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Abstract

We consider parameter estimation problems in structures with piezoceramic
actuators and sensors. The problems are discussed in the context of a variational
formulation of damped second order partial differential equations with unbounded
input coefficients. Approximation techniques are introduced and numerical results of
parameter estimation are given. Experimental data are used to test our computational
results.

I. Introduction

High fidelity dynamic models for use in identification and control algorithms
are important to current efforts in understanding and design of smart material struc-
tures. A particular case of interest to us here are structures with embedded piezo-
ceramic actuators and sensors. In addition to accurate models, which in most appli-
cations are inherently distributed in nature, computational methods (based on PDE
approximation ideas) are needed. Parameter estimation techniques are of fundamen-
tal interest in model development efforts for the use of piezoceramics in such diverse
areas as acoustic noise suppression and nondestructive evaluation of materials as well
as the more traditional applications involving structural vibration suppression.

In this note, we report on our use of a mathematical framework (developed
elsewhere — see [2, 3]) for computational methods for parameter identification in
distributed parameter models for smart structures. For the class of problems we con-
sider here (a cantilevered beam with piezoceramic patches for actuation and sensing),
current models for piezoceramics lead to a system with unbounded (in usual state
space formulations) input coeflicients. These input coefficients, which are related to
excitation of moment producing patches, involve derivatives of the delta function.

Our choice of structure is motivated by the experimental data from a beam
with bonded piezoceramic sensor and actuator patches which we wish to analyze.
While the structure and model are simple, we believe that they are representative in
that they reveal the difficulties and possibilities inherent in developing models and
methods for more complex structures containing piezoceramic materials.

We consider a cantilevered Euler-Bernoulli beam of length £ fixed at « = 0
and free at # = £. The transverse vibrations y = y(¢,z) are described by the system
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where p is the linear mass density, v is the coeflicient of viscous (air) damping and
M 1is the internal moment. For a simple Euler-Bernoulli beam with Kelvin-Voigt or
strain rate damping, the internal moment is composed of two components representing
resistance to bending (with coefficient £7) and damping (with coefficient ¢pl):

o? &y
M(t,z) = EIaZ(t o) +eply s 2(%( z). (2)
If piezoelectric actuators are bonded to the beam in a configuration to produce (or
sense) only bending (identically polarized patches on opposite sides of the beam ex-
cited in an out-of-phase manner — see [6, 7, 8, 10]), we have an actuator contribution
M,(t,z) in the form of an input moment. For patches located between z; and z5 on
the beam excited by a voltage u(t), this moment term has the representation

My(t,z) = Kg{H(z — z1) — H(z — z2) } u(t) (3)

where H is the Heaviside or unit step at zero function and Kp is a piezoceramic
material parameter depending on material properties of the beam and the patches as
well as geometry. When the moment in (3) is added to that of (2) and substituted
into (1), we obtain the model
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where § is the Dirac delta function and ' = ;—z. This is equivalent (in a sense that can
be made mathematically precise — see [2, 3])
to the equation in weak or variational form

< pys + VY1, 6 > + < EIy" + cply + Kg(H, — Hy)u(t),¢d” >=0
y(t,0) = y'(t,0) = 0, (5)

for all ¢ € H?(0,£) satisfying ¢(0) = ¢'(0) = 0. Here H; is the shifted Heaviside
function H;(z) = H(z — ;).

The system (4) is a formal representation of the dynamics of a damped beam
with piezoceramic actuators. To develop computational techniques (e.g., finite el-
ements) based on rigorous convergence arguments, it is necessary to first have a
precise formulation of this system. This can be done in the context of the equiv-
alent system (5). One can use rather standard functional analysis techniques (the
theory of sesquilinear forms and Gelfand triples—see [12]) to establish existence of
unique solutions with y(t,-) € H2(0,£) = {¢ € Lx(0,£) | ¥,¢",¥" € Ly(0,£) with
¥(0) = ¢'(0) = 0} satisfying (5) for all test functions ¢ in HZ(0,£). In this sense
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the initial boundary value problem in (4) is well-posed under very mild smoothness
assumptions on El(z) > 0 and c¢pl(z) > 0. Detailed statements and the nontrivial
arguments underlying these results can be found in [2, 3].

In this paper we will outline least squares parameter estimation problems for
the systems (4) or (5), describe the experiments designed for our investigations and
present numerical findings together with important conclusions that one can draw
from our efforts.

II. Parameter Estimation and Approximation

The parameter estimation problems for the beam with piezoceramic actuators
and sensors can be stated in terms of finding parameters which give the best fit of the
parameter dependent solutions of the partial differential equations to the observation
data from response of the system to various excitations. In our case, the parameters
to be estimated include beam mass density p(z), stiffness coefficient EI(z) as well
as damping parameters cp/(z), v and piezoceramic material parameter Kp. Let the
collection of unknown parameters be denoted by ¢ = (p(z), EI(z),cpl(z),v, KB).
We then can consider the least squares estimation problem of minimizing over q € )
the least squares functional

=Y ICy(ti;q) — =, (6)
where {z;} are given observations and {y(t;;q)} are the parameter dependent mild
solutions of (4) or (5) evaluated at each time ¢;, 7 = 1,2,---, N. The space @) is some

admissible parameter metric space while the operator C has two forms depending on
the type of sensors. When an accelerometer is used, we minimize
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where Z is the location of the accelerometer and {z;} are the measured accelerations.
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When a piezoceramic patch is used as sensor, the functional to be minimized is
2
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for the patch being located on the beam between z; and z,. Here K, is a sensor
constant that also must be determined and {z;} are the measured voltages across the
patch. Arguments to show that the voltage across the patches when used as sensors
is proportional to the “accumulated strain”
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can be found in [9].

The minimization in our parameter estimation problems involves an infinite
dimensional state and an infinite dimensional (functions) admissible parameter space.
Motivated by computational requirements, we thus consider Galerkin type approxi-
mations using cubic B-spline elements in the context of the variational formulation of



(5) along with piecewise constant approximations of the parameter functions. Then
iterative optimization techniques are used to solve the resulting finite dimensional
optimization problems. One obtains a sequence of estimates g of the finite dimen-
sional optimization problems and the sequence will converge to a solution g of the
original infinite dimensional problem. For a rigorous proof, see [3, 4]. In those presen-
tations we summarize the theoretical results related to well-posedness of the infinite
dimensional and approximate estimation problems, convergence of approximate pa-
rameter estimates to a solution of the original least squares estimation problem and
continuous dependence of these estimates on the observation data.

In actuality, the computations for the optimization problems for (7) and (8)
(and the associated functionals for the approximate systems) are best carried out after
the time domain functionals have been converted to frequency domain equivalents.
For example, in place of (7) one minimizes
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where fé(q), f} are the frequencies associated with {%(ti, z; q)} , {z:}, respectively

and U'(q), Z' are the Fourier coefficients of those quantities. One can also give a
convergence theory for these formulations. For complete details on implementation
of these ideas as well as theoretical arguments, one can consult [5, 11].

ITI. Experimental Procedures

To test the above described estimation procedures a series of experiments were
carried out at the Mechanical Systems Laboratory, State University of New York at
Buffalo. A cantilevered aluminum beam with two attached piezoceramic patches was
used as the test structure. The patches were bonded to a aluminum beam on the
opposite sides of the beam at the same position. In the following two tables, the
subscripts indicate the materials: b for beam and p for piezoceramic. Let £ be
length, w be width and ¢ be thickness; then directly measured dimension and the
book values of the characteristics (stiffness and mass density) for a 2024-T4 aluminum
beam are:

Table 1: Experimental beam dimensions and its characteristics.

4 (cm) | wp (cm) | & (cm) | Ep (N/cm?) | pp (g/cm)

45.73 2.03 0.16 7.3 x 108 0.89




For a Piezoelectic Products model G-1195 PZT ceramic, the book values of the char-
acteristics and the dimensions of the patch are:

Table 2: PZT ceramic patch dimensions and its characteristics.

£, (cm) | wp (cm) | tp (cm) | By (N/sz) pp (g/cm)

6.37 2.03 0.0254 6.3 x 108 0.78

In the tables, E is the Young’s modulus and p is the mass density per unit length.

The beam was clamped at = 0. The center of the piezoceramic was placed at
5.72 cm away from the clamped end. One 0.64 cm wide and 0.0076 cm thick copper
foil to act as conducting media was glued on the beam under each piezoceramic patch.
The time response data and input signal from the experimental beam were obtained
using the Tektronix Analyzer 2600.

In the first example, labeled BITAPIH, the piezoceramic patches were used
as a sensor; that is, the voltage across the patch due to the beam vibration was used.
The beam was excited by an impulse force applied (via an impulse hammer) on the
beam along its axis at 2.54 cm away from the clamped end. The input signal was
recorded from the transducer hammer (the actuator).

The Tektronix Analyzer was set so that frequencies below 64 Hz could be
recorded. Two modes were observed in the response, at 6.625 Hz and 38.375 Hz,
respectively.

Since the piezoceramic patches were not used as an actuator, the input voltage
to the patches was zero. Hence the term

Kz (5'(1; —23) — (o — ml)) u(t)

in equation (1.4) is zero. Instead, a term f(¢,2) which represents the hammer input
is introduced on the right hand side of the partial differential equation in (1.4). The
functional J, in equation (2.3) was minimized. In this example, Kp was not in-
volved, therefore was not identifiable. The parameter vector to be identified was
qg = (El(z), p(z), cpI(z), v, Ks). The mass density, stiffness and Kelvin-Voigt
damping coefficients are functions of position along the beam. To agree with ge-
ometry of the structure, we assumed that they are piecewise constant functions as
shown in Figure 1.



Figure 1: p(z), EI(z), cpl(z) function shape S(z).

In the second example, labeled BITAOIV, the piezoceramic patches were used
as the actuator and an accelerometer as the sensor. The accelerometer weighing 0.5
gram was located at = 2.14 cm. Our choice of the location of the accelerometer
was to made so as to minimize the dynamical effects of the accelerometer (e.g. effects
due to the weight of the accelerometer and the vibration of the wire attached to it).
A narrow triangle (approximating an impulse) voltage was applied to the patches to
excite the beam. The ceramic patches were excited out of phase so as to produce
input moments as modeled in (3) or (4) above. In order to maintain a constant E,
through out the data acquisition period following excitation when only accelerometer
data was collected (i.e. the ceramic patch was not used as a sensor), a zero voltage
supply (not zero current) to the patches was provided. In this case, the parameter
vector was ¢ = (EI(z), p(z), cpl(z), v, KB).

In the first example, we began the parameter identification by holding damping
related parameters fixed while identifying parameters EI(z) and p(z) to first obtain
a frequencies match. We used measured values together with book values as our
initial guess. The initial value for the constant in the part of beam without the
patches is a straight forward calculation with the values given in Table 1, E] = 0.495
and p = 0.089. For the constant for the segment containing the patches, we simply
superposed characteristics of the beam and the patches (we ignored the glue and
copper foil) and obtained £ = 1.0 and p = 0.168. Then the estimation was carried
out on the damping parameters cp/ and v, and piezoceramic related parameter K, ,
while keeping the parameters EI(z) and p(z) at the optimal values obtained. The
initial values were cpl(z) = 0.825 x 107° and v = 0.00183. The optimal values
obtained from the first example were used as initial values in the second example.
Since both examples are from the same structure with different sensors and actuators,
we anticipated that the estimated parameters from the two examples might be close.

A summary of the estimation results is given in Table 3. For comparison,
results from both examples are listed in the same table. The measured and handbook
quantities (when available) are also listed in the table as “given” values.



Table 3: Given and estimated structural parameters

given B1TAPIH B1TAOIV
beam | 0.495 0.491 0.505
El beam
(N-m?) + — 0.793 0.798
PZT
beam | 0.089 0.093 0.096
p beam
(kg/m) + 0.168 0.433 0.441
PZT
beam 0.649%107° | 0.637x1075
cpl beam
+ — | 1.255x107% | 1.275%x107°
~ — 0.013 0.013
K, — 4682.342 —
Kg — — 1.870

The results (graphs) are reported in the order described above. The example
B1TAPIH is given in Figure 2 and the example BITAOIV is shown in Figure 3. In
each figure, there are four parts: part (a) is the recorded experimental data, (b) is the
model response with the estimated parameters given in Table 3, (c) is the amplitude
of the FFT of the experimental data (in solid lines) and model response (in dashed
lines), and in part (d), both experimental data (in solid lines) and the model response
(in dashed lines) are presented on a shorter time interval in one plot to exhibit the
details of how well the model fits the experimental data.



