
Abstract 
ZHENG, JIANG. In Regression Testing without Code. (Under the direction of Dr. 
Laurie Williams.) 

 Software products are often built from commercial-off-the-shelf (COTS) 

components. When new releases of these components are made available for 

integration and testing, source code is usually not provided by the COTS vendors. 

Various regression test selection techniques have been developed and have been 

shown to be cost effective. However, the majority of these test selection techniques 

rely on source code for change identification and impact analysis. This dissertation 

presents a regression test selection (RTS) process called Integrated - Black-box 

Approach for Component Change Identification (I-BACCI) for COTS-based 

applications. The I-BACCI process reduces the test suite based upon changes in the 

binary code of the COTS component using the firewall analysis regression test 

selection method.  This dissertation also presents Pallino, the supporting automation 

that statically analyzes binary code to identify the code change and the impact of these 

changes. Based on the output of Pallino and the original test suit, testers can 

determine the regression test cases needed that execute the application glue code 

which is affected by the changed areas in the new version of the COTS component. 

Five case studies were conducted on ABB internal products written in C/C++ to 

determine the effectiveness and efficiency of the I-BACCI process. The total size of 

application and component for each release is about 340~930 KLOC. The results of 

the case studies indicate this process can reduce the required number of regression test 



by as much as 100% if there are a small number of changes in the new component in 

the best case.  Similar to other RTS techniques, when there are many changes in the 

new component the I-BACCI process suggests a retest-all regression test strategy.  

With the help of Pallino, RTS via the I-BACCI process can be completed in about 

one to two person hours for each release of the case studies. Depending upon the 

percentage of test cases reduction determined by the I-BACCI process, the total time 

cost of the whole regression testing process can be reduced to 0.0003% of that by 

retest-all strategy in the best case.  Pallino is extensible and can be modified to 

support other RTS methods for COTS components. Currently, Pallino works on 

components in Common Object File Format or Portable Executable formats. 
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Glossary 

 

Affected exported component functions: Affected exported component 

functions are functions within the COTS component that interface with the application, 

and are either changed or are in the call chain of other changed functions. 

Affected component functions: Affected component functions are functions 

within the COTS component that are in the call chain of the changed or added 

component functions. 

Affected glue code functions: Affected glue code functions are functions within 

the glue code that directly call affected exported component functions. 

American Law Institute (ALI): The American Law Institute was established in 

1923 to promote the clarification and simplification of American common law and its 

adaptation to changing social needs. The ALI drafts, approves, and publishes 

restatements of the law, model codes, and other proposals for law reform. [1] 

Binary code analysis (BCA): Binary code analysis is the activity that analyzes 

the binary executable code of software to facilitate many software 

development-related activities, including program comprehension, software 

maintenance and software security. 

Black-box testing: Black-box testing, also called functional testing or behavioral 

testing, is testing that ignores the internal mechanisms of a system or component and 

focuses solely on the outputs generated in response to selected inputs and execution 



 xii 

conditions [38]. 

Calling virtual address: For each key-value pair in the relocation index, the key 

is a calling virtual address where the control flow jumps to another function or data. 

Common Object File Format (COFF): The Common Object File Format is a 

specification of a format for executable, object code, and shared library computer files. 

COFF libraries usually have the extension .lib [55]. 

Controlled Regression Testing: Controlled Regression Testing assumes that 

factors other than the program (such as the operating environment, the 

nondeterministic ordering of statements in concurrent programs, or databases and files 

that contribute data) do not affect test execution [63]. 

Decompose: The term decomposing is used to refer to breaking up the binary 

code down into constituent elements, such as code sections and relocation tables. 

Dynamic binary code analysis: Dynamic binary code analysis monitors the 

execution of programs. 

End virtual address: End virtual address is one of the main attributes in the 

function/data model indicating the virtual address of the last byte of a functions or 

data. 

Explanation type theory: An explanation type theory, also labeled as "theory for 

understanding," provides explanations but does not aim to predict with any precision, 

and there are no testable propositions [30]. 

Fair use: American courts have repeatedly ruled that software reverse 



 xiii 

engineering is perfectly legal because the Copyright Act allows certain types of 

copying without permission. Collectively, these are called fair use. Photocopying part 

of a book for classroom teaching is an example of fair use [39]. 

Fault-revealing test cases: Fault-revealing test cases are those test cases detect 

one or more faults in P' if it causes P' to fail [63]. 

Firewall analysis: Firewall analysis is a regression test selection technique for 

regression testing with integration test cases in the presence of small changes in 

functionally-designed software [80]. 

Glue code: Glue code is application code that interfaces with the COTS 

components, integrating the component with the application. 

Magic number: A magic number is a pre-defined constant, typically located at 

the first few bytes of a binary file, used to identify the file type [52]. 

Model-view-controller (MVC): An model-view-controller architecture separates 

data (model) and user interface (view) concerns, so that changes to the user interface 

do not affect the data handling, and that the data can be reorganized without changing 

the user interface. 

Modification-traversing test cases: Modification-traversing test cases for P and 

P' are those test cases executing new or modified code in P', or formerly executed 

code that has since been deleted from P [63]. 

Modification-revealing test cases: Modification-revealing test cases are those 

test cases, when executed before and after the modification, the program will generate 



 xiv 

different output [63]. 

The National Conference of Commissioners on Uniform State Laws 

(NCCUSL): The National Conference of Commissioners on Uniform State Laws is a 

non-profit, unincorporated association in the United States that consists of 

commissioners appointed by each state and territory. The purpose of the association is 

to discuss and debate in which areas of law there should be uniformity among the 

states and to draft acts accordingly. [2] 

Notation for regression testing: Let P be a program and P' be a modified 

version of P.  Let S and S' be the specifications for P and P', respectively.  Let T be 

a test suite developed initially for P [63]. 

Obsolete test cases: Obsolete test cases for P' are those test cases if and only if 

the expected output of t has changed for S' [63]. 

Portable Executable (PE): The Portable Executable format is a file format for 

executables, object code, and DLLs, used in Windows operating systems. Typical PE 

files have the extensions .exe, .dll, .ocx, .sys, .cpl and .scr. [52] 

Regression testing: Regression testing involves selective re-testing of a system 

or component to verify that modifications have not caused unintended effects and that 

the system or component still complies with its specified requirements [38]. 

Regression test selection (RTS): Regression test selection techniques attempt to 

reduce the time required to retest a modified program by selecting some subset of the 

existing test suite. The purpose of RTS techniques is to reduce the high cost of 



 xv 

retest-all regression testing by selecting a subset of possible test cases. [63] 

Relative Virtual Address (RVA): A relative virtual address is the virtual address 

of an object from the file once it is loaded into memory, minus the base address of the 

file image. 

Relocation index: In the algorithm of analyzing PE components, the relocation 

table is read from the relocation section and then converted into a Hashtable called 

relocation index. 

Relocation table set: The algorithm of analyzing COFF components collects and 

saves the relocation tables of the functions into a text file called "relocation table set". 

Reverse engineering by the Bowers v. Baystate Technologies case: Reverse 

engineer is to study or analyze (a device, as a microchip for computers) to learn 

details of design, construction, and operation, perhaps to produce a copy or an 

improved version [3, p. 1326]. 

Software change impact analysis: Software change impact analysis, or impact 

analysis for short, estimates what will be affected in software and related 

documentation if a proposed software change is made [7]. 

Start virtual address: Start virtual address is one of the main attributes in the 

function/data model indicating the virtual address of the first byte of a functions or 

data. 

Static binary code analysis: Static binary code analysis provides a way to obtain 

information about the possible states that a program reaches during execution without 
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actually running the program on specific inputs. 

Reliable: Test cases are reliable if the correctness of modules exercised by those 

tests for the tested inputs implies correctness of those modules for all inputs [63]. 

Safe RTS technique: A safe RTS technique guarantees that the subset of tests 

selected contains all test cases in the original test suite that can reveal faults based 

upon the modified program [63]. 

Target virtual address: For each key-value pair in the relocation index, the start 

virtual address of the function or data being called (a.k.a. target virtual address) is 

stored as the value. 

Virtual address: A virtual address is an address identifying a virtual 

(non-physical) entity. 

What You See Is Not What You eXecute (WYSINWYX) phenomenon: There 

can be a mismatch between what a programmer intends and what is actually executed 

by the processor, e.g., presence or absence of procedure calls by the optimizing 

compiler [9]. 

 

 



 

CHAPTER 1 
 

 

INTRODUCTION 
 Companies increasingly incorporate a variety of commercial-off-the-shelf (COTS) 

components in their products. Upon receiving a new release of a COTS component, 

users of the component often conduct regression testing to determine if the new 

version of the component will cause problems with their existing software and/or 

hardware system. Regression testing involves selective re-testing of a system or 

component to verify that modifications have not caused unintended effects and that 

the system or component still complies with its specified requirements [38]. A variety 

of regression test selection (RTS) processes have been developed [5, 10-12, 14-16, 21, 

22, 26, 29, 32-37, 42, 44, 47-49, 51, 57, 63-69, 72-74, 80, 82, 84] to reduce the 

number of tests that need to be executed without significant risk of excluding 

important failure-revealing test cases. However, most existing RTS techniques rely on 

source code, and therefore are not suitable when source code is not available for 

analysis, such as when an application incorporates COTS components. 

Due to the lack of information, the most straightforward RTS strategy for 

COTS-based applications would be to rerun all of the test cases for the application 

involving the glue code after the new COTS component(s) have been integrated.  
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Glue code is application code that interfaces with the COTS components, integrating 

the component with the application.  The retest-all strategy can be prohibitively 

expensive in both time and resources [26]. The goal of our research is to, with 

minimal reduction in regression fault detection ability, reduce the regression testing 

required for COTS-based applications when components change and source code is 

not available. 

To advance the body of knowledge, theory should be an integral part of empirical 

studies in software engineering [30]. Empirically-based theories are generally 

perceived as foundational to science [30]. An explanation type theory will be built 

through this research.  An explanation type theory, also labeled as “theory for 

understanding,” provides explanations but does not aim to predict with any precision, 

and there are no testable propositions. These theories often have an emphasis on 

showing others how the world may be viewed in a certain way, with the aim of 

bringing about an altered understanding of how things are or why they are as they are. 

[27, 30] 

The explanation type theory being built via this research is stated as follows: 

When components change and source code is not available, regression tests can 

be selected from the test cases that execute the glue code that is in the call chain of 

functions of the component that changed, with minimal reduction in regression fault 

detection ability. 

A multi-step RTS process with supporting automation has been evolved for 
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COTS-based applications [85-90].  The process is called the Integrated - Black-box 

Approach for Component Change Identification (I-BACCI 1 ) process. Black-box 

testing, also called functional testing or behavioral testing, is testing that ignores the 

internal mechanisms of a system or component and focuses solely on the outputs 

generated in response to selected inputs and execution conditions [38].  The 

I-BACCI process is an integration of (1) a static binary code analysis for change 

identification and impact analysis; and (2) the firewall analysis RTS technique. Our 

uniqueness is the combination of the two parts to identify and localize change with the 

goal of reducing the regression test suite. 

The input artifacts to the process are (1) the binary code of the components (old 

and new versions); (2) the source code of the glue code of the user application not 

including the COTS components; and (3) all test cases which are mapped to the glue 

code functions they execute.  These input artifacts are generally available to users of 

COTS components.  The output of the I-BACCI process is a reduced suite of 

regression test cases that execute the application glue code that is in the call chain of 

changed functions in the new COTS components. 

The I-BACCI process has evolved to Version 4 through the application of the 

process on components in Common Object File Format (COFF) [55] and the Portable 

Executable (PE) format [58, 59] written in C/C++.  COFF libraries usually have the 

extension .lib. Typical PE files have the 

                                                        
1 We pronounce BACCI the way the bocce is pronounced when referring to the Italian ball game: 

[bah-chee]. 
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extensions .exe, .dll, .ocx, .sys, .cpl and .scr.  Additionally, the 

comprehensive open source supporting automation for the I-BACCI process, 

henceforth called Pallino2, has been developed to perform static binary change 

identification and impact analysis.  Pallino outputs a list of affected exported 

component functions.  Affected exported component functions are functions within 

the COTS component that interface with the application, and are either changed or are 

in the call chain of other changed functions. Based on the list of affected exported 

component functions and the original test suite, testers can identify glue code 

functions that call affected exported component functions.  Then, the subset of the 

regression test cases that execute the glue code which is affected by the changed areas 

in the new COTS components can be identified.  Currently Pallino works on 

components in COFF or PE format written in C/C++ and functionality that processes 

other binary file format can be easily added into the tool without affecting many other 

modules. Pallino can be modified to support other RTS methods for COTS 

components. 

This paper reports the results of applying the I-BACCI Version 4 process to 

identify a reduced test suite for four industrial case studies.  Two of the case studies 

involve COFF component, and two involves PE component.  These results are used 

to analyze the effectiveness and efficiency of the I-BACCI as an RTS process.  Also, 

another case study was conducted to evaluate the overall efficiency of the firewall 

analysis RTS technique that is used in the I-BACCI process. 
                                                        
2 A pallino is the small ball used in the bocce ball game. http://www4.ncsu.edu/~jzheng4/pallino.htm 
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The rest of this dissertation is organized as follows. Chapter 2 outlines the 

background and related work. Chapter 3 describes the I-BACCI Version 4 process and 

its limitations. Supporting automation is discussed in Chapter 4. Chapter 5 presents 

the case studies of applying I-BACCI Version 4 on ABB products and their 

components. Related legal issues are discussed in Chapter 6. Finally, Chapter 7 

presents the conclusions and contributions. The summary of binary code comparison 

false positive patterns is presented in Appendix A. 
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CHAPTER 2 
 

 

BACKGROUND AND RELATED 
WORK 

This chapter provides information about prior work in testing of software 

components, regression test selection, firewall analysis, binary code analysis, change 

identification, and impact analysis. 

2.1 TESTING OF SOFTWARE COMPONENTS 

Poor testability, due to the lack of access to the component's source code and 

other artifacts, is one of the challenges in user-oriented component testing [24, 25, 76]. 

The major objectives of user-oriented component testing are as follows [24]: 

(1) to validate the functions and performance of a reusable component relative to 

its specifications;  

(2) to confirm the proper usage and deployment of a reusable component in a 

specific platform and operation environment; and  

(3) to check the quality of customized components developed using reused 

components.  

Because a third-party component user only has access to the component 

specification, user interfaces, and reference manual, the challenges in user-oriented 
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component testing include [25]:  

(1) difficulties understanding the functions and behaviors of reusable 

components;  

(2) inability to perform white-box program analysis to support debugging; and  

(3) difficulties conducting unit-level black-box testing without access to the 

component creators and related artifacts. 

Generally, black-box tests are run on COTS software because users do not have 

access to the source code to analyze the internal implementation. Black-box test cases 

of COTS component functionality can be based upon the specification documentation 

provided by the vendor. Alternately, the behavior could be determined by studying the 

inputs and the related outputs of the component. When only binary code is available, 

binary reverse engineering is a technically-feasible approach for automatically 

deriving information that can inform the RTS. The derived information can be a 

program structure of a component from its binary code, such as, call graphs [52]. 

Harrold et al. [31] presented techniques that use component metadata for 

regression test selection of COTS components. They illustrated their technique with a 

controlled example and seven releases of a real component-based system, 

demonstrating an average savings of 26% of the testing effort [31]. Their techniques 

utilize three types of metadata to perform the regression test selection: (1) the branch 

coverage achieved by the test suite with respect to the component to associate test 

cases with branches; (2) the component version; and (3) a way to query the 
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component for the branches affected by changes in the component between two given 

versions [31]. However, the component vendors may not provide the metadata 

information, especially the third type of metadata.  Also, the cost of providing the 

metadata may be high in practice. [31]  In this research, we focus on using 

information that is typically available to a COTS component user. 

2.2 REGRESSION TEST SELECTION 

The purpose of RTS techniques is to reduce the high cost of retest-all regression 

testing by selecting a subset of possible test cases [26]. A variety of RTS techniques [5, 

10-12, 14-16, 21, 22, 26, 29, 32-37, 42, 44, 47-49, 51, 57, 63-69, 72-74, 80, 82, 84] 

have been proposed, such as methods based upon path analysis techniques or dataflow 

techniques. Rothermel and Harrold evaluated and compared the RTS techniques by 

establishing a framework composed of four categories: inclusiveness, precision, 

efficiency, and generality [63]:  

• Inclusiveness measures the ability of a technique to choose tests that will 

cause the modified program to produce different output than the original 

program, and thereby expose faults caused by modifications. 

• Precision measures the ability of a technique to eliminate or exclude tests that 

will not cause the modified program to produce different output than the 

original program. No techniques are 100% precise. 

• Efficiency measures the computational cost of a technique. 

• Generality measures the ability of a technique to handle realistic and diverse 
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language constructs, arbitrarily complex code modifications, and realistic 

testing applications. [63] 

Rothermel and Harrold also formally defined the notation and terms for 

regression testing [63].  Let P be a program and P' be a modified version of P. Let S 

and S' be the specifications for P and P', respectively.  Let T be a test suite developed 

initially for P.  Fault-revealing test cases are those test cases detect one or more 

faults in P' if it causes P' to fail [63].  A safe RTS technique guarantees that the 

subset of tests selected contains all test cases in the original test suite that can reveal 

faults based upon the modified program [14, 45, 63, 64].  Generally, a superset of the 

set of test cases in T that are fault-revealing for P' can be selected under certain 

conditions, although there is no effective algorithm for finding the test cases in T that 

are fault-revealing for P' [62, 63].  Modification-revealing test cases are those test 

cases, when executed before and after the modification, the program will generate 

different output [63].  The modification-revealing test cases in T form a set 

equivalent to the set of fault-revealing test cases in T, given two assumptions that (1) 

When P was tested with t, P halted and produced correct output, for each test case t 

belonging to T; and (2) for each test case t belonging to T, t is not obsolete for P'.  

Obsolete test cases for P' are those test cases if and only if the expected output of t has 

changed for S'. [63] 

When an update of a COTS component replaces the old version of the component, 

the specification of users’ application that incorporates the component often does not 
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change. We may only consider the non-obsolete test cases in T for users’ application 

in user-oriented component testing. However, there is no effective algorithm for 

precisely identifying the non-obsolete test cases in T that are modification-revealing 

for P and P', even when the above two assumptions hold [62, 63].  

Modification-traversing test cases for P and P' are those test cases executing new or 

modified code in P', or formerly executed code that has since been deleted from P.  

A non-obsolete test case can only be modification-revealing for P and P' if it is 

modification-traversing for P and P' when a third assumption (Controlled Regression 

Testing) holds, with the above two assumptions. Controlled Regression Testing 

assumes that factors other than the program (such as the operating environment, the 

nondeterministic ordering of statements in concurrent programs, or databases and files 

that contribute data) do not affect test execution. [63]  The relationship that holds 

among these terms for non-obsolete test cases in T when the assumptions hold is show 

in Figure 2.1. The set of modification-traversing test cases is a superset of the set of 

modification-revealing test cases. 

 

Figure 2.1: Relationship among classes of test cases for non-obsolete test cases, 

adapted from [63] 
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Rothermel and Harrold analyzed RTS techniques and determined that four RTS 

techniques are safe for controlled regression testing [63]: 

• linear equation (nonminimization) [22], 

• cluster identification [42], 

• modified entity [16], and 

• graph walk [62, 64-66]. 

Fischer presents the linear equation, a selective retest technique that uses systems of 

linear equations to select test suites that yield segment coverage of modified code. 

Linear equation techniques use systems of linear equations to express relationships 

between tests and program segments.  The analysis time cost in the worst case is 

exponential in the program size, which may be very expensive in practice [22, 63].  

The techniques may be data and computation intensive on large programs due to the 

calculations required to solve systems of linear equations [22, 63]. 

Laski and Szermer [42] present the cluster identification, a technique for 

identifying single-entry, single-exit subgraphs of a control flow graph (CFG), called 

clusters, that have been modified from one version of a program to the next. The 

cluster identification technique computes control dependence information for a 

procedure and its changed version, and then computes the control scope of each 

decision statement in the procedure by taking the transitive closure of the control 

dependence relation. The cluster identification technique is an intra-procedural 

technique and does not support inter-procedural regression testing [42]. Also, the 
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cluster identification technique selects non-modification-traversing tests and is less 

precise than the graph walk technique [63]. 

Chen, Rosenblum, and Vo [16] present the modified entity technique, a regression 

test selection technique that detects modified code entities. Code entities are defined 

as executable portions of code such as functions, or as nonexecutable components 

such as storage locations. First, a program is instrumented to generate traces of all 

functions called during its execution.  Execution of a test case on the instrumented 

system generates a trace of the functions. Also, all of the (static) references between 

the entities in the source code of the program are stored in a database. When a new 

version is created, a source code database is created for the new version. The 

databases for both old and new version of a program are compared to identify the 

entities that were changed. Then the technique compares the list of changed entities 

with the coverage information preserved for each test case, and selects all test cases 

that cover changed entities for retesting the new version of the program. [16]  

Because the modified entity technique may also select tests that do not execute 

modified clusters or modified execution traces, the modified entity technique is less 

precise than the cluster identification or CFG-walk techniques [14, 63]. Although it is 

the most efficient safe RTS technique, the modified entity technique would still take 

more time executing the selected tests than that of cluster identification and graph 

walk techniques [63].  Also, the technique requires the use of a database containing 

information about code [16, 63]. 
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Rothermel and Harrold presented the graph walk technique.  Graph walk 

involves the following five steps: (1) construct the CFGs for a procedure or program 

and its modified version; (2) collect traces for tests in the original test suite that 

associate tests with CFG edges; (3) perform synchronous depth-first traversals of the 

two graphs; (4) comparing the program statements associated with those nodes that 

are reached along prefixes of execution traces; and (5) use these graphs to select tests 

that execute changed code from the original test suite [63, 64].  The graph walk 

techniques select all modification-traversing tests, a superset of fault-revealing test 

cases and modification-revealing test cases, and are safe for controlled regression 

testing. Also, the graph walk technique is the most precise safe technique by selecting 

tests through modified programs at a finer grain [63]. 

Graph walk techniques gain their safeness and precision by increasing the costs 

of analysis [63]. For example, a mapping between each test case and CFG edges 

traversed by the test case must be maintained [64]. Especially for large scale industrial 

software project, it is very complex to analyze the control flow graph and execution 

traces in such a fine granularity for the whole system. Rothermel and Harrold suggest 

that it is helpful to conduct empirical studies to determine whether a safe RTS 

technique, such as the modified entity technique and graph walk technique, offers 

sufficient improvements in fault detection in comparison to a nonsafe but efficient 

RTS technique, such as the firewall technique [63].  A case study that compares the 

total time costs for regression testing (i.e., the overall efficiency) of firewall analysis 



 14 

with those of modified entity technique, the most efficient safe RTS technique, will be 

discussed in Chapter 5.6. 

Srivastava and Thiagarajan at Microsoft developed Echelon [71], a test 

prioritization system. Echelon is used to prioritize tests based upon changes between 

two versions identified by a binary code comparison. Echelon takes as input two 

versions of the program in binary form, and a mapping between the test suite and the 

lines of code it executes. Echelon outputs a prioritized list of test sequences (small 

groups of tests). The researchers analyzed the efficacy of Echelon based on two runs 

of a comparison between two binaries of a 1.8 million line of code office productivity 

application [71]. In the first run, Echelon detected 87% of the defects in the first two 

of 148 test sequences; the remaining 13% of the defects were not detected by any tests 

in the test suite.  In the second run of different binaries, Echelon detected 98% of the 

defects in the first three of 221 test sequences; the remaining 2% of the defects were 

not detected by any tests. 

However, Echelon is a large proprietary Microsoft internal product with a 

significant infrastructure and an underlying binary code manipulation engine, and 

therefore cannot be used by the community at large. Also, Echelon prioritizes, but 

does not eliminate tests [71]. Our goal is to provide information about which test 

cases are not necessary to rerun. 

Mariani et al. [49] proposed (1) a technique for automatically deriving small 

compatibility test suites to evaluate several alternative candidate components that can 
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replace a COTS component within a software system; and (2) a technique for 

prioritizing test cases to improve the efficiency of regression testing of COTS 

components, when integrated in new software systems to update obsolete components. 

Their techniques derive information from software characteristics by focusing on 

behavioral models that are automatically extracted from the execution of test cases on 

previous versions of the software, and by computing priorities according to the 

exercised behaviors instead of the specific changes. Their techniques rely on 

automatic inference of two types of behavioral models: input/output (I/O) and 

interaction models. I/O models are boolean expressions over the values exchanged 

during the computation, describing properties of data values exchanged between 

components, and are inferred from traces with the Daikon engine [20]. Interaction 

models describe sequences of invocations by finite state machines labeled with 

method invocations, and are derived with the kBehavior engine [50]. Regression test 

cases are prioritized according to the complexity of the interactions between the 

system and the target component that are triggered by the test, because "during 

integration testing, long interactions are more likely to expose faults than simple ones, 

which should be already covered by the unit testing of the component." Their 

empirical investigations conducted so far showed that (1) the generated compatibility 

test suites were less than 7% of the original test suites, and could identify 

incompatible components within a set of syntactically-compatible candidates, and 

reveal about 77% of the integration faults; and (2) prioritized test cases could reveal 
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96% of faults while executing less than 10% of test cases. [49] As a dynamic analysis 

technique that automatically synthesizes behavioral models from execution traces, 

their techniques require runtime setup and reliable sets of test suites. Also, their 

techniques prioritize instead of eliminating test cases. Our approach selects test cases 

needed to rerun based on static binary code analysis which will be discussed in 

Chapter 2.4. 

2.3 FIREWALL ANALYSIS 

Leung and White [4, 45, 46, 79] developed firewall analysis for regression testing 

with integration test cases (tests that evaluate interactions among components [38]) in 

the presence of small changes in functionally-designed software. Module 

dependencies, control-flow dependencies, and data dependencies are considered in 

firewall analysis [79].  Dependencies are modeled as call graphs.  Firewall analysis 

restricts regression testing to potentially-affected system elements that directly call 

changed system elements, i.e., system elements that can be reached within one edge 

from changed system elements in the call graph [79, 81]. Affected system elements 

include: modified functions and data structures, and their calling functions.  A 

"firewall" is “drawn” around the changed functions on the call graph. All modules 

inside the firewall are unit and integration tested, and are integration tested with all 

modules not enclosed by the firewall [79].  Test cases that need to be re-run over 

these modules are identified and/or new test cases to exercise new code or 

functionality are generated. For example, as illustrated in the call graph of system 
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elements in Figure 2.2, system elements 1, 2, and 3 are modified, and the testing 

firewall requires that unit and integration tests be conducted for system elements 1-8. 

Kung et al. [40, 41] utilized the firewall concept on an object-oriented system, and 

White and Abdullah [77] expanded the firewall to address more features of an 

object-oriented system. Firewall has also been utilized in the regression testing of 

graphical user interfaces [78]. 

 

Figure 2.2: Illustration of firewall analysis 

Firewall methods can only be guaranteed to select all modification-revealing [63] 

tests and to be safe if all unit and integration tests initially used to test system 

components are reliable. Tests are reliable if the correctness of modules exercised by 
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those tests for the tested inputs implies correctness of those modules for all inputs [63]. 

Unfortunately, test suites are typically not reliable in practice [81], so the firewall 

technique may omit modification-revealing tests and/or may admit some 

non-modification-traversing tests.   When test suites are not reliable, there may exist 

some input i that belongs to the input domain of a modified function p, such that no 

test in the test suite selected by firewall analysis exercises p with input i, and such that 

input i may expose a fault in p.  If some system test t is within the original test suites 

but not within the selected test suite, and such that t causes p to be invoked with the 

input i, then t is fault-revealing, but the firewall technique does not select t. [63] 

However, via empirical studies of industrial real-time systems, firewall analysis was 

shown to be effective [81]. The firewall analysis allowed an average savings of 36% 

of the testing time and 42% of the number of the tests run. No additional errors were 

detected by the customer on the studied software releases that were due to the changes 

in these releases to date. There were additional defects found, but none were 

regression or unit test failures. These were pre-existing defects that were created in 

the original release. [81]. 

Compared to the graph walk techniques, firewall analysis takes the advantage of 

the simplicity and efficiency in change impact and test selection analysis, especially 

for large scale complex industrial software projects with integration test cases [63, 64, 

80, 81]. Firewall analysis is more efficient and precise than the modified entity by 

analyzing less entities in the programs and selecting less test cases, and therefore 
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spends less time on rerunning selected test cases, especially for regression testing 

components in very deep levels of the call chains in large scale complex industrial 

software projects [16, 63, 80].  Firewall is the RTS technique embodied in the 

I-BACCI Version 4. Based upon the results of these empirical studies of firewall, 

these theoretical limitations of firewall should not impair the effectiveness of the 

I-BACCI process in practice. As will be discussed in Chapter 3, our approach extends 

the traditional concept and scope of firewall analysis for use with binary code. 

2.4 BINARY CODE ANALYSIS 

Software developers generally write source code in high level programming 

languages. Compilers translate that source into binary code that computer processors 

can recognize and execute. During maintenance, the development team analyzes the 

source or binary code to determine the course of their corrective action. For example, 

developers can use their knowledge of what was changed at the function/method and 

line of code level to determine what to retest before releasing the evolved software to 

customers. The developers have free reign to analyze their source manually or with 

tools, to test, integrate or revise the code. 

Software purchasers, however, may not have access to the source code.  Binary 

code analysis (BCA) approaches and tools have been developed and utilized in many 

software development-related activities, including program comprehension, software 

maintenance and software security, even by software developers that have access to 

the source code [71].  For example, malicious code or patterns in executable can be 



 20 

detected via BCA to enhance software security [13]. 

Balakrishnan et al. presented the "What You See Is Not What You eXecute" 

(WYSINWYX) phenomenon: There can be a mismatch between what a programmer 

intends and what is actually executed by the processor, e.g., presence or absence of 

procedure calls by the optimizing compiler [9]. Therefore, analyses performed on 

source code can fail to detect certain bugs and vulnerabilities.  Also, analyzing 

executables has other advantages, such as, revealing more accurate information about 

the behaviors that might occur during execution, because an executable contains the 

actual instructions that will be executed [9]. 

Additionally, BCA can be dynamic or static. Dynamic BCA monitors the 

execution of programs.  In contrast, static BCA provides a way to obtain information 

about the possible states that a program reaches during execution without actually 

running the program on specific inputs.  Static techniques explore the program's 

behavior for all possible inputs and all possible states that the program can reach. [9]  

Srivastava and Thiagarajan discussed the advantages of comparing software at the 

binary level rather than the source code level [71]:  

(1) easier to integrate into the build process because the recompilation step 

needed to collect coverage data is eliminated; and  

(2) all the changes in header files (such as constants and macro definitions) have 

been propagated to the affected procedures, simplifying the determination of 

program changes. 
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There are many examples of static BCA. To obtain the strings that contain 

significant high-level information about the program and its communication with the 

runtime environment, Christodorescu et al. [18] presented a static analysis technique 

for recovering possible string values in an executable program when no debug 

information or source code is available.  Malicious code or patterns in executable 

programs can be statically detected [13].  CodeSurfer uses a static-analysis algorithm 

called value-set analysis (VSA) to recover intermediate representations similar to 

those a compiler creates for a program written in a high-level language [8].  Our tool 

utilizes static BCA to identify changes and change impact within the COTS 

components where source code is not available. 

2.5 CHANGE IDENTIFICATION AND IMPACT ANALYSIS 

A key step in choosing regression tests is applying impact analysis [56] to 

identify changes between the new release and the previously-tested version with the 

same source code base. Software change impact analysis, or impact analysis for short, 

estimates what will be affected in software and related documentation if a proposed 

software change is made [7].  However, similar to RTS, most change identification 

and impact analysis approaches utilize the source code of the old and modified 

programs [6, 42, 60, 61, 63, 73, 74].  These approaches are not suitable for 

component testing when source code is not available. 

Laski and Szermer [42] proposed a formal method to identify modifications made 

in a program. Vokolos and Frankl [73, 74] utilized a textual differencing technique to 
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perform regression test selection. Apiwattanapong et al. [6] presented a technique for 

comparing object-oriented programs that identifies both differences and 

correspondences between two versions of a program. The algorithm is based on a 

method-level representation that models the object-oriented features of the language. 

Given two programs, their algorithm identifies matching classes and methods, builds 

a representation for each pair of matching methods, and compares the representation 

to identify similarities and differences. Empirical results show that the technique 

achieves improvements from 17% to over 65% in terms of matching unchanged parts 

of the code, compared to Laski and Szermer's algorithm [6].  Ren et al. [60] 

developed Chianti, a change impact analysis tool for Java. Chianti analyzes two 

versions of a Java program and decomposes their difference into a set of atomic 

changes. Change impact is then reported in terms of affected (regression or unit) tests 

whose execution behavior may have been modified by the applied changes. For each 

affected test, Chianti also determines a set of affecting changes that were responsible 

for the test's modified behavior [60, 61]. Their empirical results show that after a 

program edit, on average the set of affected tests is 62.4% of all the possible tests and 

for each affected test, the number of affecting changes is very small (5.9% of all 

atomic changes in that edit) [61]. 

Wang et al. [75] developed the Binary Matching Tool (BMAT) which compares 

two versions of a binary program without knowledge of the source code changes. The 

implementation uses a hashing-based algorithm and a series of heuristic methods to 
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find correct matches for as many program blocks as possible. The algorithm first 

matches procedures, then basic blocks within each procedure. The implementation of 

BMAT is built on Windows NT® for the x86 architecture, using the Vulcan binary 

analysis tool [70] to create an intermediate representation of x86 binaries. Vulcan 

separates code from data and identifying program symbols. The process enables good 

matching even with shifted addresses, different register allocations, and small 

program modifications [75]. BMAT underlies Echelon [71] (discussed in Chapter 2.2) 

to match blocks in the two binaries. However, like Echelon, BMAT is a proprietary 

tool. We have developed a lightweight non-proprietary tool to perform the similar 

function for the I-BACCI process. 
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CHAPTER 3 
 

 

THE I-BACCI PROCESS 
This chapter presents the I-BACCI RTS process. Chapter 3.1 presents the high 

level information including the evolution of the process. Chapter 3.2 introduces the 

detailed steps of the process.  An illustrative example is presented in Chapter 3.3. 

The limitations of the process is discussed Chapter 3.4. 

3.1 INTRODUCTION AND PROCESS EVOLUTION 

The I-BACCI process is an integration of (1) a static BCA for change 

identification and impact analysis; and (2) the firewall analysis RTS technique. Our 

uniqueness is the combination of these two parts to identify and localize changes with 

the goal of reducing the regression test suite. The I-BACCI Version 4 involves seven 

steps, as shown in Figure 3.1. The first four steps are completed via a BCA process (in 

dash-dotted line frame) using the Pallino tool, which produces a report on affected 

exported component functions. The remaining three RTS steps are completed via 

firewall analysis (in dashed line frame) and ultimately produce the reduced set of test 

cases that need to be rerun. 
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Figure 3.1: The I-BACCI version 4 regression test selection process 

The inputs and output of the I-BACCI process are shown in gray blocks in Figure 

3.1. The input artifacts to the process are the binary code of the COTS components 

(old and new versions); the source code and test suite of the development application; 

and all test cases which are mapped to the glue code functions they execute. These 
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input artifacts are generally available to users of COTS components. The output of the 

I-BACCI process is a reduced suite of regression test cases necessary to exercise the 

changed areas in the new COTS components. 

The I-BACCI process has been evolved to Version 4 through the application of 

the process on both COFF and PE components written in C/C++.  A summary of the 

evolution for the I-BACCI Versions 1 - 4 is shown in Table 3.1. 

Table 3.1: Evolution of the I-BACCI process 

Version 
Number New features 

1 Initial description based upon analysis of COFF components; the 
Decomposer and Trivial Information Zapper (D-TIZ) tool was created 
to perform the decomposition and remove trivial information [87]. 

2 Trivial Identifier of Differences in BInary-analysis Text Zapper 
(TID-BITZ) tool was created to reduce false positives due to shifted 
address and register changes [85]. 

3 Addition of the Call-graph Analyzer - Affected Function Identifier 
(CAAFI) tool to save analysis time and resources [86]. 

4 Generalize to support both COFF and PE components. Tools were 
integrated and improved to Pallino, a comprehensive automation. [88] 

3.2 THE PROCESS STEPS 

The first step of the I-BACCI process is to decompose the binary files of the 

component. The term decomposing is used here to refer to breaking up the binary 

code down into constituent elements, such as code sections and relocation tables.  

Prior to distribution, component source code is compiled into binary code, such 

as .lib and .dll files. Information on the data structure, functions, and function 

calling relationships of the source code is stored in the binary files according to 
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pre-defined formats, such as COFF and PE format, so that an external system is able 

to find and call the functions in the corresponding code sections. Often the first step 

can be accomplished by parsing tools available for the language/architecture. For 

example, COFF and PE binary files can be examined by the Microsoft COFF Binary 

File Dumper (DUMPBIN) [53]. Examples of DUMPBIN output will be shown in 

Chapter 6. 

The second step, filtering trivial information, is frequently necessary because the 

output from the first step may contain trivial information such as timestamps and file 

pointers that are irrelevant to the change identification. Generally, the second step 

cannot be completed via existing tools. Therefore, the Pallino tool was created to 

perform the decomposition and remove trivial information. The output of the second 

step is the raw code section of each function/data, and function/data calling 

relationships for the new version of the component. 

The main objective of the third step of the I-BACCI process is to identify true 

positive changes in the raw binary code of functions and data. The Pallino tool 

removes the false positives caused by differences due to trivial changes, such as 

shifted addresses and register reallocations. The algorithm used in Pallino will be 

introduced in detail in Chapter 4. Also, this step generates call graphs for the new 

version of the component. The call graphs can be drawn using graph generation tools 

such as GraphViz3. Pallino also represents and analyzes the call graphs of components 

of both COFF and PE types automatically in the I-BACCI Version 4. The call graph 
                                                        
3 An open source tool, http://www.graphviz.org/ 
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example of Pallino output will be shown in Figure 4.5, 4.6 and 4.7 in Chapter 4.1. 

For different types of components, the execution order of the second step and the 

third step may be different. For example, for COFF components, the second step is 

executed before the third step. But the third step should be executed before the second 

step for PE components because only the names of exported component functions can 

be obtained in the binary code, such that functions have to be mapped between two 

releases after generating the call graphs for exported component functions. The main 

goal of the second and third steps is to facilitate comparisons and the identification of 

affected exported component functions. 

In the fourth step, we identify changed and new added component functions 

according to the results of prior steps, and then identify affected exported component 

functions by tracing along the call graphs within the component using directed graph 

theory algorithms. Analysis starts from each component function identified as 

changed, and that change is propagated along the call graphs from the third step until 

the exported functions are reached.  The output of the fourth step is a list of all 

affected exported component functions. 

With the source code of glue code functions, the fifth step is to generate function 

call graphs for glue code functions that call exported component functions. The call 

graphs generated from the third step and the fifth step can be integrated together to 

learn how glue code functions are affected by changed and new component functions. 

Currently the call graph is similar to the example of Pallino output will be shown in 
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Figure 4.5, 4.6 and 4.7 in Chapter 4.1. The call graphs for the glue code can be drawn 

using existing open source tools such as Doxygen4. 

Similar to the fourth step, the affected glue code functions are identified in the 

sixth step. Affected glue code functions are functions within the glue code that 

directly call affected exported component functions. These are the functions within 

the application that are potentially affected by the changed function(s) in the 

component, and therefore need to be re-tested. 

In the seventh step, the set of test cases which are mapped to the glue code 

functions they execute are used to select only test cases that cover the affected glue 

code functions, as identified by the steps above. 

3.3 ILLUSTRATION OF THE PROCESS 

The I-BACCI process has the potential to reduce the set of regression test cases 

because it focuses on the affected glue code functions and ignores the unaffected areas 

in the application. The process is illustrated in Figure 3.2. Changed and new added 

component functions are identified, as shown in the black circles. Then, the analysis 

starts from each component function identified as "changed" or "new," backtracks the 

call graphs to identify all functions that directly or indirectly call the changed 

functions, until the glue code functions that can be reached within one edge from 

exported component functions in the call graph are reached.  

                                                        
4 An open source tool, http://www.stack.nl/~dimitri/doxygen/ 
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Figure 3.2: Illustration of the use of firewall RTS in the I-BACCI process 

In this example, exported component functions E1 and E3 are not in the call chain 

of either changed or new component functions, such that are not affected and are 

shown as white circles.  However, exported component functions E2 and E4 are 

affected by changed and new component functions which are shown as black circles. 

Component 

Application 

Exported 
component 
functions 

G1 G2 
G3 

  

 

G4 

 

 

N 

  

 
N 

 

 
G E 

Legend 
Each circle stands for a function.  
Each arrow connector stands for a function call. 
The dotted line comparts application and component functions. 

Black circles stand for the changed functions. 

Black circles with letter ‘N’ stand for the added functions. 

Gray circles stand for the affected functions (unchanged functions that 
are in the call chain of the changed or added component functions). 
White circles stand for the unchanged and unaffected functions. 

Circles with letter ‘G’ and ‘E’ stand for the glue code functions and 
exported component functions, respectively. 
Real line squares stand for the firewalls. Glue code functions in the 
firewall are the affected glue code functions. 

Glue code 
functions 

E1 E2 E4 

E3 

 

 
 

C 



 31 

Therefore, exported component functions E2 and E4 are considered as “changed”, and 

glue code functions in the solid line box (G2 and G4) that call E2 and E4 are the 

affected glue code functions, which need to be re-tested. Although also affected by the 

component change, glue code function G3 is not chosen to be re-tested because G2 

has been re-tested, according to the firewall analysis concept.  

Compared to Figure 2.2 in Chapter 2.3, the I-BACCI process extends the 

traditional concept and scope of application for firewall analysis for use with COTS 

components.  In my approach, firewall analysis is applied on the application instead 

of within the component.  If the traditional firewall is used within the component, a 

significant number of exported component functions might be considered as 

"affected" by the change impact analysis. In this example, the traditional firewall 

would consist of functions E2, E4, and C, and the changed and new added component 

functions. The user of the component does not have any source code and test cases for 

these functions, and therefore can not conduct user-oriented component testing. 

Analysis needs to backtrack the execution traces to find out which exported 

component functions are in the call chain of the component functions that are within 

the firewall. In this example, all exported component functions (E1, E2, E3, and E4) 

would be considered as "affected".  My approach extracts the execution traces from 

glue code to changed or new functions in binary code, i.e., only considers the 

component functions that directly or indirectly call changed or new functions.  The 

reason that my approach ignores the component functions that are called by the 
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changed or new functions in binary code is that, only those tests that execute the 

changed part (instead of all affected part) of the component need to be selected. 

Traditional firewall analysis is then applied on source code of the application that 

incorporates the component, i.e., test cases that execute the glue code of the 

application are selected. In this example, two exported component functions (E2 and 

E4) would be considered as "affected" using my approach. 

3.4 LIMITATIONS 

The I-BACCI process shares an acknowledged technical limitation with all 

existing firewall methods: the potential for reporting false positives and false 

negatives in situations where binary differences are due to factors other than changes 

in source code (e.g. build tools, environment, or target platform). Although the 

I-BACCI process does work with the binary files for the component, the current 

method of analysis precludes identification of such differences. 

The second limitation of the I-BACCI process is its potential for identifying false 

positives by assuming, in tracing the call graphs, that any uses of called functions with 

changed binaries will be affected by the change. However, an actual use of a changed 

function might never exercise the changed logic or data. With further development of 

the I-BACCI process, these unneeded tests may be eliminated from the regression 

suite. 

Also, as will be noted in Chapter 6, license agreement considerations may 

constrain the breadth of applicability of this tool and method. 
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Finally, the I-BACCI process requires as input the test suites with traceability to 

the glue code functions they execute, in order to perform RTS. 
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CHAPTER 4 
 

 

SUPPORTING AUTOMATION:  
PALLINO 
 This chapter presents the comprehensive supporting automation for the I-BACCI 

process, Pallino.  Pallino performs static binary change identification and impact 

analysis and can be modified to support other RTS methods for COTS components.  

The input artifacts to Pallino are the binary code of the components (old and new 

versions), which is generally available to users of COTS components. Pallino outputs 

a list of affected exported component functions. 

 Based on the list of affected exported component functions and the original test 

suite, testers can identify glue code functions that call affected exported component 

functions.  Then the subset of the regression test cases that execute the glue code 

which is affected by the changed areas in the new COTS components can be 

identified. Currently Pallino works on components in Common Object File Format 

(COFF) or Portable Executable (PE) formats written in C/C++. 

The remainder of this chapter is structured as follows.  Chapter 4.1 illustrates 

two examples of how Pallino works.  Chapters 4.2 and 4.3 describe the architecture 

and algorithms of Pallino, respectively.  Chapter 4.4 presents how to use Pallino.  
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The limitations of Pallino are discussed in Chapter 4.5. 

4.1 ILLUSTRATION OF USE 

This chapter presents two examples to illustrate how affected exported 

component functions are identified from binary code.  The examples for COFF 

component and PE component will be discussed in Chapter 4.1.1 and Chapter 4.1.2, 

respectively. 

4.1.1 ILLUSTRATION OF USE WITH COFF COMPONENT 

Windows NT® uses a special format for the executable (image) files and object 

files. The format used in these files is referred to as COFF files5.  Object files created 

from C or C++ programs using many compilers conform to COFF, including the 

Visual C++ and the GNU Compiler Collection (GCC). 

In the example to follow, Release 4 and Release 5 of an ABB component are 

compared. These two releases are referred to as the “old” and the “new” releases. The 

input to Pallino is .lib binary files of the two releases.  Binary code fragments in 

the two releases are shown in Figure 4.1.  

At first glance, we can not see any relationship between the two binary code 

fragments because both the binary code and the address ranges are different.  The 

DUMPBIN tool was used to translate the binary files into plain text. The counterparts 

in the output of DUMPBIN for the two binary code fragments are shown in Figure 

4.2. 

 
                                                        
5 MSDN Library - Visual Studio .NET 2003 
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00003830: ......                            /* Old Release */ 
00003840: 00 07 00 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83 
00003850: 7E 04 01 7D 07 5F 83 C8 FF 5E 59 C3 56 E8 00 00 
00003860: 00 00 8B F8 83 C4 04 85 FF 74 15 6A FF 68 00 00 
00003870: 00 00 E8 00 00 00 00 83 C4 08 8B C7 5F 5E 59 C3 
00003880: 56 E8 00 00 00 00 8B F8 83 C4 04 85 FF 74 18 68 
00003890: 80 00 00 00 68 00 00 00 00 E8 00 00 00 00 83 C4 
000038a0: 08 8B C7 5F 5E 59 C3 56 E8 00 00 00 00 8B F8 83 
000038b0: C4 04 85 FF 74 15 6A FF 68 00 00 00 00 E8 00 00 
000038c0: 00 00 83 C4 08 8B C7 5F 5E 59 C3 8B 4E 04 8D 44 
000038d0: 24 0B 6A 01 50 6A 04 68 FF FF 00 00 51 FF 15 00 
000038e0: 00 00 00 85 C0 74 1B 6A 04 68 00 00 00 00 E8 00 
000038f0: 00 00 00 6A 04 68 00 00 00 00 E8 00 00 00 00 83 
00003900: C4 10 56 E8 00 00 00 00 83 C4 04 5F 5E 59 C3 90 
00003910: 90 90 90 1B 00 00 00 96 00 00 00 14 00 2B 00 00 
00003920: ...... 

00003a60: ......                            /* New Release */ 
00003a70: 00 01 00 00 14 00 00 00 00 A5 00 00 00 07 00 51 
00003a80: 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01 7D 
00003a90: 07 5F 83 C8 FF 5E 59 C3 56 E8 00 00 00 00 8B F8 
00003aa0: 83 C4 04 85 FF 74 15 6A FF 68 00 00 00 00 E8 00 
00003ab0: 00 00 00 83 C4 08 8B C7 5F 5E 59 C3 56 E8 00 00 
00003ac0: 00 00 8B F8 83 C4 04 85 FF 74 18 68 80 00 00 00 
00003ad0: 68 00 00 00 00 E8 00 00 00 00 83 C4 08 8B C7 5F 
00003ae0: 5E 59 C3 8B 4E 04 8D 44 24 0B 6A 01 50 6A 04 68 
00003af0: FF FF 00 00 51 FF 15 00 00 00 00 85 C0 74 1B 6A 
00003b00: 04 68 00 00 00 00 E8 00 00 00 00 6A 04 68 00 00 
00003b10: 00 00 E8 00 00 00 00 83 C4 10 56 E8 00 00 00 00 
00003b20: 83 C4 04 5F 5E 59 C3 90 90 90 90 90 90 90 90 1B 
00003b30: ...... 

Figure 4.1: Binary code fragments in the two releases of a COFF component 

The sections can be located and identified by function signatures, e.g., 

function1 in this example.  Directive information, such as size of raw data and 

function signature, is shown in the “SECTION HEADER” subsection. The “RAW 

DATA” subsection displays the binary code that represents function1 for each 

release, i.e. the code in boldface in Figure 4.1. The “RELOCATIONS” subsection lists 
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which other functions and data are called by function1. Non-trivial difference for 

function1 between the two releases is underscored in Figure 4.1 and 4.2.  Thirty 

six bytes of code (three lines of source code), with three functions and data calls were 

deleted in the new release. 

SECTION HEADER #31                         /* Old Release */ 
   .text name                        // section name 
         ......                       // directive information 
         Communal; sym= _function1          // signature 
         ......                       // directive information 
RAW DATA #31 
00000000: 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01 
00000010: ......         // more binary code for function1 
RELOCATIONS #31 
Offset    Type  Symbol Index Symbol Name 
-------- ----- ------------ ----------- 
0000001B REL32             96 _function2 
0000002B DIR32             B8 string_data1 
00000030 REL32            152 _function3 
0000003F REL32             9D _function4 
00000052 DIR32             B5 string_data2 
00000057 REL32            152 _function3 
00000066 REL32             A4 _function5 
00000076 DIR32             B2 string_data3 
0000007B REL32            152 _function3 
0000009C DIR32             6C _function6 
000000A7 DIR32             AF string_data4 
000000AC REL32            152 _function3 
000000B3 DIR32             AC string_data5 
000000B8 REL32            152 _function3 
000000C1 REL32             BD _function7 

SECTION HEADER #31                         /* New Release */ 
   .text name                        // section name 
         ......                       // directive information 
         Communal; sym= _function1          // signature 
         ......                       // directive information 
RAW DATA #31 
00000000: 51 56 8B 74 24 0C 57 C6 44 24 0B 01 83 7E 04 01 
00000010: ......         // more binary code for function1 
RELOCATIONS #31 
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Offset    Type  Symbol Index Symbol Name 
-------- ----- ------------ ----------- 
0000001B REL32             97 _function2 
0000002B DIR32             B6 string_data1 
00000030 REL32            14F _function3 
0000003F REL32             9E _function4 
00000052 DIR32             B3 string_data2 
00000057 REL32            14F _function3 
00000078 DIR32              C _function6 
00000083 DIR32             B0 string_data4 
00000088 REL32            14F _function3 
0000008F DIR32             AD string_data5 
00000094 REL32            14F _function3 
0000009D REL32             BB _function7 

Figure 4.2: DUMPBIN output of the two releases of a COFF component 

Using the calling relationship information in the “RELOCATIONS” subsection, 

Pallino generates call graphs and identifies the affected exported component functions 

in the new release. Figure 4.3 shows how function1 (in black) affects glue code.  

 

Figure 4.3: Call graph: how component change affects glue code 
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Although three exported component functions are affected by function1, only 

one glue code function (Glue_code_function1) calls one of the affected 

exported component functions.  Therefore, RTS will only need to select test cases for 

Glue_code_function1 from the initial test suite. 

4.1.2 ILLUSTRATION OF USE WITH PE COMPONENT 

Many executables, such as .exe files, Object Linking and Embedding Control 

Extension (OCX) controls, and Control Panel applets (.cpl files) are in PE format. 

When loaded into main memory by the Windows loader, PE files can be mapped 

directly into memory, such that the data structures on disk are the same as those 

Windows uses at runtime. If one knows how to find something in a PE file, he can 

almost certainly find the same information when the file is loaded in memory. [59]  

This attribute of PE files facilitates static BCA. 

However, some characteristics of the PE format make the change identification 

and call graph generation more complex than analyzing COFF files. For example, 

only the names of exported component functions can be obtained in the binary code, 

such that functions have to be mapped between two releases after generating the call 

graphs for exported component functions. Also, the DUMPBIN output for PE files 

contains only one .text section where the raw code fragments for all the functions are 

consecutively arranged. Relocation information is stored in the only .reloc section, as 

shown in Figure 4.4. Whereas the information for each function, such as raw code 

fragment and relocation table, locates in separated sections in the DUMPBIN output 
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for COFF files.  Pallino needs to parse these sections and integrate information to 

achieve the goal of change identification and impact analysis. 

This example illustrates how the exported function foo is affected by changed 

data. Information related to foo in the DUMPBIN output for the two .dll files are 

shown in Figure 4.4. The Relative Virtual Address (RVA) of the raw code segment of 

foo can be found in the exports table in the .rdata section, e.g., 00003BC0 in the old 

release and 000024D0 in the new release. Therefore, the start virtual addresses of the 

raw code segment of foo can be calculated by adding the image base address 

(0x10000000 in this example) to the RVA, i.e., 0x10003BC0 in the old release.  

The binary code that represents foo for each release is in boldface in the "RAW DATA 

#1" subsections. Differences for the raw code segment of foo between the two 

releases are gray highlighted in Figure 4.4. 

SECTION HEADER #1                          /* Old Release */ 
   .text name                      // code section 
          ......                    // directive information 
RAW DATA #1 
...... 
10003BC0: 8B 44 24 04 85 C0 74 13 8B 4C 24 08 51 68 34 82 
10003BD0: 01 10 50 E8 88 6D 00 00 83 C4 0C 8B 44 24 0C 85 
10003BE0: C0 74 13 8B 54 24 10 52 68 2C 82 01 10 50 E8 6D 
10003BF0: 6D 00 00 83 C4 0C 8B 44 24 14 85 C0 74 13 8B 4C 
10003C00: 24 18 51 68 24 82 01 10 50 E8 52 6D 00 00 83 C4 
10003C10: 0C B8 01 00 00 00 C2 18 00 90 90 90 90 90 90 90 
...... 
SECTION HEADER #2 
  .rdata name                      // read only data section 
          ......                    // directive information 
  ordinal hint RVA       name    // exports table 
         ...... 
         6     A 00003BC0 foo 
         ...... 
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SECTION HEADER #3 
   .data name                      // read/write data section 
          ......                    // directive information 
RAW DATA #3 
...... 
10018220: 00 00 00 00 41 53 43 49 49 00 00 00 31 2E 31 2E 
10018230: 38 00 00 00 45 42 50 41 5F 4C 49 43 45 4E 53 49 
...... 
SECTION HEADER #4 
  .reloc name                      // relocation section 
          ......                    // directive information 
BASE RELOCATIONS #4 
     ...... 
    3000 RVA 
     BCE  HIGHLOW      10018234                // call data3 
     BE9  HIGHLOW      1001822C                // call data2 
     C04  HIGHLOW      10018224                // call data1 
     ...... 
SECTION HEADER #1                          /* New Release */ 
   .text name                      // code section 
          ......                    // directive information 
RAW DATA #1 
...... 

100024D0: 8B 44 24 04 85 C0 74 13 8B 4C 24 08 51 68 08 7B 
100024E0: 01 10 50 E8 78 84 00 00 83 C4 0C 8B 44 24 0C 85 
100024F0: C0 74 13 8B 54 24 10 52 68 00 7B 01 10 50 E8 5D 
10002500: 84 00 00 83 C4 0C 8B 44 24 14 85 C0 74 13 8B 4C 
10002510: 24 18 51 68 F8 7A 01 10 50 E8 42 84 00 00 83 C4 
10002520: 0C B8 01 00 00 00 C2 18 00 90 90 90 90 90 90 90 
...... 
SECTION HEADER #2 
  .rdata name                      // read only data section 
          ......                    // directive information 
  ordinal hint RVA       name    // exports table 
         ...... 
         6     A 000024D0 foo 
         ...... 
SECTION HEADER #3 
   .data name                      // read/write data section 
          ......                    // directive information 
RAW DATA #3 
...... 
10017AF0: 25 30 38 6C 78 00 00 00 41 53 43 49 49 00 00 00 
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10017B00: 31 2E 31 2E 39 00 00 00 45 42 50 41 5F 4C 49 43 
...... 
SECTION HEADER #4 
  .reloc name                      // relocation section 
          ......                    // directive information 
BASE RELOCATIONS #4 
     ...... 
    2000 RVA 
     4DE  HIGHLOW      10017B08                // call data3 
     4F9  HIGHLOW      10017B00                // call data2 
     514  HIGHLOW      10017AF8                // call data1 
     ...... 

Figure 4.4: DUMPBIN output of the two releases of a PE component 

These differences are all trivial shifted addresses to be ignored in semantic 

differencing. However, according to the information in the relocation sections, foo 

calls data2, which changes from 0x312E312E38 (ASCII string "1.1.8") to 

0x312E312E39 (ASCII string "1.1.9"), as shown in underscored code in the 

"RAW DATA #3" subsections. The one byte change exactly reflected the modification 

in source code: the value of macro definition "VERSION" changed from "1.1.8" to 

"1.1.9" in the new release. 

Pallino then generates call graphs and identifies how changed data2 affects foo.  

The generated call graph is initially recursively represented in hierarchical plain text, 

as shown in Figure 4.5. 

foo 
   --> SUB_10017B08   //data1 called by foo 
   --> SUB_1000A960   //noNameFunction1 called by foo 
   --> SUB_10017B00   //data2 called by foo 
   --> <SUB_1000A960> //noNameFunction1 called by foo again 
   --> SUB_10017AF8   //data3 called by foo 
   --> <SUB_1000A960> //noNameFunction1 called by foo again 

Figure 4.5: Generated call graph initially represented in plain text 
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Pallino also generates another complex hierarchical representation of the call 

graph for foo, including all raw code of sub-functions and/or data that might be 

called by that exported function, as shown in Figure 4.6.  

 [foo] 8B 44 24 04 85 C0 74 13 8B 4C 24 08 51 68  
--> [SUB_10017B08] 45 42 50 41 5F 4C 49 43 45 4E 53 49 4E 

47 20 4C 69 62 72 61 72 79 00 //data1 
[foo] 50 E8  

--> [SUB_1000A960] 8B 4C 24 0C 57 85 C9 74 7A 56 53 8B D9 
8B 74 24 14 F7 C6 03 00 00 00 8B 7C 24 10 75 07 C1 E9 02 75 
6F EB 21 8A 06 46 88 07 47 49 74 25 84 C0 74 29 F7 C6 03 00 
00 00 75 EB 8B D9 C1 E9 02 75 51 83 E3 03 74 0D 8A 06 46 88 
07 47 84 C0 74 2F 4B 75 F3 8B 44 24 10 5B 5E 5F C3 F7 C7 03 
00 00 00 74 12 88 07 47 49 0F 84 8A 00 00 00 F7 C7 03 00 00 
00 75 EE 8B D9 C1 E9 02 75 6C 88 07 47 4B 75 FA 5B 5E 8B 44 
24 08 5F C3 89 17 83 C7 04 49 74 AF BA FF FE FE 7E 8B 06 03 
D0 83 F0 FF 33 C2 8B 16 83 C6 04 A9 00 01 01 81 74 DE 84 D2 
74 2C 84 F6 74 1E F7 C2 00 00 FF 00 74 0C F7 C2 00 00 00 FF 
75 C6 89 17 EB 18 81 E2 FF FF 00 00 89 17 EB 0E 81 E2 FF 00 
00 00 89 17 EB 04 33 D2 89 17 83 C7 04 33 C0 49 74 0A 33 C0 
89 07 83 C7 04 49 75 F8 83 E3 03 75 85 8B 44 24 10 5B 5E 5F 
C3 //noNameFunction1 
[foo] 83 C4 0C 8B 44 24 0C 85 C0 74 13 8B 54 24 10 52 68  

--> [SUB_10017B00] 31 2E 31 2E 39 00 //data2 
[foo] 50 E8  

--> <SUB_1000A960> //noNameFunction1 (again) 
[foo] 83 C4 0C 8B 44 24 14 85 C0 74 13 8B 4C 24 18 51 68  

--> [SUB_10017AF8] 41 53 43 49 49 00 //data3 
[foo] 50 E8  

--> <SUB_1000A960> //noNameFunction1 (again) 
[foo] 83 C4 0C B8 01 00 00 00 C2 18 00 

Figure 4.6: Generated call graph in complex representation 

All code is grey highlighted in Figure 4.6. The symbol “-->” indicates the calling 

direction. For example, foo calls data1, noNameFunction1, data2, and data3 in Figure 

4.5 and 4.6. The signature of a non-exported component function or data, which can 

not be retrieved from the binary file, is represented by a string “SUB_” followed by 
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the start virtual address of this function or data. When has been represented, a 

function or data is then represented by its signature enclosed by a pair of brackets, e.g., 

<SUB_1000A960>.  Figure 4.7 shows the counterpart graphical call graph. Glue 

code functions that call foo are then selected for re-testing. 

 

Figure 4.7: Call graph: How changed data affects exported component function 

4.2 ARCHITECTURE 

The overall architecture of Pallino conforms to the model-view-controller (MVC) 

model, as shown in Figure 4.8.  

 

Figure 4.8: Overall architecture 

The solid lines represent direct associations, and the dashed lines represent 

indirect associations.  An MVC architecture separates data (model) and user 
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interface (view) concerns, so that changes to the user interface do not affect the data 

handling, and that the data can be reorganized without changing the user interface. 

According to the object-oriented software design principle of "program to an 

interface, not an implementation" [23], a generic interface 

BinaryFileFormatModel was created to represent the abstract concept of the 

binary file format model.  The concrete types of binary file format model, including 

COFFFormat and PEFormat, implement the generic interface and represent the 

data structure of COFF and PE binary file formats, respectively.  The client code 

accesses objects of a concrete binary file format model only through their abstract 

interface.  This pattern allows for new derived types of binary file format model to 

be introduced with no change to the code that uses the base object, increasing the 

extensibility of the tool. Functionality that processes other binary file format, such as 

Executable and Linking Format (ELF)6, can be easily added into the system without 

affecting many other modules, as shown in Figure 4.9. 

 

Figure 4.9: Binary File Format Model 

Additionally, we adapted the data structures to the functionality of change 

identification and impact analysis. Not all information in the binary file formats are 
                                                        
6 A common standard file format for executables, object code, shared libraries, and core dumps, which 

was chosen as the standard binary file format for Unix and Unix-like systems. 

BinaryFileFormatModel 

COFFFormat PEFormat ELFFormat 
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needed to be described in the models used in Pallino, for example, time date stamps 

and number of symbols.  The data structure of PEFormat is shown in Figure 4.10. 

Class PEFormat { 
PEFileHeader      fileHeader;    //File header 
PEOptionalHeader optHeader;     //Optional header 
PESectionHeader  textHeader;    //.text section header 
PESectionHeader  rdataHeader;   //.rdata section header 
String             rdataRaw;      //.rdata section data 
PESectionHeader  dataHeader;    //.data section header 
String             dataRaw;       //.data section data 
PESectionHeader  idataHeader;   //.idata section header 
String             idataRaw;      //.idata section dara 
PESectionHeader  relocHeader;   //.reloc section header 
PEExportTable    exportsTable;  //Exports table 
PEImportTable    importsTable;  //Imports table 

} 

Figure 4.10: PE format data structure 

In the function/data model, functions and data are abstracted as the same class 

(PEFunctionData) with the following main attributes: signature, start virtual 

addresses, end virtual address, raw binary code, and relocation list. Functions without 

explicit signatures (e.g. non-exported functions in PE files) and all data use start 

virtual addresses as their signatures. 

The view module of the architecture includes the control panel, and result 

representation and displaying, which will be described in Chapter 4.4 with the 

illustration of use. 

The controller module is responsible for processing and responding the input 

event from the user interface. First, the controller validates the input and recognizes 

the type of the input binary file by the magic number to decide to which algorithm it 
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will pass the request. A magic number is a pre-defined constant, typically located at 

the first few bytes of a binary file, used to identify the file type.  For example, PE 

files start with the ASCII string 'MZ' (0x4D5A), and the magic number of a COFF file 

is the ASCII string “!<arch>\n” (0x213C617263683E0A).  The controller 

then executes the algorithm and accesses the corresponding model.  Finally, the 

results are produced and returned to the view module and user interface. 

4.3 ALGORITHMS 

In this chapter, the algorithms that were developed for components in COFF and 

PE formats are described, respectively. 

4.3.1 ALGORITHMS FOR COFF COMPONENTS 

At first, DUMPBIN was invoked to convert the binary library code into plain text. 

An example of the DUMPBIN output is shown in the Figure 4.11. 

int ClassA::functionA(int s) {           /* Source Code */ 
   return state==s; 
} 
SECTION HEADER #78/* Corresponding section in Old Release */ 
   .text name 
        0 physical address 
        0 virtual address 
       20 size of raw data 
    722B file pointer to raw data 
        0 file pointer to relocation table 
        0 file pointer to line numbers 
        0 number of relocations 
        0 number of line numbers 
60501020 flags 
           Code 
           Communal; sym= "public: virtual int __thiscall 
ClassA::functionA(int)" 
           16 byte align 
           Execute Read 
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RAW DATA #78 
00000000: 8B 89 A0 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94 
00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90 
SECTION HEADER #79/* Corresponding section in New Release */ 
   .text name 
        0 physical address 
        0 virtual address 
       20 size of raw data 
    73D1 file pointer to raw data 
        0 file pointer to relocation table 
        0 file pointer to line numbers 
        0 number of relocations 
        0 number of line numbers 
60501020 flags 
           Code 
           Communal; sym= "public: virtual int __thiscall 
ClassA::FunctionA(int)" 
           16 byte align 
           Execute Read 
RAW DATA #79 
00000000: 8B 89 CC 06 00 00 8B 54 24 04 33 C0 3B CA 0F 94 
00000010: C0 C2 04 00 90 90 90 90 90 90 90 90 90 90 90 90 

Figure 4.11: Source code and DUMPBIN output for functionA in ClassA 

Function names, binary code representation of the functions, and relocation tables 

are all clearly described in the output text of DUMPBIN.  The algorithm scans the 

output of DUMPBIN, saves the code sections of functions into separate files, and 

collects and saves the relocation tables of the functions into a text file (henceforth 

called "relocation table set"). The function list is fed into next step to perform 

differencing. The relocation table set is utilized to generate and analyze call graphs of 

the components in later steps. 

In the next step, it is necessary to reduce the number of false positive changes 

identified due to trivial changes, such as shifted addresses and register reallocations. A 
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large number of false positives were observed in the initial case study of the I-BACCI 

Version 1 [87], which increased the number of glue code functions that were 

identified for retesting. To explore the cause of the false positives, the analyzer 

examined the source code and the associated binary library files of the component. A 

large amount of false positives were caused by changes in registers used and 

addresses of variables and functions, which typically would not cause functional 

changes in the code. 

For example, as shown in bold in the Figure 4.11, the binary code 

8B89A0060000 means "copy the operand in the address of register ECX plus offset 

0x06A0 to register ECX", where 8B89 is the opcode of the instruction and 

A0060000 is the address offset. Therefore, in this example, the only difference in 

binary is that the address offset was changed from A0060000 to CC060000. Further 

examination of the source code showed that seven new function declarations and one 

new variable definition were added before the variable state was defined in one of the 

header files included in the source file of the new release. As a result, the offset of the 

variable state was changed accordingly.  In this case, the binary code change 

identified is not a real change and can be ignored in the change identification. The 

binary code like 8B89A0060000 is called an example of a "binary code comparison 

false positive pattern."  

Many such false positive patterns were found in the first case study. The full list 

of these empirical patterns is shown in Appendix A. False positive patterns are 
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identified by their prefix. The prefix of a pattern can be the opcode of an instruction 

(e.g., FF50), or first few bits of an opcode (e.g., 8B8) which means all opcode that 

begins with these bits are prefixes of false positive patterns (e.g., from 8B80 to 

8B8F). The algorithm scans the two versions of raw binary code of a function. For 

each false positive pattern, when the prefix of the pattern is found, the corresponding 

numbers of bytes from the start byte of the prefix are marked as a constant symbol 

(e.g., "_") in the raw code. Only if the remaining bytes of the two versions of binary 

code are the same, the function is considered as unchanged. The algorithm reduced 

the false positive rate to less than 8% in the case studies [86]. 

However, this algorithm may introduce false negatives by eliminating real code 

changes [85]. As shown in Table 4.1, there were no false negative without using the 

algorithm. The use of the algorithm introduced less than 2% false negatives in our 

case studies. The high false positive rate without the algorithm would lead to much 

more affected functions in both component and application. 

The algorithm then builds and analyzes the call graphs of components of COFF 

type automatically using the relocation table set generated in the first step, and 

changed functions identified in the second step.  The relocation table set of a 

component is converted into an adjacency-matrix [19] to represent call graphs of the 

functions in the component. For each changed function, the algorithm then backtracks 

the call graphs to identify all functions that directly or indirectly call the changed 

function. 
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Table 4.1: Analysis of false positives and false negatives 

(FP is false positive; FN is false negative.) 

Comparisons 
% of FPs 
without 

the algorithm 

% of FPs 
with 

the algorithm 

% of FNs 
without 

the algorithm 

% of FNs 
with 

the algorithm 
A1 vs. A2 90.1% 5.6% 0% 0% 
A2 vs. A3 0% 0% 0% 0% 
A3 vs. A4 0% 0% 0% 0% 
A4 vs. A5 0% 0% 0% 0% 
A5 vs. A6 0% 0% 0% 0% 
B1 vs. B2 59.3% 4.9% 0% 0.5% 
B2 vs. B3 12.4% 6.1% 0% 1.6% 
B3 vs. B4 0% 0% 0% 0% 
B4 vs. B5 76.9% 7.7% 0% 0% 

The outputs of Pallino for analyzing COFF components include: (1) the call 

graph of each exported component function; (2) a differencing report on the two 

releases; and (3) a list of all affected exported component functions in the new release. 

4.3.2 ALGORITHMS FOR PE COMPONENTS 

The algorithm examines the binaries from coarse to fine granularity step by step. 

First, the tool invokes DUMPBIN to translate the illegible binary library files into 

readable plain text files. This file-level granularity step assumes that file names do not 

change between releases. Then a file reader automatically scans the DUMPBIN 

output and loads useful information, such as instructive information in file header, 

section headers, exports table and imports table, into the predefined data structure 

PEFormat which is constructed according to the PE file format specification. File 

and section information is ready to facilitate future lookup after this section-level step. 

The next finer granularity is in function/data-level. Binary code of functions and 
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data are stored consecutively in .text section and data sections (.rdata, .data, .idata, 

etc.), respectively. However, only names of exported component functions are 

available. Other functions and all data have to be labeled by their start virtual 

addresses. The data structure PEFunctionData, as discussed in Chapter 4.2, is 

used to represent the functions and data. The relocation table is read from the .reloc 

section and then converted into a Hashtable called relocation index. For each 

key-value pair in the relocation index, the key is a calling virtual address where the 

control flow jumps to another function or data, and the start virtual address of the 

function or data being called (a.k.a. target virtual address) is stored as the value. 

Function calling virtual address and target virtual address can also be calculated 

according to the position of each call instruction and the address offset following each 

call instruction, respectively. Because only binary code is available instead of 

assembly code, the tool searches opcode E8 and E9 which represent "call near" in the 

Intel instruction set7 to locate the position of each function call. After finding all 

functions and data start virtual addresses, an array in PEFunctionData type is 

constructed and the raw code of the .text and data sections is decomposed into 

separate functions or data. 

The function/data call graphs and full code representation for all exported 

component functions can be generated recursively following the calling track. A few 

steps that remove trivial bytes are also conducted during processing of this level. For 

                                                        
7 Intel® Architectures Software Developer's Manuals,  

http://developer.intel.com/products/processor/manuals/index.htm 
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example, most raw code of functions/data is followed by a few useless bytes (e.g. 90, 

CC) for the purpose of alignment. 

Further instruction-level comparisons can be conducted after the function/data 

level if the full code representations of an exported component function in two 

releases are still different. For example, false positives may be caused by register 

allocation changes from build to build. After all of the above steps, a report on 

differencing of exported component functions is generated. This report can be used to 

identify affected application code and then select proper regression test cases. 

The outputs of Pallino for analyzing PE components include: (1) the call graph of 

each exported component function; (2) a full binary code representation of each 

exported component function, including all code of sub-functions and data that might 

be called by that exported function; (3) a differencing report on the two releases; and 

(4) a list of all affected exported component functions in the new release. 

4.4 USING PALLINO 

Although developed in Java, Pallino is transformed to a Windows executable file 

(.exe) by exe4j8 to facilitate the use in the Windows operating environment. An 

illustrative screen shot of the main console of Pallino is shown in Figure 4.12. 

There are three panes on the main console: input pane, run pane, and results pane.  

The user of Pallino first specifies the binary files of both old and new versions of a 

component, and a working directory in the input pane.  The specified working 

directory is for the purpose of saving results and running log.  Once the input is 
                                                        
8 http://www.ej-technologies.com/products/exe4j/overview.html 
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specified and the "Start to Run" button in the run pane is clicked, Pallino accepts and 

validates the input, executes the corresponding algorithms according to the file format, 

and upon completion, refreshes the results in the results pane. 

 

Figure 4.12: Pallino screen shot 

The exported component functions for both versions of the component are shown 

in a table in the results pane, matched by the function signatures, i.e., functions with 

the same signatures are shown in the same row.  The user can clearly see which 
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functions are new added, changed, affected, or unaffected in the new version of the 

component in the middle column of the result table.  Further explanation, including a 

list of all affected exported component functions for the new version of the 

component, is shown in a text area in the results pane.  The results are also saved 

into files for the RTS analysis of the I-BACCI process. The running log can also be 

saved to a file by clicking on the "Save log..." button. 

4.5 LIMITATIONS 

Pallino works only when the releases of components are built by the same 

compiler. If two compared releases are built by different compilers or linkers, Pallino 

will yield a significant number of false positives.  
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CHAPTER 5 

 

 

CASE STUDIES 
The I-BACCI Version 4 process was applied to four industrial case studies to 

identify reduced test suites. A fifth case study was conducted to evaluate the total time 

costs for regression testing, i.e., the overall efficiency, of firewall analysis RTS 

technique which is used in the I-BACCI process by comparing with the modified 

entity RTS techniques. 

The first case study (henceforth called Case 1) was conducted on a 757 thousand 

lines of code (KLOC) ABB application (henceforth called Application A) written in 

C/C++. Application A uses a 67 KLOC internal ABB software component (henceforth 

called Component A) of .lib files written in C. Six incremental releases of Component 

A were analyzed and compared (henceforth referred to as Release A1 through Release 

A6, respectively). Each Component A release is a library file with size of about 800 

kilobyte. 

A second case study (henceforth called Case 2) was conducted on a 40 KLOC 

ABB application (henceforth called Application B) written in C/C++. This product 

uses a 300 KLOC internal ABB software component (henceforth called Component B) 

of .lib files written in C. Five incremental releases of Component B were analyzed 
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and compared (henceforth referred to as Release B1 through Release B5, respectively). 

Each Component B release contains eight libraries with total size of 1.39 ~ 1.65 

megabyte. The full, retest-all strategy takes over four man months of effort to run. 

The third case study (henceforth called Case 3) was conducted with the same 

application in Case 1 (Application A). But for Case 3, Application A uses another 

three KLOC internal ABB software component (henceforth called Component C) of a 

DLL file written in C.   Four incremental releases of Component C were analyzed 

and compared (henceforth referred to as Release C1 through Release C6, respectively). 

Each Component C release contains a DLL file with size of about 110 kilobytes. 

The fourth case study (henceforth called Case 4) was conducted on a 405 KLOC 

ABB application (henceforth called Application D) written in C/C++. Application D 

incorporates 115 internal ABB software components of 104 .dll and 11 .ocx files 

written in C/C++. Four components were selected for study (henceforth referred to as 

Component D1 through Release D4, respectively). Each component is a Component 

Object Model (COM) [83] component, where D1, D2, and D3 are DLL components 

and D4 is an OCX component. 

The COM is a software architecture that allows the components made by 

different software vendors to be combined into a variety of applications. COM defines 

a standard for component interoperability, is not dependent on any particular 

programming language, is available on multiple platforms, and is extensible. [83]  

The same four functions appear in the exports table of each COM component: 
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DllCanUnloadNow, DllGetClassObject,  DllRegisterServer, and 

DllUnregisterServer. These functions are used to register/unregister the 

COM component, and are not the real interface functions that called by external 

systems.  It is difficult to automatically find the component interface functions that 

can be called by external systems within the binary code of COM components. We 

have to first use Microsoft’s OLE/COM Object Viewer (oleview.exe) [54] to 

extract the .idl file for the COM component. An interface description language (or 

interface definition language) (IDL) is a computer language used to describe a 

software component's interface in a language-neutral way, enabling communication 

between software components that do not share a language.  Then we use the IDA 

Pro9 tool to identify the start virtual addresses of the component interface functions 

can be called by external systems, and then use the Pallino tool to generate and 

analyze call graph for the real interface functions with in the components. 

The subjects examined in our case studies are summarized in Table 5.1. 

Table 5.1: Summary of case study subjects 

Case Application Component Number 
of 

Releases 
1 A: 757 KLOC A: one 67 KLOC .lib file in C 6 
2 B: 40 KLOC B: eight .lib files in C, totally 300 KLOC 5 
3 A: 757 KLOC C: one 3 KLOC .dll file in C 4 

D1: one 3.9 KLOC COM DLL in C/C++ 4 
D2: one 2.5 KLOC COM DLL in C/C++ 4 
D3: one 4.5 KLOC COM DLL in C/C++ 4 

4 D: 405 KLOC 

D4: one 1.8 KLOC COM DLL in C/C++ 4 

                                                        
9 A disassembler and debugger, http://www.datarescue.com/ 



 59 

These software combinations were chosen for these case studies because (1) the 

numbers of test cases for each function of the applications were available; (2) multiple 

releases of the components were available; and (3) the high cost of executing the 

retest-all strategy for such large projects demonstrates the potential value of achieving 

regression test reductions. 

For Case 1, 2, and 3, the author of this dissertation was the analyzer and Brian 

Robinson from ABB was the verifier. The analyzer conducted the first six steps of the 

I-BACCI Version 4. The results of the identified changes for all comparisons and all 

call graphs for the components were preliminarily verified by the analyzer, using 

source code for the component to determine the accuracy of the analysis post hoc. 

Then, the verifier determined the numbers and percent reduction of the regression test 

cases needed, based on the list of all the affected glue code functions and the original 

test suite. The verifier also confirmed the efficacy of the RTS process by examining 

the failure records of retest-all black-box testing.  For Case 4, the analyzer first 

examined defect reports to analyze the association between defects and components to 

ensure that regression failures exist for the component/release. This step was 

conducted to avoid the situation that there is no regression failure found so that we 

could not obtain support for the effectiveness of the I-BACCI process through this 

case study. Four components that are associated with defects were selected for this 

case study.  The analyzer and verifier then collaboratively conducted the I-BACCI 

process as have done in the first three case studies. 
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The rest of this Chapter presents all four case studies with the I-BACCI Version 4, 

which includes the Pallino tool discussed in Chapter 4. The effectiveness of the 

I-BACCI process based upon an examination of the failure records of retest-all 

black-box testing is reported as well. The analysis of total time costs for different RTS 

strategies for each release of the first three case studies are shown in Chapter 5.5.  

Additionally, Chapter 5.6 discusses the fifth case study that was conducted to evaluate 

the total time costs for regression testing of firewall analysis RTS technique by 

comparing with the modified entity RTS technique. 

5.1 RESULTS OF CASE 1 

The results of applying the I-BACCI Version 4 on Case 1 (Application A and 

Component A) are shown in Table 5.2.  The interface between Application A's glue 

code functions and Component A was examined, to establish a baseline of affected 

functions in the application. In total, 60 functions (in 50 C++ files) in Application A 

call 89 functions of Component A. In the worst case, all 60 Application A functions 

would be affected by the changes in the Component A and would need to be re-tested. 

The first analysis was conducted between Release A1 and Release A2 of 

Component A. The analysis showed that 18 functions were changed out of the 941 

functions in Release A2, including three new functions. However, firewall analysis 

showed that 319 exported functions in Component A were affected by the identified 

changes. All 60 functions in Application A were affected. As a result, there was no 

regression test case reduction. 
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Table 5.2: Case 1 results by the I-BACCI Version 4 

Release Comparisons Metrics 
1 vs 2 2 vs 3 3 vs 4 4 vs 5 5 vs 6 

Total changed functions identified 18 23 1 10 3 
True positive ratio10 100% 100% 100% 100% 100% 
False positive ratio11 5.6 % 0 % 0 % 0 % 0% 
Affected exported component functions 319 71 2 55 39 
% of affected exported component 
functions 

96.4% 21.5% 0.6% 16.6% 11.8% 

Affected glue code functions 60 2 0 0 0 
% of affected glue code functions 100% 3.3% 0% 0% 0% 
Total test cases needed 592 8 0 0 0 
% of test cases reduction 0% 98.7% 100% 100% 100% 
Actual regression failures found 0 0 0 0 0 
Regression failures detected by reduced 
test suite 

0 0 0 0 0 

The second analysis correctly identified 23 changed component functions, and 71 

exported functions in the component were affected by the identified changes. Only 

two glue code functions called the affected exported component functions. Therefore, 

98.7% regression test case reduction was achieved. 

The latter three analyses identified only a few changes in the components and no 

function in Application A called any affected functions in the components, although 

the changes did affect some exported functions in the components. Therefore, 100% 

regression test case reduction for these three comparisons was achieved. 

After all analysis was complete, the verifier examined the failure records of 

retest-all black-box testing. There were no regression test failures found. Therefore, 

                                                        
10 True positives ratio is number of real changed functions found divided by total number of real 

changed functions. 
11 False positive ratio is number of identified changed functions that are not really changes, divided by 

number of (correctly and incorrectly) identified changed functions. 
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we could not obtain support for the effectiveness of the I-BACCI process through this 

case study. In the future case studies, we were sure to select case studies that 

contained regression test failures. 

Additionally, the postmortem source code difference analysis showed that the 

change identification was correct except that one false positive existed in the 

comparison between Release A1 and Release A2. No false negative was found in the 

analyses. 

5.2 RESULTS OF CASE 2 

Similarly, the results of applying the I-BACCI Version 4 on Case 2 (Application 

B and Component B) are shown in Table 5.3. The interfaces between Application B's 

glue code functions and Component B were also examined to establish a baseline of 

affected functions in the application. The glue code functions changed in Release B3 

of the application. For the former version of glue code functions (i.e. in Release 2), 

there were 123 exported functions in the component. In total, 46 glue code functions 

(in six C files) called 81 out of the 123 exported functions of the component. In the 

worst case, all of the 46 functions would be affected by the changes in the component 

and would need to be re-tested. Similarly, at most 59 glue code functions in the latter 

version would be affected. 

The first analysis was conducted between Release B1 and Release B2 of the 

component. The BACCI analysis showed that 388 functions were changed out of 

1,143 functions in Release B2. Firewall analysis showed that 84 exported functions in 
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Component B were affected by the identified changes and 38 glue code functions 

were affected. As a result, 30% of the regression test cases can be reduced. 

Table 5.3: Case 2 results by the I-BACCI Version 4 

Release Comparisons Metrics 
1 vs 2 2 vs 3 3 vs 4 4 vs 5 

Total changed functions identified 338 1,238 4 13 
True positive ratio 99.5% 98.4% 100% 100% 
False positive ratio 4.9% 6.1% 0% 7.7% 
Affected exported component functions 84 122 1 8 
% of affected exported component functions 68.3% 100% 0.8% 6.6% 
Affected glue code functions 38 59 1 6 
% of affected glue code functions 82.6% 100% 1.7% 10.7% 
Total test cases needed 151 215 11 20 
% of test cases reduction 30% 0% 95% 91% 
Actual regression failures found 4 8 1 0 
Regression failures detected by reduced test 
suite 

4 8 1 0 

More reduction was achieved in the latter two comparisons (Release B3 vs. B4; 

Release B4 vs. B5): only 5% and 9% of the test cases needed to be re-run. However, 

due to the great extent of changes between Release B2 and B3, no regression test case 

reduction was found.  Examination on the failure records of retest-all black-box 

testing supported the effectiveness of the I-BACCI Version 4 process as all 13 

regression test failures would still be detected by the reduced regression test suite. 

In the second case study, source code difference analysis showed that the tool was 

able to reduce false positives to only 6% on average while still having a low false 

negative rate (about 1%). The false negatives were caused because a changed function 

contained a function call which was replaced by another function call. The current 

tool ignored the address changes of the changed function call. 
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5.3 RESULTS OF CASE 3 

The results of applying the I-BACCI Version 4 on Case 3 are shown in Table 5.4. 

To establish a baseline of affected functions in the application, the interface between 

Application A's glue code functions and Component C was examined. Only two 

functions in Application A call four functions of Component C. 

The first analysis was conducted between Release C1 and Release C2. Of the 49 

exported component functions in Release C2, 45 were changed. Both of the glue code 

functions in Application A that called Component C were affected. As a result, there 

was no regression test case reduction. The current tools identified all changes but had 

significant false positives when two versions were not built by the same linker. 

Table 5.4: Case 3 results by the I-BACCI Version 4 

Comparisons Metrics 
1 vs 2 2 vs 3 3 vs 4 

Same linker? No Yes Yes 
Affected exported component functions 45 9 44 
True positive ratio 100% 100% 100% 
False positive ratio 60% 0% 0% 
% of affected exported component functions 91.8% 18.4% 84.6% 
Affected glue code functions 2 0 2 
% of affected glue code functions 100% 0% 100% 
Total test cases needed 31 0 31 
% of test cases reduction 0% 100% 0% 
Actual regression failures found 1 0 0 
Regression failures detected by reduced test suite 1 0 0 

The second analysis comparing Release C2 and Release C3 correctly identified 

nine affected exported component functions, but no function in Application A called 

any affected functions in the components. Therefore, we achieved 100% regression 

test case reduction for this comparison. 
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The result of the third analysis between Release C3 and Release C4 was similar 

to that of the first analysis, but no false positives were identified because the current 

tools worked well when comparing two releases built by the same linker. 

The verifier examined the failure records of retest-all black-box testing. One 

regression test failure was found in the first comparison. No false negatives were 

found in any analyses. 

5.4 RESULTS OF CASE 4 

The results of applying the I-BACCI Version 4 on Case 4 are shown in Table 5.5. 

Table 5.5: Case 4 results by the I-BACCI Version 4 

Comparisons Case Metrics 
1 vs 2 2 vs 3 3 vs 4 

Same linker? Yes Yes Yes 
Affected exported component functions 0 0 1 
True positive ratio 100% 100% 100% 
False positive ratio 0% 0% 0% 
% of affected exported component functions 0% 0% 7.7% 
Total test cases needed 0 0 101 
% of test cases reduction 100% 100% 88.0% 
Actual regression failures found 0 0 1 

4.1 

Regression failures detected by reduced test suite 0 0 1 
Same linker? Yes Yes Yes 
Affected exported component functions 0 0 3 
True positive ratio 100% 100% 100% 
False positive ratio 0% 0% 33.3% 
% of affected exported component functions 0% 0% 75% 
Total test cases needed 0 0 81 
% of test cases reduction 100% 100% 90.4% 
Actual regression failures found 0 0 1 

4.2 

Regression failures detected by reduced test suite 0 0 1 
Same linker? Yes Yes Yes 
Affected exported component functions 0 10 0 
True positive ratio 100% 100% 100% 

4.3 

False positive ratio 0% 90% 0% 
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% of affected exported component functions 0% 66.7% 0% 
Total test cases needed 0 21 0 
% of test cases reduction 100% 97.6% 100% 
Actual regression failures found 0 1 0 
Regression failures detected by reduced test suite 0 1 0 
Same linker? Yes Yes Yes 
Affected exported component functions 3 0 0 
True positive ratio 100% 100% 100% 
False positive ratio 33.3% 0% 0% 
% of affected exported component functions 42.9% 0% 0% 
Total test cases needed 56 0 0 
% of test cases reduction 93.4% 100% 100% 
Actual regression failures found 1 0 0 

4.4 

Regression failures detected by reduced test suite 1 0 0 

Among the four sub case studies, no affected exported component functions were 

missed by Pallino, which means there was no any false negative. All modifications 

and their impact that associated with all the defects can be identified correctly. 

5.5 TIME COSTS ANALYSIS 

Pallino were run on an IBM T42 laptop with one Intel® Pentium® M 1.8 GHz 

processor and one gigabyte RAM.  The comparisons of total time costs among 

different RTS strategies for each release of the first three case studies are shown in 

Table 5.6. The time cost analysis was not able to be conducted on Case 4 due to the 

lack of data in test execution time costs. One assumption is that the mapping of all test 

cases with the glue code functions they execute is ready.  Also, another limitation is 

that we only have rough estimation on time costs of test execution. 

The range of values in test execution was based upon the results of tests reduction 

of applying the I-BACCI process to the releases.  When significant changes were 

identified in the new release and no test cases could be eliminated, the full test 
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execution cycle is necessary, there is no reduction compared to retest-all strategy, but 

an increase in analysis time.  Conversely, when the changes in the component do not 

affect the application, or there is no change identified in the component, the test 

execution cycle is zero because no test cases need to be re-run. In this case, the total 

time cost for regression testing is merely the time cost of the BCA and RTS analysis. 

Table 5.6: Rough total time costs 

Time Costs (for each release) Case Approach 
BCA RTS Test Execution Total 

Retest-all 0 0 1 month 1 month 
I-BACCI 

(manually) 
5 days 2 hrs 0 ~ 1 month 5 days ~ 1.1 month 

 
1 

I-BACCI 
(w/ Pallino) 

2 mins 2 hrs 0 ~ 1 month 2 hrs ~ 1 month 

Retest-all 0 0 5 months 5 months 
I-BACCI 

(manually) 
15 days 1 hr 0 ~ 5 month 15 days ~ 5.5 month 

 
2 

I-BACCI 
(w/ Pallino) 

5 mins 1 hr 0 ~ 5 month 1 hr ~ 5 month 

Retest-all 0 0 4 days 4 days 
I-BACCI 

(manually) 
much more 
than 4 days 

2 hrs 0 ~ 4 days much more than 
4 days 

 
3 

I-BACCI 
(w/ Pallino) 

15~19 mins 2 hrs 0 ~ 4 days 2.5 hrs ~ 4 days 

Although there is no time costs in BCA and RTS, retest-all strategy takes a large 

amount of time in test execution. Conducting the I-BACCI process without 

automation can be time consuming as well, especially for analyzing PE components. 

For example, the BCA of Case 3 is very complex and it would take much more time 

than just retest all test cases in four days. With the help of Pallino, the I-BACCI 

process can be completed in about one to two person hours for each release of the 

case studies.  Depending upon the percentage of test cases reduction determined by 
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the I-BACCI process, the total time cost of the whole regression testing process can 

be reduced from five person months by retest-all strategy to one person hour in the 

best case. 

5.6 FIREWALL RTS VS. MODIFIED ENTITY RTS 

Firewall analysis restricts regression testing to potentially-affected system 

elements that can be reached within one edge from changed system elements in the 

call graph [79, 81]. Although theoretically not safe, firewall analysis was shown to be 

effective and efficient via empirical studies of industrial real-time systems [81]. As the 

most efficient safe RTS technique, the modified entity technique selects all tests that 

can reach the modified functions in a software system at a course granularity level [14, 

16, 63].  Firewall analysis is theoretically more efficient and precise than the 

modified entity by analyzing fewer functions in the programs and selecting fewer test 

cases, and therefore spending less time on the full regression testing cycle. We  

The case studies discussed in Chapters 5.1-5.4 do not justify to what extent the 

firewall analysis RTS technique is more efficient than usage of other RTS techniques 

which are discussed in Chapter 2.2.  To compare the efficiency of firewall analysis 

and the safe modified entity RTS techniques [64], another case study (henceforth 

called Case 5) was conducted on the source code of a 930 KLOC ABB application 

(henceforth called Application E) written in C/C++.  Application E was selected for 

this case study because the test cases were automated integration test cases, such that 

modified entity technique can be applied for RTS. 
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Application E is composed of 47 interactive modules for which we had all source 

and executable code. To imitate the context of user-oriented component regression 

testing, two modules in the bottom of the module call chain were selected and 

regarded as “components.”  Then we identified changes from these components 

between two releases of Application E, and analyzed the change impact to the rest of 

the application. The firewall analysis and the modified entity RTS techniques were 

applied to select test cases for testing the components, respectively.  The results are 

shown in Table 5.7. 

For example, there are two changed functions in the “Component 1,” and all 

functions within the “Component 1” are called through the two functions. Firewall 

analysis selects 521 test cases that execute the functions in the rest of Application E 

that directly call the two “exported component” functions. Modified entity technique 

selects 623 test cases that can reach the two “exported component” functions in the 

rest of Application E, which is a superset of the set of test cases selected by firewall 

analysis. Using firewall analysis and modified entity techniques achieved 87.6% and 

85.1% reduction in the number of test cases, respectively.  However, the manual 

analysis time with modified entity is three times more than that with firewall analysis, 

because the execution trace for all the functions in the system needs to be analyzed. 

The calling trace to the “Component 2” in Application E is simple and 17 test cases 

(0.4% of the number of all test cases) were selected by both firewall analysis and 

modified entity techniques. However, unfortunately we do not have the data of time 
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costs in running these selected test cases. 

Table 5.7: Comparison of RTS techniques 

“Component” Metrics 
1 2 

Size of the “component” (KLOC) 4.6 5.3 
Changed functions in the “component” 2 9 
Affected “exported component” functions 2 12 
Total test cases needed with I-BACCI firewall 
analysis 

521 17 

Total test cases needed with modified entity 623 17 
Total test cases needed with retest-all 4193 4193 
Analysis time with I-BACCI firewall analysis 
(manually) 

4 hours 10 mins 

Analysis time with modified entity (manually) 12 hours 10 mins 

5.7 SUMMARY OF CASE STUDIES 

Generally, the higher percentage of affected exported component functions, the 

lower the percentage of test cases reduction, as shown in Figure 5.1. In the best case, 

as much as 100% regression test case reduction can be achieved by the I-BACCI 

process if our analysis indicates the changes to the COTS component are not called by 

the glue code. This fact would not be known to the users of COTS component without 

I-BACCI analysis, such that they would still be tempted to use the retest-all RTS 

method.  When there are a large number of changes in the new release of the 

component, the I-BACCI process suggests a retest-all regression test strategy, similar 

to other RTS techniques. Also, the I-BACCI process is more effective when there are 

small incremental changes between revisions, as is true with all RTS techniques. The 

results were verified by examining the failure records of retest-all black-box testing. 

All regression test failures can be found by reduced test suites in the comparisons of 
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these case studies. No false negatives were found in any analyses. The time costs 

analysis showed the efficiency of the I-BACCI process. Depending upon the 

percentage of test cases reduction determined by the I-BACCI process, the total time 

cost of the whole regression testing process can be reduced to 0.0003% of that by 

retest-all strategy (from five person months by retest-all strategy to one person hour 

by the I-BACCI process) in the best case. 

 

Figure 5.1: Relationship between the percentage of affected exported component 

functions and the percentage of test cases reduction for each case study 
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A limitation of the case studies is that all of the applications and components used 

were software developed by ABB Inc. involving .lib and .dll library files. 

Additionally, the Pallino tool currently works well only when the releases of 

components are built by the same linker. If two compared releases are built by 

different compilers or linkers, the current tools used in the I-BACCI process will yield 

a significant number of false positives. Also, we do not yet have accurate data on the 

saving of regression testing time for the case studies. 
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CHAPTER 6 
 

 

LEGAL ISSUES 
This chapter discusses the legal issues related to this research.  This chapter is 

based upon a paper [39] that was written in conjunction with Dr. Cem Kaner, a lawyer 

and software engineering professor.  Several of the paragraphs in this chapter were 

written by Dr. Kaner in the process of writing that paper.  Dr. Kaner's legal writing is 

included in this chapter with his permission. 

6.1 PROBLEM MOTIVATION 

Software developers generally write source code in high level programming 

languages. Compilers translate that source into binary code that computer processors 

can recognize and execute. During maintenance, the development team analyzes the 

source or binary code to determine the next steps. For example, developers can use 

their knowledge of what was changed — at the function/method and line of code level 

— to determine what to retest before releasing the evolved software to customers. 

Purchasers of commercial-off-the-shelf (COTS) components, unfortunately, must 

perform maintenance activities “in the dark” since they are not provided source code 

and analyzing binary code can be considered reverse engineering and illegal, as 

software licenses contain broad bans on reverse engineering. However, to enforce a 
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reverse engineering ban can impose unnecessary costs on a COTS customer without 

realizing corresponding benefits to the COTS vendor.  As will be shown in this 

chapter, I-BACCI is a reverse engineering activity that involves analysis of a software 

product’s binary code but that poses absolutely no competitive threat to the software 

publisher. 

6.2 REVERSE ENGINEERING OF SOFTWARE 

Twenty-eight software license agreements were gathered to investigate the 

legality of analyzing binary code of purchased COTS components. Relevant sentences 

in the license agreements were reviewed by lawyers of North Carolina State 

University (NCSU). Many of these license agreements of commercial components 

prohibit the users of components from reverse engineering, decompiling, 

disassembling, or otherwise attempting to discover the source code of the software, 

except to the extent that this restriction is expressly prohibited by law. Copyright law 

does not prohibit analysis on the code, only prohibits reproducing the components, 

making derivative works, or distributing copies of the products. The purpose of this 

research is to reduce the testing required when components change and only binary 

code and documentation is available. As a result, the NCSU lawyers deemed that the 

approaches and algorithms used in the I-BACCI process legal due to the purpose of 

the analysis. 

In their definitive paper, Chikovsky and Cross [17, p. 15] defined reverse 

engineering as “the process of analyzing a subject system to identify the system’s 
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components and their interrelationships and create representations of the system in 

another form or at a higher level of abstraction.”  Reverse engineering is 

commonplace in all types of product development and maintenance for many reasons, 

such as learning how to use a product, assessing its safety, determining whether it can 

meet advertised claims, figuring out how to fix it, academic research, and of course, 

figuring out how to build a better product to compete with this one. 

Courts in the United States routinely rule that reverse engineering is a lawful 

activity. The rationale is that, even though reverse engineering can reveal underlying 

inventions that make a new product work, the way to protect those inventions is to 

patent them. The inventor reveals the patented technology to the public; in return, no 

one can use it without the patent holder’s permission (license). 

Software reverse engineering is more complex because the process of reverse 

engineering typically involves making copies of the software or modifications 

(derivative works), such as translations from one language (e.g. machine language) to 

another (higher level) language, which is what disassembly and decompilation 

actually do. Patent law protects the ideas in the software, but copyright law protects 

the expression — what the code says if you read it, and what the program displays or 

transmits. Under copyright law, only the copyright holder and her or his licensees may 

make copies or derivatives of a work. It might seem, therefore, that software reverse 

engineering is not lawful without permission. 

American courts have repeatedly ruled that software reverse engineering is 
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perfectly legal because the Copyright Act allows certain types of copying without 

permission. Collectively, these are called fair use. Photocopying part of a book for 

classroom teaching is an example of fair use. So is quoting sections of a book in a 

critical review of that book. Software reverse engineering fits this category too. The 

reason the copies are made is not to have more copies. It is to get at the underlying 

ideas — these cannot be protected by copyright law, only by patent. Therefore, the 

courts rule, nothing that the Copyright Act should protect is being infringed; making 

these temporary copies is fair use. 

If software was sold the way books are sold, the story would stop here. But 

software is rarely sold; it is licensed. A license is a contract in which the holder of an 

intellectual property (IP) right grants some type of IP-related permission to the 

licensee. When you load software from a disk to a computer’s memory, you make a 

copy — there is one copy on the disk, one in RAM. It is the license that grants the 

permission to make that copy. Licenses often include restrictions as well as 

permissions. One common restriction prohibits reverse engineering. 

A recent case [3] illustrates exactly what the software publishers are trying to 

protect themselves from — one company apparently reverse engineered the software 

of another to create a competing product that looked and worked just like the original. 

Presumably, the copying company’s R&D costs were much lower than the original 

publisher’s, so allowing this clone product on the market could be grossly unfair. The 

original software came with a standard-form contract that barred all forms of reverse 
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engineering. The court upheld this restriction. A reader who considered only the facts 

of this particular case might consider that decision wise and just. However, it has 

broader implications that could constrain how most software developers work. 

Bowers v. Baystate Technologies [3, p. 1326], defined reverse engineering very 

broadly: “to study or analyze (a device, as a microchip for computers) to learn details of 

design, construction, and operation, perhaps to produce a copy or an improved 

version.” This is consistent with Chikovsky and Cross’s definition. This goes far 

beyond disassembly or decompilation. You might study (reverse engineer) a product by 

testing it or even by analyzing its documentation. Indeed, IEEE Standard 1012 

specifically recommends deriving a system’s requirements and design by reverse 

engineering them (if necessary) from the user’s manual. If a broad ban on reverse 

engineering is enforceable, much of what we do when we develop, maintain, or study 

code apparently cannot lawfully be done. 

The fact that a restriction appears in a contract does not necessarily make it 

enforceable under American law. Courts have authority to strike any term that violates 

public policy. Some have done this to preserve the ability to reverse engineer to achieve 

interoperability. There are ongoing arguments for protecting software reverse 

engineering should be protected for a much broader set of activities [43].  

The law of software licensing is enormously complex. The American Law Institute 

(ALI) and the National Conference of Commissioners on Uniform State Laws 

(NCCUSL) are the two leading private organizations who guide American legislatures 
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and judges in the drafting and interpretation of complex laws. For example, they 

co-authored the Uniform Commercial Code, which is the bedrock of commercial law in 

all 50 states. They worked together to try to draft a uniform law of software licensing 

for nearly 10 years, eventually disagreeing so vigorously that ALI abandoned the 

project, and NCCUSL published the Uniform Computer Information Transactions Act 

(UCITA) on its own in 2000. In state legislatures, UCITA failed. Only Virginia and 

Maryland adopted it, creating special rules for those two states different from the 

panoply of other rules in all the other states. Five years later, ALI started another project 

to draft a Principles of the Law of Software Contracts. It is likely that American law 

governing the reverse engineering clauses in software contracts will stabilize around 

the results of this project. The ALI welcomes comments on its drafts; it would make 

sense for the computing community to publish detailed examples of how we use reverse 

engineering, explaining why (and when) the particular example should be protected or 

blocked by contract. 

6.3 LEGAL LIMITS OF BCA OF PURCHASED SOFTWARE 

The I-BACCI process is not used to create the COTS components. The use 

described here, which we expect to be the normal application of I-BACCI, is for 

reducing time and cost of regression testing in the face of changes in COTS 

components. The I-BACCI process promotes the cost-effective continuation of 

interoperability between the customer’s product and the COTS components purchased 

to build the product. 



 79 

To study the legality of analyzing binary code of purchased COTS components, 

we gathered twenty-eight software license agreements. Many commercial component 

licenses prohibited component users from reverse engineering, decompiling, 

disassembling, or otherwise attempting to discover the source code of the software, 

except to the extent that this restriction is expressly prohibited by law. Under the 

Bowers decision, the I-BACCI process might be blocked for use on most COTS 

components. 

Such a restriction is probably prohibited under the European Community’s 

Council Directive on the Legal Protection of Computer Programs, which expressly 

permits black box analysis of a software product by any legal possessor and 

decompilation when it is indispensable for achieving interoperability with another 

program.[28] 

In the United States, UCITA was revised to include in its final (2002) version, 

Section 118 “Terms Relating to Interoperability and Reverse Engineering” to 

specifically permit reverse engineering to achieve interoperability, making contract 

terms that block this unenforceable. Achieving interoperability is also expressly 

favored in the Digital Millennium Copyright Act (United States Code Title 17 Section 

1201(f)). 

6.4 SUMMARY 

The results of our I-BACCI case studies indicate that customers of COTS 

components can benefit greatly from change information compared to the black box 
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“guess what we changed” situation of today. Allowing these customers to use the 

I-BACCI process therefore makes the COTS components more affordable to the 

customer without costing the vendor a dime. We see no good reason to enforce 

blanket bans on reverse engineering in a way that restricts application such as the 

I-BACCI process because the ban is protecting the vendor against an entirely different 

risk. 

In states that have adopted UCITA, Bowers should not operate to restrict the 

I-BACCI process’ reverse engineering because it is done to achieve interoperability. 

In the other states, the question is still open. 

Purchasers of such software would do well to contact their vendors and request 

waivers that allow them to reverse engineer COTS components for the purpose of 

managing their maintenance costs. Vendors of these components would serve their 

customers well by revising their licenses to specifically permit this kind of analysis. 
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CHAPTER 7 
 

 

CONTRIBUTIONS AND FUTURE 
WORK 

More and more COTS components are incorporated in software products. 

Industry desires an effective and efficient approach of selecting regression tests when 

the COTS components included in their applications change. However, the majority 

of existing RTS techniques rely on source code for change identification and impact 

analysis, and therefore are not suitable when source code is not available for analysis. 

In this dissertation, we have present the application of the I-BACCI process that 

reduces the regression test suite using the firewall analysis RTS method based upon 

static change identification and impact analysis in the binary code of the COTS 

component.  We also present Pallino, a tool that statically identifies binary code 

changes and their impact to support regression test selection for COTS-based 

applications when source code of components is not available. Pallino was designed 

to support the I-BACCI process but could be extended and/or modified to support 

other RTS methods for COTS components when source code is not available.  

Pallino can be applied to binary files of components in either COFF or PE format 

written in C/C++ at this stage. 
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Five case studies were conducted at ABB on products written in C/C++. The 

results showed that the I-BACCI process is an effective RTS process for COTS-based 

applications. The I-BACCI process can reduce the required number of regression test 

by as much as 100% if there are a small number of changes in the new component.  

Similar to other RTS techniques, when there are a large number of changes in the new 

component, I-BACCI suggests a retest-all regression testing strategy. The results of 

the case studies had been verified by examining the failure records of retest-all 

black-box testing. No failures would have escaped the reduced test suite. The 

I-BACCI process can be most beneficial when there are small incremental changes 

between revisions. With the help of Pallino, the I-BACCI process can be completed in 

about one to two person hours for each case study. Depending upon the percentage of 

test cases reduction determined by the I-BACCI process, the total time cost of the 

whole regression testing process can be reduced to 0.0003% of that by retest-all 

strategy in the best case. 

These results supported the theory we are building: 

When components change and source code is not available, regression tests can 

be selected from the test cases that execute the glue code that is in the call chain of 

functions of the component that changed, with minimal reduction in regression fault 

detection ability. 

The main contributions of this dissertation are: 

� Development of an effective, efficient, and overall less expensive RTS 
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solution for COTS-based applications when source code of components is not 

available. 

� Empirical evidence of the ability of the I-BACCI process to reduce the 

regression test cases required using case studies in industrial environments. 

� Combination of BCA and firewall analysis technique. The I-BACCI process 

extended the traditional concept and scope of application for firewall 

analysis for use with binary code. 

� An open source supporting tool that statically identifies binary code changes 

and their impact to support regression test selection for COTS-based 

applications when source code of components is not available. Pallino can 

efficiently identify affected exported component functions, and therefore 

facilitate reducing the required number of regression test. 

� Investigation of the legal issues related to reverse engineering of software 

and the limits of BCA of purchased software. 

We will pursue several directions in our future work. Besides expanding the 

I-BACCI process to adapt to more programming languages and more of the COTS 

types, such as components in the ELF format, we plan to address the limitations of the 

I-BACCI process which are discussed in Chapter 3.4. We will reduce as many false 

positives as possible caused by factors other than source code (e.g. build tools, 

environment, and target platforms). Additionally, extensive validation of both the tool 

support and RTS process will require more industrial case studies, data collection, and 
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further RTS analysis. 
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APPENDIX A 
 

 

BINARY CODE COMPARISON 
FALSE POSITIVE PATTERNS 

When comparing two versions of binary files for a COFF component, a large 

number of false positives were observed in the initial case study of the I-BACCI 

Version 1 [87]. A large amount of false positives were caused by changes in registers 

used and addresses of variables and functions, which typically would not cause 

functional changes in the code. For example, as shown in bold in the Figure 4.11, the 

binary code 8B89A0060000 means "copy the operand in the address of register 

ECX plus offset 0x06A0 to register ECX", where 8B89 is the opcode of the 

instruction and A0060000 is the address offset. Therefore, in this example, the only 

difference in binary is that the address offset was changed from A0060000 to 

CC060000. Further examination of the source code showed that seven new function 

declarations and one new variable definition were added before the variable state was 

defined in one of the header files included in the source file of the new release. As a 

result, the offset of the variable state was changed accordingly.  In this case, the 

binary code change identified is not a real change and can be ignored in the change 

identification. The binary code like 8B89A0060000 is called an example of a 
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"binary code comparison false positive pattern." Many such false positive patterns 

were found in the first case study. The full list of these empirical patterns is shown in 

the Table A.1. False positive patterns are identified by their prefix. The prefix of a 

pattern can be the opcode of an instruction (e.g., FF50), or first few bits of an opcode 

(e.g., 8B8) which means all opcode that begins with these bits are prefixes of false 

positive patterns (e.g., from 8B80 to 8B8F). The algorithm scans the two versions of 

raw binary code of a function. For each false positive pattern, when the prefix of the 

pattern is found, the corresponding numbers of bytes from the start byte of the prefix 

are marked as a constant symbol (e.g., "_") in the raw code. Only if the remaining 

bytes of the two versions of binary code are the same, the function is considered as 

unchanged. The algorithm reduced the false positive rate to less than 8% in the case 

studies [86]. 

 Table A.1: The full list of binary code comparison false positive patterns 

Prefix of 
patterns 

Bytes 
ignored 

Description of related opcode 

0F BE 8 7 Move byte to doubleword, with sign-extension 
0F BF 8 7 Move word to doubleword, with sign-extension 
0F BF 9 7 Move word to doubleword, with sign-extension 
66 39 8 7 Compare r16 with r/m16 
66 39 9 7 Compare r16 with r/m16 
66 39 A 7 Compare r16 with r/m16 
66 39 B 7 Compare r16 with r/m16 
66 3B 8 7 Compare r/m16 with r16 
66 83 B 7 Compare imm8 with r/m16 
66 89 8 7 Move r16 to r/m16 
66 89 9 7 Move r16 to r/m16 
66 89 A 7 Move r16 to r/m16 
66 89 B 7 Move r16 to r/m16 
66 8B 8 7 Move r/m16 to r16 
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66 8B 9 7 Move r/m16 to r16 
66 8B A 7 Move r/m16 to r16 
66 C7 8 7 Move imm16 to r/m16 
39 B 6 Compare r32 with r/m32 
C6 8 6 Move imm8 to r/m8 
C7 8 6 Move imm32 to r/m32 
D9 9E 6 Copy ST(0) to m32fp and pop register stack 
DC 86 6 Divide m64fp by ST(0) and store result in ST(0) 
DC A6 6 Divide m64fp by ST(0) and store result in ST(0) 
DC AE 6 Divide m64fp by ST(0) and store result in ST(0) 
DD 86 6 Copy ST(0) to m80fp and pop register stack 
DD 9E 6 Copy ST(0) to m80fp and pop register stack 
F6 81 6 Signed divide EDX:EAX by r/m32 
FF 90 6 Jump near/far, absolute indirect 
FF 92 6 Jump near/far, absolute indirect 
FF 95 6 Jump near/far, absolute indirect 
FF 96 6 Jump near/far, absolute indirect 
31 81 6 r/m32 XOR r32 
39 86 6 Compare r32 with r/m32 
39 9E 6 Compare r32 with r/m32 
39 AE 6 Compare r32 with r/m32 
39 BE 6 Compare r32 with r/m32 
3B BE 6 Compare r/m32 with r32 
81 BE 6 Compare imm32 with r/m32 
81 C 6 Compare imm32 with r/m32 
83 8E 6 Compare imm8 with r/m32 
83 BE 6 Compare imm8 with r/m32 
83 F8 6 Compare imm8 with r/m32 
88 8 6 Move r8 to r/m8 
88 9 6 Move r8 to r/m8 
89 8 6 Move r32 to r/m32 
89 9 6 Move r32 to r/m32 
89 A 6 Move r32 to r/m32 
89 B 6 Move r32 to r/m32 
8A 8 6 Move r/m8 to r8 
8A 9 6 Move r/m8 to r8 
8B 8 6 Move r/m32 to r32 
8B 9 6 Move r/m32 to r32 
8B A 6 Move r/m32 to r32 
8B B 6 Move r/m32 to r32 
8D 8 6 Store effective address for m in register r32 
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8D 9 6 Store effective address for m in register r32 
8D A 6 Store effective address for m in register r32 
8D B 6 Store effective address for m in register r32 
66 83 7 5 Compare imm8 with r/m16 
05 5 Add imm32 to EAX or add imm16 to AX 
68 5 Push sign-extended imm8/16/32. Stack pointer is incremented 

by the size of stack pointer. 
C6 44 24 5 Move imm8 to r/m8 
83 79 4 Add sign-extended imm8 to r/m16 or r/m32 
0F BE 4 4 Move byte to word, with sign-extension 
0F BF 4 4 Move byte to word, with sign-extension 
0F BF 5 4 Move byte to word, with sign-extension 
66 8B 4 4 Move r/m16 to r16 
66 8B 5 4 Move r/m16 to r16 
83 7D 4 Compare imm8 with r/m16 or r/m32 
83 3B 3 Compare imm8 with r/m16 
C7 40 3 Move imm16 to r/m16 
FF 50 3 Jump near/far, absolute indirect 
FF 52 3 Jump near/far, absolute indirect 
89 41 3 Move r16 to r/m16 
89 48 3 Move r16 to r/m16 
8B 46 3 Move r/m8 to r8 
8D 4E 3 Store effective address for m in register r16 
6A 2 Push sign-extended imm8 

 

 


