4. The five columns under each method show the maximum, minimum,

average value, standard deviation and the average computational time of 30 runs, respectively.

The average values are underlined and in boldface when the result is the best among the

three.

Some observations can be made from the results shown in Table 4. First, the solution

quality of the proposed GA obtained in the experiment is comparable with, or in most cases

surpasses, that of the other two algorithms. More in detail, GA achieves the best solution in

18 out of 21 instances, in which GA beats MSGA and ACO in 15 instances. In particular, all

instances on graph4 and mesh15X15 strongly favor the proposed GA over ACO in both

computational time and solution quality. For graph4 with 43 pairs, 108 pairs and 173 pairs,

GA obtains 11.2%, 13.8% and 7% better values than ACO does, respectively. For

mesh15X15 with 23, 57 and 90 pairs, GA performs 14%, 6.3% and 9.0% better than ACO,

respectively. On the other hand, although ACO performs better than GA in the three instances

on graph bl-wr2-wht2.10-50.rand1, the performance differences are small (3.2% in the case

of 50 pairs, 2.2% in the case of 125 pairs and 0.7% in the case of 200 pairs).

87

Table 4 Comparison of the results obtained by MSGA, ACO and the proposed GA with 3 initial populations

Graph

Number

of

requests

MSGA ACO GA with 3 initial

max min std t max min std t max min std t

AS-BA.R-Wax.v100e190 10 8 8 8.0 0.0 19.5

8 8 8.0 0.0 19.1

8 8 8.0 0.0 10.0

AS-BA.R-Wax.v100e190 25 14 13 13.4 0.5 48.6

14 12 13.5 0.6 50.6

14 13 13.9 0.3 43.0

AS-BA.R-Wax.v100e190 40 20 18 19.1 0.6 76.9

21 19 20.0 0.4 69.6

21 20 20.3 0.5 98.1

AS-BA.R-Wax.v100e217 10 7 6 6.8 0.4 19.5

7 6 6.7 0.4 30.2

7 7 7.0 0.0 15.1

AS-BA.R-Wax.v100e217 25 13 10 11.5 0.6 48.1

13 11 11.2 0.5 49.6

13 12 12.6 0.5 54.3

AS-BA.R-Wax.v100e217 40 22 19 19.9 0.8 77.0

22 20 21.2 0.5 73.9

22 21 21.7 0.5 93.0

bl-wr2-wht2.10-50.rand1 50 25 22 23.7 0.7 1081.0

26 25 25.8 0.4 938.0

26 24 25.0 0.8 788.3

bl-wr2-wht2.10-50.rand1 125 40 36 38.1 0.9 2746.1

43 42 42.5 0.5 1802.3

43 39 41.5 0.8 1661.4

bl-wr2-wht2.10-50.rand1 200 57 55 55.1 0.4 4182.0

61 59 60.4 0.7 2753.2

61 58 60.0 0.8 3592.2

graph3 16 15 15 15.0 0.0 81.7

15 15 15.0 0.0 23.8

15 15 15.0 0.0 32.4

graph3 41 33 32 32.1 0.3 173.8

33 28 30.1 1.0 118.7

33 32 32.2 0.4 92.6

graph3 65 34 29 32.3 1.1 270.4

38 33 35.2 1.1 253.4

39 35 36.4 1.0 152.8

graph4 43 42 42 42.0 0.0 1210.4

40 36 37.8 1.2 678.4

42 42 42.0 0.0 291.0

graph4 108 68 62 64.6 1.2 3420.5

63 58 61.3 1.7 2464.0

71 68 69.7 0.9 1093.1

graph4 173 75 73 73.1 0.4 5146.1

82 76 78.8 1.8 4494.2

85 83 84.3 0.7 1664.6

mesh10X10 10 10 10 10.0 0.0 18.2

10 9 9.9 0.3 20.3

10 10 10.0 0.0 11.0

88

Table 4 Continued

Graph

Number

of

requests

MSGA ACO GA with 3 initial

max min std t max min std t max min std t

mesh10X10 25 17 15 16.3 0.5 50.2

19 15 16.5 1.0 58.3

19 17 17.5 0.6 45.0

mesh10X10 40 22 18 19.7 0.8 88.3

24 20 21.8 1.0 92.9

24 21 22.6 0.8 94.1

mesh15X15 23 22 19 20.4 0.7 194.1

20 16 17.9 0.9 239.5

21 20 20.4 0.5 90.2

mesh15X15 57 28 26 27.1 0.6 510.2

31 27 28.9 1.1 638.7

32 29 30.7 0.7 392.0

mesh15X15 90 35 32 32.6 0.8 725.4 38 34 36.2 1.2 966.1 41 39 39.4 0.6 768.0

89

In addition to comparing the maximum, minimum and average values, we plot the

confidence intervals in Figure 26—46 to show a clearer picture. Each figure has three

segments indicating the 95% confident intervals of the performance of the three algorithms

on the same instance. The middle of each segment denotes the average value. We can observe

that, in 14 out of 21 instances, the solution quality of GA is significantly better than that of

ACO (their confidence intervals do not overlap). For the two instances

AS-BA.R-Wax.v100e190.bb with 40 requests and AS-BA.R-Wax.v100e217.bb with 40

requests, we further performed a paired t-test to determine if the results obtained by the

proposed GA and ACO are significantly different. For the first instance, the mean difference

is -0.17, SD=0.14, N=30, t(29)=1.15, two-tail p=0.26. A 95% C.I. of the mean difference is

(-0.46, 0.13). For the second instance, the mean difference is -0.13, SD =0.11, N= 30,

t(29)=-1.16, two-tail p=0.25. A 95% C.I. of the mean difference is (-0.37, 0.1). Therefore

there are no significant differences between the performances obtained by GA and ACO on

both instances. On the other hand, ACO outperforms GA significantly on two instances:

bl-wr2-wht2.10-50.rand1 with 50 and 125 pairs. At last, the proposed GA also has significant

advantage over the MSGA in 14 out of 21 instances.

90

Figure 26 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 10 requests

Figure 27 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 25 requests

8.0 8.0 8.0

0.0

5.0

10.0

15.0

20.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e190.bb
10 requests

13.6
13.7

14.0

13.4 13.5

13.9

13.3 13.3

13.8

12.0

12.5

13.0

13.5

14.0

14.5

15.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e190.bb
25 requests

91

Figure 28 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e190.bb with 40 requests

Figure 29 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 10 requests

19.3

20.1
20.5

19.1

20.0
20.3

18.9

19.9
20.1

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e190.bb
40 requests

7.0 6.9 7.0
6.8 6.7

7.0

6.7
6.6

7.0

5.0

5.5

6.0

6.5

7.0

7.5

8.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e217.bb
10 requests

92

Figure 30 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 25 requests

Figure 31 Confidence intervals of the solution quality obtained by three algorithms on

AS-BA.R-Wax.v100e217.bb with 40 requests

11.7
11.4

12.8

11.5
11.2

12.6

11.2
11.0

12.4

10.0

10.5

11.0

11.5

12.0

12.5

13.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e217.bb
25 requests

20.1

21.4

21.8

19.9

21.2

21.7

19.6

21.0

21.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

MSGA ACO GA+initial

ED

P

Algorithms

AS-BA.R-Wax.v100e217.bb
40 requests

93

Figure 32 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 50 requests

Figure 33 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 125 requests

23.9

25.9

25.3

23.7

25.8

25.0

23.4

25.7

24.7

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

MSGA ACO GA+initial

ED

P

Algorithms

bl-wr2-wht2.10-50.rand1.bb
50 requests

38.4

42.6

41.8

38.1

42.5

41.5

37.7

42.3

41.2

36.0

37.0

38.0

39.0

40.0

41.0

42.0

43.0

MSGA ACO GA+initial

ED

P

Algorithms

bl-wr2-wht2.10-50.rand1.bb
125 requests

94

Figure 34 Confidence intervals of the solution quality obtained by three algorithms on

bl-wr2-wht2.10-50.rand1.bb with 200 requests

Figure 35 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 16 requests

55.2

60.6
60.3

55.1

60.4
60.0

55.0

60.2
59.7

54.0

55.0

56.0

57.0

58.0

59.0

60.0

61.0

MSGA ACO GA+initial

ED

P

Algorithms

bl-wr2-wht2.10-50.rand1.bb
200 requests

15.0 15.0 15.0

0.0

5.0

10.0

15.0

20.0

MSGA ACO GA+initial

ED

P

Algorithms

graph3.bb
16 requests

95

Figure 36 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 41 requests

Figure 37 Confidence intervals of the solution quality obtained by three algorithms on

graph3.bb with 65 requests

32.2

30.5

32.3
32.1

30.1

32.2
32.0

29.7

32.0

28.0

29.0

30.0

31.0

32.0

33.0

MSGA ACO GA+initial

ED

P

Algorithms

graph3.bb
41 requests

32.7

35.6

36.8

32.3

35.2

36.4

31.9

34.8

36.1

30.0

31.0

32.0

33.0

34.0

35.0

36.0

37.0

MSGA ACO GA+initial

ED

P

Algorithms

graph3.bb
65 requests

96

Figure 38 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 43 requests

Figure 39 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 108 requests

38.2

42.0

37.8

42.0

37.4

36.0

37.0

38.0

39.0

40.0

41.0

42.0

43.0

MSGA ACO GA+initial

ED

P

Algorithms

graph4.bb
43 requests

65.0

61.9

70.1

64.6

61.3

69.7

64.2

60.7

69.4

59.0

61.0

63.0

65.0

67.0

69.0

71.0

MSGA ACO GA+initial

ED

P

Algorithms

graph4.bb
108 requests

97

Figure 40 Confidence intervals of the solution quality obtained by three algorithms on

graph4.bb with 173 requests

Figure 41 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 10 requests

73.3

79.4

84.5

73.1

78.8

84.3

73.0

78.1

84.0

72.0

74.0

76.0

78.0

80.0

82.0

84.0

MSGA ACO GA+initial

ED

P

Algorithms

graph4.bb
173 requests

10.0
10.0 9.9 10.0

9.8

8.0

8.5

9.0

9.5

10.0

10.5

11.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh10X10
10 requests

98

Figure 42 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 25 requests

Figure 43 Confidence intervals of the solution quality obtained by three algorithms on

mesh10X10 with 40 requests

16.5

16.9

17.7

16.3
16.5

17.5

16.1 16.1

17.3

15.0

15.5

16.0

16.5

17.0

17.5

18.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh10X10
25 requests

20.0

22.1

22.9

19.7

21.8

22.6

19.5

21.4

22.3

18.0

19.0

20.0

21.0

22.0

23.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh10X10
40 requests

99

Figure 44 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 23 requests

Figure 45 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 57 requests

20.7

18.2

20.6
20.4

17.9

20.4
20.1

17.6

20.2

16.0

17.0

18.0

19.0

20.0

21.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh15X15
23 requests

27.4

29.3

31.0

27.1

28.9

30.7

26.9

28.5

30.4

26.0

27.0

28.0

29.0

30.0

31.0

32.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh15X15
57 requests

100

Figure 46 Confidence intervals of the solution quality obtained by three algorithms on

mesh15X15 with 90 requests

4.4 Summary

We have compared the proposed genetic algorithm with a purely random search method to

confirm the effectiveness of GA_MEDP. In addition, compared with the simple greedy

algorithm, multi-start greedy algorithm and ant colony optimization method, the proposed

GA method performs better or much better in most of the cases in terms of the solution

quality and computation time.

32.9

36.6

39.6

32.6

36.2

39.4

32.3

35.7

39.2

31.0

33.0

35.0

37.0

39.0

MSGA ACO GA+initial

ED

P

Algorithms

mesh15X15
90 requests

101

Chapter 5 Solving the RWA problem

In this chapter, we develop a heuristic method based on the GA approach proposed in

Chapter 3 to solve the routing and wavelength assignment problem. To evaluate its

performance, we compare the proposed method with the state-of-art bin-packing based

methods [26] and the particle swarm optimization approach [4].

In Section 5.1, we describe the details of the proposed heuristic method for solving the

RWA problem. An illustration on a small instance is given in Section 5.2. Features of the

testing instances and parameter-tuning are outlined in Section 5.3. The comparison of the

performance of the proposed algorithm with the bin-packing based methods and particle

swarm optimization are given in Section 5.4. Concluding remarks are made in Section 5.5.

5.1 Proposed method

Finding edge-disjoint paths can be useful for solving the RWA problem since a set of EDPs

can be assigned to the same wavelength. In addition, more requests assigned to one

wavelength may lead to fewer wavelengths required to satisfy all requests. Therefore an

MEDP solution algorithm can be useful for solving the RWA problem. In Chapter 3, we have

developed a GA-based method to solve the MEDP problem, the subroutine is called

 , which has two inputs and two outputs , where denotes the set

of realizable (or accepted) requests and is the edge-disjoint paths set.

A set of edge-disjoint paths can be assigned to the same wavelength since no two paths

share any edge. Thus an intuitive idea of solving the RWA problem can be developed as

102

follows. Solve the MEDP problem with and assign one wavelength to the accepted

requests and remove these requests from . Then solve another MEDP in with the rest of

 and assign another wavelength to these accepted requests. The procedure is repeated until

 is empty. The pseudocode of this basic algorithm is given in Algorithm 13.

Algorithm 13 basic MEDP-RWA algorithm

Input: and

Begin:

1. ;

2. ;

3. While

4.

5. ;

6. ;

7. ;

8. ;

9. end while

End

Output: and

This basic algorithm was used for solving the RWA problem in [27]. Since it takes all

requests in into consideration at each step, the efficiency is low, especially when is

large. In our proposed method, instead of dealing with the whole request set, we divide

into several batches and solve the MEDP problem with only one batch at a time. The batch

size is a user-defined value. The tuning process of is given in Section 5.3.2.

Similar to the preprocessing on the order of in bin-packing algorithm (FFD and BFD),

the shortest path of each request in is precomputed, then is sorted in a non-decreasing

order of the shortest path distances. Although these paths are unlikely to be the final routes,

103

they still provide good information about the minimum units of resources (edges) they

occupy in . Thus a better solution could be secured if we first consider the request with

longer shortest path distance and then fill up the remaining space with the request with

shorter shortest path length.

After the adjustment of is made, the first requests in are selected. The current

wavelength is denoted by the variable initialized to be 1. Then GA_MEDP is executed to

find the maximum number of edge disjoint paths among the selected requests in . The

current wavelength is assigned to the accepted requests and each of the obtained

edge-disjoint paths is assigned to the corresponding lightpaths. The residual graph, where all

edges used by the paths are removed, is stored in the variable . The rejected requests at

this stage remain in and will be included in the next batch.

Before starting GA_MEDP with the next batch, the algorithm scans all the remaining

requests in in a backward manner. Starting from the last request, which has the shortest

distance of shortest path in , the algorithm tries to find a shortest path to route the request

in . If such path exists, the request is assigned wavelength and removed from .

After the backward-scanning process is done, is increased by 1. Another batch of

requests is selected and GA_MEDP is executed again. The algorithm halts when becomes

empty. We call this proposed method the GA_MEDP_RWA algorithm, whose pseudocode is

shown in Algorithm 14.

104

Algorithm 14 GA_MEDP_RWA algorithm

Input: , and batch size

Begin:

1. ;

2. ;

3. Sort in non-increasing order of their shortest paths distance in

4. While

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

11. for

12. Find shortest path
 for

 on ;

13. If
 then

14.
 ;

15.

;

16.

 ;

17. ;

18. end if

19. end for

20. ;

21. end while

End

Output: and

5.2 An illustration

We use a small instance to demonstrate how GA_MEDP_RWA works. The National Science

Foundation (NSF) Network with 16 nodes and 25 edges has been taken as the benchmark

graph in many papers. It is shown in Figure 47. There are 17 randomly-generated requests

105

listed in Table 5. The third column of Table 5 shows the shortest-path length of each request

(assuming each edge has 1 unit cost). The permutation has been adjusted accordingly.

(a)

(b)

Figure 47 Illustration of NSF network with 16 nodes and 25 edges

106

Table 5 The randomly generated connection request set

Index Request length Index Request length

1 (10, 16) 4 10 (11, 12) 2

2 (7, 12) 3 11 (8, 16) 2

3 (13, 16) 3 12 (8, 13) 2

4 (9, 12) 3 13 (7, 8) 1

5 (1, 9) 3 14 (1, 4) 1

6 (3, 16) 2 15 (2, 8) 1

7 (5, 9) 2 16 (2, 16) 1

8 (4, 14) 2 17 (1, 3) 1

9 (5, 16) 2

Initially, the current wavelength is set to be one. Given the batch size of 5, the algorithm

employs to solve an MEDP problem on with the first five requests, which

are the requests 1, 2, 3, 4 and 5. As a result, requests 1, 3, 4, 5 are accepted. The output

edge-disjoint paths are the lightpath routes and the current wavelength is assigned to them.

The residual graph is kept in memory and the accepted requests are removed from . The

updated table is shown below.

107

Table 6 The updated request set after the first run of GA_MEDP

Index Request wavelength Index Request wavelength

1 (10, 16) 1 10 (11, 12)

2 (7, 12) 11 (8, 16)

3 (13, 16) 1 12 (8, 13)

4 (9, 12) 1 13 (7, 8)

5 (1, 9) 1 14 (1, 4)

6 (3, 16) 15 (2, 8)

7 (5, 9) 16 (2, 16)

8 (4, 14) 17 (1, 3)

9 (5, 16)

Next, starting from the last request in , which is request 17, the algorithm is trying to

find a shortest path in the residual graph for each request. In this case, shortest paths for

request 17, 14, and 12 have been found successfully. They are also assigned to the current

wavelength, which is 1, and removed from . The updated table is shown in Table 7.

108

Table 7 The updated request set after the backward-scanning process

Index Request wavelength Index Request wavelength

1 (10, 16) 1 10 (11, 12)

2 (7, 12) 11 (8, 16)

3 (13, 16) 1 12 (8, 13) 1

4 (9, 12) 1 13 (7, 8)

5 (1, 9) 1 14 (1, 4) 1

6 (3, 16) 15 (2, 8)

7 (5, 9) 16 (2, 16)

8 (4, 14) 17 (1, 3) 1

9 (5, 16)

So far, we have decided the routes for the requests using the first wavelength. Since the

request set is not empty yet, the second run of is initiated. The current

wavelength is set to two and a new batch of 5 requests, which includes requests 2, 6, 7, 8 and

9, are selected. Fortunately, all of them can be accepted and routed in edge-disjoint paths.

Followed by the backward-scanning process, it turns out only request 15 can fit into the

current residual graph, hence requests 2, 6, 7, 8, 9 and 15 are assigned to wavelength 2 as

shown in Table 8.

109

Table 8 The updated request set after the second run of and the

backward-scanning

Index Request wavelength Index Request wavelength

1 (10, 16) 1 10 (11, 12)

2 (7, 12) 2 11 (8, 16)

3 (13, 16) 1 12 (8, 13) 1

4 (9, 12) 1 13 (7, 8)

5 (1, 9) 1 14 (1, 4) 1

6 (3, 16) 2 15 (2, 8) 2

7 (5, 9) 2 16 (2, 16)

8 (4, 14) 2 17 (1, 3) 1

9 (5, 16) 2

Finally, the third batch including all the remaining requests 10, 11, 13 and 16 is selected.

As a result, all of them can be accepted and assigned to wavelength 3. Then the algorithm

halts. For this small example, the lower bound shown in (2.8) is 3, which means the proposed

methods found an optimal solution.

110

Table 9 The result of applying GA_MEDP_RWA on the small example

Index Request wavelen Index Request wavelen

1 (10, 16) 1 10 (11, 12) 3

2 (7, 12) 2 11 (8, 16) 3

3 (13, 16) 1 12 (8, 13) 1

4 (9, 12) 1 13 (7, 8) 3

5 (1, 9) 1 14 (1, 4) 1

6 (3, 16) 2 15 (2, 8) 2

7 (5, 9) 2 16 (2, 16) 3

8 (4, 14) 2 17 (1, 3) 1

9 (5, 16) 2

5.3 Testing instances and parameter tuning

A testing instance of the RWA problem contains an undirected graph and a

request set . In Section 5.3.1 we outline some basic characteristics of the testing graphs and

the procedure to generate the requests. There are 67 testing instances in total. In Section 5.3.2,

the fine tuning process of the parameter is provided.

5.3.1 Testing instances

In order to evaluate the performance of the proposed method for solving RWA, numerical

testing is conducted in comparison with the bin-packing method and the PSO method

reported in the literature [4, 26]. An instance of RWA consists of an undirected network

and a set of connection requests . For the network topology, we use 15 benchmark

networks provided in [36, 44, 46] which assume the patterns and sizes of some real-life

111

telecommunication networks. The topology of NSFNET and EON are the most studied

realistic networks in the literature. Network CHNNET and ARPANET are provided by [46],

USAnet is given by [44], and other instances are taken from [36]. The main quantitative

characteristics of these networks are shown in Table 10.

Table 10 Main quantitative characteristics of the instances

Graph Min. Avg. Max. Diameter

CHNNET 15 27 3 3.6 5 5

NSFNET 16 25 2 3.1 4 4

NewYork 16 49 2 6.1 11 3

ARPANET 20 32 3 3.2 4 6

EON 20 39 2 3.9 7 5

France 25 45 2 3.6 10 5

Norway 27 51 2 3.8 6 7

cost266 37 57 2 3.1 5 8

janos-us-ca 39 61 2 3.1 5 10

giul 39 86 3 4.4 8 6

piro40 40 89 4 4.5 5 7

USAnet 46 75 2 3.3 5 11

Germany50 50 88 2 3.5 5 9

zib54 54 80 1 3.0 10 8

ta2 65 108 1 3.3 10 8

(Min., Avg. and Max. denote the minimum, average and maximum degree, respectively)

Regarding the connection requests, for each network, different numbers of connection

requests are randomly generated according to a given probability , i.e., the probability that

there is a request between a pair of nodes is . The mechanism to generate the requests is

provided in Algorithm 15. Four instances are generated for each network with equals to

0.2, 0.4, 0.6 and 0.8, respectively. For the networks of smaller size, namely, CHNNET,

NSFNET, NewYork, ARPANET, EON, France and Norway, one more instance with

112

is generated. That means every pair of different nodes of the network requests a connection

between them. There are 67 testing instances in total, which are listed in Table 11. The last

two numbers of the instance’s name indicate the value that is used to generate the instance.

For example, instance CHNNET_02 is generated on network CHNNET with and

CHNNET_1 is generated with .

Algorithm 15 Request generator

Input: ,

Begin:

1. ;

2. for

3. for

4. if and

5. ;

6. end if

7. end for

8. end for

9. random permutation of ;

10. ;

End

Output:

113

Table 11 Testing instances

name graph

CHNNET_02

CHNNET 15 27

22

CHNNET_04 36

CHNNET_06 71

CHNNET_08 97

CHNNET_10 105

NSF_02

NSFNET 16 25

28

NSF_04 54

NSF_06 63

NSF_08 101

NSF_10 120

NewYork_02

NewYork 16 49

20

NewYork _04 47

NewYork _06 66

NewYork _08 96

NewYork _10 120

ARPANET_02

ARPANET 20 32

46

ARPANET_04 75

ARPANET_06 112

ARPANET_08 169

ARPANET_10 190

EON_02

EON 20 39

33

EON_04 85

EON_06 106

EON_08 147

EON_10 190

France_02

France 25 45

62

France _04 109

France _06 177

France _08 237

France _10 300

114

Table 11 Continued

name graph

Norway_02

Norway 27 51

76

Norway_04 136

Norway_06 199

Norway_08 283

Norway_10 351

cost266_02

cost266 37 57

121

cost266_04 259

cost266_06 391

cost266_08 528

janos-us-ca_02

janos-us-ca 39 61

144

janos-us-ca_04 299

janos-us-ca_06 463

janos-us-ca_08 604

giul_02

giul 39 86

147

giul_04 312

giul_06 427

giul_08 585

piro40_02

piro40 40 89

169

piro40_04 302

piro40_06 459

piro40_08 607

USAnet_02

USAnet 46 75

208

USAnet_04 427

USAnet_06 619

USAnet_08 825

Germany50_02

Germany50 50 88

237

Germany50_04 519

Germany50_06 774

Germany50_08 954

115

Table 11 Continued

name graph

zib54_02

zib54 54 80

269

zib54_04 577

zib54_06 851

zib54_08 1127

ta2_02

ta2 65 108

432

ta2_04 836

ta2_06 1218

ta2_08 1656

5.3.2 Tuning the batch size

In Algorithm 14, the batch size is the only parameter to be tuned and is indeed an

important factor affecting the performance. A bigger value of means that the algorithm

considers more requests at the same time and tries to route them in the same graph by

edge-disjoint paths, thus may yield a better solution at the cost of longer computational time.

Two instances USAnet_08 and janos-us-ca_08 are tested to decide the best batch size

from six possible settings of : . Figure 48 and Figure 50 show the

95% confidence intervals of the number of wavelengths obtained on janos-us-ca_08 and

USAnet_08 with different settings of , respectively, while Figure 49, Figure 51 indicate the

95% confident intervals of computational time. It is obvious that the solution quality gets

better and the computational time increases with bigger batch size. We finally decided that

 is a good balance between the solution quality and computation time. All the results

shown in Section 5.4 are outcomes by setting

116

Figure 48 95% C. I. of the objective value obtained with different on janos-us-ca_08

Figure 49 95% C. I. of the computational time with different on janos-us-ca_08

91.07

91.79

88.52

89.01

88.46

88.81

88.03

88.30

88.05

88.35

87.99

88.21

87.50

88.00

88.50

89.00

89.50

90.00

90.50

91.00

91.50

92.00

0 5 10 15 20 25 30 35

o

f
w

av
e

le
n

gt
h

batch size (B)

95% C. I. of # wavelen on janos-us-ca_08

210.7
230.7 252.5

261.6
277.6

301.8
310.5

342.3
383.8

412.8
428.9

497.7

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

0 5 10 15 20 25 30 35

co
m

p
u

ta
ti

o
n

al
 t

im
e

 (
se

c)

batch size (B)

95% C. I. of comp. time on janos-us-ca_08

117

Figure 50 95% C. I. of the objective value obtained with different on USAnet_08

Figure 51 95% C. I. of the computational time with different on USAnet_08

98.84
99.30

90.34

90.67

87.78

88.03

86.22

86.47

85.69

85.93

85.08

85.27

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

0 5 10 15 20 25 30 35

o

f
w

av
e

le
n

gt
h

batch size (B)

95% C. I. of # wavelen on USAnet_08

402.2

436.8
426.2

462.2 488.6

505.8

485.7

494.8

551.3

556.2

672.9

741.5

400.0

450.0

500.0

550.0

600.0

650.0

700.0

750.0

0 5 10 15 20 25 30 35

co
m

p
u

ta
ti

o
n

al
 t

im
e

 (
se

c)

batch size (B)

95% C. I. of comp. time on USAnet_08

118

5.4 Computational experiments

The computational results and comparisons with the bin-packing based heuristic and PSO are

reported in Sections 5.4.1 and 5.4.2, respectively. The three algorithms were implemented in

MATLAB and the experiments were conducted on a PC with Intel® Core i7 CPU @1.6GHz

and 4 Gb of memory running the Windows 7 operating system. The experiments were

conducted by applying PSO and the proposed method on each instance for 30 runs to obtain

the best, worst, mean and standard deviation of the objective values. The average

computational time are also recorded. Regarding the four bin-packing methods, each method

only needs to be executed once, and the results and computational time are recorded.

5.4.1 GA_MEDP_RWA vs. bin-packing based methods

The comparison of the proposed method and the four bin-packing based methods is shown in

Table 12. The first column gives the name of the tested instance. For the FF, FFD, BF and

BFD methods, the objective value, which is denoted by # wl, and the computation time ,

 , and were recorded, respectively. The first three columns under

GA_MEDP_RWA show the maximum, average, and minimum objective values that were

obtained in 30 runs. The fourth column is the mean computation time. The objective value is

underlined and in boldface when it is the best among the five. Here we say that a solution

method achieves the best objective value on an instance if the value obtained is less than or

equal to that obtained by other methods. We also say that a solution method achieves the

worst objective value if the value obtained is greater than that obtained by other methods.

119

Table 12 Results of GA_MEDP_RWA and bin-packing based methods (time unit: sec)

time unit (sec) FF FFD BF BFD

instance max avg min # wl # wl # wl # wl

CHNNET_02 4 4.0 4 2.07 4 0.24 4 0.14 4 0.11 5 0.14

CHNNET_04 5 4.4 4 3.02 5 0.18 4 0.15 5 0.23 4 0.26

CHNNET_06 11 11.0 11 10.66 11 0.70 11 0.62 11 0.81 11 0.96

CHNNET_08 14 14.0 14 13.50 15 1.02 14 1.17 14 1.21 14 1.51

CHNNET_10 16 15.0 15 16.31 15 1.48 15 1.42 16 1.75 15 2.20

NSF_02 5 5.0 5 2.41 6 0.34 5 0.17 6 0.19 6 0.18

NSF_04 8 7.3 7 5.80 9 0.37 9 0.35 8 0.52 8 0.50

NSF_06 9 8.8 8 7.97 10 0.46 10 0.49 9 0.59 9 0.64

NSF_08 14 13.2 13 15.11 17 1.06 15 1.10 14 1.50 14 1.47

NSF_10 17 16.6 16 22.89 19 1.70 17 1.45 17 1.96 17 2.08

NewYork_02 2 2.0 2 1.37 2 0.14 2 0.08 2 0.07 2 0.08

NewYork_04 3 3.0 3 2.65 3 0.23 3 0.20 3 0.23 3 0.23

NewYork_06 5 4.1 4 3.93 4 0.33 4 0.34 4 0.34 4 0.33

NewYork_08 7 6.0 6 6.75 7 0.64 6 0.58 7 0.62 6 0.81

NewYork_10 8 8.0 8 7.03 8 0.73 8 0.80 8 1.02 8 2.30

ARPANET_02 10 9.1 9 10.58 9 0.55 9 0.53 9 0.64 9 0.86

ARPANET_04 13 12.1 12 16.96 12 1.05 12 1.29 12 1.31 12 1.76

ARPANET_06 21 21.0 21 25.98 21 2.70 21 2.68 21 3.39 21 4.58

ARPANET_08 29 29.0 29 32.31 30 5.46 29 6.14 30 7.82 29 10.94

ARPANET_10 33 33.0 33 62.85 34 6.85 33 7.77 34 10.19 33 12.68

EON_02 4 3.1 3 3.19 3 0.22 4 0.17 4 0.34 4 0.36

EON_04 9 8.3 8 14.74 10 1.10 9 1.14 8 1.53 8 1.54

EON_06 11 11.0 11 17.52 13 1.21 11 1.18 11 1.94 11 1.90

EON_08 14 13.7 13 26.63 16 2.20 13 2.99 13 3.61 13 3.72

EON_10 19 18.1 18 38.17 22 3.64 18 3.58 18 5.77 18 5.73

France_02 8 8.0 8 8.87 8 1.30 8 1.27 8 1.57 8 1.72

France_04 13 12.8 12 16.05 14 4.29 13 4.90 13 5.14 13 6.03

France_06 22 22.0 22 39.07 22 8.73 22 10.55 22 11.69 22 15.27

France_08 27 26.3 26 47.09 28 13.25 27 14.00 27 18.53 26 24.20

France_10 34 34.0 34 60.09 34 22.54 34 23.99 34 29.93 34 35.84

120

Table 12 Continued

 FF FFD BF BFD

instance max avg min (s) # wl # wl # wl # wl

Norway_02 9 8.6 8 9.26 10 1.67 8 1.78 9 1.90 8 2.17

Norway_04 15 14.6 14 18.47 15 3.75 15 4.12 15 4.56 15 5.43

Norway_06 22 21.4 21 32.84 22 7.87 22 8.20 22 9.73 22 12.32

Norway_08 30 29.5 29 46.41 31 15.05 30 16.59 31 19.79 30 24.59

Norway_10 37 36.6 36 63.77 37 21.99 36 23.75 38 28.58 36 36.13

cost266_02 19 18.2 18 46.68 19 7.34 18 7.44 19 10.38 19 12.40

cost266_04 35 34.1 33 159.69 35 27.28 33 28.58 36 36.35 35 47.28

cost266_06 54 53.1 53 237.55 54 67.18 53 70.90 55 98.00 53 117.30

cost266_08 68 67.2 67 275.29 67 120.73 68 144.22 69 190.55 68 273.40

janos-us-ca_02 26 26.0 26 54.75 27 16.61 26 16.53 27 27.40 27 27.58

janos-us-ca_04 40 39.6 39 97.42 42 49.52 39 59.49 43 70.75 40 88.45

janos-us-ca_06 68 67.8 67 210.36 71 110.99 69 124.10 72 157.50 68 200.32

janos-us-ca_08 89 88.2 88 326.39 92 199.09 92 212.16 93 257.39 91 345.67

giul_02 11 10.3 10 26.93 10 7.40 10 8.11 10 8.89 10 11.24

giul_04 21 20.2 19 82.66 19 29.10 19 31.70 19 37.42 19 46.16

giul_06 25 24.6 24 150.73 25 48.91 25 55.96 25 59.10 24 73.12

giul_08 36 34.9 34 226.85 35 113.85 34 125.20 36 134.25 34 181.70

piro40_02 17 17 17 55.51 17 10.67 17 12.58 17 15.20 17 18.50

piro40_04 28 28 28 118.50 28 34.98 28 38.00 28 43.05 28 54.44

piro40_06 46 46 46 208.81 46 61.98 46 68.00 46 84.33 46 109.15

piro40_08 60 60 60 338.61 60 105.97 60 119.35 60 140.20 60 181.52

USAnet_02 25 24.0 23 86.13 25 35.62 26 37.95 26 45.15 25 56.09

USAnet_04 47 45.9 45 355.64 47 130.43 45 147.76 48 176.43 45 228.50

USAnet_06 67 66.1 65 422.63 68 244.00 65 287.58 68 346.66 66 432.89

USAnet_08 88 86.5 85 490.20 88 475.69 85 544.98 89 587.11 86 791.38

Germany50_02 21 20.7 20 109.28 21 35.86 21 36.10 21 46.10 22 58.58

Germany50_04 45 44.2 43 350.24 45 152.90 44 163.00 48 217.60 48 276.50

Germany50_06 61 60.5 60 584.92 63 347.70 61 410.61 63 430.89 65 544.74

Germany50_08 76 74.7 73 921.59 77 552.50 75 725.90 79 843.70 76 1098.40

121

Table 12 Continued

 FF FFD BF BFD

instance max avg min # wl # wl # wl # wl

zib54_02 32 31.1 30 149.44 33 52.28 31 55.01 35 77.70 33 91.67

zib54_04 67 65.7 65 406.90 67 209.80 65 220.50 73 304.64 71 379.55

zib54_06 92 90.0 88 762.56 91 442.95 89 522.85 99 696.78 98 889.98

zib54_08 122 119.2 117 1446.41 117 994.60 117 939.60 130 1229.60 127 1457.22

ta2_02 35 34.6 34 411.59 35 148.93 34 163.00 35 188.75 35 250.99

ta2_04 72 70.1 69 945.79 72 507.30 69 542.50 73 635.57 70 813.04

ta2_06 99 97.4 96 1865.20 98 1311.70 98 1484.00 100 1881.30 97 2047.40

ta2_08 131 129.7 128 2835.57 130 1935.30 129 2577.90 135 2644.43 128 3713.46

Some observations can be made based on Table 12. First, the numbers of times that each

method achieved the best objective values among the 67 instances are summarized in Figure

52. GA_MEDP_RWA achieved the best objective value on all instances, while the FFD

method reaches the best value on 53 instances. Both performed better than the other three

bin-packing based methods. Concerning the worst case shown in Figure 53,

GA_MEDP_RWA found the solution with the worst objective value for 5 instances. This

shows the effectiveness and robustness of the proposed method.

122

Figure 52 Number of times that the best value is achieved by different methods among 67

instances

Figure 53 Number of times that the worst value is achieved by different methods among 67

instances

67

22

53

23

35

0

10

20

30

40

50

60

GA-MEDP-RWA FF FFD BF BFD

method

of times the best objective value acheived

5
8

0

18

2
0

10

20

30

40

50

60

GA-MEDP-RWA FF FFD BF BFD

method

number of times the worst value acheivd

123

The second observation is that, bin-packing based methods have clearly advantages in

terms of the computation time, especially, on those relatively small instances. For example,

the average computational time of GA_MEDP_RWA on network CHNNET and NSF can be

ten to twenty times that of bin-packing based methods. However, the difference of

computation time becomes smaller as the problem size grows. We use the instances on the

four networks: Norway, giul, Germany50, and ta2, whose sized are in an ascending order, to

demonstrate how the computation time changes with the problem size. Define the relative

differences to be , where is the average computation time of

GA_MEDP_RWA and is the computation time of one of the four bin-packing based

methods (can be FF, FFD, BF or BFD, etc). The relative differences for all the

instances on the four networks are shown in Figure 54 -57, respectively.

124

Figure 54 Relative difference of computational time on graph “Norway”

Figure 55 Relative difference of computational time on graph “giul”

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Norway_02 Norway_04 Norway_06 Norway_08 Norway_10

0.82
0.80

0.76

0.68 0.66

0.81
0.78

0.75

0.64 0.63

0.79
0.75

0.70

0.57 0.55

0.77
0.71

0.62

0.47
0.43

instance

Relative diff. on Norway

FF

FFD

BF

BFD

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

giul_02 giul_04 giul_06 giul_08

0.73

0.65
0.68

0.50

0.70

0.62 0.63

0.45

0.67

0.55

0.61

0.41

0.58

0.44

0.51

0.20

instance

Relative diff. on giul

FF

FFD

BF

BFD

125

Figure 56 Relative difference of computational time on graph “Germany”

Figure 57 Relative difference of computational time on graph “ta2”

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

Germany50_02 Germany50_04 Germany50_06 Germany50_08

0.67

0.56

0.41 0.40

0.67

0.53

0.30

0.21

0.58

0.38

0.26

0.08

0.46

0.21

0.07

-0.19 instance

Relative diff. on Germany

FF

FFD

BF

BFD

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

ta2_02 ta2_04 ta2_06 ta2_08

0.64

0.46

0.30 0.32

0.60

0.43

0.20

0.09

0.54

0.33

-0.01
0.07

0.39

0.14

-0.10

-0.31

instance

Relative diff. on ta2

FF

FFD

BF

BFD

126

In Figure 54, we can observe that the relative difference tends to go down as the number

of connection requests increases. The trend also exists in Figure 55, Figure 56 and Figure 57

and most of other instances. In addition, the relative difference becomes smaller as the

network size grows. In Figure 56 we can see that the proposed method spent less time on

Germany50_08 than BFD did. In Figure 57, the same situation happened on ta2_06 and

ta2_08. Since the four networks of Norway, giul, Germany50 and ta2 are in an ascending

order of the network size, by observing Figure 54-57, we can see the phenomenon that the

relative differences drop as the network size grows.

127

5.4.2 GA_MEDP_RWA vs. PSO

The comparison of the proposed method and PSO is shown in Table 13. The minimum

objective value is underlined and in boldface if it is the better one. Notice that in this

comparison the computation time can be neglected, since we set a weak termination

condition to let PSO explore more possible solutions. Therefore, PSO always spends more

computation time. We can observe that PSO achieved the best values on 3 relatively small

instances while achieved the best objective values on all instances. On

bigger instances, the performances of PSO are not comparable at all to that of

GA_MEDP_RWA. The obtained objective values of PSO are twice more than that obtained

by GA_MEDP_RWA.

The difference in the path construction methods of PSO, GA_MEDP_RWA and

bin-packing based methods is crucial for distinct performance. Briefly speaking, in

GA_MEDP, a path can be adjusted by manipulating the priority values. These priority values

can be changed during the reproduction and local improvement procedures according to

different network conditions and request topologies. In bin-packing based methods, the

shortest paths are established iteratively to fit into the residual graphs. Therefore, the number

of network resources (edges) to route each request is minimized. On the contrary, in PSO,

recombining route ids from predetermined path candidates is lacking of ability to adapt

different situations. The deficiency becomes more significant on instance of bigger networks

or with more requests.

128

Table 13 Results obtained by GA_MEDP_RWA and PSO (time unit: sec)

 GA_MEDP_RWA PSO

instance max avg std min avg time max avg std min avg time

CHNNET_02 4 4.0 0.00 4 2.07 7 5.9 0.55 5 12.97

CHNNET_04 5 4.4 0.50 4 3.02 9 7.5 0.63 7 18.60

CHNNET_06 11 11.0 0.00 11 10.66 18 15.5 1.36 13 30.39

CHNNET_08 14 14.0 0.00 14 13.50 24 20.4 1.28 18 48.95

CHNNET_10 16 15.0 0.18 15 16.31 25 21.5 1.63 18 78.96

NSF_02 5 5.0 0.00 5 2.41 7 6.0 0.10 5 6.75

NSF_04 8 7.3 0.48 7 5.80 10 9.0 0.16 8 13.75

NSF_06 9 8.8 0.38 8 7.97 11 10.0 0.20 9 16.19

NSF_08 14 13.2 0.38 13 15.11 17 15.5 1.48 14 29.02

NSF_10 17 16.6 0.49 16 22.89 20 18.9 0.69 18 36.03

NewYork_02 2 2.0 0.00 2 1.37 3 2.9 0.31 2 7.37

NewYork_04 3 3.0 0.00 3 2.65 6 5.2 0.46 4 18.78

NewYork_06 5 4.1 0.35 4 3.93 8 6.8 0.50 6 25.51

NewYork_08 7 6.0 0.18 6 6.75 10 9.1 0.69 8 38.35

NewYork_10 8 8.0 0.00 8 7.03 12 10.7 0.60 10 50.17

ARPANET_02 10 9.1 0.31 9 10.58 10 9.1 0.74 9 10.58

ARPANET_04 13 12.1 0.31 12 16.96 19 16.3 1.27 14 62.15

ARPANET_06 21 21.0 0.00 21 25.98 28 24.9 1.26 22 93.86

ARPANET_08 29 29.0 0.00 29 32.31 40 36.5 1.48 33 133.70

ARPANET_10 33 33.0 0.00 33 62.85 46 41.2 2.47 36 172.60

EON_02 4 3.1 0.31 3 3.19 5 4.3 0.09 4 10.40

EON_04 9 8.3 0.48 8 14.74 12 10.6 0.49 10 35.34

EON_06 11 11.0 0.00 11 17.52 15 13.0 0.62 12 46.61

EON_08 14 13.7 0.47 13 26.63 20 18.2 3.75 17 48.92

EON_10 19 18.1 0.25 18 38.17 25 22.9 3.74 22 73.32

France_02 8 8.0 0.00 8 8.87 14 11.5 0.86 10 50.60

France_04 13 12.8 0.38 12 16.05 22 19.3 1.26 17 86.48

France_06 22 22.0 0.00 22 39.07 34 30.4 1.67 27 129.16

France_08 27 26.3 0.48 26 47.09 45 40.3 1.82 38 290.72

France_10 34 34.0 0.00 34 60.09 54 48.9 2.36 45 236.64

129

Table 13 Continued

 GA-MEDP-RWA PSO

instance max avg std min avg time max avg std min avg time

Norway_02 9 8.6 0.50 8 9.26 15 13.1 0.92 11 61.56

Norway_04 15 14.6 0.50 14 18.47 25 22.5 1.31 20 101.40

Norway_06 22 21.4 0.49 21 32.84 37 32.6 2.06 29 202.11

Norway_08 30 29.5 0.51 29 46.41 48 43.6 1.70 40 254.75

Norway_10 37 36.6 0.50 36 63.77 59 54.1 2.60 49 323.64

cost266_02 19 18.2 0.41 18 46.68 26 23.8 1.09 21 105.22

cost266_04 35 34.1 0.45 33 159.69 54 50.9 1.81 47 239.95

cost266_06 54 53.1 0.31 53 237.55 79 73.2 2.07 70 436.38

cost266_08 68 67.2 0.43 67 275.29 99 93.4 2.81 88 703.53

janos-us-ca_02 26 26.0 0.00 26 54.75 40 36.1 2.23 31 288.18

janos-us-ca_04 40 39.6 0.49 39 97.42 66 60.5 2.79 56 529.74

janos-us-ca_06 68 67.8 0.41 67 210.36 111 102.7 4.02 94 959.93

janos-us-ca_08 89 88.2 0.38 88 326.39 144 134.1 5.88 122 1239.46

giul_02 11 10.3 0.48 10 26.93 16 14.5 0.86 13 294.44

giul_04 21 20.2 0.50 19 82.66 32 28.8 1.56 26 451.61

giul_06 25 24.6 0.49 24 150.73 42 38.3 2.02 34 738.65

giul_08 36 34.9 0.51 34 226.85 59 53.5 2.57 49 990.63

piro40_02 17 17 0.00 17 55.51 22 20.0 0.74 19 159.88

piro40_04 28 28 0.00 28 118.50 36 33.7 0.99 32 300.88

piro40_06 46 46 0.00 46 208.81 66 58.7 3.27 52 474.73

piro40_08 60 60 0.00 60 338.61 86 79.4 2.85 73 684.40

USAnet_02 25 24.0 0.49 23 86.13 40 36.4 2.03 32 446.56

USAnet_04 47 45.9 0.50 45 355.64 76 69.5 2.91 65 983.93

USAnet_06 67 66.1 0.58 65 422.63 106 98.1 3.74 92 1418.73

USAnet_08 88 86.5 0.68 85 490.20 139 126.5 4.18 120 1715.20

Germany50_02 21 20.7 0.45 20 109.28 37 33.5 1.72 31 379.56

Germany50_04 45 44.2 0.48 43 350.24 74 69.4 2.11 66 683.95

Germany50_06 61 60.5 0.51 60 584.92 102 95.7 2.70 91 969.87

Germany50_08 76 74.7 0.77 73 921.59 126 120.5 3.21 115 1271.90

130

Table 13 Continued

 GA-MEDP-RWA PSO

instance max avg std min avg time max avg std min avg time

zib54_02 32 31.1 0.51 30 149.44 75 64.1 4.23 58 619.63

zib54_04 67 65.7 0.70 65 406.90 159 141.6 6.80 133 1462.19

zib54_06 92 90.0 0.96 88 762.56 208 195.2 5.29 187 2955.29

zib54_08 122 119.2 1.05 117 1446.41 289 266.3 8.90 250 4147.09

ta2_02 35 34.6 0.49 34 411.59 75 70.3 2.59 66 1453.68

ta2_04 72 70.1 0.71 69 945.79 152 141.8 4.05 133 2852.21

ta2_06 99 97.4 0.79 96 1865.20 208 198.7 5.49 181 3867.39

ta2_08 131 129.7 0.69 128 2835.57 284 271.0 5.56 258 5953.52

5.5 Summary

We have developed the heuristic method GA_MEDP_RWA for solving the RWA problem. It

combines the idea of bin-packing method and edge-disjoint paths together. The method

considers a batch of requests at a time and solves the corresponding MEDP problem. The

remaining requests are then scanned backward such that the one with shorter shortest paths

tries to fit into the existing wavelengths first. In such manner, the algorithm constructed a

solution consequently.

The computational result confirmed the effectiveness of the proposed method. Compared

with the bin-packing based methods and the PSO approach, GA_MEDP_RWA can find the

best solution on all instances. Although the proposed method takes longer time than the

bin-packing methods for small instances, the relative difference of computational time

becomes smaller as the problem size grows. We also pointed out that different

route-establishing mechanism might be a crucial factor causing the differences of

performance between the three methods.

131

Chapter 6 Conclusion and future research

In this chapter, we summarize our work and point out some possible directions for future

research.

6.1 Summary of work done

The maximum edge-disjoint paths (MEDP) problem plays an important role in modern

communication networks. Real-world applications of MEDP include VLSI layout, the

routing and wavelength assignment problem, call admission control problem, etc. In the first

two chapters, the background and complexity of MEDP are provided. Some existing solution

methods and their approximation ratios are also reviewed. In Chapter 3, we proposed a novel

genetic-based algorithm called GA_MEDP for solving the MEDP problem. Each individual

in GA_MEDP is a collection of paths, in which each path is associated with one connection

request and is encoded as a vector of priority values in the range of . To generate a

feasible solution, a heuristic called GMIN is used to obtain a set of edge-disjoint paths from

the path set that the individual represents. Then a bicriteria fitness function is used to

evaluate the individual. In the reproducing stage, three genetic operators are proposed to

create offspring by manipulating the priority values. In addition, an improvement heuristic is

provided to further enhance the offspring. The computation results reported in Chapter 4

show that, compared with the multi-start greedy algorithm and ant colony optimization

method, the proposed method performs better in most instances in terms of solution quality

and time.

We further apply GA_MEDP for a real-world application on optical communication

132

networks – routing and wavelength assignment (RWA) problem. The RWA problem is a

graph optimization problem which generalizes MEDP in some aspects and has been

extensively studied for decades. In Section 1.5, the background and formulation of RWA are

provided. Related works and two solution methods are reviewed in Chapter 2. Firstly, the

state-of-the-art bin-packing based method, which has four variants: FF, FFD, BF and BFD. It

considers the requests to represent “items” and copies of the graph to represent “bins”. Then

classic solution methods for the bin-packing problem are used to tackle RWA. Secondly, the

particle swarm optimization (PSO), in which each particle is represented by a set of route-ids.

For each request, a route-id selected from a set of predetermined route candidates for the

request is assigned. The wavelength assignment is taken care of by evaluating the number of

sets of edge-disjoint paths among the routes that the particle represents. In Chapter 5, we

proposed a method called GA_MEDP_RWA for RWA. It combines the idea of the

bin-packing method and edge-disjoint paths together. The method considers only a number of

requests at a time and solves the corresponding MEDP problem. The remaining requests are

then scanned backward such that the one with shorter shortest paths tries to fit into the

existing wavelengths first. In such manner, the algorithm solves RWA back and forth until a

solution is constructed. The experimental results show that, compared with the other two

methods, GA_MEDP_RWA can find the best solution among all testing instances. Although

the proposed method takes longer computational time than the bin-packing methods for small

instances (e.g., ten to twenty times that of bin-packing based methods on network CHNNET

and NSF), the relative difference of computational time becomes smaller as the problem size

grows.

133

6.2 Future research

In this dissertation, we have developed a genetic algorithm for solving the MEDP problem;

and we have extended the proposed method to tackle the RWA problem. Both methods for

solving the MEDP and RWA problems have demonstrated their effectiveness as shown in

Chapters 4 and 5. There are some possible directions that may lead to the improvement of

these methods. For GA_MEDP, although its application to MEDP has shown some promising

results, applying additional features to the search process or trying different encoding

schemes to enhance the solution quality and efficiency may be worthwhile for investigation.

On the other hand, it would be of high interest to explore potential advantages of employing

other metaheuristics such as electromagnetism-like mechanism (EM) method, particle swarm

optimization (PSO) and artificial bee colony (ABC) for solving MEDP problems.

For the RWA problem, the performance of the proposed GA_MEDP_RWA has been

verified by several experiments on realistic network topologies. The algorithm is able to

solve small and medium size instances in reasonable time. However, for very large instances

(for example,) , finding a solution is extremely time-consuming. A

divide-and-conquer approach called the multilevel algorithm may be worth studying to

enhance the proposed method for solving large-size problems. Finding different ways to

identify good permutations of the request set and developing local search methods are also

needed to further improve the algorithm.

Further studies on extending the proposed GA to tackle other generalizations of MEDP,

for example, the unsplittable flow (UF) problem and the call admission control problem, are

also interesting research topics.

134

References

[1] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and related

routing and packing problems. Mathematics of Operations Research, 25(2): 255-280,

2000.

[2] A. E. Ozdaglar and D. P. Bertsekas. Routing and wavelength assignment in optical

networks. IEEE/ACM Transactions on Networking, 11(2): 259-272, 2003.

[3] A. Frank. Packing paths, circuits, and cuts–a survey. In B. Korte, L. Lovász,H.J. Prömel

and A. Schrijver, editors, Paths, Flows, and VLSI-Layout, Springer-Verlag, Berlin,

47–100, 1990.

[4] Ali Hassan. Particle swarm optimization for routing and wavelength assignment in next

generation WDM networks. PhD thesis, Department of Electronics Engineering, Queen

Mary University of London, 2010.

[5] A. R. Sharafat and O. R. Ma’rouzi. The most congested cutest: Deriving a tight lower

bound for the chromatic number in the RWA problem. IEEE Communication Letters,

8(7): 473-475, 2004.

[6] A. Schrijver. Combinatorial Optimization: Polyhedral and Efficiency. Springer – Verlag,

Berlin, 2003.

[7] A. X. Martins, C. Duhamel, P. Mahey, R. R. Saldanha and M. C. de Souza. Variable

neighborhood descent with iterated local search for routing and wavelength assignment.

Computers and Operations Research, 39(9): 2133-2141, 2012.

[8] C. Chekuri and S. Khanna. Edge disjoint paths revisited. In Proceedings of the 14
th

Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’03), 628–637, 2003.

[9] D. Banerjee and B. Mukherjee. A practical approach for routing and wavelength

assignment in large wavelength-routed optical networks. IEEE Journal on Selected

Areas in Communications, 14(5): 903-908, 1996.

135

[10] G. Li and R. Shmha. The partition coloring problem and its application to wavelength

routing and assignment. In Proceedings of the First Workshop on Optical Networks,

2000.

[11] H. Choo and V. V. Shakhov. Routing and wavelength assignment in optical WDM

networks with maximum quantity of edge disjoint paths. Photonic Network

Communications, 12: 145-152, 2006.

[12] H. Zang, J. P. Jue and B. Mukherjee. A review of routing and wavelength assignment

approaches for wavelength-routed optical WDM networks. Optical Networks Magazine,

1: 47-60, 2000.

[13] I. Chlamtac, A. Ganz and G. Karmi. Lightpath communications: an approach to high

bandwidth optical WAN's. IEEE Transactions on Communications, 40(7): 1171-1182,

1992.

[14] J. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1996.

[15] J. S. Choi, N. Golmie, F. Lapeyrere, F. Mouveaux and D. Su. A functional classification

of routing and wavelength assignment schemes in DWDM networks: Static Case. In

Proceedings of the 7th International Conference on Optical Communications and

Networks, 1109-1115, 2000.

[16] J. Vygen. Disjoint paths. Technical Report 94816. Research Institute for Discrete

Mathematics, University of Bonn, February 1994.

[17] J. Zheng, H. T. Mouftah. Optical WDM networks: concepts and design principles,

Wiley-IEEE Press, August 2004.

[18] K. E. Parsopoulos and M. N. Vrahatis. Particle Swarm Optimization and Intelligence:

Advances and Applications. ISBN 1615206671, 9781615206674. IGI Global Snippet,

2009.

[19] K. Menger. Zur allgemeinen kurventheorie. Fund. Math, 10: 96–115, 1927.

136

[20] K. Varadarajan and G. Venkataraman. Graph decomposition and a greedy algorithm for

edge-disjoint paths. In Proceedings of the 15
th

 Annual ACM–SIAM Symposiumon

Discrete Algorithms (SODA’04), 379–380, 2004.

[21] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di

Milano, Italie, 1992.

[22] M. Gen, R. Cheng and L. Lin. Network Models and Optimization, Springer, 2008.

[23] M. J. Blesa and C. Blum. Findinge edge-disjoint paths in networks: an ant colony

optimization algorithm. Journal of Mathematical Modeling and Algorithms, 6: 361-391,

2007.

[24] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to Theory of

NP-completeness. W.H. Freeman and Company, New York-San Francisco, 1979.

[25] N. Robertson and P. D. Seymour. Graph Minors XIII: The disjoint paths problem.

Journal of Combinatorial Theory B, 63: 65-110,1995.

[26] N. Skorin-Kapov. Routing and wavelength assignment in optical networks using bin

packing based algorithms. European Journal of Operational Research, 177: 1167-1179,

2007.

[27] P. Manohar, D. Manjunath and R. K. Shevgaonkar, Routing and wavelength assignment

in optical networks from edge disjoint path algorithms. IEEE Communications Letters,

6(5): 211-213, 2002.

[28] R. Poli, J. Kennedy and T. Blackwell, Particle swarm optimization - An overview.

Swarm intelligence, 1(1): 33-57, 2007.

[29] S. Fortune, J. Hopcroft and J. Wyllie. The directed subgraph homeomorphism problem.

Theoretical Computer Science, 10(2): 111-121, 1980.

[30] S. G. Kolliopoulos. Edge-disjoint paths and unsplittable flow. In Handbook of

Approximation Algorithms and Metaheuristics, ed. T. F. Gonzalez, Chapman & Hall /

CRC, 2007.

137

[31] S. G. Kolliopoulos and C. Stein. Approximating disjoint-path problems using greedy

algorithms and packing integer programs. In Proceedings of 6
th

 integer programming and

Combinatorial Optimization Conference (IPCO VI), LNCS 1412: 153-168, 1998.

[32] S. Sakai, M. Togasaki and K. Yamazaki. A note on greedy algorithms for the maximum

weighted independent set problem. Discrete Applied Mathematics, 126: 313-322, 2003.

[33] T. Erlebach. Approximation algorithms for edge-disjoint paths and unsplittable flow.

Lecture Notes in Computer Science, 3484: 97-137, 2006.

[34] T. F. Noronha, M. G. C. Resende and C. C. Ribeiro. A biased random-key genetic

algorithm for routing and wavelength assignment. Journal of Global Optimization,

50(3): 503-518, 2011.

[35] T. F. Noraha and C. C. Ribeiro. Routing and wavelength assignment by partition

colouring. European Journal of Operational Research, 171(3): 797-810, 2006.

[36] T. Fischer, K. Bauer, P. Merz and K. Bauer. Solving the routing and wavelength

assignment problem with a multilevel distributed memetic algorithm. Memetic

Computing, 1(2): 101-123, 2009.

[37] U. Adamy, T. Erlebach, D. Mitsche, I. Schurr, B. Speckmann, and E. Welzl. Off-line

admission control for advance reservations in star networks. In 2nd Workshop on

Approximation and Online Algorithms, LNCS 3351: 211-224, 2004.

[38] U. Adamy, C. Ambuehl, R. S. An, and T. Erlebach. Call control in rings. In Proceedings

of the 29th International Colloquium on Automata, Languages and Programming ICALP

2002, LNCS 2380: 788-799, 2002.

[39] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis.

Near-optimal hardness results and approximation algorithms for edge-disjoint paths

and related problems. Journal of Computer and System Sciences, 67(3): 473-496, 2003.

[40] W. F. Abd-El-Wahed, A. A. Mousa, and M. A. El-Shorbagy. Integrating particle swarm

optimization with genetic algorithms for solving nolinear optimization problems.

Journal of Computational and Applied Mathematics, 235(5): 1446-1453, 2011.

138

[41] W. J. Yoon, D. H. Kim, M. Y. Chung, T. J. Lee and H. Choo. Routing with maximum

EDPs and wavelength assignment with path conflict graphs. In Proceedings of the 2006

international conference on Computational Science and Its Applications, Vol II: 856-865,

2006.

[42] W. T. Chan, F. Y. L. Chin and H. F. Ting. Escaping a grid by edge-disjoint paths.

Algorithmica, 36 (4): 343-359, 2003.

[43] X. Guan, S. Guo, W. Gong and C. Qiao. A new method for solving routing and

wavelength assignment problems in optical networks. Journal of Lightwave Technology,

25(8): 1895-1909, 2007.

[44] Y. S. Kavian, A. Rashedi, A. Mahani and Z. Ghassemlooy. Routing and wavelength

assignment in optical networks using artificial bee colony algorithm. Optik -

International Journal for Light and Electron Optics, In Press, Corrected Proof, available

online 31 May 2012.

[45] Y. Wang, T. H. Cheng and M. H. Lim. A Tabu search algorithm for static routing and

wavelength assignment problem. IEEE Communications Letters, 9(9): 841-843, 2005.

[46] P. Leesutthipornchai, C. Charnsripinyo and N. Wattanapongsakorn. Solving multi-

objective routing and wavelength assignment in WDM network using hybrid

evolutionary computation approach. Computer Communications, 33(18): 2246-2259,

2010.

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Problem Description
	1.2 The Integer Linear Programming Model for Maximum Edge-disjoint Paths Problem
	1.3 Importance and applications
	1.4 Difficulties of the maximum edge disjoint paths problem
	1.5 Routing and wavelength assignment problem
	1.5.1 Background
	1.5.2 WDM networks
	1.5.3 Problem description
	1.5.4 Mathematical model of RWA

	1.6 Outline of the dissertation

	Chapter 2 Literature Review
	2.1 A special case: Menger’s Theorem
	2.2 Known approximation ratios for MEDP
	2.3 Existing solution methods for MEDP
	2.3.1 LP relaxation and rounding method
	2.3.2 Greedy algorithms
	2.3.3 Ant-colony optimizationn

	2.4 Genetic algorithms for path-related problems
	2.4.1 Encoding methods
	2.4.2 Genetic operators

	2.5 Related works on RWA
	2.6 Particle swarm optimization for RWA
	2.6.1 Introduction of PSO
	2.6.2 PSO for RWA

	2.7 BIN-packing based methods for RWA
	2.8 Known lower bounds

	Chapter 3 Proposed genetic algorithm for MEDP
	3.1 MEDP with pre-determined paths
	3.2 Encoding/Decoding procedures
	3.3 Initial population
	3.4 Genetic operators
	3.4.1 Crossover Operator
	3.4.2 Mutation Operator
	3.4.3 Self-Adaption Operator

	3.5 Improvement heuristics
	3.6 Fitness function and evaluation
	3.7 Population management and selection method
	3.8 Summary

	Chapter 4 Computational results
	4.1 Design of experiment
	4.2 Problem generation and computational experiments
	4.3 Experimental results
	4.3.1 Random search vs. GA
	4.3.2 Greedy algorithms vs. GA
	4.3.3 MSGA/ACO vs. GA

	4.4 Summary

	Chapter 5 Solving the RWA problem
	5.1 Proposed method
	5.2 An illustration
	5.3 Testing instances and parameter tuning
	5.3.1 Testing instances
	5.3.2 Tuning the batch size

	5.4 Computational experiments
	5.4.1 GA_MEDP_RWA vs. bin-packing based methods
	5.4.2 GA_MEDP_RWA vs. PSO

	5.5 Summary

	Chapter 6 Conclusion and future research
	6.1 Summary of work done
	6.2 Future research

	References

