
ABSTRACT

DENG, ZHIBIN. Conic Reformulations and Approximations to Some Subclasses of Nonconvex
Quadratic Programming Problems. (Under the direction of Dr. Shu-Cherng Fang.)

In this dissertation, some subclasses of nonconvex quadratic programming problems are

studied. We first study the nonconvex quadratic programming problem over the standard sim-

plex with application to copositive matrix detection. A sequence of linear conic approximations

are derived to bound the original problem by using semidefinite programming techniques. An

algorithm based on the adaptive approach is developed to detect the copositivity of a given

matrix. Then, we study the nonconvex quadratic programming problem over a set of convex

quadratic constraints. A conic reformulation and approximation with an adaptive scheme for

this problem is also developed. We proved that an ε-optimal solution can be obtained in a

finite number of iterations using the proposed algorithm. Finally, we extend our study to the

bounded nonconvex quadratically constrained quadratic programming problem. A branch-and-

cut algorithm is developed to solve this problem based on some generalized linear and quadratic

polar cuts. The finite termination of the proposed algorithm is proved and our numerical results

confirm its superior performance over other known algorithms in the literature. Directions for

future research are included at the end.
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Chapter 1

Introduction

Quadratically constrained quadratic programming (QCQP) forms an important class of opti-

mization problems. The study of QCQP problems originated from Kuhn and Tucker [71] in

1951 and it is known that QCQP problems are NP-hard in general [85]. The aim of this dis-

sertation is to study the theory of conic reformulations and approximations for solving some

important subclasses of QCQP problems. Three fundamental subclasses of QCQP problems are

particularly studied. The first one is the quadratic optimization over the standard simplex, the

second one is the quadratic optimization over a set of convex quadratic constraints and the

third one is the bounded quadratically constrained quadratic programming problem.

1.1 Statement of Problem and Motivation

A quadratically constrained quadratic programming problem can be defined as

(QCQP)
min xTP 0x+ 2(q0)Tx+ γ0

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, . . . ,m,
(1.1)

where P j ∈ Sn, the space of real symmetric square matrices of order n, qj ∈ Rn, the n-

dimensional real space, and γj ∈ R for j = 0, 1, . . . ,m. Many well-known and hard problems

are subclasses of QCQP problems. We list three of our major interests below.
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1.1.1 Quadratic Programming Problem over the Standard Simplex

A quadratic programming problem over the standard simplex has the following form:

(StQP)
min xTP 0x

s.t. eTx = 1, x ≥ 0,
(1.2)

where e = (1, . . . , 1)T ∈ Rn. This problem is called the standard quadratic programming (StQP)

in some literatures [22, 23, 24].

One notable application of problem (StQP) is the detection of copositivity of the matrix

P 0. Notice that the matrix P 0 becomes copositive, if the optimal value of problem (StQP) is

nonnegative. The concept of copositivity can be traced back to Motzkin [80] in 1952. Using the

cone of copositive matrices in optimization for reformulating hard problems has been studied

only in the last decade. A number of NP-hard problems, such as the binary quadratic problem

[34], the fractional quadratic problem [92], determining the clique number of a graph [81],

graph partitioning [90] and the quadratic assignment problem [91], have been shown to admit

an exact copositive programming reformulation. Unfortunately, Murty and Kabadi [82] proved

that detecting a copositive matrix is a co-NP-complete problem in 1987. Consequently, the

development of approximation theory and efficient algorithms for detecting whether a given

matrix is copositive or not are preliminary requirements for solving these hard problems.

1.1.2 Quadratic Programming Problem over Convex Quadratic Constraints

A quadratic programming problem over a set of convex quadratic constraints has the following

form:

(ETRS)
min xTP 0x+ 2(q0)Tx

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, . . . ,m,
(1.3)

where P 0 ∈ Sn and P j ∈ Sn+, the space of real positive semidefinite matrices of order n, for

j = 1, . . . ,m. If m = 1, P 1 is the identity matrix, q1 = 0 and γ1 < 0, then problem (ETRS)

becomes the classical trust-region subproblem (TRS), which minimizes a nonconvex quadratic

objective function over the unit ball. If m ≥ 2, then the problem is called the extended trust-

region subproblem (ETRS) [36].

Trust-region subproblem is a key subproblem in nonlinear optimization [39] with several

efficient algorithms available [53, 79, 95]. Problem (ETRS) carries extra convex constraints in

TRS, such as elliptic constraints, parallel cuts and so on. It arises from the analysis and relax-

ation of NP-hard combinatorial optimization problems [89]. Therefore, a good approximation to
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problem (ETRS) could help develop efficient estimations for these combinatorial optimization

problems. It also provides a better subroutine for solving nonlinear programming problems.

However, there is no known polynomial-time algorithm for solving problem (ETRS) in general,

even for the case that only one additional strictly convex quadratic constraint is added to TRS.

1.1.3 Bounded Quadratically Constrained Quadratic Programming Problem

A bounded quadratically constrained quadratic programming (BQCQP) problem has the fol-

lowing form:

(BQCQP)

min xTP 0x+ 2(q0)Tx

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, . . . ,m,

l ≤ x ≤ u,

(1.4)

where P j ∈ Sn; l, u and qj ∈ Rn for j = 0, 1, ...,m; and γj ∈ R for j = 1, . . . ,m. Problem

(BQCQP) is NP-hard in general because it generalizes many well-known NP-hard problems,

such as mixed 0-1 linear programming [101] and bilinear programming [119].

Current methods for solving problem (BQCQP) are branch-and-bound (or branch-and-cut)

algorithms with various relaxation schemes embedded [11, 13, 72]. The efficiency of these al-

gorithms is mainly determined by the branch-and-bound (or branch-and-cut) rules and the

tightness of the relaxation schemes. Therefore, development of a good estimation and an adap-

tive branch-and-bound (or branch-and-cut) rule could lead to efficient algorithms for solving

problem (BQCQP).

1.2 Approaches and Results

We start from bounding the global optimal value of problem (StQP) by reformulating it as a lin-

ear conic programming problem defined on the cone of nonnegative quadratic functions over the

standard simplex. This linear conic problem is then approximated by a sequence of linear conic

programming problems defined on the cone of nonnegative quadratic functions over a union of

ellipsoids. Using linear matrix inequality (LMI) representations, each corresponding problem in

the sequence can be solved efficiently by semidefinite programming (SDP) techniques. In order

to speed up the convergence of the approximation sequence and to relieve the computational

effort for solving linear conic programming problems, an adaptive scheme is adopted to refine

the union of the ellipsoids. Based on this scheme, an iterative algorithm is proposed to detect

the copositivity of a given matrix. The results for this part of work have been published in [45].

We then extend the results to problem (ETRS). A linear conic programming problem on the

3



cone of nonnegative quadratic functions over the feasible domain of problem (ETRS) can also

be introduced and similar approximation cones can be obtained based on a revised adaptive

scheme. The approximation cones are further improved by using the reformulation-linearization

technique (RLT). If the feasible domain of problem (ETRS) is bounded and has a nonempty

interior, our proposed algorithm is shown to be able to find an ε-optimal solution in a finite

number of iterations for any given small tolerance ε > 0. The results for this part of work have

been submitted [44].

Finally, we study the problem (BQCQP). The conic reformulation and serval convex re-

laxations for the problem have been derived. A branch-and-cut algorithm based on linear and

quadratic cuts is proposed to solve the problem. It is proven that the proposed algorithm yielded

a globally εr-εz-optimal solution (with respect to feasibility and optimality, respectively) in a

finite number of iterations. In order to enhance the computational speed, an adaptive branch-

and-cut rule is developed. The results for this work has been written in a working paper [46].

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, results on the relations between

QCQP problems and linear conic programming problems are reviewed. Matrix decomposition

and duality theory of linear conic programming are introduced. In Chapter 3, the problem

(StQP) is studied and different approximations and algorithms for detecting copositive matrices

are explored. In Chapter 4, the problem (ETRS) is studied and an algorithm based on conic

reformulation and approximation is developed. In Chapter 5, the problem (BQCQP) is studied

and a branch-and-cut algorithm based on polar cuts is developed. In Chapter 6, we summarize

our work and provide some directions for future research.
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Chapter 2

Preliminary Knowledge

Pardalos and Vavasis [85] proved that nonconvex quadratic programming problems are in gen-

eral NP-hard. Therefore, problem (QCQP) defined in (1.1) is an NP-hard problem. In fact,

some subcases of QCQP problems including the problem (StQP) defined in (1.2) and problem

(ETRS) defined in (1.3) are NP-hard. Since we do not expect to have polynomial time algo-

rithms in the literature for solving the QCQP problems, the existing algorithms for solving

problem (QCQP) can be generally divided into two categories:

1. Branch-and-bound algorithms based on the optimality conditions. The Karush-Kuhn-

Tucker (KKT) conditions and other global optimality sufficient conditions are applied for

designing branch rules while the lower bounds are derived from Lagrangian multipliers or

convex relaxations. See [18, 33, 65, 120].

2. Branch-and-bound algorithms based on the convex relaxation and reformulation tech-

niques. There exist various convex relaxation methods for nonconvex quadratic func-

tions. Some good examples are linear programming relaxation, semidefinite programming

(SDP) relaxation, second-order cone relaxation and reformulation-linearization techniques

(RLT). See [13, 62, 72, 94, 102].

In the rest of this chapter, useful notations, related theory and techniques and major results

are introduced for us to study the QCQP problems.

2.1 Notations

In this dissertation, problems are represented by their abbreviations such as (StQP) and

(ETRS). For a minimization problem, the feasible domain is defined as the set of feasible

solutions whose objective values are strictly less than +∞. For a maximization problem, the
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feasible domain is defined as the set of feasible solutions whose objective values are strictly

greater than −∞. The optimal value of an optimization problem (P ) is denoted by V (P ).

Given an optimization problem (P ), let its feasible domain be FP ⊆ Rn. For any x ∈ FP , if

there exists an open subset of FP containing x, then this open set is a neighborhood of x and x

is an interior point of FP . The set of all interior points is called the interior of FP , denoted by

int(FP ). The smallest closed set containing FP is called the closure of FP , denoted by cl{FP }.
We have

int(FP ) ⊆ FP ⊆ cl{FP } and cl{int(FP )} = cl{FP }.

The notation Sn denotes the set of real symmetric matrices of order n, Sn+ denotes the set of

positive semidefinite matrices of order n, and Sn++ denotes the set of positive definite matrices

of order n. For two real symmetric matrices A = (Aij) and B = (Bij) in Sn, the inner product

of A and B is defined by

A •B =

n∑
i=1

n∑
j=1

AijBij . (2.1)

2.2 QCQP and Linear Conic Programming Problems

A cone K is a subset of a given space that satisfies

λx ∈ K for all x ∈ K and λ ≥ 0.

If K has the property of

“x ∈ K and − x ∈ K” if and only if “x = 0”,

then it is a pointed cone. The cone K is solid if it has a nonempty interior. If K is pointed, solid,

closed and convex, then we say the cone K is proper.

Given a set F ⊆ Rn, the convex hull of F , denoted by conv{F}, is defined as the smallest

convex set containing F , and the conic hull of F , denoted by cone{F}, is defined as the smallest

convex cone containing F . From [28], we know

conv{F} =

{
x ∈ Rn

∣∣∣∣ x =

r∑
i=1

αix
i for some r ∈ N, xi ∈ F , 0 ≤ αi ≤ 1,

i = 1, . . . , r, such that

r∑
i=1

αi = 1

}
,
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and

cone{F} =

{
x ∈ Rn

∣∣∣∣ x =
r∑
i=1

αix
i for some r ∈ N, xi ∈ F , αi ≥ 0 and i = 1, . . . , r

}
,

where N is the set of positive integers. It is not difficult to see that

conv{F} ⊆ cone{F} and cone{conv{F}} = cone{F}.

Given a cone K, a linear conic programming (LCoP) problem is defined as

(LCoP)

min C ·X
s.t. Ai ·X = bi, i = 1, . . . ,m,

X ∈ K
(2.2)

where the notation “·” is the inner product in the relevant space. Among all the linear conic

programming problems, three subclasses are widely used in theoretical study and practical com-

puting. They are linear programming (LP) problems, second order cone programming (SOCP)

problems and positive semidefinite programming (SDP) problems.

In an LP problem, K = Rn+, C, X, Ai, i = 1, . . . ,m, are vectors in Rn, b = (b1, . . . , bm)T ∈
Rm and the inner product · is defined by X · Y = XTY .

In an SOCP problem, K = {[ tx ] ∈ Rn+1
∣∣t2 ≥ xTx for t ∈ R+ and x ∈ Rn} ⊆ Rn+1 is the

second order cone, C, X, Ai, i = 1, . . . ,m, are vectors in Rn+1, b = (b1, . . . , bm)T ∈ Rm and

the inner product · is defined by X · Y = XTY .

In an SDP problem, K = Sn+, C, X, Ai, i = 1, . . . ,m, are matrices in Sn, b = (b1, . . . , bm)T ∈
Rm and the inner product · is defined by X · Y = X • Y as defined in (2.1).

All these three types of problems can be solved in polynomial time (ref. [28, 48, 124]).

In order to derive the dual problem of (LCoP), we need the concept of dual cone. The dual

set of a nonempty set F is defined as

F∗ =
{
x
∣∣ x · y ≥ 0 for all y ∈ F

}
. (2.3)

Note that F∗ is always a closed and convex cone. When F = K is a cone, the dual cone K∗ of

K is defined as

K∗ =
{
x
∣∣ x · y ≥ 0 for all y ∈ K

}
. (2.4)

Dual cones satisfy the following properties:

• K∗ is closed and convex.

• K1 ⊆ K2 implies K∗2 ⊆ K∗1.
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• If K is solid, then K∗ is pointed.

• If the closure of K is pointed, then K∗ is solid.

• (K∗)∗ is the closure of the convex hull of K.

These properties show that if K is a proper cone, then so is its dual K∗ and (K∗)∗ = K.

By using the concept of dual cone, the dual problem of (LCoP) has the following form

(LCoD)
max bT y

s.t. C −
∑m

i=1 yiAi ∈ K∗
(2.5)

Since the proper cones have more desirable properties, without any specific statement, we

assume that K and K∗ are proper in problems (LCoP) and (LCoD), respectively, in the rest of

this chapter.

Sturm and Zhang [117] established the equivalence relation between quadratic programming

problems and linear conic programming problems. In fact, any quadratic optimization problem

has an equivalent linear conic programming problem form. In order to establish this equivalence

relation, we need two concepts: homogenization and the cone of nonnegative quadratic functions.

Formally, for a nonempty set F ⊆ Rn, its homogenization is given by

HF := cl

{[
t

x

]
∈ R++ ×Rn

∣∣∣∣∣x/t ∈ F
}
, (2.6)

which is a closed cone (not necessary to be convex though) in Rn+1. The cone of nonnegative

quadratic functions over F is given by

NF :=

{[
z0 zT

z Z

]
∈ Sn+1

∣∣∣∣∣xTZx+ 2zTx+ z0 ≥ 0 for all x ∈ F

}
, (2.7)

where Z ∈ Sn, z ∈ Rn and z0 ∈ R. It was proved by Sturm and Zhang [117] that the cone NF

can be represented by vectors from HF . We state the result in the next theorem.

Theorem 2.2.1. For any nonempty set F , it holds that

NF =
(
conv

{
yyT

∣∣ y ∈HF
})∗

. (2.8)

By using the fact that

cl{cone{yyT |y ∈ F}} = cone{yyT |y ∈ cl{F}} (2.9)
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(see Lemma 3.1 in [73] or Lemma 1 in [117]) and HF is a closed cone, we can dualize Theorem

2.2.1 to get

N ∗
F = conv{yyT |y ∈HF}. (2.10)

Especially, when F is closed and bounded, we have

N ∗
F = cone

{
yyT

∣∣∣∣∣y =

[
1

x

]
, x ∈ F

}
. (2.11)

For the following nonconvex quadratic programming problem (NQP):

(NQP)
inf xTP 0x+ 2(q0)Tx+ γ0

s.t. x ∈ F ,
(2.12)

where ∅ 6= F ⊆ Rn is a possibly nonconvex domain, it is equivalent to the linear conic pro-

gramming problem (MP) defined as

(MP)
inf

[
γ0 (q0)T

q0 P 0

]
• Z

s.t. Z11 = 1, Z ∈ N ∗
F .

(2.13)

In principle, the nonconvex quadratic problem (NQP) and the convex problem (MP) are equiv-

alent. But the fact that we can reformulate a general nonconvex problem (NQP) into a linear

conic problem (MP) does not necessarily make such a problem easier to solve. In fact, all the

implicit “difficult” constraints originating from the feasible domain F are packed into the cone

N ∗
F . Only if we can efficiently solve problem (MP) and decompose the optimal solution of (MP)

to get a solution of problem (NQP) in polynomial time, then we can say that there exists an

efficient algorithm for solving the original problem (NQP).

2.2.1 Some Examples

In this subsection, two cones of nonnegative quadratic functions are studied. The first one is

the well-known positive semidefinite cone.

Theorem 2.2.2. N n
R = Sn+1

+ = N ∗
Rn.

Proof. It is easy to see that Sn+1
+ ⊆ NRn . On the other hand, if there is a nonzero matrix

U =

[
U11 uT

u Ū

]
∈ NRn \Sn+1

+ where U11 ∈ R, u ∈ Rn, and Ū ∈ Sn+, then there exists a nonzero

vector y =

[
t

x

]
∈ Rn+1 with t ∈ R and x ∈ Rn such that yTUy < 0.

9



If t 6= 0, then yTUy = t2

[
1

x/t

]T
U

[
1

x/t

]
< 0. This contradicts the assumption that U ∈ NF .

If t = 0, then yTUy = xT Ūx < 0. Considering the vector λx ∈ Rn with λ > 0 being sufficiently

large, we have [
1

λx

]T
U

[
1

λx

]
= U11 + 2λuTx+ λ2xT Ūx < 0

where the last inequality holds because xT Ūx < 0 and λ is sufficiently large. This contradicts

the assumption U ∈ NRn . Therefore, NRn = Sn+1
+ . Moreover, by using the fact that (Sn+1

+ )∗ =

Sn+1
+ , we have N ∗

Rn = (Sn+1
+ )∗ = Sn+1

+ .

See Figure 2.1 for the plot of S2
+.
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1.5
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Figure 2.1: Boundary of the positive semidefinite cone S2
+ =

[
x y
y z

]
.

The second one is the cone of copositive matrices

Cn =
{
M ∈ Sn

∣∣xTMx ≥ 0 for all x ∈ Rn+
}
. (2.14)

Its dual cone, the completely positive cone, is defined as

C∗n =

{
M ∈ Sn

∣∣∣M =
r∑
i=1

xi(xi)T for some r ∈ N, xi ∈ Rn+ and i = 1, . . . , r

}
. (2.15)
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Notice that C∗n  Sn+  Cn.

Theorem 2.2.3. NRn
+

= Cn+1 and N ∗
Rn

+
= C∗n+1.

Proof. For any x ∈ Rn+ and U ∈ Cn+1,

[
1

x

]T
U

[
1

x

]
≥ 0 holds by the definition of Cn+1. Thus,

Cn+1 ⊆ NRn
+

. On the other hand, the same argument in Theorem 2.2.2 applies here except that

the vector y is in Rn+1
+ instead of in Rn+1. This proves that NRn

+
= Cn+1. By dualizing both

NRn
+

and Cn+1, we have N ∗
Rn

+
= C∗n+1.

See Figure 2.2 for the plot of the boundary of C2.
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Figure 2.2: Boundary of the copositive cone C2 =
[
x y
y z

]
.

2.3 Matrix Decomposition

Since an efficient algorithm for decomposing a matrix into desired vectors is important in obtain-

ing the optimal solution of problem (NQP), we review some results about matrix decomposition

in this section. Related results can be found in [4] and [125].

For any X ∈ Sn+, X has a rank-one decomposition, that is

X =

r∑
i=1

xi(xi)T

where r ∈ N is the rank of X and xi ∈ Rn for i = 1, . . . , r (ref. [52] or [61]). Although
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the decomposition exists without any doubt for each X ∈ Sn+, this decomposition may not

satisfy additional conditions, such as (xi)TY xi ≤ 0, i = 1, ..., r, for a given matrix Y ∈ Sn.

The following theorem says that such decomposition does exist and it can be accomplished in

polynomial time. This result is referred to [125].

Theorem 2.3.1. Let Y be a given symmetric matrix in Sn and X be a positive semidefinite ma-

trix with rank r, 0 < r ≤ n. Suppose that X •Y ≤ 0, then there exists a rank-one decomposition

of X running in polynomial time to find xi ∈ Rn, i = 1, . . . , r, such that

X =
∑r

i=1 x
i(xi)T ,

(xi)TY xi ≤ 0, i = 1, ..., r.
(2.16)

In particular, one can always find xi, i = 1, . . . , r, in polynomial time such that

X =
∑r

i=1 x
i(xi)T ,

(xi)TY xi = X • Y/r, i = 1..., r.
(2.17)

The proof of Theorem 2.3.1 in [125] is a constructive one, which indicates that the decom-

position can be achieved in polynomial time. The following theorem from [4] deals with a more

complicated case in which two equality constraints need to be satisfied.

Theorem 2.3.2. Let Y1, Y2 be any two symmetric matrices in Sn and X = x1(x1)T + · · · +
xr(xr)T with 3 ≤ r ≤ n. If there exist δ1 and δ2 satisfying

(x1)TY1x
1 = (x2)TY2x

2 = δ1,

((x1)TY2x
1 − δ2)((x2)TY1x

2 − δ2) < 0
(2.18)

then one can find a vector x̃1 ∈ Rn in polynomial time such that X = x̃1(x̃1)T + · · ·+ x̃r(x̃r)T

and

(x̃1)TY1x̃
1 = δ1,

(x̃1)TY2x̃
1 = δ2.

(2.19)

The results of matrix decomposition in a complex vector space can be found in [5, 63, 75].

Since our interest is in the real space, those results are omitted here. Recent results on matrix

decomposition can be found in [66] and [118]. In general, the rank-one decomposition of a matrix

with additional constraints to be satisfied is not an easy job.
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2.4 Duality Theory of LCoP Problems

Problem (QCQP) is a special case of problem (NQP), hence it can also be reformulated as

a linear conic programming problem, which has the same form as (MP) defined in (2.13).

Consequently, the optimality conditions and duality properties of (LCoP) are useful in solving

problem (QCQP). In this section, we review the optimality conditions and duality theorems

of linear conic programming problems. For the optimality conditions and duality properties on

nonlinear conic programming problems, one may refer to [6, 7, 40, 86, 112, 113, 114, 115].

First, we introduce the weak duality theorem for problem (LCoP).

Theorem 2.4.1 (Weak Conic Duality Theorem). Assume that problems (LCoP) and (LCoD)

are both feasible. Then, the optimal value of problem (LCoD) is a lower bound for the optimal

value of problem (LCoP).

The weak duality theorem for problem (LCoP) is much weaker than the duality theorem

for linear programming (LP). For LP problems, as long as both primal and dual problems

are feasible, then we actually have the strong duality property, i.e., the optimal values of

the primal and dual problems are equal. However, in order to get a similar strong duality

result for problem (LCoP), we require the condition that the primal problem (LCoP) is strictly

feasible, i.e., there exists an X ∈ int(K) such that Ai ·X = bi for i = 1, . . . ,m. Geometrically

speaking, A ∩ int(K) 6= ∅, where A = {X
∣∣Ai · X = bi, i = 1, . . . ,m} is an affine space.

Similarly, we say problem (LCoD) is strictly feasible if there exists y = (y1, . . . , ym)T such that

C −
∑m

i=1 yiAi ∈ int(K∗). Then we have the next strong duality theorem.

Theorem 2.4.2 (Strong Conic Duality Theorem). Consider problem (LCoP) defined in (2.2)

along with its conic dual problem (LCoD) defined in (2.5).

a. If problem (LCoP) is bounded below and strictly feasible, then problem (LCoD) is feasible,

an optimal solution is attainable for problem (LCoD) and the optimal values of problems

(LCoP) and (LCoD) are equal.

b. If problem (LCoD) is bounded above and strictly feasible, then problem (LCoP) is feasible,

an optimal solution is attainable for problem (LCoP) and the optimal values of problems

(LCoP) and (LCoD) are equal.

Based on the strong conic duality theorem, the conic optimality conditions for a primal-dual

feasible pair (X∗, y∗) can be derived. The result is similar to the optimality conditions for LP

problems.

Corollary 2.4.3 (Conic Optimality Conditions). Assume that at least one of the problems

(LCoP) and (LCoD) is bounded and strictly feasible. Then a primal-dual feasible pair (X∗, y∗)
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is a pair of optimal solutions to the respective problems if and only if

C ·X∗ = bT y∗ (zero duality gap)

or

X∗ ·

(
C −

m∑
i=1

y∗iAi

)
= 0 (complementary slackness)

For more results on the conic duality theories, one may refer to [20] and [28].

2.5 Linear Matrix Inequality and Reformulation-Linearization

Technique

In this section, we introduce two important tools that will be used in the rest of this dissertation.

2.5.1 Linear Matrix Inequality

A linear matrix inequality (LMI) is an expression of the form

A0 + y1A1 + · · ·+ ymAm < 0 (2.20)

where A0, . . . , Am are given n × n symmetric matrices, y = (y1, . . . , ym) is a vector of real

variables, and < is an order on Sn+, i.e., B < 0 means B is a positive semidefinite matrix. The

history of LMIs can go back to 1890 when Lyapunov published his seminal work introducing

what we now call Lyapunov theory. In 1940s, Lur’e et al. applied LMIs to important (and

difficult) practical problems in control engineering [76]. But only small size LMIs can be solved

“by hand.” In 1960s, Yakubovich et al. showed how to solve a certain family of LMIs by graphical

methods [121, 122]. In late 1980s, Nesterov and Nemirovskii developed interior-point algorithms

for solving LMIs [84]. Several interior-point algorithms have been implemented and tested on

specific families of LMIs that arise in control theory, and found to be extremely efficient. For

the more detailed history of LMIs, one may refer to [27].

There are two reasons to study LMIs in this dissertation:

(i) The form of an LMI is very general. Linear inequalities, convex quadratic inequalities,

matrix norm inequalities and various other inequalities can all be rewritten as LMIs

[119]. This is very useful when deriving the conic reformulations of QCQP problems. For

example, an elliptic constraint described by

(x− xc)TQ(x− xc) ≤ 1
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where Q ∈ Sn++ and xc ∈ Rn can be expressed by the following LMI using the Schur

complement lemma [28]: [
1 (x− xc)T

(x− xc) Q

]
< 0.

(ii) An LMI is a convex constraint and can be solved efficiently [50]. Consequently, addi-

tional LMI constraints in convex optimization problems (such as semidefinite program-

ming problems) will not increase the complexity. This is very useful when developing conic

approximations to QCQP problems. By adding some LMI constraints to an SDP problem

used to estimate the original QCQP problem, we may obtain a better bound. Here, LMI

constraints actually play a role of valid inequalities for solving SDP problems.

2.5.2 Reformulation-Linearization Technique

In this subsection, we describe a technique, called reformulation-linearization technique (RLT),

which generates LMIs for SDP problems. A recent review paper on RLT can be referred to

[108].

RLT originated in [1, 2, 3]. It initially focused on solving 0-1 and mixed 0-1 linear and

polynomial programming problems [100, 101] and later branched into the more general family of

continuous, nonconvex polynomial programming problems [103, 104, 107]. The RLT essentially

consists of two steps: a reformulation step in which certain additional nonlinear valid inequalities

are automatically generated, and a linearization step in which each product term is replaced

by a single continuous variable. Here is an example to demonstrate the procedure of RLT.

Example 2.5.1. Consider the following box constrained nonconvex quadratic programming

problem:

(BQP)
min

x1

x2

x3


T  −25 −1500 858

−1500 −1 −14

858 −14 −51


x1

x2

x3

+

3112

−4

162


T x1

x2

x3


s.t. 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1.

The optimal value of problem (BQP) is −2.5 with an optimal solution x1 = 0, x2 = 1, x3 = 0.
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The SDP relaxation for problem (BQP), due to Shor [110], has the following form:

(BQP-SDP)

min


1 1556 −2 81

1556 −25 −1500 858

−2 −1500 −1 −14

81 858 −14 −51

 •


1 x1 x2 x3

x1 X11 X12 X13

x2 X21 X22 X23

x3 X31 X32 X33


s.t. 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1,

1 x1 x2 x3

x1 X11 X12 X13

x2 X21 X22 X23

x3 X31 X32 X33

 < 0.

The optimal value of problem (BQP-SDP) is −179.0641, which is a lower bound for prob-

lem (BQP). The reformulation step in RLT generates the following LMIs (or valid nonlinear

inequalities):

xi(xj − 1) ≤ 0, i, j ∈ {1, 2, 3}

from the constraints 0 ≤ xi, xj ≤ 1 for i, j = 1, 2, 3. The linearization step in RLT replaces the

product terms xixj by a single variable Xij for i, j = 1, 2, 3, leading to the linear inequalities:

Xij − xi ≤ 0, i, j ∈ {1, 2, 3}.

Therefore, after applying RLT, we arrive at a new relaxation problem:

(BQP-RLT)

min


1 1579 −109 −40

1579 −103 −1506 −17

−109 −1506 151 27

−40 −17 27 −48

 •


1 x1 x2 x3

x1 X11 X12 X13

x2 X21 X22 X23

x3 X31 X32 X33


s.t. 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x3 ≤ 1,

1 x1 x2 x3

x1 X11 X12 X13

x2 X21 X22 X23

x3 X31 X32 X33

 < 0,

X11 − x1 ≤ 0, X22 − x2 ≤ 0, X33 − x3 ≤ 0,

X12 − x1 ≤ 0, X12 − x2 ≤ 0, X13 − x3 ≤ 0,

X13 − x1 ≤ 0, X23 − x2 ≤ 0, X23 − x3 ≤ 0.

The optimal value of problem (BQP-RLT) is −2.5 with an optimal solution x1 = 0, x2 = 1, x3 =

0, which is the same as problem (BQP). Notice that problem (BQP) is NP-hard in general,
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while problem (BQP-RLT) is polynomial-time solvable.

As we can see from Example 2.5.1, adding LMIs (or valid nonlinear inequalities) generated

by RLT could effectively improve the bounds obtained by SDP relaxation. This technique will

be used in our study.
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Chapter 3

Quadratic Programming Problems

over the Standard Simplex

In this chapter, we focus on quadratic optimization problems over the standard simplex and

its application to the detection of copositive matrices. A sequence of linear conic programming

problems are solved to approximate the original problem by using the semidefinite program-

ming techniques. An adaptive approximation scheme is developed to speed up the convergence

and relieve the computational effort of the proposed algorithm. Numerical examples and com-

putational results are reported at the end of this chapter.

3.1 Introduction

A real n × n matrix M is copositive if the homogeneous quadratic form xTMx ≥ 0 for all

x ∈ Rn+ = {x ∈ Rn|x ≥ 0}. Since the copositivity of a nonsymmetric matrix M can be

determined by detecting a corresponding symmetric matrix M+MT

2 , we assume that the given

matrix M is symmetric in this chapter. The copositive cone Cn is a cone consisting of all n× n
copositive matrices, and obviously Sn+ ⊆ Cn. Recall that the inner product of two matrices A,

B ∈ Sn is defined as A • B = tr(ATB) =
∑n

i=1

∑n
j=1AijBij . The dual cone of Cn, denoted by

C∗n ⊆ Sn, is the so-called completely positive cone.

The study of copositivity can be traced back to Motzkin [80] in 1952. Both of the cones Cn
and C∗n are found to be useful in quadratic and combinatorial optimization. For example, Quist

et al. [93] suggested that a stronger convex relaxation for a general quadratic programming

problem can be derived by using the copositive cone Cn rather than the positive semidefinite

cone Sn+. Also, the well-known binary quadratic programming problem can be reformulated

as a completely positive programming problem in [34]. Other applications of copositive and

completely positive cones in quadratic optimization can be found in [22], [92] and the references
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therein. As to the applications to combinatorial optimization, de Klerk and Pasechnik [69]

derived a copositive formulation for determining the stability number of a graph. Gvozdenović

and Laurent found a copositive formulation for the chromatic number of a graph in [56]. Other

references include [47] and [90].

Checking whether a given matrix is copositive is proven to be co-NP-complete by Murty

and Kabadi in [82]. For a matrix with a special structure, such as being tridiagonal and acyclic,

checking its copositivity is possible in linear time ([21] and [64]). For symmetric matrices of

order no more than 5, Andersson et al. [10] gave the necessary and sufficient conditions to

determine copositivity. Hiriart-Urruty and Seeger [59] wrote a review on copositivity criteria

based on matrix structural properties. The above approaches are only suitable for detecting the

copositivity of moderate size matrices because of computational requirements. For this purpose,

Bundfuss and Dür [31] proposed using global optimization techniques to check copositivity.

Their criterion arises from the representation of the quadratic form in barycentric coordinates

with respect to the standard simplex and its simplicial partitions thereof. As the partition gets

finer and finer, all strictly copositive matrices are captured. This approach gives very good

numerical results for many matrices. Most recently, Bomze and Eichfelder [25] present three

new copositivity tests based on the difference-of-convex (d.c.) decompositions, and incorporate

them into a branch-and-bound algorithm of the ω-subdivision type. These tests employ linear

programming and convex quadratic programming techniques. The results of their numerical

experiments look very promising. Related papers include [42] and [67]. Other works worth

mentioning are the approximation hierarchies for the copositive cone developed in the last

decade. Here, we only refer to the notable papers [87], [88] and [126]. A common limitation

of these uniform approximation hierarchies is that the cost of computation in each hierarchy

increases rapidly as the number of hierarchy increases. Hence, they are not suitable for detecting

the copositivity of medium or large size matrices.

As Bomze and Eichfelder pointed out in [25], “there are but a few implemented numerical

algorithms which apply to general symmetric matrices without any structural assumptions or

dimensional restrictions and are not merely recursive but rather focus on generating subprob-

lems in a somehow data-driven way.” In this chapter, we present a new recursive algorithm

dealing with both issues as mentioned in the quote. The subproblem size of our algorithm does

not increase too fast, as it iterates and an adaptive scheme is adopted such that the information

in the matrix data is embedded in each iteration.

This rest of this chapter is arranged as follows. In Section 3.2, we introduce some properties

of the cone of nonnegative quadratic functions, which is the basic ingredient of our algorithm.

In Section 3.3, the quadratic optimization problem over the standard simplex for copositivity

determination is transformed into an equivalent linear conic programming problem, which is

then approximated by another solvable linear conic programming problem defined on the dual
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of the cone of nonnegative quadratic functions over a union of ellipsoids. The linear matrix

inequalities (LMI) representation of this cone is also presented. In Section 3.4, an adaptive

scheme is designed to refine the union of ellipsoids, and the finite termination of the proposed

algorithm is proved. At last, some numerical results are provided to illustrate the validity and

efficiency of the proposed algorithm.

3.2 The cone of nonnegative quadratic functions

In Chapter 2, we introduced the cone of nonnegative quadratic functions, NF , over a given set

F . In this section, we further study the properties of this cone, especially for some special cases

of F .

For any nonempty set F ⊆ Rn, it is obvious that Sn+1
+ ⊆ NF by definition of (2.7). Since

int(Sn+1
+ ) 6= ∅, NF is always solid. The next theorem offers the property of the boundary points

of NF .

Theorem 3.2.1. Assume the nonempty set F ⊆ Rn is closed and bounded. For a given matrix

U ∈ NF , the following three statements are equivalent:

(1) U is a boundary point of NF ;

(2) fU (x) =

[
1

x

]T
U

[
1

x

]
≥ 0 for any x ∈ F and there exists at least one x̄ ∈ F such that

fU (x̄) = 0;

(3) U ∈ NF , and U − σ

[
1 01×n

0n×1 0n×n

]
/∈ NF for any σ > 0, where 0m×n is an m × n matrix

of all zeros.

Proof. (1) ⇒ (2) Assume U is a boundary point of NF , then fU (x) ≥ 0 for all x ∈ F by

definition. If fU (x) > 0 for all x ∈ F , since F is bounded and closed, then minx∈F fU (x) = β > 0.

Denote γ = max

{
‖Z‖

∣∣∣∣∣Z =

[
1 xT

x xxT

]
, x ∈ F

}
, where ‖Z‖ =

√
Z • Z. Since F is bounded,

then γ < +∞. Therefore, for any real symmetric matrix U0 ∈ Sn+1 such that ‖U0‖ < β
γ , we

have fU+U0(x) =

[
1

x

]T
U

[
1

x

]
+

[
1

x

]T
U0

[
1

x

]
> β − γ βγ = 0 for all x ∈ F . Thus, U + U0 ∈ NF

and U is an interior point of DF , which contradicts the assumption. Therefore, there exists at

least one x̄ ∈ F such that fU (x̄) = 0.

(2) ⇒ (3) If fU (x) ≥ 0 for any x ∈ F and fU (x̄) = 0 for some x̄ ∈ F , then fU (x̄)− σ < 0 for

any σ > 0, which is equivalent to U − σ

[
1 0

0 0

]
/∈ NF for any σ > 0.

(3) ⇒ (1) This follows from the definition of boundary points.
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A proper cone is important for numerical stability and feasibility of an algorithm. A natural

question is when will the cone NF be proper. The answer is given in the next theorem.

Theorem 3.2.2 ([74]). If the set F ⊆ Rn has a nonempty interior, then both of the cone NF

and its dual cone N ∗
F are proper.

3.2.1 A special case of F

In this subsection, we specifically consider a special case of F = E = {x ∈ Rn|xTAx+2bTx+c ≤
0}, which is a full-dimensional ellipsoid. The next theorem, which is equivalent to Theorem 2.3.1,

is useful when we develop the linear matrix inequality (LMI) representations of NE and N ∗
E .

Theorem 3.2.3. Given any A ∈ Sn++, b ∈ Rn, c ∈ R and a nonzero matrix Y ∈ Sn+1 that

satisfies [
c bT

b A

]
• Y ≤ 0, Y ∈ Sn+1

+ ,

there exists a rank-one decomposition of Y such that

Y =
r∑
i=1

αiy
i(yi)T (3.1)

with some r ∈ N, αi > 0, yi =

[
1

xi

]
and (xi)TAxi + 2bTxi + c ≤ 0 for i = 1, 2, ..., r.

As we have shown in Theorem 2.3.1, this decomposition can be done in polynomial time

([117] and [125]). Now we can prove the next theorem.

Theorem 3.2.4. For a full-dimensional ellipsoid E = {x ∈ Rn|xTAx + 2bTx + c ≤ 0} where

A ∈ Sn++, b ∈ Rn and c ∈ R, we have

N ∗
E = cone

{
yyT ∈ Sn+1

∣∣∣∣∣y =

[
1

x

]
, x ∈ E

}

=

{
Y ∈ Sn+1

+

∣∣∣∣∣
[
c bT

b A

]
• Y ≤ 0

}
.

(3.2)

Proof. The first equation holds due to (2.11) and the fact that E is closed and bounded. We

only need to prove the second equation. Suppose that Y =
∑r

i=1 αiy
i(yi)T ∈ Sn+1

+ (Y 6= 0)

with yi =

[
1

xi

]
, xi ∈ E and αi > 0 for i = 1, ..., r (r ∈ N). Then, (yi)T

[
c bT

b A

]
yi ≤ 0 for all
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yi. Consequently, [
c bT

b A

]
• Y =

r∑
i=1

αi(y
i)T

[
c bT

b A

]
yi ≤ 0.

Conversely, for any Y ∈ Sn+1
+ (Y 6= 0) with

[
c bT

b A

]
• Y ≤ 0, there exists yi =

[
1

xi

]
, where

(xi)TAxi + 2bTxi + c ≤ 0 and αi > 0 for i = 1, ..., r (r ∈ N), such that Y =
∑r

i=1 αiy
i(yi)T

according to Theorem 3.2.3. Therefore, xi ∈ E . This competes the proof.

Theorem 3.2.4 gives the LMI representation of N ∗
E and the following theorem gives the LMI

representation of NE . The proof is the same as Corollary 5 of [117].

Theorem 3.2.5. For a full-dimensional ellipsoid E = {x ∈ Rn|xTAx + 2bTx + c ≤ 0} where

A ∈ Sn++, b ∈ Rn and c ∈ R, we have

NE =

{
U ∈ Sn+1

∣∣∣∣∣U + λ

[
c bT

b A

]
∈ Sn+1

+ for some λ ≥ 0

}
. (3.3)

3.3 Conic Reformulation and Approximation Cones

To detect whether a given matrix is copositive, we can formulate this problem as an equivalent

quadratic programming problem over the standard simplex F∆ and then reformulate the prob-

lem as a linear conic programming problem over the cone N ∗
F∆

. Since there is no known efficient

algorithm to check whether a matrix is in the cone N ∗
F∆

, the cone N ∗
F∆

is uncomputable. Thus,

we introduce a new cone N ∗
E , the dual of the cone of nonnegative quadratic functions over a

union of ellipsoids E , to approximate the cone N ∗
F∆

and present some important properties of

NE and N ∗
E .

3.3.1 Conic reformulation

Recall that a matrix M ∈ Sn is copositive if its homogeneous quadratic form f(x) = xTMx ≥ 0

for all x ∈ Rn+. Therefore, M is copositive if and only if the optimal value V (StQP) ≥ 0 for the

following problem:

(StQP)
min xTMx

s.t. x ∈ F∆ =
{
x ∈ Rn|eTx = 1, x ≥ 0

}
,

(3.4)

where e = (1, · · · , 1)T ∈ Rn. The problem is the so-called standard quadratic programming

problem. Some references for solving the problem are [23], [24] and [70]. However, our aim here

is to determine the sign of the optimal value in order to detect the copositivity of matrix M ,
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not the exact optimal value. Therefore, we do not need to solve problem (StQP) exactly, but

to obtain a good estimation. In the rest of this subsection, we will reformulate problem (StQP)

to an equivalent linear conic programming problem, as shown in Section 2.2. Define the cone

of nonnegative quadratic functions over F∆ as

NF∆
=

U ∈ Sn+1

∣∣∣∣∣
[

1

x

]T
U

[
1

x

]
≥ 0 for all x ∈ F∆

 , (3.5)

and define the set

ZF∆
=

Y ∈ Sn+1

∣∣∣∣∣Y =

[
1

x

][
1

x

]T
for some x ∈ F∆

 . (3.6)

Moreover, let cone{ZF∆
} = {Y ∈ Sn+1|Y = α1Z1 + · · · + αrZr for some r ∈ N, αi ≥ 0, Zi ∈

ZF∆
, i = 1, ..., r} be the conic hull of the set ZF∆

. Since F∆ is closed and bounded,

N ∗
F∆

= cone{ZF∆
} (3.7)

is the dual cone of NF∆
according to (2.11). From Section 2.2, problem (StQP) is equivalent to

the following linear conic programming problem (CP-StQP):

(CP-StQP)

min H • Y
s.t. Y11 = 1,

Y ∈ N ∗
F∆
,

(3.8)

where matrix H =

[
0 0

0 M

]
∈ Sn+1 and Y11 is the first entry of matrix Y . By the linear conic

duality theory in [20], the dual of the problem (CP-StQP) is defined by

(CD-StQP)

max σ

s.t.

[
−σ 0

0 M

]
∈ NF∆

, σ ∈ R.
(3.9)

Since the set F∆ is nonempty, problem (CP-StQP) is always feasible. Also, for any given matrix

M , we can choose σ̄ small enough such that σ̄ < V (StQP) < +∞ due to the fact that the set

F∆ is closed and bounded. Then

[
−σ̄ 0

0 M

]
is an interior point of NF∆

according to Theorem

3.2.1 because

[
1

x

]T [
−σ̄ 0

0 M

][
1

x

]
= xTMx − σ̄ > 0 for all x ∈ F∆. Thus, the problem (CD-
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StQP) is always strictly feasible. Then, the duality gap between the problems (CP-StQP) and

(CD-StQP) is zero by Theorem 2.4.2. Consequently, we have the next theorem.

Theorem 3.3.1. Problem (CP-StQP) is feasible, problem (CD-StQP) is strictly feasible, the

optimal values of problems (StQP), (CP-StQP) and (CD-StQP) are equal, and the optimal

solution of problem (CP-StQP) is attainable.

The attainability of problem (CP-StQP) is due to the strong feasibility of problem (CD-

StQP).

According to Theorem 3.3.1, both of the problems (CP-StQP) and (CD-StQP) are equivalent

to problem (StQP), thus are NP-hard. In fact, we do not know any efficient algorithm to

determine whether a given matrix is in N ∗
F∆

or not. Besides, N ∗
F∆

is not solid because NF∆

is not pointed due to the fact that

[
2 −eT

−e 0

]
∈ NF∆

and −

[
2 −eT

−e 0

]
∈ NF∆

. Hence, the

optimal solution of the problem (CD-StQP) may not be attainable. Both of these disadvantages

suggest to solve this problem via approximating NF∆
and N ∗

F∆
by other proper cones, such

as the positive semidefinite cone Sn+1
+ . However, the approximations by using Sn+1

+ may not

be tight enough [93]. If we can design an alternative NE , such that Sn+1
+ ⊆ NE ⊆ NF∆

and

Sn+1
+ ⊇ N ∗

E ⊇ N ∗
F∆

, then a tighter lower bound of problem (StQP) may be obtained via

replacing the cone N ∗
F∆

in problem (CP-StQP) by the cone N ∗
E instead of Sn+1

+ . In the next

subsection, we will describe such cones and their related properties. Moreover, it is the sign of

the optimal value V (StQP) that matters in deciding whether the given matrix M is copositive

or not. Therefore, if the lower bound is good enough to determine the sign of V (StQP), it would

be more efficient to obtain this bound than to solve problem (StQP) exactly.

3.3.2 LMI based approximation cones

Let

E =

K⋃
i=1

{Ei} (3.10)

be a collection of full-dimensional ellipsoids Ei, where each

Ei = {x ∈ Rn|xTAix+ 2(bi)Tx+ ci ≤ 0} (3.11)

with Ai ∈ Sn++, bi ∈ Rn and ci ∈ R for i = 1, 2, ..., k. Let E be the union of the ellipsoids in E.

We say E is an elliptic cover of F∆ if

F∆ ⊆ E =
K⋃
i=1

Ei. (3.12)
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From Subsection 3.2.1, each cone NEi has an LMI representation. Define the cone of nonnegative

quadratic functions over the set E as

NE =

U ∈ Sn+1

∣∣∣∣∣
[

1

x

]T
U

[
1

x

]
≥ 0 for all x ∈ E

 , (3.13)

and its dual cone

N ∗
E = cone

Y ∈ Sn+1

∣∣∣∣∣Y =

[
1

x

][
1

x

]T
for some x ∈ E

 . (3.14)

Since each Ei has a nonempty interior, so does E . Thus, NE and N ∗
E are proper according to

Theorem 3.2.2. Besides, according to the properties of the dual cone stated in Section 2.2, it is

easy to show the following properties:

Theorem 3.3.2. If F∆ ⊆ E , then NF∆
⊇ NE and N ∗

F∆
⊆ N ∗

E .

Theorem 3.3.3. If E = E1 ∪ E2 ∪ · · · ∪ Ek, then NE = NE1 ∩ NE2 ∩ · · · ∩ NEk and N ∗
E =

N ∗
E1 + N ∗

E2 + · · ·+ N ∗
Ek = {x1 + x2 + · · ·+ xk|x1 ∈ E1, x

2 ∈ E2, . . . , x
k ∈ Ek}.

From Theorem 3.3.3, we have some LMI representations of NE and N ∗
E .

Corollary 3.3.4. Let sets Ei, i = 1, ..., k, E , NE and N ∗
E be defined by (3.12)-(3.14). Then for

any X ∈ Sn+1, we have X ∈ NE if and only if

X + λi

[
ci (bi)T

bi Ai

]
∈ Sn+1

+ for some λi ≥ 0 (3.15)

holds for all i = 1, ..., k. And, for any Y ∈ Sn+1, we have Y ∈ N ∗
E if and only if

Y = Y 1 + Y 2 + · · ·+ Y k,[
ci (bi)T

bi Ai

]
• Y i ≤ 0, Y i ∈ Sn+1

+ for i = 1, 2, . . . , k.
(3.16)

Proof. This result is a direct consequence of Theorems 3.2.4, 3.2.5 and 3.3.3.

Based on Theorem 3.3.2, if we can design a union of ellipsoids E ⊇ F∆ such that E is close

to F∆, then N ∗
E is a good approximation of N ∗

F∆
. In this case, we can use N ∗

E to replace N ∗
F∆

in the problem (CP-StQP) and obtain a good lower bound. In the next section, we will show

how to generate and refine such E in details.

25



3.4 Conic Approximation to Problem (StQP)

In this section, we study how to use the cones proposed in Subsection 3.3.2 to approximate

problem (CP-StQP).

Assume E = E1 ∪ · · · ∪ Ek is an elliptic cover of F∆ as defined in (3.12). Then, N ∗
E can

be used to approximate N ∗
F∆

. Before relaxing the problem (CP-StQP), we rewrite it in the

following form:

(CP-StQP)

min H • Y

s.t.

[
2 −eT

−e 0

]
• Y = 0,

Y11 = 1,

Y ∈ N ∗
F∆

(3.17)

by adding a redundant constraint [
2 −eT

−e 0

]
• Y = 0.

To verify the previous constraint is redundant, notice that, according to the definition of N ∗
F∆

=

cone {ZF∆
}, any nonzero matrix Y ∈ N ∗

F∆
can be decomposed into Y =

∑r
i=1 αiy

i(yi)T , where

yi =

[
1

xi

]
with xi ∈ F∆ for some r ∈ N, αi > 0 and

[
2 −eT

−e 0

]
•(yi(yi)T ) = 0 for i = 1, 2, ..., r.

Notice that this redundant constraint may not be redundant in the following relaxed conic

programming problem (RCP-StQP):

(RCP-StQP)

min H • Y

s.t.

[
2 −eT

−e 0

]
• Y = 0,

Y11 = 1,

Y ∈ N ∗
E .

(3.18)

The purpose of adding the extra constraint in problem (RCP-StQP) is to improve the lower

bound of problem (CP-StQP). The dual problem of (RCP-StQP) is defined as

(RCD-StQP)

max σ

s.t.

[
−σ 0

0 M

]
− µ

[
2 −eT

−e 0

]
∈ NE ,

µ ∈ R, σ ∈ R

(3.19)
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Using Corollary 3.3.4, we can rewrite problem (RCP-StQP) and problem (RCD-StQP) in the

following specific forms:

(RCP-StQP)

min H • Y

s.t.

[
2 −eT

−e 0

]
• Y = 0

Y11 = 1

Y = Y 1 + Y 2 + · · ·+ Y k[
ci (bi)T

bi Ai

]
• Y i ≤ 0, Y i ∈ Sn+1

+ for i = 1, 2, . . . , k

(3.20)

and

(RCD-StQP)

max σ

s.t. S =

[
−σ 0

0 M

]
− µ

[
2 −eT

−e 0

]

S + λi

[
ci (bi)T

bi Ai

]
∈ Sn+1

+ for i = 1, 2, ..., k,

µ ∈ R, σ ∈ R, λi ≥ 0 for i = 1, 2, ..., k.

(3.21)

Although problem (CP-StQP) is not strictly feasible because the cone N ∗
F∆

is not solid, problems

(RCP-StQP) and (RCD-StQP) are both strictly feasible under some mild condition.

Theorem 3.4.1. If each ellipsoid Ei = {x ∈ Rn|xTAix+2(bi)Tx+ci ≤ 0} in E has an interior

point falling on the hyperplane Π = {x ∈ Rn|eTx = 1}, i.e., there is a point x̄i ∈ Rn such

that eT x̄i = 1 and (x̄i)TAix̄i + 2(bi)T x̄i + ci < 0, then problem (RCP-StQP) is strictly feasible.

Moreover, problem (RCD-StQP) is always strictly feasible, the optimal solutions of problems

(RCP-StQP) and (RCD-StQP) are attainable and there is no duality gap between problems

(RCP-StQP) and (RCD-StQP).

Proof. Because x̄i is an interior point of Ei, there exists an n-dimensional simplex with affinely

independent vertices x̄ij , j = 1, . . . , n+ 1, contained in the interior of the ellipsoid Fi such that

x̄i is an interior point of this simplex. Then x̄i =
∑n+1

j=1 ᾱij x̄
ij with ᾱij > 0 for j = 1, . . . , n+ 1

and
∑n+1

j=1 ᾱij = 1. Consider the matrix

Ȳ i =
1

k

n+1∑
j=1

ᾱij

[
1

x̄ij

][
1

x̄ij

]T

for i = 1, . . . , k. It is easy to check that

[
2 −eT

−e 0

]
• Ȳ i = 0. Also, Ȳ i ∈ Sn+1

++ because the
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vertices x̄ij , j = 1, ..., n+1, are affinely independent. Let Ȳ =
∑k

i=1 Ȳ
i, then (Ȳ 1, . . . , Ȳ k, Ȳ ) is a

strictly feasible solution to problem (RCP-StQP). This proves the strong feasibility of problem

(RCP-StQP). For any matrix M and µ̄ in problem (RCD-StQP), note that Ai ∈ Sn+1
++ , for

i = 1, . . . , k, there exists a large enough λ̄i > 0 and a small enough σ̄ such that the matrix

S̄ =

[
−σ̄ 0

0 M

]
− µ̄

[
2 −eT

−e 0

]

satisfies that

S̄ + λ̄i

[
ci (bi)T

bi Ai

]
∈ Sn+1

++ for i = 1, . . . , k,

due to the diagonal dominance. This proves the strong feasibility of problem (RCD-StQP). The

rest of the claims hold according to Theorem 2.4.2.

By the linear conic optimality conditions in Corollary 2.4.3, we have the following optimality

condition for problems (RCP-StQP) and (RCD-StQP):

(Y 1, Y 2, . . . , Y k, Y ) is feasible to problem (RCP-StQP),

(σ, µ, λ, S) is feasible to problem (RCD-StQP), (Optimality Conditions)

S • Y i = 0, λi

[
ci (bi)T

bi Ai

]
• Y i = 0 for i = 1, 2, . . . , k.

The number of free variables in the problem (RCP-StQP) (including Y 1, ..., Y k) is mkn2 for

some m ∈ N. However, it is inefficient to introduce too many ellipsoids to approximate the set

F∆ well enough everywhere. Therefore, we need to design an efficient arrangement of ellipsoids

Ei’s to cover F∆. In the next sections, an adaptive scheme is introduced to achieve this purpose.

3.5 An Adaptive Scheme for Detecting Copositive Matrices

3.5.1 Sensitive points and sensitive ellipsoids

In this subsection, the definitions of a sensitive point and a sensitive ellipsoid are given to

indicate which ellipsoid Ei in E should be refined. In order to detect such an ellipsoid, the next

result is needed.

Corollary 3.5.1. If Y ∗ = (Y 1)∗ + · · ·+ (Y k)∗ is an optimal solution of problem (RCP-StQP),
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then, for (Y i)∗ 6= 0 with i ∈ {1, 2, . . . , k}, we have

(Y i)∗ =

ni∑
j=1

αij

[
1

xij

][
1

xij

]T
(3.22)

for some ni ∈ {1, 2, ..., n+ 1}, αij > 0, xij ∈ Ei. Moreover, Y ∗ can be decomposed into

Y ∗ =
∑

i:(Y i)∗ 6=0

ni∑
j=1

αij

[
1

xij

][
1

xij

]T
, (3.23)

with
∑

i:(Y i)∗ 6=0

∑ni
j=1 αij = 1.

Proof. The result is a direct consequence of Theorem 3.2.4.

All the points xij in (3.23) are defined as sensitive points for problem (RCD-StQP). The opti-

mal value of problem (RCD-StQP) is sensitive to xij since

[
1

xij

]T (
S∗ + λ∗i

[
ci (bi)T

bi Ai

])[
1

xij

]
=

0 is an active constraint for the optimal solution (S∗, λ∗) meeting the optimality conditions.

Also, we define the ellipsoid Ei containing all these xij , j = 1, 2, . . . , ni, as a sensitive ellipsoid.

Among all sensitive points, we define the most sensitive point as follows.

Definition 1. For the rank-one decomposition

Y ∗ =
∑

i:(Y i)∗ 6=0

ni∑
j=1

αij

[
1

xij

][
1

xij

]T
,

x∗ is the most sensitive point if

x∗ = argmin
{

(xij)TMxij : xij 6= 0 for i = 1, ..., k and j = 1, ..., ni.
}

That is, x∗ has the minimal objective value among all sensitive points. Note that the most

sensitive point x∗ may not be unique. If there are multiple most sensitive points, we choose the

one with the smallest index in i with smallest j as a tie-breaker, and denote the smallest index i

by t. Then, Et, the ellipsoid which x∗ is decomposed from, is called the most sensitive ellipsoid.

Theorem 3.5.2. If Y ∗ is the optimal solution of problem (RCP-StQP) with the most sensitive

point x∗, then

u∗ = (x∗)TMx∗ ≤ V (CP-StQP) (3.24)

29



If u∗ ≥ 0, then matrix M is copositive. If x∗ ∈ Rn+ and u∗ < 0, then matrix M is not copositive.

Moreover, if x∗ ∈ F∆, then the matrix

[
1

x∗

][
1

x∗

]T
is an optimal solution of problem (CP-StQP)

and x∗ is an optimal solution of problem (StQP).

Proof. The inequality in (3.24) holds because

V (CP-StQP) ≥ V (RCP-StQP)

=
∑

i:(Y i)∗ 6=0

∑ni
j=1 αij(x

ij)TMxij

≥
∑

i:(Y i)∗ 6=0

∑ni
j=1 αij(x

∗)TMx∗

= (x∗)TMx∗

According to Theorem 3.3.1, if u∗ ≥ 0, then V (StQP) = V (CP-StQP) ≥ u∗ ≥ 0 and this

leads to the claim of the copositivity of matrix M . If x∗ ∈ Rn+ \ {0} and u∗ < 0, notice that

x̄ = x∗/‖x‖1 ∈ F∆ and x̄TMx̄ < 0, this leads to the claim of noncopositivity. If x∗ ∈ F∆, then[
1

x∗

][
1

x∗

]T
is feasible for problem (CP-StQP), and

[
1

x∗

][
1

x∗

]T
•H = (x∗)TMx∗ ≤ V (CP-StQP).

Hence, matrix

[
1

x∗

][
1

x∗

]T
is an optimal solution of problem (CP-StQP) and x∗ is an optimal

solution of problem (StQP).

Theorem 3.5.2 shows that if u∗ ≥ 0 or x∗ ∈ Rn+, then the conclusion about copositivity of

matrix M is direct. However, if u∗ < 0 and x∗ /∈ Rn+, then we only obtain a lower bound of

problem (StQP) and no conclusion can be drawn. In this case, the current approximate cone

N ∗
E is not close enough to N ∗

F∆
and the set E needs to be refined such that the lower bound

obtained from problem (RCP-StQP) may be improved.

3.5.2 An adaptive scheme

As mentioned before, fewer ellipsoids involved in the problem (RCP-StQP) is preferred. There-

fore, it is unwise to refine E everywhere. Instead, only the most sensitive ellipsoid Et in E is

refined because the most sensitive point x∗ in this ellipsoid has the lowest objective value. The

basic idea behind the adaptive approximation strategy is that when the most sensitive point

x∗ and most sensitive ellipsoid Et are detected, two ellipsoids constituting a finer cover around

x∗ replace Et in the current set E . By refining the ellipsoids in the region of x∗, we expect
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to improve the lower bounds of (StQP) significantly. In order to construct and manage the

ellipsoids easily, we introduce the following definition.

Definition 2. For a given rectangular set T = [u, v] = {x ∈ Rn|ui ≤ xi ≤ vi}, define the

corresponding ellipsoid generated by T as

ET =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

(2xi − vi − ui)2

(vi − ui)2
− n ≤ 0

}
. (3.25)

It is easy to see that ET is full-dimensional if u < v and T ⊆ ET . Similar to the elliptic cover

of F∆, let

T = {T1} ∪ · · · ∪ {Tk} (3.26)

be a collection of full-dimensional rectangular sets Ti = [ui, vi] with ui < vi for i = 1, . . . , k.

Then we define T , the rectangular set cover of F∆, to be the union of the rectangular sets

covering the set F∆, that is

F∆ ⊆ T = T1 ∪ . . . ∪ Tk. (3.27)

Other concepts to be used in proving the finite termination of our algorithm are given as follows.

Definition 3. For any set H ⊆ Rn and δ > 0, the δ-neighborhood of H is defined as Bδ,H =

{x ∈ Rn|∃y ∈ H, s.t. ‖x− y‖∞ ≤ δ}, where ‖ · ‖∞ means the infinity norm.

Definition 4 ([31]). A matrix M ∈ Sn is ε-copositive if V (StQP) ≥ −ε for some given ε > 0.

Definition 5 ([25]). A vector x ∈ Rn+ is a violating vector for matrix M if xTMx < 0.

First, we need to find an initial ellipsoid E1 that covers the standard simplex F∆. We can

set E1 = {x ∈ Rn|
∑n

i=1(2xi− 1)2 ≤ n}, which is generated by the rectangular set T1 = [u1, v1]

with u1
i = 0, v1

i = 1 for i = 1, . . . , n. Let the initial rectangular set cover of F∆ be T = T1 and

the initial elliptic cover of F∆ be E = E1.

When the most sensitive point x∗ and the most sensitive ellipsoid Et are detected, the

rectangular set generating the most sensitive ellipsoid Tt = [ut, vt] is also detected. Then, this

rectangular set is divided along the direction indicated by the most negative component of x∗.

Specifically, denote id = min{argmin{i=1,...,n}{x∗i }}, then Tt is divided into Tt1 = [ut1 , vt1 ] and

Tt2 = [ut2 , vt2 ], where ut1 = ut, vt2 = vt, vt1i = vti , u
t2
i = uti for i 6= id and vt1id = ut2id =

(utid + vtid)/2. And the two ellipsoids Et1 and Et2 are generated from Tt1 and Tt2 by

Et1 =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

(2xi − vt1i − u
t1
i )2

(vt1i − u
t1
i )2

≤ n

}
, (3.28)
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and

Et2 =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

(2xi − vt2i − u
t2
i )2

(vt2i − u
t2
i )2

≤ n

}
. (3.29)

Notice that one of the two rectangular sets Tt1 and Tt2 may have no interior in the set F∆.

In order to guarantee that the ellipsoids Et1 and Et2 have interior points in the set F∆, such

rectangular set should be eliminated from further consideration. The following conditions can

be used to determine which rectangular set should be eliminated:

eTut1 < 1, eT vt1 > 1 (3.30)

and

eTut2 < 1, eT vt2 > 1 (3.31)

If (3.30) is violated, then Tt1 should be eliminated. Moreover, Tt is replaced by Tt2 and Et is

replaced by Et2 ; if (3.31) is violated, then Tt2 should be eliminated. Moreover, Tt is replaced by

Tt1 and Et is replaced by Et1 . Otherwise, Tt is replaced by Tt1 and Tt2 and Et is replaced by Et1
and Et2 .

After that, a point x̃ ∈ Rn+ is obtained by setting all the negative components of x∗ to be

0. If x̃TMx̃ < 0, then a violating vector x̃ is found and the algorithm halts. Otherwise the

algorithm iterates until some stopping criterion is met. The proposed algorithm is presented

below.

Adaptive Ellipsoid-based Algorithm for Detecting Copositivity (AEA-DC)

Initialization: Let E1 = {x ∈ Rn|
∑n

i=1(2xi−1)2 ≤ n} and T1 = [u1, v1], where u1
i = 0, v1

i = 1

for i = 1, 2, . . . , n. Set E = {E1}, T = {T1} and T = ∅. Set ε > 0 to be the tolerance. Let

l denote the best lower bound and s the best upper bound.

Step 1: Let E =
⋃
Ei∈E Ei. Solve the problem (RCP-StQP) with the approximation cone N ∗

E .

Assume the optimal solution to problem (RCP-StQP) is Y ∗ =
∑

i:(Y i)∗ 6=0(Y i)∗. Return the

optimal value of problem (RCP-StQP) as V (RCP-StQP). Set l = max{l, V (RCP-StQP)}.
If 0 > l ≥ −ε, then M is ε-copositive. Stop. If l ≥ 0, then M is copositive. Stop. Otherwise,

go to Step 2.

Step 2: Decompose Y ∗ according to Corollary 3.5.1 to obtain the most sensitive point x∗ and

the most sensitive ellipsoid Et = {x ∈ Rn|
∑n

i=1
(2xi−vti−uti)2

(vti−uti)2 ≤ n} ∈ E, which is generated
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from the rectangular set Tt = [ut, vt] ∈ T. If x∗ ∈ Rn+, then (x∗)TMx∗ ≤ l < −ε and M

is not copositive with a violating vector x∗ being found. Stop. Otherwise, go to Step 3.

Step 3: Set E← E \ {Et} and T← T \ {Tt}. Define ellipsoids Et1 and Et2 according to (3.28)

and (3.29). If (3.30) is violated, set E← E ∪ {Ft2}, T← T ∪ {Tt2} and T← T ∪ {Tt1}.
If (3.31) is violated, set E ← E ∪ {Et1}, T ← T ∪ {Tt1} and T ← T ∪ {Tt2}. Otherwise,

set E← E ∪ {Et1} ∪ {Et2} and T← T ∪ {Tt1} ∪ {Tt2}.

Step 4: Generate a point x̃ ∈ Rn+ by setting the negative components of x∗ to 0. Set s =

min{s, x̃TMx̃}. If s < 0, then M is not copositive with a violating vector x̃ found. Stop.

Otherwise, go to Step 1.

Remark 1. In each iteration, the total volume of all the rectangles in T and T is always 1.

The set T in the proposed algorithm is used for the convenience of the proof in Lemma 3.5.1.

In a practical algorithm implementation, T need not be stored.

In the proposed algorithm, at most one additional ellipsoid is added into the set E in each

iteration. Thus, the complexity of solving problem (RCP-StQP) does not increase dramatically

in each iteration. In order to prove the finite termination of the proposed algorithm, the following

lemma is needed.

Lemma 3.5.1. For any given δ > 0, there exists an Nδ ∈ N such that ‖x∗ − x̃‖∞ < δ at the

Nδ-th iteration.

Proof. If x∗ ∈ Rn+ happens at some N0-th iteration, then x̃ = x∗, and the lemma holds trivially.

Otherwise, x∗ /∈ Rn+ at each iteration. Note that if x∗ ∈ Bδ,Rn
+

= {x ∈ Rn|∃y ∈ Rn+, s.t. ‖x −
y‖∞ < δ}, then ‖x∗− x̃‖∞ < δ. Now, we need to show that at some iteration, the most sensitive

point x∗ falls into Bδ,Rn
+

. By our arrangement of the ellipsoids, we know that the length of the i-

th half axis of ellipsoid Et is equal to
√
n

2 (vti−uti). Therefore, after (d
√
n
δ e)

n iterations, there exists

at least some v and s that satisfy vti − uti < δ√
n

, for some i ∈ {1, 2, ..., n} and t ∈ {1, 2, ..., k}.
Otherwise, the total volume of all the generated rectangular sets in T and T becomes greater

than one. Note at this time, the length of the i-th half axis of the ellipsoid Et generated by

[ut, vt] is less than δ
2 . Assume that this ellipsoid was generated at the N1-th iteration. Then

among the first N1 iterations, there exists one iteration Nδ such that a rectangular set is split

along the i-th direction with vi − ui < 2δ√
n

. Thus the length of the i-th half-axis of that most

sensitive ellipsoid is less than δ and, consequently, x∗ ∈ Bδ,Rn
+

.

Theorem 3.5.3. For a given ε > 0, there exists some Nε ∈ N such that s− l < ε at the Nε-th

iteration.

33



Proof. For any ε > 0, there exists some δ > 0 such that |x̃TMx̃ − (x∗)TMx∗| < ε for any

‖x∗− x̃‖∞ < δ. According to Lemma 3.5.1, there exists some Nε ∈ N such that ‖x∗− x̃‖∞ < δ.

Since l and s record the best lower and upper bound values, respectively, we have s − l ≤
x̃TMx̃− (x∗)TMx∗ < ε.

Because either l ≥ −ε or s < 0 holds when s − l ≤ ε, Theorem 3.5.3 indicates that the

proposed algorithm will eventually stop at Step 1, Step 2 or Step 4 for any given tolerance

ε > 0. This leads to the following theorem:

Theorem 3.5.4. For any given ε > 0, the proposed adaptive ellipsoid-based algorithm for

detecting copositivity terminates in a finite number of iterations. If the proposed algorithm stops

at Step 1, then M is ε-copositive; if the proposed algorithm stops at Step 2 or Step 4, then M

is noncopositive.

3.5.3 Improving the lower bounds by RLT

The lower bounds obtained by the proposed algorithm can be further improved using the

so-called RLT (Reformulation-Linearization Technique). Anstreicher [11] used the RLT-based

inequalities to improve the SDP relaxations for QCQP. Note that the standard simplex F∆ is

contained in the first orthantRn+, hence the inequalities Y ≥ 0 can be added into problem (RCP-

StQP) in order to further improve the lower bound. The new relaxation problem is written as

below.

(RLT-StQP)

min H • Y[
2 −eT

−e 0

]
• Y = 0, Y11 = 1,

Y = Y 1 + Y 2 + · · ·+ Y k ≥ 0,[
ci (bi)T

bi Ai

]
• Y i ≤ 0, Y i ∈ Sn+1

+ , i = 1, 2, . . . , k.

(3.32)

Consequently, we may solve problem (RLT-StQP) instead of problem (RCP-StQP) in the pro-

posed algorithm.

3.6 Numerical Examples

The algorithm has been implemented using MATLAB 7.14.0 on a computer with Intel Core

2 CPU 2.40Ghz and 3G memory. We also used SeDuMi 1.3 [116] to solve the problem (RLT-

StQP). Our source code is available at <http://www.ise.ncsu.edu/fangroup/>. The tolerance

ε is set to be 0.001 for all the numerical experiments.
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Bundfuss and Dür [32] designed inner and outer polyhedral approximations for the copositive

cone. The approximation cone NE we used is nonpolyhedral and could be more efficient in

approximating copositive cone, which is also nonpolyhedral. For example, consider Example

4.1 of [32] with M =

[
1/3 −2/3

−2/3 4/3

]
being the optimal solution. Since it sits on the curved

surface of C3, our algorithm took only one iteration to stop and claim the copositivity of M .

Bundfuss and Dür [32] also considered two examples from [23], which are equivalent to determine

whether the following two matrices M1 = Q1 − λ1E and M2 = Q2 − λ2E, where

Q1 =


−14 −15 −16 0 0

−15 −14 −12.5 −22.5 −15

−16 −12.5 −10 −26.5 −16

0 −22.5 −26.5 0 0

0 −15 −16 0 −14

 ,

Q2 =


0.9044 0.1054 0.5140 0.3322 0

0.1054 0.8715 0.7385 0.5866 0.9751

0.5140 0.7385 0.6936 0.5368 0.8086

0.3322 0.5866 0.5368 0.5633 0.7478

0 0.9751 0.8086 0.7478 1.2932

 ,

λ1 = −161
3 , λ2 = 0.4839 and E is the all ones matrix, are copositive or not. For matrix M1, our

algorithm took 200 iterations (about 805 seconds) to obtain a lower bound of−9.6922×10−4 > ε,

and hence claimed M1 is ε-copositive. For matrix M2, our algorithm took 8 iterations (about

0.80 seconds) to obtain a lower bound of −7.2522 × 10−4 > ε and claimed M2 is ε-copositive

too. Note that M1 is highly symmetric and sits on the boundary of C5, it is not easy to detect

its copositivity. Similar behavior has been observed in applying other methods (see [25] and

[131])

In order to show that our algorithm is efficient for general matrices, we tested matrices with

different sizes from 10 to 80. For each size, 100 symmetric matrices were randomly generated

with elements being uniformly distributed over [−1, 1]. Minimal, maximal, average iterations

and average CPU time (in seconds) in terms of matrix size are reported in Table 3.1.

By using the adaptive ellipsoid-based algorithm for detecting copositivity, all randomly

generated matrices were correctly detected to be noncopositive in the first iteration.

In [123], the following empirical test has been proposed: for each n =3, 4, 5, 6, 7, 8, 9, 10, one

thousand symmetric matrices of order n with the diagonal elements being 1 and off-diagonal

elements falling in [−1, 1] are randomly generated. Their results showed that, for n ≥ 8, the

copositivity of some matrices was undetermined. Using our proposed algorithm, all matrices
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Table 3.1: Results of random test for AEA-DC

Matrix size Min. Max. Ave. CPU time (sec.)

10 1 1 1 0.0675
20 1 1 1 0.2143
30 1 1 1 0.9382
40 1 1 1 3.4871
50 1 1 1 15.8762
60 1 1 1 82.9367
70 1 1 1 258.1257
80 1 1 1 722.8373

were successfully detected to be copositive or noncopositive in less CPU time. We also extend

the experiments for n = 20, 40, 60 but with 100 matrices generated for each n. The results

are reported in Table 3.2, in which, “# of unsolved problems” denotes the number of matrices

whose copositivity is undetermined, “CPU time” denotes the average CPU time in second and

“avg.iter.” denotes the average number of iterations taken by the proposed adaptive ellipsoid-

based algorithm for detecting copositivity. We also ran a simulation test for our algorithm

Table 3.2: Simulation tests comparing with Yang et al. [123]

Matrix # of unsolved problems CPU time (sec.) Avg.iter.
Size AEA-DC [123] AEA-DC [123] AEA-DC

3 0 0 0.0508 0.1 1.1650
4 0 0 0.1060 0.7 1.5670
5 0 0 0.3266 3.2 2.1960
6 0 0 1.2321 19.1 3.0140
7 0 0 3.1489 96.4 3.4600
8 0 8 1.8644 398.7 2.7710
9 0 6 2.0343 351.2 2.0040
10 0 2 0.8344 363.5 1.4200
20 0 - 0.5465 - 1.9500
40 0 - 4.2022 - 1.0000
60 0 - 101.7502 - 1.0000

with randomly generated copositive n × n matrices of the form M = P + N , where P is a

positive semidefinite matrix and N is a matrix with no negative elements (100 matrices for

each n ∈ {10, 20, 30, 40, 50, 60, 70}). All generated matrices were successfully detected to be

copositive in the first few iterations. The main results for this simulation test are summarized
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in Table 3.3. In this table, “Min.”, “Max.”, and “Avg.” denote the minimal, maximal and

average number of iterations, respectively. Moreover,“CPU time” means the average CPU time

in second. The fast copositivity detection in the above simulation test is mainly due to the fact

Table 3.3: Results for simulation test of the form P +N .

Matrix Iterations CPU time
Size Min. Max. Avg. (seconds)

10 1 4 1.1300 0.0823
20 1 22 1.7200 0.7541
30 1 9 1.7500 2.1752
40 1 6 1.9400 8.4304
50 1 17 2.1600 114.1480
60 1 32 3.6400 722.4638
70 1 31 3.3100 3396.2696

that a randomly generated matrix is less likely to be on the boundary of the copositive cone.

Under this circumstance, our algorithm can detect copositivity very efficiently.

3.7 Summary

In this chapter, we have developed conic reformulations and approximations for problem (StQP)

with its application in detecting copositivity. A new algorithm has been proposed to determine

the copositivity of a given symmetric matrix. The algorithm is based on solving a sequence of

linear conic programming problems defined on the dual cone of nonnegative quadratic functions

over an elliptic cover of the original feasible domain. By utilizing an adaptive scheme, the

number of constraints in each problem involved does not increase dramatically. This feature

not only saves memory storage, but also relieves the computational effort in each iteration.

Moreover, a better ellipsoid arrangement can further improve the efficiency of the proposed

algorithm. In the adaptive scheme, since the determination of the most sensitive point is based

on the objective values of all sensitive points, the information of matrix data is embedded in

the proposed algorithm. Therefore, we have developed an algorithm that does not depend on

the matric structure and is somehow data-driven. Our work can be readily extended to solving

copositive programs and detecting the copositivity of nonhomogeneous quadratic functions over

the nonnegative orthant.
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Chapter 4

Quadratic Programming Problems

over Convex Quadratic Constraints

In Chapter 3, we studied the conic reformulation and approximation to quadratic program-

ming problems over the standard simplex and developed an algorithm with an adaptive scheme

embedded for detecting copositive matrices. In this chapter, we further extend the theory de-

veloped in Chapter 3 to solve nonconvex quadratic programming problems subject to several

convex quadratic constraints. The similar conic reformulations and approximations are derived

and an algorithm with a new adaptive scheme is proposed. Under some mild assumptions, the

convergence and ε-optimality of the obtained solution are guaranteed.

4.1 Introduction

In this chapter, we study the quadratic programming problems over a set of convex quadratic

constraints in the following form:

(ETRS)
min f(x) = xTP 0x+ 2(q0)Tx

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, . . . ,m,
(4.1)

where P j is positive semidefinite for j = 1, . . . ,m, qj ∈ Rn is a vector for j = 0, 1, ...,m and

γj ∈ R is a scalar for j = 1, ...,m. The problem is known as extended trust-region subproblem

when m ≥ 2 [36]. Denote the feasible domain of problem (ETRS) as ∆ = {x ∈ Rn|xTP jx +

2(qj)Tx + γj ≤ 0, j = 1, 2, . . . ,m}. Problem (ETRS) arises from the analysis and relaxation

of NP-hard combinatorial optimization problems [89]. Problem (ETRS) is NP-hard in general

since P 0 in the objective function may not be positive semidefinite.

When m = 1, i.e., there is only one convex quadratic constraint, problem (ETRS) becomes
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the classical trust-region subproblem (TRS) that appeared in [37]. Conn et al. introduced

several methods for solving this problem in [39]. Also, it can be solved efficiently by using

the semidefinite programming (SDP) techniques, provided that the feasible domain ∆ has an

interior point (see Appendix B in [28]).

When m = 2 and P 1, P 2 are positive definite, problem (ETRS) arises from applying the

trust region method to solve single equality constrained nonlinear programs proposed by Celis et

al. in [37]. Rendl and Wolkowicz presented a sequential quadratic programming method in [95]

that made use of this problem. When m = 2 and problem (ETRS) satisfies the Slater condition

with P 1 or P 2 being positive definite, Ye and Zhang introduced a parameterized problem in [125]

and showed that by following the trajectory generated by the parameterized problem, one would

reach the optimal solution of problem (ETRS). Most recently, Burer and Anstreicher considered

the classical trust region problem with one extra full-dimensional ellipsoid constraint in [36],

resulting in the “two trust-region subproblems” sharing the same form as problem (ETRS)

with m = 2. They provided a new relaxation including some second-order-cone constraints

that strengthen the usual SDP relaxation to achieve a narrower duality gap. But the global

optimality of the solution is not guaranteed. For m ≥ 3, Zheng et al. [128] provided lower

bounds for problem (ETRS) based on the best difference of convex functions decomposition.

In this chapter, we solve problem (ETRS) with m ≥ 3 under the assumption that the feasible

domain ∆ is bounded and it has a nonempty interior. The idea of this chapter is motivated by Lu

et al.’s work [74], in which they presented a theoretical framework for solving QCQP problems

and gave a specific algorithm for solving the nonconvex quadratic optimization problem with box

constraints. Here, we extend their approach to solving the nonconvex quadratic optimization

problem over a set of convex quadratic constraints. We first develop a conic formulation and

approximation to the original problem, then the approximation is further improved by the

reformulation-linearization technique (RLT). In order to get an ε-optimal solution, an adaptive

scheme is adopted to refine the approximation. One thing to point out is that the proposed

algorithm only requires the feasible domain to be bounded and has a nonempty interior. Our

work may also be applied to an extended trust-region subproblem with many linear and ellipsoid

constraints, which arises from the relaxation of NP-hard combinatorial optimization problems

[89].

4.2 Conic Reformulation and Approximation to Problem

(ETRS)

According to Section 2.2, under the assumption that the feasible domain ∆ is bounded with

a nonempty interior, problem (ETRS) is equivalent to the following linear conic programming
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problem:

(CP-ETRS)

min H0 • Y
s.t. Y11 = 1,

Y ∈ N ∗
∆

(4.2)

where H0 =

[
0 (q0)T

q0 P 0

]
∈ Sn+1 and

N ∗
∆ = cone

Y ∈ Sn+1

∣∣∣∣∣Y =

[
1

x

][
1

x

]T
for some x ∈ ∆

 (4.3)

as introduced in Section 3.2. The matrix in cone N ∗
∆ has a rank-one decomposition as in

Theorem 2.3.1 since ∆ is bounded and closed. The dual cone of N ∗
∆ is the cone of nonnegative

quadratic functions over ∆, that is,

N∆ =

U ∈ Sn+1

∣∣∣∣∣
[

1

x

]T
U

[
1

x

]
≥ 0 for all x ∈ ∆

 . (4.4)

Then, the linear conic dual problem of (CP-ETRS) is defined as

(CD-ETRS)

max σ

s.t.

[
−σ (q0)T

q0 P 0

]
∈ N∆, σ ∈ R.

(4.5)

Although, under the assumption that ∆ has a nonempty interior, both cones N∆ and N ∗
∆ are

proper according to Theorem 3.2.2, there is no known efficient algorithm for computing the

rank-one decomposition of matrices in N ∗
∆ as in Section 2.3. Therefore, similar to Section 3.3.2,

we could use the dual cone of the cone of nonnegative quadratic functions over an elliptic cover

of ∆ to approximate the cone N ∗
∆ . Let E be a collection of full-dimensional ellipsoids Ei, i.e.

E =

k⋃
i=1

{Ei}, (4.6)

where

Ei = {x ∈ Rn|xTAix+ 2(bi)Tx+ ci ≤ 0} (4.7)
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with Ai ∈ Sn++, b ∈ Rn and ci ∈ R for i = 1, . . . , k. Let E be the union of ellipsoids in E. We

say E is an elliptic cover of ∆ if

∆ ⊆ E =
⋃

i:Ei∈E
Ei, (4.8)

where each Ei, for i = 1, ..., k, is of full-dimension defined in (4.7). Then, the cone N ∗
E has the

same LMI representation as in equation (3.16) and there are efficient algorithms to decompose

the matrices in this cone as shown in Corollary 3.5.1. Before relaxing the problem (CP-ETRS),

we rewrite it as the following form:

(CP-ETRS)

min H0 • Y
s.t. Hj • Y ≤ 0, j = 1, 2, ...,m,

Y11 = 1,

Y ∈ N ∗
∆

(4.9)

by adding the redundant constraints Hj • Y ≤ 0, where Hj =

[
γj (qj)T

qj P j

]
for j = 1, 2, ...,m.

To verify these constraints are redundant, notice that any nonzero matrix Y ∈ N ∗
∆ , by the

definition of N ∗
∆ , can be decomposed into Y =

∑r
i=1 αiy

i(yi)T , where αi > 0, yi =
[

1
xi

]
with

xi ∈ ∆ for some r ∈ N and i = 1, 2, . . . , r. Therefore, Hj • Y =
∑r

i=1 αi(y
i)THjyi ≤ 0 for

j = 1, 2, ...,m. But these redundant constraints may not be redundant anymore in the following

relaxed linear conic programming problem:

(RCP-ETRS)

min H0 • Y
s.t. Hj • Y ≤ 0, j = 1, 2, ...,m,

Y11 = 1,

Y ∈ N ∗
E ,

(4.10)

and its dual problem is:

(RCD-ETRS)

max σ

s.t. H0 +

[
−σ 0

0 0

]
+
∑m

j=1 µjH
j ∈ NE ,

σ ∈ R, µj ≥ 0, j = 1, 2, ...,m.

(4.11)

According to Corollary 3.3.4, problems (RCP-ETRS) and (RCD-ETRS) can be specifically
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rewritten as

(RCP-ETRS)

min H0 • Y
s.t. Hj • Y ≤ 0, j = 1, 2, ...,m,

Y = Y 1 + · · ·+ Y k, Y11 = 1,[
ci (bi)T

bi Ai

]
• Y i ≤ 0, Y i ∈ Sn+1

+ , i = 1, · · · , k,

(4.12)

and

(RCD-ETRS)

max σ

s.t. S = H0 +

[
−σ 0

0 0

]
+
∑m

j=1 µjH
j ,

S + λi

[
ci (bi)T

bi Ai

]
∈ Sn+1

+ i = 1, 2, . . . , k,

λi ≥ 0, i = 1, 2, ..., k,

σ ∈ R, µj ≥ 0, j = 1, 2, ...,m.

(4.13)

Moreover, a tighter lower bound for problem (CP-ETRS) could be obtained by applying the

reformulation-linearization technique (RLT) to problem (RCP-ETRS). It results in the following

problem:

(RLT-ETRS)

min H0 • Y
s.t. Y = Y 1 + · · ·+ Y k, Y11 = 1,

Hj • Y i ≤ 0 j = 1, ...,m, i = 1, ..., k,[
ci (bi)T

bi Ai

]
• Y i ≤ 0, Y i ∈ Sn+1

+ i = 1, ..., k,

(4.14)

by adding RLT-constraints Hj • Y i ≤ 0 for j = 1, ...,m and i = 1, ..., k. Then, its dual problem

becomes:

(DRLT-ETRS)

max σ

s.t. Si = H0 +

[
−σ 0

0 0

]
+
∑m

j=1 µijH
j ,

Si + λi

[
ci (bi)T

bi Ai

]
∈ Sn+1

+ i = 1, ..., k,

σ ∈ R, λi ≥ 0, i = 1, ..., k,

µij ≥ 0, i = 1, ..., k, j = 1, ...,m.

(4.15)

The next theorem shows that problem (RLT-ETRS) indeed provides a lower bound for
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problem (CP-ETRS) if ∆ ⊆ E.

Theorem 4.2.1. Let E and Ei be defined in (4.8) and (3.11), respectively. If the set ∆ ⊆ E ,

then V (RCP-ETRS)≤ V (RLT-ETRS)≤ V (CP-ETRS)= V (ETRS).

Proof. We only need to prove V (RLT-ETRS)≤V (ETRS). For any feasible solution x ∈ ∆, there

exists some i0 ∈ {1, ..., k}, such that x ∈ Ei due to the fact ∆ ⊆ E. Let Y i0 =
[

1
x

][
1
x

]T
, Y i = 0

for i 6= i0 and Y =
∑k

i=1 Y
i, then (Y, Y 1, ..., Y k) is feasible to problem (RLT-ETRS), thus

V (RLT-ETRS)≤V (ETRS).

Under some mild assumptions, problems (RLT-ETRS) and (DRLT-ETRS) are both strictly

feasible.

Theorem 4.2.2. Let Ei be defined in (3.11). If the set Ei ∩ ∆ has a nonempty interior for

i = 1, . . . , k, then problem (RLT-ETRS) is strictly feasible. Moreover, problem (DRLT-ETRS)

is always strictly feasible.

Proof. Because the interior of set Ei ∩∆ is nonempty, there is a point x̄i such that (x̄i)TAix̄i +

2(bi)T x̄i + ci < 0 and (x̄i)TP j x̄i + 2(qj)T x̄i +γj < 0 for j = 1, 2, ...,m. Because x̄i is an interior

point of the set Ei∩∆, there exists an n-dimensional simplex with affinely independent vertices

x̄is, s = 1, . . . , n+ 1, contained in the interior of the set Ei ∩∆ such that x̄i is an interior point

of this simplex. Then x̄i =
∑n+1

s=1 ᾱisx̄
is with ᾱis > 0 for s = 1, . . . , n + 1 and

∑n+1
s=1 ᾱis = 1.

Consider the matrix

Ȳ i =
1

k

n+1∑
s=1

ᾱis

[
1

x̄is

][
1

x̄is

]T

for i = 1, . . . , k. It is easy to check that

[
ci (bi)T

bi Ai

]
•Ȳ i < 0 and Hj•Ȳ i < 0 for j = 1, ...,m. Also,

Ȳ i ∈ Sn+1
++ because the vertices x̄is, s = 1, ..., n+ 1, are affinely independent. Let Ȳ =

∑k
i=1 Ȳ

i.

Then (Ȳ 1, . . . , Ȳ k, Ȳ ) is a strictly feasible solution of problem (RLT-ETRS). This proves that

problem (RLT-ETRS) is strictly feasible.

For any µ̄ij > 0, i = 1, ..., k and j = 1, ...,m, in problem (DRLT-ETRS), there exists a

sufficiently large λ̄i > 0 for i = 1, ..., k and a sufficiently small σ̄ such that the matrix

S̄i = H0 +

[
−σ̄ 0

0 0

]
+

m∑
j=1

µ̄ijH
j
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satisfies

S̄i + λ̄i

[
ci (bi)T

bi Ai

]
∈ Sn+1

++ for i = 1, 2, . . . , k

by diagonal dominance. This proves the strong feasibility of problem (DRLT-ETRS).

By the linear duality theory of Theorem 2.4.2, we have the following corollary.

Corollary 4.2.3. If the set Ei ∩∆ has a nonempty interior for i = 1, 2, ..., k, then there is no

duality gap between problems (RLT-ETRS) and (DRLT-ETRS). Moreover, the optimal solutions

of both problems are attainable.

By the linear conic optimality conditions in Corollary 2.4.3, the optimality conditions be-

tween problems (RCP-ETRS) and (RCD-ETRS) are

(Y 1, Y 2, . . . , Y k, Y ) is feasible to problem (RLT-ETRS),

(σ, µ, λ, S1, . . . , Sk) is feasible to problem (DRLT-ETRS), (Optimality Conditions)(
Si + λi

[
ci (bi)T

bi Ai

])
• Y i = 0 for i = 1, 2, . . . , k.

According to Theorem 4.2.1, the optimal value of problem (RLT-ETRS) gives a lower bound

to problem (ETRS) when ∆ ⊆ E . In order to further improve the lower bound, we could refine

the elliptic cover E such that E becomes a better approximation to the feasible domain ∆ of

problem (ETRS). In the next section, we will show how to refine E in an adaptive way and

prove that the lower bounds obtained by continuously refining E indeed converge to the optimal

value of problem (ETRS).

4.3 An Adaptive Scheme for Problem (ETRS)

In order to refine the elliptic cover E in an efficient way, we need to know which ellipsoid Ei
in E should be refined. As in Subsection 3.5.1, we need the definitions of sensitive points and

sensitive ellipsoids. From Corollary 3.5.1, we know that if Y ∗ = (Y 1)∗ + · · · + (Y k)∗ is the

optimal solution to problem (RLT-ETRS), then

Y ∗ =
∑

i:(Y i)∗ 6=0

ni∑
s=1

αis

[
1

xis

][
1

xis

]T
(4.16)

for some ni ∈ {1, ..., n + 1}, αis > 0, xis ∈ Ei and
∑

i:(Y i)∗ 6=0

∑ni
s=1 αis = 1. We define all the

points xis in (4.16), for i = 1, 2, ..., k and s = 1, 2, ..., ni, to be sensitive points. Also, we define
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the ellipsoid Ei containing these xis as a sensitive ellipsoid.

Among all these sensitive points, we define the most sensitive point in below.

Definition 6. For the rank-one decomposition

Y ∗ =
∑

i:(Y i)∗ 6=0

ni∑
s=1

αis

[
1

xis

][
1

xis

]T
, (4.17)

x∗ is the most sensitive point if

x∗ = argmin{xis:(Y i)∗ 6=0; s=1,2,...,ni}
{

(xis)TP 0xis + 2(q0)Txis
}
. (4.18)

That is, x∗ has the minimum objective value among all of the sensitive points. Note that

there could be multiple sensitive points having the same minimum objective value. Under this

case, we choose x∗ as the one having the smallest index in i with the smallest index in s as a

tie breaker. Denote this smallest index i by t. Then Et is the ellipsoid containing x∗ and Et is

the most sensitive ellipsoid.

Remark 2. Since the decomposition of (Y i)∗ can be achieved in polynomial time (see [117]

or [125] for the detailed procedure), thus the decomposition of Y ∗ in (4.17) can be obtained

efficiently.

The same proof for Theorem 3.5.2 shows that the objective value at the most sensitive point

is a lower bound of problem (ETRS). We state the result in the next theorem.

Theorem 4.3.1. Assume Y ∗ is an optimal solution to problem (RLT-ETRS) with the most

sensitive point x∗, then [
1

x∗

][
1

x∗

]T
•H0 ≤ V (ETRS). (4.19)

Moreover, if x∗ ∈ ∆, then the matrix

[
1

x∗

][
1

x∗

]T
is optimal to problem (CP-ETRS) and x∗ is

optimal to problem (ETRS).

In order to easily manage the ellipsoids in E, each ellipsoid Ei, as defined by (3.25), is

generated from a rectangular set Ti = [ui, vi]. We have the following lemma about the volume

of these two sets. Let Vol(S) be the volume of a set S ⊆ Rn.

Lemma 4.3.1. If T = [u, v] and ET =
{
x ∈ Rn|

∑n
i=1

(2xi−vi−ui)2

(vi−ui)2 − n ≤ 0
}

, then Vol(ET ) =

(nπ4 )n/2 1
Γ(n

2
+1)Vol(T ).
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Proof. For an ellipsoid E = {x ∈ Rn|(x − c0)TQ(x − c0) ≤ 1} with c0 being the center and

Q ∈ Sn++, Vol(E) = πn/2

Γ(n
2

+1)
1√

detQ
(ref. [55]). Therefore,

Vol(ET ) =
(nπ

4

)n/2 1

Γ(n2 + 1)

n∏
i=1

(vi − ui)

=
(nπ

4

)n/2 1

Γ(n2 + 1)
Vol(T ).

4.3.1 An adaptive scheme for (ETRS)

Similar to Section 3.5.2, let

T =
k⋃
i=1

{Ti}

be a collection of rectangular sets Ti for i = 1, ..., k and

∆ ⊆ T =
⋃

i:Ti∈T
Ti

be the rectangular set cover of ∆. Then E = E1 ∪ · · · ∪ Ek is an elliptic cover of ∆, where each

Ei is generated according to (3.25). In order to make our algorithm converge quickly, a good

initial rectangular set cover is necessary. In order to fulfill this purpose, consider the following

problems:

(Iimin)
min xi

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,
(4.20)

and

(Iimax)
max xi

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,
(4.21)

for i = 1, . . . , n. Note that problem (Iimin) and problem (Iimax) are convex optimization problems,

hence they can be solved efficiently. Also note that the feasible domain ∆ is closed and bounded,

problem (Iimin) and problem (Iimax) have finite optimal solutions. Denote the optimal solutions

of (Iimin) and (Iimax) to be u1
i and v1

i . The rectangular set T1 = [u1, v1] has the smallest volume

among those rectangular sets covering the feasible domain ∆. This rectangular set is chosen as
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the initial rectangle set cover of the feasible domain ∆, and the ellipsoid E1 generated from T1

is the initial elliptic cover E of ∆. The existence of T1 is guaranteed by the assumption that

the feasible domain ∆ is bounded with a nonempty interior. Moreover, the set T1 ∩ ∆ has a

nonempty interior.

When the most sensitive point x∗ and the most sensitive ellipsoid Et are detected, the rect-

angular set Tt generating the most sensitive ellipsoid Et is also detected. Then, this rectangular

set is split in half along the direction perpendicular to the longest edge. That is, if Tt = [ut, vt],

with id = argmax{i=1,...,n}{vti − uti}, then Tt is split into Tt1 = [ut1 , vt1 ] and Tt2 = [ut2 , vt2 ],

where ut1 = ut, vt2 = vt, vt1i = vti , u
t2
i = uti, for i 6= id, and vt1id = ut2id =

utid+vtid
2 . Two ellipsoids

Et1 and Et2 are generated from Tt1 and Tt2 according to

Et1 =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

(2xi − vt1i − u
t1
i )2

(vt1i − u
t1
i )2

≤ n

}
, (4.22)

and

Et2 =

{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

(2xi − vt2i − u
t2
i )2

(vt2i − u
t2
i )2

≤ n

}
. (4.23)

If we manage the rectangular set cover T in such way that the set Ti ∩∆ has a nonempty

interior for each rectangular set Ti in T , then at most one of the two rectangular sets Tt1 and

Tt2 may have no common interior with the feasible domain ∆. If such rectangular set exists,

it should be eliminated from the rectangular set cover T for further consideration. In order to

determine which rectangular set should be eliminated, consider the following problems:

(Iidmin)

min xid

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,

ut ≤ x ≤ vt
(4.24)

and

(Iidmax)

max xid

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,

ut ≤ x ≤ vt.
(4.25)

Note that problem (Iidmin) and problem (Iidmax) are convex optimization problems (this is why

the constraints need to be convex), hence they can be solved efficiently. Denote the optimal

value of (Iidmin) and (Iidmax) to be φ and ψ, respectively. We manage the rectangular sets in T in
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the following way.

T = (T \ {Tt}) ∪ {Tt2}, if φ ≥
utid + vtid

2
; (4.26)

T = (T \ {Tt}) ∪ {Tt1}, if ψ ≤
utid + vtid

2
; (4.27)

T = (T \ {Tt}) ∪ {Tt1} ∪ {Tt2}, otherwise. (4.28)

The following theorem shows that if we manage rectangular set cover T = ∪i:Ti∈TTi in this

way, then each rectangular set Ti in T has a common interior with the feasible domain ∆.

Theorem 4.3.2. The set Ti ∩ ∆ has a nonempty interior for each rectangular set Ti in T if

the rectangular sets are added into T according to (4.26)-(4.28).

Proof. We only need to prove that the newly added rectangle set Tt1 or Tt2 based on (4.26)-

(4.28) has a common interior with ∆. Note that Tt = Tt1∪Tt2 and Tt∩∆ has a nonempty interior,

either Tt1 ∩∆ or Tt2 ∩∆ has a nonempty interior. If φ ≥ utid+vtid
2 , then the set Tt1 ∩∆ has no

interior, and should not be added into T. In fact, we have Tt∩∆ = Tt1 ∩∆. To see this, assume

xt1 ∈ (Tt \ Tt2) ∩ ∆, then xt1id <
utid+vtid

2 ≤ φ. But xt1 is a feasible solution of problem (Iidmin)

defined by (4.24), which contradicts the fact that φ is optimal value. Similarly, when ψ ≤ utid+vtid
2 ,

Tt∩∆ = Tt1 ∩∆ and the set Tt2 ∩∆ has no interior point. When φ <
u
t1
id+v

t1
id

2 < ψ, let xint be an

interior point of the set Tt∩∆, and let xmin and xmax be the optimal solutions of problems (Iidmin)

and (Iidmax) defined by (4.24) and (4.25), respectively. Then the points xt1 = λxint + (1−λ)xmin

and xt2 = ηxint + (1 − η)xmax are interior points of the sets Tt1 ∩ ∆ and Tt2 ∩ ∆ for some

λ ∈ [0, 1) and η ∈ [0, 1), respectively. (See Theorem 6.1 in [96].)

Remark 3. The proof of Theorem 4.3.2 shows that T is still a rectangular set cover of ∆ after

refinement. Consequently, E is still an elliptic cover of ∆.

Since each Ti has a common interior with ∆, each ellipsoid Ei, generated by Ti, also has a

common interior with ∆. Therefore, we have the following corollary:

Corollary 4.3.3. The set Ei∩∆ has a nonempty interior for each Ei generated by the rectangular

set Ti in T.

Notice that the assumptions in Theorem 4.2.2 and Corollary 4.2.3 hold if we manage the

rectangular set cover by (4.26)-(4.28). According to Lemma 4.3.1, if the rectangular set Tt is

split into two rectangular sets Tt1 and Tt2 , then Vol(Et1 ∪ Et2) < Vol(Et). Therefore, the volume

of elliptic cover E is highly likely to strictly decrease after each refinement. This indicates that

the elliptic cover E may become a better estimate of the feasible domain ∆.
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At last, in order to check whether the current sensitive point x∗ is close enough to the

feasible domain ∆, consider the following problem (Ic):

(Ic)
min ‖x− x∗‖∞
s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, . . . ,m.

(4.29)

Again, (Ic) is a convex programming problem. Assume the optimal solution of (Ic) is x̄1. If

‖x̄1 − x∗‖∞ ≤ δ, then x∗ ∈ Bδ,∆ and x̄1 could be output as an approximate optimal solution

when δ is sufficiently small. Besides, we can get a feasible solution x̄2 easily from the optimal

solution Y ∗ of problem (RLT-ETRS).

Lemma 4.3.2. Assume Y ∗ = (Y 1)∗ + · · · + (Y k)∗ is the optimal solution of problem (RLT-

ETRS) and Y ∗ has a rank-one decomposition as in (4.16). Then

x̄2 =
∑

i:(Y i)∗ 6=0

ni∑
s=1

αisx
is (4.30)

is a feasible solution of problem (ETRS).

Proof. Since Y ∗ =

[
1 (x̄2)T

x̄2 X

]
∈ Sn+1

+ , then X−x̄2(x̄2)T ∈ Sn+ using the Schur complementary

condition. Note that P j ∈ Sn+ and Hj • Y ≤ 0, we have

(x̄2)TP j x̄2 + 2(qj)T x̄2 + γj ≤ P j •X + 2(qj)T x̄2 + γj = Hj • Y ≤ 0.

Hence, x̄2 is a feasible solution of problem (ETRS).

Our proposed algorithm is stated as below.

Adaptive Ellipsoid-based Algorithm for ETRS (AEA-ETRS)

Initialization : Solve problems (Iimin) and (Iimax) defined by (4.20) and (4.21) for i = 1, ..., n

to get the initial rectangle set T1 and the corresponding ellipsoid E1. Set ε > 0 be the

tolerance, T = {T1}, E = {E1} and T = ∅. Let lower bound l = −∞, upper bound

s = +∞ and approximate solution x̃ = 0 ∈ Rn.

Step 1 : Solve problem (RLT-ETRS) defined by (4.12) with the approximation cone N ∗
E ,

where E is defined by (4.8). Assume the optimal solution to problem (RLT-ETRS) is

Y ∗ = (Y 1)∗ + · · · + (Y k)∗. Return the optimal value of problem (RLT-ETRS) as l∗. Set

l = max{l, l∗}. If |s− l| ≤ ε, stop and output x̃. Otherwise, go to Step 2.
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Step 2 : Decompose Y ∗ according to Corollary 3.5.1 to obtain the most sensitive point x∗ and

the most sensitive ellipsoid Et = {x ∈ Rn|
∑n

i=1
(2xi−vti−uti)2

(vti−uti)2 ≤ n} ∈ E, which is generated

from the rectangle set Tt = [ut, vt] ∈ T. If x∗ ∈ ∆, stop and output x∗. Otherwise, go to

Step 3.

Step 3 : Set T = T\{Tt}, E = E\{Et} and id = argmax{i=1,...,n}{vti−uti}. Generate ellipsoids

Et1 and Et2 according to (4.22) and (4.23), respectively. Let φ and ψ be the optimal value

of problems (Iidmin) and (Iidmax) defined by (4.24) and (4.25), respectively.

• If φ ≥ utid+vtid
2 , set E = E ∪ {Et2}, T = T ∪ {[ut2 , vt2 ]} and T = T ∪ {[ut1 , vt1 ]};

• If ψ ≤ utid+vtid
2 , set E = E ∪ {Et1}, T = T ∪ {[ut1 , vt1 ]} and T = T ∪ {[ut2 , vt2 ]};

• Otherwise, set E = E ∪ {Et1} ∪ {Et2} and T = T ∪ {[ut1 , vt1 ]} ∪ {[ut2 , vt2 ]}.

Step 4 : Solve problem (Ic) defined by (4.29) to obtain x̄1. Set x̄2 =
∑

i:(Y i)∗ 6=0

∑ni
s=1 αisx

is. If

min{f(x̄1), f(x̄2)} < s, set s = min{f(x̄1), f(x̄2)} and

x̃ = argmin{x̄1,x̄2}{f(x̄1), f(x̄2)}.

If |s− l| < ε, stop and output x̃. Otherwise, go to Step 1.

Remark 4. Step 3 shows that at most one additional ellipsoid is added to the current ellipsoid

cover at the end of each iteration. Therefore, the complexity of problem (RLT-ETRS) does not

increase drastically.

Remark 5. The set T in the proposed algorithm is used for the convenience of the proof in

Lemma 4.3.3. In an actual algorithm implementation, T need not be stored. Besides, the total

volume of all rectangle sets in T and T always equals to the volume of the initial rectangle set

T1.

Remark 6. Two requirements need to be satisfied for the algorithm. One is that the feasible

domain should be bounded with nonempty interior points such that the initial rectangle set

can be found in the Initialization step and problem (Iidmin) and problem (Iidmax) are solvable in

Step 3. The other requirement is that the objective function has to be quadratic such that the

problem (RCP-ETRS) can be solved. This algorithm has some extensions to be seen in Section

4.6.

4.3.2 Proof of convergence

In this subsection, we show that the algorithm terminates in a finite number of iterations for

any given ε > 0 such that output objective value is within the given tolerance. The next lemma

is useful in the proof.
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Lemma 4.3.3. For any given instance of problem (ETRS) and δ > 0, there exists an Nδ ∈ N
such that ‖x̄− x∗‖∞ ≤ δ at the Nδ-th iteration.

Proof. If at some N0-th iteration, x∗ ∈ ∆, then x̄ = x∗, the lemma holds trivially. Otherwise,

assume that x∗ /∈ ∆ at each iteration. Let Bδ,∆ = {x ∈ Rn|∃y ∈ ∆, s.t.‖x − y‖∞ ≤ δ}. Note

that if x∗ ∈ Bδ,∆, then ‖x̄− x∗‖∞ ≤ δ. Therefore, we only need to show that at some iteration,

the most sensitive point x∗ falls into the set Bδ,∆. Denote δ1 as the longest edge of the initial

rectangular set T1. By the arrangement of the ellipsoids, we know that the length of i-th half axis

of ellipsoid Ft is equal to
√
n

2 (vti − uti), where Tt = [ut, vt]. Then after (d δ1
√
n

δ e)
n iterations, at

least some rectangular set [u, v] satisfies that vi−ui ≤ δ√
n

for some i ∈ {1, 2, ..., n}. Otherwise,

the total volume of all rectangular sets in T and T is greater than δn1 after (d δ1
√
n

δ e)
n iterations.

Note that the length of i-th half axis of the ellipsoid corresponding to rectangle [u, v] at this

time is less than δ
2 . Assume that this ellipsoid was generated at the N1-th iteration. Then

among the first N1 iterations, there exists one iteration Nδ such that a rectangular set is split

perpendicularly to some id-th direction with vid−uid ≤ 2δ√
n

. Thus the length of the id-th half-axis

of the most sensitive ellipsoid is less than δ. Note that the id-th half-axis is the longest half-axis

in the most sensitive ellipsoid and it intersects the feasible domain ∆, hence x∗ ∈ Bδ,∆.

Remark 7. In the proof of Lemma 4.3.3, δ1 depends on the given instance of problem (ETRS),

so doesNδ. However, for any given instance, our proposed algorithm converges in finite iterations

for a given tolerance.

Theorem 4.3.4. Assume the feasible domain ∆ of problem (ETRS) is bounded and has a

nonempty interior. For any given instance with a tolerance ε > 0, there exists an Nε ∈ N such

that |s− l| < ε at the Nε-th iteration of the proposed AEA-ETRS.

Proof. For any ε > 0, there exists some δ > 0 such that |f(x̄) − f(x∗)| < ε for any x̄ and x∗

satisfying ‖x̄−x∗‖∞ < δ, because the objective function f(x) of problem (ETRS) is continuous

on the compact set ∆. According to Lemma 4.3.3, there exists some Nε ∈ N such that ‖x̄ −
x∗‖∞ < δ. Since l and s record the best lower and upper bounds, we have |s − l| ≤ |f(x̄) −
f(x∗)| < ε.

Theorem 4.3.4 shows that the solution x̃ obtained by our algorithm is an ε-optimal solution

and our algorithm terminates in finite steps for any given instance with ε > 0.

4.4 Numerical Examples

The proposed algorithm was implemented using MATLAB 7.14.0 on a PC with Intel Core 2

CPU 2.40Ghz and 3G memory. CVX [54], a MATLAB package for specifying and solving convex
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programs, is used to solve all the convex programming problems stated in AEA-ETRS. The

tolerance parameter ε is set to be 0.001.

Example 4.4.1. Consider the following problem from [125]:

min −x2
1 + x1 + 4x2

2

s.t. x2
1 + x2

2 ≤ 4,

x2
1 − 4x1 +

1

4
x2

2 ≤ 0.

The initial rectangle set T1 = [0, 2] × [−1.9826, 1.9826]. This rectangle generates the initial

ellipsoid E1 = {x ∈ R2|(x1 − 1)2 +
x2

2
1.98262 ≤ 1}. By solving problem (RLT-ETRS), it returns

the optimal value −2.5 and the most sensitive point x∗ = (2.4142, 0.0000)T . By solving (Ic),

it returns the approximate solution x̄ = (2.0000, 0.0000)T , which is the global minimizer.

The rectangle T1 is then split by line x2 = 0 such that T2 = [0, 2] × [0, 1.9826] and T3 =

[0, 2] × [−1.9826, 0]. The upper bound is −2 and the lower bound is −2.5 after the first

iteration. Some of the upper and lower bounds generated in the first 40 iterations are shown in

Table 4.1.

Table 4.1: The upper and lower bounds of Example 4.4.1.

Iteration 1 5 10 15 30 40

Upper bound −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000
Lower bound −2.5000 −2.0131 −2.0120 −2.0104 −2.0025 −2.0008

Figure 4.1 depicts the upper and lower bounds returned in each iteration. At the 40th

iteration, the algorithm stops as the gap between the upper and lower bounds becomes 0.0008.

It outputs an approximate solution x̃ = (2.0000, 0.0000)T .

Example 4.4.2. This example also comes from [125]:

min −x2
1 + x1 + x2

2

s.t. x2
1 + x2

2 ≤ 4,

(x1 + x2)2 + x2
2 − 2x1 ≤ 0.

The optimal solution is x∗ = (2, 0)T with the optimal value −2. It took 8 iterations for AEA-

ETRS to terminate. The algorithm provides a lower bound −2.0008, an upper bound −2.0000

and an approximate solution x̃ = (2.0000, 0.0000)T . The upper and lower bounds returned
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Figure 4.1: The upper and lower bounds of Example 4.4.1.

from each iteration are shown in Table 4.2.

Table 4.2: The upper and lower bound of Example 4.4.2.

Iteration 1 2 3 4 5 6 7 8

UB −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000 −2.0000
LB −2.3336 −2.1641 −2.1950 −2.1089 −2.0658 −2.0408 −2.0301 −2.0008

Example 4.4.3. Consider the following nonconvex quadratic problem with three convex con-

straints.

min −x2
1 + x1 + 4x2

2

s.t. x2
1 + x2

2 ≤ 4,

x2
1 − 4x1 +

1

4
x2

2 ≤ 0.

x1 + x2 ≤ 2

The optimal solution of this problem is x∗ = (2, 0)T with the optimal value −2. Our algorithm

terminated in 25 iterations with an upper bound −2.0000 and a lower bound −2.0009. The

approximate solution obtained is x̃ = (2.0000, 0.0000)T which is quite close to the true optimal

solution x∗.
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4.5 Computational Results

In this section, we report some computational results of the proposed AEA-ETRS. The test

problems have the following form:

min xTP 0x+ 2(q0)Tx

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,

Ex ≤ d

where the matrices P j = OjDj(Oj)T for some orthogonal matrix Oj and a diagonal matrix

Dj ∈ Sn++, E is an l×n matrix and d ∈ Rl. The parameters in the test problems are randomly

generated using the method in [128]. The matrix Oj = Qj1Q
j
2Q

j
3, where Qji = I − 2

ωiω
T
i

‖ωi‖2
,

i = 1, 2, 3. The components of vector ωi ∈ Rn are random numbers in [−1, 1] and I is the

n-dimensional identity matrix. The components in Dj are set in the following way: D0 =

Diag(D0
1, ..., D

0
n) is a diagonal matrix with D0

i ∈ [−50, 0] for i = 1, ..., bn2 c and D0
i ∈ [0, 50] for

i = bn2 c+ 1, .., n; Dj = Diag(Dj
1, ..., D

j
n) is a diagonal matrix with Dj

i ∈ [0, 50] for j = 1, ...,m.

The parameters in the linear constraints are set in the following way: E = (Eij) with Eij ∈
(0, 50) and d = Ee/n, where e is the vector with all 1s in Rn. Also, we set q0 = (q0

1, ..., q
0
n)T

with q0
i ∈ [−10, 10], qj = (qj1, ..., q

j
n)T with qji ∈ [−50, 0], and γj ∈ [−5, 0] for j = 1, ...,m.

In order to demonstrate the validity of AEA-ETRS, we used the commercial global optimiza-

tion package BARON [97] on NEOS server [41] to obtain the optimal value. The termination

condition was set as |s− l| < ε|l|+ ε with ε = 10−5. For n = 10, m = 5 and l = 0, 100 random

test problems were generated and Table 4.3 lists part of the results, including the optimal values

returned by BARON and AEA-ETRS, the number of iterations for AEA-ETRS and the CPU

time (in seconds) consumed by BARON and AEA-ETRS, respectively. Among these 100 prob-

lems, 74 problems were solved in one iteration by AEA-ETRS and the results coincided with

BARON’s. For the remaining 26 problems, we selected 10 representative problems to report

their results in Table 4.3. It indicates that the proposed AEA-ETRS could obtain comparable

accurate solutions with BARON in an efficient manner.

In order to show the efficiency of AEA-ETRS, we compare our duality gap with the one

obtained by Shor’s SDP relaxation scheme. To measure the improvement of duality gap obtained

by AEA-ETRS, the following improvement ratio is adopted[128]:

improv. ratio ,

(
1− s− l

UP − LB

)
× 100%

where UP and LB are the upper and lower bounds obtained using Shor’s SDP relaxation

scheme, s and l are the upper and lower bounds obtained using AEA-ETRS. Since the number
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Table 4.3: Numerical results for 10 test problems.

Instance
OPT

Iterations
CPU Time (second)

BARON AEA-ETRS BARON AEA-ETRS

1 −1.6641E+4 −1.6641E+4 108 1018.42 322.01
2 −5.2393E+3 −5.2393E+3 127 896.27 400.59
3 −9.3390E+3 −9.3390E+3 117 854.17 347.56
4 −1.4626E+4 −1.4626E+4 99 394.17 286.19
5 −2.3251E+4 −2.3251E+4 43 94.20 134.33
6 −2.5182E+4 −2.5182E+4 507 592.85 1387.94
7 −1.3063E+4 −1.3063E+4 211 900.59 601.71
8 −7.2712E+3 −7.2712E+3 210 779.17 600.41
9 −1.6559E+4 −1.6559E+4 206 671.90 602.15
10 −8.3801E+3 −8.3801E+3 183 2189.81 600.04

of iterations to reach a precise solution may grow fast as the problem size grows, the maximum

allowed CPU time was limited to 600 seconds. Table 4.4 summarizes the average improvement

ratios, the average number of iterations and the average CPU time for 100 test problems that

took more than one iteration to stop for n = 30, 40, 50 and m = l = 5 or 10. From the results

in Table 4.4, we can see that AEA-ETRS can close the duality gap resulting from Shor’s SDP

relaxation scheme very efficiently.

Table 4.4: Numerical results for random generated instances

n m = l improv. ratio (%) # iteration CPU time(second)

30 5 90.16 98.56 600.00
30 10 85.80 91.68 600.00
40 5 94.49 55.58 600.00
40 10 89.43 53.92 600.00
50 5 93.87 30.05 600.00
50 10 91.81 27.62 600.00

4.6 Summary

In this chapter, we have developed a conic reformulation and approximation to a nonconvex

quadratic programming problem with several convex quadratic constraints. Because the cone

of nonnegative quadratic functions N∆ over the feasible domain ∆ of problem (ETRS) and

its dual cone N ∗
∆ are uncomputable, we use the cone of nonnegative quadratic functions NE
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over an elliptic cover E of ∆ and its dual cone N ∗
E to approximate the cone N∆ and N ∗

∆ ,

respectively. The linear conic programming problem (RLT-ETRS) over the cone N ∗
E is actually

a semidefinite programming problem. Thus, problem (RLT-ETRS) can be solved efficiently

and its optimal value provides a lower bound of problem (ETRSP). In order to obtain a lower

bound close to the optimal value of problem (ETRS), an adaptive scheme is adopted to refine

the elliptic cover E . The proposed algorithm is shown to be convergent. It is important to

point out that our algorithm requires a weaker assumption on the feasible domain ∆ than other

constraint qualifications ([37, 117, 125]) and the number of convex quadratic constraints can

be any positive integer. Hence, our work expands the known results in literature.

There are two main results obtained in this chapter: (i) We use the linear conic program-

ming problem over the cone of nonnegative quadratic functions with new RLT-constraints to

approximate the original problem. This may result in better lower bounds than solely applying

the SDP or other methods. (ii) We use an adaptive scheme to improve the lower bounds such

that the information of the objective function is involved in each iteration to help the proposed

algorithm converge to the optimal solution quickly.

However, we have to mention that the arrangement of the ellipsoids Ei in the elliptic cover

E is critical to our algorithm. The half axes of the ellipsoids used in our algorithm are all

parallel to the coordinate axes. This may not be the most efficient way for approximating the

original feasible domain. The reason we adopted this arrangement is due to its simplicity in

managing and refining the ellipsoid covers. Developing efficient approximation methods is our

future research directions.

Although the proposed algorithm is designed to solve a special class of (QCQP), this al-

gorithm can be readily extended to solve other nonconvex quadratic programming problems

over some special feasible domains. One such domain is ∆′ = ∆1 ∪ · · · ∪ ∆k ⊆ Rn, where

each set ∆i = {x ∈ Rn|gji (x) ≤ 0, j = 1, ...,mi} is bounded and has a nonempty interior with

gji (x) being convex for i = 1, ..., k and j = 1, ...,mi. For each of such set ∆i, we can solve the

nonconvex quadratic programming problem over ∆i using our proposed algorithm with simple

modifications. Then, the optimal value of the problem over ∆′ can be obtained by comparing

the optimal values of the problem over each ∆i for i = 1, ..., k.
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Chapter 5

Bounded Quadratically Constrained

Quadratic Programming Problems

In this chapter, we study the bounded quadratically constrained quadratic programming (BQCQP)

problem. The BQCQP problem is first transformed into a linear conic programming problem,

and then approximated by semidefinite programming (SDP) problems over different intervals.

In order to improve the lower bounds, polar cuts, generated from the cut-generation problems,

and disjunctive cuts are embedded in a branch-and-cut algorithm, which yields a globally εr-

εz-optimal solution (with respect to feasibility and optimality respectively) in a finite number

of iterations. In order to enhance the computational speed, a special branch-and-cut rule is

adopted. Numerical examples show that the number of explored nodes can be significantly

reduced.

5.1 Introduction

In this chapter, we study the bounded quadratically constrained quadratic programming prob-

lem in the following form:

(BQCQP)

min f(x) = xTP 0x+ 2(q0)Tx

s.t. xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m,

l ≤ x ≤ u,
(5.1)

where l and u are vectors in Rn, P j ∈ Rn×n is a real symmetric matrix, qj ∈ Rn is a vector,

j = 0, . . . ,m, and γj ∈ R is a scalar, j = 1, . . . ,m. Let F be the feasible domain of problem

(BQCQP), i.e.,

F =
{
x ∈ Rn|l ≤ x ≤ u, xTP jx+ 2(qj)Tx+ γj ≤ 0, j = 1, 2, . . . ,m

}
.

57



Since the feasible domain F is bounded and closed, it is compact. However, we do not assume

any convexity of the objective function f(x) or the feasible domain F .

Problem (BQCQP) arises from many applications including signal processing [77], statis-

tics [111] and finance [130]. It generalizes many well-known NP-hard optimization problems,

such as box constrained quadratic programming, mix 0-1 linear programming, bilinear pro-

gramming and polynomial programming problems. Hence problem (BQCQP) is NP-hard in

general, although some special cases of problem (BQCQP) can be solved in polynomial time

[19, 26, 125, 127].

Most global optimization methods for BQCQP are based on the convex relaxations of the

original problem embedded in a branch-and-bound (or branch-and-cut) framework where a lower

or upper bound is computed by some relaxation schemes, such as linearization [9, 13, 106, 109],

second-order cone programming (SOCP) [68] and semidefinite programming (SDP) [49]. A

branch-and-bound algorithm based on the outer polyhedral approximations over a rectangle

and linear programming relaxations for BQCQP was proposed by Al-Khayyal et al. in [9].

Linderoth [72] and Raber [94] extended this work and developed a branch-and-bound algorithm

involving linear programming subproblems based on a simplicial partition. Linear programming

relaxations based on reformulation-and-linearization techniques (RLT) were developed in [104,

106]. Audet et al. [13] extended the use of RLT in solving BQCQP by including different classes

of linearizations. Kim and Kojima [68] applied the lift-and-project idea of RLT to create a

second-order cone programming relaxation for BQCQP. Notice that the relaxation problems

in all these works are linear programming (LP) or second-order cone programming (SOCP)

problems.

SDP relaxation is another attractive approach for solving problem (BQCQP) owing to its

capability of finding good bounds and approximation solutions. By lifting a vector x ∈ Rn to

a symmetric positive semidefinite matrix X = xxT , which can be represented by the linear

matrix inequality X < xxT (“<” means X − xxT is positive semidefinite) together with linear

inequalities x2
i ≥ Xii for i = 1, ..., n, we see that problem (BQCQP) is equivalent to the following

linear conic problem (ref. Theorem 3.5 in [35]):

(CP)

min F (x,X) = P 0 •X + (q0)Tx

s.t. P j •X + (qj)Tx+ γj ≤ 0, j = 1, . . . ,m,

x2
i ≥ Xii, i = 1, . . . , n,

X < xxT , l ≤ x ≤ u.

(5.2)

Note that X < xxT is a convex constraint because it is equivalent to

[
1 xT

x X

]
< 0 according

to Schur complementary theorem [20]. However, x2
i ≥ Xii is nonconvex for i = 1, . . . , n. Thus
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solving problem (CP) directly is likely to be NP-hard [78]. Instead, various convex relaxations

for problem (CP) were proposed. For example, the Shor’s relaxation scheme [110] eliminates

the nonconvex constraints x2
i ≥ Xii, i = 1, ..., n, in problem (CP), resulting in a basic SDP

relaxation as follows.

(Shor)

min P 0 •X + (q0)Tx

s.t. P j •X + (qj)Tx+ γj ≤ 0, j = 1, ...,m,

X < xxT , l ≤ x ≤ u.
(5.3)

Anstreicher derived another relaxation in [11] by applying RLT, which linearizes the bilinear

term xixj by Xij and applies some valid bounds on xixj to Xij . Specifically, the resulting SDP

relaxation is as follows.

(SDP-RLT)

min P 0 •X + (q0)Tx

s.t. P j •X + (qj)Tx+ γj ≤ 0, j = 1, ...,m,

X < xxT , l ≤ x ≤ u, X−ij ≤ Xij ≤ X+
ij , i, j = 1, ..., n,

(5.4)

where X−ij = max{uixj +ujxi−uiuj , lixj + ljxi− lilj} and X+
ij = min{lixj +ujxi− liuj , uixj +

ljxi − uilj}. Further eliminating the semidefinite constraint X < xxT in problem (SDP-RLT),

we have the following linear relaxation (ref. [106]):

(LP-RLT)

min P 0 •X + (q0)Tx

s.t. P j •X + (qj)Tx+ γj ≤ 0, j = 1, ...,m,

l ≤ x ≤ u, X−ij ≤ Xij ≤ X+
ij , i, j = 1, ..., n.

(5.5)

Denote the feasible domains of problem (CP), (Shor), (SDP-RLT) and (LP-RLT) by FCP, FShor,

FSDPRLT and FLPRLT, respectively. Note that, FShor and FSDPRLT are outer-approximations of

FCP, and FCP ⊆ FSDPRLT ⊆ FShor. The set FLPRLT is a polyhedral outer-approximation of

FCP and problem (LP-RLT) is linear programming, thus can be solved more efficiently than

problems (Shor) and (SDP-RLT) in general.

In this chapter, a new branch-and-cut algorithm based on the estimation of quadratic terms

x2
i , i = 1, . . . , n, is developed. The similar technique has appeared in [13], but is different from

ours in two respects. First, only the quadratic terms x2
i , i = 1, . . . , n, are needed to approximate

are needed to improve and approximate in different intervals in our work, while other researchers

estimate all bilinear terms xixj , i, j = 1, . . . . , n (ref. [11, 13, 72]). Second, we propose new linear

and quadratic polar cuts in the cutting step. All these cuts are valid in the subtrees rooted at

the nodes where they were generated. The linear polar cuts in [98] and [99] are generated by

solving linear cut-generation problems. However, the polar cuts in this study are generated

by solving SDP problems, which include the cut-generation problems in [99] as special cases.

59



Consequently, the new cuts may improve the bounds more efficiently.

This chapter is organized as follows. Section 5.2 introduces the range reduction technique

to tighten the bounds on the variables. In Section 5.3, three different cuts, including the linear

polar cut, quadratic polar cut and disjunctive cut, are derived. A branch-and-cut algorithm,

which converges in a finite number of iterations within a given tolerance, is proposed in Section

5.4. Numerical examples are reported in Section 5.5. Conclusions are given in Section 5.6.

5.2 Range Reduction Strategy

A tight bound on variables {xi} will reduce the search space to find the optimal solution more

quickly. Due to the nonconvex nature of the constraints in problem (BQCQP), obtaining tight

bounds on the variables {xi} is a nontrivial job. The range reduction strategy we used is the

one in [105]. Let x−i , x+
i be the current bounds on variable xi such that 0 ≤ x−i ≤ xi ≤ x+

i ,

and X−ii , X
+
ii be the bounds on Xii such that 0 ≤ X−ii ≤ Xii ≤ X+

ii obtained by replacing

problem (LP-RLT)’s objective function by ±xi and then by ±Xii, respectively. We then update

the bound li and ui according to li = max{x−i ,
√
X−ii } and ui = min{x+

i ,
√
X+
ii }, respectively.

If li ≤ ui, then li and ui are valid bounds for variable xi over the feasible domain of problem

(BQCQP). Otherwise, li > ui and the feasible domain of problem (BQCQP) is empty.

After updating the bound for one variable xi, the process can be reiterated for other variables

xj(j 6= i) to tighten the bound. For demonstration, consider the following example from [13]:

Example 5.2.1. Let the feasible domain F be defined by two constraints

x1 + x2
1 ≤ 6 and x1 ≥ 1.

It can be verified that the feasible domain is [1, 2]. The range reduction strategy first solves

the following two problems

x−1 = min x1

s.t. x1 +X11 ≤ 6, x1 ≥ 1,

X11 ≥ 2x1 − 1,

(5.6)

and

X−11 = min X11

s.t. x1 +X11 ≤ 6, x1 ≥ 1,

X11 ≥ 2x1 − 1,

(5.7)

and finds lower bounds on x1 and X11 are x−1 = 1 and X−11 = 1, respectively. The lower bound
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l1 on x1 is then updated to l1 = max

{
x−1 ,

√
X−11

}
= 1. Next, the range reduction strategy

solves the following two problems

x+
1 = max x1

s.t. x1 +X11 ≤ 6, x1 ≥ 1,

X11 ≥ 2x1 − 1,

(5.8)

and

X+
11 = max X11

s.t. x1 +X11 ≤ 6, x1 ≥ 1,

X11 ≥ 2x1 − 1,

(5.9)

and finds the upper bounds on x1 and X11 are x+
1 = 7

3 and X+
11 = 5, respectively. The upper

bound u1 on x1 is then updated to u1 = min

{
x+

1 ,
√
X+

11

}
=
√

5. The new bound on x1 then

generate new RLT-contraints:

X11 − 2
√

5x1 + 5 ≥ 0 and −X11 + (1 +
√

5)x1 −
√

5 ≥ 0.

By adding the new RLT-constraints along with the new bound on x1 to problems (5.6)–(5.9)

and resolving them, the range reduction strategy then finds the new bound on x1 is
[
1, 11

2
√

5+1

]
.

Repeating this process converges to the feasible interval of x1, i.e., [1, 2].

In Section 5.4, we will present an algorithm whose pre-processing phase adopts this range

reduction strategy until the improvement on the bounds becomes negligible.

5.3 Cuts Generation

In this section, three different cuts for the new branch-and-cut algorithm are developed. We

first derive the linear and quadratic polar cuts, which are available when the optimal values of

corresponding cut-generation problems are negative. Then we introduce the disjunctive cuts,

which are always available.

5.3.1 Generalized Linear and Quadratic Polar Cuts

Assume the current solution of problem (SDP-RLT) is (x∗, X∗) . If X∗ = x∗(x∗)T , then x∗ is an

optimal solution of problem (CP). Otherwise, a valid (linear or nonlinear) inequality is expected

to cut off the current solution (x∗, X∗) such that a tighter lower bound could be obtained in the

next iteration. Such valid inequality is called a cut for problem (CP). There are various types

61



of cuts, such as intersection cuts [15], disjunctive cuts [16] and polar cuts [99], in the literature.

We generalize the so-called linear polar cuts by extending the results of [99]. It turns out that

the extension is nontrivial and the following lemma is needed.

Lemma 5.3.1. For a given positive semidefinite matrix A ∈ Sn+ and a vector λ = (λ1, . . . , λK)T ∈
RK with K ∈ N,

∑K
k=1 λk = 1 and λk ≥ 0 for k = 1, . . . ,K. The following inequality holds

A • (
K∑
k=1

λkv
k)(

K∑
l=1

λlv
l)T ≤

K∑
k=1

λkA • (vk)(vk)T (5.10)

for any set of {vk ∈ Rn, k = 1, . . . ,K}.

Proof. Let a = A • (
∑K

k=1 λkv
k)(
∑K

l=1 λlv
l)T −

∑K
k=1 λkA • (vk)(vk)T , we need to prove a ≤ 0.

Note that

a =
K∑
k=1

λk(v
k)TA(

K∑
l=1

λlv
l − vk)

=

K∑
k=1

K∑
l=1

λkλl(v
k)TA(vl − vk)

=
K∑
k=1

K∑
l=1

λkλl(v
k − vl)TA(vl − vk) +

K∑
k=1

K∑
l=1

λkλl(v
l)TA(vl − vk)

= −
K∑
k=1

K∑
l=1

λkλl(v
l − vk)TA(vl − vk)− a

≤ −a

where the last inequality holds because A is positive semidefinite and λk ≥ 0 for k = 1, ...,K.

Hence a ≤ 0 and inequality (5.10) holds.

For a given set S ⊆ {1, 2, ..., n}, denote |S| to be its cardinality. Let xS = 〈xk〉k∈S be the

sub-vector of x having components indexed by k ∈ S, and XS = 〈Xij〉i, j∈S be the sub-matrix

of X having component indexed by i, j ∈ S. We have the following theorem generalizing the

linear polar cuts.

Theorem 5.3.1. Let S ⊆ {1, 2, ..., n}, P ⊆ R|S| be a polyhedral outer-approximation of ΩS ={
xS = 〈xk〉k∈S

∣∣∃〈xk〉k/∈S and X such that (x,X) ∈ FCP

}
, which is the projection of FCP to the

space of 〈xk〉k∈S variables, and V = {vt|t = 1, . . . ,K}, where K ∈ N and vt ∈ R|S| for t =

1, ...K, be the set of vertices of P. Then, a given (x∗, X∗) is a feasible solution to problem (CP)
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only if the optimal objective value of the following linear cut-generation problem is nonnegative.

(LPolar)

min αTx∗S +B •X∗S − γ

s.t. αT vt +B • (vt(vt)T )− γ ≥ 0, t = 1, . . . ,K,

α = α+ − α−,
α+ ≥ 0, α− ≥ 0, −B < 0,

eT (α+ + α−)− tr(B) = 1.

(5.11)

Moreover, if (α,B, γ, α+, α−) is a feasible solution of problem (LPolar) having a negative ob-

jective value, then αTxS +B •XS −γ ≥ 0 cuts off (x∗, X∗) from the feasible domain of problem

(CP).

Proof. Suppose (x,X) is a feasible solution to problem (CP) and (α,B, γ, α+, α−) is a feasible

solution to problem (LPolar). Since (x,X) ∈ FCP, we have xS = 〈xk〉k∈S ∈ ΩS , XS = xSx
T
S

and there exist some λt ≥ 0 for t = 1, . . . ,K such that
∑K

t=1 λt = 1 and
∑K

t=1 λtv
t = xS .

Consequently,

αTxS +B •XS − γ

=

(
K∑
t=1

αTλtv
t +B • (

K∑
t=1

λtv
t)(

K∑
t=1

λtv
t)T

)
− γ

≥
K∑
t=1

λt
(
αT vt +B • (vt)(vt)T

)
− γ (by Lemma 5.3.1 and the positive semidefiniteness of −B)

≥ 0.

Therefore, αTxS + B •XS − γ ≥ 0 is a valid inequality for problem (CP). When the optimal

objective value of problem (LPolar) is negative, (x∗, X∗) violates the inequality αTxS + B •
XS − γ ≥ 0 and is cut off from the feasible domain of problem (CP).

Remark 8. When matrix B is restricted to be diagonal, problem (LPolar) is the same as the

one in [99]. Hence, our result is more general and has a better chance to improve the lower

bound more efficiently. Thus our cut is called a “generalized linear polar cut.” The constraint

of eT (α+ + α−) − tr(B) = 1 is a normalization constraint that ensures the boundedness of

problem (LPolar).

Problem (LPolar) is an SDP problem, thus can be solved in polynomial time [8]. Further-

more, we can extend the results in Theorem 5.3.1 to a quadratic case. The next theorem shows

the way to obtain a quadratic polar cuts.

63



Theorem 5.3.2. Let S ⊆ {1, 2, ..., n}, P ⊆ Rn be a polyhedral outer-approximation of ΩS and

V = {vt|t = 1, . . . ,K} be the set of vertices of P, where K ∈ N and vt ∈ R|S| for t = 1, ...K.

Then, a given (x∗, X∗) is a feasible solution to problem (CP) only if the optimal objective value

of the following quadratic cut-generation problem is nonnegative.

(QPolar)

min (x∗S)TAx∗S +B •X∗S − γ
s.t. (A+B) • vt(vt)T − γ ≥ 0, t = 1, . . . ,K,

−(A+B) < 0,

−tr(A+B) = 1.

(5.12)

Moreover, if (A,B, γ) is a feasible solution of problem (QPolar) having a negative objective

value , then xTSAxS + B • XS − γ ≥ 0 cuts off (x∗, X∗) from the feasible domain of problem

(CP).

Proof. The proof is similar to the one in Theorem 5.3.1 by noting that the second inequality in

the proof of Theorem 5.3.1 holds due to the fact that matrix −(A+B) is positive semidefinite.

Remark 9. The valid cut generated by problem (QPolar) is called a “generalized quadratic

polar cut,” which may not be tractable because the matrix−A could be nonpositive semidefinite.

Therefore, we add an extra constraint −A < 0 for the computational experiments in Section 5.5.

It is easy to see that Theorem 5.3.2 still holds, although the quality of the generalized quadratic

polar cut might be compromised. The constraint of −tr(A+B) = 1 is a normalization constraint

that ensures the boundedness of problem (QPolar).

The vertices of the polyhedral outer-approximation P are required in order to generate

the polar cuts in Theorems 5.3.1 and 5.3.2. The homotopy procedure [83] can find a tight

polyhedral outer-approximation for any tractable convex relaxation of FCP by solving a family

of parametric linear programs. Sometimes, this procedure could be time-consuming and we may

consider solving the following linear programming problem:

(AP)

max
∑

k∈S θkxk

s.t. P j •X + (qj)Tx+ γj ≤ 0, j = 1, ...,m,

l ≤ x ≤ u, X−ij ≤ Xij ≤ X+
ij , i, j = 1, ..., n.

(5.13)

with different combinations of θk to obtain a rough polyhedral outer-approximation. The de-

tailed procedure is described as follows. For some fixed θk, k = 1, . . . , |S|, assume the optimal

solution of problem (AP) is (x̄, X̄). Then
∑

k∈S θkxk ≤
∑

k∈S θkx̄k is a valid inequality for

the domain ΩS and
∑

k∈S θkxk =
∑

k∈S θkx̄k is a facet of the polyhedral outer-approximation

P. All these valid inequalities corresponding to different θ along with the bound on x defines
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the polyhedron P, whose vertices are then used in problems (LPolar) and (QPolar) to gen-

erate polar cuts. In our implementation, we use all subsets S ⊆ {1, . . . , n} with |S| = 2. For

each S = {i, j}, we compute the facets of the polyhedron P by solving problem (AP) with

θ = (uj − lj ,−ui + li) , θ = (−uj + lj , ui − li), θ = (uj − lj , ui − li) and θ = (−uj + lj ,−ui + li)

sequentially. Vertices of P are then enumerated by the primal-dual method in [30]. For demon-

stration, consider the following example from [129]:

Example 5.3.1. Let the domain ΩS , S = {1, 2}, be defined by the following inequalities:

2x2
1 + 4x1x2 + 2x2

2 + 8x1 + 6x2 − 9 ≤ 0,

−5x2
1 − 8x1x2 − 5x2

2 − 4x1 + 4x2 + 4 ≤ 0,

x1 + 2x2 ≤ 2, 0 ≤ x1, x2 ≤ 1.

(5.14)

The nonconvex domain ΩS is shown as the shaded area in Figure 5.1. The range reduction strat-

egy tightens the bounds on x1 and x2 to [0, 0.9155] and [0, 0.9333], respectively. This bounded

box is depicted by the dashed lines in Figure 5.1. By sequentially solving problem (AP) with

θ = (0.9333,−0.9155), θ = (−0.9333, 0.9155), θ = (0.9333, 0.9155) and θ = (−0.9333,−0.9155)

in turn, we obtain four facets (see the dotted lines in Figure 5.1) of the polyhedral outer-

approximation P, whose boundary is the solid lines in Figure 5.1. Combining with the bounds

on x1 and x2, the vertices of polyhedron P are A = (0.4664, 0), B = (0, 0.4754), C = (0, 0.6314),

D = (0.1962, 0.8314), E = (0.9155, 0.0981) and F = (0.9155, 0).

5.3.2 Disjunctive Cuts

Notice that the optimal objective values of problems (LPolar) and (QPolar) may be nonnegative.

In this case, the linear and quadratic polar cuts are not available. This motivates us to find other

valid inequalities to cut off the current solution (x∗, X∗) in order to improve the approximation

of FCP. The disjunctive cuts (ref. [16]) can fulfill this purpose.

Assume the current solution (x∗, X∗) satisfies li ≤ x∗i ≤ ui for some i ∈ {1, . . . , n}. The

disjunctive inequality associated with variable x∗i is[
li ≤ xi ≤ vi

Xii ≤ (li + vi)xi − livi

]∨[
vi ≤ xi ≤ ui

Xii ≤ (ui + vi)xi − uivi

]
(5.15)

where vi ∈ (li, ui) and “∨” denotes the logical “or”, that is x either belongs to the segment of

“li ≤ xi ≤ vi, Xii ≤ (li+vi)xi− livi” or the segment of “vi ≤ xi ≤ ui, Xii ≤ (ui+vi)xi−uivi”.

When the disjunctive inequality cuts off (x∗, X∗), we call it a disjunctive cut. Obviously, the

disjunctive inequality (5.15) cuts off (x∗, X∗) when vi = x∗i and (x∗i )
2 < X∗ii. See Figure 5.2 for

illustration. We remark that a disjunctive inequality does not increase the complexity because
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Figure 5.1: Graphic description for Example 5.3.1
The shaded area is the domain ΩS described by inequalities in (5.14), the dashed lines are the

bounds obtained by range reduction strategy, the dotted lines are the facets obtained by
solving problem (AP) with different θ and the solid lines constitute the boundary of the

polyhedral outer-approximation P.
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Figure 5.2: A disjunctive cut (5.15) with vi = x∗i
L1 is the straight line Xii = (li +x∗i )x− lix∗i and L2 is the straight line Xii = (ui +x∗i )x−uix∗i .
The shaded area is the domain of disjunctive inequality. Clearly, if li ≤ xi ≤ x∗i , then (xi, Xii)

must be under line L1. If x∗i ≤ xi ≤ ui, then (xi, Xii) must be under line L2. Since point
(x∗i , X

∗
ii) is above both L1 and L2, it is cut off by this disjunctive inequality.

we can solve the relaxation problems over each segment and choose the best one as the optimal

solution.

5.4 A Branch-and-Cut Algorithm

In this section, we utilize the cuts described in Section 5.3 to construct an algorithm for solving

problem (CP). We seek an approximation solution in terms of feasibility and optimality.

Definition 7. For a feasibility tolerance parameter εr > 0, a solution (x∗, X∗) ∈ FSDPRLT is

said to be εr-feasible to problem (CP) if |X∗ii − (x∗i )
2| < εr for i = 1, . . . , n. Moreover, let z∗ be

the minimal value of F (x,X) over all the εr-feasible solutions of problem (CP). For an objective

tolerance parameter εz > 0, a solution (x∗, X∗) is said to be εr-εz-optimal if it is εr-feasible and
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|z∗ − F (x∗, X∗)| < εz.

The following concepts will be used throughout this section: The branch-and-cut algorithm

generates a branching tree. The initial node of the tree is called the root. When a node is pro-

cessed and needs further refinement, the branching step creates two new nodes called children

of the parent. The incumbent solution refers to the best solution currently found by the algo-

rithm. Its objective value is the incumbent value which is set to be +∞ at the beginning of the

algorithm.

For the proposed branch-and-cut algorithm, we first describe a pre-processing phase to

obtain tight bounds on the variables. Then, we introduce a branching strategy that selects at

each node a branching variable and a branching value. Following is a cutting step that refines the

approximation of FCP. Finally, we prove the proposed algorithm finds an approximate solution

within any given precision in a finite number of iterations.

5.4.1 Pre-processing phase

At the root node, the initial linear relaxation problem (LP-RLT) is created. Next, bounds are

evaluated for each variable xi, i = 1, ..., n, through the iterative process described in Section

5.2. With the new bounds for each variable, the range reduction strategy can be applied again.

The pre-processing phase then consists of iteration of this strategy until the improvement of

the bounds for each variable is less than a given tolerance εr.

After the pre-processing phase at the root node, further refinement of the approximation

requires generating the polar or disjunctive cuts described in Section 5.3. The algorithm then

moves on to a branching step.

5.4.2 Branching step

Assume the solution (x∗, X∗) is obtained by solving problem (SDP-RLT) corresponding to

current node. If (x∗i )
2 = X∗ii for i = 1, . . . , n, then (x∗, X∗) is feasible to problem (CP). The

corresponding node is solved and no further branch is needed. Otherwise, there exists i ∈
{1, . . . , n} such that (x∗i )

2 < X∗ii. Denote all such i by a set I, that is, I = {i ∈ {1, ..., n}|(x∗i )2 <

X∗ii} 6= ∅. The purpose of branching is to tighten the current approximation of the nonconvex

constraint x2
i = Xii, i = 1, . . . , n. Therefore, the component of x that violates the constraints

x2
i = Xii most is selected and the estimation of x2

i is further improved in the next iteration. We

call the selected component as the branching variable. There may exist multiple candidates for

the branching variable. In this case, the candidate with the smallest index is chosen. In other

words, we choose i∗ = min{j ∈ I|X∗jj − (x∗j )
2 = maxi∈I{X∗ii − (x∗i )

2}} and divide the interval

[li∗ , ui∗ ] into two parts. Breaking this interval at which point depends on the cuts we will choose

in the next step. We point out that the branch-and-cut rule in our algorithm is simpler than
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the one in [13] because the cardinality of I is much smaller due to the fact that we do not need

to consider the bilinear terms xixj for i 6= j, i, j ∈ {1, . . . , n}.

5.4.3 Cutting step

As described in Sections 5.3.1 and 5.3.2, there are three types of valid cuts: linear polar cuts,

quadratic polar cuts and disjunctive cuts. The polar cuts are available only if the optimal value

of problem (LPolar) or (QPolar) is negative. Therefore, the existence of polar cuts depends

on individual cases. For the disjunctive cuts, the parameter vi in (5.15) decides its shape and

quality. The criteria for choosing vi is to minimize the infeasible domain FSDPRLT\FCP, which is

the intersection of the disjunctive inequality (5.15) and the paraboloid x2
i ≤ Xii. The following

lemma shows that vi should be the midpoint of the interval [li, ui] according to this rule.

Lemma 5.4.1. The area of the intersection of the disjunctive valid inequality (5.15) and the

paraboloid x2
i ≤ Xii is minimized when vi = li+ui

2 .

Proof. For any given vi ∈ [li, ui], the area between (5.15) and the paraboloid x2
i ≤ Xii is

1
2(ui − li)v2

i + 1
2(l2i − u2

i )vi + 1
6(u3

i − l3i ), whose minimum is achieved at vi = ui+li
2 .

From Lemma 5.4.1, if the interval [li ui] is bisected, then the infeasible area is minimized,

which in turn indicates that the disjunctive inequality (5.15) with vi = li+ui
2 cuts deepest.

Therefore, dividing the interval at the midpoint is preferred if possible. However, there may

exist the case that neither the polar cuts nor the disjunctive inequality with vi = li+ui
2 can cut

off the current solution (x∗i , X
∗
ii). In this case, we have to use the disjunctive cut with vi = x∗i

in (5.15). In any of the above case, vi is called branching value for the branching variable xi.

In summary, our cutting procedure involves the following two steps:

Step 1. Solve problems (LPolar) and (QPolar) for all S ⊆ {1, . . . , n} with |S| = 2, respectively.

If any linear or quadratic polar cut is available, then bisect [li, ui] at the middle point
li+ui

2 into two new intervals [li,
li+ui

2 ] and [ li+ui2 , ui] and introduce the polar cut into the

relaxation problems corresponding to both children. Otherwise, [li, ui] is divided at x∗i
into two new intervals [li, x

∗
i ] and [x∗i , ui].

Step 2. Generate a disjunctive cut based on the two new intervals. If [li, ui] is bisected at li+ui
2 ,

then generate a disjunctive cut according to (5.15) by setting vi = li+ui
2 and introduce

it to the relaxation problems corresponding to both children. Otherwise, generate the

disjunctive cut according to (5.15) by setting vi = x∗i and introduce it to the relaxation

problems corresponding to both children.

From the above description, we can see that our branching value is adaptive. Other adaptive

rules for the selection of branching value can be found in [13, 104].
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5.4.4 The proposed algorithm

We are now ready to construct our branch-and-cut algorithm. The method can be divided into

two main steps. The branching step is used to select the variable to be refined. The cutting

step is used to generate a better outer-approximation of the original feasible domain. At each

node, one of the two outcomes is possible: either the node is discarded (when infeasible, solved

or fathomed), or it is split into two new nodes (children). The nodes are stored in a list and

recursively processed in a best-first manner (preference with respect to the optimal objective

value of the relaxation). For clarity, only the main ideas of the algorithms are presented. Details

were presented in previous three subsections.

Branch-and-Cut Algorithm for BQCQP (BCA-BQCQP)

Pre-processing Phase

Using the range reduction strategy to tighten the bounds of each variable.

Enumeration Phase

The list L of nodes to be explored is initialized to contain only the root node.

While L is not empty, repeat the following four steps:

Node Selection Select and remove the best-first node from L.

Updating If the optimal solution of relaxation problem (SDP-RLT) is εr-feasible, then

update the incumbent solution and incumbent value. Otherwise, go to the branching step if

the relaxation problem is feasible and its optimal objective value is less than the incumbent

value minus εz.

Branching Obtain the branching variable xi. Add two nodes to L corresponding to both

children.

Cutting Add linear and polar cuts if possible by solving problem (LPolar) and (QPolar),

respectively. Choose the branching value vi for breaking the current interval and introduce

the disjunctive cut to the relaxation problems corresponding to both children.

This is indeed a branch-and-cut algorithm in the sense that the cuts introduced at any node

of the tree are valid everywhere in the subtree rooted at this node. The next theorem shows

the finiteness and correctness of the proposed algorithm.

Theorem 5.4.1. The proposed algorithm finds an εr-εz-optimal solution of problem (CP) in a

finite number of iterations.
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Proof. First, we show that it takes finitely many steps to enumerate all εr-feasible solutions

of problem (CP). Consider a node in the list with the bound on variable xi being [li, ui]. Let

vi ∈ (li, ui) be the point where the cutting step bisects the interval. We now show that the

disjunctive cuts added into both children of the current node eliminate a non-negligible region

of the relaxed domain. For the node where li ≤ xi ≤ vi, if xi ≥ vi − εr
ui

, then the maximal error

of Xii − x2
i is

(li + vi)(vi −
εr
ui

)− livi − (vi −
εr
ui

)2 =
viεr
ui
− liεr

ui
− ε2r
u2
i

≤ viεr
ui
≤ εr.

Similarly, for the node where vi ≤ xi ≤ ui, if xi ≤ vi + εr
ui

, then the maximal error of Xii−x2
i is

(ui + vi)(vi +
εr
ui

)− uivi − (vi +
εr
ui

)2 = εr −
viεr
ui
− ε2r
u2
i

≤ εr.

Thus, the variable (xi, Xii) is within the tolerance if the interval length is less than εr
ui

. If the

relaxed solution falling into that domain is generated, then this interval will not be refined

anymore. Therefore, there can only be finite steps for branching each variable. Theorems 5.3.1

and 5.3.2 imply that the linear and quadratic polar cuts are valid inequalities and the optimal

solution (within the εz tolerance) is never eliminated from the list. It follows that there exists a

node in the tree where an εr-εz-optimal solution will be identified. Since the enumeration stage

for generating all εr-feasible solutions stops in finitely many steps, the proposed algorithm finds

an εr-εz-optimal solution of problem (CP) in a finite number of iterations.

5.5 Numerical Examples

In this section, the proposed algorithm is tested on some examples appeared in the literature.

The algorithm is coded in MATLAB 2012b using software package CVX [54] to solve semidef-

inite programming programs. Computational experiments are conducted on a Windows PC

using 2.40GHz dual core and 4.00GB memory.

Example 5.5.1. This example is a quadratic reformulation of a fourth degree polynomial
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problem in [17]. It is restated in [13], [57] and [60]. The reformulation is shown as follows.

min x3 + x1x5 + x2x5 + x3x5

s.t. x5 − x1x4 = 0,

x6 − x2x3 = 0,

x2
1 + x2

2 + x2
3 + x2

4 = 40,

x5x6 ≥ 25,

1 ≤ x1 ≤ 5, 1 ≤ x3 ≤ 5,

1 ≤ x2 ≤ 5, 1 ≤ x4 ≤ 5.

Using the precision εr = εz = 10−6, the pre-processing phase takes 1.62 seconds to improve the

bounds on x5 and x6 to [1.1452, 21.3710], then the enumeration phase finds the solution

x∗ = (1.0000, 4.7430, 3.8212, 1.3794, 1.3794, 18.1237)

with the objective value of 17.0140 in 4.33 seconds by exploring a total of 9 nodes. The total

time to solve this problem is 14.60 seconds. Table 5.1 lists the comparison between the proposed

algorithm and the one in [13]. The third column “No Polar Cuts” shows the results of our

algorithm without using the polar cuts. From Table 5.1, we can see that the number of explored

Table 5.1: Comparison between BCA-BQCQP and Audet [13]

Audet [13] BCA-BQCQP No Polar Cuts

Explored Nodes 69 9 213
Pre-Processing Phase 2.69 1.62 1.62
Enumeration Phase 4.49 4.33 149.61
Total CPU Time 7.18 5.95 151.23
Optimal Objective Value 17.0140 17.0140 17.0140

nodes by our algorithm is much smaller that of [13] if the polar cuts are applied. Without the

polar cuts, the number of explored nodes increases dramatically.
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Example 5.5.2. The following example is from [60].

min x1 + x2 + x3

s.t. 0.0025x4 + 0.0025x6 ≤ 1,

−0.0025x4 + 0.0025x5 + 0.0025x7 ≤ 1,

−0.01x5 + 0.01x8 ≤ 1,

100x1 − x1x6 + 833.33x4 ≤ 83333.33,

x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0,

x3x5 − x3x8 − 2500x5 ≤ −1250000,

100 ≤ x1 ≤ 10000, 1000 ≤ x2, x3 ≤ 10000,

10 ≤ x4, x5, x6, x7, x8 ≤ 1000.

Linderoth [72] solved this problem using a simplicial branch-and-bound algorithm. Our algo-

rithm takes 12.47 seconds in the pre-processing phase to improve the bounds on x4, x5, x6,

x7 and x8 to [10, 395.6012]. Then, it takes 4.37 seconds in the enumerate phase to find the

following solution with precision εr = εz = 10−6:

x∗ = (579.3067 1359.9707, 5109.9707, 182.0177, 295.6012, 217.9823, 286.4165, 395.6012)

The optimal value is 7049.2480, which is consistent with the one reported in GAMS GlobalLib

[51]. Table 5.2 compares the number of nodes explored and the CPU time of our algorithm and

the one in [72]. The third column “No Polar Cuts” shows the results of our algorithm without

using the polar cuts. From Table 5.2, we can see that our algorithm outperforms the one in [72]

Table 5.2: Comparison between BCA-BQCQP and Linderoth [72]

Linderoth[72] BCA-BQCQP No Polar Cuts

Explored Nodes 8810 3 177
Pre-Processing Phase - 9.51 9.51
Enumeration Phase 28.92 4.91 302.32
Total CPU Time 28.92 14.42 311.83
Optimal Objective Value 7049.2480 7049.2480 7049.2480

by exploring less nodes and spending less CPU time in total. If the polar cuts are not used in

the proposed algorithm, the number of explored nodes and the total CPU time increases a lot.

The proposed algorithm also solved several optimization problems from the literature. The

QCQP formulations of these problems are detailed in [12].

Table 5.3 presents some important characteristics of these test problems. The first column
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Table 5.3: Characteristics of the test problems

Id Source n m

1 Haverly [58] 5 7
2 Colville [38] 4 9
3 Avriel and Williams [14] 4 7
4 Bracken and McCormick [29] 7 18
5 Dembo [43] 10 32
6 Dembo [43] 16 47

indicates the identification of each problem, the second column shows the reference in which

these test problems appeared, and the last two columns quantify the size of the test problems.

The first test problem stems from the bilinear pooling problem encountered in the petro-

chemical industry. The next one describes a situation at Proctor and Gamble Company. The

third one is a simple 3-stage heat exchange design problem. The fourth one models an alkylation

process. The last two arise from membrane separation in three and five phases respectively. The

diversity of these applications indicates the modeling flexibility of (BQCQP).

Table 5.4: Performance comparison between BCA-BQCQP and Audet [13]

Id
Audet [13] BCA-BQCQP

εr = εzNodes PP Tree Tot Nodes PP Tree Tot

1 9 0.64 0.01 0.65 3 0.97 2.72 3.69 10−6

2 7 1.25 0.04 1.29 3 1.16 2.29 3.45 10−6

3 191 1.1 3.8 4.9 5 1.1 4.4 5.5 10−6

4 357 4.3 65.6 69.9 3 4.3 25.1 29.4 10−5

5 259 148 61 209 7 146 20 166 10−5

6 2847 222 7329 7551 7 221 31 252 10−5

Table 5.4 displays the results of the proposed algorithm, comparing with the ones in [13].

The column “Nodes” shows the number of explored nodes in the enumeration phase. The

columns “PP”, “Tree” and “Tot” indicate the pre-processing, enumeration and total CPU

time, respectively, in seconds used by the corresponding algorithm. The last column displays

the tolerance parameters supplied to the algorithm.

BCA-BQCQP solved all test problems for global optimality within a good precision by

exploring less than 10 nodes. Especially, the proposed algorithm slightly improved the solution

of problem 5 in shorter computational time, resulting an optimal objective value of 97.5372

instead of 97.5875. Based on the results of Table 5.4, we can see that the proposed algorithm
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becomes competitive when the problem size is large.

5.6 Conclusion

In this chapter, a new branch-and-cut algorithm for solving the bounded quadratically con-

strained quadratic programming problem has been developed. Two new classes of cuts, the

generalized linear and quadratic polar cuts, have been derived to improve the bounds obtained

at each node in the algorithm. In order to speed up the computation, a special branch-and-cut

rule is adopted to enhance the approximation of the original feasible domain. Numerical exam-

ples have shown that the proposed branch-and-cut algorithm finds an approximate solution by

exploring only a small number of nodes.
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Chapter 6

Conclusions

In this dissertation, we have studied three important subclasses of quadratically constrained

quadratic programming problems. We first summarize the results obtained in Section 6.1 and

then suggest some directions for future research in Section 6.2.

6.1 Summary of Dissertation

The study of QCQP problems has lasted for several decades. QCQP problems form an important

subclass of optimization problems in both theory and practice. On the theoretical side, the

study of QCQP problems can help us understand the difference between convex and nonconvex

problems in terms of computational difficulties. On the practical side, QCQP models have

been widely adopted in real-life applications. A general QCQP problem is NP-hard, but some

subclasses of QCQP problems can be solved efficiently by approximation algorithms. In this

dissertation, three important subclasses of QCQP problems have been investigated: the standard

quadratic programming (StQP) problem, the extended trust-region subproblem (ETRS) and the

bounded quadratically constrained quadratic programming (BQCQP) problem. By exploring

efficient approximation methods for these subclasses, we developed deeper understanding of the

complicated structure of the general QCQP problem.

In Chapter 3, we have studied the problem (StQP). We first reformulated the problem as

a linear conic programming problem on the cone of nonnegative quadratic functions over the

standard simplex. A sequence of computable cones of nonnegative quadratic functions over a

union of ellipsoids was used to approximate the cone of nonnegative quadratic functions over

the standard simplex. In order to speed up the convergence of approximation and to relieve the

computational burden, an adaptive scheme was adopted to refine the union of ellipsoids. Based

on this scheme, we provided an iterative algorithm to detect the copositivity of a given matrix.

In Chapter 4, we have studied the problem (ETRS). This problem is also transformed
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into a linear conic programming problem on the cone of nonnegative quadratic functions over

the feasible domain of problem (ETRS). A similar iterative algorithm were obtained based on

a revised adaptive scheme. Moreover, the reformulation-linearization techniques (RLT) were

applied to the adaptive scheme to further improve the quality of solutions obtained. If the

feasible domain is bounded with a nonempty interior, the proposed algorithm has been proven

to be able to find an ε-optimal solution within a finite number of iterations for any given small

tolerance ε > 0.

In Chapter 5, we have studied the problem (BQCQP). The conic reformulation and several

convex relaxations were derived for the problem. In order to improve the relaxations, we devel-

oped generalized linear and quadratic polar cuts. A branch-and-cut algorithm based on these

new cuts was then proposed with an adaptive branch-and-cut rule embedded. It was proven

that the proposed algorithm yielded an εr-εz-optimal solution in a finite number of iterations.

6.2 Future Research

In this dissertation, we have studied three subclasses of QCQP problems based on the linear

conic programming framework using the cone of nonnegative quadratic functions. The main

difficulty in designing an efficient algorithm is to find the LMI representations of the cone of

nonnegative quadratic functions over the feasible domain. Due to the NP-hardness of QCQP

problems, it is not likely to find a computable LMI representation for every problem instance.

We have derived an LMI representation for quadratic functions over a union of ellipsoids, which

in turn was used for approximation of some NP-hard optimization problems like StQP and

ETRS. Moreover, we derived generalized polar cuts, which were embedded in a branch-and-cut

algorithm for solving the BQCQP problem. The findings in this dissertation lead us to some

directions for future research as follows.

First, a computable representation of the cone of nonnegative quadratic functions over a

domain can lead to a polynomial-time algorithm for solving the quadratic programming over

that domain. To the best of our knowledge, the list of domains having computable represen-

tations only includes the domains determined by the following: (a) one quadratic inequality

constraint [117]; (b) by one strictly convex/concave quadratic equality constraint [125]; (c) by

one convex quadratic inequality and one linear inequality [117]; (d) by one elliptic constraint

and two parallel linear constraints [36]; (e) by two convex quadratic inequalities with the same

quadratic term [125]; or (f) by a second-order cone constraint with or without special linear

constraints [66]. Up to now, when the domain is determined by two elliptic constraints, or by

one elliptic constraints with two general linear inequality constraints, no results are known. Our

future work is to explore the LMI representations of the cone of nonnegative quadratic functions

over these potential domains. If we can provide computable representations, then linear conic
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programming can lead to new polynomial-time solvable subclasses of QCQP problems.

Second, the polar cuts in Chapter 5 have shown the advantages in refining the bounds of

the BQCQP problem. Exploring other cuts that are computationally cheap to be derived would

further improve the performance of our approximation algorithms. One possible way to generate

such cuts is applying RLT to valid nonconvex quadratic inequalities.

Third, the linear conic programming framework studied in this dissertation has many ad-

vantages for solving QCQP problems. There is a possibility for us to extend this framework

to study the polynomial optimization problems, which is even more complicated than QCQP

problems.
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ca/Charles.Audet/These.pdf>

[13] Audet, C., P. Hansen, B. Jaumard and G. Savard (2000). A branch and cut algorithm

for nonconvex quadratically constrained quadratic programming. Mathematical Program-

ming, 87(1), 131-152.

[14] Avriel, M. and A.C. Williams. (1971). An extension of geometric programming with

applications in engineering optimization. Journal of Engineering Mathematics, 5(2), 187-

194.

[15] Balas, E. (1971). Intersection cuts – a new type of cutting planes for integer programming.

Operations Research, 19(1), 19-39.

[16] Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics, 5(1), 3-51.

[17] Bartholomew-Biggs, M.C. (1976) A numerical comparison between two approaches to the

nonlinear programming problem, Technical Report #77, Numericlal Optimization Center,

Hartfield Polytechnic, England.

[18] Beck, A. and M. Teboulle (2000). Global optimality conditions for quadratic optimization

problems with binary constraints. SIAM Journal on Optimization, 11(1), 179-188.

[19] Beck, A. and Y.C. Eldar (2007). Strong duality in nonconvex quadratic optimization with

two quadratic constraints. SIAM Journal on Optimization, 17(3), 844-860.

[20] Ben-Tal, A. and A. Nemirovskii (2001). Lectures on Modern Convex Optimization: Anal-

ysis, Algorithms and Engineering Applications. Philadelphia, PA: Society for Industrial

and Applied Mathematics.

80

http://www.gerad.ca/Charles.Audet/These.pdf
http://www.gerad.ca/Charles.Audet/These.pdf


[21] Bomze, I.M. (2000). Linear-time copositivity detection for tridiagonal matrices and exten-

sion to block-tridiagonality. SIAM Journal on Matrix Analysis and Applications, 21(3),

840-848.

[22] Bomze, I.M., M. Dür, E. de Klerk, C. Roos, A.J. Quist and T. Terlaky (2000). On copos-

itive programming and standard quadratic optimization problems. Journal of Global Op-

timization, 18(4), 301-320.

[23] Bomze, I.M. and E. de Klerk (2002). Solving standard quadratic optimization problems via

linear, semidefinite and copositive programming. Journal of Global Optimization, 24(2),

163-185.

[24] Bomze, I.M., M. Locatelli and F. Tardella (2008). New and old bounds for standard

quadratic optimization: dominance, equivalence and incomparability. Mathematical Pro-

gramming, 115(1), 31-64.

[25] Bomze, I.M. and G. Eichfelder (2012). Copositivitity detection by difference-of-convex

decomposition and ω-subdivision. Mathematical Programmig, 138(1-2), 365-400.

[26] Bose, S., D. Gayme, K. Chandy and S. Low (2012). Quadratically constrained quadratic

programs on acyclic graphs with application to power flow. Available at <http://arxiv.

org/pdf/1203.5599v2.pdf>

[27] Boyd, S., L.E. Ghaoui, E. Feron, and V. Balakrishnan (1994). Linear Matrix Inequaili-

ties in System and Control Theory. Philadelphia, PA: Society for Industrial and Applied

Mathematics.

[28] Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge, UK: Cambridge

University Press.

[29] Bracken, J. and G.P. McCormick (1968). Selected Applications of Nonlinear Programming.

New York, NY: John Wiley & Sons Press.

81

http://arxiv.org/pdf/1203.5599v2.pdf
http://arxiv.org/pdf/1203.5599v2.pdf


[30] Bremner D. , K. Fukuda and A. Marzetta (1998). Primal-dual methods for vertex and

facet enumeration. Discrete and Computational Geometry, 20(3), 333-357.

[31] Bundfuss, S. and M. Dür (2008). Algorithmic copositivity detection by simplicial parti-

tion. Linear Algebra and its Applications, 428(7), 1511-1523.

[32] Bundfuss, S. and M. Dür (2009). An adaptive linear approximation algorithm for copos-

itive programs. SIAM Journal on Optimization, 20(1), 30-53.

[33] Buer, S. and K.M. Anstreicher (2008). A finite branch-and-bound algorithm for nonconvex

quadratic programming via semidefinite relaxations. Mathematical Programming, 113(2),

259-282.

[34] Burer, S. (2009). On the copositive representation of binary and continuous nonconvex

quadratic programs. Mathematical Programming, 120(2), 479-495.

[35] Burer, S. and A. Saxena (2009). Old wine in a new bottle: the MILP road to MIQCP,

Technical Report, Department of Management Sciences, University of Iowa. Available at

<http://www.optimization-online.org/DB FILE/2009/07/2338.pdf>

[36] Burer, S. and K.M. Anstreicher (2013). Second-order-cone constraint for extended trust-

region subproblems. SIAM Journal on Optimization, 23(1), 432-451.

[37] Celis, M.R., J.E. Dennis and R.A. Tapia (1985). A trust region strategy for nonliear

equality constrained optimization. In: P.T. Boggs et al. (Eds.), Numerical Optimzation

1984, Proceedings of the SIAM Conference on Numerical Optimization, 71-82, Boulder,

CO.

[38] Colville, A.R. (1970). A comparative study of nonlinear programming codes. In: H.W.

Kuhn (Eds), Princeton Symposium on Mathematical Programming, 293-312, Princetion

University Press, NY.

[39] Conn, A.R., N.I.M. Gould and P.L. Toint (2000). Trust-region Methods. Philadelphia, PA:

Society for Industrial and Applied Mathematics.

82

http://www.optimization-online.org/DB_FILE/2009/07/2338.pdf


[40] Craven, B.D. and B. Mond (1973). Real and complex Fritz John Theorems. Journal of

Mathematical Analysis and Applications, 44(3), 773-778.
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[55] Gröschel, M., L. Lovasz and A. Schrijver (1998). Geometric Algorithms and Combinatorial

Optimization. Berlin, Germany: Springer-Verlag Press.
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[131] Žilinskas, J. and M. Dür (2011). Depth-first simplicial partition for copositivity detection,

with an application to MaxClique. Optimization Methods and Software, 26(3), 499-510.

91


	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Statement of Problem and Motivation
	Quadratic Programming Problem over the Standard Simplex
	Quadratic Programming Problem over Convex Quadratic Constraints
	Bounded Quadratically Constrained Quadratic Programming Problem

	Approaches and Results
	Outline of the Dissertation

	Preliminary Knowledge
	Notations
	QCQP and Linear Conic Programming Problems
	Some Examples

	Matrix Decomposition
	Duality Theory of LCoP Problems
	Linear Matrix Inequality and Reformulation-Linearization Technique
	Linear Matrix Inequality
	Reformulation-Linearization Technique


	Quadratic Programming Problems over the Standard Simplex
	Introduction
	The cone of nonnegative quadratic functions
	A special case of F

	Conic Reformulation and Approximation Cones
	Conic reformulation
	LMI based approximation cones

	Conic Approximation to Problem (StQP)
	An Adaptive Scheme for Detecting Copositive Matrices
	Sensitive points and sensitive ellipsoids
	An adaptive scheme
	Improving the lower bounds by RLT

	Numerical Examples
	Summary

	Quadratic Programming Problems over Convex Quadratic Constraints
	Introduction
	Conic Reformulation and Approximation to Problem (ETRS)
	An Adaptive Scheme for Problem (ETRS)
	An adaptive scheme for (ETRS)
	Proof of convergence

	Numerical Examples
	Computational Results
	Summary

	Bounded Quadratically Constrained Quadratic Programming Problems
	Introduction
	Range Reduction Strategy
	Cuts Generation
	Generalized Linear and Quadratic Polar Cuts
	Disjunctive Cuts

	A Branch-and-Cut Algorithm
	Pre-processing phase
	Branching step
	Cutting step
	The proposed algorithm

	Numerical Examples
	Conclusion

	Conclusions
	Summary of Dissertation
	Future Research

	References

