ABSTRACT

JU, SONG. A Critical Reinforcement Learning Framework for Human-Machine Mixed-Initiative
Decisionmaking. (Under the direction of Dr. Min Chi.)

People make many decisions every day, some are minor and others can be life-altering.
While making decisions often gives people a sense of control which enhances the expectation
of performing behavior for the desired outcome, people may not be always good at making
decisions due to the lack of self-control or decision fatigue. Reinforcement Learning (RL) is
one of the most effective machine learning methods for decision-making under uncertainty.
Much of the prior RL work focuses on agent-centric tasks on which the goal is for the agent to
make effective decisions. On human-centric tasks where human is the subject to interact with
the environment, however, applying RL is often challenging because the goal is for the RL
agent to promote the effectiveness of human decision making. To balance the trade-off between
giving the human a feeling of control over their progress and keeping their decisions effective,
the key problem is to determine when the agent should intervene. This raises our primary
research question: Given a long trajectory of decisions, how can we identify the critical decisions that
lead to the desired outcomes?

In this thesis, we have explored three approaches to identify critical decisions in the fields
of education and healthcare. In education, we leverage an Intelligent Tutoring System (ITS)
that teaches student probability while in healthcare, we utilize two Electronic Health Records
(EHR) datasets regarding septic treatment. First, we apply offline off-policy evaluation (OPE) on
an ITS historical dataset to determine the existence of critical decisions. Our results show that
certain decisions are indeed highly correlated with students” post-test scores while others are
less so. Second, we propose a novel Adversarial Deep RL (ADRL) framework to identify critical
decisions and induce a Critical policy that makes optimal actions in the identified critical states
while random actions in others. Its effectiveness is empirically compared against a baseline
policy. Our results show that the Critical policy can lead to higher learning performance
than the baseline policy but only for students who experienced more critical states. Third, we
propose a novel Long-Short Term Rewards (LSTR) RL framework and evaluate its effectiveness
on three testbeds: an ideal GridWorld Game, an ITS tutor, and a healthcare dataset. More
specifically, a classroom study is conducted on the ITS tutor to evaluate the LSTR framework
empirically. Our results show that for the RL policy to be effective, it must carry out the
optimal actions in the LSTR-identified critical states, and more importantly, such critical RL
policy can be as effective as a fully executed policy. For healthcare, our LSTR framework
shows that it can effectively identify the critical medical interventions in septic treatment.
More importantly, when combining our proposed LSTR framework with the expert decision
making, our results show that for one healthcare system, our framework needs to nudge the
physicians 45% of the time while for the other healthcare system, it only needs to nudge 20%.
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CHAPTER 1

INTRODUCTION

1.1 Research Overview

People make many decisions every day, from decisions such as what to eat for lunch, to
decisions about which college to enroll. It is estimated that on average people make 35,000
decisions per day [Sol16]. For example, each day people can make an average of 200 decisions
related to food alone[Wan07]. Accordingly, we can model people’s daily activities (of interest)
as sequential decision-making under uncertainty.

Making decisions is vital and determines the trajectory of life. It's in the moments of
decision that people’s destiny is shaped [Rob92]. In the same way compounding interest
increases wealth, making decisions can enhance people to move forward to a positive outcome
such as a successful career or a healthy body. Specifically, making decisions often give people
a sense of control which entails specific expectations to perform behaviors for obtaining
desired outcomes. Thus, people are likely to persist at doing constructive things, like learning,
exercising, or quitting smoking, when they are given the choice and when they can make
decisions. For example, letting students make decisions during the tutorial process could make
them feel that they are actively directing their learning process and not just passively following
it. Cordova and Lepper [Cor96] found that offering student choices over their learning could
lead to significantly better learning outcomes than those who were not offered. Also, patients’
participation in healthcare decision-making could reduce their anxiety and increase the trust
of the healthcare professionals which leads to positive and lasting effects on fitness. A study of
patients with breast cancer showed that the involvement in decision-making about treatment
and follow-up care could significantly improve their health-related quality of life (HRQOL)
[MRO9].

People are not always good at making decisions. There are many reasons why people
make poor decisions. One of them is the lack of self-control. For example, in 2018 the Center



for Disease Control and Prevention (CDC) reported that 37% of US adults could be classified
as obese, i.e., with Body Mass Index at or above 25 and results show that obese people often
exhibit a lower level of self-control than their normal-weight peers, and such lack of self-control
can be associated with poor decisions in food and health [Fan14]. Another common reason
for making poor decisions is decision fatigue. Decision fatigue refers to the phenomena that
after a long series of decision-making, people often tend to choose the easiest option without
rational thinking, become more procrastinating and less persistent, or fail to recognize decision
opportunity [Pig20].

On the other hand, a large number of real-world tasks in science and engineering, from
robotics to game playing, tutoring systems, medical treatment design, and beyond, can be
characterized as sequential decision-making under uncertainty. Reinforcement Learning (RL)
is one of the most effective machine learning methods for decision making under uncertainty.
RL algorithms are designed to induce effective policies that determine the best action for an
agent to take in any given situation to maximize a cumulative reward. Figure 1.1 (a) shows
how policy induction can be represented as a classic RL. At any given time ¢, the RL agent
observes the environment state s, then chooses an action a from a set of options, and receives
a reward r, and the environment transitions into state s’. The RL agent learns the policy for
decision-making by estimating the action-value function for each action and choosing the
action with the largest value. In recent years, RL, especially Deep RL, has achieved superhuman
performance in several complex games [Sil16b; Sil18; And18].

- l - ’ 0 Shman NTRL > S'RL
| s | > \
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RL . —) L RL 1 [ Environment ] [ ln‘ Human ] : AI;:“
Environment Agent Environment e : - :
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(a) Classic RL (b) Human-centeric RL (c) Human-Machine Mixed-Initiative RL

Figure 1.1: Three RL Frameworks

In this dissertation work, we focus on a different type of task named human-centric task.
In the classic game-play situations, the ultimate goal of the RL agent is to collect as much
long-term reward as possible shown in Figure 1.1 (a). In the human-centric task, however,
the goal is for the RL agent to improve the human interaction with the environment and
as a result, we referred to such framework as Human-centric RL, shown in Figure 1.1 (b).
Compare the classic RL, in human-centric RL at any given time t, the RL agent observes the

human-environment interaction state s, then chooses an action a, and receives a reward r based



on the human'’s experience, and the human-environment interaction transitions into the next
state s’. In other words, in classic RL, the RL agent interacts with the environment to learn
the optimal policy for decision making while in human-centric tasks, the obligation of the
RL agent is to make the human-system interactions productive and fruitful: increasing their
learning outcomes or decreasing their risk of disease.

Like many machine learning methods, RL is originated from the field of animal behavior,
psychology, and neuroscience, in which it is shown that RL is one of the most promising
approaches to model and understand the decision-making process in animals and humans
[Niv09]. When compared with human decision-making, the RL agent has many advantages
including extensive computation power and never getting tired. On the other hand, making
humans a decisionmaker gives them a sense of control which can result in great outcomes.
Therefore, to balance the pros and cons of the two, we propose a human-machine mixed-
initiative decision-making framework.

Figure 1.1 (c) shows the human-machine mixed-initiative decisionmaking framework which
involves two loops with two agents: a user agent (human) and an RL agent. In the inner
loop, the user interacts with the environment in that he/she will make decisions aj,,,,, based
on his/her perspective of the environment s;,,,,, and reward function 7y,,,,,; whereas in
the outer loop, the RL agent will make decisions ag; based on the various features of the
environment sg; defined by the domain experts and a reward function rr;. Based on sg; and
rrr, our RL agent will determine how to interact with the inner loop. In this framework, the
human is the front-end decisionmaker while the RL agent is the backend to support. The RL
agent can be employed to identify the more successful human decisions while alerting when
their decisions are suboptimal. Specifically, our RL agent will determine what is the optimal
action for the human to take at any moment; then by monitoring the human’s actual behavior
and matching it to the optimal action, the suboptimal behavior can be identified. The goal
is to utilize RL to advise and support human to make effective decisions lead to the desired
outcomes and avoid the pitfalls. To balance the trade-off between giving the human a feeling
of control over their own progress and keeping the decisions effective, the key problem is
to determine when the agent should intervene. So, this raises our primary research question:
Given a long trajectory of decisions, how to identify the critical decisions that lead to the
desired outcomes?

To investigate this research question, we have explored three approaches. First, we apply
offline off-policy evaluation (OPE) on historical data to determine the existence of critical
decisions in the context of Intelligent Tutoring Systems (ITSs). In a historical student-system
interaction log dataset, four groups of critical decisions are identified by four RL-induced
policies based upon their Q-value differences. We find that only the group of decisions
identified by the effective policy is highly correlated with the students” post-test scores while
the others are less so. In other words, the more optimal critical decisions students experienced,
the better the learning performance they have.



Second, we propose a novel Adversarial Deep RL (ADRL) framework to identify critical
decisions. In this framework, a pair of adversarial policies is induced based upon Deep Q-
Network (DQN) with opposite goals: one is to improve student learning while the other is to
hinder; critical decisions are identified by comparing the two adversarial policies and using
their corresponding Q-value differences; finally, a Critical policy is induced by giving optimal
action in critical states but random actions in others. The Critical policy is deployed on a
tutor and compared with a random yet reasonable (Random) policy in a classroom study. We
find that critical decisions are always occurring in groups (defined as critical phase) and the
Critical policy is effective for the subgroup of students who experienced more critical phases.
However, there’s no significant difference between the Critical policy and the Random policy
for the entire population. One potential explanation is that the Random policy is not a weak
baseline given that there are only two types of instructional interventions and both of them
are reasonable for any given state.

Third, we propose a novel Long-Short Term Rewards (LSTR) framework for critical decision
identification. In the LSTR framework, the long-term rewards are defined as Q-value difference
and the short-term rewards are determined by the reward function. For LSTR, the critical
decisions are the union from two sets of critical decisions identified by long-term and short-
term rewards separately. Furthermore, we propose a Critical-DQN algorithm to consider
the critical decisions in the policy induction process. Experiments on an ideal GridWorld
game show that the proposed LSTR framework indeed identifies the critical decisions in the
sequences, and the Critical-DQN policy is better than the original DQN policy in identifying
critical states. However, the Critical-DQN algorithm is not data-efficiency that it needs more
data to converge to an optimal policy. Overall, the result suggests that carrying out the critical
decisions alone can be as effective as a fully-executed policy and outperform the random
policy.

To investigate whether our LSTR framework is effective and generalizable in real-world
applications, we conduct experiments to identify critical decisions in the fields of education
and healthcare. In education, we leverage an Intelligent Tutoring System (ITS) that teaches
student probability. More specifically, we first evaluate the performance of different critical
policies on a historical dataset and then conduct an empirical classroom study to evaluate
our LSTR framework. In offline evaluation on the historical dataset, our results reveal that
the best critical policy is a combination of Critical-DQN and original DQN, in which the
Critical-DQN is used to identify critical states while the original DQN is used to select optimal
actions in critical states. In our empirical evaluation, we compare our critical policy with
two baselines: a critical-suboptimal policy and a fully executed RL policy. Our critical policy
would carry out optimal actions in the critical states and random ones in the rest while the
critical-suboptimal policy takes suboptimal actions in the critical states and random actions in the
non-critical states. The fully-executed RL policy would always carry out the optimal actions
in all states. Our empirical classroom study shows that 1) the critical policy significantly



outperforms the critical-suboptimal policy and, 2) the critical policy performs similar to the
fully executed policy. It suggests that the critical policy indeed identifies the critical decisions
in students” learning. For healthcare, we apply the LSTR framework to identify the critical
medical interventions for sepsis patients on two healthcare datasets: CCHS and Mayo. The
effectiveness of the critical policy is evaluated from two aspects: policy performance and
percentage of nudges. Here, the nudge is the moment where it is critical and the policy
disagrees with the physician’s decision. Our results on sepsis treatment show that the induced
critical policy could reduce the percentage of nudges while keeping the septic shock rate as
low as a fully executed policy. The results suggest that the LSTR framework could identify the
critical decisions in the septic treatment and enhance the physicians’ decision-making with

minimum interfere.

1.2 Contributions

A large number of prior research has investigated how to make effective decisions in interactive
environments. However, most of them rarely consider the importance of decisions. To the best
of our knowledge, we are the first one attempting to explicitly investigate the open question:
how to identify the critical decisions that lead to the desired outcomes in a long trajectory of decisions?
and valid the existence of critical decisions across different testbeds (simulation and empirical
study) and different domains (education and healthcare).

Overall, our main contributions are summarized as follows:

¢ Through an offline off-policy evaluation approach, we found evidence of the existence
of critical decisions that some decisions are correlated with student learning outcomes

while others are not.

¢ We proposed an ADRL framework to identify critical decisions and found that critical
decisions always appear in a consecutive sequence of steps. In other words, in sequential

decision-making, critical decisions are not likely to exist individually.

¢ We proposed a Long Short Term Rewards (LSTR) framework to identify critical decisions
and a Critical DQN algorithm to improve the long-term rewards. Evaluation on a
synthetic GridWorld game showed that to identify critical decisions, we need to separate
critical states from critical decisions that in critical states, optimal actions should be taken

while in non-critical states, any action can be taken.

* In the education domain, the effectiveness of our LSTR framework was empirically
evaluated from two perspectives: whether optimal actions must be carried out in critical
states (necessary hypothesis) and whether only carrying out optimal actions in critical
states is as effective as a fully-executed RL policy (sufficient hypothesis). Our results
confirmed both hypotheses.



¢ We generalized our LSTR framework to a healthcare task: sepsis treatment, and validated
that the critical policy can be as effective as a fully-executed policy in preventing patients

from septic shock and can greatly reduce healthcare workload.

1.3 Organization

The organization of this dissertation is as follows: Chapter 2 provides a review of work that is
related to the decision-making in humans and RL. Chapter 3 describes how to apply OPE to
identify critical decisions on historical data and what we find. Chapter 4 presents the ADRL
framework and a classroom study for identifying the critical decisions. Chapter 5 discusses the
LSTR framework and its experiment on an ideal GridWorld game and a real-world ITS dataset.
Chapter 6 empirically evaluates the effectiveness of the LSTR framework in a classroom setting.
Chapter 7 applies the LSTR framework to two healthcare datasets to identify the critical
decisions. Chapter 8 concludes the dissertation and discusses the limitation and future work.



CHAPTER 2

RELATED WORK

In this chapter, we first present the animal and human decision-making behavior studies
which inspired our work especially our Long-Short Term Rewards framework. Then, we
describe some related work on the decision fatigue phenomenon; this is especially important
in the healthcare domain which motivated our work on identifying critical decisions to reduce
healthcare workload. Next, we briefly present related work on Reinforcement Learning (RL)
with a focus on deep RL; followed by previous work on applying RL and DRL in the fields of
Intelligent Tutoring Systems (ITSs) and Healthcare. Finally, we present the related work of
utilizing Q-value to identify critical decisions.

2.1 Animal and Human Decision Making

There has been a lot of research on animal and human decision-making [Bud19; San15; Kall1;
Rea91]. In the following, we mainly focus on modeling animal and human decision-making
processes using the RL framework.

A wealth of neuroscience research focuses on applying RL to understanding the learning
and decision-making process in animals and humans. To figure out how the brain generates
behavior, the most dominant approach is the RL-based computational method which models
the brain as a computing device. Since the brain is an extremely complex dynamic biological
system, it is impossible to understand what networks of neurons in the brain represent. The
idea of the computational method is to look at what the structure of the brain computes rather
than looking at how they function. Recent neuroscience research has revealed in the brain the
existence of many key RL signals in the learning and decision-making process.

Morris et al. [Mor06] trained monkeys in a binary-choice instrumental task in which image
cues predict rewards with different probabilities. In the experiment, the monkeys faced a
computer screen with three keys. The trial was started when the monkey pressed the central



key. There are two kinds of trials: reference and decision trials. In reference trials, one image
cue was presented on either the left or the right side of the screen. The monkeys were required
to press either the left or the right key, corresponding to the location of the cue. The monkeys
could receive liquid rewards only if they touched the correct key. In the decision trials, the
monkeys saw two image cues on both sides of the screen and had to choose between them.
During the experiment, decision trials were embedded sparsely among a set of reference trials.
The electrophysiological recordings showed that the activity of dopamine neurons reflects the
value of the option that the monkey is going to select.

Roesch et al. [Roe(07] trained rats performing an odor-discrimination task that different
odors indicate different rewards and the size of the reward is changing dynamically. In the
experiment, one odor indicated one reward on the left side, the second odor indicated one
reward on the right side and the third odor signaled two rewards on either side. In forced-
choice trials, only one reward was available on one side and the rats needed to choose the
correct direction to get the rewards. In free-choice trials, the rats could choose to go to either
side to get the rewards. The free-choice trials were sparsely interleaved with the forced-choice
trials. The results showed that the activity of dopamine neurons reflects the value of the best
option even it is not ultimately selected.

Samuel et al. [McC04; McC07] studied how the human brain responds to the immediate
reward and the discounted delayed reward. In the experiment, human participants made a
series of binary choices between (smaller, earlier) and (larger, later) money amounts while their
brains were scanned using functional magnetic resonance imaging (fMRI). The early option
always had a lower value reward than the latter option. At the end of the choosing, only one
of the participant’s choices was randomly selected to count. The fMRI records showed that
the limbic system responds preferentially to the immediate reward while in the contrast, the
lateral prefrontal cortex is activated to the choices irrespective of the delay. This means that
there are two separate systems in our brain deal with immediate and delayed rewards when
making a decision.

The decision-making in animals is stochastic rather than deterministic. It means that even
an option has a higher reward than the other, animals still have a chance to select the option
with a lower reward. In RL, the Q-value difference defines the probability (desirability) of
choosing one of two choices. Multiple research revealed that this kind of signal is involved
in the process of action selection. Seo & Lee [Seo08] let monkeys play against a computer
opponent in a two-player zero-sum game (matching pennies game) and record the neuron
activity during playing. When applying linear regression to model the neuronal activity in
different regions of the brain, the results showed that the neurons in the posterior parietal
cortex modulated their activity according to the difference in the action-value functions. Sul et
al. [Sull1] trained rats to choose freely between two goals that deliver a fixed amount of water
reward with different dynamic probabilities. The probability was fixed within 35-45 trials and
the water is delivered stochastically. From the analysis of the electrophysiological recordings,



the results indicated that the median agranular cortex conveys significant neural signals for
the difference between the action-value functions for two alternative actions.

In summary, current research has shown that neural activity in the brain encodes many
key signals in the RL framework such as TD error, Q-value, Q-value difference, immediate
and delayed rewards. Insofar, RL is one of the most promising frameworks to model the

decision-making process in animals and humans.

2.2 Decision Fatigue

Decision fatigue refers to the deterioration of people’s ability to make good decisions after a
long session of decision-making. In psychology, a common understanding of decision fatigue
is a symptom of ego depletion. The idea is that self-control utilizes a limited pool of mental
resources which can be used up by making a decision. When the level of mental resources
runs low, people become less persistent and easy to make poor choices without deliberating
thinking.

Vohs et al. [Voh08] conducted several empirical experiments to test the hypothesis that
making many choices impairs self-control and results in less persistence, more procrastination,
and poor performance in a math test. In the first experiment, participants were randomly
split into two groups: choice vs. no-choice. In the choice group, participants were required
to choose between two versions of each product (white or black t-shirt; red or purple pen)
based on their preference. In the no-choice group, participants rated the same products
based on the usage in the past (on a scale from 1=never to 5=very often). After the first
stage of choosing and rating, all participants attended a self-control task that the level of
self-control is measured by how much of a bad-tasting beverage people drink. The result
showed that the choice group drinks significantly fewer beverages than the no-choice group.
In the second experiment, the two conditions are the same as the first experiment but in the
self-control task, participants were tested by how long they could keep their hands in cold
water (pain tolerance). This experiment provided the same results that the choice group has
lower persistence with less time. In the third experiment, the no-choice group read the college
requirement and description of courses while the choice group chose college courses. After the
stage of choosing and reading, participants were given 15 minutes to prepare for a test. They
were allowed to read magazines and play video games but they didn’t know the test won't
happen until the last second. The result showed that the choice group was procrastinating
and spent more time on time-wasting temptations. In the fourth experiment, two groups were
asked to solve an unsolvable math problem and do a solvable math test. In the results, when
dealing with unsolvable problems, the no-choice group persistent longer time, when doing the
solvable test, the choice group performed significantly worse than the no-choice group. In the
last experiment, three conditions were involved: no-choice vs. 4-mins choice vs. 12 mins choice,

to test whether a longer period of choice would impair self-control more. In the choosing



phase, participants chose or rated wedding gifts. In the self-control task, they were required to
watch a malfunctioned video and measure how long they could sit there before asking for a
tix. The results showed that the more choices one makes, the more passive to wait longer.
Overall, these bunch of experiments showed that making too many decisions indeed
depletes one’s energy and impair self-control. The consequence of losing self-control can be

less persistence, more procrastination, more passivity, and even hurt learning performance.

2.3 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning framework, which is different
from either supervised learning or unsupervised learning. As a framework to solve sequential
decision-making problems, it learns from the agent-environment interaction over time. The
RL algorithms are designed to induce optimal policies that determine the best action for
an agent to take in any given situation to maximize a cumulative reward. Prior research of
Reinforcement Learning can be roughly divided into classic RL vs. Deep RL (DRL) approaches.
The latter is highly motivated by the fact that the combination of deep learning (neural
networks) and novel RL algorithms has made solving complex problems possible in the
last decade. As an example of DRL, the Deep Q-Network (DQN) algorithm [Mnil5b] takes
advantage of convolutional neural networks to learn to play Atari games observing the pixels
directly. Since then, DRL has achieved great success in various complex tasks such as game
playing [Mnil3; Mnil5a; Wan16; Mnil6; Sill6a], robotic control [Lev16; Zhul7; Zhal5], making
recommendations [Zhel8; Zhal8a; Zhal8b], chemical reactions optimization [Zho17b] and
also ITS control [Wan17; Narl5].

While promising, relatively little work has been done to analyze, interpret, explain, or gen-
eralize RL-induced policies. While traditional hypothesis-driven, cause-and-effect approaches
offer clear conceptual and causal insights that can be evaluated and interpreted, RL-induced
policies are often large, cumbersome, and difficult to understand. The space of possible policies
is exponential in the number of domain features. It is therefore difficult to identify the system
decisions that critical to desirable outcomes.

24 RL For Intelligent Tutoring System & Healthcare

A lot of research has applied RL to ITS such as inferring students” knowledge [Raf15] and hint
generation [Bar08]. For this dissertation, we mainly focus on Pedagogical Policy, which is used
to decide what action to take next in the face of alternatives.

Prior research using RL approaches has applied both online and batch/offline approaches
to induce pedagogical policies for ITSs. Beck, et al. [Bec00] applied temporal difference learning
to induce pedagogical policies that would minimize the students” time on task. Similarly,
Iglesias et al. applied Q-learning to induce policies for efficient learning [Igl09a; Igl09b].
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More recently, Rafferty et al. applied an online partially observable Markov decision process
(POMDRP) to induce policies for faster learning [Raf16]. All of the models described above
were evaluated via simulations or classroom studies, yielding improved student learning
and/or behaviors as compared to some baseline policies. Offline or batch RL approaches, on
the other hand, “take advantage of previously collected samples, and generally provide robust
convergence guarantees” [Sch17]. Thus, the success of these approaches depends heavily on
the quality of the training data. One common convention for collecting an exploratory corpus
is to train students on ITSs using random yet reasonable policies. Shen et al. applied value
iteration and least square policy iteration on a pre-collected exploratory corpus to induce a
pedagogical policy that improved students’ learning performance [Shel6b; Shel6a]. Chi et al.
applied policy iteration to induce a pedagogical policy aimed at improving students’ learning
gain [Chill]. Mandel et al. [Man14] applied an offline POMDP to induce a policy that aims to
improve student performance in an educational game. All the models described above were
evaluated in classroom studies and were found to yield certain improved student learning
or performance relative to a baseline policy. Wang et al. applied an online DRL approach to
induce a policy for adaptive narrative generation in an educational game using simulations
[Wan17]; the resulting DRL-induced policies were evaluated via simulations only. In this work,
based on the characteristics of our task domain, we focus on batch RL with neural networks,
also known as batch Deep Reinforcement Learning (batch DRL) [Jaq19; Fuj19].

Similar to ITS, sepsis treatment can be characterized as a temporal sequential decision-
making process, where the outcome of the selected treatment is delayed. In hospitals, physi-
cians often make a larger number of clinical decisions from defining problems, evaluating test
results to treatment. Despite the severity of the disease and the challenges faced by practition-
ers and researchers, it is notoriously difficult to reach an agreement for the optimal treatment
due to the complex nature of sepsis and different patients’ constitution. Moreover, continuous
updates in the sepsis guidelines often lead to inconsistency among clinical practices [Bacl7].
On the other hand, RL offers an effective data-driven solution based on a mathematically
grounded framework that learns an optimal policy from data to maximize the expected
reward [Sut18]. Particularly, Deep RL (DRL) effectively models high-dimensional data and has

broadened its coverage to septic treatment [Ragl7].

2.5 Critical Decisions in Simulation

One of the closest works to our human-machine mixed-intuitive decisionmaking framework is
the so-called "Student-Teacher" framework, which is originally proposed by Jeffery Clouse
[Clo96]. In this framework, a "student" agent learns from the interaction with the environment,
while a "teacher" agent provides action suggestions to accelerate the learning process. Their
research question is not what to advise but when to advise, especially with a limited budget

of advice.
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Clouse [Clo96] was the first one to study the student-teacher framework in a student-
initiated advising mode. They applied the Q-value difference to measure the student’s con-
fidence in a state and used it to decide when the student should ask for help. The results
showed that compared with random asking, their approach could improve the learning speed
significantly. Furthermore, the experiment demonstrated that not all the teacher’s advice is
equally helpful. The same amount of advice can cause the student agent to take widely varying
amounts of steps to find the optimal policy.

Torrey et al. [Torl3] considered the student-teacher framework in a teacher-initiated
advising way. They considered an environment with a limited budget of advice and the
teacher decided when to give advice. They proposed several heuristic methods to determine
when to give advice such as early advising, importance advising, mistake correcting, and
predictive advising. The results showed that mistake correcting has the best performance
which indicates that advice can have the greatest impact when students make mistakes in
important states.

Zimmer et al. [Zim13] modeled the when to advise problem as an RL problem. They
learned a teaching policy with two actions: A = {advice, noadvice} to decide when to advise
the student. Compared with heuristic methods, the result showed that the teacher policy is
effective because it can learn not only when to give advice, but also distinguish good and bad
student agent that good agent chooses a lot of good actions and doesn’t need advice while
bad agent needs more.

Amir et al. [Amil6] studied the jointly-initiated strategies for the student-teacher learning
framework. In their model, both student and teacher can initiate advising based on heuristic
functions. The motivation of their work is to reduce the pressure of the teacher agent on
monitoring the student constantly and make the framework closer to the real-life student-
agent scenario. The result showed that the joint decision-making approach could reduce the
attentions required from the teacher but still keep the student learning effectively.

Fachantidis et al. [Fac17] explored the impact of advice quality in the student-teacher
framework. They distinguished teacher agents to be an expert or a good teacher who provide
optimal or sub-optimal advice. Also, a Q-teaching method was proposed to learn a teaching
policy to decide when to give advice. Their results showed that the best performers are not
always the best teachers and the Q-teaching approach is significantly more efficient than
others.

In summary, prior works investigated the problem of when to advise in simulated envi-
ronments. They showed that Q-value difference is a robust and accurate heuristic function to
estimate the importance of the decision in interactive environments. However, prior works

only considered RL-based student agents but not human students.
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CHAPTER 3

OFFLINE OFF-POLICY EVALUATION
TO IDENTIFY CRITICAL DECISION

Song Ju, Guojing Zhou, Hamoon Azizsoltani, Tiffany Barnes, Min Chi, Importance Sampling to
Identify Empirically Valid Policies and their Critical Decisions. EDM (Workshop) 2019: 69-78

This chapter describes our first attempt to investigate critical decisions. First, we explored
the use of three common Importance Sampling-based metrics to evaluate four RL-induced
policies on a historical dataset from a logic ITS. Our result showed that Per Decision Importance
Sampling (PDIS) is the best metric to evaluate RL-induced policies offline. Then, we used
Q-value difference to identify critical decisions and four groups of decisions were identified
by the four RL-induced policies. We found that only the group of decisions identified by the
effective policy (evaluated by PDIS) is highly correlated with students’ learning performance
while the others are less so. In other words, the students who experienced more optimal critical
decisions significantly outperformed those who received less. Overall, we found the existence
of critical decisions in students’ learning, and these critical decisions can be identified by using
the theoretically “effective” policies that are identified by using PDIS.

3.1 Introduction

Intelligent Tutoring Systems (ITSs) are a type of highly interactive e-learning environment
that facilitates learning by providing step-by-step support and contextualized feedback to
individual students [Koe97; Van06]. These step-by-step behaviors can be viewed as a sequential
decision process where at each step the system chooses an action (e.g. give a hint, show an
example) from a set of options, in which pedagogical strategies are policies that are used to

decide what action to take next in the face of alternatives. Reinforcement Learning (RL) offers
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one of the most promising approaches to data-driven decision-making applications and RL
algorithms are designed to induce effective policies that determine the best action for an agent
to take in any given situation to maximize some predefined cumulative reward. A number of
researchers have studied the application of existing RL algorithms to improve the effectiveness
of ITSs [Chill; Shel6b; Rafl6; Clel6; Stall; Igl09a; Igl09b; Zhol7a]. While promising, such RL
work faces at least two major challenges discussed below.

One challenge is a lack of reliable yet robust evaluation metrics for RL policy evaluation.
Generally speaking, there are two major categories of RL: online and offline. In the former
category, the agent learns while interacting with the environment; in the latter case, the agent
learns the policy from pre-collected data. Online RL algorithms are generally appropriate for
domains where interacting with simulations and actual environments are computationally
cheap and feasible. On the other hand, for domains such as e-learning, building accurate
simulations or simulated students is especially challenging because human learning is a
rather complex, poorly understood process. Moreover, learning policies while interacting
with students may not be feasible, and more importantly, may not be ethical. Therefore, to
improve student learning, much prior work applied offline RL approaches to induce effective
pedagogical strategies. This is done by first collecting a training corpus and the success of
offline RL is often heavily dependent on the quality of the training corpus. One common
convention is to collect an exploratory corpus by training a group of students on an ITS that
makes random yet reasonable decisions and then apply RL to induce pedagogical policies
from that training corpus. An empirical study is then conducted from a new group of human
subjects interacting with different versions of the system. The only difference among the system
versions is the policy employed by the ITS. The students” performance is then statistically
compared. Due to cost limitations, typically, only the best RL-induced policy is deployed and
compared against some baseline policies. On the other hand, we often have a large number of
RL algorithms (and associated hyperparameter settings), and it is unclear which will work
best in our setting. In these high-stakes situations, one needs confidence in the RL-induced
policy before risking deployment. Therefore, we need to develop reliable yet robust evaluation
metrics to evaluate these RL-induced policies without collecting new data before being tested
in the real world. This type of evaluation is called off-policy evaluation (OPE) because the policy
used to collect the training data, also referred to as the behavior policy, is different from the
RL-induced policy, referred to as the target policy to be evaluated. To find reliable yet robust
OPE metrics, we explored three Importance Sampling based off-policy evaluation metrics.

The second RL challenge is a lack of interpretability of the RL-induced policies. Compared
with the amount of research done on applying RL to induce policies, relatively little work has
been done to analyze, interpret, or explain RL-induced policies. While traditional hypothesis-
driven, cause-and-effect approaches offer clear conceptual and causal insights that can be
evaluated and interpreted, RL-induced policies are often large, cumbersome, and difficult to
understand. The space of possible policies is exponential in the number of domain features. It

14



is therefore difficult to draw general conclusions from them to advance our understanding of
the domain. This raises a major open question: How can we identify the critical system interactive
decisions that are linked to student learning? In this work, we tried to identify key decisions by
taking advantage of the reliable OPE metrics we discovered and the properties of the policies

we induced.

3.2 Motivation

Just like the fact that assessment sits at the epicenter of educational research [Bra99], policy
evaluation is indeed the central concern among the many stakeholders in applying offline
RL to ITSs. As educational assessment should reflect and reinforce the educational goals that
society deems valuable, our policy evaluation metrics should reflect the effectiveness of the
induced policies. While various RL approaches such as policy iteration and policy search have
shown great promise, existing RL approaches tend to perform poorly when they are actually
implemented and evaluated in the real world.

In a series of prior studies on a logic ITS, RL and Markov Decision Processes (MDPs) were
applied to induce four different pedagogical policies, named MDP1-MDP4 respectively, on
one type of tutorial decision: whether to provide students with a Worked Example (WE) or to
ask them to engage in Problem Solving (PS). In WESs, the tutor presents an expert solution to a
problem step by step, while in PSs, students are required to complete the problem with the
tutor’s support. When inducing each of four policies, we explored different feature selection
methods and used Expected Cumulative Reward (ECR) to evaluate the RL-induced policies. ECR
of a policy is calculated by average over the value function of initial states and generally
speaking, the higher the ECR value of a policy, the better the policy is supposed to perform.
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Figure 3.1: Post-test Score vs. ECR, showing no seeming direct relationship.

Figure 3.1 shows the ECRs (blue dashed line) of the four RL-induced policies, MDP1-MDP4
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(x-axis), and the empirical results of student learning performance (the solid red line) of the
corresponding policies. Here the learning performance is measured by an in-class post-test
after students were trained on the tutor with corresponding policies (the mean and standard
errors of post-test scores are shown with a red solid line). Figure 3.1 shows that our theoretical
evaluation (ECR) does not match the empirical results (post-test) evaluation in that there is no
clear relationship between the ECRs’ blue line and the corresponding post-test in the red line
across the four policies. This result shows that ECR is not a reliable OPE metric for evaluating
RL-induced policy in ITSs. Indeed, Mandel et al. [Man14] pointed out that ECR tends to be
biased, statistically inconsistent, and thus it may not be the appropriate OPE metric in high
stakes domains. In recent years, many state-of-the-art OPE metrics have been proposed and
many of them are based on Importance Sampling.

Importance Sampling (IS) is a classic OPE method for evaluating a target policy on existing
data obtained from an alternate behavior policy and thus can be handily applied to the task
of evaluating the effectiveness of an offline RL-induced policy using pre-existing historical
training datasets. Many IS-based OPE metrics are proposed and explored and it was shown
that they gain significant performance in simulation environments like Grid World or Bandit
[Thol5; Dud11]. Among them, three IS-based OPE metrics, the original IS, Weighted IS
(WIS), and Per-Decision IS (PDIS), are the most widely used. However, real-world human-
agent interactive applications such as ITSs are much more complicated due to 1) individual
differences, noise, and randomness during the interaction processes, 2) the large state space
that can impact student learning, and 3) long trajectories due to the nature of the learning
process.

In this work, we investigated the three IS-based offline OPE metrics on MDP1-MDP4 to
investigate whether the three IS-based evaluation metrics are indeed effective OPE metrics for
evaluating the four RL-induced policies mentioned beforehand. We believe an OPE is effective
if and only if the theoretical results from the OPE evaluations are completely aligned with the
empirical results from the classroom studies. Therefore, we explored different deployment
settings for the IS-based metrics from two aspects: one is the transformation function used to
convert the RL-induced deterministic policy to a stochastic policy used in IS-based metrics and
the other is reward functions: the original reward function vs. the normalized reward function;
the latter is supposed to reduce the variance. Our results showed that the theoretical and
empirical evaluation results are aligned more or less for different deployment settings using
different IS-based metrics. Only when using a soft-max transformation function and original
reward function, the theoretical results of PDIS can reach 100% agreement with the empirical
results. Based on results from the OPE metrics, we further explored using the properties of the
RL-induced policy to identify critical decisions and our results showed that the critical decisions
can be identified by using the theoretically “effective" policies that were identified by using
PDIS with soft-max transformation and the original reward function.

In summary, we make the following contributions:
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¢ We directly compared three IS-based policy evaluation metrics against the empirical
results from real classroom studies across four different RL-induced policies. Our results

showed that PDIS is the best one and its results can align with empirical results.

¢ As far as we know, this is the first study to compare different deployment settings
(original /normalized rewards or deterministic/stochastic policy transformation) on
IS-based policy evaluation metrics. Our results showed that settings have a direct impact
on the effectiveness of the evaluation metrics. Only PDIS with soft-max transformation
and the original reward function agreed 100% with the empirical results.

* We investigated using information from the RL-induced policies to identify critical
decisions to shed some light on the induced policies. As far as we know, this is the first

attempt to differentiate critical decisions from trivial ones.

3.3 Related Work

3.3.1 OPE Metrics

OPE is used to evaluate the performance of a target policy given historical data generated
by an alternative behavior policy. A good OPE metric is especially important for real-world
applications where the deployment of a bad or inefficient policy can be costly [PST16]. ECR
is one of the most widely used OPE metrics, which is designed especially for the MDP
framework. Tetreault et al. [JRT07] estimated the reliability of ECRs by repeated sampling to
estimate confidence intervals for ECRs. In simulation studies, they showed the policy induced
by the confidence interval of ECR performed more reliably than the baseline policies but this
phenomenon did not hold when evaluating the RL-induced policies in ITSs for empirical
studies [Chill].

Importance Sampling (IS) [Ham64] is a widely used OPE metric, which considers the
mathematical characteristics of the decision-making process and can be applied to any MDP,
POMDP, or DeepRL framework. Precup [Pre00] proposed four IS-based OPE metrics: IS,
weighted importance sampling (WIS), per-decision importance sampling (PDIS), and weighted
per-decision importance sampling (WPDIS). They used the IS-based estimator as the policy
evaluation for Q-learning and then compared the effectiveness of estimators on a series of 100
randomly constructed MDPs based on the mean square error (MSE). Their results showed
that IS made the Q-learning process converge slowly and caused high variance, and WIS
performed better than IS, but PDIS performed inconsistently and WPDIS performed the worst.
Similarly, Thomas [Tho15] compared the performance of several IS estimators using mean
squared error in a grid-world simulation, showing PDIS outperformed all others.

In summary, previous work has explored the effectiveness of IS and its variants in simu-

lation studies, which motivated the work reported here. Different from previous work, we
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mainly focus on comparing the theoretical evaluation with the empirical evaluation in order
to determine whether IS-based methods are indeed reliable and robust for ITSs.

3.4 Markov Decision Process & RL

Some of the prior work on applying RL to induce pedagogical policies used Markov Decision
Processes (MDP) frameworks. An MDP can be seen as a 4-tuple (S, A, T, R), where S denotes
the observable state space, which is defined by a set of features that represent the interactive
learning environment and A denotes the space of possible actions for the agent to execute. The
reward function R represents the immediate or delayed feedback from the environment with
respect to the agent’s action(s); r(s, a,s’) denotes the expected reward of transiting from state s
to state s’ by taking action a. Once (S, A, R) is defined, T represents the transition probability
where P(s,a,s") = Pr(s'|s,a) is the probability of transitioning from state s to state s’ by taking
action a4 and it can be easily estimated from the training corpus. The optimal policy 7 for an
MDP can be generated via dynamic programming approaches, such as Value Iteration. This
algorithm operates by finding the optimal value for each state V*(s), which is the expected
discounted reward that the agent will gain if it starts in s and follows the optimal policy to
the goal. Generally speaking, V*(s) can be obtained by the optimal value function for each
state-action pair Q*(s, a) which is defined as the expected discounted reward the agent will
gain if it takes an action 4 in a state s and follows the optimal policy to the end. The optimal
value function Q*(s,a) can be obtained by iteratively updating Q(s,a) via equation 3.1 until

convergence:

Q(s,a) =) p(s,a,s) |r(s,as") +ymaxQ(s',a) (3.1)

where 0 < v <1 is a discount factor. When the process converges, the optimal policy 7*
can be induced corresponding to the optimal Q-value function Q*(s,a), represented as:

Tt (s) = arg max Q*(s,a) (3.2)

Where 77* is the deterministic policy that maps a given state into an action. In the context of
an ITS, this induced policy represents the pedagogical strategy by specifying tutorial actions

using the current state.

3.5 Three OPE Metrics & Two Settings

The following terms will be used throughout this paper.

ay,r ap,r: as,rs
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» - - -s1; denotes one student-system interaction trajectory and
H denotes a trajectory with length L.
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e G(H') = Yk 9'"'r; is the discounted return of the trajectory HE, which generally

reflects how good the trajectory is supposed to be.

e D = {Hy, Hy, Hs, ..., H,} denotes the historical dataset containing n student-system

interaction trajectories.
* 713, denotes the behavior policy carried out for collecting the historical data D.
¢ 711, denotes the target policy to be evaluated.

* p(7,) represents the estimated performance of 7z,.

3.5.1 Three IS-based OPE Metrics

Importance Sampling (IS) is an approximation method that allows the estimation of the
expectation of a distribution, p, from samples generated from a different distribution, g.
Suppose that we have sample space x and random variable f(x) which is a measurable function
from sample space x to another measurable space. We want to estimate the expectation of f(x)
over a strictly positive probability density function p(x). Suppose also that we cannot directly
sample from distribution p(x), but we can draw Independent and Identically Distributed
(IID) samples from probability density function g(x) and evaluate f(x) for these samples. The
expectation of f(x) over probability density function p(x) can be calculated as:

Elf()] = [ fEp(x)dx 63
= X @ x)dx
= [reE 64
- P
= E4f( )qx)] (3.5)

where p is known as the target distribution, g is the sampling distribution, E,[f(x)] is the
expectation of f(x) under p, p(x)/q(x) is the likelihood ratio weight and E;[f(x)p(x)/q(x)]
is the expectation of f(x)p(x)/q(x) under g. We can then approximate the expectation of
f(x) over probability density function p(x) using the samples drawn from probability density
function g(x). In the context of OPE, the target distribution, p, is a probability event whose
density function is determined by the target policy, and the sampling distribution, p(x), is a
probability event whose density function is determined by the behaviour policy.

Following the general IS technique, we approximated the expected reward of the target
policy using the relative probability of the target and behavior policies. Because of the nature of
the underlying MDP, samples in RL are sequential. Therefore, we assumed that each trajectory
is a sequence of events whose probability density function is determined by its corresponding
policy. Assuming the independence among trajectories and following the multiplication rule
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of independent events, the probability of occurrence of a trajectory, H", under policy 7 is

L

Pr(H") = Pi(s1) [ [ 7e(aslse) Pr(sesalse, ar) (3.6)
=1

where P (H") is the probability of occurrence of the trajectory H' following a policy 7t, P (s1)
is the probability of occurrence of the state s; at the beginning of the trajectory and Pr is the
state transition probability function.

Similar to the original IS technique, the proportional probability of each trajectory occurring
under the target policy, 7., and behavior policy, 713, is used as the likelihood ratio weight for
that trajectory. Thus, following the importance sampling technique, the importance sampling
discounted return is defined as:

L
1S(m,|HE, ) = %-G(HL) (3.7)
T (s
= ZL—— .G(HY (3.8)
tl:llﬂb(ﬂdst)

Substituting G(H!) with the discounted return and we have:

1Sl L, ) = ([ 22200 (3 i) 39)
‘ ' t=1 7y (atst) t=1
After having the individual IS estimator for each trajectory, we can calculate the expected
reward of the dataset D by averaging the individual IS estimators for each trajectory as

np L

S(7|D) = Z H c(ailsi) ny“ (3.10)

17T at|5

where s, ai, and i refer to the ith trajectory at time ¢ and np is the number of trajectories in D.
Weighted Importance Sampling (WIS) is a variant of the IS estimator, a biased but consistent
estimator which has lower variance than IS. It normalizes the IS to produce a lower variance.
At first, it calculates the weight Wp for the dataset as the summation of the likelihood ratios
for each trajectory as shown in equation 3.11. Then, it normalizes the IS estimator as shown
in equation 3.12. Finally, the WIS is simply the weighted average of the estimated reward for
each sequence in the dataset D, as shown in equation 3.13.

L

- ZD; ]‘[ ”f‘s (3.11)
i=1

=1 7T ”t|5)
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WIS(m,|HE, ) = v (3.12)
D
| L el y B
WIS(T[E’D) - np L ﬂ(ﬂt‘st) (313)
L 2

Per-Decision Importance Sampling (PDIS) is also a variant of IS. Like IS, it is also unbiased
and consistent. IS has a very high variance because, for each reward, r;, it uses the likelihood
ratio of the entire trajectory. However, the reward at step t should only depend on the previous
steps. The variance can be reduced by using the likelihood ratio of the trajectory before step

TTe a/|s])

t for the reward r;. It means that the importance weight for a reward at step t is H @l
71°]

Therefore, the individual PDIS estimator for a trajectory is given in the equation 3. 14 and the
PDIS for the whole historical dataset D is given in the equation3.15.

TT, a]]s]
PDIS(m,|H:, 7t (3.14)
(7| b) tZ: ]l_Inb a]]s]
1 m L tm(atlst)
PDIS(m,|D) = — YT —LL5 ) (3.15)
‘ noi; t; Hnbws) :

3.5.2 Two Different Settings

To evaluate the three IS-based metrics, we explored different deployment settings from two
aspects: one is the transformation function to convert the RL-induced deterministic policy to
a stochastic policy used in IS-based metrics and the other is reward functions: the original
reward function vs. the normalized reward.

3.5.2.1 Three Transformation Functions:

As described above, IS-based metrics require the policy to be stochastic but our MDP induced
policies are deterministic, i.e. given the current state s, the agent should take the deterministic
optimal action a* following the optimal policy 77*. To transform the deterministic policy into a
stochastic policy, we explore three types of transformation functions: Hard-code, Q-proportion,
and Soft-max. The basic idea behind them is: for any given state s, the assigned stochastic
probability for an action a should reflect its value of Q(s, a).

1. Hard-code Transformation

(als) 1 —¢ optimal action (3.16)
nt(als) = .
€ otherwise
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In eqn 3.16, ¢ is a fixed small probability like e = 0.001 which is assigned to actions with

smaller Q-value while 1 — ¢ is assigned to the action with the largest Q-value.

2. Q-proportion Transformation

Q(s,a)

A 3.17
Ea/eA Q(S/a,) ( )

n(als) =
As shown in eqn 3.17, the probability to take action a given state s is the proportion of
a’s Q-value among all possible actions a in the state s. Thus, the action which has the
highest Q-value is guaranteed to have the highest probability. In practice, because some
of the Q-values are smaller than 0, we add a constant to Q-values in the same state so
that Q(s,a) > 1.

3. Soft-max Transformation
eG-Q(s,u)

m(als) = T o

(3.18)
Soft-max is a classical function used to calculate the probability distribution of one
event over n possible events. In our application, given state s, the soft-max function will
calculate the probability of action a over all possible actions using the equation 3.18. The
main advantage of soft-max is the output probability range is 0 to 1 and the sum of all
the probabilities will be 1 and it can handle negative Q-values. 6 is a weight parameter
to the Q-value.

3.5.2.2 Two Types of Reward Functions:

The effectiveness of RL-induced policies is very sensitive to the reward functions. In our
application, the range of the reward function is very large [—200,200], which may cause large
variances for IS, especially when a trajectory is long. One effective way to reduce this variance
is to use normalized rewards. Therefore, both original rewards and normalized rewards are
x—min(x) h
max(x)—min(x) €€
min and max are the minimum and maximum values of original reward function x and
z € [0,1].

considered. More specifically, the normalized reward z is defined as: z =

3.6 ITS & Four MDP Policies

3.6.1 Our Logic Tutor

Figure 3.2 shows an interface of the logic tutor, which is a data-driven ITS used in the
undergraduate Discrete Mathematics (DM) course at a large university. It [MB15] provides
students with a graph-based representation of logic proofs which allows students to solve
problems by applying rules to derive new statements, represented as nodes. The system
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automatically verifies proofs and provides immediate feedback on logical errors. Every problem
in the tutor can be presented in the form of either WE or PS. By focusing on the pedagogical
decisions of WE and PS, the tutor allows us to strictly control the content to be equivalent for

all students.
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Figure 3.2: Tutor Problem Solving Interface

3.6.2 Four MDP Policies and Empirical Study

Four MDP policies, MDP; - MDP, were induced from an exploratory pre-collected dataset
following different feature selection procedures. The detailed descriptions of our policy
induction process are described in [Shel6b; Shel6a] and will be omitted here to save space.
The effectiveness of each MDP policy was empirically evaluated against the Random policy in
strictly controlled studies during three consecutive semesters. In each strictly controlled study,
students were randomly assigned to two conditions: MDP policy, or a Random baseline policy
which makes random yet reasonable decisions because both PS and WE are always considered
to be reasonable educational interventions in our learning context. Moreover, all students went
through the identical procedure on the tutor and the only difference was the pedagogical
policy employed. After completing the tutor, students take a post-test which involved two
proof questions in a midterm exam. They were 16 points each and graded by one TA using a
rubric. Overall, no significant difference was found between our four RL-induced policies and
the Random policy on students” post-test scores across all studies.

There are many possible explanations for our results. First, while the Random policy is
generally a weak policy for many RL tasks, in our situation both of our action choices: WE vs.
PS are considered reasonable and more importantly for each decision point, there is a 50%
chance that the random policy would carry out the better of the two. Second, non-significant
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statistical results do not mean non-existence. Small sample size may play an important role in
limiting the significance of statistical comparisons. A post hoc power analysis revealed that to
be detected as significant at the 5% level with 80% power, MDP1 vs. Random needed a total
sample of 1382 students; MDP2 vs. Random needed 1700 students; MDP3 vs. Random needed
212 students; MDP4 vs. Random needed 394 students. However, in each empirical study, our
student sample sizes are much smaller, 59, 50, 57, and 84 respectively. And last but not least, it
turned out that all four RL-induced policies were only partially carried out. All of the training
problems in our tutor are organized into six strictly ordered levels and in each level students
are required to complete 3—4 problems. In level 1, all participants receive the same set of PS
problems, and in levels 2-6, our tutor has two hard-coded action-based constraints that are
required by the class instructors: students must complete at least one PS and one WE and
the last problem on each level must be PS. Therefore, over the entire training process, only
~ 50% of actions are actually decided by the pedagogical policy, and the rest are decided by
hard-coded system rules.

In short, although ECR showed that our four RL-induced policies should be more effective
than the Random, empirical results showed otherwise because of various potential reasons. So
we explored other OPE metrics to evaluate MDP; - MDP;.

3.7 Experiment Setup

Our dataset contains a total of 450 students” interaction logs involved in the strictly controlled
studies mentioned above. The goals of our experiment were to 1) investigate whether any of
the three IS-based metrics can be used to align the theoretical and empirical results for our
four MDP policies and 2) identify critical decisions that are linked to student learning.

3.7.1 Three IS-based Metrics Evaluation

We will describe how we determine whether or not the three IS-based metrics can align the
theoretical results with the empirical results for MDP1-MDP4.

For a given RL-induced policy 7, we first split all students into High vs. Low based on
the actual carry-out percentages according to 7r. Since there are only two tutorial choices: WE
vs. PS, there is a possibility that each actual decision that the tutor made would agree with
the decision according to 7. For the Random policy, for example, the probability is 50-50. In
other words, we can measure each trajectory by the percentage of the tutorial decisions that
agree with 7. If 77 is indeed effective, we would expect that the more the tutorial decisions in
a trajectory agree with 7, the better the corresponding student performance would be. We
thus treat all 450 students’ interaction log data equally regardless of their original assigned
conditions and for each student-ITS interaction log we can calculate a carry-out percentage for

agree

7t using the formula: percentage = %, where Ny, is the total number of tutorial decisions

in the trajectory and Ngg/e. is the number of decisions that agree with 7. Then, students are
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divided into High Carry-out (High) vs. Low Carry-out (Low) by a median split on carry-out
percentages.

Then we empirically evaluate the effectiveness of 7 by checking whether there is a significant
difference between the High and Low groups on their post-test scores. Similarly, we compare
the High and Low groups’ theoretical results. To do so, for each student-ITS interaction
trajectory, we estimate its reward by exploring different combinations of the three IS-based
OPE metrics with the three policy transformation functions and the two reward functions.
More specifically, we treat all the trajectories as generated by Random policy regardless of
their original behavior policy. So for each student, we have a total of 18 theoretical evaluations
for a given 7. If v is indeed effective and our OPE metric is reliable, we would expect that
the more the tutorial decisions in a trajectory agree with 7, the higher the corresponding
theoretical rewards would be and vice versa.

Finally, for each of the 18 OPE metric settings, we conduct an alignment test between the
theoretical and empirical results on 7r. This is done by comparing the empirically evaluated
results and the theoretical rewards using the corresponding OPE metric. More specifically,
they are considered to be aligned when:

1. Both empirical and theoretical results were not significant, that is p >= 0.05, or

2. Both results were significant, and the direction of the comparison was the same, that is
p < 0.05, and the sign of the t values are both positive or both negative.

All the remaining cases are considered as not aligned. Thus, for each of 18 OPE metrics,
we can test whether its theoretical results would align with the empirical results for 7r. Since
we have four RL-induced policies, MDP1-MDP4, robust and reliable OPE metrics should align

the two types of evaluation results across all four policies.

3.7.2 Critical Decision Identification

Next, we will explain how the critical interactive decisions are identified and empirically exam-
ined. Note that, there may be critical decisions over which the RL policies have no influence.
Hence, we focus only on interactive decisions that are critical. For many RL algorithms, the
fundamental approach to induce an optimal policy can be seen as recursively estimating the
Q-values: Q(s,a) for any given state-action pair until the Bellman equation is converged. More
specifically, Q(s, a) is defined as the expected discounted reward the agent will gain if it takes
an action a in a state s and follows the corresponding optimal policy to the end. Thus, for a
given state s, a large difference between the values of Q(s,“PS”) and Q(s,“WE”) indicates
that it is more important for the ITS to follow the optimal decision in the state s. We, therefore,
used the absolute difference between the Q-values for each state s to identify critical decisions.
Our procedure can be divided into two steps.

Step 1: Identify Critical Decisions: Given an MDP policy, for each state, we calculated the
absolute Q-value difference between the two actions (PS vs. WE) associated with it. Figure 3.3
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shows the Q-value difference (y-axis) for each state (x-axis) sorted in descending order for
MDP1-MDP4 policies respectively. It clearly shows that, across the four MDP policies, the
Q-value differences for different states can vary greatly. We used the median Q-value difference
to split the x-axis states into critical vs. non-critical states. The states with the larger Q-value
differences were critical states and the rest were non-critical ones. For a given RL-induced
policy, the critical decisions are defined as those in critical states where the actual carried-out

tutorial action agreed with the corresponding policy.
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Figure 3.3: Q-value difference in MDP1-MDP4

Step 2: Evaluate Critical Decisions: For each of the four RL-induced policies, we counted the
number of critical decisions that each student encountered during his/her training. Then for
each policy, students were split into: More vs. Less groups, by a median split on the number of
critical decisions experienced in the training process. A t-test was conducted on the post-test
scores of More vs. Less groups to investigate whether the students with More critical decisions

would indeed perform better than those with Less.
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Table 3.1: Empirical Post-test Evaluation Results for High and Low Carry-out Groups

Policy \ High \ Low \ T-test Result

MDP1 | 79.06(24.64) | 83.13(23.69) | (448
MDP2 | 81.46(24.90) | 80.44(23.66) | t(44
MDP3 | 82.55(23.48) | 79.30(25.00) | (44
MDP4 | 83.43(22.83) | 78.43(25.44) | t(448) = 2.19,p = .029"

bold and ** denote significance at p < 0.05.

3.8 Results

3.8.1 Three IS-based Metrics Evaluation

Table 3.1 shows the empirical evaluation results by comparing the High vs. Low carry-out
groups’ post-test scores based on the corresponding RL-induced policy. The motivation is that,
if a policy is indeed effective, students in the High group should significantly out-perform
their Low peers on the post-test. In Table 3.1, the first column indicates the name of the
RL-induced policy; columns 2 and 3 show the mean and standard deviation of classroom
post-test scores for High and Low carry-out groups, respectively, and the last column shows
the t-test results when comparing post-test between groups. Rows 2-4 show that there is no
significant difference between the High vs. Low groups in terms of post-test scores for MDP1,
MDP2, and MDP3 policies, but there is a significant difference between the two groups for
the MDP4 policy (row 5): £(448) = 2.19, p = .029. This result suggests that, among the four
MDP policies, only MDP4 seems to be effective in that the students in MDP4’s High carry-out

group performed significantly better than those in the Low carry-out group.

Table 3.2: Policy Transformation and Normalization Impacts on IS Metric Alignment to
Post-test Outcomes

Policy Rewards Metrics
Transformation IS WIS PDIS
Original 50% 50% 100%
Soft-max rgina *

Normalized | 50% 50%  50%
Original 25% 25%  75%
Normalized | 25% 25%  25%
Original | 75% 75%  75%
Normalized | 75% 75%  75%

Q-proportion

Hard-code

Table 3.2 shows the overall IS-based metrics evaluation results showing the impact of
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Table 3.3: Detailed IS-based Metrics Evaluation Results Using Original Reward

MDP2 | #(448) = 44, p = 658 £(448) = 71,p = 479 £(448) = .84, p = 404
MDP3 | +(448) = 1.42, p = .156 t(448) = 2.34,p = .020** | t(448) = 2.06, p = .040"*
MDP4 | t(448) = 2.19,p = .029"" || t(448) = 2.83,p = .005** | t(448) = 3.73,p < .001"*

Hard-code

Transform ‘ Policy ‘ Empirical Result H IS & WIS Result ‘ PDIS Result
MDP1 | #(448) = —1.78,p = .076 || t(448) = .89,p = .376 £(448) = .89,p = .375
Soft-max MDRP2 | #(448) = .44, p = .658 t(448) = 2.60,p = .010** | (448) = 1.84,p = .067
MDP3 | #(448) = 1.42,p = .156 t(448) = 2.50, p = .013** | £(448) = .53, p = .5%4
MDP4 | £(448) = 2.19,p = .029** || t(448) = 2.18,p = .030** | t(448) = 3.23,p = .001**
MDP1 | #(448) = —1.78,p = .076 || t(448) =3.78,p < .001** | #(448) =1.77,p = .077
Q-proportion MDRP2 | #(448) = .44, p = .658 t(448) = 3.26,p = .001** | t(448) =2.13,p = .034**
MDP3 | t(448) = 1.42,p = .156 t(448) = 2.71,p = .007** | £(448) = .31,p = .760
MDP4 | £(448) = 2.19,p = .029** || t(448) = 3.69,p < .001** | t(448) = 2.32,p = .021**
MDP1 | t(448) = —1.78,p = .076 || t(448) =1.19,p = .233 £(448) = .96, p = .337
(448) = (448) =
(448) = (448) =
(448) = (448) =

Electric-blue cells denote that the theoretical t-test results align with the empirical t-test results (Column 3);
Grey cells denote misaligned t-test results.

policy transformations and original versus normalized rewards on the outcomes of each IS
metric. The first column indicates the type of policy transformation applied and the second
column shows whether the rewards are normalized. The third through fifth columns show the
performance of each IS metric, where performance is determined by the percent alignment
between the IS policy predictions and empirical post-test results. Among the three policy
transformations, Q-proportion is the worst, with none of its six performance results better
than the corresponding results of Soft-max or Hard-code. Hard-code performs slightly better
than Soft-max in most cases but never reaches a 100% match. For reward normalization, the
original reward performs better than the normalized reward for the PDIS metric, but there
was no effect on IS or WIS.

Comparing the three IS metrics, PDIS shows the greatest performance with all 12 of the
performance results being the best. For the last two metrics, IS and WIS, the results are the
same because WIS is much like multiplying IS by a constant and this kind of re-scale won't
change the result of the t-tests. The metric with the best performance is PDIS with Soft-max
policy transformation and the original reward, whose performance is 100%. This means that
all the t-test results on the PDIS predictions aligned with those on the empirical results in
terms of significance match.

Table 3.3 shows the detailed results for metric evaluations using the original reward,
providing t-test results when comparing post-test results between High and Low carry-out
groups. The first column in table 3.3 shows the type of policy transformation functions applied.
The second column shows the four MDP policies considered when splitting the dataset into
High and Low carry-out groups. The third column shows the t-test results of the empirical
evaluation of High vs. Low carry-out, which served as the ground truth. The fourth and fifth
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columns show the t-test results for the prediction of the three IS metrics: IS, WIS, and PDIS
respectively. In the tables, electric-blue cells denote that the theoretical t-test results align
with the empirical t-test results (Column 3) while grey cells denote mismatched t-test results.
From this table, we can see that only PDIS with soft-max transformation and the original
reward results in all four t-tests aligning with the corresponding empirical results. IS and
WIS are more likely to predict the significant difference between High vs. Low. Meanwhile,
Q-proportion tends to cause the metric to predict more significant difference, while Hard-code
tends to predict less.

Table 3.4: Critical Decision Evaluation Results

Policy ‘ More ‘ Less ‘ T-test Result

MDP1 | 78.49(23.08) | 83.01(25.44) | #(448) = —1.97,p = .049
MDP2 | 83.22(23.53) | 78.86(24.79) | t(448) = 1.91,p = .057

MDP3 | 79.45(24.59) | 82.08(24.00) | #(448) = —1.14, p = .257
MDP4 | 83.54(22.89) | 78.74(25.21) | t(448) = 2.10,p = .036**

bold and ** denote significance at p < 0.05.

In summary, when comparing groups in the RL-induced policy, our results showed that
for the MDP4 policy, the students in the High carry-out group significantly outperformed
the students in the Low group, but no significant difference was found in the other three
policies. This suggests that the MDP4 policy is effective in that the more it is carried out,
the better it performs. However, the partially carry-out situation reduced the power of the
MDP4 policy so that it did not significantly outperform the baseline random policy. When
comparing the empirical evaluation results with theoretical evaluation results, PDIS is the
best among the three IS-based metrics, reaching 100% agreement. Our results suggested that
proper deployment settings have an impact on the performance of IS-based metrics. When
transforming the deterministic policy to stochastic policy, soft-max is the best one, while Q-
proportion is the worst, and Hard-code is stable. The comparison between the original reward
and normalized reward indicates that the original reward can better reflect the empirical

results despite having a larger variance.

3.8.2 Critical Decision Identification

Recall that each policy impacts its own critical decisions: those with higher differences
between Q-values for possible decisions are considered to be critical, and we split each group
of students according to whether the student received more decisions aligned with the critical
decisions. Table 3.4 shows the t-test results comparing the post-test scores between the More vs.
Less critical decisions groups. The first column indicates the MDP policies considered when
identifying the critical decision. The second and third columns show the average post-test
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scores of students in the More and Less groups, showing mean(sd). The fourth column shows
the t-test results when comparing the post-test scores of the More and Less critical decisions
groups. The MDP1 row shows a significant difference between the More vs. Less critical
decisions groups for the MDP1 policy, with #(448) = —1.97, p = .049. However, the students in
More group perform worse than the Less critical decisions group. The MDP2 and MDP3 rows
show that there is no significant difference between the two critical decision groups in terms of
post-test scores for the MDP2 or MDP3 policies. Finally, the MDP4 policy shows a significant
difference between the two groups, (448) = 2.10, p = .036, which means that students with
More critical decisions performed significantly better than students with Less.

For the MDP4 policy, the identified critical decisions comprised 25% of all decisions.
This shows that, although critical decisions are a small proportion of all decisions, they can
significantly impact the outcome. Also, the results show that the Q-values in the MDP4
policy can be used to identify critical decisions aligned with empirical results, but the other
three cannot. Based on the results from Table 3.1, MDP4 was identified as the only effective
policy, since its empirical post-test results aligned, with students in the High carry-out group
performing significantly better than the Low carry-out group. The critical decision results
suggest that MDP4 is also the only policy where larger differences in Q-values had larger
impacts on post-test results. Taken together, these results suggest that only Q-values in effective
policies work to influence decisions that impact actual post-test performance. This further
inspires us to investigate whether we could verify the effectiveness of a policy in reverse:
Given a policy, if the decisions with larger Q-value difference are significantly linked to the

student performance, then this policy may be more likely to be effective.

3.9 Conclusion

In this work, we explored three IS-based OPE metrics with two deployment settings in a
real-world application. Through comparing the effectiveness of four RL-induced policies
empirically and theoretically, our results showed that PDIS is the best one for interactive
e-learning systems, and appropriate deployment settings (i.e., where policy decisions are
carried out) are required to achieve reliable, robust evaluations. We also proposed a method
to identify critical decisions by the Q-value differences in a policy. To verify our method, we
investigated the relationship between the number of identified critical decisions and student
post-test scores. The results revealed that the identified critical decisions are significantly
linked to student learning, and further, that critical decisions can be identified by an effective
policy but not by ineffective policies.

In summary, results from the OPE approach suggested that critical decisions can be
identified by effective policy and Q-value difference. However, the offline analysis only
considered the critical decisions with optimal actions, but the impact of critical decisions

with sub-optimal actions and non-critical decisions was ignored. Therefore, we proposed an
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Adversarial Deep Reinforcement Learning approach to identify critical decisions and evaluated

through an empirical study in the next chapter.
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CHAPTER 4

IDENTIFYING CRITICAL
PEDAGOGICAL DECISIONS
THROUGH ADVERSARIAL DEEP
REINFORCEMENT LEARNING

Song Ju, Guojing Zhou, Hamoon Azizsoltani, Tiffany Barnes, Min Chi, Identifying Critical Pedagogical
Decisions through Adversarial Deep Reinforcement Learning. EDM 2019: 595 — 598.

In this chapter, we explore an Adversarial Deep Reinforcement Learning (ADRL) based
framework to identify critical decisions, and a Critical policy is induced by giving optimal
actions on critical decisions but random actions on others. The effectiveness of the Critical
policy was evaluated against a random yet reasonable (Random) policy in a classroom study.
While no significant difference was found between the two conditions, we found that students
often experience a consecutive sequence of critical decisions, and those who experienced more

learned significantly better.

4.1 Introduction

During tutoring, the ITS makes a series of decisions to provide adaptive instructions. For
example, in our ITS, the tutor makes more than 400 sequential decisions during training. Some
of the decisions might be more important and impactful than others. In this work, we propose
to induce compact RL policies that highlight key or critical decisions by taking advantage
of the structure of the domain and the structure of our induced policies by leveraging the
conditional independence relationships among the state features.
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We propose Critical-RL, an adversarial deep reinforcement learning (ADRL) based frame-
work to induce compact policies by making critical decisions. By inferring critical decisions
we can identify which tutor actions are minimally necessary for the tutoring process to be
effective, which holds great implications for systems research. Additionally, inference of critical
relationships is one of the central tasks of science and it is one of the most challenging topics
in many disciplines, particularly in the areas where controlled experiments are comparatively
expensive or even impossible. In this work, we propose a general framework that fully inte-
grates automatic critical inference and standard reinforcement learning in an ITS setting. We
expect that our framework can be spread to other similar domains for related critical tasks.

Intuitively, we define critical decisions as those decisions that with them, the policy would
be effective and without them, the policy would be ineffective. In order to reflect the double
nature of critical decisions, we applied a deep RL approach Deep Q-Network (DQN) to induce
a pair of adversarial pedagogical policies: an original policy that helps students learn and an
inversed policy that hinders students learn. The policies decide whether to elicit the next step
from the student or to directly show the student how to solve the next step. We refer to such
decision as elicit/tell decision. For a given pair of adversarial policies and a decision-making
point, whether the decision is critical is determined by comparing the two policies. More
specifically, a decision is critical if the two policies select opposite actions and this decision
is important for both policies. Please note that in our case, for each decision-making point,
there are only two decisions available. Thus, if a decision-making point is critical and we
know that one decision is good, then the other one must be bad. This leads to our first critical
decision-making point identification rule: where the two policies make opposite decisions.
Secondly, since the two policies have different goals, the importance of each decision may differ
for them. However, if a decision-making point is really important, the decision made there
should have a strong impact on both policies. This leads to our second critical decision-making
point identification rule: where the decision is important for both policies.

In order to evaluate our critical decision identification model, we conducted an empirical
classroom study with two conditions: Critical vs. Random. For the Critical condition, a partially
carry-out setting was employed where critical decisions were made following the original
policy while all other decisions were made randomly. For Random, all the decisions were
made following a random yet reasonable policy. Since both elicit and tell are always considered to
be reasonable educational interventions in our learning context, we refer to such a policy as a
random yet reasonable policy or random. With this experiment design, the study would answer
our research question that whether our critical decision identification model could effectively
identify critical pedagogical decisions. In the experiment, 93 students were randomly assigned
to the two conditions, where they were trained following the same general procedure, using
the same materials and the same system. The only difference between the conditions was the
Critical condition experienced additional critical decisions.

Our preliminary results showed that overall there’s no significant difference between
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the Critical and the Random condition in terms of student learning performance. A power
calculation revealed that the sample size is not large enough to demonstrate a significant
difference. However, much to our surprise, a close inspection into student-system interactive
logs revealed that critical decisions often appeared consecutively and this appeared to be a
“critical phase”. More specifically, critical decision-making points often appeared consecutively
and the decisions made at these points were the same. Since critical decision-making points
are determined by students’ learning state, the appearance of the critical phase also depends
on students’ learning experience in that some students may encounter more critical phases and
others may encounter less. During tutoring, for those who encountered more critical phases,
the system has more opportunities to intervene in their learning, and thus they are more likely
to perform better than those who encountered less critical phases. Based on this observation,
we divided students into High and Low critical phase groups where the former encountered
more critical phase in training while the latter encountered less. Statistical analysis revealed
that while there is no significant difference between the Critical and the Random group for
Low students, the former significantly outperformed the latter for High ones. The explanation
for the difference in High ones was that Critical policy gave full optimal guidance in the critical
phase but Random policy gave poor guidance. In short, we revealed that critical pedagogical
decisions should be treated as a period of decisions but not individual ones. More importantly,
every decision in the critical phase is critical to the final outcome that poor choice of actions
can significantly hurt student learning.
In sum, we make the following contributions:

¢ This is the first study focusing on critical pedagogical decision identification and evalua-

tion.

* We proposed an Adversarial Deep Reinforcement Learning framework for critical peda-

gogical decisions identification.

¢ We discovered that when students encountered more critical phases, critical policy
significantly helped them than random policy.

4.2 Related Work

4.2.1 Exploiting Q-value Difference

Some prior work exploited the Q-value difference between actions to simplify the decision-
making process/problem in the context of ITS. For example, Mitchell et al. relied on the Q-

value difference to reduce the feature space [Mit13]. More specifically, they proposed a policy
2*‘Q(S,ﬂ1)—Q(S,ﬂ2)|
(Q(s,81)+Q(s,2))

where Q(s, a;) is the Q value for the state-action pair (s, 4;). The feature selection approach

evaluation metric, separation ratio for feature selection, which is defined as

was then combined with RL to induce pedagogical policies for a dialog system, the Java tutor.
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Zhou et al. [Zhol7a] relied on Q-value difference to reduce the policy space. More specif-
ically, they applied a weighted decision tree with post-pruning to extract a compact set of
529 rules from a full set of 3706 rules. During the extraction, each rule was weighted by the
Q-value difference between two alternative actions and thus increased the carry-out likelihood
of more important decisions. The policies were empirically evaluated in a classroom study.
Results showed that the full RL policy and the compact DT policy together were significantly
more effective than a random policy and there is no significant difference between the full RL
policy and the compact DT policy.

In sum, prior studies have considered the Q-value difference between actions as a heuristic
function of action importance. The larger the difference, the more important the decision is.
However, prior work didn’t quantitatively study how large Q-value difference is a critical
decision. In this work, we explored the Q-value difference thresholds by classifying decisions

into two categories: critical and non-critical and evaluating the quality of the critical decisions.

4.3 Method

Figure 4.1 shows an overview of our critical decision identification framework, which includes
2 stages: 1) adversarial policies induction and 2) critical decision determination. The first
stage performs once for a given data set while the second stage performs once for each
decision-making point. We describe each of the stages in the rest of this section.

4.3.1 Adversarial Reinforcement Learning

Adversarial Reinforcement Learning is a variation of RL which can be used to induce policies
for multiple agents. The agents usually have conflict or mutually exclusive goals, which results
in an adversarial relationship among them. The convention of RL goals still holds here in that
they are defined by the rewards. During the policy induction procedure, each agent maintains
its own learning process and may exchange information with other agents. However, each
agent is given distinct rewards for the actions it takes, and oftentimes, the sum of the rewards
is fixed. In other words, if one agent gets more, all others get less.

There are different ways to induce adversarial policies. One method is Minimax Q-learning
which is specifically designed for zero-sum game in which two agents have opposite goals
and share the same reward function [Uth03]. In Minimax Q-learning, there is only one single
reward function, agent 1 tries to maximize its expected future reward while agent 2 tries to
minimize. With a reward sign flip for agent 2: r, = —rq, both agents aim to maximize their
own rewards respectively and achieve opposite goals.

In our approach, we applied reversed reward to induce a pair of adversarial policies sep-
arately. An Original Policy is induced from the original reward while an Inversed Policy is
induced from reversed reward, which the negative value of the original reward. Based on the

Minimax Q-learning, reversed reward could guarantee that the original and inversed policies

35



original reward

Original Policy Inversed Policy
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decision-making point
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AQ" (s, rr"(s)) > {57'

v

Figure 4.1: Critical Decision Identification Flow

have opposite goals that the former one tries to help student learning while the latter one tries
to hinder.

4.3.2 Deep Reinforcement Learning

Much of prior work that applied RL to induce pedagogical policies modeled the decision-
making problem as Markov Decision Processes (MDPs) whose solution is a set of optimal
decision-making policies which can be found by RL algorithms. An MDP can be defined as a
4-tuple (S,A,T,R), where S is a set of state for the environment; A is a set of actions that the
agent can take; T denotes the probability of transiting from state s to state s’ by taking action
a; and R denotes the expected reward of transiting from state s to state s’ by taking action a.
Once (S, A, R) is defined, a student-ITS interactive log H can be seen as a trajectory:

a1, a2, as,r3
H=g9 Sy S3 ..

.SL

a;,ri . . .
Where s; — s;11 means that the tutor executed action 4; and received reward r; in state s;,
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and then transferred to the next state s; .

An optimal policy 7* to an MDP is a state-action mapping that specifies the best action to
take at each state that would maximize the cumulative reward the agent will receive at the end.
There are different ways to find the optimal policies, such as value iteration, policy iteration,
temporal difference learning and Q-learning [Sut98]. Here, we adopted the one that has been
widely used in combination with deep neural network, Q-learning. Q-learning reaches the
optimal policy through finding the optimal action-value function Q*(s, a), which specifies the
expected cumulative reward the agent will receiving if it takes action a in state s and follows
the optimal policy to the end. The optimal action-value function Q*(s,a) can be obtained by
iteratively updating the Bellman equation 4.1 until it converges.

Qi+1(s, ) = Byne[r + ymax Qi(s',a")]s, a] (4.1)

where 7 is a discount factor, ¢ is the environment and Q; is the action-value function at the ith
iteration. Once have the optimal action-value function Q*(s, ), the optimal policy 7* can be
easily generated using the following equation:

m*(s) = arg max Q*(s,a) (4.2)

Deep Q-Network (DQN) As an instance of the general Q-leaning class, Deep Q-Network
(DQN) finds the optimal action-value function through updating its action-value function
approximator recursively following the Bellman equation as shown in equation 4.1. In DQN, a
deep neural network is used as an action-value function approximator. The neural network
takes a state as input, which is represented as a numerical vector and outputs its estimation of
the Q values for all possible actions as shown in figure 4.2.

Q value action 1

State E—

Q value action 2

Neural Network

Figure 4.2: Example of DQN with one hidden layer

During training, DQN aims to minimize the expected difference between the target Q and
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the predicted Q as shown in equation 4.3.

Li(gi) = Es s [(yl - Q(S/ a; 61’))2] (4.3)

where y; denotes the target Q at the iteration i, Q(s, a; 6;) denotes the predicted Q by the neural
network at the iteration i. The target Q is estimated using the parameters from the previous

iteration 6;_1, as shown in the following equation:
yi =71+ ymax Q(s',a’;6i-1) (4.4)

Different from supervised learning whose targets are fixed over the whole learning process,
here the targets change in each iteration. More specifically, in each iteration, the target depends
on the immediate reward the agent receives for an action and the estimation of the Q value for
some states using previous parameters. Thus, the gradient of the loss function with respect to

the neural network weights can be achieved by the equation below:
Vo, Li(0i) = Eg g, 0[(r+ y max Q(s,a’;0i-1) — Q(s,a;6;))V,Q(s,a;6;)] (4.5)

With this loss function, we can simply apply standard methods like stochastic gradient and
backpropagation to update the weights of the neural network.

Overall, DQN is a model-free approach that it is focused on estimating the action value
functions from the interactions with the environment without constructing a model of the
environment. Also, it is an off-policy approach that the new policy is induced based upon the
historical data generated by an alternative behavior policy.

4.3.3 Identifying Critical Decision

In this subsection, we describe the critical decision identification procedure, which relies on
a pair of adversarial policies: an original policy and an inversed policy. Intuitively, critical
decisions should have a strong impact on the success of the task in that the right decision
brings great potential value while the wrong decision results in a great loss of potential value.
Here we defined two rules for critical decision identification: 1) the two policies take opposite
actions at the decision-making point and 2) the decision is important for both policies.
Regarding the first rule, for a given state, the two policies are queried for decisions. If the
two policies take the same decision, we consider it as non-critical; otherwise, the second rule
will be tested. In order to measure the importance of the decision for each policy, we calculate
the Q-value difference between the two alternative actions: AQ*(s) = |Q*(s,a1) — Q*(s,a2)|.
If this difference is greater than a threshold, the decision is considered important for the
corresponding policy. There are many possible ways to determine the threshold. In our case ,
we set the threshold to be the median Q-value difference for all decision-making points in the

training dataset.
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4.4 Policy Induction

In this section, we first describe our training corpus and then how we applied our ADRL

framework to induce critical decision identification models.

4.41 Training Corpus

Our training corpus contains a total of 849 students’ interaction logs collected from seven
classroom studies where students were trained on our ITS following random policies. The
studies were given as a regular homework assignment to students. During the studies, all
students used the same ITS, followed the same general procedure, studied the same training
materials, and worked through the same training problems. The general procedure of the
studies was identical to the one where our ADRL framework was evaluated, which will be
described in section 4.5. The training corpus provides us with the state representation, action,
and reward information for policy induction.

State representation is one of the key factors that determine the effectiveness of the induced
policies, as with many machine learning tasks. During tutoring, There are many factors that
might determine or indicate students’ learning state, but many of them are not well understood.
Thus, to be conservative, we extracted varieties of features that might impact student learning
from student-system interaction logs. In sum, 142 state features were extracted which can be

categorized into the following five groups:

1. Autonomy (AM): the amount of work done by the student: such as the number of elicit

steps the student received so far elicitCount or the number of hints requested hintCount.

2. Temporal Situation (TS): the time-related information about the work process: such as
the average time taken per problem avgTime, or the total time spent solving a problem
TotalPSTime.

3. Problem Solving (PS): information about the current problem solving context, such
as the diffculty of the current problem probDiff, or whether the student changes the
difficulty level NewLeuvel.

4. Performance (PM): information about the student’s performance during problem solv-

ing: such as the number of the right application of rules RightApp.

5. Student Action (SA): the statistical measurement of student’s behavior: such as the
number of non-empty-click actions that students take actionCount, or the number of
clicks for derivation AppCount.

Action Our ITS makes the elicit/tell decision at each step in a problem. In elicit, the tutor
elicits the solution from the student while in tell, the tutor directly shows the solution. These
are the two decisions available to the agent at each decision-making point.
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Reward The rewards we used for policy induction were the inferred “immediate rewards”.
In RL, rewards serve as the feedback for the agent’s action. In general, immediate rewards are
more effective than delayed rewards because the former ties the feedback to single actions
which allows the agent to precisely credit or blame them. Delayed rewards, in contrast, mix
the feedback of multiple actions and thus make it hard to credit or blame. On the other
hand, the most appropriate reward for policy induction is student learning gains which are
typically unavailable until the student completes the whole training process. This is because
of the complex nature of human learning, which makes it impractical to evaluate student
learning moment by moment. Additionally, some instructional strategy that boosts short-term
performance may not be effective for long-term learning gain. In order to deal with the reward
challenge, we rely on Gaussian Process to infer the immediate rewards from delayed rewards.

The delayed rewards were students” normalized learning gain (NLG) which measures their

posttest—pretest

learning gain irrespective of their incoming competence. NLG is defined as NLG = ~— oretest

where 1 is maximum score for both pre- and post-test.

4.4.2 Critical Decision Identification Models

This subsection describes how we applied our proposed ADRL framework to build a critical
decision identification model. More specifically, it describes 1) how we applied DQN to induce
a pair of adversarial policies for our ITS and 2) how we determined the critical Q-value
difference threshold for each policy.

In tutoring, our ITS provides students with the same 12 problems in the same order. Among
them, the first and the eighth problems are fixed to be problem solving where the students are
required to solve all the steps and the step presentation of the rest 10 is determined by the
tutor. Thus, we built 10 critical decision identification models, one for each problem. Each of
the models consists of two policies: an original policy and an inversed policy. The original
policy was induced using the original rewards while the inversed policy was induced using
inversed rewards. An inversed reward for action was the negative value of the original reward
for such action. Other than the rewards, all other parts of the data were identical, such as state
representation and transition samples.

For each of the problems, we fit into the DQN framework with two different types of neural
networks: Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) to induce
two sets of policies and select the better one between them. Per decision importance sampling
(PDIS) was used to determine which one is better. PDIS is an advanced off-policy policy
evaluation method that allows us to evaluate the effectiveness of policy using pre-collected
historical data, without the need to conduct the actual online evaluation. For a given policy
and historical data, PDIS returns the expected cumulative rewards the agent will receive
following the policy. Here, we consider a model good if both of the policies in them are better
than those in the other model. More specifically, an original policy is better than the other one
if the former has a higher PDIS value; and an inversed policy is better than the other if the
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former has a lower PDIS value.

Table 4.1 shows a comparison of the PDIS value for the Random, Original, and Inversed
policy for each problem. The first two rows show the problem and the neural network selected
for the corresponding problem. The next three rows show the result for the Random, Original,
and Inversed policy respectively. The results suggest that for each problem, the original policy
was more effective than the random policy while the inversed policy was less effective than the
random policy. Thus, by performing neural network selection, we expect that a better model
would be selected for each problem.

Once the models are built, whether a decision is critical or not during tutoring can be
determined by comparing and examining the two policies in it. As mentioned in section 4.3.3,
the decision made by the two policies were first compared, and if they disagree, we further
examine the Q-value difference to determine whether the decisions are important for each
of the policies. The importance threshold for each of the policies is set to be the median
Q-value difference in the training data. More specifically, we applied the induced policies to
our training dataset, calculated the Q-value difference for every decision-making point, and
determined the median threshold.

Table 4.1: PDIS of Induced Policies in Training Dataset

P2 [P3 [P4 [P5 [P6 [P7 P9 (P10 [P11 [ P12
DQN Neural Network | RNN [ LSTM | LSTM | LSTM | LSTM [ LSTM [ LSTM [ RNN [ RNN | LSTM
Random Policy 0.022 | -0.018 | -0.006 | 0.008 | 0.01 | 0.012 [ 0.002 | -0.008 | -0.007 | -0.006
Original Policy 029 [0.058 [0.052 | 0618 [0.091 [0053 [0.015 [19 [0.017 |0.02
Inversed Policy -0.003 | -0.057 | -0.083 | 0.004 | 0.006 | 0.01 [-0.00002 | -1.39 | -0.02 | -0.54

4.5 Experiment Setup

In order to evaluate our critical pedagogical decision identification approach, we conducted a
classroom study comparing the critical policy with the random policy. This section describes
the setup of the study.

4.5.1 Participants and Conditions

The participants of this study were undergraduate students enrolled in the Discrete Mathemat-
ics class in the 2018 Fall. This study was assigned to students as one of their regular homework
assignments. Completion of the study was required for full credit and students were told that
they will be graded based on their demonstrated effort, not their learning performance.

In the study, the Critical condition and the Random condition were compared. In the

Critical condition, critical decisions are made following the good pedagogical while other
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decisions are made randomly. More specifically, at each decision-making point, the critical
decision identification model was queried to determine whether the decision was critical. If
it was, the decision made by the original policy in the model will be taken; otherwise, the
decision will be taken randomly.

120 students were randomly assigned to the Critical Condition and the Random condition.
Due to preparation for final exams and the length of the study, 96 students completed the
study. 3 students who performed perfectly in the pre-test were excluded from our subsequent
statistical analysis. The final group sizes were: N = 50 (Critical) and N = 43 (Random). We
performed a Chi? test of the relationship between students’ condition and their completion
rate and found no significant difference between the conditions: Chi?(1) = 2.55, p = 0.11.

4.5.2 Pyrenees Tutor

Pyrenees tutor is a web-based ITS for probability. It covers 10 major principles of probability,
such as the Complement Theorem and Bayes” Rule. Pyrenees tutor provides step-by-step
instruction and immediate feedback. Pyrenees tutor can also provide on-demand hits prompt-
ing the student with what they should do next. As with other systems, help in Pyrenees
tutor is provided via a sequence of increasingly specific hints. The last hint in the sequence,
the bottom-out hint, tells the student exactly what to do. For the purposes of this study, we
incorporated two distinct pedagogical decision modes into Pyrenees tutor to match the two
conditions.

Pyrenees: Probability Tutor I N TR WGP inctions Logout

4 of 13 problems completed

Problem Statement Window -

The probabilties of event A. B and C are 0,62, 0.75 and 0.5, respectively. The probabilty of the event (~ A)u(~ B) is 0.54 and the probabilty of the event (~A)u(~C} is 0.69. Find the probabilty of the event (~A)u(~B).(~C) ifthe event (~B) and event

in the equation are defined already.
SOUGHT mark on p(~AN~C).

Dialog Window

2) p(~Ar~B0~C) = 0 For p(~Ar~Br~C): The defin
~An-Bo-C
1) pl-A~Bo~C) = p(~A)
Pl~Au~Bu~C): Addition theorem for

~8) - p(~Bo~C) - pf~An~C) + pl~An~Bo~C) For
vents: ~A, ~B and ~C

Equation Window s
A CALCULATOR g

Figure 4.3: The Interface of the Pyrenees Tutor
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Figure 4.3 shows the interface of Pyrenees, which consists of multiple windows. The upper
half of the dialog window shows the message the tutor provides to the students, such as
the explanation for a tell step, or the prompt for an elicit step. In the lower half, the student
enters responses such as writing an equation or selecting a choice. Any variables or equations
generated through this process are shown on the left side of the screen for reference.

4.5.3 Experiment Procedure

In this experiment, students were required to complete 4 phases: 1) pre-training, 2) pre-test,
3) training on Pyrenees tutor, and 4) post-test. During the pre-training phased, all students
studied the domain principles through a probability textbook, reviewed some examples,
and solved certain training problems. The students then took a pre-test which contained 14
problems. The textbook was not available at this phase and students were not given feedback
on their answers, nor were they allowed to go back to earlier questions. This was also true of
the post-test.

During phase 3, students in all conditions received the same 12 rather complicated problems
in the same order on Pyrenees tutor. Each main domain principle was applied at least twice.
The minimal number of steps needed to solve each training problem ranged from 20 to 50.
These steps included defining variables, applying principles, and solving equations. The
number of domain principles required to solve each problem ranged from 3 to 11. All of the
students could access the corresponding pre-training textbook during this phase. Each step
in the problems could have been provided as either a tell or elicit based upon the condition
policy. Finally, all of the students completed a post-test with 20 problems. 14 of the problems
were isomorphic to the pre-test given in phase 2. The remaining six were non-isomorphic

complicated problems.

4.5.4 Grading Criteria

The test problems required students to derive an answer by writing and solving one or more
equations. We used three scoring rubrics: binary, partial credit, and one-point-per-principle.
Under the binary rubric, a solution was worth 1 point if it was completely correct or 0 if not.
Under the partial credit rubric, each problem score was defined by the proportion of correct
principle applications evident in the solution. A student who correctly applied 4 of 5 possible
principles would get a score of 0.8. The one-point-per-principle rubric in turn gave a point for
each correct principle application. All of the tests were graded in a double-blind manner by
a single experienced grader. The results presented below are based upon the partial-credit
rubric but the same results hold for the other two. For comparison purposes, all test scores
were normalized to the range of [0, 1].
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4.6 Results

This section shows the empirical evaluation results. First, we report the comparison between
the Critical and the Random condition. Then we report the results where students were split
into High and Low critical decision groups based on the number of critical decisions they
received. Finally, we report the results where students were split into High and Low critical
phase groups based on the number of critical phases they experienced.

4.6.1 Critical vs. Random

Table 4.2: Critical vs. Random

Measure \ Critical (50) \ Random (43) \ Contrast Comparison Result
Pre 0.653 (0.17) | 0.681 (0.19) t(91) = —0.750, p = 0.455

Iso Post 0.819 (0.19) | 0.819 (0.19) £(91) = 0.002, p = 0.999

Post 0.706 (0.19) | 0.711 (0.20) £(91) = —0.119, p = 0.905
Learning Gain | 0.053 (0.18) | 0.030 (0.14) £(91) = 0.681, p = 0.498
Time 121.6 (37.7) | 116.257 (30.47) | #(91) = 0.744, p = 0.459

Table 4.2 showed the contrast comparison results between the Critical and the Random
condition. The parenthesized values following the condition names in row 1 denoted the
number of students in each condition. Rows 2-4 showed a comparison of pre-test scores,
post-test scores, learning gain, and training time between the two conditions along with
mean and SD for each. Contrast Comparison between the Critical and the Random condition
on pre-test score shows no significant difference: £(91) = —0.750, p = 0.455. Thus, the two
conditions were balanced in terms of incoming competence. In order to examine how students
learned on the Pyrenees tutor, we conducted a comparison between the scores on pre-test and
isomorphic post-test questions. A repeated measures analysis using test-type (pre-test and
isomorphic post-test) as factors and test score as dependent measure showed a main effect for
test type: F(1,91) = 91.43, p < 0.0001. Further comparisons on group by group basis showed
that both Critical and Random condition scored significantly higher on isomorphic questions
in post-test than in pre-test: F(1,49) = 48.77, p < 0.0001 for Critical and F(1,42) = 43.82,
p < 0.0001 for Random. It revealed that the Pyrenees tutor indeed improved students’ learning
regardless of the pedagogical policies deployed.

Contrast comparison analysis on the post-test score, learning gain and total training time
revealed no significant difference between the two conditions. Although it appears that the
Critical condition outperformed the Random condition on learning gain 0.053 vs. 0.03, such
difference was not significant p = 0.498. One of the possible reasons is that the group size

was not large enough to exhibit significance. A post hoc power analysis revealed that a total
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sample of 1544 students was required to detect significance at .05 on small effects (d=.14), with
80% power using a contrast.

Furthermore, there are only two types of actions (elicit or tell) so that the random policy
has a great chance to execute the optimal one. It means that Random policy could have similar
power with the Critical policy. In the Critical condition, the percentage of critical decisions is
14%, 2797 out of 19827. Through running the Critical policy script on the raw log data of the
random condition, we found that the percentage of critical decisions in the random condition
is 12%, 2039 out of 16731. Among the 2039 critical decisions, 1030 critical decisions have the
same action as the Critical policy. It revealed that the Random policy has partial power over
the Critical-RL policy.

Since whether a decision is critical or not is determined by the students” learning state,
students who encountered critical states more often are more likely to be affected by the
pedagogical policy. In order to examine how critical decisions may affect student learning, we
split students into High and Low critical decision groups.

4.6.2 From Critical Decision to Critical Phase

We divided the Critical condition students into two groups: High (n=26) and Low (n=24) based
on the median split on the number of critical decisions. The High students experienced more
critical decisions than the Low students. A contrast comparison was performed between these
two groups in terms of student learning gain. The result showed that there’s no significant
difference in student learning gain: £(48) = —1.117, p = 0.270 with M = 0.027,SD = 0.19 for
High vs. M = —0.082,SD = 0.17 for Low.

A deep inspection was conducted on the student-system interactive logs. We found that
critical decisions always appeared in groups and each group of consecutive critical decisions

had the same action. For example, below shows a sequence of decisions in the log:
Celicit — Celicit — Celicit — 1 =+ 1 —> Ctell = Ctell = Ctell

where r is a non-critical decision made randomly, c.j;.;; is a critical decision executes elicit,
Cre7 1s a critical decision executes tell. We found that it’s very common to have continuous
Celicit OF Ctpp in the Critical condition. This is aligned with the existing learning theory that the
learning process is a continuous process. Students can stay in the same learning state during
several steps but this continuous learning state is hard to be represented by current features.
In other words, in the same learning state, the agent will continuously give the same actions to
the student until he moves to the next learning state. So, we define Critical Phase as a period of
consecutive critical decision executions with the same action according to the Critical policy.

In the Critical condition, we analyzed the relationship between critical decision and
critical phase. First, there were 2436 out of 2933 (83.1%) critical decisions in the critical phase.
It indicated that most of the critical decisions occurred consecutively. Second, a Pearson
correlation test between the number of critical decisions and the number of critical phases in
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each student showed a significant positive correlation: r = 0.7,df = 48, p < 0.001. Moreover,
we run the Critical policy script on the Random condition to investigate the critical phase even
if the optimal action in the critical phase was not fully carried out. Our results showed that
2049 out of 2509 (81.7%) critical decisions were in the critical phase in the Random condition.
We also found a significant correlation between the number of critical decisions and the
number of critical phases in the Random condition: r = 0.57,df = 41, p < 0.001. It revealed
that the critical phase did exist and was highly correlated with critical decisions. Next, we will
analyze the impact of the critical phase on students’ learning performance.

4.6.3 High vs. Low in Critical Phase

In this section, we first counted the number of critical phases for each student in both Critical
and Random conditions. If a period of consecutive critical decisions had the same action as
Critical policy decision, then this period counted as one critical phase. For random condition,
as the execution of critical decisions were partially agreed with the Critical policy, we ignored
the actual decision and only focused on Critical policy’s decision. Then, we divided students
into High vs. Low conditions based upon the median split on the number of critical phases.
Thus, we have four groups based upon their critical phase and policies: High-Random (n=20),
Low-Random (n=23), High-Critical (n=27), Low-Critical (n=23).

We found significant difference on the learning gain between High-Critical and Low-
Critical groups: #(48) = 2.187,p = 0.031: M = 0.098,SD = 0.2 for High-Critical vs. M =
0.0008, SD = 0.13 for Low-Critical. It indicated that when using critical policy, students who
experienced more critical phases significantly outperformed those who experienced less. In
other words, the more help students got in critical phases, the more improvement the students
gain.

A two-way ANOVA using policies {Critical, Random} and critical phase {High, Low} as
two factors and the student’s learning gain and training time as the dependent measure
showed a significant interaction effect F(1,89) = 7.163, p = 0.009 on learning gain, as shown
in Figure 4.4. It revealed the critical policy indeed affects student learning. Also, there’s a
significant difference between the High-Critical and High-Random on learning gain: (89) =
2.360, p = 0.02 with M = 0.098,SD = 0.2 for High-Critical vs. M = —0.011,SD = 0.16 for
High-Random. There’s no significant difference between Low-Critical and Low-Random in
terms of learning gain. It indicated that when students experienced more critical phases,
critical policy significantly helped student learning than random policy.

Additionally, we found a significant main effect from the critical phase: F(1,89) =
5.579, p = 0.020 for the training time. The High condition students spent significantly more
time on the training than the Low condition: M = 127.51, SD = 36.34 for High condition while
M = 110.56, SD = 30.51 for Low condition. It indicated that the critical phase may be a phase
that the student is struggling with a problem or understanding a concept. It is a moment that

students are learning something unfamiliar and time-consuming. Thus, it is reasonable that
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Figure 4.4: Comparison of Learning Performance

High students would perform badly when they are learning something critical and the tutor

did not give the correct guidance.

4.6.4 Log Analysis

In this subsection, we investigated the key features in the critical state. In other words, which
features can best distinguish critical states from non-critical ones. We applied a gradient
boosting tree classifier on Critical-RL log data with 142 features as input X and {critical
phase, non-critical phase} as the class label. We trained a classification model and evaluated
it by 5 cross-validation. The higher weights of features in the tree classifier indicated more
contribution to the classification accuracy. With an accuracy 87.8% in 5 cross-validation, the
top three features ordered by weights were timeSinceLastWrongStepKC, stepsSinceLastHint,
timeOnCurrentProblem. timeSinceLastWrongStepKC means the time elapsed since the last time
student makes a mistake. stepsSinceLastHint means from the last hint request, how many
steps the student has done. timeOnCurrentProblem means the time spent on the current
problem so far. Much to our surprise, the top three features all belong to the category Temporal
Situation (TS) described before. It revealed that temporal features are a strong indicator to

distinguish student learning state.

4.7 Discuss

Through training real students on our ITS with the Critical policy, we found that critical
decision-making points often appeared consecutively and the decisions made at those points
were the same. This situation couldn’t be observed in the training dataset which was collected
via training students with random policies because the critical decisions were not always

made following some effective policy. This critical phase is like a critical thinking phase in the
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learning process, in which students are learning something new or solving a problem. For
example, students may come across a new concept that they never know before. They need
time to understand this new concept and store it in the personal knowledge system. Another
example is students are struggling in solving a problem. In this case, they need time to figure
out the next steps and make sure it’s correct. In addition, some students may encounter critical
phases more often than others, which makes them more likely to be affected by pedagogical
policies. Our empirical results supported this point showing that for those who encountered
the critical phase more often, the Critical policy was significantly more effective than the
Random policy, but for those who encountered it less often, there was no significant difference
between the two policies.

In our ITS, each student needs more than 400 steps to finish the training process. However,
not all decisions are equally important. In Critical condition, our critical decisions identification
model identified 55 critical decisions for each student on average. It dramatically reduces the
size of decision space and is more conducive to educators to analyze student learning. With
respect to the critical phase, the number further reduced to 18 for each student on average. This
makes it possible to analyze when is the monumental points, what characters do they have,
what concepts or problems often cause critical thinking. It gives us the ability to manually

inspect what happened to students in the training process on ITS.

4.8 Conclusion

In this study, we proposed an Adversarial Deep Reinforcement Learning framework to identify
critical pedagogical decisions in an ITS. Based on this framework, we implemented a critical
policy that gives optimal actions on critical decision points but randomly selects actions
on non-critical decision points. We empirically compared the critical policy with a baseline
random policy in a classroom study for real students. We found that critical decisions were
likely to appear in groups and the consecutive ones had the same decision. We refer to this
period of consecutive critical decisions as the critical phase. Statistical analysis revealed that
students who encountered more critical phases learned significantly better with the critical
policy than with the random policy. However, for those who encountered less critical phases,
there was no significant difference between the two policies.

In summary, results from the ADRL classroom study showed that the Critical policy
didn’t outperform the Random policy, which means the identified critical decisions didn’t
have enough impact on the desired outcome. Therefore, we re-examined the decision-making
process in human and animal behaviors, and then proposed a novel Long-Short Term Reward

framework.
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CHAPTER 5

LONG-SHORT TERM REWARD (LSTM)
FRAMEWORK

Publish: Song Ju, Guojing Zhou, Tiffany Barnes, Min Chi, Pick the Moment: Identifying Critical
Pedagogical Decisions Using Long-Short Term Rewards. EDM 2020: 126-136

In this chapter, we investigated the animal and human decision-making behavior studies
and proposed a novel RL-based Long-Short Term Rewards (LSTR) framework for critical
decision identification. For RL policy induction, we modified the Bellman equation to consider
critical decisions and proposed a Critical Deep Q-Network (Critical-DQN) algorithm. Before
applying to real-world applications, we evaluated the effectiveness of the LSTR framework on
an ideal GridWorld game and a real-world ITS (Pyrenees) dataset. The results showed that it
indeed identifies critical decisions in the sequences and only carrying out critical decisions
alone is as effective as a fully executed policy. Overall, we found that in order to identify
critical decisions, we need to separate critical states from critical decisions. More specifically,
there are two factors in identifying critical decisions: 1) identify critical states and 2) select

optimal actions.

5.1 Introduction

Recent advances in computational neuroscience have enabled researchers to simulate and study
the decision-making mechanisms of humans and animals through computational approaches
[Mor06; Roe07; Sulll; Lil1l; McC04]. A number of works showed that RL-like learning and
decision-making processes exist in humans/animals and we humans use immediate reward
and Q-value to make decisions [Lill; McC04].

Motivated by research in human and animal behaviors, we propose Long-Short Term
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Rewards (LSTR) framework to identify critical decisions based on RL-induced policy. For
policy induction, we propose a Critical Deep Q-Networks (Critical-DQN) algorithm to consider
the critical decisions in the training loop. More specifically, critical decisions should be the
moments where optimal actions have to be made for the desired outcomes. To quantify their
impacts, we define critical policy as the one which will carry out the optimal actions in the
critical states while taking random actions in the non-critical states. To identify critical states,
we propose to use both RL-induced policy’s action-value functions (long-term) and immediate
rewards (short-term). The effectiveness of the proposed LSTR framework is evaluated on an
ideal GridWorld game and a Pyrenees historical dataset. Our results show that the proposed
LSTR framework indeed identifies critical decisions and moreover, carrying out the critical
decisions alone is as effective as a fully executed policy. Our main contributions can be
summarized as follows: 1) we proposed the Long Short Term Rewards framework to identify
critical decisions and evaluated on an ideal GridWorld game and a real-world ITS dataset. 2)
we proposed Critical-DQN to improve the long-term rewards regarding identifying critical

decisions and investigated its advantages and disadvantages.

5.2 Method

We follow the conventional Reinforcement Learning (RL) notation. An agent interacts with an
environment over a series of decision-making steps. The environment is framed as a Markov
Decision Process (MDP). At each timestep ¢, the agent observes the state the environment
is in, denoted s;; then the agent chooses an action from a discrete set of possible actions:
A € (m,ay,...,a,). As a result, the environment provides a scalar immediate reward r. We
assume that the future rewards are discounted by the factor ¢y € (0,1], and the agent’s goal
is to maximize the expected discounted sum of future rewards, also known as the return.
The return at time-step ¢ is defined as R; = Y1 _, 4 ~'ry, where T is the last time-step in the
episode.

The goal of the agent is to find the optimal action-value function Q*(s, ), which will result
in the agent receiving the highest possible expected return, starting from state s, taking action
a, and following the optimal policy 7* thereafter. Formally, we define the optimal action-value
function as Q*(s,a) = maxx E[R¢|s; = s,a; = a, 7t|. The optimal action-value function must
follow the Bellman Equation shown in Equation 5.1, which states that the Q-value for a given
state and action should be equal to the immediate reward obtained after taking that action,
plus the discounted Q-value of the optimal action 4’ taken from the next state s’. Note that

this is an expectation over the next states sampled from the environment.

Q*(s,a) = ,IEg[r + 7 max Q*(s',a")s, a] (5.1)

S

In our case, we follow the batch Reinforcement Learning formulation in that we have a

fixed-size dataset D consisting of all historical sample episodes and each episode is denoted
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ar,r as,r: as,r .
as 51 =5 s, =5 53 =2 ... 51). To make this task more general, we assume that the state

distribution and behavior policy that was used to collect this data are both unknown.

In the following, we will describe the two ways of defining critical decisions: long-term
reward vs. long-short term reward and the two DRL algorithms explored: original DON and
Critical DQN. Based on two types of DRL methods and two types of roles: identify critical

state and decide optimal action, we will compare four different policies.

5.2.1 Two Types of Critical Rewards
5.2.1.1 Long Term Rewards (LongTRs)

In RL, Q(s, a) is defined as the expected rewards the agent will receive by taking action a at
state s and following the policy to the end. Intuitively, if all the actions for a given state have
the same Q-value, then it does not matter which action should be taken because all the actions
will lead to the same final reward. But if the difference of Q-values among different actions
is large, then taking a wrong action can result in a significant loss in the final reward. So,
we define the Long Term Reward (LongTR) as the difference between the cumulative future
rewards of the best action and that of the worst action:

LongTR(s) = max Q(s,a) — rr}1in Q(s,a) (5.2)

which is the difference between the maximum and minimum Q-values in the state s. In general,

the higher the LongTR, the more important the decision is.

5.2.1.2 Long-Short Term Rewards (LSTRs)

Besides cumulative future rewards, we argue that it is also important to consider the immediate
rewards because if any action for a given state can lead to a large positive or very negative
immediate reward, such a state can also be important. In the following, we refer to the
immediate rewards as the Short Term Reward (ShortTR). On the other hand, in many real-
world applications like healthcare, the rewards are often delayed until the end of the trajectory.
Different from the delayed rewards in the classic mouse-in-the-maze situations where agents
receive insignificant rewards along the path and a significant reward in the final goal state (the
food), in healthcare, there are immediate rewards along the way but they are often unobservable.
Therefore, the challenge is how to infer these unobservable, immediate rewards from the
delayed rewards, while taking the noise and uncertainty in the data into account. In this work,
we apply a neural network based approach (InferNet) to infer “immediate” rewards from
delayed rewards.
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Figure 5.1: InferNet Architecture

5.2.1.3 InferNet

InferNet is designed and implemented by my labmate Markel Sanz Ausin. The intuition
behind InferNet is rather straightforward. InferNet uses a deep neural network to infer the
immediate rewards from the delayed reward in an episode. In Figure 5.1 at each timestep, the
observed state and action are passed as input to the neural network, which will output a single
scalar, the inferred immediate reward for that state and action: ry = f (s, a¢|0). Here 6 indicates
the parameters (weights and biases) of the neural network. The constraint on the predicted
rewards is: the sum of all the predicted rewards in one episode should be equal to the delayed
reward. Therefore, our loss function is defined as Loss(8) = (Rge; — th_Ol rt)?, which is the
difference between the sum of predicted rewards and the delayed reward. This way, we train
InferNet by minimizing the loss function and then use it to predict the immediate reward for

each state-action pair.

5.2.2 Two Types of Deep RL Policy
5.2.2.1 Original DQN

Deep Q-Network (DQN) is one of the most promising approaches, which is widely used in
areas like robotics and video games [Mnil5b]. Fundamentally, DQN is a version of Q-learning
which uses neural networks to approximate the Q-values of the different state-action couples.
In order to train the DQN algorithm, the two neural networks with equal architectures are
employed: one for calculating the Q-value of the current state and action: Q(s,a) and another
neural network to calculate the Q-value of the next state and action: Q(s’, a’). The former is
the main network and its weights are denoted by 8 and the latter is the target network, and its
weights are denoted by 8~. The Bellman Equation for DQN is shown in Equation 5.3 and it is
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trained through running a gradient descent algorithm to minimize the squared difference of
the two sides of the equality.

Q(s,a2;0) = llEg[r +ymax Q(s',a’;07)] (5.3)

The main network is trained on every training iteration, while the target network is frozen
for a number of training iterations. Every k training iterations, the weights of the main neural
network are copied into the target network. This is one of the techniques used in order to
avoid divergence during the training process. In practice, DQN also uses an experience replay
buffer to store the recently collected data and to uniformly sample (s, a,7,s’) steps from it. By
sampling uniformly, it breaks the correlations between samples of the same episode, making
the learning process more robust and stable. In this work, as we are doing batch RL, our whole
dataset will be the experience replay buffer, and it will not change during the training process.

Basically, DON is a Q-learning method that finds the optimal action-value function by
updating its action-value function approximator recursively. Its major difference from the
traditional RL is that a deep neural network is used as an action-value function approximator
and this allows it to deal with the tasks with high dimensional state space.

5.2.2.2 Critical DQN

In the original DQN, the Q functions are estimated based on the assumption that the optimal
policy will be followed to the end. We define critical policy to be the one that the optimal decision
will be carried out in critical decision points while random decisions in the rest. By not taking the
optimal actions on non-critical decisions, we fundamentally change the dynamics of the
Bellman equation which assumed full execution of the policy. Therefore we need to modify it
so that it can incorporate our critical decisions into consideration.

For a single (s, a,r,s’) tuple, the original Bellman Equation can be expressed as:
Q(s,a) =r+ymaxQ(s',a’) (5.4)
a/

where 7 is the immediate reward for taking action a at state s; 7y is the discount factor; and
Q(s’,a’) is the action-value function for taking action a’ at the subsequent state s'.

To induce a critical policy, we modify the original Bellman equation based on whether
a decision is critical or not. The intuition behind the Critical-DQN is that if a decision is
important, then the agent should take the best action otherwise the agent can randomly choose

an action to take. Therefore, we have:

r+ymaxQ(s’,a’) s’ is critical
Q(s,a) = (5.5)

r+ ymeanQ(s’,a’) s’ is non-critical

In equation 5.5, to update the Q-value for any given s and a, it will consider whether the next
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state s’ is critical or not. If it is critical, the maximum Q-value for s’ will be used to update Q(s,
a); if the decision s’ is non-critical, then the average Q-value among all the actions on s’ will be
used to update Q(s, a).

Algorithm 1 presents the pseudo-code for the Critical-DQN. First of all, the immediate
rewards in the training dataset are inferred from the delayed rewards by the InferNet model.
Then, there are three parameters in the algorithm: Tg, .» and Tg, ... are the ShortTR
thresholds originated from the elbows of the inferred immediate reward distribution and,
TLongTr is the LongTR threshold used to determine the Q-value difference threshold.

In the algorithm, it first applies the InferNet model to predict the maximum and minimum
inferred immediate rewards for the next state s’. If the maximum is larger than T, . Or
the minimum is smaller than T, ;.. the next state s’ is critical and a label ¢; is added to the
tuple. Second, it initializes all Q-values using the inferred immediate rewards to avoid the
bias of the neural network. Then in the main training loop, for each iteration, the algorithm
first calculates the Q-value difference for all the states. The Q-value difference threshold T, is
defined as the top TrugTr percent value in the training dataset. It means that TreneTr percent
states with higher Q-value difference are critical. Finally, for each (s,a,r,s',¢’) tuple, if the
Q-value difference of s’ is larger than T, or it is identified as critical by the immediate rewards
¢ == True, we consider the state s’ as critical and its value function is max,Q(s’,a’;07); for
non-critical states, their value function are defined as mean,Q(s’,a’;67).

In summary, the algorithm applies ShortTR to identify one set of critical states and LongTR
to identify another set of critical states. The final critical states are the union of the two sets.
More specifically, the set of ShortTR is static because the thresholds Tgj,rr and InferNet
are pre-defined before training. But the set of LongTR is dynamic and determined by the RL
policy and threshold TpougTr-

5.2.3 Identifying & Evaluating Critical Decision

The effectiveness of our LSTR framework on identifying critical decisions is evaluated by the
performance of the critical policy. Unlike standard RL policies which carry out the optimal
actions all of the time, our critical policy works as follows: for critical states, it takes optimal
actions while for non-critical states, it can take any action. Therefore, our critical policy considers
two factors: how to identify critical states and how to select optimal actions. For the former,
both Critical-DON (CriQN) and DQN can be used to calculate the Q-value difference to
determine whether the state is critical or not. Similarly, for selecting optimal actions, both
policies can be used to determine what is the best action to take once the state is determined
to be critical. By combining the two ways of identifying critical states {CriQN, DON} x two
ways of suggesting optimal actions {CriQN, DQN}, we explored four critical policies shown in
Table 5.1.

For example, the CriQN-DQN refers to the use of the CriQN to identify critical states
and DON to select optimal actions. Consequently, the performance of the critical policy is
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Algorithm 1 Pseudocode of Critical-DQN

1: Initialize the training dataset D as (s, a,1,s) tuples.
2: Initialize the Q function with random parameters 0
3: Initialize the target Q function with parameters = = 6
4: Load InferNet model
5: Set user-defined parameters: Tg, 7r, Toporerrs TLongTR
6:
7: // Initialize critical states based on immediate rewards
8: for each (s;,a;,7;,5!) in D do
9 Tyax = max(InferNet(s],a’))

10:  7r),;, = min(InferNet(s},a"))

1 if rp > T rporr. < Tg .o then

12: ¢} = True

13: else

14: ¢; = False

15: end if

16: D « (si,a,1i,8,,¢})

17: end for

18:

19: // Initialize Q(s,a) as immediate reward

20: for each (s;,a;,1j,s},c;) in D do

21: sety; =r;

22: end for

23: Perform gradient descent on (y; — Q(s;,a;;0))?

24: Reset O = Q

25:

26: // Main Training Loop

27: for iteration k =1, 2, ... till convergence do

28: Initialize empty array Qgiffs

29: for each (s;,a;,1;,s;,¢;) in D do

30: Quiffs < (maxQ(s;,a’;0~) —minQ(s;,a’;07))

31: end for

32: TA(Q) = top TLongTr Percent of Qgisfs

33:

34: for each (s;, a;,1;,s;,¢;) in D do

35: if terminal s/ then

36: Sety;, =r;

37: else

38: Quiff = maxQ(s;,a’;0~) — minQ(s;,a’;0™)

39: if Quirr > Tp(q) or ¢; == True then

40: Sety; = r; +ymaxyQ(s',a’;67)

41: else

42: Sety; = r; + ymean, Q(s',a’;67)

43: end if

44: end if

45: end for

46 Perform gradient descent on (y; — Q(s;, a;;0))?

47: Every C steps reset Q = Q
48: end for
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Table 5.1: Four Critical Policies

Critical-Policy | Identify Critical State | Select Optimal Action

CriQN-CriQN CriQN CriQN
DQN-DQN DON DON
CriQN-DQN CriQN DON
DQN-CriQN DQN CriQN

determined by both factors: the accuracy of critical state identification and the choice of
optimal action in the critical state. In the following, we investigate 1) how the two factors affect
the performance of the critical policy and 2) how close the critical policy’s performance is to a
fully executed policy.

5.3 Experiment on GridWorld Testbed

5.3.1 GridWorld Description

The GridWorld environment is like a maze that the agent learns an optimal path from the start
point to the end point. Figure 5.2 shows our GridWorld environment, which consists of 7 by
14 cells. The agent starts from the start state (right bottom corner), explores the 2D space, and
finishes at the end state (left upper corner). There are several walls in the GridWorld which

are marked as black blocks. The agent state is simply represented by the X and Y coordinates.
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Figure 5.2: The Interface of the GridWorld Game

Action: At each step, the agent can take three actions: up, down, and left. In Figure 5.2, the
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possible actions for each state are labeled as small purple triangles that some states have three
possible actions while some have two or one possible actions. The possible actions for each
state are predefined in the environment so that the agent never hits the wall or the boundary.
Reward: When moving in the GridWorld, there is a -0.1 reward penalty for each step and the
agent can collect -1 and +1 rewards. In order to simulate the real world, the reward function
is designed in state-action-state way, R(s,a,s’). The black arrows indicate that only enter the
reward state along with the arrow, the agent can get the reward -1 or +1. Otherwise, the
agent won't receive rewards. Furthermore, when the agent hits the reward state, it is forced to
move left. This design aims to avoid the agent from collecting the same +1 reward repeatedly
without forwarding it to the terminal state.

Stochastic: The GridWorld environment is stochastic in that the same state-action pair can
result in different next states. For example, if the agent takes action ‘left’, it only has 85%
chance of moving left, and 15% chance of moving to other possible directions.

Finally, the performance of the RL-induced policy in the GridWorld is evaluated by the
final delayed reward which is the cumulative rewards during a trial. A good RL-induced
policy should collect more +1 rewards, avoid -1 rewards and spend fewer steps to reach the
goal.

5.3.2 Experiment Setup

In this experiment, we focus on the offline Reinforcement Learning approach and follow the
three steps: 1) collect the training dataset by random exploration, 2) induce the policies offline
and, 3) evaluate the performance of induced policies online.

Data Collection: The training dataset contains 1000 trajectories that are generated from
random policy under different random seeds.

Offline Learning: Before inducing the policies, we apply the InferNet to infer the immediate
rewards in the training dataset. The InferNet is implemented by Keras in Python. It contains
three dense layers and each layer has 256 units with a dropout rate of 0.2. The batch size
is 20 with a learning rate of 0.001. The training would stop when reaching the maximum
training steps of 1,000,000. For policy induction, both Critical-DQN and original DQN are
implemented by Keras. The neural network has two dense layers with 64 units. The batch size
is 20 and the learning rate is 0.001. The frequency of copying the target network to the main
network is 50 epochs, which means reading the entire training dataset through different batch
samples 50 times. The training would stop when doing the copy 50 times, which results in
about four million updates to the neural network.

For Critical-DQN, since the inferred immediate rewards do not change over the training
process, the Tg, .
immediate reward distribution in the training dataset. For the Trouerr parameter, we explore
[10%, 20%, 30%, 40%, 50%] five different percentages, and thus five Critical-DQN policies are
induced on the training dataset.

r and Tg)0riTR AT€ fixed as +0.5 and —0.5 based on the elbows of the inferred
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Online Evaluation: In the online evaluation, for any given state, we first apply InferNet to
estimate the inferred immediate reward for each action. If the maximum inferred reward is
larger than TSJZ ortTR OF the minimum is smaller than TsportTR? then the state is critical. Second,
if the state is not critical, then we utilize RL policy to calculate Q-value difference and compare
with its threshold TA(Q), which is calculated based on the corresponding policy and TrongTr
in the training dataset. In the end, if the state is critical, the agent follows the corresponding
policy to take the optimal action. Otherwise, the agent can select any action. Thus, there
are two stages in the online evaluation, identify critical state and then select optimal action.
For example, the critical policy CriQN-DQN will apply CriQN policy to calculate Q-value
difference and compare with its threshold to determine criticalness, but apply DQN policy to
select optimal actions.

The performance of the critical policy is measured by the average of cumulative rewards
over 100 trials under different random seeds. To reduce the bias caused by data collection, we
repeat the whole experiment 20 times with completely different random seeds to generate a

more robust result.

5.3.3 Results

Figure 5.3 shows the online evaluation results. The X-axis indicates the LongTR threshold
used by the corresponding identification policy to identify critical states. It is important to
note that we define 100% as a fully-executed DQN policy that carries out the optimal actions
all the time and 0% as a fully random policy that always randomly selects actions. Thus, 0%
and 100% indicate the lower and upper performance bounds for critical policy. The Y-axis
shows the reward (average of 20 replications with the shadows depicting the standard error)
received by each critical policy. Overall, there is a general trend that the larger the threshold
(the more states classified as critical states and take optimal actions), the better the critical
policy performs. Next, we investigate in detail how the execution policy and identification

policy may impact the performance of the critical policies.

5.3.3.1 Performance Comparison

Figure 5.3 shows that CriQN-CriON (red) and CriQN-DQN (blue) perform very closely to
each other while the performance of DQN-CriQN (green) and DQN-DQN (magenta) are very
close; more importantly, the former two outperform the latter two across different LongTR
thresholds. It suggests that the Critical-DQN is more accurate in identifying critical states than
DQN while for carrying out the optimal actions, both Critical-DQN and DQN can be effective.
Finally, when comparing to the fully-executed policy (100% threshold), the CriQN-CriQN and
CriQN-DQN with threshold 50% can reach 90% performance of a fully-executed DQN policy.
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Figure 5.4: Total Steps in GridWorld Online Evaluation

5.3.3.2 Step Comparison

Figure 5.4 shows the run-time steps for each critical policy. The X-axis is the LongTR thresholds
while the Y-axis is the number of total steps from start to end point in the online evaluation. In
Figure 5.4, before threshold 30%, all the four critical policies take similar steps. However, after
30%, CriQN-CriQN and CriQN-DON take significantly fewer steps than the DQN-CriQN and
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DQN-DQON. It suggests that the critical states identified by Critical-DQN are more effective in
reducing the number of steps in the trajectory. Furthermore, DQN-CriQN and DQN-DQN
take more steps than the random policy at 40%. It suggests that inaccurate critical states can
misguide the agent to take more steps.

5.3.3.3 Data-Efficiency for Critical-DQN
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Figure 5.5: Critical-DQN vs. Original-DQN in Decision Making

From the previous results, we could draw a conclusion that Critical-DQN is better than
original DQN regarding the identification of critical states, but there’s no big difference in
selecting optimal actions. This is because both Critical-DQN and DQN have enough data to
induce an optimal policy and choose the best action. So what if we don’t have enough data to
train an optimal policy, how does the Critical-DQN perform?

Figures 5.5 (a)-(e) show the online performance of CriQN-CriQN vs. CriQN-DON as the
number of training trajectories increasing. The X-axis is the number of trajectories used to train
the critical policies. The Y-axis is the reward received by each critical policy. In this experiment,
we applied different LongTR thresholds to identify critical states and the only difference is
which RL policy makes the decision in the critical states. The results show that when the
training dataset is less than 400 trajectories, the CriQN-CriQN is worse than the CriQN-DQN
across all five figures. When the training dataset is larger than 400 trajectories, they have
similar performance. This indicates that the Critical-DQN needs more data to converge to an
optimal policy. In summary, the Critical-DQN could provide the best LSTRs to identify critical
states but it needs more data to make good decisions.

5.4 Offline Evaluation on Pyrenees

5.4.1 Experiment Setup
5.4.1.1 Training Dataset

Our training dataset comes from the Pyrenees 4.5.2 study which contains a total of 1148
students’ interaction log collected over six semesters’ classroom studies (16 Fall to 19 Spring).
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The studies were assigned as regular homework to students. During the studies, all students
used the same tutor, followed the same general procedure, studied the same training materials,
and worked through the same training problems.

State: From the student-system interaction logs, 142 features were extracted which describes
the student learning state. All the 142 features can be categorized into five groups that
Autonomy features describe the amount of work done by the student; Temporal features are
the time-related information during tutoring; Problem Solving features indicate the context of
the problem itself; Performance features denote student’s performance, and Student Action
features record the student behavior information.

Action: For each problem, there are three possible actions: worked example (WE), problem
solving (PS), and faded worked example (FWE). In WE, the student observes how the tutor
solves a problem; in PS, the student solves the problem; in FWE, the student solves a portion
of steps in a problem while the tutor shows how to solve the others. Within the problem, there
are two possible actions for each step: elicit and tell. In elicit, the students solve the step by
themselves; In tell, the tutor shows the step to students.

Reward: There’s no immediate reward during tutoring and the delayed reward is the
student’s Squared Normalized Learning Gain (NLG-SR). Different from the traditional NLG:

ttest—pretest ttest—pretest . . . .
LU oslfspmfer:t , the NLG-SR: % has a square root in the denominator, which aims to
—pretes

reduce the variance. More specifically, figure 5.6 shows the distribution of NLG and NLG-SR
in the training dataset. The X-axis is the pre-test score and the Y-axis is the corresponding
Normalized Learning Gain value. In Figure 5.6, the blue dots have a lower variance than the
orange dots. Particularly, the students with high pre-test scores often have a very low NLG.
For NLG-SR, with the squared root on the denominator, the high-pre students could have
a higher NLG-SR, which balanced to the low-pre students. Thus, we apply the NLG-SR to
induce the optimal RL policy but the NLG is still the most essential metric for evaluating

students’ learning performance.

* NLG-SR  NLG

Normalized Learning Gain
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-10
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Figure 5.6: Distribution of NLG vs. NLG-SR in the Training Dataset
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5.4.1.2 Offline Learning and Evaluation

The offline learning process follows the same process as the GridWorld in section 5.3.2. First,
InferNet was applied to infer the immediate rewards for the training dataset. Then, policy
DON and CriQN were induced to construct the critical policy CriQN-CriQN, DQN-DQN,
and CriQN-DQN. Finally, we fixed the threshold of ShortTRs based on the elbows in the
distribution and explored the relationship between different LongTRs thresholds and the
performance of the critical policies. For InferNet, we applied the same neural network setting
as GridWorld. For policy induction, since the Pyrenees data is more complicated than the
GridWorld environment, the neural network was consist of three dense layers with 256 units.
All the other settings are the same.

Different from the online evaluation in the GridWorld game, we applied off-policy policy
evaluation (OPE) metrics to evaluate the performance of the critical policies. In general, there
are two types of OPE: model based and Importance Sampling (IS) based. The work in chapter
3 shows that Per Decision Importance Sampling (PDIS) is the best metric to evaluate the
performance of RL-induced policies in the context of ITSs. Thus, PDIS was applied to evaluate
the critical policies on the historical dataset. More specifically, if a state is identified as critical,
the probability of taking an action is calculated by the softmax of Q-values among all the
possible actions. On the contrary, if the state is identified as non-critical, then the probability
of taking an action is the random probability 1/3 as there are three possible actions for each
problem.

It is important to note that Pyrenees experiments are conducted early and the Critical-DQN
algorithm is slightly different from the one described in algorithm 1, which also applies to
the empirical study in Chapter 6. The difference is that 1) we didn’t include the critical states
identified by the ShortTRs in the training loop and 2) the parameter TrongTR Was always 50%
during training. However, we didn’t change the most important part of the algorithm: the
modified Bellman Equation.

5.4.2 Results

In this section, we first present the offline evaluation results for all three critical policies. Then,

we explore the distribution of identified critical states in the historical dataset.

5.4.2.1 Offline Evaluation Results

Figure 5.7 shows the offline evaluation results on the Pyrenees tutor dataset. The X-axis is the
LongTR thresholds and the Y-axis is the PDIS value. In general, the higher the PDIS, the better
the policy.

First of all, the general trend still holds that the more critical states (larger LongTR
threshold), the better the policy would perform. When comparing the three lines, CriQN-
DON is the worst before 40% threshold. However, CriQN-DQN significantly outperforms
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Figure 5.7: Offline Evaluation Results on Pyrenees Dataset

the other two critical policies after 40%. The reason is that the Pyrenees dataset is not large
enough for the Critical-DQN to find an optimal policy, but the LSTRs in Critical-DQN are
still accurate to identify critical states. Furthermore, the dramatic increase of the CriQN-DQN
performance around 50% demonstrates the reliability of the Critical-DQN algorithm, because
the LongTR threshold is always 50% during training. In summary, the result reflects that the
LSTR framework is effective in identifying critical decisions.

5.4.2.2 Exploring Critical States

Table 5.2: Distribution of Critical States in each Problem

| |P1 |P2 |P3 [P4 |P5 [P6 |[P7 [P8 |P9 [PI10 |
Long-Term Rewards 3% | 16% | 16% | 13% | 15% | 11% | 7% | 7% | 6% | 6%
Short-Term Rewards 0% | 1% 6% 6% 6% 10% | 13% | 19% | 19% | 20%
Long-Short Term Rewards | 3% | 14% | 15% | 12% | 14% | 11% | 8% | 8% | 8% | 8%

In order to further investigate the critical decisions identified by LSTRs in the tutor dataset,
we analyzed where did they occur. 50% threshold for the Critical-DQN in figure 5.7 was
applied to identify critical states in the tutor dataset and table 5.2 shows the distribution of
critical states in each problem. The first row represents the 10 problems in chronological order.
The second row indicates the percentage of critical states identified by LongTRs in different
problems. For example, 3% of critical states happen in P1 while 16% appear in P2. It indicates
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that the LongTRs focus on critical decisions in the early to mid-stage. In the meantime, the
third row shows that the ShortTRs focus on the critical decisions in the late stage. The fourth
row shows the critical states identified by LSTRs, which is the union set of the critical decisions
from LongTRs and ShortTRs. Overall, critical states are almost evenly distributed among all
the problems except the first one. It is not surprising that the first one is not so important
because in the first problem, students are not familiar with the system and the policy needs
more data to know the student status better. Furthermore, the result reflects that the LongTRs
and ShortTRs complement each other. If we only focus on LongTRs, we will miss the important
decisions in the late stage, otherwise we will miss the important decisions in the early to
mid-stage.

5.5 Conclusion

In this chapter, we proposed and explored the Long-Short Term Rewards framework to
identify critical decisions in both an ideal GridWorld game and a real-world ITS dataset. Based
on the LSTR framework, we proposed a Critical-DQN algorithm to induce critical policy
whose Q-value difference is more heuristic and sensitive to the decision importance. In order
to investigate the effectiveness of the LSTR framework, we evaluated the performance of
critical policies with different LongTR thresholds through online evaluation on GridWorld
and offline evaluation on Pyrenees tutor’s dataset. The results showed that the Critical-
DOQON is significantly better than the original DQN in identifying critical states. However, the
Critical-DQN needs more data to converge to an optimal policy. So, the best critical policy
CriQN-DQN is using Critical-DQN to identify critical states but utilizing the original DQN to
make decisions.

In summary, through identifying critical decisions by LSTR framework and Critical-DQN,
carry out the optimal policy on 50% decisions (critical ones) could achieve 90% performance
of carrying out on all decisions. However, we only explored the LSTR framework offline on
a real-world ITS dataset. In the next chapter, we will evaluate the effectiveness of the LSTR
framework through an empirical classroom study.
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CHAPTER 6

EVALUATION OF LSTR USING AN
INTELLIGENT TUTORING SYSTEM

Publish: Song Ju, Guojing Zhou, Mark Abdelshiheed, Tiffany Barnes and Min Chi, Evaluating Critical
Reinforcement Learning Framework In the Field. AIED 2021, To appear.

In this chapter, we further evaluated the effectiveness of the LSTR framework on real-world
ITS Pyrenees via an empirical classroom study. The results showed that the identified critical
decisions are indeed critical that 1) optimal and sub-optimal actions in critical states can make
a significant difference, 2) only carry out optimal actions in critical states is as effective as a
fully-executed policy. In summary, the studies in this chapter provide strong evidence of the

effectiveness of our LSTR framework in identifying critical decisions.

6.1 Introduction

In this work, we empirically evaluated the effectiveness of the LSTR framework on a real-world
ITS: Pyrenees4.5.2, where the student-agent interactions can be viewed as a temporal sequence
of steps [And95; Koe97]. Most ITSs are tutor-driven in that the tutor decides what to do next.
For example, the tutor can elicit the subsequent step from the student either with prompting
or without (e.g., in a free form entry window where each equation is a step). When a student
enters an entry on a step, the ITS records its success or failure and may give feedback (e.g.
correct/incorrect markings) and/or hints (suggestions for what to do next). Alternatively,
the tutor can choose to tell them the next step directly. Each of such decisions affects the
student’s successive actions and performance and some may be more impactful than others.
Pedagogical policies are used for the agent (tutor) to decide what action to take next in the face

of alternatives.
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To confirm whether the identified critical decisions are indeed critical, we argue that our
identified critical decisions and induced Critical policy should satisfy two conditions. First,
they should satisfy the Necessary Hypothesis stating that it is necessary to carry out optimal
actions in critical states otherwise the performance would suffer. To validate it, we compared
two policies: Critical-optimal (Critical-Opt) vs. Critical-suboptimal (Critical-Sub). Both policies
would carry out random actions in non-critical states and the only difference is that in critical
states, Critical-Opt takes optimal actions while Critical-Sub takes suboptimal actions. As
expected, our results showed that the former was indeed significantly more effective than the
latter. Second, our induced Critical policy should satisfy the Sufficient Hypothesis stating that
carrying out optimal actions in the critical states is sufficient. In other words, only carrying out
optimal actions in critical states is as effective as a fully-executed RL policy. To validate it, we
compared the Critical-Opt policy with a Full RL policy which takes optimal actions in every
state. Our results showed that no significant difference was found between them.

In this work, we focus on pedagogical decisions at two levels of granularity: problem and
step. More specifically, our tutor will first make a problem-level decision and then make
step-level decisions based on the problem-level decision. For the former, our tutor first decides
whether the next problem should be a worked example (WE), problem solving (PS), or a faded
worked example (FWE). In WEs, students observe how the tutor solves a problem; in PSs
students solve the problem themselves; in FWEs, the students and the tutor co-construct the
solution. Based on the problem-level decision, the tutor then makes step-level decisions on
whether to elicit the next solution step from the student or to show it to the student directly.
We refer to such decisions as elicit/tell decisions. If WE is selected, an all-tell step policy will be
carried out; if PS is selected, an all-elicit policy will be executed; finally, if FWE is selected, the
tutor will decide whether to elicit or tell a step based on the corresponding induced step-level
policy. While much of the prior work has relied on hand-coded or RL-induced pedagogical
policies on these decisions, there is no well-established theory or widely accepted consensus
on how WE vs. PS. vs. FWE can be best used and how they may impact students’ learning. As
far as we know, no prior research has investigated when it is critical to give WE vs. PS vs. FWE.
In this work, by empirically confirming that our identified critical decisions and Critical policy
satisfy the two hypotheses, we argue that the proposed LSTR framework sheds some light on
identifying the moments that offering WE, PS, or FWE can make a difference.

6.2 Related Work

6.2.1 WE, PS and FWE

A variety of studies have explored the effectiveness of WE, PS, FWE, and their various
combinations [Swe85; McL08; McL11; McL14; VG11; Ren02; Sch09; Naj14; Sall10; Zhol5].
For example, Mclaren et al. compared WE-PS pairs with PS-only in a study [McL08] and
WE-only, PS-only and WE-PS pairs in another study [McL11]. Overall, results suggested
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that studying WE can be as effective as doing PS, but students spend less time on WE. For
FWE-involved studies, Renkl et al. [Ren02] compared WE-FWE-PS with WE-PS pairs. Results
showed that the WE-FWE-PS condition significantly outperformed the WE-PS condition, and
there is no significant time-on-task difference between them. Similarly, Najar et al. [Naj14]
compared adaptive WE/FWE/PS with WE-PS pairs and found the former is significantly
more effective than the latter. In summary, prior studies have demonstrated that adaptively
alternating amongst WE, PS, and FWE is more effective than hand-coded expert rules in terms
of improving student learning. However, it is still not clear which alternating is critical to the

student learning outcome.

6.3 Hierarchical RL Policy Induction

Our tutor Pyrenees can make both problem-level decisions (WE/PS/FWE) and step-level
decisions (elicit/tell). With the two levels of granularity, we extended the existing flat-RL
algorithm to Hierarchical RL (HRL), which aims to induce an optimal policy to make decisions
at different levels. Most HRL algorithms are based upon an extension of Markov Decision
Processes (MDPs) called Discrete Semi-Markov Decision Processes (SMDPs). Different from
MDPs, SMDPs have an additional set of complex activities [Bar03] or options [Sut99], each of
which can invoke other activities recursively, thus allowing the hierarchical policy to function.
The complex activities that are distinct from the primitive actions in that a complex activity may
contain multiple primitive actions. In our applications, WE, PS, and FWE are complex activities
while elicit and tell are primitive actions. For HRL, learning occurs at multiple levels. The
global learning generates a policy for the complex level decisions and local learning generates
a policy for the primitive level decisions in each complex activity. More importantly, the goal
of local learning is not inducing the optimal policy for the overall task, but the optimal policy
for the corresponding complex activity. Therefore, our HRL approach learns a global problem
level policy to make decisions on WE/PS/FWE and learns a local step level policy for each
problem to choose between elicit/tell. More specifically, both problem and step level policies
were learned by recursively using DQN or Critical-DQN to update the Q-value function until
convergence.

When inducing Critical-DQN and original DQN policies, we applied the same training
dataset and neural network settings as described in Section 5.4.1. The only difference is that
through utilizing HRL, the critical policies could make decisions on both problem and step
levels.
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6.4 Experiment Setup

6.4.1 Conditions

In this study, the effectiveness of the LSTR framework is evaluated by comparing three policies:
Critical-optimal (Critical-Opt), Critical-suboptimal (Critical-Sub), and Full. These three policies
are designed based upon two hypotheses:

* Necessary Hypothesis: optimal actions must be carried out in critical states.

¢ Sufficient Hypothesis: only carry out optimal actions in critical states can be as effective
as a fully executed policy.

First, the Necessary Hypothesis stating that it is necessary to carry out optimal actions in
critical states otherwise the performance would suffer. To validate it, we compared two policies:
Critical-Opt vs. Critical-Sub, as shown in Table 6.1. Both policies would carry out random
actions in non-critical states and the only difference is that in critical states, Critical-Opt takes
optimal actions while Critical-Sub takes suboptimal actions. If the LSTR-identified critical
states are indeed critical, then different actions in the critical states can make a significant
difference, and we expect the Critical-Opt policy is significantly more effective than the latter
in terms of improving students’ learning performance.

Table 6.1: Necessary Hypothesis Conditions

Policy Critical State Non-Critical State
Critical-Opt | optimal action random action
Critical-Sub | suboptimal action with minimum Q-value | random action

Second, the Sufficient Hypothesis stating that carrying out optimal actions in the critical
states is sufficient. In other words, only carrying out optimal actions in critical states is as
effective as a fully-executed RL policy. To validate it, we compared the Critical-Opt policy
with a Full RL policy which takes optimal actions in every state, as shown in Table 6.2. If the
LSTR-identified critical states are indeed critical, then different actions in the non-critical states

have little impact on the final outcome, and we expect the Critical-Opt policy is as effective as

the Full policy.
Table 6.2: Sufficient Hypothesis Conditions
Policy Critical State | Non-Critical State
Critical-Opt | optimal action | random action
Full optimal action | optimal action
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For the three policies, we induced a standard DQN policy as the Full policy to carry
out optimal actions in all states. Then Critical-DQN (TroneTr = 50%) policy was induced
to identify critical states. The Critical-Opt policy would carry out optimal actions in critical
states but the Critical-Sub policy would take sub-optimal actions with minimum Q-value. In

non-critical states, both of them acted randomly.

6.4.2 Participants

The participants of this study were undergraduate students enrolled in the Discrete Mathemat-
ics class in 2020 Spring. This study was assigned to students as one of their regular homework
assignments. Completion of the study was required for full credit and students were told that
they will be graded based on their demonstrated effort, not their learning performance.

164 students were randomly assigned to the three conditions. Due to preparation for final
exams and the length of study, 129 students completed the study. 14 students were excluded
from our subsequent statistical analysis in which 8 students performed perfectly in the pre-test
and 6 students worked in groups. The final group sizes were N = 37 (Critical-Opt), N = 39
(Critical-Sub) and N = 39 (Full). We performed a Chi-square test on the relationship between
students’ condition and their completion rate and found no significant difference among the
conditions: @?(2) = 0.167, p = 0.92.

6.4.3 Procedure and Measures

The classroom study followed the same procedure: 1) pre-training, 2) pre-test, 3) training
on Pyrenees tutor, and 4) post-test as described in 4.5.3. After the study, we performed
comprehensive statistic analysis on the students’ learning performance, percentage of critical

states and policy’s behavior. Specific measures are listed below:

® Pre-test: calculated based on the 14 pre-test problems;

¢ Isomorphic Post-test: calculated based on the 14 post-test problems that are isomorphic

to pre-test;
¢ Full Post-test: calculated based on the 20 post-test problems;

¢ Isomorphic NLG: calculated based on the pre- and isomorphic post-test score with

isoposttest—pretest
1—pretest ’

traditional equation:
* NLG: calculated based on the pre- and full post-test score with traditional equation:

posttest—pretest |
1—pretest 7/

number of critical steps

* Percentage of Critical States: calculated following the equation: =~ --~ Fofal steps 7
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6.5 Results

We will report our results based on the two hypotheses. For the Necessary Hypothesis, we
compare Critical-Opt vs. Critical-Sub conditions and for the Sufficient Hypothesis, we compare
Critical-Opt vs. Full conditions.

6.5.1 Necessary Hypothesis: Critical-Opt vs. Critical-Sub

Table 6.3 presents the mean and standard deviation (SD) for students” learning performance
and the pairwise t-test results between the Critical-Opt vs. Critical-Sub conditions, Table 6.4
shows the percentage of critical states in both problem and step levels, Table 6.5 shows the
number of different types of decisions the students received in the training phase.

Table 6.3: Learning Performance in Critical-Opt vs. Critical-Sub

Measure Critical-Opt | Critical-Sub | Pairwise T-test Result
Pre 0.75 (0.18) | 0.72(0.20) | K112) = 0.564, p = 0.57,d = 0.13
Iso Post 0.89 (0.16) 0.86 (0.16) | #(112) = 0.806, p =0.42,d = 0.18
Post 0.82 (0.19) 0.78 (0.19) | #(112) =0.991, p =0.32,d = 0.23
Iso NLG 0.70 (0.36) 0.40 (0.85) | t(112) =2.274, p = 0.025,d = 0.52
NLG 0.41 (0.39) 0.01 (1.25) | #(112) =2.183, p = 0.031,d = 0.49
Time on Task (minutes) | 94.49 (35.14) | 78.14 (26.67) | t(112) = 2.302, p = 0.023, d = 0.52

Table 6.4: Percentage of Critical States in Critical-Opt vs. Critical-Sub

Measure Critical-Opt | Critical-Sub | Pairwise T-test Result
Problem Level (%) | 46.9 (23.4) 31.5 (17.6) | t(112) = 3.686, p <0.001, 4 = 0.84
Step Level (%) 60.2 (20.1) 453 (26.0) | #(112) =2.424, p = 0.017,d = 0.55

Table 6.5: Tutor Decisions in Critical-Opt vs. Critical-Sub

Measure | Critical-Opt | Critical-Sub | Pairwise T-test Result

PS Count 3.56 (1.85) 2.38 (1.41) | t(112) = 3.596, p <0.001, d = 0.81
WE Count | 2.54 (1.87) 513 (1.51) | t(112) =-7.274, p <0.001, d = 1.65
FWE Count | 3.90 (2.00) 2.49 (1.34) | t(112) = 4.008, p <0.001, d = 0.91
Elicit Count | 83.28 (49.18) | 43.97 (30.64) | t(112) = 4.372, p <0.001, d = 0.99
Tell Count | 82.92 (50.33) | 55.41 (35.16) | #(112) = 3.059, p = 0.003, d = 0.69
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Pre-test Score: A pairwise t-test showed no significant difference between Critical-Opt vs.
Critical-Sub on the pre-test scores: £(112) = 0.564, p = 0.57, d = 0.13. The result suggests that
the two conditions are balanced in terms of incoming competence.

Improvement through training: In order to examine how students learned on the Pyrenees
tutor, we conducted a comparison between the scores on pre-test and isomorphic post-test
questions. A repeated measures analysis using test-type (pre-test and isomorphic post-test) as
factors and test score as dependent measure showed all the two conditions score significantly
higher on isomorphic questions in post-test than in pre-test: F(1,38) = 13.68, p = 0.0004,
] = 0.392 for Critical-Opt and F(1,38) = 11.5, p = 0.0011, ; = 0.362 for Critical-Sub. It reveals
that the Pyrenees tutor indeed improves students’ learning regardless of the pedagogical
policies deployed.

Learning Performance: To investigate students’ learning performance between the two con-
ditions, we compared their isomorphic NLG (calculated based on Pre- and Iso Post-test)
and full NLG (based on Pre- and Full Post-test). The full post-test contains six additional
multiple-principle problems. Pairwise t-tests showed that Critical-Opt scored significantly
higher than Critical-Sub on both the isomorphic NLG: #(112) = 2.274, p = 0.025, d = 0.52 and
the full NLG: #(112) = 2.183, p = 0.031, d = 0.49. The results showed that the Critical-Opt
policy is more effective than the Critical-Sub policy. It supports our hypothesis that different
actions in the critical states can make a significant difference, so optimal actions must be made
in critical states.

Time on Task and Percentage of Critical States: A pairwise t-test analysis revealed that
Critical-Opt spend significantly more time than Critical-Sub in the training phase: #(112) =
2.302, p = 0.023, d = 0.52. In Table 6.4, pairwise t-test showed that Critical-Opt experienced
significantly more critical states than Critical-Sub on both problem level: #(112) = 3.686,
p < 0.001, d = 0.84 and step level: #(112) = 2.424, p = 0.017, d = 0.55. This suggests that
the Critical-Opt policy is more likely to lead students to the critical intersections that make a
difference.

Tutor Decisions: We investigated the number of different types of actions students received
during training, as shown in the Table 6.5. Note that for step level decisions, we only considered
the elicits and tells in the FWEs. For the problem level, Critical-Opt received significantly more
PS: t(112) = 3.596, p < 0.001, d = 0.81, more FWE: #(112) = 4.008, p < 0.001, d = 0.91 and
fewer WE: t(112) = —7.274, p < 0.001, d = 1.65 than Critical-Sub. For the step level, the
former also received significantly more elicit: #(112) = 4.372, p < 0.001, d = 0.99 and more tell:
t(112) = 3.059, p = 0.003, d = 0.69 than Critical-Sub. The results indicate that the Critical-Sub
policy prefers WEs while the Critical-Opt policy prefers PSs and FWEs.

6.5.2 Sufficient Hypothesis: Critical-Opt vs. Full

Similarly, we conduct the comparisons between Critical-Opt vs. Full on the learning perfor-
mance as shown in Table 6.6, the percentage of critical states as shown in Table,6.7 and the
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number of different types of decisions as shown in Table 6.8.

Table 6.6: Learning Performance in Critical-Opt vs. Full

Measure Critical-Opt Full Pairwise T-test Result
Pre 0.75 (0.18) 0.70 (0.19) | t(112) =1.178,p =0.24,d = 0.27
Iso Post 0.89 (0.16) 0.84 (0.20) | #(112) =1.231,p =0.22,d =0.28
Post 0.82 (0.19) 0.75(0.20) | t(112) =1.478,p=0.14,d = 0.34
Iso NLG 0.70 (0.36) 0.56 (0.40) | t(112) =0.999, p =0.32,d =0.23
NLG 0.41 (0.39) 0.18 (0.55) | t(112) =1.242,p=0.217,d = 0.29
Time on Task (minutes) | 94.49 (35.14) | 91.50 (31.72) | #(112) = 0.416, p = 0.678, d = 0.1

Table 6.7: Percentage of Critical States in Critical-Opt vs. Full

Measure Critical-Opt Full Pairwise T-test Result
Problem Level (%) | 46.9 (23.4) | 38.4 (12.4) | t(112) =2.02, p = 0.046, d = 0.46
Step Level (%) 60.2 (20.1) | 62.1 (34.0) | t(112) =-0.294, p = 0.769, d = 0.07

Table 6.8: Tutor Decisions in Critical-Opt vs. Full

Measure | Critical-Opt Full Pairwise T-test Result

PS Count 3.56 (1.85) 3.32(0.81) | t(112) =0.721,p =0.472,d = 0.17
WE Count 2.54 (1.87) 524 (1.19) | t(112) =-7.496, p <0.001, d = 1.72
FWE Count | 3.90 (2.00) 1.43 (1.10) | #(112) = 6.913, p <0.001, d = 1.59
Elicit Count | 83.28 (49.18) | 33.19 (35.10) | #(112) = 5.498, p <0.001, d = 1.26
Tell Count | 82.92 (50.33) | 29.76 (28.30) | t(112) = 5.833, p <0.001, d = 1.34

Pre-test Score: A pairwise t-test analysis showed that there is no difference between Critical-
Opt vs. Full on the pre-test score: #(112) = 1.178, p = 0.24, d = 0.27. This suggests again that
our random assignment indeed balanced students” incoming competence.

Improvement through training: A repeated measures analysis using test-type (pre-test and
isomorphic post-test) as factors and test score as dependent measure showed that similar to
Critical-Opt, Full scored significantly higher in isomorphic post-test than in pre-test: F(1,36) =
11.0, p = 0.0015, ; = 0.363.

Learning Performance: The pairwise t-tests showed that there is no significant difference
between the Critical-Opt and Full conditions on the two learning metrics, isomorphic NLG:
t(112) = 0.999, p = 0.32, d = 0.23 and full NLG: #(112) = 1.242, p = 0.217, d = 0.29. It implies
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that only carrying out optimal actions in critical states is as effective as a fully-executed policy.
Furthermore, to determine whether these null results are significant, that is, the Critical-
Opt indeed performs as effective as Full, we calculated the effect size on all the comparisons
and we found that they are all not statistically significant in that 8 < 0.8: 0.17 for isomorphic
NLG while 0.23 for NLG. On the other hand, across all the comparisons, Critical-Opt was
slightly better than the Full. This result suggests that if we have enough population samples,
the former can outperform the latter.
Time on Task and Percentage of Critical States: A pairwise t-test analysis revealed that the
Critical-Opt condition spend a similar amount of time as the Full condition in the training
phase: t(112) = 0.42, p = .678, d = 0.10. In Table 6.7, pairwise t-tests showed that the Critical-
Opt condition has significantly more critical states than the Full condition in the problem
level: £(112) = 2.02, p = 0.046, d = 0.46 but no difference in the step level: t(112) = —0.294,
p = 0.769, d = 0.07. The result suggests that the optimal actions in the non-critical states could
reduce the chance of entering critical states.
Tutor Decisions: For the problem level, the Critical-Opt condition has significantly more FWE:
t(112) = 6.913, p < 0.001, d = 1.59, fewer WE: £(112) = —7.496, p < 0.001, d = 1.72 decisions
than the Full condition, but no difference on PS: £(112) = 0.721, p = 0.472, d = 0.17. For
the step level, the Critical-Opt condition received significantly more elicit: £(112) = 5.498,
p < 0.001, d = 1.26 and more tell: #(112) = 5.833, p = 0.003, d = 1.34 than the Full condition.
The results suggest that the random actions in non-critical states could lead the RL policy to

give more FWE and fewer WE in critical states.

6.6 Conclusion

In the empirical classroom study, we evaluated the effectiveness of the LSTR framework by
comparing the Critical-Opt policy with two baseline policies: Critical-Sub policy and Full
policy. The comparisons are based upon two hypotheses: 1) optimal actions must be carried
out in critical states, 2) only carry out optimal actions in critical states can be as effective as the
fully-executed policy. The results showed that in terms of students’ learning performance, 1)
the Critical-Opt policy significantly outperforms the Critical-Sub policy and 2) the Critical-Opt
policy performs as effectively as the Full policy. It suggests that our LSTR framework indeed
identifies the critical decisions and satisfies the two hypotheses that 1) taking optimal actions
in the identified critical states significantly outperform taking suboptimal actions; 2) only
taking optimal actions in the critical moments can be as effective as taking optimal actions in
every moment.

In summary, the empirical classroom study provides strong evidence to draw a conclusion
that our LSTR framework indeed identifies the critical pedagogical decisions in students’
learning. In the next chapter, we will generalize our LSTR framework to a healthcare task:

sepsis treatment.
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CHAPTER 7

EVALUATION OF LSTR USING
HEALTHCARE DATASETS

In this chapter, we generalized our framework to a real-world healthcare task: sepsis treatment.
The goal of identifying critical decisions is to reduce the healthcare workload and in the
meantime keep the sepsis treatment effective. The results showed that our Critical-DQN
induced policy could automatically identify the critical moments in the septic treatment
process, thus reducing the burden of medical decision-makers by allowing them to focus on

shock patients without negatively impacting non-shock patients.

7.1 Introduction

In healthcare systems, the heavy workload of practitioners is a critical concept affecting
the quality of care and patient outcomes. Workload is defined as “the task demand of
accomplishing mission requirements for the human operator” [Hool7]. Interpretation and
quantification of workload in healthcare delivery depends on many factors [Swill] and has
been quantified using objective, physiological and subjective measures [Hoo16]. Treatment
decision-making is a type of workload which plays a critical role in clinician performance. In
hospitals, physicians make a large number of clinical decisions from defining the problem, to
evaluating test results, to treatments. For example, in one study, an average of 13.4 decisions
was made during a patient visit [Ofs18]. However, clinical decision-makers do not always
make optimal or consistent decisions in such complex tasks for many reasons. One of them is
"decision fatigue". After a long series of decisions, people tend to develop cognitive fatigue
which can lead them to favor the seemingly easiest option over all the others. One study
found that decision-makers tend to procrastinate, be less persistent, and even fail to recognize
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decision opportunities at all [Pig20]. For instance, nurses who suffer from decision fatigue
are more likely to make conservative decisions, which indicates that they prefer to choose
the ‘default’ option [All19]. An abundance of conservative decisions can have unwanted
consequences in resource and time-limited environments.

We focus on an extremely challenging task: sepsis treatment. Sepsis, defined as infection
plus systemic manifestations of infection, is the greatest in-hospital cause of mortality and
source of expense; the syndrome has a high mortality (43.8% in the high-target group and
42.3% in the low-target group at 90 days) even if treated according to recommended guidelines
[Rhol7]. This is due, in part, to difficulties in diagnosis and delayed treatment. For every
one-hour delay in treatment of severe sepsis/shock with antibiotics, there is a 10% decrease in
patient survival probability. On the other hand, there are many barriers to timely, effective
treatment of sepsis: response and treatment depend on many factors including the type of
infection and the predisposition. The treatment of sepsis patients is complex — the patient’s
condition is stochastic and dynamically changing during the diagnosis process. Furthermore,
the diagnosis of sepsis requires the selection and ordering of potentially invasive and/or costly
imprecise tests. The patient’s response to treatment is uncertain, and the treatment itself evolves
over time as the care provider learns more about the patient’s condition through lab tests,
vital signs, and the patient’s response to treatment over time. In septic treatment, furthermore,
relatively unimportant clinical examinations might hinder detecting the deteriorating patients
[Han18]. Such finding implies it is important to find critical decision timings to successfully
treat a septic patient.

Like many real-world tasks, sepsis treatment can be characterized as a temporal sequential
multi-step decision process, where the outcome of the selected treatment is delayed. Rein-
forcement Learning (RL) offers an effective data-driven solution based on a mathematically
grounded framework that learns an optimal policy from data to maximize expected reward
[sutton2018]. In particular, Deep RL (DRL) effectively models high-dimensional data and has
been applied to sepsis treatment [Ragl7]. Despite these efforts, in real-world domains like
healthcare, such automated decision-making approaches are undesirable and unacceptable
due to ethical, legal, and moral reasons. Therefore, we expect humans will remain as the
primary decision-makers, and RL as the secondary decision-makers to support humans. In
this scenario, our LSTR framework has two goals: 1) to induce a septic treatment policy that
aims to minimize the septic shock rate, and 2) to identify the critical moments in the septic
progress to enhance the physicians” decision-making in the treatment for septic patients.

In this study, we evaluated the effectiveness of the LSTR framework on two real-world
healthcare datasets from two aspects: policy performance and percentage of nudges. The policy
performance reflects the power of policy in preventing patients from getting septic shock.
The nudge is the moment where it is critical and the RL policy has a different decision from
the physician. In other words, nudge is the alerting in our human-machine mixed-initiative

decisionmaking framework shown in the figure 1.1 (c) in chapter 1. It is important to note
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that in healthcare, physicians are the primary decision-makers and RL should not interfere
too much. So, the critical policy should only intervene when the moment is critical and it
disagrees with the physician’s decision. Our result shows that the LSTR framework indeed
identifies the critical moments in the septic treatment. Furthermore, the critical policy could

unburden the physicians from the non-shock patients but keep attention on the shock patients.

7.2 Two Healthcare Datasets

7.2.1 CCHS Dataset

7.21.1 Description

One of our datasets is the electronic health records (EHR) data collected from Christiana Care
Health System (CCHS). In total there are 210,289 visits and 9,029,493 events. By combining
the International Classification of Diseases, Ninth Revision (ICD-9), and clinician rules, we
sampled 1,800 positive septic shock trajectories and 1,800 negative trajectories (no shock),
keeping the same distribution of age, gender, race, and the length of hospital stay. To impute
the missing value, we applied the expert imputation rules that 1) the values of vital signs were
carried forward for 8 hours, 2) the values of lab results were carried forward for 24 hours and,
3) the remaining missing values were imputed by mean values. The final dataset contains 3,600
visits (50% shock, 50% no shock) and 84,160 events where the average length of trajectories is
24 and the maximum length is 317.

7.2.1.2 State, Action, Reward

In order to fit the data into the RL framework, appropriate state, action, and reward were
build based on the advice from domain experts. The state contains twenty-one sepsis-related
features including vital signs, lab results, and oxygen controls. The action space is a binary
combination of two types of medical treatments: antibiotic and oxygen control, and thus
we have four actions in total. To define rewards, four septic stages were defined based on
the clinical rules, and the delayed reward for each stage was set as follows: Infection (£1),
Inflammation (£50), OrganFailure (£100) and Shock (£1000). The designated negative reward
was given when a patient enters the corresponding stage, and its positive reward was given
back when the patient recovers from the stage. In this way, an optimal policy should keep
patients from getting negative rewards and help them stay in non-negative states.

7.2.2 Mayo Dataset

7.2.2.1 Description

Besides the CCHS dataset, the other dataset contains the EHR data collected from Mayo clinic.
In total, there are 221,700 visits and 144,693,491 events. Similarly, by combining the ICD-9
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and clinician rules, we sampled 2,205 positive septic shock trajectories and 2,205 negative
trajectories (no shock), keeping the same distribution of age, gender, race, and length of
hospital stay. To impute the missing value, we applied the same rule with the CCHS dataset.
The final dataset includes 4,410 visits (50% shock, 50% no shock) and 392,850 events where the

average length of trajectories is 65 and the maximum length is 1160.

7.2.2.2 State, Action, Reward

7

In the Mayo dataset, fourteen sepsis-related features were selected to represent the patients
states. Four medical treatments were regarded as actions: no treatment, oxygen control, and
administration of two types of medicine: anti-infection drug and vasopressor. The reward
function was defined by two leading clinicians from two hospitals based on the severity of
several septic stages: infection, inflammation, four levels of organ failure (OF), and septic
shock as follows: Infection (£1), Inflammation (£2), Single OF level-1 (£5), Single OF level-2
(£10), Multiple OF level-1 (£20), Multiple OF level-2 (£30), and Shock (£50). Similarly, the
designated negative reward was given when a patient enters the corresponding stage, and its

positive reward was given back when the patient recovers from the stage.

7.3 Experiment Setup

7.3.1 Offline Learning

Similar to prior experiments, the offline learning process follows the same process as the
GridWorld in section 5.3.2. First, InferNet was trained and applied to infer the immediate
rewards for the training dataset. Second, T, ..t
elbows of the inferred immediate reward distribution. Finally, DQN and Critical-DQN policies

r and TgporiTr WETE selected based on the

were induced with different LongTR thresholds. More specifically, we compared three critical
policies: CriQN-CriQN, DON-DQN, and CriQN-DQN with two baseline policies: a fully-
executed DQN (Full) policy and a Physician’s policy. To train a policy that follows the
physician’s actions, we followed the same procedure as described in [Azi19] by using SARSA.
When training InferNet, we applied the same neural network setting as GridWorld. For policy
induction, we explored different hyper-parameters and the final optimal one was a neural
network of two dense layers with 256 units for each layer. During training, the batch size was
50 and the learning rate was 0.001. The number of epochs was 10 and the number of iterations
was 50. For comparisons, we conducted 5-fold cross-validation and the dataset was split into
80% training and 20% test sets with an equal number of positive/negative shock trajectories.

7.3.2 Offline Evaluation

The effectiveness of critical policies was evaluated offline on the test dataset using two metrics:

1) septic shock rate and 2) the percentage of nudges. In general, we expect an effective critical
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policy to have as low septic shock rate as the Full or Physician policies but with fewer nudges.

The septic shock rate rqpocr Was first used in [Ragl7] and the assumption behind it is: when
a septic shock prevention policy is indeed effective, the more the treatments in a patient
trajectory agree with the induced policy, the lower the chance the patient would get into
septic shock; vice versa, the less the treatments in a patient trajectory agree with the induced
policy (more dissimilar), the higher the chance the patient would get into septic shock. In
this analysis, we compared three critical policies against the Full and Physician policies by
looking at septic shock rate for the 10% most similar group and 10% least similar group
(most dissimilar). To do so, first, for each trajectory, a similarity rate r; between the policy’s
action and the actual physicians” action is calculated. The higher the 7;, the more similar the
RL policy is to the physicians’ treatment. Then we sort the trajectories by their similarity
rate in ascending order and calculate the septic shock rate for the top 10% of trajectories
with the highest similarity rate, referred to as 10% most similar group and the bottom 10% of
trajectories with the least similarity rate, referred as 10% least similar group. The septic shock
rate is defined as: 7gy0ck = Usnock / Vs, Where v is the number of trajectories and vy, is the
number of positive-shock-trajectories.

The percentage of nudges reflects how often the critical policy would draw the physician’s
attention. We define a nudge as a decision where the state is critical and the physicians’
action is different from the critical policy’s action. Note that when identifying critical states,
the LongTR threshold functions as a hyper-parameter which approximately determines the
percentage of the critical decisions for which the physicians must follow the corresponding
policy (the higher the LongTR threshold, the more states will be considered critical). In other
words, it affects the percentage of nudges. In the offline evaluation, we explored the LongTR
thresholds from 10% to 50% and investigated how fewer nudges are necessary to achieve the
same effect with the Full policy.

7.4 Results

7.4.0.1 Septic Shock Rate

Figures 7.1 and 7.2 show the results of septic shock rate on CCHS and Mayo, respectively.
In the X-axis, the suffix after critical policy indicates the LongTR threshold. For example,
CriQN-DQN-0.1 means CriQN-DQN policy with a threshold of LongTR = 10%. For each
bar, the red column shows the septic shock rate of the 10% most similar group while the
grey column indicates the 10% least similar group. For the critical policies, we considered
the similarity in the critical states only. The black horizontal line represents the septic shock
rate of the Full policy. In these results, we focus on the septic shock rate of 10% most similar
group. Overall, the performance of critical policies increases as the LongTR threshold increases
and the CriQN-DQN outperforms the other critical policies on both datasets. For CCHS, the
CriQON-DQN policy beats the Full policy when LongTR = 40% while for Mayo, the CriQN-
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Figure 7.1: Septic Shock Rate for CCHS

DQON achieves the best performance when LongTR = 50%, which is slightly better than the
Full policy. Therefore, we could stop the LongTR threshold exploration at 40% for CCHS
and 50% for Mayo. In the following results, we will focus on the comparison between critical
policies (LongTR = 40% for CCHS and LongTR = 50% for Mayo) with two baseline policies:
Full and Physician policies.

First, the Physician policy has the worst performance with the highest shock rate for the
10% most similar group and the lowest shock rate for the 10% least similar group on both
datasets. It suggests that the RL-induced policy can provide better sepsis treatments than
physicians. Second, the CriQN-DQN policy performs better than the Full policy in CCHS with
the lower shock rate for the 10% most similar group. For Mayo, CriQN-DQN performs slightly
better than Full but not much. Note that for the 10% least similar group, the result does not
hold and this is because the similarity was calculated in the critical states only for the three
critical policies but counted every state for the Full and Physician’s policy. Overall, among all
the three critical policies, CriQN-DQN is the best critical policy and can be as effective as a

fully executed policy or even better.

7.4.0.2 Percentage of Nudges

Figure 7.3 shows the average percentage of nudges per trajectory identified by the correspond-
ing policies in the test dataset. Similarly, the critical policies have a LongTR threshold of 40%
for CCHS and 50% for Mayo. Note that CriQN-DQN vs. DON-DQN apply the same DQN
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Figure 7.2: Septic Shock Rate for Mayo

policy to determine the optimal action while the only difference is on how they identify the
critical states. In Figure 7.3, we split the patients into shock and non-shock groups for each bar.
First, in both medical systems, all the policies have more nudges on shock patients than on the
non-shock patients. This is reasonable because the shock patients have more severe moments
and need more attention. Second, when comparing CriQN-DQN vs. DON-DQN, CriQN-DQN
has more nudges on the whole population and this comes from more nudges on shock patients.
It suggests that CriQN is more reliable for the intensive attention to shock patients. Third,
the Physician policy has more nudges than the others across all settings. It reflects the fact
that the physicians are not always taking consistent treatments. Finally, when compared with
the Full policy, the CriQN-DQN nudges 45% times and could save 37% = (0.71 — 0.45)/0.71
nudges on the whole population in CCHS while it only nudges less than 20% and saves 27%
nudges in Mayo. More specifically, this saving mostly comes from the non-shock patients as it
saves 66% in CCHS and 51% in Mayo. It is important to note that the number of non-shock
patients (before sampling) is several times that of shock patients. So, the critical policy could

save tremendous nudges in real life.

7.5 Conclusion

In this work, we evaluated the effectiveness of our LSTR framework on two real-world
healthcare datasets: CCHS and Mayo. More specifically, we compared three critical policies
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Figure 7.3: Percentage of nudges on different groups of patient. CCHS (Left) vs. Mayo (Right)

(CriQN-DQN vs. CriQN-CriQN vs. DQN-DQN) from two aspects: septic shock rate and
percentage of nudges. The septic shock rate indicates whether the critical policy could prevent
patients from getting septic shock. The percentage of nudges demonstrates how much the
critical policy honors the physicians” decision-making. Our results on sepsis treatment show
that the induced critical policy could reduce the percentage of nudges while keeping the septic
shock rate as low as a fully executed policy. In summary, this work provides some evidence for
employing our proposed general human-machine mixed-initiative decisionmaking framework
in the healthcare domain where physicians are always overloaded and efficient alert is needed.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusions

In this dissertation, we propose and explored different Reinforcement Learning (RL) ap-
proaches to identify critical decisions in the sequential decision-making process. We explore
three different RL approaches including offline off-policy evaluation (OPE), Adversarial Deep
RL (ADRL) framework, and Long-Short Term Rewards (LSTR) framework in the context of
Intelligent Tutor Systems and healthcare. This section summarizes the conclusion and findings
of each approach as follows.

OPE Approach: This is our first attempt to identify critical decisions. In RL, the Q-value
difference between two actions in a state indicates how much impact the decision will have on
the final outcome. In other words, the larger the Q-value difference, the more important the
corresponding decision is. Thus, in a historical student-ITS interaction log dataset, four groups
of decisions (50% of overall decisions) are identified by four existing RL-induced policies
based on their Q-value difference. The result shows that only one group of decisions is highly
correlated with the students’ learning performance, in which the more optimal decisions
students received, the better they learned. In the meanwhile, the off-policy policy evaluation
result shows that the corresponding RL-induced policy is effective in improving students’
learning but the other three are ineffective. In this study, we find evidence of critical decisions
that some decisions are highly correlated to the students” learning while some are not.

ADRL Framework: In this study, we consider the critical decisions from the perspective
of necessity and sufficiency. Intuitively, a high Q-value difference is a sufficient condition for
critical decisions. For the necessary condition, assume there are two decision-makers with
opposite goals (increase/decrease the final outcome), if the current decision is critical, then
the two decision-makers should have different choices. Based on this idea, we propose the

ADRL framework that a pair of adversarial policies is induced with opposite goals: one is to
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improve student learning while the other is to hinder, and the critical decisions are identified
by comparing the two adversarial policies and using their corresponding Q-value differences.
A classroom study is conducted to compare a Critical policy with a baseline Random policy.
The Critical policy only takes optimal action in critical states but random actions in others. The
empirical results show that there’s no difference in students” learning performance between
the two policies. However, we find that the critical decisions are always occurring in groups
and the Critical policy is effective for the subgroup of students who experienced more critical
decisions. In this study, we learn that the ADRL is too restrict in identifying critical decisions
and the baseline random policy is not weak that it has a 50% chance to select the optimal
action in the critical states because the tutor only has two actions.

LSTR Framework: Motivated by neuroscience, we propose LSTR framework to identify
critical decisions. Furthermore, we propose a Critical-DQN algorithm to consider critical and
non-critical decisions in the policy induction process. We evaluate the LSTR framework on
three testbeds: an ideal GridWorld game, ITS, and healthcare. In the GridWorld, the results
show that the LSTR framework indeed identifies critical decisions and the best critical policy
CriQN-DQON is the one that applies Critical-DQN to identify critical states while executes the
original DQN to determine optimal actions. This is because the Critical-DQN is sensitive to the
critical states but needs more data to converge to the optimal policy. For ITS, we evaluate the
LSTR framework through offline evaluation on a historical dataset and an empirical classroom
study. Similarly, the offline evaluation result shows that the best critical policy is CriQN-
DQON. Then, a classroom study is conducted to compare the Critical-Opt policy with two
baseline policies: a Critical-Sub policy and a Full policy. Note that the Critical-Sub policy takes
suboptimal actions in the critical states while random actions in the non-critical states. The
empirical results show that 1) the Critical-Opt policy significantly outperforms the Critical-Sub
policy and 2) the Critical-Opt policy performs as effectively as the Full policy. It demonstrates
that the LSTR framework indeed identifies critical decisions in students’ learning. Finally, for
healthcare, we evaluate the effectiveness of the LSTR framework on two healthcare datasets
from CCHS and Mayo. The result indicates that the best critical policy is still CriQN-DQN,
which could identify the critical medical interventions in preventing patients from getting
septic shock. Since the physicians are the primary decision-makers in septic treatment, the RL
should not interfere with physicians too frequently. The percentage of nudges result indicates
that the critical policy could dramatically reduce the number of nudges in non-shock patients
but keep attention to the shock patients. Overall, the LSTR framework is effective in identifying
critical decisions in both simulation environment (GridWorld) and real-world applications
(ITS and healthcare).
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8.2 Limitations

Although the experiments are carefully designed and conducted, I am still aware of some
limitations listed as follows.

Off-policy Policy Evaluation: Although PDIS is one of the best OPE methods to evaluate
the performance of policy in an offline wayj, it still has high variance and is not convincing
compared to the online evaluation. To evaluate the effectiveness of the LSTR framework in
real-world applications, online evaluation is often expensive or not ethical to conduct. In this
work, we also tried PDIS to evaluate the critical policy performance in healthcare but didn’t
present the result. This is because the patient trajectory is too long so that the PDIS results are
extremely big at the scale of 10%° and become meaningless. Instead of the septic shock rate, we
still need to explore a typical RL offline evaluation method to estimate the performance of
critical policies in long trajectories.

Data Efficiency in Critical-DQN: In chapter 5, the experiment on GridWorld shows that
the Critical-DQN needs more data to converge to an optimal policy. So, the best critical policy
is a combination of Critical-DQN and original DQN that one is used to identify critical states
and the other one is used to select optimal actions. This is not efficient in RL policy induction
that every time we have to induce two policies separately. It increases the complexity of tuning
hyperparameters and the duration of inducing policy. The ideal case is to identify critical

states and select optimal actions in a signal RL policy.

8.3 Future Work

First, the most difficult challenge in this work is policy evaluation in real-world applications.
Unlike Atari games, in domains like healthcare and education, it’s illegal to try and error on
the patients or it’s costly to executing the policy on real students. So, we mainly rely on the
off-policy policy evaluation method to estimate the performance of policy instead of really
executing it. One future direction is to explore a more robust and lower variance OPE method
to generate more reliable evaluation results. This will close the loop from training to testing in
the RL policy induction.

Second, in chapter 5, the CriQN-CriQN is slightly better than CriQN-DQN but not signif-
icant. It is possible that the optimal action for the critical state is not globally optimal. The
global optimal action assumes that the agent will take optimal action on every step. However,
it is not true in the real world that humans do not always make optimal decisions on every
choice. Thus, if the agent takes random actions in the non-critical states, the optimal action in
the critical states may be different from the global optimal action. Due to the data efficiency
issue in the Critical-DQN algorithm, it is too risky to try the CriQN-CriQN on real-world
applications. So, the second future direction is to improve the convergence of the Critical-DQN
algorithm. We believe that the idea in the Critical-DQN algorithm is closer to the human
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decision-making behavior and it should be the one that not only identifies critical states but
also make critical decisions.
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