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1. Introduction

The primary purpose of this note is to illustrate the second order
differences (where they exist) between two corpeting approaches to the
problem of fixed length confidence interval estimation of the center of
symmetry: one due to Chow and Robbins (C-R) [4], the other recently introduced
by Serfling and Wackerly (S-W) [8]. The intervals of prescribed coverage
probability 1 - 20 are of the form (X -d, 7h+d) but the stopping rules
differ; C-R fix o and let d + 0, while S-W fix d and let « + 0. S-W
show that the C-R approach with stopping time N(o,d) is "inappropriate’
for their problem in the sense that if m(a,d) is the required number of
observations with F Iknown, N(o,d)/m(a,d) »c(d) =1 as o + 0, although
c(@ =1 if F = 4, the normel distribution function. They also show that
c(d -1 as d -+ 0, which suggests that the two approaches are equivalent

as both a,d » 0. If the S-W stopping rule is denoted by M(a,d),
ey N(a,d)/ii(a,d) > 1 (a.s.) as o+ 0, then d -+ 0.

The consistency property (1) says that the rules approximate the
same quantity asymptotically, but they still may be different in terms
of a limiting distribution. The asymptotic distribution of N(a,d)
is easily found (see [6]), and in Section 3 and the Appendix the asymptotic
distribution of M(a,d) is obtained, a result of some interest in itself.
Contrary to (1), this paper finds that
(2) (@) N(o,d) and #(o,d) have limiting distributions with the same

scaling constants as a,d » 0; for large classes of a,d the

C-R(S-W) amnroach has smallér centering constants if the-popula-
tion kurtosis exceeds (is.less than) 3.



(b) In the normal case with d fixed, the S-W approach is preferable
as a-+0 if d/o < 2.33 .

The asymptotic distributions of analogous rules based on the sample
nedian ([5], [8]) are also obtained. The differences are more pronounced
here; both the scaling and centering constants are different. As an
example of the results, Serfling and Wackerly's modification of Geertsema's

rule [5] is found to be infinitely more variable than their own as a - 0.

2. The Two llethods

Let Xl,XZ,... be i.i.d. observations from a continuous symmetric

distribution F(x-6) with unique median 6 and with variance 02

Let @(Aa) = 1-a. The two approaches are:

n
Chow and Robbins (C-R) [41. Let s2=n"' ] (%-X)* and define
is1
N(o,d) = infn: n 2 (s /&)%)
n(a,d) = infin: n = (r0/d)7).

n
Serfling and Wackerly (S-W) [8]. Let H (x) = a1 ) I{Xi'ih < x}, where
i=1
I(A) denotes the indicator of the event A. Further, define

m (-d) = inf exp(dt) exp(tx)dH (x). Then

t<0 )
M(o,d) = inf{n: n 2 % o/%n m, (-d) and Xi'ih+d < 0 for some isn}
m(a,d) = inf{n: Pr{l?%-el > d} < a}.

As further notation, let Igo(t) = f exp(tx)dF(x) and let to(d)
be the point at which Wb(t) = exp(dt)ﬁ%(t) achieves its infimum. Then,

since F has a unique median at zero,



d =
af-wo(t)lto(d) = 0,

n

Define W (t) = a1 ¥ exp(t(Xi-X5+d)), and let t (d) be the solution
i=1 ‘

to W!(t) =0, so that for n large, m (-d) = %%(tn(d)]. Finally, let

mo(z) = inf exp(-zt) [ exp(tx)dF(x).
t<0

3. - Sample Means

The asymptotic distributions of the rules N(a,d) and M(a,d)
are obtained here. The scaling constants are the same but the centering
constants are not. For many sequences a,d + 0, the value of the population
kurtosis determines the smaller centering constants. In this section, assume
f xdF(x) = 0, I deF(x) =1. Let fn x and log x both denote the

natural logarithm. Let A(a,d) be the variance of y(X), where
V) = explt (@) (r+d)} - yt (DE explt,(d) (X+d)}.

The proof of the following Lemma is given in the appendix. The basic
idea is to represent log mn(-d)/mo(-d) as a sum of i.i.d. random variables
with remainder term and use the techniques of [6]. Note the result includes

the case d fixed.

Lerma 1. Let A= -fn mo(-d). Then, as o »+ 0,
%o@@@LMmmm@kmmﬁ)-omym)5¢.

If, for some € >0, as a,d + 0

(42) a2 (-gno) 1€ + 0, al?(-amo) + 0,



then
(4b) [dz/(Aé(EX/‘l-l))]giﬁvi(a;d) - (-tno/n)) L o

Lerma 2. ([6]). As a,d >0 oras o= 0,
% E ( 2 2) L
5) LTT::7F_—J N(a,d) - A2/d") = 0.
AS(EXT-1) o
o
Now, A= dZ/Z + d4(1 - EX4/3)/8 + o(d4) as d -+ 0 (see Proposition
1), so that the centering constants -fno/A in (4) may be replaced by

Ai/dz (and the conclusion that the asymptotic distributions are equivalent

can be made) if, as «,d = 0,

©) H(e,d) = {(1 + d*@-ExY/3)/4 + o@I)E - (-20m0) }/dr + 0.

~

Note that if d)\(x Az for some € > 0, then since Aé/(-Zlna) + 1,

(4a) holds but because of Proposition 5,

4

H(a,d) » - if EX* > 3
>0 if EXY =3
e if B} <3,

the result being that the C-R approach has smaller centering constants

. . . . . 4 .
(and is thus in a sense "preferable' but ‘finapproviiats") if. EX'>3, giving (2a).

Lemma 3. Suppose X;,X;,... are normally distributed with variance

02 and let n =d/c be fixed. As o+ 0,

(7a) )\(;1 (t(a,d) - xé/nz) L N(O,céw)

(7b) Al (W(a,d) - A28 B w005,



where

2 2

/2(1 B e-n

4 - -
céR/ogw = (n /2)e N - pe ™ ).

Note that oéR/ogw +1 as n -+ 0 as is predicted by Lermas 1 and 2,
but that oép/céw +0 as n -+ «. In Table 1, the values of this ratio
are presented for various values of n. It appears that for 0 < n < 2.33,

oéw < OéR , while the opposite is true if 2.34 < n < o,

TABLE 1

) . 2 ;2
Values of the guantity UCR/USW .

n o2 /c:2
1 Cr/ “sy
0.00 1.00
0.05 1.00
0.25 1.01
0.50 1.04
1.00 1.15
1.50 1.25
2.00 1.19
2.25 1.05
2.33 1.00
..2.50 .87
3.00 .45
3.50 .16

4. Sample Median.

Serfling and Wackerly [8] also provide a rule M(o,d) based on
the median. Geertsema [5] has defined an analogue N*(a,d) to the C-R
approach, while S-W provide a modification of this, call it N(a,d).
The results of this section are not as satisfactory technically as those
of the previous one, but they do shed insight into the behavior of the

three rules.



Letting X . denote the ith order statistic in a sample of size

n, define
i
= 1y s = n-
b max{1, [n/2 - cn®/2]}, a, = n-b +1
; L
Zn(c) = nz(xn,an - thbq)/c

N(a,d) = first time n that Zi(c)/n < 4d2/X§ .

N*(a,d) = first time n that zﬁ(xa)/n < 4d2/xé X
Define M(o,d) as in [8]. If T, is the sample median, set

A

-1 1og[4(F(d) - Fz(d))]

"~

)

-3 log [4 (Fn (Tn+d) B Frzl (Tn+d) )] )

Lerma 4. Assume that Zn is uniformly continuous in probability (see

[1]). For the S-W adaptation of Geertsema's rule, as a,d - 0,
(8a) 2c(agoy/n)? : N(a,d) - (r /2a£0))% L o
2c{df o a, o .
For Geertsema's rule as d - 0,
Y
(8b) [z (dfca))%i] _[X‘J*(oa:d) - ()\a/de(O))z] L oo

Lemma 5. Define

| -2
B(F,d) = tl-ZF(d))Z{ZF(d) (1-F(d))} {F(d) (1-F(d))-£(d) (1-F(d))/£(0) - |
+(f(d)/2f(0))2}.

Then, as a » 0,

(9) @32 lie,d) - (-2a0/0)/BE,D % L o



Lemma 6. If ogR denotes the asyrmtotic variance in (3b) and céw

denotes the asymptotic variance in (9), then as a,d » 0, céR/ogw + 1,

A few points need to be emphasized. First, we do not know if Zn
is uniformly continuous in probability. Second, (8b) holds only as
d - 0, while (9) holds only as o -+ 0. The difficulty with (8b) is that,
as o - 0, the necessary appeal to the representation theorem [2] camnot
be justified. The difficulty with (9) is that, as d -+ 0, n »+ =, the

asymptotic distribution of the process
(1 - 2F(@) (Y, (t+d) - £(D)Y,(0)/£(0))

(Yn(t) = n%(Fn(t)-F(t)) is unknown. These are interesting technical
problems and more work is needed.

In sumary, Lemmas 4 - 6 make it likely that HN(a,d) is infinitely
rmore variable and N*(a,d) is less variable than M(a,d), although more
technical work is needed to confirm these impressions. Note again the
difference in the centering constants.

It is worthwhile to mention that these results extend readily to the

ranking problem ([9]).



ERRATA SHEET

page 8

a) The statement of Proposition 1 should be

Proposition 1. Uniformly as d + 0, n -+,

t (@ - t,(d) = O(n_%(logzn)%) (a.s.).

page 9
b) The three lines immediately above Proposition 2 should be deleted.



APPEMDIX

The proof of Lemma 1 is long and tedious, but the basic idea is

as stated in Section 3. We first begin with a number of propositions.
Let 0, o be the customary 'big oh, little oh'.

Proposition 1. Uniformly as d -+ 0, n » o,

n
t (@ -t (d) =n izl ;) exp(ty (@K;) - X + 0™t Togyn)  (a.s.).

Proof: It is a simple calculation to show that tn(d) -+ 0 (a.s.) as

d-+0, n-+wo As in Lerma 3.2 of [8], we see that for n sufficiently

large
(10) 0= g—t—h’n(t) = A + (1 (d) - t (d))BE , where
Ag= 2 (% x +d)exp{t_(d) (X .-X L)}
i=1
B} = 2 (%;-X +d) exp{Y (@ X -X )}

1_

Now, An = Aél) + (2) + Aés) , where

AW =t }j X; explt, (@) (K +d)}
t (d) (d -X) .
- ' -1 121 X; exp(t,(@%;) - EXexp(t, (%)}
+ EXexp(t, (d) Ct+d)) {exp (-t (@)X ) -1} + EXexp (t, (D) G+d)) .

n
Ar(\Z) = 1% 121 explt, (d) (X;-X +d))
t (d)(d-X
=X e o( D4 "l IZI {exp(t, (A)X;) - Eexp(t (DX}
4

- X, Bexp{t (d) (X+d) Hexp (-t (@)X ) -1} - X Eexp{t(d) (+d)}.



n
AéSJ = gL 121 exl{t, (@) (%;-T+)

= deto(d)(d“§£ -1 ? {exm(t O(d)Xi) - Eexp(to(d)X)}
+ dSexp{t (a)(1+u)}[exp(-€o(d)i53-1] + dEexp{to(d)(X+d)},
Since nAexz(t (d)(x+d)) + LuOf“( (&)(u+t)) 0 and
R Bexplt (&) (#+d-L)} = K O(én_;(logzn)%) (a.s.),
this reans that

fynlzumm%@@ %, + 9(dnHlogm™) (a5,

anc hence that
t (@) -t = O(n-ﬁ(lcgzn)ﬁ) (a.s.).

How, by carrying out the Taylor expansion (10) one rore place as in Lemma

(&3]

.2 of [87 and poing tarough the above steps once more, cne completes

the proof.

Provosition 2. As d = 0,

to(d) = -G - d (s - EX /u) + o(ﬂ")
A= -tnn(-d) = a2+ &t - wms o o@h.

Pronf: The key to the expansion of to(d) lies in the relation

0= E(X+d)exp(to(d)(x+d)].



10

By using the facts EX = EX3 =0, EXZ = 1, one will obtain to(d) by

progressively adding terms to the Taylor expansion of exp (to(d) (X+d)) .
Now, m (-d) = M (t (DJexp(ét (d)), where

Mt @) = 1+ @mé/2 + t@ext/ae + o@h.

Thus,
A= - (-d) = -t (Dd - (t2@)/2 + € (DEX/264 - @8 + o@h),
so that using the expansion for to(d) yields the result.

Proposition 3. Uniformly as d + 0, n -+,

n
mCd) - (-0 =0 ]G0 - BQg) + 0 ogm) (aus)
and
WD 2 canl §oeden (- D) /4 + A 0/3)/2
log -ri;(_—dj-‘ ( /mo(' ))n j_zl ( i” )( a- /-')) ( 1T )

v a?d-exhysaay + 0@h + o Mog,m) (a.s.).

As o > 0,
log(m (-d)/m (-d)) = nt ;_221 {(X)-By0 Mm (-d) + O(n'llogzn) (a.s.).
Proof: By a Taylor expansion,
exp(tn(d)xi) = exp(t (DX;) + (e (D)-t o @)X exp (t  (DX;)
+ (e @t (@)% e (z;@)/2,

so that, since m (-d) = Wn(tn(d)),



11
1D epl-t_ (d)(@X)m (-

n
= {n-l _21 {exp(to(d)xi) - E exp(tO(d)X)} + E exp(to(d)Xj

1=
i
+ (tn(d)-to(d))n‘l 121 {X; exp(t, (@X;) - EX exp(t,(Q)X)}

Yo (4% EY . -1
+ (t (@-t, @) EX exp(to(d)x) +0ln (logzn))}

n
— -21 {exp(t, ()X,) - E exp(t (X)) + E exp(t,(d)X)
1=

- 4t (-t (@)E exp(t, (@X) + 0@ logn) (a.s.).
Now,

exp{t_(d) (d-X )}

= exp{dt ()} + {d(tn(d)—to(d))-tn(d)ih}exp(dto(d)) + O(n'llogzn) (a.s.).

Multiplying the two sides of (11) by this last expression yields the
expansion for mn(-d), Thus,
(m, (-Q) - (-d)) exp{-dt (@)} - : ; 4
n
=nt _21 {exp(t (@)K} - E exp(ty (DX - t,(@X; E exp(t, ()X} }
1=

+ O(n'llogzn)°

We have

4
et @X) = 1 (t, @x) 57kt + 0@

M (t,) = B exp(t (0)X) =1+ 4272 + dbes - BXY8) + o(dh

t (@H (t,) = -d - aa - e +o@h.



12
This leads to
(m () -m_ (-d) ) exp{-dt ()}
- %l 11_211 (0¢-1) (1+@-Ex"/3)a%) /4 + ax;+x3/3)/2 + a2 0G-Exhy /24)
+ o(n—llogzn) + o(dah
and cormpletes the proof.

Proposition 4. If A(c,d) = f W - f‘lp(y)dF(y))zdF(x), then

A(a,d) = d*Ex*-1)/8 + 0@ as d - o0.

Proof: yY(X) = exp (to (@ X+) - XM R (t o @)t o@exp (dt o (@), so that

I}

A(a,d) = Var(w(X)

exp (2t (d)d) [ra@o(z'co(d)) - I’--'Ig(to(d)) + tg(d)I"ig(to(d))

+ 2dt (@1(t, (d))] :

Now, simple Taylor expansions show that

(e, @) = 1+ a¥/z + atext/a)/2 + 0(ah)
e @) =1+ a8+ as-mxhy/a + or@h
H (2t (@) = 1+ 2a% + 2a% + o@hH,

which, with a few computations, yields the proposition.

Proposition 5. For all ¢ > 0,

2 g
(A, - (-2me)}/A; >0 as o~ 0.
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Proof: It is well known that Ag/(-zzna) +1 as a=.0, Since

A

a -Q'l(a), by L'Hospital's rule applied to Ag/(-zzna),

H(@) = A, explinu + 1) 2y o 2m 7R .
Aa-e
Thus, (H(a)) +1 if e > 0, so that

exp{(fno + %Aé)/li} + 1.

Proof of Lemma 1. By the nature of the stopping rule, M(a,d) stops

the first time n that
-logﬁmn(—d)/mb(-d)) > -fno/n - A.

It is possible, using techniques in {[6], page 298, to neglect the excess

terns so that as a + 0, from Proposition 3,
I _1/2 1y k] L
m, (-d)4 (e ,d)A(x,9)) (M(a,d) - (-fno/A)) — ©.

Since M(a,d)/(-%na/A) + 1 (a.s.), this completes the first part of Lemma

1. Letting ii = M(a,d), note that

s (1 - 8 Mog fa (-0 /m (- d)]]

e * (1 ) A-llog(“‘M-l('d)/mo(‘d))]-1

so that as a,d ~ 0, M(a,d)(—lna/A)_l +1 (a.s.) if
(12) 2 Mog(m (-a)/m (-d)) + 0 (a.s.).

Once (12) is shown, the proof will be completed by once again using the



technique in [6] together with the expansion of logoyn(-d)/mo(-d))
as well as Proposition 4. DNow A = O(dz) and log@mq(-d)/mo(—d)] =

Q(M_llogzM), so that it suffices to show

-2 -1
1

13) d 1032M + 0 (a.s.).

A sufficient condition for (13) to hold is that for some € > 0
achrl*e L0 (a.s)).
Now, as a,d - 0, li(a,d) = -2n0, so that

4 A(a,d) 1 < @ % (-ane) " 1E > 0.

Proof of Lemma 3. By Lemma 1, since A = n2/2 and (-Zzna)/ki +1,

we have

-1p L 2
A (1(0,d) - (-20a)/n) S N0,0g),
where ng = 4A,(a,d)/n6 . By Lerma Z,
-1 4 2,2y L, 2
Ay (N(agu) - Aa/n ) — N(O,OCR)9

where GéR = (EX4-1)/&2 = Z/n2 . In the normal case A(a,d) =

2 2
1-¢e" - nze N completing the proof because, by Proposition 5,

(-22na - Ai)/ka -+ 0.

Proof of Lemma 4. In the motation of Block and Gastwirth [3] with

m~ cn%/Z, as n - Zi > 52 (a.s.) by [2] and

(@ *(@2-g /et L o,
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where £ = 1/£(0). Now, N(a,d)/{.‘;/Zku)z +1 (a.s.), where k_=d/A_ .

Neglecting excess terms, HN(a,d) = Zﬁ(a d)/(ka)z so that
2 . v =2
N d) - (5207 & ) P gy - €D

1.
Since n ~ cN(a,d)?/d ~ CE/4ka , the uniform continuity in probability

guarantees that as a,d + 0,
3iar 2y L
(2c(@/e2)7) * (N(@,d) - (8/2k) ] = o.

Geertsema's rule basically replaces ¢ by ka ; by steps similar to

the above, as d + 0,
1,
28373 1 0,0 - (E/2k)%) b e

Proof of Lerma 5. By once again neglecting excess over the boundary,

i(o,d) - (-fna/A) & (-no) (AKM)'l(A-KM).

Then, by expansions of log(l+x) and F(Tn+d) - F(d),
{Fn(Tn+d)-F{d)}{1-Fn(Tn+d)—F(d)}]
F()-F*(d)

L

Ln log[l +

1/2 -A
n?(a An)

(1-2F(d)) {2F(d) (1-F(@))} n;i(Pn(Tn+d)—F(Tn+d_)+Tnf(d)) +0(1) (a.s.).
By the representation theorem [2]1, if Yn(t) = n%(Fn(t)-F(t)], then
n*(a-5 ) = (1-2F(®) {2F (@) (1-F (@)1 (¥, (T +)-£ (@Y, (0)/£(0)) *+o(1) (a.s.).

Now, M(o,d)/(-fna/p) + 1 (a.s.); denoting I = M(a,d), since the empirical

process Yh is weakly convergent wnder random sample sizes [7] and



1}4-* 0 (a.s.), this yields

_ L, A
(WB(F:d)) Z(A'AM) — 9,
so that

(20%/B(F, )3 % (i, d) - (-gna/n)) & @

Proof of Lemma 6. The ratio of the variances is

oy Ai/(ZdS[f(O)]3}‘

2 2
0%,  AB(F,d)/28°

Since F(d) =% + df(0) + d>f'(0) + @ £°(0) + 0(d>), we have

A = 2a%£2(0) + 0(d?).
Also,
(1-25@)? = 4d%£2(0) + o@D
F(d) (1-F(@) = % - d£5(0) + o(d?).
Two more Taylor expansions yield
£(d) (1-F(@)/£0) = % + d(%% - £(0)) + d (%%- _ 261 (0)) + 0(d?)
(f@/2£@)? = W1 + 24 (£ ©/£O) + [l + A7) « 0@y},

so that

B(Ed) = 16d262(0) (AE(0)+0(@) = 16(aE®)* + 0 (@).

2
Hence, as d + 0, OéR/OSW + 4,

16
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