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1. Introduction and Summary. Let S be the number of successes in n independ~

ent trials, and let pj den?te the probability of success in the j-th trial, j = 1,

2, ..., n (Poisson trials). ‘e consider the problem of finding the maximum and the
minimum of E g(S), the expected value of a given real-valued function of S, when

ES = np is fixed, It is well known that the maximum of the variance of S is attained
when Py =Py = .. =D, =D This can be interpreted as showing that the variability
in the number of successes is highest when the successes are equally probable (Ber-
noulli trials)., This interpretation is further supported by the following two theor-
ems proved in this paper. If b and ¢ are two integers, 0 <b <np <c¢ <n, the prob-
ability P(b < S < ¢) attains its minimum if and only if Py =Pp = «er =P, =P
(Theorem 5, a corollary of Theorem l, which gives the maximum and the minimum of
P(S <c) ). If g is a strictly convex function, E g(s) attains its maximum if and only
if p1 = Py = o =D, = p (Theorem 3), These results are obtained with the help of
two theorems concerning the extrema of the expected value of an arbitrary function
g(S) under the condition ES = np, Theorem 1 gives necessary conditions for the maxi-
mum and the minimum of E g(S). Theorem 2 gives a partial characterization of the set
of points at which an extremum is attained. Corollary 2.1 states that the maximum

and the minimum arc attained when Pys Pos eee5 Py takc on at most three different

values, only one of which is distinct from O and 1, Applications of Theorems 3 and

1. This research was supported in part by the Unitcd Statcs Air Force, through
the 0ffice of Scientific Research of the Air Research and Development Command,



5 to problems of estimation and testing arec pointed out in section 5.

2, Thc extrema of thc oxpcected valuc of an arbitrary function of S,

The expected value of a function g(S) is

n
(1) #(p) = Eg(s) = Z g(k) A, (p)
k=0

where p = (Py, Py, +e.5 Py), and A (p), the probability of § =k, is given by

n

A (p) = z DIES:
nk = 1,%0,133=,...,n j=1 7

i, 1-i,
.J(l-pj) J, k=0,1,...,n.

i.+,..+41 =k
1 n

The function f(B) is symmetric in the componcnts of p and lincar in each com-
ponent, We obscrve in passing that conversely any function of p with these two pro-
pertics can be reprcsentcd in the form (1). The problem to be considered is to find

the maximum and the minimum of f(B) in thc scction D of thc hyperplanc
Py + Py * ... + P =1p (0<p<1)
which is contained in thc closcd hypercube

Ofpjf'l: =12, ..., n.

B B AP |
1°72° m . . . .
We shall denotc by P the point in the (n - m) - dimensional space

which is obtained from p by omitting thce coordinatcs Pj s Py s sees Py ., Since
- 2 m

f(p) is symmetric and lincar, wc can writc

(2) f(B) = fn--l,O (EJ) * pj fn-l,l (BJ)’ J=1,2,...,n,
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wherc the functions f and f arc indepcndent of thc index j and symmctric
n-1,0 n-1,1
and lincar in the componcnts oflgj. In gencral we dcfince the functions fn k.1 by
)

fn,0 (p) = £(p),

seeesk+l

f ( 1,?,...,k+l) ,

1,250,k 1,2
(3) fn—k,i(—p )‘fn-k~l,i(E ’ n-k-1,i+1 %

) * Pray

i=0,1,...,k; k=0,1,,.. n-1,

Applying (3) rcpcatedly, we obtain

m .
1,2,...,m
(L) f(g) = .ZO Cmi(P13 Pg:“-}pm) fn-m,i (p™? ym=1,2, ..., n,
1=
where cmO’ le, cees Cm,m arc thc symctric sums
Cmo(pl’p2""’ pm) =1
(5)

Cmi(pl’p2’° .. spm)=(P1:p2- . 'Pi)"’(plo . 'pi-lpi+l)+. . ‘+(pm—i+lpm-i+2' : -pm)’i >0 .

If we writc (0"1Y) for thc point whosc first u coordinates arc O and the ro-
maining v coordinatcs arc 1, and lct (pl,pz,...,pm)=(0?~hlh),h = 0,1,...,m, we obtain

from (4) a system of lincar cquations for fom i(21,2,...,m) whose solution is
3

i T |
LIS -h -h h ) ) i
A BRI G D COE i S SYEPIRIS SO FE S O PP W

(6) £ .
n-m,i'%= h=0

Theorem 1. Let a = (al,az,...,an) bc a point in D at which f(p) attains its

maximum, Then for cvery two distinct indices i, j we have

(7) fn_z,Q(Eij) = 0 E-_f_ ai 74 a



ij\ o ;
(8) fn-2,2(3 ) =0 if a, # as 0<a; <1,0< ag <1,
ij . -
(9) fn_2’2(é ) 2 0 %E 0< ai aj <1,

The incqualitics (7) and (9) arc strict if the naximum is not attained at the

points in D which diffcr from.g only in that a; and aj arc replaced by a; + x and

a'j - x with{x]positivc and arbitrarily small,

Proof., Lot at dcnotc thc point which is obtaincd from_g if as and aj arc ro-

placed by a; + x and a. - x. The point a' is in D for all x in thc intcrval I do-

fined by O < a; +x=<1, 0< ay = X = 1. By (4) we have

f(g!)=fn_2,o(gij) + (ai+aj)fn_2’l§§ij) + (ai+x)(aj-x)fn_2,2(gij) .

Hence

(10) #a)-2la) = x(ag-a;1002, 5 o(23)

Since f(a) is a2 maximum, thc right sidc of (10) must be negative or zero for
all x in I; We may assumec th?t ai.f aj. Ir ay < aj, and x is positivc and suffi-
ciontly small, thon x is in I. Honce (7) must hold, If 0 <a; <1 and 0< ay <1,
then the point x = O is in the interior of I. Hcnce (8) and (9) must hold,

If the maximum is not attained at g; when x is in T ond is diffcrent from and
sufficiently close to zcro, thc inequalitics (7) and (9) must be strict. The proof
is complcte,

The following ?xplicit cxpressions for fn_2,2(3ij) will be uscful in the appli-

cations of Thcorcm 1, It is casily secn from probability considcrations that

2.hh '
Apk(O pl ,PB,...,Pn) = An_2,k_h(P3,o--’Pn), h = 0, 1) 2,

Hence, from (6) and (1),



. n P .. .
idy _ 13y 13 ij
(11) fpap,0te™) = kiog(k) (An-Z,k-2(E )72 i1 (& 5 1 (37) } .

Alternatively this can be written in the forms

(12) _2 2(a )= io<g(k+1)-g(k)} {A‘n-2,k-1(313) - An-2,k(§lJ)}
and

. ne~2 = iJ
(13) fn-2,2(a ) =kio (g(k+2) - 2g(k+1) + g(k)} ,%__2,1((3 ) .

In general the maximum or the minimum of f(g) can be attained at more than one
point in D, Thus if np < n-1, the function p1p2...pn attains its minimum O at cvery
point in D with at least one zero coordinate, and thcrc are infinitely many points

with this property. Thc following theorem gives somc information about the set of

points at which an cxtrcmum is attained,

Theorem 2, Ict a be a point in D at which f(p) attains its maximum or its

minimum, Suppose that a has at least two unequal coordinates which arc distinct from

0 and 1, Then

(1) £(p) attains its maximum (or minimum) at any point in D which has the same

number of zero coordinates and the same number of unit coordinatcs as a has;

(i1) if a has exactly r zcro coordinates and s unit cocrdinates, the maximum

(or minimum) of f(p) is cqual to

(14) £(a) = (1-np+s) g(s) + (np-s) gls+l)

and we have

(15) g(s+k) = kg(s+1) ~ (k-1) g(s), k=2, ..., n-p-s.
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Proof, Let m = n-r-s be the number of coordinates of a = (2953554..,a ) which

arc distinct from 0 and 1, We may take 815 Q95 eees & to be these coordinates, and

" Wwe may assume that a # a5, We first show that

(16) fn—k,i(ak-l-l"-"an) =0, i=2, «v., k,

for k=2, ..., m,

Equations (16) will bc proved by induction en k, That (16) is true for k = 2

follows from Thcorem 1, (8). Assume that (16) is truc for a fixed k, 2 <k <m, ILct

(17) Ek == (bl, b2, o a9 bk’ ak+l’ LR ] an) s
where
(18) b1+ o0 +bk=al+oco+ ak,ofbifl’ i=l, o-o,ko

The point pk is in D, By (L4) and thec induction hypothesis,
(19) f(gk) = fn_k,o(ak+1,...,an)+(al+...+ak)fn_k’1(ak+l,...,an)=f(2) .
Thus the maximum is attained at cvery point Ek which satisfics (17) and (18).

In particular, (%8) can be satisficd with by # b,, by # 2,15 bo # 10 0 <by <1,

i=1, 2, ..., k. Undcr thesc assumptions we can apply thc induction hypothesis (16)

with a replaced by thc point Ek whosc first k+l coordinctes can be suitably rearranged,

Hence

£k, 1(P1o iy p2 - - 23020, £k, 18P2syse - 53070, 122, .., Kk,

Applying (3) to the left sides of these equations we obtain

fn—k-l,i(ak+2,. e ,an)+bhfn-'k'-l,i+l(ak+2’ Y ,an)=o’i‘—=2, PP ’k ,l h:j‘,2.
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Since bl # b2 wc_find ?hat (16) is satisficd with k rcplaced by k + 1, Thus
(16) holds for k = 2, eees M

By (16) with k = m, cquations (19) hold with k = m for cvery'pm which satisfics
(17) and (18), Sincc f is symmctric, this implics part (i) of the thcorem,

To provc part (ii) wc obssrve that

+ a3, + ... ¥ a3 =np -~ S
Y 2 m b ’

and wo can put (a ., o0y a) = (071%), Honce, by (19) and (16) with k = m,

= .S - OI‘S
(20) £(a) = £, o(071%) # (np~s) fpom,10071%)
and
(21) fn-m,i(orls) = 0, i=2, ..., m,

Applying (6) and thcn (1), wc obtain

£ .(0T1%) = 3 (-1)¥P(dyg(omr=hys+h

n-m,i =0 h
L yi-hi | |
= 2 (-1) (h) g(s+h), i=0,1, ..., m,
h=0

Honee (L) follows from (20), and (15) is obtained by solving thc equations (21) for
g(s+2), ..., g(s+m), Thc proof is complctc .

The following immcdiate corollary of Thcorcm 2(i) is often convenicnt for find-
ing an extrcmum,

Corollary 2,1, Thc maximum and the minimum of f(p) in D arc attaincd at points

whose coordinatcs taokc on at most three diffcrent values, only onc of which is dis=~

tinct from 0 and 1,

Thus to find an cxtrcmum, it is sufficient to dcterminc the numbcers r and s of
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the zero and unit coordinatcs of an extrcmel point whosc rcmaining coordinates arc
all equal, Wc shall scc that r and s can sometimes be determincd with thc hclp of
Theorem 1, If an ocxtromum is attained at only onc point (perhaps cxcept for permu~
tations of the coordinates), part (ii) of Theorem 2 will prove uscful to establish

the uniqueness,

3. The maximum of thc oxpected value of a convex function of S,

Theorcm 3, Ef ES = np 329
(22) g(k+2) - 2g(k+l) + g(k) > O, k=0,1, ..., n=2 ,

then

(23) E g(s) < g g(k)(ﬁ) p* (1-p)"7K P
~ k=0

where the sign of couality holds if and only if Pp =Py = «ee =P =D .

Thus in particular cvery absolute moment of S, E( 'S-b} c), about an arbitrary

point b, which is of order ¢ > 1, attains its maximum if and only if all the pj arc

cqual,

-

Proof of Theorem 3, Let a = (al, Bps eees an) bc a point in D at which f(B) =

Eg(S) attains its maximum, Suppose that as £ 3y for some i, j. By Theorenm 1,

1) <o, ) 2 o, i =
fn_z,z(g ) <0, By (13) and (22) this implies An-2,k(3 ) =0, k=0, 1, ...,n-2,

But this is impossiblc sincc the sum of the probabilitics An-2,0’ An-2,1"“’An-2,n-2

is 1. Hcnce the maximum is attained if and only if all the aj arc equal, that is,

= ... =a =p, This implies (23) and complctes the proof.

Observe that in the proof of Thcorcm 3 no usc was :ade of Theorem 2, Only in-

equality (7) of Thoorcm 1 was nceded,



‘ . The extrema of certain probabilities,

In this section we consider the determination of the maxima and the minima of the

-

probabilities P(S <c¢) and P(b <8 < c¢) when ES = np.

Theorcm L, If ES = np, and ¢ is an intcger,

C
(2) 0<pP(8<e)< 3 (n)pk(l-p)n'k if0<c<np-1
- = =0 K = - " ’
(25) 0 < 1-Q(n-c-1,1-p) < P(8 < ¢) < nle,p) <1 if np~1 < ¢ < np
—— — ——— 3
¢ n.k n-k

(26) 2 (P (1-p)"  <P(8<c)s1 if mp<csn

k=0 - - -~ -
where

€8 hesy k n-s-k
(27) Qle,p) = max z (P)a (1-a) ,
. 0<s<c k=0
= 2B=8

(28) 2 nes °

The maximizing valuc of s satisfies the inequality

(29) (c+1-np)(n-s) < n-np

unless ¢ = n-1, in which casc s = n-~l,

~

A11 bounds arc attained, The upper bound for O S ¢ =np-1 and the lower

bound for np < ¢ < n arc attaincd only if Py Py = ... =P =D,

Thcorcm 5, If ES = np; and b and ¢ ~rc two intcgers such that

0 <b<npgc=<n, then

® o ; (M (-p)" M <pb<S<c) <1 .



Both bounds are attained, The lower bound is attained only if Py =Py = ... =D =P

unless b = 0 and ¢ = n,

Proof of Theorem L. We first consider the maximum of f(B) = P(S < ¢ )p) in D,

By Corollary 2,1 the maximum is attained at a point a = (0%a"""*1%) (using a nota-

tion similar to that employed in section 2), where r >0, s >0, n-r-s > 0, and

(h-r-s)a=np-s .,

If ¢ > np, let s be the greatest integer contained innp, and r =n - s - 1,
Then a = np - s and P(S.f c ’ E) = 1, Hence the (obvious) upper bound in (26) is
attained,

Now let 0 <c <np. If s >c, P(Sfcjg) =0, But P(Sfcl Ps Ps...,p) >0
for all ¢ 2 0. Hence we must have s < c, Since a<l, we have n ~ r > np, If
n-r =np, then 3 = (Orln—s and n - r > ¢, hence P(S < c{a) = 0. Thus we must

have n - r > np. Hence we have the inequalities

0<s<c<np<n-r=<n,

and this implies 0 <a <1,

We have P(S < c) = Bg(s), where g(k) = 1 or O according as k <c or k > c.

Hence by (12),

ijy . 13y _ iy
n—2,2(§ ) An—?,c(é ) An-2,c-1(f ) *

If a = (07a"7%1%), a*J is of the form

aij - (Ouan~u-v—21v)

Then
A (a*d) = (n-;:X-Z) ak--v(l_a)n-k—u--Z

and
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f

Since 0 < a <1, we see that if v<c<n-u=-1, f , ,(a")) has the same sign as
—— - - ’ -

n-u-v-=1l)a-c+v ,

Suppose that r > 0, By Theorem 1 with a; = 0, aj = g we must have

r-1 n-r-s-lls

) < 0. Hence (n-1r-~ s)a-c+ s =np~-c=<0, But this con-

fn-2,2(0
tradicts the assumption, Thus r =0, a = (ar_sls), (n-s)a = np -s, 0<ss<c,
Suppose that s > O, By Theorem 1 with a; = a, aj = 1 we must have

n-s-l.s | .
£-2,2(2 1°) <0, that is,

(31) (n=-s)a-c+s=-1l=np=c= 1<0 .

Hence if ¢ < np - 1, we rust have r = s = 0, a = p, Thus thc second inequality (2L)
holds for 0 <c <np - 1, and the bound is attained. (%c postpone the proof for
c=np~1.)

Now suppose that n = s > 1, By Theorem 1 with a; = aj = a we must have

£ o 2(an-s~218) >0, that is, (n - s - 1)a=c + s > 0, This is oquivalent to
-2, 2

(32) (¢ +1-np)(n-s)<n-np ;

If ¢ = n - 1, this contradicts thc assumption n - s > 1, and we must have s = n ~ 1,
Ifc#n -1, wec have c<n ~1and n - s > 1, so that (32) must be satisfied. Hecnce
if ¢ < np, the maximm of P(S < ¢) is Q(c, p) as definecd in (27) and (28), and the
maximizing value of s satisfics (32) and is equal ton -1 if c =n - 1, (We post-
pone the proof of strict incquality in (32) for ¢ #n - 1.) Since a > 0 and

¢c-s<n-s, we have Q(c, p) < 1.
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We next show that if 0 < c¢ < np, the maximum can bc attained only at a point
whose coordinates which arc distinct from O and 1 are all cqual, Suppose the maxi-
mum is attained at a point a which has at least two unequal coordinates which are
distinct from O and 1, ILet s b;?ﬁ;mber of unit coordinates in a, By Theorem 2,
equation (14), wc must have f(a) =1 if s <c, f(a) =1 ~-rp+ 8 if s = ¢, and
f(g) =0 if s > c. Since for O < ¢ < np the maximum is positive and less than 1, we
must have s = ¢, By (15) with s = ¢, k = 2 we must then have g(c + 2) = -1, which
is not truc. Hence thc coordinates of a which arc not O or 1 must be all equal.

By Theorem 1 this implics that thc inequalitics in (31) and (32) are strict.
All statements of Thcorcm L concerning the upper bounds arc now casily seen to be
true,

The statcments concerning the lower bounds follow from the ecquation

P(S<cjp)=1=-K8<n=-c-113),

where q = (1 - Pqs l - Pos eees 1~ pn). The proof is complete.

Proof of Thcorcm 5, Since P(b <8 < c) = P(S.f ¢) - (S <b - 1), the lower

bound in (30) and the condition for its attainment follow from Theorem L4, The upper

bound 1 is attained at (On-cac-blb), wherc (c~b)a = np - b,

5, Statistical applications. The lower bound for P(b < S < ¢) which is given

in Theorcm 5 shows that the usual (one-sided and two-sided) tests for the constant
probability of "success" in n indepcndent (Bernoulli) trials can be used as tests for
the average probability p of success when ths probability of success varies from
trial to trial. That is to say, the significance 1svel of these tests (which is
understood as the uppcr bound for thc probability of an crror of the first kind) re-
mains unchanged, Morcover, we can obtain lower bounds for the power of thesc tests

when the alternative is not too closc to the hypothesis which is being tested. (Very
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roughly, the significancc lcwvel has to be less than 1/2 and the power greater than
1/2.) We can also obtain a qonfidence interval for p with a prescribed (sufficiently
high) confidence coefficient, and an upper bound for thec probability that the confi-
dence intcrval covers a wrong value of p when the lattcr is not too close to the
true value, Dectails arc left to the reader,

Theorzm 3 can bc appliod in certain point cstimation problems, Supposc we want
to estimatc a function 8(p), and the loss duc to saying 8(p) = t is W(p, t), If the
estimator t(g) is a function of S only, and W(p, t(s) ) is a strictly convex function
of 8 for cvery p, then Theorcm 3 implics that the risk, EW(p, t(S) ), 1s maximized
when all the pj arc cqual, It follows in particular that if t(S) is a minimax esti-
mator under thc assumption that the pj ars all cqual, it rctains this property when
thc assumption is not satisfied (with no restriction on thc class of estimators),

Onc may doubt whether these problems are statistically meaningful since the
average probability of success depcnds on the sample sizc., The main intercst of
thesc results to thc practicing statistician scems to bc in cases where he assumes
that the probability of success is constant, but therc is the possibility that this

assumption is violated,



