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ABSTRACT

Statistical inference 1s reviewed for survival data applications with
hazard models having one parameter per distinct failure time and using
Jeffreys' (1961) vague priors. Distinction between a discrete hazard and a
plecewise exponential model is made. Bayes estimators of survival probabilities
are derived. For a single sample and a discrete hazard, the Bayes estimator is
shown to be larger than Nelson's (1972) which in turn is larger than Kaplan-
Meler's (1958) estimator. With a plecewise exponential model, the Bayes
estimator is also shown to be larger than that using maximum likelihood.
Presuming a proportional hazards formulation to incorporate covariate
information and a discrete underlying hazard model, the marginal posterior
distribution of the regression parameters is proportional to Breslow's (1974)
approximation to the marginal likelihood of Kalbfleisch and Prentice (1973).
A refinement of Breslow's (1974) approximate likelihood is obtained when a
plecewise exponential model is used for the underlying hazard. These results
serve as illustrations of differences between estimators obtained from a
frequentist's approach and a Bayes strategy with vague priors. Further, the

Bayes results have practical advantages.

KEY WORDS: Discrete Hazard, Kaplan-Meier Estimator, Nelson's Method,
Martingales, Piecewise Exponential Hazard, Nuilsance Parameters,

Maximum Likelihood.



1. Introduction and Summary

For a positive failure time T of an individual with p measured covariables
z = (zl,...,zp), Cox (1972) proposed that the distribution of T could be
modelled by specifying the hazard of T given z as

Atlz) = limit pr{iT<t+oct | T>t, g}/At = Ao(t) exp(zB), ¢D)
At>0

where B 1s a column vector of p regression coefficients and Ap(t) is an
arbitrary, unspecified underlying hazard function. Two nonparametric models
are considered for the underlying hazard. Each model permits one parameter
for every distinct failure time, i.e., models whose parameter spaces are not
fixed but depend upon the data. A discrete hazard, having only a finite spike
at each failure time, and a piecewise exponential hazard, specifically with a
constant risk between failures, are considered in turn. For the parameters of
each underlying hazard and the regression coefficients, vague priors following
Jeffreys (1961) are combined with the likelihood of the data.

The data in survival applications are from n individuals placed on test.
Let k (€ n) be the number of distinct failure times with possible multiplicity
dj (> 1) at the jth ordered failure time t(j). The times of censoring may
also be available, but the censoring mechanism is assumed independent of the
failure process and so is not informative for the regression coefficients §.
Consequently, the other primarily pertinent data are the sets, Rj, of
individuals alive just before t(4) and having size Rj. For the plecewise
expugential model, the survival times to censoring are also incorporated. The
likelihood for the jth failure time is given by

(3 642
Ly = 0 [exp{-/ Mulz)du} AMt(y)lz) ) 1, (2)

LeRy-) t(3-1)

where 052 = 1 for each individual failing at t(j) and zero otherwise. Notice



that t(g) = 0 and R, is composed of all n individuals placed on test. Since
Gj-l contains Gj, the likelihood (2) will suffice for each of the two
nonparametric hazards considered in detail later.

For a single sample without covariables, Bayes.estimators are derived for
each underlying hazard, With the discrete hazard, the posterior méan of the
survival probability is at least as large as the Kaplan-Meler (1958) or Nelson
(1972) estimators. With a piecewise exponential hazard, a Bayes estimator is
at least as large as that obtained by maximum likelihood. Variance estimators
and an example are provided.

For inference on the regression coefficients, the underlying hazard is
composed of nuisance parameters. As a result, the marginal posterior
distributions for B are determined for each underlying hazard model and using
only vague prior information. With the discrete hazard model and distinct
failures, Cox's (1972) conditional likelihood is obtained. 1If there are
multiplicities, Breslow's (1974) approximation to Kalbfleisch and Prentice's
(1973) marginal likelihood is recovered., With a piecewise exponential
underlying hazard, a refinement of Breslow's (1974) approximate likelihood

is the basis for inference.

2, Single Sample

The single sample problem without concomitant information corresponds to
the situation where the covariates are the same for each individual, or without

loss of generality, z is identically a vector of zeroes.

2.1 Inference on a Discrete Underlying Hazard

Consider a discrete hazards model, i.e., one where the cumulative hazard

A(t) has a positive, finite jump at each failure time. Specifically,



xj , at time t(3);
h(t) = A(t) - A(t-0) = (3)
0 , at other times.
Alternatively, this is an expression of unit mass at the jth ordered failure
time t(j) for a weight function G4(u) so that

RICD)
AMecyy) - Alegy-1)) = J Mw)d6i(u) = h(t(y)) = A5 , (4)

f(3-D

noting t(0) = O. This imposes a step function shape on the cumulative hazard
and survival distribution and is meant to be an innocuous representation of
either function. Further, the weight function G4(u) makes superfluous any
partial survival experience of those items censored between t(j-1) and t(j).
It then formalizes the convention of discarding survival time for censored
data between failures, for example as used by Kalbfleisch and Prentice (1972)
and Breslow (1972), At the other extreme is the convention used by Mantel
(1966), where survival to time t(4j+]) is credited to all those surviving the
jth failure time.

The likelihood for the k increments: A = (A} ,,..,Ax) to the cumulative
hazard is the following product over n individuals:

n ty 51

L(A) = inl [exp{-/ Au)du} AMey) . (5)
= )

In words, each individual's contribution is the survival probability through
their follow-up time to t4 and their failure probability at ti 1f they failed:
6y = 1. Otherwise 8; = O indicates censoring at ti and their likelihood
contribution is their probability of survival to ti. This likelihood can be
organized as a product of factors, each as in (2) with z = 0, at each failure

time. With the discrete hazard described in (3) and (4), the likelihood becomes



k dj
L) = 0 [exp(-ryRy) 2471 (6)
Following Lindley (1965), the posterior distribution of A is obtained hy
normalizing the product of the likelihood L(A) and ; prior distribution of A.
In the spirit of Jeffreys (1961), an independent prior is presumed for each
Kj, reflecting vague information on its positive magnitude. The form
k-1
£'(A) <« jgl Ay (N

is uniformly vague on each In Ay, The posterior then is of the form
" k ”
£7Q) = 1 £70y). (8)

The Kj are independent in the posterior and each is distributed as a gamma

random variable. By inspection,

dj
. Rj dj-1
£ (Ay) = —FZE—;—»KJ exp(-Rjry), 9)
b

which reduces to an exponential when all the failures are distinct, i.e.,
j=1

When a squared error loss function 1s most relevant, the preferred
Bayesian estimator is the posterior mean of the probability of survival. With

a discrete hazards form, the probability of surviving to time t is

S(t) = Il exp(-Aj). (10)
1le>e(y)

Averaging S(t) over the posterior distribution of A becomes the product of the
following integrals:
® Ry dy-1

Spu(t) = 0 ] ——x exp[ -(Ry+1)N3]dAs T, (11)
j|t>t(j) o r(dj) ] . . J



reducing to

{ Rj }dJ y
Spp(t) = Il . (12
DH j|t>t(j) Rj+l

Even with distinct failures, this estimator is different from Kaplan-
Meier's (1958) or Nelson's (1972) estimators. From (6) the maximum
likelihood (ML) estimator of Kj is Ay = dj/Ry, for j=1,2,...,k. Then the ML

estimator of the survival probability (10) is obtained by replacing each Ay

~

by Aj. This yields Nelson's (1972) estimator, i.e.,

~ »~

Sn(t) = I exp(-Aj) = exp{- ) Ayl
jledecy) jlere(y) (13)

More precisely, this is the survival function estimator based upon the
t

cumulative hazard, H(t) = /7 h(u)du, estimator given by Nelson (1972).
o

Lawless (1982) and Elandt-Johnson and Johnson (1980) give excellent

descriptions of Nelson's method. Kaplan and Meier's (1958) product limit

estimator,

SpM(t) = I 1 -y, (14)
j|t>t(j)

can be viewed as a linearized series expansion of each factor in Nelson's

estimator. [Elandt-Johnson and Johnson (1980) note an approximate relation-

ship between SN(t) and Sgy(t) based upon the series linearization of
1n(1-A4).] Alternatively, the Kaplan-Meier estimator is the maximum
likelihood estimator with the discrete hazards model using a binomial
likelihood in which (I-Kj)RJ_dj replaces exp(-RjAj) in the likelihood 4);
see Kaplan and Meier (1958) or Kalbfleisch and Prentice (1980) for
presentations.

The estimators Spp(t), Sn(t), and Sgq(t) have magnitudes in the same
order as their presentation. By comparing the jth factor in (12) and (13), it

follows that the Bayes estimator is larger than Nelson's. And Nelson's



estimator is in turn larger than Kaplan-Meier's, since the first term omitted
in the series expansion of exp{-lj} in (13) is 1/2 Aye

Variances for these survival probability estimators are given next. For
the Bayes estimator, the variance of the probabilit& of surviving to time t is
with respect to the posterior distribution of A. The posterior expectation of

the square of S(t) in (10) is obtained following the same manipulations as in

(11). Then the variance is given by V(y) = E(y?) - E%(y), yielding

visw) - 1 T o n Y,
j|t>t(j) Rj+2 j|t>t(j) Rj+1 (15)
The posterior variance of S(t) reflects the uncertainty contained in the
posterior distribution of A, The multiplicity of failures, dj, and numbers at
risk, Rj, are observed constants from the sample.
Approximate variance formulae for Sy(t) and SkgM(t) condition on the
nunbers at risk, but treat the dj as random variables. For Nelson's

estimator, a variance estimator can be obtained from the information matrix

for A in the standard way., From the second partials of the log-likelihood,

-~

the variance of Xj based upon either the observed or expected information is

estimated by

A A

V(ry) = dj/R§ . (16)
S5ince the jumps in the cumulative hazard are unique to each sample, averaging
over samples not obtained is irrelevant, hence the equality of observed and
expected information for this problem. Now -ln{Sn(t)} is the sum of the

~

independent kj and using a linearized Taylor series approximation,

~ 9 dy
visn(e)) = [sned]” 1 -1 a7)
jlerecy) Ry

The approximate variance for the Kaplan-Meier estimator is given by Greenwood's

formula:



v spu(t)] = I {a4/[Ry(Ry-a ]} © (18)
Jle e
See Greenwood (1926), Kalbfleisch and Prentice (19&0), Elandt-Johnson and
Johnson (1980), or Lawless (1982),

Table 1 contains the calculations for the Bayes, Nelson, and Kaplan-Meier
estimators of the survival function for the data in Kaplan-Meier (1958).

There were four distinct failures occurring at times t(])=0.8, t(2)=3.1,
t(3)=5.4, and t(4)=9.2. The Rj are determined given the censored losses at
times 1.0, 2.7, 7.0, and 12,1, The ordering of the three estimators is
clearly illustrated. Notice that if at the last failure time, all those at
risk failed, the Kaplan-Meier estimator becomes zero. Neither the Nelson, nor
Bayes, estimator would be so dramatically affected. As the Kaplan-Meier
estimator is known to have a negative bias, Sy(t) and Spp(t) offer a potential
advantage by the functional relationships established above. Further comments
on this point are provided in the Discussion section.

The variance estimates for the survival probabilities estimated in Table 1
are presented in Table 2, Those for the Kaplan-Meier and Nelson methods
condition on the Ry and presume the dj are random. Therefore, the variances
for these estimators are smaller than when not conditioning on Rj. Kuzma
(1967) showed this in a comparison of the Kaplan—-Meler variance with that
derived by Chiang (1960) in a stochastic study of life table functions.
However, with less than 407 censored losses in the sample, the underestimation
was negligible, With 50% or more censoring, as in this example, the variances
approximated for Sy(t) and Sgy(t) should be used cautiously.

From a different perspective, the Bayesian variance (15) reflects the
dispersion in the posterior distribution (9) for the function of the Xj in S(t)

given by (10). The smaller variance for the Bayes method is descriptive of



uncertainty in the observed sample, i.e., conditioning on the Ry and dj, rather

than that in the process of sampling under model (3).

[ S8
3]

Inference on a Piecewise Exponential Underlying Hazard

The piecewise exponential hazards model has been suggested as an alterna-
tive to the discrete hazards model by several authors, especially Breslow

(1972). Between failure times this hazard is constant, specifically
h(t) = Ay (19)

for time t in the interval Ij = (t(j—l), t(j)) and noting t(0) = 0. Still
let A = (AM,...,M¢) as with the discrete hazards model, but now Aj is the
constant hazard during Ij rather than the spike in the discrete hazard at t(j).

The likelihood (5) with the plecewise constant hazard (19) becomes

k 642
L) = 0 [ 0 exp{-f  Ajac} T {n4} 7], (20)
T L

where Ijl is the interval of follow-up time for individual % between t(j-1)

and t(y), f.e., 132 = (t(4-1), min(tg, t(3))). Rewriting (20),

k dj '
LQA). = 381 [exp{—kjvj} AL, (21)
where vy = z wiL 3 (22)
xeaj-l

and

{tﬁ - t(3-1) » for t; < t(j)s
Wi = (23)

t(§) -'t(j-l) , for t, 2 ().

Or, wj2 is the width of 14 survived by individual % and V4 is the volume of
"person-years” accumulated during the interval I by the Ry-1 individuals at

risk of failure just before t(j-1).
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The object of estimation is the survival function, i.e., with the piece-
wise exponential hazard,

S(t) = Pr(T?t] = 1I exp{-Kj[t* -1t(j-1)]}. (24)
jeJ(1) k|

where J(i) is the set of integers j=1,2,...,1 with t(4-1) < t < t(3). Then

t(j), for j < i-1;
t* =
b t , for j ={.

As with the discrete hazard model, a preferred Bayes estimator of the survival
probability (24) is its average over the normalized product of the likelihood
- (21) and vague prior (7). Following the derivation of Spu(t) in (12),

d
[f -——Xz—i— S { [ ( ; )]} ]
Spe(t) = 1 A expl-A4lVy + Lty - t(4- ars |, (25)
e jeJ(1) o T(dj) 3 ’ 3 3 4-n 3

which becomes
Vj j
Spe(t) = I : (26)
jeJ(1) vy + (tf - t(j_l))
J

For comparison, maximum likelihood estimation of the corresponding
survival probability replaces each Aj in (24) by its ML estimator, ;j = dj/V;
from (21), The ML estimator of the survival probability S(t) is then
Sﬁi(t) = I exp{-dj(t* - t(j-l))/Vj} 2N
jeJ(4) h|
The jth factor of the Bayes estimator (26) raised to the negative dj power is
1 + (t; - t(j-l))/Vj while that for the ML estimator (27) is exp{(t; - t(j-l))/vj}-

Since this factor for the Bayes estimator of the survival probability 1is the

linear portion of the corresponding exponential factor in Sﬁb(t), it follows
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that the Bayes estimator is at least as large as the ML estimator for every
follow—up time t., Further, the larger the fraction of the n individuals who
are placed on test and are observed to fail, the more the Bayes estimator will
exceed its maximum likelihood analogue. With more factors having small
accumulations of person-years, the factors (t; - t(j-l))/Vj will be larger.

Table 3 contains the Bayes and maximum likelihood estimates of the
survival curve estimates at the four failure times in the Kaplan-Meier (1958)
data. As algebraically shown above, the Bayes estimates are larger than those
by maximum likelihood. Further, the survival curve estimates based upon the
piecewise exponential model are generally larger than those in Table 1 from
the discrete hazards model. This is due to the increments to survival for the
observations censored between failure times, However, when the censoring for
each of the Ry-1 individuals is at t(§), a later fallure time, or after the
last failure time, then Spy(t) will equal Spg(t) at the times of failure.
Between failure times Spy(t) is constant and Spg(t) has a decreasing
exponential shape. With this Mantel (1966) distribution of censoring times,
Sn(t) and Spgp(t) are likewise related.

Variances for the Bayes estimator (26) and maximum likelihood estimator
(27) can be obtained using the same technique as with the discrete hazards
model in (15 aﬁd (17), respectively. The results are

Vj dj Vi dj,Z

vi(s(t)) = @ -[ & ] (28)
JeI(1) (V5 + z(c; - t(3-1)) JeIL) vy + (t; - t(3-1))
and 2
o . 2 dj(tf - t(j—l))
V[SPE(t)] = [spE(t)] ) J 5 . (29)
JeJ(4) Vj

The variance for the ML estimator is an approximation because the V5 have been

considered non-random and there was a linearization of an exponential series.
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Table 4 contains the variances computations for the survival function
estimates in Table 3, The additional increments in survival result in
variance estimates with the Bayes and maximum likelihood approaches that are
no larger, and generally smaller, than their corresponding estimates in Table 2
for the discrete hazards model. The Bayes and maximum likelihood estimators
of variance are descriptive of different types of uncertainty, specifically in
the dispersion of the likelihood and prior product and in repeated sampling,
respectivély. So their relative sizes are not so important, but since the
Bayes approach conditions on the dj and V4, it is natural that its variances

are smaller than those from maximum likelihood.

3. Multiple Samples or Covarilates

By the use of covariates, applications composed of several samples or
heterogeneous individuals may be addressed. The incorporation of this
additional information is made presuming Cox's (1972) log-linear, proportional

formulation given by (1).

3.1 Inference on the Regression Parameters with a Discrete Underlying Hazard

The adaptation of the discrete hazards model to permit the inclusion of
covariates is accomplished by multiplying Ay in (3) and (4) by exp(zB). The
expansion of likelihood (6) to include the p regression coefficients B, as
well as the k increments: A = (A],...,Ax) to the cumulative hazard, gives

k i dj
Lk, B) = T [exp{-ry ) exp(z,8)} A5 explg(gl], (30)
i=1 LeR;
where the sum of the covarfates for those dj individuals failing at t(j) is

XERJ' (31)

As inference on the vector of regression coefficients is of primary
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importance, the marginal posterior distribution of B is obtained by integrating
over the k nuisance parameters A in the joint posterior of A and B. A joint
prior on A and B is specified which is initially vague, again following
Jeffreys (1961). Since the parameter range for each regression coefficient is
the real line, a prior f'(A, B) proportional to (7) is uniformly vague on each
In KJ and on each regression coefficient. Then as per Lindley (1972),
integrating the product of the likelihood (30) and prior f'(A, B) over each Ay

yields an unnormalized marginal posterior for B as follows:

k exp[g(j)g]
f"(g) x n d=s ) (32)
11| 1] ennlz,0)]

Several observations on this result are appropriate.

(a) With distinct failures, i.e., dj = 1 for all k failure times, the
marginal posterior distribution of P yields equivalent inference as
Cox's (1972) approach in the sense that the mode of (32) corresponds
to the maximum likelihood estimator with Cox's (1972, 1975)
conditional, or partial, likelihood and Kalbfleisch and Prentice's
(1973) marginal likelihood. Further, variance estimation based upon
an approximated quadratic shape of the logarithm of this marginal
posterior, or the observed information of Cox's (1972) 1likelihood,
is also equivalent.

(b) With multiple failures at any t(j), i.e., d5 > 2 for at least ome j,
Bayesian inference is equivalent in mode, and approximated quadratic
shape of the logarithm, of this marginal posterior as that based
upon the likelihood described by Breslow (1974). Therefore, this
Bayesian approach suggests that Breslow's (1974) approximation to

Kalbfleisch and Prentice's (1973) marginal likelihood has a
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statistical basis as well as its value for computational
practicality., Statistical practice relies on (32), e.g., as in the
SAS procedure PHGLM. The essence of Bres}ow's (1972, 1974)
approximation was also noted by Peto (19’2), but more from a view of
numerically approximating a probability than from likelihood
considerations,

(c) Under a quadratic loss structure, the posterior mean of B is
preferred to the posterior mode as a point estimator. Even with a
single covariate, numerical integration is needed for the required
computations, However, symmetry of the posterior could be checked
by an evaluation of the third partial of the natural logarithm of
the posterior at the mode., Values close to zero would suggest
symmetry in the posterior distribution and this is when the posterior
mode should reasonably approximate the posterior mean.

(d) The above presentation is for baseline covariates, but results with
time dependent covariates are immediately available when covariables
gl are replaced by z4y¢, i.e., by their value at the time of the jth

failure,

3.2 Inference on the Regression Parameters with a Piecewise Exponential Hazard

The piecewise exponential hazard with concomitant information in log-
linear, proportional form is Kjexp(zﬁ) rather than simply Aj in (19).

Likelihood (21) becomes

k ds
3
L(A, B) = jEl[eXP{-HVj(Q)} Ay exp{s(y)8l], (33)
where z
Vi(g) = wjL exp{z,8} (34)
3 redy_; i 28

and wyg is described with (23). The volume of “person-years", Vy(B), 1s
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weighted by the individual's covariate values and reduces to (22) when the zg
are all zeros.

The marginal posterior for B is the integrated'product of the likelihood
(33) and a parameter space delineating joint prior,'f'(b, g), which is taken to

be proportional to (7). The result is

k exp{s(3)8)
£7 () = 0 - T (35)
j=1 [ 2 Wil exp{gzﬁ}] J
R.E!Rj_l

where g(j) is described with (31) and the shorthand notation, Vi), is
suppressed to show the analogy with (32).

Tais result is proportional to a refinement of Breslow's (1974) likelihood
by incorporating the follow—up time between fallures gurvived by those
i{ndividuals who do not fail on study. Its significance is not in the refine-
ment, but in suggesting that Breslow's (1974) result can be considered as an
alternative likelihood, rather than only a practical approximation to
Kalbfleisch and Prentice's (1973) marginal likelihood. The basis for this
consideration is conditional on the observed data and is obtained by averaging
over the uncertainty in the nuisance parameters with only vague expression of

prior knowledge. Further discussion is included in the next section.
4, Discussion

This last section is composed of three subsections: in the first:
inference on the underlying hazard for a single sample without covariates is
reviewed; in the second: inference for the regression coefficients is briefly
revisited; and in the third: general inference issues In the paper are

considered.
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4,1 Nonparametric Hazard Estimators

The Bayesian estimator (12) of the discrete hazard is contrasted with the
result of Sursarla and Van Ryzin (1976), who derived a nonparametric Bayesian
estimator of survival curves from incomplete observations. Their approach was
a decision theoretic one assuming a Dirichlet process prior. The limit of
their Bayes estimator, as their exponential prior approached zero, reduced to
the Kaplan-Meier estimator when the failures are distinct, 1.e., when all dj=1,
The Bayes estimétor (12) is the posterior mean of the desired function of
parameters from a discrete hazards model. The principles of decision theory
guided the selection of this Bayes approach in choosing the posterior mean as
the point estimator, but it is not as directed as the exponential shape of the
prior which was specified by Sursarla and Van Ryzin. 1In that sense, Spp(t)
could be regarded as a more primitive nonparametric Bayesian estimator of
the survival function. 1In further contrast with the Sursarla and Van Ryzin
paper, the difference between Spy(t) and SkM(t) is stressed rather than their
similarity., In view of the known negative bias of SgM(t), alternative
estimators seemingly should be sought.

The Kaplan-Meier product limit estimator of the survival function has
been the historic, nonparametric choice. Since Chen, et al (1982) documented
that Sgy(t) has a negative bias, either Nelson's estimator or the Rayes
estimator may be an improvement in this regard. However, neither a maximum
likelihood, nor a Bayes, approach generally delivers unbiased estimators. An
assessment of bias in a repeated sampling framework for Spu(t) and Sx(t) could
be made following the Chen, et al (1982) paper. A mean squared error compari-
son may be even more revealing, given the variance estimates in Tabhle 2, A
repeated sampling based comparison study with practical sized samples for

alternative nonparametric estimators of the survival function should be an
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informative effort. (A Master's student, Mr. Thomas Coleman, is performing
such a study at the University of North Carolina).

From the perspective of the statistical theory-of counting processes,
Aalen (1978) identifies Nelson's estimator as an apélication of martingales
and notes a close relationship with the Kaplan-Meier estimator. Yandell (1983)
provides a review of "delta sequence” estimators, of which the kernel rate
estimator with censored survival data 1s the Nelson (1972), or Aalen (1978),
empirical cumulative rate. Informally, the weight functions Gj(u) are
descriptive of this approach. The asymptotic unbiasedness, strong consistency,
and asymptotic normality of the Nelson (1972) estimator are sketched by
Yandell (1983), However, for the purposes of model examination with small
samples or stratification in the analysis of larger studies, comparisons of
such estimators with small and moderate sized samples is needed, e.g., as per

Chen, et al (1982),

4,2 Inference on the Regression Coefficients

A Bayesian approach to this problem was also taken by Kalbfleisch (1978).
However, in his approach a gamma density for the prior distribution of the
cumulative hazard was used. It required specifying an initfal guess at the
underlying hazard and another constant reflecting the weight to be given to
that guess. With distinct failures and to a first order approximation, his
marginal posterior distribution of P was proportional to the marginal likeli-
hood of Kalbfleisch and Prentice (1973) when the weighting constant tended to
vague information on the underlying hazard. With tied failure times,
Kalbfleisch's results were more complicated.

Using Jeffreys' (1961) vague priors, these difficulties were not
encountered., Vague specifications of prior knowledge were to delineate simply

the range of each parameter and to be relatively indifferent to various
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portions of each parameter's range. The parameters of the cumulative hazard
were more directly reflected in the prior. Further, the prior was guided by
the discrete nature of the likelihood of the data, ;ather than imposing |
features onto the likelihood, for example, an absolgtely continuous shape to
the cumulative hazard.

The Bayesian approach with vague priors resulted in a different sol;tion
than that of the frequents' for this problem when tied observations are
present. In simplier problems these two strategies typically agree in
solution and differ only in their interpretations of that solution. from the
Bayesian perspective, there 1is no concern for the possible distinct order of
the observed failures in the sample, Rather there is always a desire for more

precise measurements, in this case of the failure times. Bayes inference is

conditional on the available data, however precise, or imprecise, they may be.

4,3 Two Other Points of Inference

It should be clear that the parameter space for this approach increases
with the sample size. To be nonparametric in the handling of the underlying
hazard, this is necessarily so., Cox (1972), for example, pointed out that
maximum likelihood theory is troubled by such situations in his reply to
Breslow's (1972) proposed piecewise exponential model. With large samples,
there will be sufficient information to discriminate reasonably between
parametric models for the underlying hazard. The problem with small samples
is that the flexibility of several models pose difficult discrimination
problems. After the available biological requirements for the application
have been satisfied, candidate models could be examined by an asymptotic
likelihood method, or an equivalent approach. For example, a life table could
be constructed on follow—up time and a cumulative hazard plot created; see

Elandt-Johnson and Johnson (1980). Then the weighted least squares methodology
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of Grizzle, Starmer, and Koch (1969) could be used to test the adequacy of the
model examined in the cumulative hazard plot. Their error chi-square provides
a measure of goodness—of-fit with large samples.

The use of a flexible parametric model for thé underlying hazard may be
supported from other considerations as well, For example, see the application
in Green and Symons (1983) where the regression coefficient estimates and
their standard errors were almost identical from Cox's (1972) approach And
maximum likelihood estimation with a Weibull hazard and the same log-linear
incorporation of covariates.

There are interesting issues related to the estimation of the underlying
hazard when concomitant information is available. A frequentists' approach is
sketched by Kalbfleisch and Prentice (1980). Specifically, with Breslow's
(1974) piecewise exponential model, the joint likelihood of A and B is
maximized, subject to the constrant that the regression coefficients take on
the value of the maximum likelihood estimator using Breslow's (1974) likeli-
hood. Bailey (1983) considers the joint estimation of A and f. With no tied
failure times, his asymptotic argument supports the use of Kaplan and Meier's
(1958) product limit estimator. Breslow (1972) reports an application where
the covariate had a marked effect on survival, but that his estimator, a
Kaplan-lleier form of estimator (actually Nelson's) obtained by setting the
regression coefficient to zero with Cox's (1972) model, and Cox's (1972) more
complicated estimator of the underlying hazard all agree remarkably well,
Although the number of failures was not reported by Breslow (1972), it appears
that a large sample was availaﬁle. Yandell's (1983) asymptotic consideration
confirms that Nelson's (1972) estimator would also agree quite well with the
other two estimators.

With large samples and in the presence of mild prior information, Bayes
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estimators are known to be similar to maximum likelihood estimators.
Asymptotically the two approaches are the same,as sketched by Lindley (1965).
But, Bayesian considerations offer some insights on the frequentists' results,
Unfortunately, a closed form for the marginal postérior distribution of A is
not available by integrating over the parameter space of B, either the product
of (28) and (7) for the discrete hazard, or the product of (31) and (7) for
the piecewise exponential hazard. Nevertheless, it is the marginal posterior
of A, £"(A), that is desired. For comparison with the frequentists'
conditional approach, the conditional posterior
" £(A, B =B)
£'QAB =B) = ————, (34)
£(8 = B)

could be compared with f“(A). For example with a single covariate a series
expansion of the joint posterior could be integrated term by term and used to
provide bounds on £"(A) to any required accuracy. But the empirical results
of Breslow (1972) and the asymptotic ones of Yandell (1983) suggest that £"(A)
and £"(A| = B) will be very similar. Or, asymptotically A and B are
independent. As noted in the example at the end of section 2.1, differences
between the Bayes and frequentists' approaches may be noteworthy for this

problem, at least with smaller sample sizes.
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