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SUMMARY

The analysis to be presented will restrict attention to the elastic part of the elastic-plastic
constitutive equation used in several Fast Reactor Accident Analysis Codes and originally ap-
plied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969.

It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the
basis of a test found by Bernstein it is proven that the state of stress is generally depending on
the path of deformation. Therefore this concept of elasticity is not compatible with finite elas-
ticity.

For several simple deformation processes this special hypo-elastic constitutive equation is
integrated to give a stress-strain relation. The path-dependence of this relation is demon-
strated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed
out.

The relevance to modelling /material behaviour in primary containment analysis is dis-
cussed.
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1. Introduction

For the analysis of the integrity of the primary containment system in case
of a Hypothetical Core Disruptive Accident in a Fast Reactor several accident
analysis codes are now in use., These computer programs solve the basic raua-
tions of continuum mechanics in two dimensions by finite difference tech-
niques assuming appropriate constitutive equations for the fluid and solid
materials. In the study presented here the attention is restricted to the
constitutive equations of the solid materials as they are proposed for use in
some of the accident analysis codes / 1-4 7. The original work of Wilkins
['5,6_7 has been an important source for the formulation of these elastic -
plastic constitutive equations. Since "incremental" plasticity is involved
the "elastic law" is formulated in an incremental or rate type equation
taking account of large defgrmation gradients.

The equations given by Wilkins / 5,6_7 and others / 1-4_7 are formulated
for axisymmetry; there correction termes J;” 4, ,Jli appear which take care
of the rotation of the particle. These equations have the following form in
cartesian coordinates. The rate of deformation tensor

dge = f/lf‘,e t Ves ). (1)
js assumed to be separable in an elastic and a plastic part in an additive

manner d A
+
dhe = Zhe A ge (2)

Here ¥(x%,t) are the velocity components and a comma ( ), and ( ),k
denotes partial differentation with respect to the spatial coordinates
xXe¢ (%£=723) and material (Lagrangian) coordinates XK (k=1,2,3) respec-
tively. The elastic deformation rate fieis assumed to be given by

‘ Zie = Admmdge + 2,4 dac (3)
where the constants A and . correspond to Lame's constants of the infinites-
timal theory of elasticity and &,15 the unit tensor; the usual summation
convention applies. Here élis the co-rotational stress rate according to

Jaumann °
Dig
z‘tt = .Dtl f,(,. (AP - f»-e o‘m (4)
where
Dige Dt ke tee o
Dt Pra * ;X\‘m - (%)
is the material rate of the Cauchy stress Z, and

we = $( 7,6 - Ve, &) (6)

is the spin, which describes the angular velocity of the rigid vrotation. The
plastic deformation not described here is certainly the most important aspect
in the constitutive equation. However, we will restrict our attention strictly
to the elastic law eq. (3), since it seems worthwhile to spend some effort for
a rigorous understanding of the physical concepts behind eda. (3); thus for the
following discussion we put simply §(¢= dge.

Elasticity concepts identical or similar to ea. (3) have been used by
different authors eg. Cameron and Scorgie ['7_7 , Hartzmann 4'8_7, Hibbit,

Marcal and Rice (79 7 and Osias and Swedlow (10 7, Comparing this concept



E 3/7
—_3—
with available constitutive models in nonlinear continuum mechanics one may
easily find that this concept is a special case of hypo-elasticity 4_11-13_7.
Hypo-elastic material behavior is defined by the constitutive equation

f’k = Hiem (trs) Amn (7)

’qle»‘a = /:?egmu = ek nom
The right hand side of eq. (7) is linear in the deformation rate Amna and
necessarily isotropic in 4 and duw./711, 12_7. A1l variables in eq. (7)are
quantities defined in the instantaneous configuration (Eulerian description)
and the concept of finite strain is not used. Since the corotational stress
rate and the deformation rate are linearly related a change of time-scale
does not affect the state of stress in a given configuration; thus the stress
at time t depends only on the order of past configurations but not on the
time-rate at which these past configurations are passed.,

The hypo-elastic equation (7) represents a system of differential equa-
tions for the stress at a fixed particle if the deformation history and
initial conditions for the stress are prescribed. Thus a stress-strain
relation has to be obtained by integration.

The usual concept of elasticity is based on two physical assumptions:

(i) The stress at time t depends only on the strain at time t but not on the
history of deformation. This condition is realized in the formulation

(Chauchy-elasticity)
tﬁe n 72:(”1,;4) = /cé ! Xeym = Sg;éﬁZZsz (8)
M
where x7 = x: (X, ¢), €542,3  describes the motion of a particle with
material coordinatesX2 and X%, is the deformation gradient with respect to
the stress free natural state of the body. Since this relation must be
invariant under rigid body motions the functions /&e are not arbitrary but
have to be form invariant /711 _7.
(ii) Usually an additional criterion is applied: The deformation energy per
unit mass depends only on the initial and final configurations. This condition
assures the existence of a strain energy function GYWﬁ,L)such that eq. (8),
is of the form /7127 oG
%e =3 or, Mam (9)
where ¢ is the density in the deformed configuration. Eqg. (9) defines the
Green or hyper-elastic materials.
In analysing hypo-elasticity it is of primary interest to know the con-
ditions under which a hypo-elastic material is elastic in the sense of
Cauchy or Green. In the following the relation of the hypo-elastic material
defined by ea. (3) to elasticity (in the sense of Cauchy) is discussed based
on the work of Bernstein and Ericksen /715-17 7.
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2. Path-dependence of stress

We will briefly present the conditions under which the hypo-elastic ea. (7)
will be integrabel to give a path-independent relation between stress and
deformation gradient such as eq. (8) . Assuming that the velocity 7& - D /Dt
is a function of the material coordinates the spatial velocity gradient

u;/j is given by (cartesian coordinates)

Vg o= VK - B Y (10)
where X”d' is the inverse of the deformation gradient: xx,~,1XMlj = dey
Applying eq. (1), (4-6), and (10) to ea. (7) yields

Dihe
e Do = Bacgy Yoy GEH (11)

Beegp = Facop (o) 7 3 (s dop +ge S2p "‘lér‘/"’? 'z‘“’(;?)' (12)
Material differentiation of eaq. (8) gives

If we assume that the hypo-elastic material is elastic in the sense of Cauchy
(eq. (8), ) then the right hand sides of ea. (11) and (13) are to be equal for
all deformation processes Xp, (). Since X, and D(Xp,m)/Dt are in general
independent from each other the six functions f,must satisfy

0 fhe 3‘[}7”,(

B oy 41 ME s (14)
according to ea. (12) Bgygp s only depending on %, and thus £ . Ed. (14)
represents an overdetermined system of partial differential equations of first
order. If the above assumption is valid then this system has to admit a solu-
tion. A necessary and sufficient condition for the integrability of the system
can be developed using standard methods of the theory of partial differential
equations [-19_7. Consider the overdetermined system of partial differential

equations o= 42, ..,
DV " - -
ey = Jup (fa,rFa s Baye s Bz ) B=A2, B | B 73

where the functions 4., are continuously differentiable with respect to their
arguments %, and Z, . A unique solution of this system is assured if the
necessary and sufficient integrability condition

e 4 o2 g - F5 - S e - (15)
is identically satisfied in the arguments X4 and 2
Let
C{zf:M = 3&:3»;» XM,; (16)

then the application of the condition eq. (15) to the system eq (14) taking
account of the different indicial notation we obtain
QCA[EM ,BCA(EM ’aCﬂML ?CﬂmL (
rs

c - -
a)f"‘m’L k4 7S om L /aXVP/M - fa‘f;-; rs pr T O. (17)
With eq. (17) and
DNve _ Ko X
DX, Kk VP Nk,g
and taking the contracted product of eq. (17) with X% A X5 finally

2 7’ &
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yields the test condition derived first by Bernstein /17 _7:

Bt 8y, L B+ Lo Busp - yp Baciw = O (18)
This equation represents a restriction on the stress ?4e + The satisfaction of
this condition is necessary and sufficient for a hypo-elastic material to be
Cauchy-elastic, If the application of the test shows that ;&EM» (4.s) does not
satisfy eg. (19) identically in 4., then for arbitrary deformations the stress
cannot be represented by a function of the deformation gradients independent
of the path of deformation. However, for restricted states of stress (e.g.
hydro-static pressure) or deformations (e.g. simple extension) ea. (7) or
(12) may be integrable to give a relation between stress and strain indepen-
dent of the path of deformation.

Applying this test to the hypo-elastic equation (3) with

ﬁlzmn = A y’hh J.ﬁl. * [J;h Jh-l - é;,_‘ ‘fhz) (19)
and obeying eaq. (12) gives the following condition gn stress
te = o , ££.L . (20)

Consequently the stress strain relation obtained from eq. (3) by integration
for arbitrary deformation processes X%,k (¢) will be path-dependent if shear
stresses and thus shear deformation is involved; this result will be quanti-
tatively verified in chapter (4).

The question now arises wether the hypo-elastic material eq. (3) shows
dissipative effects in the sense that the deformation energy is positive in
any closed deformation process with the same initial and final state of stress

3. Path-dependence of deformation enerav
The deformation energy generated in the time interval o= = ¢ is

defined by ¢ _

afvfz;, 4y, dV AT = V'fw/)(,,,f) AV,
where V is the volume at time 7 and V, is the volume in a reference configu-
ration (reference density ¢) and ﬂf&ﬂb ¢) is the deformation energy per unit

. . . .f_
initial volume: %a
(X t) = D_/Zlfe dee T AT (21)
the integration has to be performed along the particle path. Inversion of
eq. (3) gives 2
ete = Dgpn Zmn (22)

where Z%,,,“ is found to be

v P A
Db tnse =z7/2(f£~r};.. +f4u£~)—m /;,. JL/ (23)
Further
Dt i
Yoo dig = Foie Cone = Fown 2 B = Zap Dy - (24)
Note that all terms containing the spin «, drop out in eaq. (24), ; this result

is valid also for*the general hypo-elastic iguation (7) / 15_/. Thus
° P 7 . D A 2,
W (A, t) = D[;_ Lo s 27 Y7 = za, f— _‘D—r/f?z;m, Lo _mé‘“))pz.(%)

If one ignores the density change ($=g,) it follows immediately that w does

depend in this special case only on the initial and final state of stress.
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Integration of the equation of mass conservation (DL®E=—jd&) following the
motion of the particle ( X, = const.) and applying

@ LY
d“ = D“ Mo 'g._w - G,.‘“_ .Dj G, = ?4.4/‘1!‘- (26)

yields . e i
. LY ine
%— - &P/;/gn» DT .DZ"/ (27)
With eq. (23) 1t then follows from eq. (27) that the density § does depends
only on the initial and final hydrostatic pressure p
. 3 ud

N 271 A IR 2 Pe-3%e.  (28)
The line integral eq. (25) 1in the stress space is independent of the the
path of dintegration if a total differential exists. Then a hypo-elastic

potential  exists satisfying the overdetermined system of differential

equations X
q Pop _ s £
0 Zen s
This system has a unique solution if the integrability conditions (see eq.
(15)) 0% 2% Fae
@z‘a ?1‘,‘4

are identically satisfied in ﬁg . With eg. (27) this gives
D Fom D Fde
Fan Gop = Pt b+ S T (29)
Applying this condition to the hypo-elastic material defined by (eq. 23)

yields the following reduced condition

Yo oe ~ the b =° (30)
The contracted product with Jg gives

e = 37 A

Thus the integrability conditon is identically satisfied only for the special
situation of a purely hydrostatic state of stress. This result shows that 'the
deformation energy w is generally depending on the history of stress. Conse-
quently the specific work will be non-zero in a closed deformation process
with the same initial and final state of stress.

In answering the question raised at the end of chapter (2) we follow Bern-
stein and Ericksen (16) and consider two historiies of stress in the time
interval 0=T=¢t
(@)  Lo(r) = F(?) (8) The(T) = Seu (T) = 930 (2-7)

Where 7«7, are arbitrary prescribed functions. Case (a) and (b) correspond
to the two directions an open path in stress-space may be passed. Let the
point 7,6, in stress space be denoted by number 1 and the point 74 by number 2
Then the deformation energies per unit mass in case (a) and (b) are given by
e /e, and %, /¢, respectively whereg, and ¢ are the densities corres-
ponding to state 1 and 2. Since here eq. (25) is simply a line integral in
stress space it follows then easily from this property that

Yk, = - M 31)
i.e. the deformation energy per unit mass changes its sjgn if the stress path
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is traversed in the opposite direction.
We consider now a stress history where the initial and final state of
stress are the same
Yo () = Tae (T) 5 The (o) = The (€) . (32)
It has been proved above that for a closed stress path the deformation energy
is generally non-zero. Assume that w is positive for the stress history given
by eq. (32). Then it follows immediately from eq. (31) that any reversal of
the stress history such that in the time interval o= 7T = ¢
The (T) = Sy (T , Ske (T) = 7%, (£ -T) , Skelo) = Sg(t)
will simply reverse the sign of w; thus the deformation energy per unit
initial volume will be negative. This result should be compared to standard
constitutive models showing dissipative effects 1ike Newtonian fluids and
plastic deformation of metals: In these cases the constitutive equations are
structured in such a way that ik‘agc and thus w is positive or non-negative
for any closed stress history. How the behavior of the hypo-elastic material
is to be interpreted under due consideration of thermodynamic principles
needs further investigation,

4. Examples

Consider an infinitesimal material element. During the motion of this particle
we assume that the deformation gradient Xi,kd{@,f) at this particle is given

by /(H &)  ©
(%%, x) = o % o (33)
) o 7

where /a)and éAU_are piecewise smooth functions with initial conditions
f%)=/ , Afe)= 0 . The appropriate choices of f# and Awdefine different
deformation histories. The deformation rate and spin are given by
dﬂ"/}f, 'dfz‘dz»r’g-é‘-%;")
Dy = —Qps = g/"._ %‘) J
the other components vanish. The restricted deformation eq. (33) corresponds

(34)

to a simultaneous stretching in x, -direction and shearing in the «%- %
plane. The relation between stress and deformation gradient can now be ob-
tained by integration of eq. (3) following the motion of the particle i.e.
keeping Lagrangian coordinates constant. The hypo-elastic eq. (3) then
reduces to a system of ordinary differential equations for the four non-
vanishing stress components

Dtw _ /3/‘*))/‘}/ + f,,z/“"?/"‘)

¢

3 - 4y -t (- f4) '
S - aty

;% =3[Z/‘ -—/‘t‘m—lla)]/ﬁ_ﬁfij

Three different deformation histories are considered; the corresponding paths
of deformation are illustrated in Fig. 1:
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Case I: osZs=7" Simple stretching in X% -direction
=4, 4so , followed by
s s ¢ : Shear deformation at constant stretch
f= /% = const , A= A® . bty -0, KE)=%T

Case 11: o=Z<?”: Simple-shear, #s«4 , A=Aw , Alr=0, -1.(+"/=4‘“,
followed by

¢%< 7<= ¢ : stretching in & -direction .
7= for /(f") 7, FE) = /"‘ £ < £ = const.

Case III: Simultaneous stretching and shearing with f and k linear in time

In case I and II the integration has to be performed in a piecewise manner
At T:o vanishing stresses are assumed. The following result showing the two
stress components 7, and 7, at time t demonstrate very clearly the path
dependence of the stress:

Case I 4+ (10 21l - (- luf?) cos &*

Case 11 t, bb (e R)lf - m/é*/l-a/'/)ff“m/é%/?
Case III: ab (14 )4 PA "”/f;; ‘;_—5)
Case I (- b L") i 4" (36)
Case II b fo = s (P (1= CA)) - 21*/"“”“/"'4/7)

*_ s L *
Case III /ﬁ /._/) iz;/—//f—'@s/é /,._{,))

A close evaluation of case I and II (see eq. (36))reveales that in each of
the two phases - stretching and shearing - the specific form of the function
/=/m and #=£4) in the appropriate time interval has no influence on the
final state of stress. Thus for simple stretching we have

keo H {% = (Z+/§)/~f’ , Zap =°
and in case of shear we find ¢ £
;51 : i’"/“ P 5 £ , %: 7 - O3 .

At first sight the functions eq. (36) look very different. For /'approaéhing 1
and k'approaching 0 the three cases will become indistinguishable. In Table 1
and 2 a numerical evaluation of the formulars eg. {36) is given. It is seen
that the relative difference between the three values of Zaf is significant
only in a region where the logarithmic strain £-= Gt as well as the shear
angle @= ? 4 s fairly large; the relative difference between the values of
fu/L are considerable at large strains & over the whole range of shear
angles considered. The calculation of the elastic range of coldworked stain-
less steel Type 316 at room temperature shows that only the upper left corner
of the tables is at yield. Thus the region where path dependence is becoming
significant for the examples presented is clearly in a range where plastic
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deformations occur and will dominate the deformation behavior. Finally in

Fig. 2 the shear stress is shown as a function of the shear angle for a shear
deformation without stretch in the x4 -direction (£#e, /=7 ). This figure
demonstrates the phenomenon of hypo-elastic yield at a shear angle of 0=57,5%;
this phenomenon has been found by Truesdell / 14_/ for a more complex hypo-
elastic material. It should be noted that this instability does occur at a
shear stress equal to the shear modulus 4, i.e. far beyond the load carry-

ing capacity of steel.

5. Conclusions

The analysis presented has shown that the constitutive equation describing
elastic material behavior as proposed for use in several accident analysis
codes [/ 1-4_] actually defines a hypo-elastic material of grade zero. By use
of Bernstein's test it has been proved that the stress-strain relation is
dgenerally path dependent except for simple extension or compression. A
numerical evaluation of the stress-deformation relation for three different
paths of deformation obtained by integration has heen performed; these re-
sults indicate that significant path-dependence does occur only when
reaching extremely high tensile and/or shear stresses.

The phenomenon of hypo-elastic yield has been shown to occur for this
material; however this type of instability is far beyond the Toad carry-
ing capacity of steel. Further it has been proved that generally the defor-
mation energy per unit mass is path-dependent. Thus for a stress path with
the same initial and final state of stress the specific energy will be
generally non-zero; it will be either positive or negatfve according to the
direction the stress path is run through. This result needs further analysis
under due consideration of thermodynamic aspects.

It is expected that the deficiencies of this special hypo-elastic material
as a model for elastic behavior is of minor importance in an elastic-plastic
constitutive equation. However, presently it cannot be excluded that this
hypo-elastic model may possibly lead to significant deviations from elastici-
ty for special situations e.g. problems of stability or cyclic straining where
small deviations may accumulate.
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