
ABSTRACT

LIN, HESHAN High Performance Parallel and Distributed Genomic Sequence Search.
(Under the direction of Dr. Xiaosong Ma).

Genomic sequence database search identifies similarities between given query se-

quences and known sequences in a database. It forms a critical class of applications used

widely and routinely in computational biology. Due to their wide application in diverse task

settings, sequence search tools today are run on several types of parallel systems, including

batch jobs on one or more supercomputers and interactive queries through web-based ser-

vices. Despite successful parallelization of popular sequence search tools such as BLAST,

in the past two decades the growth of sequence databases has outpaced that of computing

hardware elements, making scalable and efficient parallel sequence search processing crucial

in helping life scientists’ dealing with the ever-increasing amount of genomic information.

In this thesis, we investigate efficient and scalable parallel and distributed sequence-

search solutions by addressing unique problems and challenges in the aforementioned exe-

cution settings. Specifically, this thesis research 1) introduces parallel I/O techniques into

sequence-search tools and proposes novel computation and I/O co-scheduling algorithms

that enable genomic sequence search to scale efficiently on massively parallel computers; 2)

presents a semantic based distributed I/O framework that leverages the application specific

meta information to drastically reduce the amount of data transfer and thus enables dis-

tributed sequence searching collaboration in the global scale; 3) proposes a novel request

scheduling technique for clustered sequence-search web servers that comprehensively takes

into account both data locality and parallel search efficiency to optimize query response

time under various server load levels and access scenarios. The efficacy of our proposed

solutions has been verified on a broad range of parallel and distributed systems, including

Peta-scale supercomputers, the NSF TeraGrid system, and small- or medium-sized clusters.

In addition, our optimizations of massively parallel sequence search have been transformed

into the official release of mpiBLAST-PIO, currently the only supported branch of mpi-

BLAST, a popular open-source sequence-search tool. mpiBLAST-PIO is able to achieve

93% parallel efficiency across 32,768 cores on the IBM Blue Gene/P supercomputer.

High Performance Parallel and Distributed Genomic Sequence Search

by

Heshan Lin

A dissertation submitted to the Graduate Faculty of

North Carolina State University

in partial fullfillment of the

requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2009

APPROVED BY:

Steffen Heber Frank Mueller

Douglas Reeves Nagiza Samatova

Xiaosong Ma
Chair of Advisory Committee

ii

DEDICATION

To my parents Guiwen Lin, Guiping Deng

and

my wife Xiaomin Lu

iii

BIOGRAPHY

Heshan Lin was born in Wuchuan, Guangdong, a small town located at almost

the southernmost of China mainland in 1977. After his high school years, he moved to a

lovely city named Guangzhou, an economic and cultural hub in Southern China, where he

received his Bachelor of Science (B.S.) undergraduate degree in Applied Math from South

China University of Technology. He then became a software engineer at a computer software

startup working on distributed banking systems. Heshan joined the graduate program in the

Department of Computer Science at Temple University in Fall 2001 and obtained his Masters

degree in Computer Science in Spring 2004. He began the Ph.D. program in the department

of Computer Science at North Carolina State University in Fall 2004. His research foucused

on high-performance bioinformatics, parallel I/O, and distributed computing on desktop

grids.

iv

ACKNOWLEDGMENTS

This dissertation would not have been accomplished without the support and inspiration of

many people.

First and foremost, I would like to express my sincere thanks and appreciation to

my advisor, Dr. Xiaosong Ma, for her insightful guidance, consistent support, and patience

in shaping me as a researcher from every perspective. She is always available for discussion

even during her busiest schedule. I learned a lot from her on doing research as well as writing

and presentation. I am much indebted to Dr. Nagiza Samatova for offering me a summer

internship at Oak Ridge National Laboratory as well as mentoring me in the pioBLAST

project during the early stage of my Ph.D. study. I would also like to express my gratitude

to Dr. Wuchun Feng, who offered me three summer internships and invited me to join the

mpiBLAST core development team. I want to thank Dr. Feng for his instrumental advices

on the mpiBLAST-PIO project as well as many advices on how to improve my spoken and

written communication skills.

I am grateful to Dr. Steffen Heber, Dr. Frank Mueller and Dr. Douglas Reeves

for being a part of my dissertation committee. Their comments and questions helped me

focus on important issues and avoid pitfalls during my research.

My deep appreciation also goes to many collaborators through my Ph.D. pursuit:

Dr. Carlos Sosa, Dr. Pavan Balaji, Dr. Avery Ching, Dr. Mark Gardner and Jeremy

Archuleta. I have benefited tremendously from our collaborations and the friendship we

have kept since.

I would like to thank my great lab mates during the years: Jiangtian Li, Zhe

Zhang, Alex Balik, Chao Wang, Tao Yang, Feng Ji, Amit Kulkarni, Prakash Ramaswamy,

Nandan Tamineedi, Divya Dinakar and Sibin Mohan. I learned a lot from them through

many spontaneous discussions and brainstorming sessions. Equally importantly, we had so

much fun outside the work together which kept me refreshed from time to time.

I am grateful to Dr. John Blondin for his generosity in letting me use the Or-

bitty cluster. I want to thank Oak Ridge National Laboratory, National Energy Research

Scientific Computing Center, Virginia Tech Advanced Research Computing, Ohio Super-

computing Center, High Performance Computing Center at North Carolina State University

and IBM Rochester for granting me the access to their supercomputing facilities.

v

I sincerely acknowledge the funding resources of this dissertation work: 1) DOE

ECPI Award (DE-FG02-05ER25685); 2) NSF CAREER Award (CNS-0546301); 3) Dr.

Xiaosong Ma’s joint appointment between North Carolina State University and Oak Ridge

National Laboratory; 4) US DOE “Genomes to Life program” under the ORNL-PNNL

project, “Exploratory Data Intensive Computing for Complex Biological Systems”. 5) Los

Alamos National Laboratory contract W-7405-ENG-36.

vi

TABLE OF CONTENTS

LIST OF TABLES. viii

LIST OF FIGURES . ix

1 Introduction . 1
1.1 Scaling Genomic Sequence Search on Massively Parallel Computers 2
1.2 Semantics-based Distributed I/O with the ParaMEDIC Framework 3
1.3 Adaptive Request Scheduling of Parallel Sequence-Search Web Servers . . . 4
1.4 Contributions . 5
1.5 Organization . 6

2 Sequence Database Search Background . 7
2.1 Sequence Databases . 7
2.2 Sequence Database Search Tools . 8

3 Co-scheduling Computation and I/O for Massively Parallel Genomic Se-
quence Search . 12
3.1 Introduction . 12
3.2 MpiBLAST Background . 14
3.3 Integrated Computation and I/O Scheduling 15

3.3.1 Software Architecture . 15
3.3.2 Fine-grained, Dynamically Load-balanced Computation Scheduling . 17
3.3.3 Scalable Distributed Results Processing 20
3.3.4 Parallel Output Scheduling . 23

3.4 Performance Evaluation . 28
3.4.1 Experiment Setup . 29
3.4.2 Scalability Comparison of Output Strategies 31
3.4.3 Fine-grained Dynamically Load Balancing 33
3.4.4 Overall System Scalability . 36

3.5 Case Study on IBM Blue Gene/P Supercomputer 37
3.5.1 Overview of the Blue Gene/P Architecture 38
3.5.2 Problem Description . 39
3.5.3 Performance Results . 40

4 Semantic-based Distributed I/O with the ParaMEDIC Framework 42
4.1 Motivation . 42
4.2 Distributed Environments . 43

4.2.1 NSF TeraGrid . 44
4.2.2 Argonne-VT Distributed System . 44

vii

4.3 The Design of ParaMEDIC . 45
4.3.1 The ParaMEDIC Framework . 45
4.3.2 Trading Computation with I/O Cost 46

4.4 Integration mpiBLAST with ParaMEDIC 48
4.5 Experimental Results . 49

4.5.1 Experimental Testbeds . 50
4.5.2 Local Cluster Evaluation . 50
4.5.3 Distributed Setup from Argonne and VT 56
4.5.4 TeraGrid Infrastructure . 59

5 Adaptive Request Scheduling for Clustered BLAST Web Services 62
5.1 Introduction . 62
5.2 Parallel BLAST Web Server Architecture 64
5.3 Scheduling Strategies . 66

5.3.1 Data-Oriented Scheduling . 67
5.3.2 Efficiency-Oriented Scheduling . 70
5.3.3 Combining PLARD and RMAP . 72

5.4 Performance Results . 73
5.4.1 Experiment Configuration . 73
5.4.2 Test Platform . 74
5.4.3 Data-Oriented Scheduling Results 74
5.4.4 Efficiency-Oriented Scheduling Results 77

6 Related Work . 81
6.1 Genomic Sequence-Search Parallelization . 81
6.2 Noncontiguous I/O Optimizations . 83

6.2.1 User Level Optimizations . 83
6.2.2 File System Level Optimizations . 85

6.3 Remote I/O in Distributed Environments 86
6.4 Semantic-based Data Transformation . 87
6.5 Web Sever Scheduling . 87
6.6 Space-sharing Parallel Job Scheduling . 88
6.7 Online Scientific Data Processing . 89

7 Conclusion . 91

Bibliography . 93

viii

LIST OF TABLES

Table 5.1 Database characteristics. Note the Pmin values are multiples of 2, this is
because our experiments are performed on a two-way SMP cluster, and we found
using a compute node (2 processors) as the smallest scheduling unit yields better
performance than does using an individual processor, as the former choice has better
data locality. 73

Table 5.2 FIX-M-PLARD and RMAP-PLARD statistics at system load 0.6 and 0.8. . . 79

ix

LIST OF FIGURES

Figure 1.1 GenBank growth . 2

Figure 2.1 BLAST Search . 9

Figure 2.2 BLAST Input . 10

Figure 2.3 BLAST Output. 11

Figure 3.1 mpiBLAST-PIO software architecture. Qi and Qj are query segments
fetched from the supermaster to masters, and qi1 and qj1 are query sequences that
are assigned by masters to their workers. 15

Figure 3.2 Compare centralized and distributed design of results processing. In the
centralized design, the results formatting and writing is serially done by the master.
While in the distributed design, the results formatting and writing is concurrently
done by workers. 20

Figure 3.3 Searching 300 randomly sampled nr sequences against nr itself with mpiBLAST-
v1.4 on the System X cluster. The nr database is partitioned into 8 fragments, and
a replica of the database is pre-distributed to every 4 workers in a round-robin
fashion. 22

Figure 3.4 Four output strategies compared in this study. WorkerIndividual adopts
the data sieving I/O technique when possible. WorkerCollective is based on the
collective I/O technique. MasterMerge merges and writes output at the master.
WorkerMerge is based on the proposed asynchronous, two-phase I/O technique. . . 25

Figure 3.5 Node scalability results of searching 1000 randomly sampled nt sequences
on different number of workers. 29

Figure 3.6 Output scalability results of searching 1000 randomly sampled nt sequences
with different amount of output data. 32

Figure 3.7 Performance impacts of query segment prefetching. 35

Figure 3.8 Scalability of searching 5000 nt sequences with various partition sizes on
System X. Configurations of different partition sizes are labeled P32, P64 and P128
respectively. PALL refers to the single-layer master-slave configuration, using all

x

available processors for one partition. Note P128 and PALL are actually the same
when running on 128 processors. 36

Figure 3.9 Speedup of searching 5000 nt sequences on System X with hierarchical
scheduling (partition size 64). 38

Figure 3.10 Speedup of searching 0.25 million of microbial genome sequences against the
microbial genome database itself. 41

Figure 4.1 ParaMEDIC Architecture. 46

Figure 4.2 ParaMEDIC and mpiBLAST Integration . 49

Figure 4.3 Impact of High Latency Networks . 51

Figure 4.4 Breakup of Performance with Network Delay . 52

Figure 4.5 Varying the Number of Worker Processes . 55

Figure 4.6 Varying the Number of Requested Sequences. 57

Figure 4.7 Impacted of Encrypted Filesystems . 58

Figure 4.8 Argonne to Virginia Tech Encrypted Filesystem . 58

Figure 4.9 NSF TeraGrid using U. Chicago and SDSC . 59

Figure 4.10 TeraGrid Infrastructure Performance Breakup . 60

Figure 5.1 Target parallel BLAST web server architecture . 65

Figure 5.2 Impact of data placement on the BLAST performance.. 67

Figure 5.3 Parallel execution efficiency of BLAST . 67

Figure 5.4 Normalized average number of page faults and normalized average service
time. 75

Figure 5.5 Query load distribution among processors with the medium partition size. 76

Figure 5.6 Impact of PLARD on the average query response time. Note that the y axis
uses the log2 scale, and the speedup factor brought by PLARD is shown at the top
of each pair of bars. 77

Figure 5.7 Performance of combined RMAP and PLARD with fixed arrival rates (y
axis uses log2 scale. 78

xi

Figure 5.8 Performance of combining RMAP and PLARD on two 800-sequence traces
with mixed arrival rates. 78

1

Chapter 1

Introduction

In the past decades, research in bioinformatics has been dramatically accelerated

by the ever-increasing compute power that helps people understand the composition and

functional capability of biological entities and processes. A well-known outcome of the fusion

between high-performance computing and high-throughput experimental biology was the

assembly of the human genome by Celera Genomics using a cluster with nearly a thousand

processors [1]. Computation-enabled breakthroughs like this have a tremendous impact on

solving important problems in areas such as medical and environmental science.

One fundamental means to decipher the genomic information is through sequence

database searches. A sequence database-search tool compares a set of query sequences

against a database of DNA or amino-acid sequences using an alignment algorithm, and

reports the statistically significant matches between the query sequences and the database

sequences. The found similarities between a new sequence and a sequence of known functions

can help identify the functions of the new sequence and find sibling species from a common

ancestor. For instance, in 2003, sequence matching helped biologists identify the similarities

between the recent SARS virus and the more well-studied coronaviruses, thus enhancing

the biologists’ ability to combat the new virus [2].

Thanks to the advent in the genome sequencing technology and the Internet for

data collection/sharing, the amount of collective genomic sequence data has been doubling

every 10 to 12 months [3, 4]. As shown in Figure 1.1, the size of GenBank [5], a widely

used DNA sequence database maintained by the National Center for Biotechnology Informa-

tion (NCBI), grew by over 5 orders of magnitude during the past two decades. Moreover,

2

it is evidential that the sequence acquisition will pace even faster in the near future [6].

Efficiently searching the ever-increasing sheer volume of sequence data has been a cru-

cial task to many computational biology studies. Due to their wide application in diverse

task settings, sequence search tools today are run on several types of high-performance

computing environments, including batched jobs on one supercomputer or across multi-

ple geographically distributed supercomputers as well as interactive jobs handled through

clustered web services. In this thesis, we investigate efficient and scalable parallel and dis-

tributed sequence-search solutions to address the unique problems and challenges in those

various execution settings.

Figure 1.1: GenBank growth

1.1 Scaling Genomic Sequence Search on Massively Parallel

Computers

With the explosive growth of sequence data, genomic sequence search has become

one of the most compute- and data-intensive applications in scientific computing. While

the next generation of massively parallel computers can provide the necessary horsepower

for tackling the long running sequence-search jobs, existing parallel sequence-search tools

3

are designed for processing moderate-sized databases on small to medium sized clusters,

and hence are not ready to fully take advantages of modern supercomputers.

Specifically, most existing parallel sequence-search tools mainly focus on paralleliz-

ing the alignment computation, with the data management issue largely overlooked. Our

study revealed that the data management tasks such as merging and writing the output

data can significantly limit the program’s scalability in existing sequence-search tools. In

addition, unlike numerical simulations that are commonly seen in traditional scientific com-

puting, genomic sequence search possesses irregular computation and I/O patterns. The

computation cost of each subtask is hard to predict, and the output data generated at each

process is non-contiguous with non-uniform size distributions. These runtime irregularities

are not properly addressed in existing parallel sequence-search tools, which can lead to

serious resource under-utilization on large-scale deployments.

In this work, we first introduce parallel I/O to remove the data management

bottleneck in existing parallel sequence-search tools when processing large databases. We

then address the runtime irregularities of sequence-search applications with an integrated

scheduling algorithm that gracefully coordinates dynamic computation load-balancing and

asynchronous high-throughput parallel I/O. The proposed scheduling approach greatly im-

proves the scalability of massively parallel genomic sequence searching.

1.2 Semantics-based Distributed I/O with the ParaMEDIC

Framework

The compute and storage requirements of large sequence-search jobs in advanced

computational biology are greater than ever before. Most life scientists do not have the local

access to the supercomputing resources needed for their search jobs. Thus the sequence-

search results generated on the remote supercomputers need to be frequently offloaded to

local for visualization and further analysis. Moreover, highly demanding sequence-search

jobs such as database-to-database alignment may require compute resources from tens of

thousands of processors and generate hundreds of terabytes of data. For these jobs, few

supercomputers will be simultaneously equipped with the necessary compute and storage

resources. Efficient data movement between distributed computation resources connected

with wide area networks is critical to search results offloading and large-scale collaborative

4

efforts of sequence analysis.

There has a lot of investments in high-speed distributed network connectivity to

alleviate issues related to moving massive data across supercomputing sites. However, these

high-speed networks do not provide an end-to-end connectivity to a very high percentage of

scientific community. In addition, the amount of data generated by large sequence-search

jobs is so large that even at 100% network efficiency, the I/O time can dominate the overall

execution time.

In this work, we present a framework called “ParaMEDIC: Parallel Metadata

Environment for Distributed I/O and Computing” which uses sequence-search semantic

information to convert the generated data to orders-of-magnitude smaller metadata at the

compute site, transfers the metadata to the storage site, and re-processes the metadata at

the storage site to regenerate the output. ParaMEDIC can drastically reduce the amount of

data that need to be transfered over the network, making global-scale distributed sequence

search feasible.

1.3 Adaptive Request Scheduling of Parallel Sequence-Search

Web Servers

Besides large, resource-demanding sequence-search jobs, life scientists routinely

need to search a small number of query sequences against public sequence databases in

the sequence analysis work flow. For those small search jobs, the batch parallel processing

model does not necessary provide the most convenient interface and the desired quick re-

sponse time to end users. Many scientists would prefer to use the so-called service-oriented

infrastructure [7], where data analysis is provided through the web interface and carried

out on dedicated parallel computing resources (e.g. clusters) behind the web server. As

this approach can hide the complexity of parallel job management from biologists as well as

enable the effective utilizing and sharing of high-end computation resources, many research

institutions are moving to hosting online genomic sequence analysis.

Unlike with general-purpose clustered web servers, where servicing a request con-

sumes only a small amount of computation and can be efficiently accomplished on a single

processor, with sequence search servers, servicing a query requires substantial parallel pro-

cessing and data access. Therefore, existing scheduling techniques used in content-serving

5

clustered web servers cannot be directly applied to this new context. Meanwhile, although

space-sharing job scheduling on distributed memory machines has been well studied, exist-

ing algorithms do not address the sharing of storage resources between jobs. Further, there

lacks a comprehensive scheduling scheme that coordinates the decomposition and mapping

of computation tasks, and those of the data accesses.

In this work, we propose an adaptive request scheduling algorithm that extends

and integrates several existing algorithms from the content-serving web scheduling and the

space-sharing parallel job scheduling. The novel combination of these algorithms allows a

sequence-search web server to automatically react to the variation of system load and query

access pattern for optimized query response time by comprehensively taking into account

data locality and parallel efficiency in making scheduling decisions.

1.4 Contributions

We consider the major contributions of this thesis research as:

• Proposing and designing an end-to-end efficient data management framework that

highly improves the scalability of searching against large sequence databases [8, 9].

• Proposing, designing and evaluating scalable computation and I/O scheduling solu-

tions for massively parallel sequence search on a variety of state-of-the-art supercom-

puters [10, 11].

• Developing and delivering the mpiBLAST-PIO software, an official release branch of

mpiBLAST, which is a widely used open-source sequence-search tool. mpiBLAST-

PIO was able to achieve 93% parallel efficiency across 32,768 cores on the IBM Blue

Gene/P supercomputer.

• Collaborating with researchers from Argonne National Laboratory and Virginia Tech

to build ParaMEDIC, a semantic-based distributed I/O framework that enables effi-

cient large-scale sequence search over globally distributed supercomputing resources [12].

The ParaMEDIC project resulted in a HPC Storage Challenge Award at SC07 and

Distinguished Paper Award in ISC08 [13].

6

• Proposing, designing, and evaluating an adaptive query scheduling algorithm for clus-

tered sequence-search web servers. The proposed algorithm can automatically adapt

system configurations for optimized query response time under various system loads

and query patterns [14, 15].

While our thesis research focuses on genomic sequence-search applications, we

believe that many solutions and design rationales from this research can be applied to a

broad class of data-intensive scientific applications.

1.5 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes the

background information of genomic sequence database search. Chapter 3 discusses the

I/O and scheduling optimizations for massively parallel genomic sequence search. The

ParaMEDIC distributed I/O framework is discussed in Chapter 4. Chapter 5 presents

adaptive request scheduling algorithms for high-performance online sequence-search servers.

Chapter 6 surveys the related work. Finally, Chapter 7 concludes the thesis.

7

Chapter 2

Sequence Database Search

Background

2.1 Sequence Databases

Unlike relational databases used widely in commercial systems, most biological

databases are flat files containing strings of nucleotides (guanine, adenine, thymine, cyto-

sine, and uracil) and/or amino acids (threonine, serine, glycine, etc.) Each sequence of

nucleotides or amino acids represents a specific gene or protein (or a section thereof) re-

spectively. Although sequences have complex, dynamic and multi-dimensional structure,

they are represented in shorthand, using single letters to denote nucleotide or amino acid

residues. For example, a DNA sequence is encoded as a string of characters A, C, G or T.

This abstraction makes it convenient for storing, publishing and sharing the sequence data.

There are many public sequence databases that are widely used by computational

biology researchers. GenBank [16] is an annotated collection of publicly available DNA

sequences maintained by the National Center for Biotechnology Information (NCBI) [17].

It is the union of the DNA Data Bank of Japan (DDBJ) [18] and the European Molecular

Biology Laboratory (EMBL) [19] nucleotide database from the European Bioinformatics

Institute (EMI) [20]. These three organizations exchange data every day to keep their local

copies synchronized. SWISS-PROT [21] is a curated protein sequence database jointly man-

aged by the Swiss Institute of Bioinformatics (SIB) [22] and the European Bioinformatics

Institute (EBI) [23]. Protein Data Bank (PDB) [24] is a well-established structure database

8

containing structures of proteins, nucleic acids and a few carbohydrates.

2.2 Sequence Database Search Tools

Sequence database search is one of the fundamental tasks routinely performed in

many computational biology research areas. A typical use of sequence search is to find

similarities between newly discovered sequences and those in known nucleotide or protein

databases. The searched results can then be used to predict the structures and functions

of new sequences. They also allow people to estimate the evolution distance in phylogeny

reconstruction and perform gnome alignments.

A sequence database-search tool compares a set of query sequences against a

database of DNA or amino-acid sequences using an alignment algorithm, and reports the

statistically significant matches between the query sequences and the database sequences.

Sequence alignment algorithms have been extensively studied during the past decades. The

Needleman-Wunsch algorithm [25] finds optimal global alignments of two sequences by

maximizing the number of matched residues and minimizing the gaps necessary in aligning

two sequences. Smith-Waterman [26] solves the local alignment problem with a dynamic

programming algorithm. It searches every possible match position between two sequences

and is highly sensitive in comparison quality. However, it is too computationally expensive

to be directly applied to large databases searches. FASTA [27] and the BLAST family of

alignment programs, including NCBI BLAST [28, 29], MegaBLAST [30] and WU-BLAST

[28, 31, 32], speed up the alignment computation with seed-and-extend heuristic methods

and make searching large sequence databases more practical. Despite different trade-offs

between the search accuracy and efficiency, these seed-and-extend algorithms are similar

and have quadratic computational complexity.

Currently, the BLAST family of algorithms are the de facto standard tools. In

fact, it is estimated that 75% to 90% CPU cycles used in life sciences are spent on this family

of applications [33]. However, they have difficulty in keeping up with the growing rate of

sequence acquisition [34]. This problem is addressed in two orthogonal directions: (1) to

develop faster and smarter sequence alignment algorithms (e.g., SSAHA [35], PatternHunter

[36], and BLAT [34]), and (2) to take advantage of parallel processing. Our research mainly

focuses on efficient parallel and distributed computing solutions for general sequence-search

9

BLAST

Q1
Q2
…

Qn

Database

Threshold

(evalue)

Q1 results

Q2 results

Qn results

Query Set

Figure 2.1: BLAST Search

tools.

Our research will use the popular BLAST search tool as a studay case. Figure

2.1 shows the diagram of a typical BLAST search. The input includes a query set supplied

by the user, which is a collection of nucleotide or protein sequences to be searched, and a

sequence database to be searched against. Figure 2.2 gives a sample section of BLAST input.

In both the query set and the database, the first line of a sequence starts with a right arrow

symbol indicating the sequence header, which includes information such as the sequence

ID and the sequence description etc. BLAST performs Cartesian-product-style comparison

between query sequences and database sequences. The results are printed to the standard

output or an output file, organized by the query sequences in the order they were given

in the query set. For each query sequence, the result data contains alignments between

this sequence and database sequences that have closeness beyond a given threshold. The

closeness is measured by evalue which is computed by the BLAST algorithm to represent the

degree of similarities between two sequence segments. A partial sample output of searching

query sequence “Query1” against the database in Figure 2.2 is given in Figure 2.3. There

are two sections in the output: a one-line summary and the alignments information. In the

one-line summary section, a set of result database sequences are reported to be similar to

the query sequence, ordered by their evalues. The actual alignments (segments of sequences

where similarity is identified) between the query sequence and result database sequences

are presented in the alignments section.

Although sequence search tools use different algorithms and optimization tech-

10

>gi|1786181|gb|AE000111.1|AE000111 Escherichia coli K-12 MG1655 section 1 of 400

of the complete genome

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGCTTCTGAACTG

GTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTCACTAAATACTTTAACCAATATAGGCATAGCGCACAGAC

……

>gi|1786192|gb|AE000112.1|AE000112 Escherichia coli K-12 MG1655 section 2 of 400

of the complete genome

CTGAATAACTGTAGTGTTTTCAGGGCGCGGCATAATAATCAGCCAGTGGGGCAGTGTCTACGATCTTTTGAGGGGAAAAT

GAAAATTTTCCCCGGTTTCCGGTATCAGACCTGAGTGGCGCTAACCATCCGGCGCAGGCAGGCGATTTGCAGTACGGCTG

……

>gi|2367095|gb|AE000113.1|AE000113 Escherichia coli K-12 MG1655 section 3 of 400

of the complete genome

GATTCTTAAGCCACGAAGAGTTCAGATAGTACAACGGCATGTCTCTTTTGACTATCTGGCAACCGGCAGTGTGTTCTCTC

ACGCATCACAAAAGCAGCAGGCATAAAAAAACCCGCTTGCGCGGGCTTTTTCACAAAGCTTCAGCAAATTGGCGATTAAG

……

>gi|1786217|gb|AE000114.1|AE000114 Escherichia coli K-12 MG1655 section 4 of 400

of the complete genome

TAATACGGTTCTCTGATGAGGACCGTTTTTTTTTGCCCATTAAGTAAATCTTTTGGGGAATCGATATTTTTGATGACATA

AGCAGGATTTAGCTCACACTTATCGACGGTGAAGTTGCATACTATCGATATATCCACAATTTTAATATGGCCTTGTTTAA

……

> ……

>Query1;

GTGATTGTGGGGCTTTCTCAAATTAATTGTGGGGCTTTTCCCGGTTGCAGGTTCAAAACGTGCCATTCGCAACCGGTGTT

TTCGGCGCTCACCGCCCCGAAAACCAATAACTGA

>Query2;

GTGCCGGATTTATCGCCATGCGCCTTCAGCGGAGAATTTTTTGCATGGCACAGrCGTTCAGAAAATAGACTAATTCAGGA

GTGTTATACTGATGATAAGAAAATGTTGATAGCACTAACAGGCAAAACCATAGGTATAAATTATCAATTTTTGCTATATC

……

>Query3;

TTGAGATGTGAGGTGCCGGACATGTTCCCGTTCAGAGCCTGGTTGCAGACGCAGATTGATGACTACCGGCGGCAGTTGCG

TAATGCCACGATGGAGTTTTATCTGGCGGAGTTATCGCTGGAGCGGGATGACGGCGAGATTGGCGAATTGCGGCACTACT

……

Query

Set

Database

Figure 2.2: BLAST Input

niques, they have certain common characteristics. First, the input of these tools consists of

a set of query sequences and a sequence database. Second, they perform pairwise compar-

ison between the query set and the database. Finally, the output of each query sequence

contains similar database sequence segments ordered by the degree of similarity. These com-

mon characteristics enable the development of a general-purpose optimization framework

for this type of applications.

11

Score E

Sequences producing significant alignments: (bits) Value

gb|AE000468.1|AE000468 Escherichia coli K-12 MG1655 section 358 ... 30 0.37

gb|AE000188.1|AE000188 Escherichia coli K-12 MG1655 section 78 o... 30 0.37

gb|AE000429.1|AE000429 Escherichia coli K-12 MG1655 section 319 ... 28 1.5

gb|AE000158.1|AE000158 Escherichia coli K-12 MG1655 section 48 o... 28 1.5

gb|AE000182.1|AE000182 Escherichia coli K-12 MG1655 section 72 o... 28 1.5

……

>gb|AE000468.1|AE000468 Escherichia coli K-12 MG1655 section 358 of 400 of the

complete

genome

Length = 13840

Score = 30.2 bits (15), Expect = 0.37

Identities = 15/15 (100%)

Strand = Plus / Minus

Query: 86 cgctcaccgccccga 100

|||||||||||||||

Sbjct: 733 cgctcaccgccccga 719

>gb|AE000188.1|AE000188 Escherichia coli K-12 MG1655 section 78 of 400 of the

complete genome

Length = 11429

Score = 30.2 bits (15), Expect = 0.37

Identities = 15/15 (100%)

Strand = Plus / Minus

Query: 56 aaacgtgccattcgc 70

|||||||||||||||

Sbjct: 8938 aaacgtgccattcgc 8924

……

One line

summary

Alignments

Figure 2.3: BLAST Output

12

Chapter 3

Co-scheduling Computation and

I/O for Massively Parallel

Genomic Sequence Search

3.1 Introduction

Today, the collective amount of genomic information is now doubling every 10-12

months [4, 3], while the computational horsepower of a single processor is only doubling ev-

ery 18-24 months. The widening disparity between the computational demand of analyzing

the collective genomic data and the uniprocessor’s processing power keeps challenging the

scalability and efficiency of parallel sequence-search tools. Initial studies have shown that it

takes hours to days on thousands of processors to complete large sequence-search jobs such

as genome-to-genome comparisons [37] and database-to-database alignments [38]. With

Moore’s Law now switching to doubling the number of cores per chip instead of doubling

the uniprocessor performance in every silicon generation [39], it will soon become critical

for the life scientists to leverage massively parallel computers to solve their time-consuming

sequence-matching problems. It is thus imperative for sequence-search applications to be

able to scale efficiently on the state-of-the-art supercomputers.

Our past experiences suggested that parallel sequence-search possesses high irreg-

ularities in both computation and I/O patterns:

13

• The execution time of a search task is hard to predict from the simple metrics such

as the size of the input data. Tasks processing a same amount of input can have

execution time differing by orders of magnitude [38].

• The output data distribution on different processes is fine-grained as well as irregular,

and varies from one query to another depending on the search result [9].

The reason for these runtime irregularities is twofold. First, the amount of required compute

resources and the output data distribution of a search task are dependent on the similarities

between the compared sequences, which can vary significantly even between different tasks

processing a same amount of input data. Second, popular sequence alignment algorithms

such as BLAST [28, 29] employ heuristics to improve computational efficiency, making it

hard to predict the execution time of a search task. How to efficiently handle the runtime

irregularities is a major challenge in designing scalable sequence-search applications on

massively parallel computers.

Efficient scheduling for irregular scientific applications has been extensively in-

vestigated since the last decade, with a wealth of techniques proposed for dynamic load-

balancing by leveraging applications’ runtime profiles [40, 41, 42, 43] or probabilistic signa-

tures [44, 45, 46, 47, 48]. Most of these scheduling studies, however, focused on compute-

intensive applications and did not address the irregular I/O issue of data-intensive applica-

tions. Existing studies on noncontiguous I/O optimizations [49, 50, 51, 52, 53, 54], on the

other hand, emphasized on improving programs’ actual I/O performance and were often

evaluated without considering the computation scheduling. Thus, the interaction between

the I/O optimizations and the computation scheduling, especially for irregular scientific

applications, has not been well understood.

In this work, we systematically investigate the computation and I/O scheduling

for genomic sequence-search applications. We consider our contributions as follows:

• Our study revealed that for data-intensive applications with irregular computational

kernels such as genomic sequence search, the incoordination between the I/O optimiza-

tion and the computation scheduling can result in severe performance degradations.

Consequently, we proposed an integrated scheduling approach that gracefully coor-

dinates fine-grained, dynamic computation load-balancing and asynchronous output

processing to maximize the sequence-search throughput.

14

• We proposed a portable, asynchronous two-phase I/O technique for writing noncon-

tiguous data in irregular, data-intensive applications. This I/O approach can obtain

the performance benefit of parallel I/O without synchronization overhead imposed by

traditional collective I/O techniques.

• We realized our scheduling approach on top of mpiBLAST [55], a popular open-source,

parallel sequence-search tool, and developed a research prototype named mpiBLAST-

PIO. The efficacy and portability of our scheduling optimizations were evaluated

on three general-purpose parallel computers (configurations to be described in Sec-

tion 3.4). MpiBLAST-PIO scaled perfectly to hundreds of processors on the three test

parallel platforms. We also conducted a case study on the IBM Blue Gene/P mas-

sively parallel computer. The performance results shown MpiBLAST-PIO achieved

93% parallel efficiency across 32,768 cores on Blue Gene/P.

3.2 MpiBLAST Background

MpiBLAST [55] is an open-source sequence-search tool that parallelizes the NCBI

BLAST toolkit [28]. The original design of mpiBLAST follows the database segmentation

approach. Specifically, MpiBLAST organizes parallel processes into one master and many

workers. The master uses a greedy algorithm to assign pre-partitioned database fragments

to workers. The workers copy the assigned fragments to their local disks (if available)

and perform BLAST search concurrently. Upon finishing searching one fragment, a worker

reports its local results to the master for centralized result merging. The above process

repeats until all the fragments have been completed. Once the master receives results from

all the workers for a query sequence, it calls the standard NCBI BLAST output function

to format and print out results to an output file. MpiBLAST achieves good speedup when

the number of processes is small or moderate, by fitting the database into main memory

and eliminating repeated scanning of disk-resident database files.

The scalability of the original mpiBLAST design is greatly hampered on massively

parallel computers for two reasons. First, it exploits parallelism only through database par-

titioning. This will result in many tiny database fragments and involve significant paralleliz-

ing overhead on large-scale deployments. Second, the scheduling and results processing are

performed on a single master, which can easily become a bottleneck as system size grows.

15

3.3 Integrated Computation and I/O Scheduling

In this section, we first present the software architecture of mpiBLAST-PIO. Then

we discuss the details of our proposed computation and I/O scheduling optimizations.

3.3.1 Software Architecture

MpiBLAST-PIO adopts a hierarchical architecture as depicted in Figure 3.1. At

the top level, the system is organized into equal-sized partitions, which are supervised by

a dedicated supermaster process. The supermaster is responsible for assigning tasks to

different partitions and handling inter-partition load balancing. Within each partition,

there is one master process and many worker processes. The master is responsible for

coordinating both computation and I/O scheduling in a partition. It periodically fetches a

subset of query sequences (defined as a query segment) from supermaster and assigns them

to workers, as well as coordinates the output processing of queries that have been processed

in the partition. Such a hierarchical design avoids creating scheduling bottleneck as the

system size grows by distributing the scheduling loads on multiple masters.

SuperMaster

f1

Master1

P11

Partition 1

f2

P12

f1

P13

f2

P14

qi1 qi1

f1

Mastern

Pn1

Partition n

f2

Pn2

f1

Pn3

f2

Pn4

qj1 qj1

Qi Qj

…

…

Figure 3.1: mpiBLAST-PIO software architecture. Qi and Qj are query segments fetched
from the supermaster to masters, and qi1 and qj1 are query sequences that are assigned by
masters to their workers.

In this architecture, the compute processes in the system are segregated into two

16

groups – masters and workers. In order to maximize the system throughput, it is important

to keep both groups of processes equally busy so that the system idleness is minimized. The

key to balance loads between masters and workers is to choose an appropriate partition size

Sp (defined as the number of workers in the partition). To this end, our design supports

mapping an arbitrary number of workers to a master and allows users to determine the

appropriate Sp value through initial profiling with sampled sequences from the original

query1. As the master loads will increase monopoly as Sp grows, a sweet point can be

found by comparing the program performance at gradually increased Sp values. Note that

the optimal Sp value is platform- and workload-dependent, and automatic tuning of the

parameter is out of the scope of this work.

To enable database segmentation, the sequence databases are pre-partitioned into

fragments and stored on the shared file system. MpiBLAST-PIO defines two running modes,

non-sharing and sharing, which distribute the database fragments to the worker nodes

differently.

The non-sharing mode assumes input database fragments are not shared between

different parallel BLAST jobs, making it suitable for platforms without locally attached

disks, such as IBM Blue Gene systems. In this mode, the fragments are replicated to worker

nodes’ memory in a way similar to that used in previous parallel BLAST studies [56, 10].

During the system initialization, all workers in the system are organized into temporary

equal-sized replication groups, and the first group will be designated as the I/O group. All

database fragments are assigned to the workers in the I/O group in a round-robin fashion.

Each worker in the I/O group then reads in its assigned fragments in parallel and broadcasts

them to the corresponding workers in all other groups.

In institutions where BLAST is heavily used by many users and the cluster nodes

are equipped with locally attached disks, it is desirable to enable sharing of common se-

quence databases between BLAST jobs to reduce the cost of data movements. In the sharing

mode, the database fragments used by a BLAST job will remain on the local disks of worker

nodes after the job is finished. At the beginning of execution, workers report the cached

fragments on their local disks to the master. These fragments distribution information will

be taken in to account in the scheduling decision.

1We found that using randomly sampled query sequences from a BLAST job to perform initial profiling
is practical in finding appropriate parameter values in our system.

17

3.3.2 Fine-grained, Dynamically Load-balanced Computation Scheduling

BLAST search time is highly variable and unpredictable as found in our past

research [38]. To our best knowledge, there is no effective way to estimate the execution

time of a given BLAST search in the existing literature. Without a priori knowledge of

queries’ processing time, using a greedy scheduling algorithm to assign fine-grained tasks

to idle processes seems to be sufficient to load balancing.

To effectively achieve load-balance across multiple partitions, assigning a small

query segment to a partition at a time is desirable, especially for running on supercom-

puters with a large number of partitions. On the other hand, fine-grained query-segment

allocation incurs two problems. First, the scheduling overhead increases with smaller query

segment sizes. Second, using small query segment forces frequent synchronization between

the workers within each partition, leaving faster workers waiting for its slowest peer to fin-

ish before acquiring a new segment of queries to work on. In particular, with small query

segments, there are not enough queries to “cancel out” the per-query imbalance of search

time, therefore the intra-partition load-imbalance worsens and the partition-wise resource

utilization degrades.

We address the above problems associated with small scheduling granularity by

using task-oriented scheduling and query prefetching at each partition. With task-oriented

scheduling, rather than assigning each query to a fixed group of workers, its search is

broken into a set of tasks corresponding to the set of database fragments this query has

to be searched against. The masters dynamically maintain a window of outstanding tasks.

Whenever a worker is done with its current task, it contacts the master to request another

one. The set of workers that work on one particular query is thus dynamically formed. With

query prefetching, the master requests the next query segment when the total number of

outstanding tasks falls under a certain threshold. By combining these two techniques,

workers will not be slowed down by waiting for its peers or for the next batch of query

sequences.

The scheduling process running on the master is given in Algorithm 1. The master

maintains a list of query sequences, QL, that are being processed in the partition. A query

sequence in QL is corresponding to |F | individual tasks, each searching the query sequence

against a distinct database fragment. The master keeps tracking how many tasks have been

18

completed by workers. When observing that the number of total uncompleted tasks of all

query sequences in QL is less than the number of workers (|W |) in the partition, the master

issues a query prefetching request to the supermaster. To overlap network communications

with local job scheduling, the master receives the query segment in the background with

a nonblocking MPI call. The new query segment received from the supermaster will be

appended to the end of QL.

In the above design, the size of a prefetched query segment (Sq) is configurable.

Using smaller Sq can yield better load balance results but increase the number of messages

sent to the supermaster. In practice, Sq can be configured to an arbitrarily small value as

long as the supermaster is not overloaded by the prefetcting messages. According to our

experiments on the System X cluster (configuration details will be described in Section 3.4)

using 1024 processors, for typical BLAST searches the supermaster is not a performance

bottleneck even when the Sq is set to 1. In our case study that specially optimized for the

IBM Blue Gene/P system (to be presented in Section 3.5), we found setting Sq to 5 was

sufficient in a scale of 32,768 processes.

At the inner-partition level, workers periodically report to the master for assign-

ments when idle. Upon receiving a task request from an idle worker (wj), the master scans

QL in the FIFO order to determine a task for wj as follows. For the current query sequence

being examined (qc):

1. If wj has cached some database fragments that have not been searched against qc,

the cached fragment that is least distributed (i.e., cached by fewest workers) in the

partition will be assigned to the worker.

2. If wj has not cached any unsearched fragment of query sequence c and the sharing

mode is used, the least-distributed fragment is assigned to wj , who will then load the

assigned fragment into its local cache before the search.

Here data locality is taken into account to reduce data movements and keep partition-wide

data distribution to a minimum under the sharing mode. If no tasks can be found for this

worker, the scheduling algorithm move on to the next query in QL. The same scheduling

procedures are repeated until a task is decided for the idle worker or until all unfinished

query sequences in QL have been examined, in which case the worker has finished its own

portion of work. By allowing uncompleted tasks to be independently scheduled to any

19

Algorithm 1 Master Scheduling Algorithm
11.0

Let QL = {q1, q2, ...} be the list of unfinished query sequences
Let F = {f1, f2, ...} be the set of database fragments
Let Unassignedi ⊆ F be the set of unassigned database fragments for query sequence qi

Let W = {w1, w2, ...} be the set of workers in this partition
Let Di ⊆W be the set of workers that cached fragment fi

Let Distributed = {D1,D2, ...} be the set of D for each database fragment
Let Ci ⊆ F be the database fragments cached by worker wi

Let assignmenti refer to the assignment to the ith worker
Require: |W | 6= 0

while not all query sequences have been finished do
if number of all unassigned fragments in QL < |W | then

Issue segment prefetching request to supermaster
end if
if Received a query segment QS from supermaster then

for qi ∈ QS do
Append qi to QL

Unassignedi ← F

end for
end if
Receive task request from worker wj

qc ← QL.head

assignmentj ← < ∅, 0 >

while qc 6= QL.tail and assignmentj = < ∅, 0 > do
if ∃fi ∈ Unassignedc and wj ∈ Di then

Find fk such that minDk⊆Distributed
|Dk|

and wj ∈ Dk and fk ∈ Unassignedc

assignmentj ← < qc, fk >

else
if sharing mode is used then

Find fk such that minDk⊆Distributed
|Dk|

and fk ∈ Unassignedc

assignmentj ← < qc, fk >

end if
end if
if |Unassignedc| = 0 then

QL.head← QL.head.next

end if
qc ← qc.next

end while
end while

20

workers that have cached the corresponding database fragments, our scheduling algorithm

helps balance loads between workers even the search times of different tasks are highly

skewed.

3.3.3 Scalable Distributed Results Processing

While most existing studies on parallel sequence search have focused on the par-

allelization of the sequence alignment computation, we have found that efficient handling

of output data is crucial in sustaining the parallel execution efficiency when scaling to

a large number of processors. In this section, we identify several performance issues in

mpiBLAST’s original result-processing protocol. We then present a light-weighted result-

processing protocol used in mpiBLAST-PIO. The new propotocol can significantly reduce

the non-search overhead of sequence-search tools using the database segmentation approach

as well as enables efficient processing of output-intensive queries.

TopAlign 1

TopAlign 2

TopAlign 3

Master

Format

Worker 1

Worker 2

Worker n

...

...

TopAlign n

Write

B1 B2 B3

AlignmentsSeq Data

... ...

Output File

(a) Centralized Results-Processing

LocalAlign 1.1

LocalAlign 1.2

LocalAlign 1.3

B1.1 B1.2 B1.3

Worker 1

Format

Write

LocalAlign 2.1

LocalAlign 2.2

LocalAlign 2.3

B2.1 B2.2 B2.3

Worker 2

Format

Write

...

LocalAlign n.1

LocalAlign n.2

LocalAlign n.3

Bn.1 Bn.2 Bn.3

Worker n

Format

Write

B2.1 B1.2B1.1 B2.2 B2.3Bn.1

Master

Block Meta WriteOffsets

Output File

(b) Distributed Results-Processing

Figure 3.2: Compare centralized and distributed design of results processing. In the cen-
tralized design, the results formatting and writing is serially done by the master. While in
the distributed design, the results formatting and writing is concurrently done by workers.

As discussed in Section 3.2, originally mpiBLAST adopts a centralized result-

processing approach to merge results generated at different workers. Specifically, In mpi-

BLAST, a worker produces result alignments after searching a query sequence against a

database fragment. Each of such result alignments is a piece of intermediate result describ-

ing a hit area identified from an in-database sequence. Information regarding an alignment,

21

such as sequence IDs, evalue and the locations of the hit is stored in a per-alignment data

structure. Figure 3.2(a) depicts the procedures of centralized results processing. When a

search task is finished, the worker sends the result alignments together with the correspond-

ing sequence data to the master. The result alignments belonging to the same query will

be merged into a list in the order of their evalues, and the corresponding sequence data will

be buffered and used later in the results formatting. A query is ready for output when the

result alignments of all database fragments have been received. The result data of multiple

ready queries are processed and written in their submission order. To process a ready query,

the master calls the output routine of NCBI BLAST, which in turn formats each qualified

alignment (in the top k range of the alignment list) and appends the corresponding result

data block to the output file.

The above centralized design is based on the assumption that the results formatting

and writing can be easily handled by a single compute node. This assumption, however, is

not valid given the ever-growing scale of sequence databases, query workload, and parallel

computers. For example, researchers have found that searching individual “hard” queries

against large DNA sequence databases could yield gigabytes of output data [38]. As a

result, centralized results merging and formatting become the major scalability bottleneck in

mpiBLAST. Figure 3.3 shows the execution breakdown of searching 300 nr sequences against

the database itself with mpiBLAST v1.4 on System X at Virginia Tech (configurations to be

described in Section 3.4). The “search time” refers to the average time spent on the actual

BLAST search algorithm by each worker. The “other time” includes all parallel overhead,

which is dominated by the results processing cost at the scale of our experiments. As shown

in Figure 3.3, the search time decreases nicely as more workers are used, but the non-search

overhead also increases rapidly. Consequently, the overall execution time stops decreasing

at 32 workers.

Several reasons account for the poor scalability of centralized results processing.

First, all result alignments need to be buffered at the master before output, imposing a high

memory demand on this single node, causing serious performance degradation, or simply

forbidding the completion of certain output-intensive queries. Second, the results format-

ting and writing are performed sequentially, making the master a potential performance

bottleneck in handling a bulky result volume. Finally, the result sequence data need to be

sent over the network to the master for preparing output, adding high message-passing cost

22

to the application-visible overhead.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 8 16 32

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Workers

search time
other time

Figure 3.3: Searching 300 randomly sampled nr sequences against nr itself with mpiBLAST-
v1.4 on the System X cluster. The nr database is partitioned into 8 fragments, and a replica
of the database is pre-distributed to every 4 workers in a round-robin fashion.

To address this problem, mpiBLAST-PIO adopts a distributed results-processing

design to enhance its scalability in searching both individual and multiple queries on a

large number of processors. Figure 3.2(b) illustrates this new output workflow. First, after

generating local result alignments, workers take one more step to format the alignments

into output blocks and store them in memory buffers. Each output block is stored with the

evalue of the corresponding alignment. Next, workers submit block metadata, which consists

of the evalue and size of each local output block, to the master. The master then merges

and filters out output blocks of unqualified alignments according to their evalues. When

the block metadata of all workers have been received for one query, the master calculates

the in-file offsets of globally qualified output blocks and sends the those back to the workers

who buffered corresponding output blocks. Now knowing the subset of their qualified local

output blocks, the workers will write the output buffers that they already prepared out to

the file system. These write operations can be carried out in parallel using several strategies,

to be discussed in Section 3.3.4.

The above distributed results-processing greatly reduces the parallel overhead com-

pared to the centralized scheme. First, it improves the level of parallelism by shifting the

bulk of work in results formatting from the master to the workers and allows output prepa-

ration to proceed in parallel. Second, it alleviates the memory space bottleneck at the

23

master node by having all workers collaboratively buffer intermediate results. Third, only

a small amount of data (i.e., evalues, sizes and write offsets of output blocks) needs to be

exchanged between the master and the workers, dramatically reducing the communication

volume in the system. Although the new scheme has the workers format all their interme-

diate results regardless of whether these results will be included in the global output, the

wasted processing is outweighed by the benefit of saving transferring bulky sequence data

and parallelizing the output preparation.

3.3.4 Parallel Output Scheduling

Our dynamic computation scheduling and distributed results processing leave each

involved worker a set of non-contiguous output data blocks to write to disjoint ranges in

the output file. How to efficiently write those output data to the file system is another

challenge to sustaining high sequence-search throughput.

The optimizations of non-contiguous I/O operations have been well studied for

parallel numerical simulations, which often possess predictable data access patterns and

balanced computation models. However, in our situation the unique aspects of parallel

sequence-search applications complicate the I/O design in several ways:

• The output data distribution is fine-grained as well as irregular, and varies from one

query to another depending on the search result [38]. Straightforward, uncoordinated

I/O can result in poor I/O performance.

• Unlike in timestep simulations, where the computation time is well balanced across

processes, here the computation time could be significantly imbalanced across workers

searching the same query on different database fragments. In addition, there is no

inherent synchronization in the computation core between searching different queries.

Synchronous parallel I/O techniques may incur high parallel overhead and have neg-

ative impacts on our load balancing algorithms.

The above observations suggest that traditional non-contiguous I/O optimization

techniques, specifically data sieving and collective I/O (described in Section 6.2), may not

be suitable for massively parallel sequence search. In this paper, we investigate an alter-

native I/O optimization which employs an asynchronous, two-phase writing technique. We

compares it with existing parallel I/O optimizations by evaluating four alternative output

24

strategies: WorkerIndividual, WorkerCollective, MasterMerge and WorkerMerge (as illus-

trated side by side in Figure 3.4). Among them, the first three are based on existing I/O

techniques, and the last one (WorkerMerge) is based on our proposed I/O optimization.

WorkerIndividual

As described in Section 5.4, once the workers receive write offsets of buffered

output blocks from the master, they can go ahead and issue write requests to the shared file

system to write out the buffered output blocks. Figure 3.4(a) depicts the procedure of the

WorkerIndividual strategy with an example setting consisting of three workers, assuming

the database is also segmented into three fragments. Whenever a worker finishes a search

assignment, it checks with the master to receive offset information for previously completed

queries. If such information arrives, the worker will first write local qualified output blocks

to the shared file system before searching its next assignment. Note that as the results

merging cannot be finalized until all workers complete searching the query sequence qi, a

worker likely will not be able to proceed with output right after it finishes searching this

query. Instead of blocking this worker until the write offsets for qi are released by the

master, the scheduler let it go ahead to request the next query sequence, qi+1 and start

computation again.

The writing of non-contiguous output data can be done in two ways. The intuitive

way is to perform a seek-and-write operation for every block via POSIX I/O calls. This is a

slow solution as it will result in many small I/O requests, unfavored by typical file systems.

An alternative way is to use the non-contiguous write method provided by MPI-IO [57].

Each worker first creates a file view that describes the locations to be written, then just

calls MPI File write() to issue writes of all output data at once. MPI-IO libraries such as

ROMIO [50] provide optimizations for this kind of non-contiguous write with data sieving

[58]. In our experiments, MPI-IO calls will be used when data sieving is supported by the

underlying file system, otherwise we fall back to seek-and-write with POSIX functions.

The major advantage of WorkerIndividual is that it does not introduce any syn-

chronization overhead in the I/O phase. Workers alternate between computation and I/O,

without wasting time waiting for other workers. This strategy is expected to work effi-

ciently if the non-contiguous writing performance is well sustained by the underlying file

system. The disadvantage, however, is that the non-contiguous accesses may be inefficient.

25

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Worker 1 Worker 2 Worker 3 Master

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

Search

Merge

1 Send evalue+size

1

2 Send offsets

3 Write data

1

1

2

2

2

3

3

3 3

Output of qi Output of qi+1
Output File

(a) WorkerIndividual

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Output of qi Output of qi+1

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

Search

Merge

1 Send evalue+size

2 Send offsets

3

Write data4

Exchange data

3 3

Wait

4 4 4

qi+2

Worker 1 Worker 2 Worker 3 Master

Output File

(b) WorkerCollective

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

qi+2

qi

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

4

Output of qi Output of qi+1

Search

Merge

1 Send evalue+size

2 Offsets

3

3
3

Worker 1 Worker 2 Worker 3 Master

qi+1

Output File

3

Write data4

Exchange data

(c) MasterMerge

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

4

Output of qi Output of qi+1

Search

Merge

1 Send evalue+size

2 Offsets

3

3

Worker 1 Worker 2 Worker 3 Master

Output File

3

Write data4

Exchange data

(d) WorkerMerge

Figure 3.4: Four output strategies compared in this study. WorkerIndividual adopts the
data sieving I/O technique when possible. WorkerCollective is based on the collective I/O
technique. MasterMerge merges and writes output at the master. WorkerMerge is based
on the proposed asynchronous, two-phase I/O technique.

26

Even with data sieving, the concurrent irregular I/O requests from multiple workers would

generate much contention on the file system, leading to undesirable I/O performance.

WorkerCollective

Collective I/O appears to be a natural solution when we have a large number of

small, non-contiguous I/O requests accessing a shared file with an interleaving pattern. A

corresponding output strategy for parallel sequence search, which we call WorkerCollective,

lets the workers coordinate their write efforts into larger requests. As illustrated in Fig-

ure 3.4(b), after receiving write offsets from the master, rather than performing individual

writes, the workers will issue a MPI-IO collective write request. Like in the case of Work-

erIndividual, the results merging of qi likely will not be done right after the search of this

query is completed. To overlap the master’s result processing with workers’ searching, all

the workers involved in searching qi continue with query processing, until between assign-

ments they found that the file offset information regarding qi has arrived. At this point,

a worker will enter the collective output call for qi. The advantage of this strategy lies in

its better I/O performance compared to the non-contiguous write approach, by combining

many small write requests into several large contiguous ones through extra data exchange

over the network. However, even with the overlap discussed above, this strategy still incurs

frequent synchronization, as collective I/O calls are essentially barriers that force work-

ers to wait for each other (as shown with the white boxes in Figure 3.4(b)). While very

suitable for time-step simulations, this communication pattern is undesirable for parallel

sequence-searches, which are known to have imbalanced computation intervals.

MasterMerge

Another intuitive solution, especially considering the popular use of NFS servers on

commodity clusters, is to let the master handle all the output. We call this the MasterMerge.

With MasterMerge, the workers proceed as in the previous two schemes, until the result

merging outcome is communicated back to the workers. At this point, rather than writing

qualified local output blocks to the shared file, the workers forward them to the master.

The latter then merges the output data in its memory and issues large, sequential write

requests to the output file. Figure 3.4(c) shows the output process using MasterMerge.

27

This approach avoids concurrent I/O by many workers on a system with limited parallel

I/O support and merges small I/O requests without enforcing synchronization on workers.

However, the scalability of this scheme is apparently limited on larger systems, as the master

can easily become the bottleneck.

In implementing this strategy, the master’s memory constraint has to be taken

into account. We defined a maximum write buffer size (MBS) in the master to coordinate

incremental output communication, similar to the scheme used in common 2PIO imple-

mentations [49]. That is, only MBS amount of data will be collected and written at each

operation.

WorkerMerge

Recognizing the limitations of the aforementioned approaches, we propose Work-

erMerge, an output strategy that performs asynchronous, two-phase writes with merged

I/O requests. With this strategy, after the master finishes result merging for query qi, it

appoints one of the workers to be the writer for this query. To minimize data communi-

cation, we select the worker with the largest volume of qualified output data to play the

writer role, who will collect and write the entire output for this query. The workers involved

in searching qi are notified about the output data distribution and the writer assignment,

and send their output data for qi to the writer. In the example depicted in Figure 3.4(d),

worker 2 is selected as the merger for query qi. After receiving output offsets, worker 1 and

worker 3 send their output blocks to worker 2 using non-blocking MPI sends, then continue

with the next search assignment. After worker 2 finishes searching query qi+1, it receives

output blocks sent by worker 1 and 3, then performs a contiguous write.

In our implementation, the same incremental communication strategy used in Mas-

terMerge is adopted here to guard against buffer space shortage. Such data collection is

conducted using non-blocking MPI communication to overlap with search computations. A

writer checks the status of the collection between searching two assignments. Whenever the

data is ready, it issues an individual write call to output a large chunk of data.

The WorkerMerge strategy takes advantage of collective I/O and removes the syn-

chronization problem. Meanwhile, it resolves the bottleneck problem of MasterMerge by

offloading output gathering and writing to workers. It seamlessly works with our dynami-

cally load-balanced computation scheduling algorithm and allows a large number of workers

28

to be efficiently supervised by a master.

One may argue that the MPI-IO standard does provide asynchronous collective

I/O with split collective read/write operations [57]. The split collective operations do allow

the overlap of I/O and computation by separating a single blocking collective call into a

pair of “begin” and “end” operations. However, our framework cannot benefit from them

for two reasons. First, split collective I/O is not yet supported in popular MPI-IO libraries

[50]. Second, in our target scenario, the data distribution (in terms of an MPI file view)

is computed dynamically depending on the local result merging process, therefore a new

file view needs to be constructed for each query’s output. Since the MPI File set view call

has only a blocking form, there is no way to remove inter-worker synchronization even with

split collective write functions.

In our current design, the result from each query is written by one writer pro-

cess. For queries that generate large amounts of output data, using multiple writers may

be beneficial. Our work targets large BLAST jobs processing many queries on supercom-

puters. With a large number of concurrent groups working on queries and our proposed

asynchronous writing, the underlying I/O parallelism in the system is expected to be well

utilized. Therefore the main issue here is whether the individual writers will have enough

memory space to buffer the single-query output, which can be addressed by our incremental

buffering and writing design.

3.4 Performance Evaluation

To evaluate the computation and I/O scheduling approaches presented earlier in

this paper, we performed extensive experiments with mpiBLAST-PIO on three clusters

with varying sizes, architectures, interconnection types, operating systems, and file systems,

whose details will be presented in Section 3.4.1.

To reduce the test space, we first compare the four output strategies presented

in Section 3.3.4. Then we configure mpiBLAST-PIO to use the best output strategy in

the rest of our experiments and examine our computational load-balancing design. Finally,

we systematically evaluate the scalability of mpiBLAST-PIO on a supercomputer with

thousands of processors.

29

 0

 1000

 2000

 3000

 4000

 5000

 6000

128643216

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Workers

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(a) Jacquard@NERSC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

128643216

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Workers

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(b) IA64@OSC

 0

 1000

 2000

 3000

 4000

 5000

 6000

16 32 64 128

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Workers

WorkerIndividual
MasterMerge
WorkerMerge

(c) System X@VT

Figure 3.5: Node scalability results of searching 1000 randomly sampled nt sequences on
different number of workers.

3.4.1 Experiment Setup

Below we give the detailed configurations of our test platforms.

Jacquard: Jacquard is a 356-node Opteron cluster running Linux, located at Na-

tional Energy Research Scientific Computing Center (NERSC). Each node has dual Opteron

2.2 GHz processors and 6 GB of physical memory. The nodes are interconnected with a

high-speed InfiniBand network. Shared file storage is provided by the GPFS filesystem [59].

No local storage is available for applications on the compute nodes. The MPI library is

MVAPICH version 0.9.5-mlx1.0.1.

IA64: IA64 is distributed/shared memory hybrid of commodity systems based

on the Intel Itanium 2 processor. It is located at Ohio Supercomputer Center (OSC). The

30

cluster is built using HP zx6000 workstations, an SGI Altix 3000 and several Altix 350s. The

partition used in our experiments consists of 110 compute nodes, each has two 1.3 Gigahertz

Intel Itanium 2 processors and 4 GB of physical memory. The nodes are interconnected

with Myrinet and Gigabit Ethernet. Shared file storage is provided by a PVFS filesystem.

A 36 Gigabytes, ultra-wide SCSI hard drive is attached to each node as local storage. The

operating system is Linux and the MPI library is a version of MPICH optimized for the

Myrinet high-speed interconnect.

System X: System X is a 1100-node MAC OS cluster located at Virginia Tech

(VT). Each node consists of two 2.0-GHz IBM PowerPC 970 CPUs and 4 GB of physical

memory. System X uses two interconnection fabrics, InfiniBand and Gigabit Ethernet.

Shared file storage is provided by a ZFS [60] distributed filesystem. A 80GB hard drive is

attached to each node as scratch space. The MPI library is a customized version of MPICH

1.2.5.

It worths noting that due to a special combination of the file system (ZFS) and

the MPICH customization, MPI-IO (especially collective I/O) is not well supported on

System X. Therefore for all experiments on System X, we only show results of three output

strategies other than WorkerCollective.

The experiment database is nt, a nucleotide sequence database that contains the

GenBank, EMB L, D, and PDB sequences. At the time when our experiments are per-

formed, the nt database contained 5,454,516 sequences with a total raw size of about 20GB

and a formatted size about 6.5GB. To stress test the scalability of mpiBLAST-PIO, we use

sequences randomly sampled from nt itself as queries because these queries are guaranteed

to find close matches in the database.

In our experiments, mpiBLAST-PIO is configured to run on the sharing mode on

IA64 and System X, where the database is predistributed to the local disks of compute

nodes to save the database redistribution time in consecutive runs. The execution times

reported on these systems do not include the database distribution time. On Jacquard, the

program is configured to run on the non-sharing mode as this platform does not provide per

node local storage for applications. The sequence database is distributed to the memory

of all processors using the replication approach described in Section 3.3.1 at each run, and

this overhead is included in the overall execution time.

31

3.4.2 Scalability Comparison of Output Strategies

In this section we evaluate the scalability of four output strategies discussed in

Section 3.3.4 with regard to both system sizes and output sizes. The experiment query set

consists of 1000 randomly sampled nt sequences sized 5KB or less. The sequences within

this length range account for 96% of overall sequences in the database. Our past experiences

suggest that searching these sequences incurs high I/O demands. For all experiments in

this section, we configured mpiBLAST-PIO to use only one partition. In doing so, we focus

solely on I/O scalability and isolate other factors such as load balancing between partitions.

The nt database is partitioned into 32 fragments. These fragments are distributed on every

8 workers in a round-robin fashion. This configuration works well for the BLAST search

jobs used in the experiments according to our experiences. All experiments are repeated

three times and the average results are reported. The result variances are less than 5% in

these experiments, hence the error bars are not included in the figures.

Figure 3.5 shows the node scalability test results, where we plot the overall execu-

tion time of searching the given query set against nt as a function of the number of workers.

We find that across all three platforms, the WorkerMerge approach works consistently the

best. Overall, its winning margin increases as the number of workers grows. With 128

workers, it outperforms the WorkerInidividual strategy by an average factor of 1.8 over the

three test systems, WorkerCollective by 5.4, and MasterMerge by 1.7. In addition, Work-

erMerge achieves near-linear scaling from 16 to 128 workers on all three tested platforms.

As expected, it outperforms other strategies by adopting distributed, merged I/O without

enforcing additional synchronization that slows down query processing.

For the two systems that have collective I/O support, the WorkerCollective ap-

proach gives the worst performance. This is due to the synchronization cost associated

with periodic collective I/O operations. Interestingly, the differences between the other

three approaches look very different on the three platforms. Most notably, the WorkerIndi-

vidual, MasterMerge, and WorkerMerge strategies yield very similar performance on the

IA64 system. One major reason is that the CPU frequency on this machine is relatively

low (1.3GHz), while the interconnection networks and the I/O subsystem are with fairly

high configurations. Overall this results in a lower pressure on the output components,

as results are generated rather slowly but consumed fast. On Jacquard, it is evident that

32

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

20001000500250

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Output Sequences per Query

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(a) Jacquard@NERSC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

20001000500250

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Output Sequences per Query

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(b) IA64@OSC

 0

 500

 1000

 1500

 2000

250 500 1000 2000

E
xe

cu
tio

n
T

im
e

Number of Output Sequences per Query

WorkerIndividual
MasterMerge
WorkerMerge

(c) System X@VT

Figure 3.6: Output scalability results of searching 1000 randomly sampled nt sequences
with different amount of output data.

WorkerMerge outperforms MasterMerge, and MasterMerge outperforms WorkerIndividual.

Next, we perform a set of output scalability tests. By default, NCBI BLAST

reports the matches between a query sequence and the top 500 database sequences that are

closed to the query based on the alignment results. This configuration is used in the previous

group of tests. In the output scalability tests, we vary the output size by configuring BLAST

to report the top 250, 500, 1000, and 2000 result database sequences. The corresponding

total output sizes are 428MB, 768MB, 1.4GB, and 2.4GB, respectively. The total number

of workers used here is fixed at 128. The rationale behind the output scalability tests is

that as parallel computers become more powerful and databases grow larger, the I/O-to-

computation ratio of genomic sequence-searches is expected to increase in the near future.

33

By varying the amount of output data, our tests arguably evaluate how well different output

strategies accommodate the performance trend of future sequence-search jobs. In addition,

our tests address users’ needs for gathering large amounts of results; according to the

feedbacks provided in mpiBLAST users’ mailing list, it is not unusual that nowadays BLAST

users choose to have several thousands of result sequences reported.

Figure 3.6 shows the results of the output scalability tests, where we plot the overall

execution time as a function of the number of reported result sequences. The advantage of

WorkerMerge over the other strategies is more evident than in the node scalability tests.

When reporting 2000 result sequences, WorkerMerge outperforms the second best strategy

by a factor of 2.4, 1.8 and 1.3 on Jacquard, IA64 and System X respectively, and outperforms

the worst strategy by a factor of 4.9, 8.8, and 2.1. In addition, the performance curves of

WorkerMerge are much flatter than those of the other three strategies, suggesting that

WorkerMerge is less sensitive to the growth of output sizes than the others.

Overall the relative performance differences between various strategies are similar

to those in the node scalability tests. A new observation is that on Jacquard, the per-

formance of WorkerIndividual degrades fast as more results are reported, causing a worse

execution time than WorkerCollective at 2000 result database sequences. The scalability of

WorkerIndividual is much better on IA64 and System X. One explanation is that the non-

contiguous write approach used in WorkerIndividual is better supported by the file systems

on the two platforms. In particular, PVFS (on IA64) provides special optimization for this

write pattern with LIST I/O technique [52].

It is clear that for both types of scalability tests, WorkerMerge greatly outperforms

the other strategies on all three tested platforms. Therefore we will configure mpiBLAST-

PIO to use WorkerMerge in the rest of experiments.

3.4.3 Fine-grained Dynamically Load Balancing

In Section 3.3.2 we presented the details of our fine-grained, dynamically load-

balancing algorithm. A key factor of the design is to minimize the scheduling overhead by

having masters proactively prefetch query segments from the supermaster. In this section,

we evaluate the efficacy of query-segment prefetching with two synthesized workloads that

have different balancing sensitivity to the task granularity.

The first workload uses a query set consisting of 1000 randomly sampled nt se-

34

quences sized 1KB or less. Our past experiences suggest that the search time distribution is

relatively balanced for these sequences. For this workload, the load balance results are rel-

atively insensitive to the task granules. For the second workload, we purposely synthesize a

query set with a skewed search time distribution, where the load balancing results are highly

sensitive to the task granules. We mixed expensive queries with inexpensive ones in terms

of their search times as follows. According to reference [38], expensive query sequences in

the nt database are likely to be larger than 5KB. With this hint, we first randomly sample

10,000 query sequences under 50KB from the nt database. These sequences are separated

into two groups, with the first group consisting of sequences larger than 5KB and the second

group consisting of the rest. Then we extract 10% of the most expensive sequences out of

group one and put them together with 10% sequences randomly extracted from group two.

This results in a 1000-sequence query set with expensive ones in the beginning.

Figure 3.7(a) gives the CDF function of the processing time of each query sequence

in the above two workloads when searched on 32 processors on System X. We label the

first and the second workloads with “Balanced” and “Skewed” respectively. As can be

seen, 98.8% of query sequences in the first workload can be processed within 10 seconds,

and the longest processing time is only 50 seconds. In the second workload, most of the

query sequences (96.9%) can still be processed within 10 seconds. However, the rest of the

sequences are much more expensive, with processing times ranging from 40 to 400 seconds.

We search the two workloads on System X using 166 processors configured into

5 partitions, with each consisting of 32 workers. The nt database is partitioned and pre-

distributed in the same way as in the scalability tests. Each experiment is repeated three

times and the average numbers are reported. Again, the result variance are quite small (less

than 5%) so we do not include the error bars in the result figures.

Figure 3.7(b) shows the results of searching the balanced workload with and with-

out query-segment prefetching on various task granules (i.e. query segment sizes). The

overall execution time is reported as it measures the comprehensive performance impacts

and matters the most to the end users. As expected, our prefetching design can signif-

icantly reduce the scheduling overhead when using small task granules compared to the

non-prefetching design. Specifically, without prefetching of query segments, the overall ex-

ecution time increases by a factor of 1.4 when the query segment size drops from 5 to 1.

This is because when the task granule is small, there is no enough work in a query segment

35

to balance loads across workers in the partition, causing worker idleness. In contrast, with

prefetching, the overall execution time is about the same across different segment sizes.

This suggests that our query prefetching design can gracefully hide the scheduling overhead

of doing fine-grained load balancing in the given setting.

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Query Processing Time (secs)

Balanced
Skewed

(a) CDF

 0

 200

 400

 600

 800

 1000

201051
E

xe
cu

tio
n

T
im

e(
se

cs
)

Query Segment Size (#sequences)

Prefetch
NoPrefetch

(b) Balanced Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

201051

E
xe

cu
tio

n
T

im
e(

se
cs

)

Query Segment Size (#sequences)

Prefetch
NoPrefetch

(c) Skewed Workload

Figure 3.7: Performance impacts of query segment prefetching.

The results of searching the skewed workload are quite different than those of the

balanced workload, as shown in Figure 3.7(c). For this heavy-headed query set, a large

query segment size can cause significant imbalance in the processing times of individual

segments. As a result, in general the overall execution time increases as the query segment

size grows. However, without prefetching, using segment size 5 delivers better performance

than using segment size 1. The reason is when the segment size is 1, the overhead caused

36

by the worker idleness offsets the gain of fine-grained load balancing. The worker idle issue

is greatly resolved with prefetching of query segments. Consequently, with prefetching, the

system achieves the best performance at the smallest task granule (query segment size 1),

where the advantage of fine-grained load balancing is fully taken. In particular, the best

prefetching case (query segment size 1) outperforms the best non-prefetching case (query

segment size 5) by a factor of 1.4.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1024512256128

E
xe

cu
tio

n
T

im
e

(s
ec

s)

Number of Processors

P32
P64

P128
PALL

Figure 3.8: Scalability of searching 5000 nt sequences with various partition sizes on System
X. Configurations of different partition sizes are labeled P32, P64 and P128 respectively.
PALL refers to the single-layer master-slave configuration, using all available processors for
one partition. Note P128 and PALL are actually the same when running on 128 processors.

3.4.4 Overall System Scalability

In order to evaluate the scalability of our integrated scheduling approach, in this

experiment we benchmark mpiBLAST-PIO with up to 1024 processors on System X. We

vary the system size to include from 128 to 1024 processors. To see how different partition

sizes will affect the system throughput, for each system size, we perform multiple tests

by configuring mpiBLAST-PIO to use 4 different partition sizes (in terms of number of

workers): 32, 64, 128 and the system size. Note when the partition size is set to the system

size (e.g., using 128 as the partition size on 128 processors), mpiBLAST-PIO acts in a

single-layer master-slave mode, where all the workers in the system are overseen by just

one master process. The query set consists of 5000 randomly sampled nt sequences sized

5KB or less. The database is partitioned and distributed as other experiments presented

37

previously. The prefetched query segment size is set to one.

The performance results are shown in Figure 3.8. The first observation is that the

execution times decrease nicely for all configurations as the system size grows. Surprisingly,

even with a single-layer configuration (labeled PALL in the figure), mpiBLAST-PIO scales

well to 1024 processors, which suggests that our inner-partition scheduling algorithm is

highly efficient. However, the benefit of hierarchical scheduling on large system size is

evident. With 512 processors and above, using single-layer scheduling is significantly slower

than all other three configurations, simply because the master will become a performance

bottleneck when managing too many workers. Specifically, PALL is slower than the best

hierarchical configuration (P64) by a factor of 1.9 and 2.3 on 512 and 1024 processors

respectively.

The performance impacts of using different partition sizes are determined by a

combination of several factors. On the one hand, using larger partition sizes can save the

number of master processes and give more horse power to the actual search computation.

On the other hand, larger partition sizes could overburden the master process with increas-

ing loads of scheduling and output coordinating, and consequently incur higher parallel

overhead. As can be seen in Figure 3.8, for this particular setting, using 128-worker parti-

tions (labeled P128) is noticeably slower than the other two configurations (P32 and P64),

mainly because the master is overloaded when handling a large number of workers. Interest-

ingly, P32 and P64 deliver almost identical performance. This suggests that when partition

size increases from 32 to 64, the saving in search computation time is counteracted by the

parallel overhead increased. Nonetheless, mpiBLAST-PIO achieves almost linear speedup

up to 1024 processors when the partition size is set to 64, with a parallel efficiency of 92%

on 1024 processors as shown in Figure 3.9.

3.5 Case Study on IBM Blue Gene/P Supercomputer

In this section, we present a case study of using mpiBLAST-PIO to solve a

sequence-search problem in the real world on a IBM Blue Gene/P platform with tens of

thousands of processing cores.

38

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

S
pe

ed
up

Number of Processors

linear speedup
P64

Figure 3.9: Speedup of searching 5000 nt sequences on System X with hierarchical schedul-
ing (partition size 64).

3.5.1 Overview of the Blue Gene/P Architecture

The Blue Gene/P architecture supports a distributed memory, message-passing

programming model [61]. It uses system-on-a-chip (SoC) technology to deliver four 850-

MHz PowerPC 450 processors, capable of achieving a theoretical peak performance of 13.6

gigaflops/chip [62]. Each such SoC constitutes a Compute Node. A Compute Node attached

to a processor card with 2 GB of memory creates the compute and I/O cards. Two rows of

16 compute cards then make up a node card. Next, a midplane consists of 16 node cards

stacked in a rack. A rack holds two midplanes for a total of 32 node cards.

The PowerPC 450 core itself contains the first-level (L1) cache, which is 64-way set

associative. The second level (L2R and L2W) of caches, one dedicated per core, are 2 KB

in size. They are fully associative and coherent; they act as prefetch and write-back buffers

for L1 data. The L2 cache line is 128 bytes in size. Each L2 cache has one connection

toward the L1 instruction cache running at full processor frequency. Each L2 cache also has

two connections toward the L1 data cache, one for the writes and one for the loads, each

running at full processor frequency. The third-level (L3) cache is 8-way set associative and

8 MB in size with 128-byte lines. Both banks can be accessed by all processor cores. The

L3 cache has three write queues and three read queues: one for each processor core and one

for the 10-Gigabit network.

There can be up to two I/O cards per node card. When these nodes do not have

39

a local file system, I/O operations need to be sent to an external device. In order to reach

this external device (outside the environment), a compute node sends data to an I/O node,

which in turn carries out the I/O requests [62]. In the BG/P systems used in our study,

the file system are configured with the Global Parallel File System (GPFS) [59, 61].

Applications on Blue Gene/P may run in three different modes: Symmetrical Mul-

tiProcessing (SMP) Node mode, Virtual Node mode (VN), and Dual Node mode (DUAL).

In the first mode, each compute node executes a single task with a maximum of four threads.

Node resources (primarily the memory and the torus network) are shared by all threads.

In VN mode, four single-threaded tasks are run on each node, one task per core. Each task

gets 1/4 of the total memory of the node. Finally, in the DUAL mode, two tasks can be

run on a node. Each task gets half of the memory and cores and can consist of at most two

threads.

3.5.2 Problem Description

In this case study, we sequence search the entire microbial genome database against

itself, which has several major utilities in computational biology as described in [13]. A

summarized description of these utilities is noted below:

Discovering Missing Genes: Genome annotation identifies the location of genes and

the coding regions in a genome, determines what those genes do, and then annotates this

information to the genome. Part of the above process entails accurately determining the

location and structure of protein-encoding and RNA-encoding genes via computational

analysis. If done improperly, we end up predicting false genes or missing real genes.

A popular method for locating genes, known as the similarity method, requires

the comparison of genomic segments with a database of gene sequences found in similar

organisms. If the sequence is conserved, then the segment that is being evaluated is likely

to be a coding gene. Genes that do not fit a given genomic pattern and do not have similar

sequences in current annotation databases may be systemically missed.

To detect missed genes, we use the similarity method and compare raw genomes

against each other rather than comparing a raw genome to a database of known genes. For

instance, if gene x in genome X and gene y in genome Y have been missed and x is similar

to y, then the similarity method will find both. However, the only way of identifying this is

to perform an all-to-all comparison of the entire microbial genome database against itself,

40

which is highly compute-intensive.2

Adding Structure to Genetic Sequence Databases: One of the major issues with se-

quence searching is the structure of the sequence database itself. Currently, these databases

are “structured” as a flat file in human-readable format, e.g., ASCII text, and each new se-

quence that is discovered is simply appended to the end of the file. Without more intelligent

structuring, the query sequence needs to be compared to every sequence in the database

(several millions currently) forcing the best-case to take just as long as the worst-case. By

organizing and providing structure to the database, searches can be performed more effi-

ciently by being able to discard irrelevant portions entirely. One way to provide structure

to the sequence database is to create a sequence similarity tree where “similar” sequences

are closer together in the tree than dissimilar sequences. The connections in the tree are

created by determining how “similar” the sequences are to each other; sequence search can

be used to determine the sequence similarity. To create every connection, however, an “all-

to-all” sequence search must be performed where the input query being the same as the

database, resulting in an output size of N2 values (where N is the number of sequences in

the database).

3.5.3 Performance Results

At the time when the experiments were carried out, the microbial sequence database

contains 16 million sequences with an approximately 6 GB raw size. We first benchmarked

the scalability of mpiBLAST-PIO on Blue Gene/P by searching 0.25 million query sequences

randomly sampled from the microbial genome database against the database itself. We per-

formed initial profiling by varying the partition size, the number of database replicas per

partition, and the number of database fragments. This profiling allowed us to identify the

ideal values for different parameters for our system — 64 database fragments, 128 as the

partition size, and 16 as the replication group size.

Based on this profiled information, in this experiment, we increased the system size

from 1 rack to 8 racks and measured the speedup achieved as illustrated in Figure 3.10. As

can be seen, mpiBLAST-PIO scales almost linearly from 4096 cores to 32768 cores, achieving

a 93% parallel efficiency at the largest test scale. This near-perfect speedup demonstrates

2When this computation was done as part of the SC—07 Storage Challenge, it required 12,000+ processors
to compute over a two-week period and write to a petabyte file system.

41

that the synergy of mpiBLAST-PIO’s scalable task and I/O scheduling design can take full

advantage of the massive parallelism offered by the BG/P system.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000 25000 30000 35000

S
pe

ed
up

Number of Processors

linear speedup
mpiBLAST-PIO

Figure 3.10: Speedup of searching 0.25 million of microbial genome sequences against the
microbial genome database itself.

Next, we leveraged the processing power of BG/P system, enhanced by our opti-

mizations, to solve the problem of searching the entire microbial genome against itself. To

avoid data loss of possible hardware failures during the long run, we split the database into

64 query files, each consisting of about 85MB of sequence data, and continue submitting

jobs to the 8-rack system until the whole genome search is completed. This problem, pre-

viously considered to be computationally intractable in practice, was completed within 12

hours.

42

Chapter 4

Semantic-based Distributed I/O

with the ParaMEDIC Framework

4.1 Motivation

Nowadays the compute and storage resource requirements of sequence-search jobs

in advanced computational biology are greater than ever before. Most life scientists do not

have the local access to the supercomputing resources needed for their search jobs. Thus the

sequence-search results generated on the remote supercomputers need to be frequently of-

floaded to local for visualization and further analysis. Moreover, highly resource demanding

search jobs such as database-to-database alignments may require thousands to tens of thou-

sands of processors for timely response and generate hundreds of terabytes of results data.

For those jobs, few supercomputing sites are equipped with both the necessary compute

and storage resources. Thus distributed sequence searching across multiple supercomputing

cites is an effective approach to address the resource provisioning challenge. For example, a

large sequence-search job can be split and shared across several compute-resource-abundant

sites, and the results data can be write to a storage-resource-abundant site.

To facilitate large-scale collaborative scientific computing, people have invested

in high-speed distributed network connectivity for moving massive data across different

sites. However, these high-speed networks do not provide end-to-end connectivity to a very

high percentage of scientific community. Moreover, the results data generated by advanced

sequence-search jobs can be so large that the execution time is dominated by the distributed

43

I/O time even when the network bandwidth is fully utilized. To address this issue, in this

work we present “Para-MEDIC: Parallel Metadata Environment for Distributed I/O and

Computing”, which leverages the application-specific meta-level information as well as ef-

fectively utilizes both local and remote resources to achieve efficient data movements in

distribute environments. Specifically, ParaMEDIC first transforms the results data gener-

ated on the compute site into orders-of-magnitude smaller application-specific metadata.

These metadata is then transfered to the remote storage cite and transformed back to the

original results data. Essentially, ParaMEDIC trades a small amount of additional compu-

tation for significant reduction in the data volume to be transfered across the network.

ParaMEDIC can be viewed as meta-level data compression at a high level. Instead

of perceiving the data as a generic byte-stream, ParaMEDIC allows application developers

to plug in application-specific knowledge to achieve a much higher compression ratio. Con-

sequently, it loses some level of portability compared to general data compression. In this

work we demonstrate that sequence search can greatly benefit from such a tradeoff between

portability and compression effectiveness, and we believe this approach can be applied to a

broad class of meta information rich scientific applications such as visualizations.

We integrated ParaMEDIC with mpiBLAST-PIO (mpiBLAST thereafter) and

evaluated the efficacy of the ParaMEDIC framework on several distributed environments.

We first built a controlled environment on a local cluster that allows varying the bandwidth

and latency between any two of individual nodes. This environment enables us to study how

the performance of ParaMEDIC is affected under different network configurations. We then

deployed ParaMEDIC in two real-world distributed systems, including 1) a slice of the Tera-

Grid consisting of nodes at the University of Chicago and San Diego Supercomputing Center,

and 2) a system with a secure filesystem hosted between the Argonne National Laboratory

and Virginia Tech over an Internet2 connection. Our experimental results demonstrated

that ParaMEDIC can deliver order-of-magnitude performance improvements compared to

the traditional approach of moving data as an opaque stream in distributed environments.

4.2 Distributed Environments

A wide variety of distributed environments exist today, ranging from high-latency,

high-bandwidth LambdaGrids, to low-bandwidth environments connected over the Internet,

44

to unsecure environments requiring data encryption before transmission. Here we present

two sample distributed environments.

4.2.1 NSF TeraGrid

NSF TeraGrid is a distributed computing facility that combines leadership-class

resources at 11 partner sites within the U.S. to form the world’s largest distributed cyber-

infra-structure for open scientific research. It includes 750+ teraflops of computing ca-

pability and 30+ petabytes of data storage, along with rapid access and retrieval over

high-performance networks to form the world’s largest distributed cyber-infrastructure for

open scientific research.

The TeraGrid comprises several sites including the University of Chicago/Argonne

National Laboratory (Illinois), San Diego Supercomputing Center (California), Purdue

University (Indiana), Texas Advanced Computing Center (Texas), and others. The San

Diego Supercomputing Center (SDSC) also doubles as a host for a global parallel filesystem

(GPFS) that is visible and usable by all TeraGrid compute servers. All sites are connected

using high-bandwidth optical links. However, the large physical distance between the sites

forces the latency to be high (up to tens of milliseconds) as well.

Scientists use the computational power available at different locations to run com-

putations and then write the final output to the globally shared filesystem to be viewed or

post-processed at a later time. While such a system provides good computational capability

for I/O-rich applications, the distributed filesystem can form a significant bottleneck.

4.2.2 Argonne-VT Distributed System

The Argonne-VT distributed system is a small-scale research infrastructure built

to share application output for post-processing and visualization. The system consists of

200 processors of shared compute resources and about 200 gigabytes (GB) of main memory

spread across the two sites. In addition, the Argonne site provides 10 terabytes (TB) of

storage resources, which are shared across the two sites using a distributed filesystem over

a shared Internet2 connection (1 Gbps). This network connectivity is much slower than the

NSF TeraGrid infrastructure. Furthermore, though Internet2 is mostly a dedicated infras-

tructure due to its relatively low utilization, it occasionally experiences large traffic bursts,

45

causing performance degradation in the network. Finally, because the connection between

the two sites is over the traditional wide-area network, it is considered to be unsecure, and

thus, the data transmission might require encryption, which can add substantial overhead

as well.

4.3 The Design of ParaMEDIC

In this section, we present the detailed design of the Para-MEDIC framework

(short for Parallel M etadata Environ-ment for D istributed I /O and Computation).

4.3.1 The ParaMEDIC Framework

The architecture of ParaMEDIC is shown in Figure 4.1. In summary, ParaMEDIC

provides three major components that allow applications to take advantages of the meta-

level data transferring:

• ParaMEDIC Data Tools. The data tools offer efficient supports of data-touching

services such as data encryption and integrity check. These services are necessary

when moving privacy sensitive data over unsecure distributed environments.

• Communication Services. The communication services handle data transferring over

various networking protocols (e.g., TCP).

• Application Plugins. Applications plugins allow applications to inform ParaMEDIC

how to create and process the semantic based metadata.

An application plugin should provide two types of functionalities. First, on the

computing site, the plugin tells ParaMEDIC how to transform the application’s results

data into semantic-based metadata. Depending on the applications, the metadata can be

converted directly from the application’s intermediate results representation or extracted

out from the actual output written to the disks. Second, on the storage site, the plugin

provides a mechanism to convert the metadata generated at the computing site back to the

original output.

Since the writing of application-specific plugins requires intimate knowledge of

applications, currently ParaMEDIC relies on the application writers for plugin development

46

Profiling Visualization

ParaMEDIC API
(PMAPI)

Applications

mpiBLAST
Communication Remote

Data
Encryption

Data
Integrity

ParaMEDIC Data Tools

Communication
Profiling Plugin

Communication Services Application Plugins

mpiBLAST
PluginCompression

Basic
Network

GlobalDirect
File−system

Figure 4.1: ParaMEDIC Architecture

but provides auxiliary tools to ease the task. In practice the plugin development is mostly

straightforward. ParaMEDIC also provides a plugin that implements standard byte-stream

oriented data compression and decompression. This plugin can be used for some part of

the results data whose format can sufficiently benefit from the standard data compression.

4.3.2 Trading Computation with I/O Cost

The ParaMEDIC framework strives to trade a small amount of additional com-

putation for reduction in the I/O data volume. The additional computation cost comes

from post-processing the results data to generate metadata on the compute site and trans-

forming the metadata back to the final output on the storage site. Apparently, not all

applications can benefit from this approach. To complicate the issue even more, the cost of

data post-processing and metadata conversion can be tuned relative to the data reduction

ratio. In general, more post-processing computation can lead to better size reduction for

the metadata. In this section we formalize the applicability of the ParaMEDIC framework

in regard to the tradeoff between the additional computation cost and the I/O cost saving.

We consider a distributed environment consisting of a compute site and a storage

site connected with wide area networks. We first introduce the following notations.

B: Network bandwidth in the above distributed environment.

47

T: Overall application computation time.

D: Total data generated by the application.

f(x): Time taken to convert output data to x units of metadata.

g(y): Time taken to convert y units of metadata to final output.

Within the ParaMEDIC framework, the overall execution time of an application

(A) includes the application computation time, the metadata generating time, the meta-

data transferring time and the output regenerating time, which can be represented as the

following equation based on the above notations.

A = T + f(x) +
x

B
+ g(x) (4.1)

.

In contrast, the execution time of the same application without employing the

ParaMEDIC framework is simply the sum of its computation time and the distributed I/O

time of the overall results data.

A′ = T +
D

B
(4.2)

Clearly, ParaMEDIC is only beneficial when A (equation 4.1) is small than A’

(equation 4.2). That is,

T + f(x) +
x

B
+ g(x) < T +

D

B

Simplifying the above equation, we get:

D − x > B × (f(x) + g(x)) (4.3)

According to Equation 4.3, ParaMEDIC would save the overall execution time

only when the size difference between the original data and the metadata is larger than the

product of the network bandwidth and the data processing cost (i.e., the cost of generating

metadata and converting it back to the original output data). Consequently, we expect

ParaMEDIC to effectively save the overall computation time when the network bandwidth

is low or the data processing cost is low. One important implication is that ParaMEDIC

can be applicable even in the distributed environments with high network bandwidth if an

48

application’s data processing cost is low enough.

4.4 Integration mpiBLAST with ParaMEDIC

In a cluster environment, most of the mpiBLAST execution time is spent on the

search itself, i.e., comparing input query sequences to the database fragments, because the

search requires a full scan of the database fragment and the BLAST alignment algorithm is

computationally intensive (quadratic complexity). In contrast, the cost of formatting and

writing the results that are generated from the search is much less significant, especially

when many advanced clusters are configured with high-performance parallel filesystems.

However, in distributed environments such as those presented in §4.2, the execution

profile of mpiBLAST differs significantly from cluster environments because mpiBLAST

output needs to be written over a wide-area network to a remote filesystem. Hence, the

cost of writing the results can easily dominate the execution profile of mpiBLAST, and

thus, become a severe performance bottleneck.

This is where “ParaMEDIC comes to the rescue” for mpiBLAST. By replacing

the traditional global parallel filesystem over a wide-area network with the ParaMEDIC

framework (as shown at the top of Figure 4.2), we can still support the basic functionality

of a global parallel filesystem, e.g., transferring large volumes of data to a distant filesystem

(if needed), but more importantly, we can also provide advanced functionality that trades

a small amount of additional computation for a potentially significant reduction in data

that needs to be transferred in distributed environments. For example, as we will see in

§4.5, a mpiBLAST-specific instance of ParaMEDIC reduces the volume of data that needs

to written across a wide-area network by more than two orders of magnitude.

Specifically, Figure 4.2 depicts how mpiBLAST can be integrated with the ParaMEDIC

framework. First, on the compute site (the left cloud in Figure 4.2), instead of having mpi-

BLAST collect and write all the result sequences and their matches of a query sequence, the

mpiBLAST application plugin in ParaMEDIC, as shown in Figure 4.1, generates semantics-

based metadata based on the mpiBLAST output at the compute site. ParaMEDIC then

transfers this metadata to the I/O site (the right cloud in Figure 4.2), metadata that is

orders of magnitude smaller than the actual data output that would have been transferred

in a traditional global parallel filesystem. Next, at the I/O site, a small amount of addi-

49

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

Read temp
Database

Database
Generate temp

mpiBLAST
Worker

mpiBLAST
Worker

mpiBLAST
Worker

I/O Servers
hosting file−system

mpiBLAST Master

Raw MetaDataQuery Query
Write Results

mpiBLAST Master

Compute Master

Compute Workers

Processed Metadata

I/O Workers

I/O Master

Figure 4.2: ParaMEDIC and mpiBLAST Integration

tional computation must then be performed on the metadata in order to re-generate the

actual output data. That is, a temporary (and much smaller) database that contains only

the result sequences is created by extracting the corresponding sequence data from a local

database replica. ParaMEDIC then re-runs mpiBLAST at the I/O site by taking as input

the same query sequence and the temporary database to generate and write output to the

local filesystem. (Note: The overhead in re-running mpiBLAST at the I/O site is quite

small as the temporary database that is searched is substantially smaller with only 500

sequences in it by default, as opposed to the several millions of sequences in large DNA

databases.

4.5 Experimental Results

This section presents a performance evaluation of mpiBLAST in its native form,

as compared to ParaMEDIC-enhanced mpiBLAST (hereafter referred to as simply Para-

MEDIC). All experiments were performed with the Nucleotide (NT) database downloaded

from the NCBI website. NT is a nucleotide sequence database that contains the GenBank,

EMB L, D, and PDB sequences. At the time when our experiments were performed, it

50

contained over 5 million sequences with a total raw size of about 20GB. All queries were

synthesized by randomly sampling sequences from NT itself.

4.5.1 Experimental Testbeds

Testbed 1 (Local Cluster): This testbed consists of 24 dual-2.8GHz-Opteron-processor

dual-core nodes. Each processor has 2MB of L2-cache, and each node has 4GB of 667MHz

DDR2 SDRAM and four SATA disks using a software RAID0. The nodes were connected

with NetEffect NE010 10-Gigabit Ethernet adapters. We used NetEm to emulate the

various distributed computing infrastructures. This allowed us to emulate high-latency,

high-bandwidth distributed computing environments by separating the nodes in the sys-

tem into two sub-clusters, where communication within the sub-cluster is fast but between

sub-clusters is slow.

Testbed 2 (Argonne-VT Distributed System): This test-bed consists of two clusters

(one at Argonne and one at VT) connected over Internet2. The Argonne cluster is the one

described in Testbed 1, while the VT cluster consists of a 24-node Orion Multisystems DT-

12 system that contains 12 individual x86 compute nodes in a 24” x 18” x 4” (or one cubic

foot) pizza-box enclosure. Each compute node contains a Transmeta Efficeon processor,

its own memory, and Gigabit Ethernet interface. The nodes share a power supply, cooling

system, and external 10-Gigabit Ethernet network connection.

Testbed 3 (NSF TeraGrid): This testbed consists of a subset of the TeraGrid, using

nodes at U. Chicago and SDSC. The U. Chicago site consists of two sets of nodes. The first

set has 96 2.4GHz Intel Xeon 32-bit dual-processor systems, each with 3GB memory and

512KB L2 cache, while the second set has 64 1.5GHz Intel Itanium II 64-bit dual-processor

systems, each with 4GB memory. The SDSC site has 64 1.5GHz Intel Itanium II 64-bit dual-

processor systems, each with 4GB memory. The two sites are connected with a 30-Gbps

high-bandwidth network, and the end-to-end delay between the two sites is approximately

10ms.

4.5.2 Local Cluster Evaluation

Here we compare ParaMEDIC to native mpiBLAST on a local cluster, which

emulates various distributed infrastructures.

51

Impact of High-Latency, High-Bandwidth Networks

Impact of Network Latency

0

20

40

60

80

100

120

140

160

180

200

0 1 5 10 20 40 70 100

Network Delay (ms)

E
xe

cu
tio

n
T

im
e

(s
ec

) mpiBLAST

ParaMEDIC

Figure 4.3: Impact of High Latency Networks

We analyze the impact of distributed environments connected with high-latency,

high-bandwidth networks on the performance of ParaMEDIC and basic mpiBLAST. For this

experiment, we divide the local cluster into two logical sub-clusters. While all the nodes

are connected with a 10Gbps network, we artificially delay the communication between

nodes belonging to different sub-clusters. The performance of the application for different

network delays is measured (the amount of delay is fixed within a run and is illustrated on

the x-axis). The socket buffer sizes are set to be equal to the bandwidth-delay product of

the network so as to maximize the performance that the network subsystem can provide.

Four nodes (each node with 4 SATA disks connected with a software RAID0) in the second

sub-cluster host a PVFS2 filesystem which is visible to all nodes in both the sub-clusters.

For the evaluation, 80 processors are used for performing the computation. For

mpiBLAST, all processors were used for performing the actual application computation.

However, for ParaMEDIC, to keep the overall computational resources constant, 76 proces-

sors hosted on the first sub-cluster were used for performing the actual computation, while

52

mpiBLAST Performance Breakup (High Latency Networks)

0

20

40

60

80

100

120

140

160

180

200

0 1 5 10 20 40 70 100

Network Delay (ms)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time I/O Time

(a) mpiBLAST

ParaMEDIC Performance Breakup (High Latency Networks)

0

10

20

30

40

50

60

70

80

90

100

0 1 5 10 20 40 70 100

Network Delay (ms)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time Post-processing Time I/O Time

(b) ParaMEDIC

Figure 4.4: Breakup of Performance with Network Delay

53

4 processors on the second sub-cluster were used for the post-processing.

As shown in Figure 4.3, when the network delay between the two sub-clusters

is low, mpiBLAST outperforms ParaMEDIC. This is expected since ParaMEDIC requires

additional computation for converting the search results to metadata and converting the

metadata back to the final output. However, as the network delay increases, ParaMEDIC

outperforms mpiBLAST. In fact, for a network delay of 100ms, ParaMEDIC outperforms

mpiBLAST by a factor of 2.26. This improvement is attributed to two factors. First, high

network latency causes degradation in the filesystem communication and synchronization

operations required when data needs to be written or read from the server. Second, the total

amount of data written in mpiBLAST over the I/O subsystem is much higher as compared

to ParaMEDIC, since ParaMEDIC only writes metadata which is significantly smaller than

the final results to the filesystem.

To further understand these results, we show the performance breakdown of the

time taken by mpiBLAST and ParaMEDIC in Figure 4.4. As shown in Figure 4.4(a), for

mpiBLAST, as the network delay increases, the I/O time increases very quickly. Thus,

though the computation time does not change much, the overall execution time suffers.

On the other hand, for ParaMEDIC (Figure 4.4(b)), the computation time, the I/O time,

and the post-processing time required to handle the metadata are nearly constant for all

values of network delays. This is expected since the only component in ParaMEDIC that

would be affected by the network latency is the post-processing, since it requires moving

the metadata from the compute workers to the I/O workers. And because the metadata

amount is very small (few KB), this time typically does not make any difference to either

the post-processing time or the overall execution time of the application.

Trading Computation to I/O

We analyze the performance of mpiBLAST and Para-MEDIC by varying the ratio

of computational resources allocated to the actual application processing vs. the resources

allocated for post-processing. For all experiments in this section, for ParaMEDIC, we allo-

cate four processes for performing the post-processing. The number of processes allocated

for the actual application computation is varied from 16 to 80. That is, the ratio of re-

sources allocated for actual application computation to post-processing is varied from 4:1

to 20:1. For mpiBLAST, on the other hand, all of the processes are allocated for the actual

54

application computation. That is, the native mpiBLAST implementation gets four extra

processes for application computation as compared to ParaMEDIC.

The ratio of resources allocated to application and post-processing essentially de-

termines the trade-off in computation time to I/O time. Specifically, a large ratio means

that more resources are given for application processing, thus the resources given for meta-

data generation and management is minimal. This implies that the application execution

time will be lesser, while the amount of data that needs to be moved over the distributed

environment will be large. Similarly, a small ratio means that lesser resources are given for

application processing, thus the resources given for metadata generation and management

is high.

Figure 4.5 shows the performance of the two schemes as the ratio of resources

alloted to application and post-processing is varied. As shown in the figure, when this ratio is

low, mpiBLAST outperforms ParaMEDIC. However, as the ratio increases the performance

of mpiBLAST degrades faster than ParaMEDIC, and it is eventually outperformed by Para-

MEDIC.

This behavior is related to the available compute resources for execution. Specif-

ically, when the total number of compute resources is N, ParaMEDIC uses (N-4) of them

for application computation and 4 processes for metadata post-processing. Thus, when N

is very large, the increase in computation time caused by using resources (approximately

N / (N - 4)) is not very high. However, when N is small, the increase in computation time

can be substantial. For example, when N is 8 processes, ParaMEDIC uses only 4 processes

for the application processing while mpiBLAST uses 8. Thus, the computation time taken

by ParaMEDIC would be nearly twice that of mpiBLAST. This overshadows any benefit

in the I/O time ParaMEDIC can bring about, causing it to deliver worse performance than

mpiBLAST. In summary, ParaMEDIC is most effective only when the number of resources

used for application processing are sufficiently large as compared to the number of resources

used for post-processing.

Impact of Output Data Size

In this section, we vary two parameters that affect the output data size: (i) num-

ber of input query sequences provided by the user and (ii) number of output query se-

quences requested by the user, and study their impact on the performance of mpiBLAST

55

0

100

200

300

400

500

600

20 18 16 14 12 10 8 6 4

E
xe

cu
tio

n
T

im
e

(s
ec

)

Application Compute to Post-processing Resource Ratio

Trading Computation and I/O

mpiBLAST

ParaMEDIC

Figure 4.5: Varying the Number of Worker Processes

and ParaMEDIC. Varying the number of sequences in the input query increases the search

time for both mpiBLAST and ParaMEDIC. However, it is also expected to impact the

post-processing time for ParaMEDIC. Thus, increasing the query size is expected to affect

the computation time of ParaMEDIC more than that of mpiBLAST. At the same time, an

increase in the query size also typically results in more output. This, on the other hand,

can potentially impact mpiBLAST more than ParaMEDIC. Figure 4.6(a) shows the per-

formance of the two schemes with increasing number of input query sequences (depicted

by input query size). We see that while the increase in the input query size increases the

execution time of ParaMEDIC, it has a more drastic effect on mpiBLAST. Thus, as the

query size increases, we notice that the performance difference between the two schemes

increases, with ParaMEDIC outperforming mpiBLAST by about 66% for a 100KB query

file size.

Figure 4.6(b) shows the impact of increasing the number of requested output

result sequences. Increasing the number of output result sequences does not increase the

computation too much, while it can increase the amount of I/O. Thus, because the I/O cost

for ParaMEDIC is very low, increasing the number of output result sequences does not vary

its performance too much. On the other hand, since the I/O cost for mpiBLAST is very

56

high, increasing the number of output result sequences significantly affects its performance.

Impact of Encrypted Filesystems

For distributed filesystems that span unsecure network connections (such as the

Internet), using data encryption to protect transmitted data is a common occurrence in

several environments such as government national laboratories and other secure facilities

such as those demonstrated in §4.5.3.

Figure 4.7 shows the impact of such data encryption on the performance of the

two schemes. As shown in the figure, the performance of the two schemes is similar to the

case where there is no file encryption (except that the performance of mpiBLAST degrades

faster). This is attributed to the data encryption overhead. That is, since all the data

that is being transmitted has to be encrypted and the amount of data transmitted by

mpiBLAST over the unsecure network is significantly larger than ParaMEDIC, encryption

affects mpiBLAST more significantly as compared to ParaMEDIC.

4.5.3 Distributed Setup from Argonne and VT

Here we evaluate mpiBLAST and ParaMEDIC on a distributed system between

Argonne National Laboratory and Virginia Tech connected over Internet2. Since the net-

work connecting the two clusters is not secure, data encryption is used to protect the data

transmitted over this network.

As shown in Figure 4.8, ParaMEDIC significantly outperforms mpiBLAST in this

environment. Further, as the query size increases, the performance difference between

the two schemes increases. For a query size of 100KB, we observe more than a 25-fold

improvement in performance for Para-MEDIC as compared to mpiBLAST. This difference

is attributed to multiple aspects. First, given that the network connection between the two

sites is shared by other users, the effective network performance achievable is usually much

lower than within the cluster. Thus, with mpiBLAST transferring the entire output result

over this network, its performance would be heavily impacted by the network performance.

Second, since data communicated is encrypted, mpiBLAST also has to pay the penalty for

such encryption. Though ParaMEDIC also pays such data encryption penalty, the amount

of data it transfers is significantly lesser, and hence the penalty is lesser as well. Third,

57

Impact of Number of Input Query Sequences

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
xe

cu
tio

n
T

im
e

(s
ec

) mpiBLAST

ParaMEDIC

(a) Input Query Sequences

Impact of Number of Output Query Sequences

0

20

40

60

80

100

120

140

160

180

100 300 500 1000 2000 4000 10000

Number of Requested Sequences

E
xe

cu
tio

n
T

im
e

(s
ec

)

mpiBLAST

ParaMEDIC

(b) Output Result Sequences

Figure 4.6: Varying the Number of Requested Sequences

58

Impact of Encryption

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
xe

cu
tio

n
T

im
e

(s
ec

) mpiBLAST

ParaMEDIC

Figure 4.7: Impacted of Encrypted Filesystems

ANL to Virginia Tech Encrypted File-system

0

1000

2000

3000

4000

5000

6000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
xe

cu
tio

n
T

im
e

(s
ec

)

mpiBLAST

ParaMEDIC

Figure 4.8: Argonne to Virginia Tech Encrypted Filesystem

59

the distance between the two sites causes the communication latency to be high. Thus,

file-system communication and synchronization messages tend to take a long time to be

exchanged resulting in further loss of performance.

4.5.4 TeraGrid Infrastructure

Teragrid Infrastructure

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
xe

cu
tio

n
T

im
e

(s
ec

) mpiBLAST

ParaMEDIC

Figure 4.9: NSF TeraGrid using U. Chicago and SDSC

The TeraGrid infrastructure represents a widely used real environment for several

compute- and I/O-intensive applications. As described in §4.2, a GPFS-based distributed

filesystem is hosted at San Diego Supercomputing Center (SDSC), which can be accessed

from all facilities, and forms a part of the TeraGrid facility. For the experiments in this

section, we utilized the nodes at the University of Chicago and SDSC.

In this experiment, both mpiBLAST and ParaMEDIC perform their application

computation on the University of Chicago nodes. However, mpiBLAST directly writes the

output data to the global GPFS file-system. ParaMEDIC, on the other hand, converts the

output data to metadata, transfers the metadata to SDSC, and re-converts the metadata

to the final output at SDSC.

Figure 4.9 shows the performance of mpiBLAST and Para-MEDIC on TeraGrid.

60

mpiBLAST Performance Breakup (TeraGrid Infrastructure)

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
)

Compute Time I/O Time

(a) mpiBLAST

ParaMEDIC Performance Breakup (TeraGrid Infrastructure)

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

Query Size (KB)

E
x
e
c
u
ti
o
n
 t
im
e
 (
s
e
c
)

Compute Time Post-processing Time + I/O Time

(b) ParaMEDIC

Figure 4.10: TeraGrid Infrastructure Performance Breakup

61

While the final output is written to the same global filesystem in both cases, mpiBLAST

suffers because the application processing nodes at University of Chicago are performing

the I/O for the output results. Since these nodes reside on a remote cluster as compared to

the physical filesystem, their I/O performance is limited resulting in an overall degradation

in execution time. For ParaMEDIC, on the other hand, since the post-processing nodes are

performing the I/O for the output results, the amount of time taken is significantly smaller.

For a query file size of 100KB, ParaMEDIC outperforms mpiBLAST by five-fold.

Figure 4.10 shows the performance breakdown of the two schemes. As the query

size increases, the computation time for both mpiBLAST as well as ParaMEDIC increases.

However, for mpiBLAST, the I/O time also increases very quickly. On the other hand,

for ParaMEDIC, there is practically no difference in the I/O time with increasing query

sizes. That is, ParaMEDIC is only minimally impacted by the limited I/O of the subsystem

and it efficiently distributes its computational resources across the system to achieve high

performance.

62

Chapter 5

Adaptive Request Scheduling for

Clustered BLAST Web Services

5.1 Introduction

Our optimizations on massively parallel sequence search allow users to unleash

the power of supercomputer in solving highly resource-demanding sequence-search jobs. In

practice, life scientists also need to routinely search a small number of query sequences

against public sequence databases in their daily research. Batch sequence searching on

supercomputers is not the best way to address this need. First, those small jobs often

play an important role in the sequence analysis work flow and thus require fast response

time. For a batch sequence-search job, the response time is typically long because of the

job submission and queuing overhead. Second, because of the high frequency of search,

scientists would prefer handy access to the parallel computing power so that they can focus

on their science research rather than learning and exercising the parallel job management.

An alternative approach to providing fast interactive sequence searching is to host

parallel sequence-search web services on dedicated supercomputing resources (e.g. clusters).

Through the ease-of-use web interface, the parallel processing power is available at scientist’s

fingertips. Unlike batch sequence searching, where data is typically not shared between

jobs, sequence search web services have the opportunity to improve query response time

by exploiting efficient sharing of the common databases across different requests. Finally,

sequence-search web services can also enable efficient compute resource sharing and utilizing

63

between research institutions as well as facilitate collaborative sequence exploring efforts.

One of the most successful stories about the online sequence-search services is

the NCBI online BLAST server [63, 64]. Built on top of a farm of hundreds of Linux

workstations, the NCBI BLAST server is capable to process hundreds of thousands of

queries submitted worldwide per day [3]. However, due to the high volume request traffic,

the NCBI BLAST server suffers large variations in query response time, which has been

verified with our query experiences. To obtain better service quality, research institutions

have been moving to host their own sequence-search web servers on commodity clusters.

Given a parallel sequence-search server shared by many users, efficient request scheduling is

crucial to the service quality in terms of the average request response time. However, existing

scheduling strategies from two related application fields, namely commercial clustered web

servers and space-shared parallel computers, are inadequate for this new type of workload.

Below we briefly describe the reasons (more detailed discussion will be given in Chapter 6).

Sequence-search web services are both computation- and data-intensive, perform-

ing non-trivial algorithms over large amounts of shared data. In contrast, commercial web

servers typically stream contents or perform low-cost relational database queries. Hence

their scheduling algorithms concentrate on data locality optimization and load balancing.

Also, a back-end server node usually handles many client requests simultaneously with mul-

tiple open connections. With sequence-search services, the CPU and the memory resources

required to timely process a request are often far beyond those can be offered by a sin-

gle node. Consequently, a group of these nodes is dedicated to every request in a tightly

synchronized manner.

In this sense, request processing in sequence-search web services is closer to batch

job processing on parallel computers, however with two major differences. First, on general-

purpose parallel computers, batch jobs are mutually independent and rarely share data.

Second, as shared computation platforms, parallel computers have no knowledge regarding

each job’s computation and I/O requirements, and the resources requested by each job

(such as the number of processors and the maximum run time) are specified explicitly in

job scripts. Therefore batch job scheduling usually pays no attention to data locality issues

and has no control over the level of concurrency in each job. With sequence-search services

hosted by specialized data centers, data sharing is common and the parallel web server has

much more knowledge about the services it provides.

64

Therefore, parallel sequence-search web services require careful examination of the

intertwined computation and data management issues in making scheduling decisions. In

this work, we extended scheduling algorithms to work for parallel scientific web services,

from those designed for the commercial cluster web servers and batch processing parallel

computers. By adopting a novel combination of these extended algorithms, a parallel sci-

entific web server will take into consideration both the data and the computation aspects:

data locality, parallel execution efficiency, and load balancing. In addition, the combined

strategies work fully adaptively, automatically adjusting scheduling strategies according to

the server load levels and dynamic data access patterns.

It worths noting that the request scheduling problem here is different than the one

we investigated in Chapter 3 for massively parallel sequence search. The latter deals with a

single batch job with a large amount of input query sequences and a single database, with a

main goal to improve the overall system throughput by efficiently utilizing the computation

and I/O resources in a supercomputer. The scheduling problem here deals with a large

number of small sequence-search jobs from many users, each searching against an individual

sequence database. The goal is to optimize the average request response time by exploiting

data locality between jobs and parallel efficiency of sequence-search algorithms.

We implemented our proposed scheduling algorithms, along with baseline strate-

gies to compare with, in a parallel BLAST server prototype. Our experiments on a cluster

server performing parallel BLAST revealed that a careful choice in query concurrency and

database-to-processor assignment may easily result in a dramatic difference in the average

query response time. We confirmed that different query arrival rates and query composition

ask for specialized strategies, and there are no “one-size-fits-all” solutions. The combination

of the proposed adaptive strategies, however, achieves the best or close-to-best performance

across a wide range of system load levels, with a several-fold improvement in average query

response time in many cases.

5.2 Parallel BLAST Web Server Architecture

Figure 5.1 illustrates the parallel BLAST web server architecture targeted in our

study, with sample query and partial output. As in a typical cluster setting, each node

has its own memory and local disk storage, as well as access to a shared file system. One

65

Node 1

Shared File System

DB11

Incoming Queries

Partition 1

q1
q2

Query Queue

Node 2 Node 3 Node 4

DB12 DB13 DB14

DB11 DB12 DB13 DB14 DB21 DB22 DB23 DB24

Node 5 Node 6

DB21 DB22 DB23 DB24

Partition 2

Front EndTGACGTCATCCTCATGTGTTTCTCCATTGACAGCCCTGACAGTTTGGAAAAC

ATTCCTGAGAAG …

Results

q3, q4, q5 …
Query: 1 tgacgtcatcctcatgtgtttctccattgacagccctgacagtttggaaaacattcctga 60

||
Sbjct: 21 tgacgtcatcctcatgtgtttctccattgacagccctgacagtttggaaaacattcctga 80
...

Figure 5.1: Target parallel BLAST web server architecture

of the cluster nodes serves as the front-end node, which accepts incoming query sequences

submitted online, maintains a query waiting queue, schedules the queries, and returns the

search results. The other nodes are back-end servers, often called “processors” in the rest

of the paper for brevity.

For each query, the front-end node determines the number of processors to allocate,

selects a subset of idle back-end nodes (called a partition) when they are available, and

assigns these nodes to execute this query. After the parallel BLAST search, the results are

merged by one of the nodes in the partition and returned to the client via the front-end

node.

To save the database processing overhead, all the sequence databases supported

by the parallel BLAST web server are pre-partitioned and stored in the shared storage.

Figure 5.1 shows two sample databases, each partitioned into 4 fragments. The required

database fragments will be copied to the appropriate back-end nodes’ local disk before

each query is processed, and are cached there using a cache management policy. Existing

parallel BLAST implementations allow multiple database fragments to be “stitched” into

a larger virtual fragment with little extra overhead. Therefore for the maximum flexibility

in scheduling without creating physical fragments of many different sizes, we partition the

database into the largest number of fragments allowed to be searched in parallel. To simplify

the scheduling and to achieve better load balance, both the database fragmentation and

processor allocation are based on power-of-two numbers, which is natural considering the

way clusters are purchased or built. Note that the fragments combined into a larger virtual

66

fragment do not need to be in consecutive order. For example, when 16 processors are

assigned to search a certain query against a database partitioned 64-way in a 64-processor

cluster, one of them may be assigned to search fragments 0, 8, 45, and 57.

Assumptions: Before we move on to the scheduling strategies, we summarize assumptions

made in this study: First, we assume a homogeneous environment, which is true for most

clusters. Second, in this work we discuss the scenario where the entire collection of databases

can be accommodated at each cluster node’s local disks.1 This is likely the case for parallel

BLAST servers, as the total size of formatted NCBI sequence databases is currently around

100GBs, while a cluster node can easily have hundreds of GBs of local disk space today.

Finally, to simplify query workload generation, we assume that each query contains only

one sequence. Although existing BLAST web servers may allow users to upload multiple

query sequences, the standard NCBI BLAST engine processes input queries sequentially.

The difference in search time between the shared and separate BLAST sessions for multiple

query sequences is not significant and mainly lies in the initialization overhead. Our research

results can be easily extended to handle multiple-sequence requests. In the rest of the paper,

we use the terms “request” and “query” interchangeably.

5.3 Scheduling Strategies

In this section, we present scheduling strategies for parallel scientific web services,

using parallel BLAST server as a case study. We extend two existing scheduling algorithms

and integrate them to design adaptive algorithms that automatically adjust to various query

workloads and cluster configurations. Like in many existing request scheduling studies, our

major goal is to optimize the average query response time.

In Section 5.3.1 and Section 5.3.2, we discuss our extended scheduling algorithms

respectively. The first one comes from the commercial cluster web server community and

performs data-oriented scheduling. It determines which processors should be allocated for

a specific query, considering existing data cached at these processors and their current

load. The second one comes from the space-sharing parallel job scheduling community and

performs efficiency-oriented scheduling. It determines the desired level of concurrency for

1For systems equipped with insufficient local storage, we have developed additional optimizations, as
described in our technical report [15].

67

 0

 20

 40

 60

 80

 100

 120

 140

nrest-mouse

S
ea

rc
h

T
im

e
(s

ec
s)

warm-cache
cold-cache-local

cold-cache-shared

Figure 5.2: Impact of data placement on the
BLAST performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35

E
ffi

ci
en

cy

Number of Processors

linear efficiency
nr
nt

Figure 5.3: Parallel execution efficiency of
BLAST

processing a query, considering the specific query workload and the current system load.

Both algorithms are extended substantially to fit the scenario of parallel scientific web

services. Then in Section 5.3.3, we discuss our overall scheduling scheme and describe how

we integrate the two scheduling algorithms.

5.3.1 Data-Oriented Scheduling

Like in other distributed or cluster web servers, data locality is a key performance

issue in parallel BLAST web servers. Figure 5.2 demonstrates the impact of going down the

storage hierarchy: main memory, local file system, and shared file system. The experiments

use sequential NCBI BLAST to search the est-mouse and nr databases, which can fit into

the memory of a single processor. For each case, 10 sequences randomly sampled from

the database itself are used as queries, and the average search time is reported. In the

“warm-cache” tests, we warm up the file system buffer cache with the same query before

taking measurements, and in the “cold-cache” tests we flush the cache first. For “cold-cache-

shared”, we force loading the database from the shared file system. The results indicate

that improving file caching performance and in particular, reducing remote disk accesses

can significantly improve the search performance.

As mentioned earlier, in this paper we focus on the scenario where the entire set of

databases hosted by a parallel scientific web server can fit into the per-node local disk space.

Still, only a small fraction of those databases can be buffer-cached in the main memory, and

scheduling must be performed considering the data locality issue. One intuitive locality-

aware optimization is to assign queries targeting different databases to disjoint pools of

processors and let each processor pool search the same database repeatedly. This way, the

68

effective working set of each processor is reduced. Creating static per-database processor

pools, however, is not flexible enough to handle the dynamic online query composition and

will likely cause serious system underutilization.

A similar problem has been addressed regarding general-purpose content-serving

cluster web servers. In this paper, we extend the LARD algorithm for content request

distribution proposed by Pai et al. [65] to the parallel scientific web service context. Given

a set of back-end servers, the LARD algorithm assigns partitions of hosted targets to subsets

of these servers. An incoming web request will be routed to one of the servers assigned to its

target, or the least loaded server if it is the first request of the given target. Load balancing

is performed periodically to move requests from heavily loaded servers to lightly loaded

ones. LARD exploits data locality to improve the server performance by assigning requests

of the same target to the same set of processors.

Two major differences make our target system considerably more complex than a

general-purpose cluster web server. First, multiple processors need to be co-scheduled to

queries or co-transferred between pools. Second, a processor can handle only one query at

any given time. Therefore queries cannot be piled to server nodes as they arrive, but need

to wait for dispatch.

To handle these requirements, we extend LARD to a new algorithm called PLARD

(Parallel LARD). To perform locality-aware assignment and load balancing, PLARD adopts

a two-level scheduling mechanism. It establishes one global query queue (global queue) and

multiple per-database query queues (queue[DBi]). Queries will be first appended to the

global queue, and subsequently dispatched to one of the per-database queues. Similarly,

because servers need to be assigned in groups, PLARD manages a global idle processor

pool (global pool), and multiple per-database processor pools (pool[DBi]). Initially, all the

processors are in the global pool. A scheduling operation will be triggered by either a query

arrival or a query completion. Algorithm 2 gives the detail of the process of scheduling one

query from the global queue.

Queries in the global queue will be scheduled in the first-come-first-serve (FCFS)

order. When there are not enough resources for the next query, the scheduling attempt is

aborted and the global scheduler waits until a query completes. This helps ensure fairness

and prevents starvation. Also, this allows the recommended partition size to be recalculated

as the system load changes.

69

Before moving a query from the global queue to a per-database pool, a recom-

mended partition size will be calculated by the function get recommended size(). This

function determines how many processors should be allocated to a target database, using

algorithms such as the ones described in the next section. The target database-pool will be

enlarged if the pool size is less than the recommended size. In case there are not enough

processors to allocate from the global pool, the algorithm will seize processors from the

most lightly loaded pool if there are fewer queries waiting in that pool’s local queue than

those waiting for the target database in the global queue.

Algorithm 2 PLARD
fetch the next query q from global queue
partition size ← get recommended size()
m ← the number of queries waiting for q.target db in global queue
candidate queues ←

⋃
queue[DBi], where DBi not equal to q.target db

increase size ← partition size - pool[q.target db].size
if increase size > 0 then

while global pool.size < increase size and candidate queues not empty do
size needed← increase size - global pool.size
find queue[DBj] ∈ candidate queues with smallest queue length
if m > queue[DBj].length then

num idle ← the number of idle nodes in pool[DBj]
S ← release idle nodes(DBj , min(num idle, size needed))
add S to global pool

end if
remove queue[DBj] from candidate queues

end while
if increase size ≤ global pool.size then

A← allocate increase size processors from global pool
add A to pool[q.target db]

end if
end if
if pool[q.target db] is not empty then

append q to queue[q.target db]
end if
balance load()

After a query is assigned to a per-database processor pool, it goes to the local

queue of that pool and is scheduled using an internal scheduling algorithm (such as a fixed

partitioning policy or RMAP, as presented in the next section). This way, a relatively stable

subset of server nodes are assigned to work on a certain database, maximizing the use of

their collective buffer cache space.

Like in the original LARD, every time a query is scheduled the system per-

70

forms load balancing. In PLARD, we move processors from the most lightly loaded pool

(pool[DBmin]) to the most heavily loaded pool (pool[DBmax]), if one of the following con-

ditions is satisfied:

1. queue[DBmax].length - queue[DBmin].length > T and

queue[DBmax].length ≥ 2× queue[DBmin].length, or

2. queue[DBmin].length = 0 and queue[DBmax].length > 1

T in the above is a configurable threshold, which is set as 10 in our implementation.

The number of processors moved during load balancing is set to be Pmin of DBmax, where

Pmin is the minimum partition size allowed for a given database as described in Section 5.3.2.

This helps reduce the internal fragmentation of a database pool during load balancing.

5.3.2 Efficiency-Oriented Scheduling

PLARD helps us optimize query processing performance by maximizing the use

of cached data and improving load balance between server nodes. However, it does not

consider the parallel processing scalability of the scientific applications that service the web

requests. The latter turns out to be crucial in deciding how many processors should be

allocated to each individual query, and can have a significant impact on the parallel web

server’s performance.

We illustrate the argument by examining parallel BLAST’s performance scalability.

Like most parallel applications, it is subject to the performance tradeoff between absolute

performance and system efficiency when the level of concurrency increases. One obvious

explanation is the higher parallel execution overhead associated with searching a single

query using more processors. In addition, as BLAST performs top-k search, the task of

processing and filtering of intermediate results grows with the number of processors. Figure

5.3 illustrates the performance trend of parallel BLAST from searching two widely used

databases, the NCBI nr and nt, as benchmarked on our test cluster (to be described in

Section 5.4.1). For each search workload, we plot the efficiency, which is defined as parallel

speedup divided by the number of processors. Therefore a perfect linear efficiency is a flat

line. For both nr and nt, the efficiency slides steadily as more processors are used for each

query.

71

Systems such as the NCBI BLAST server reported periodic variances in the query

arrival rate [63]. One intuitive heuristic is to control the number of processors allocated

to each query based on the current system load: when the load is light, allocate more

processors for smaller query response time; when the load is heavy and queries are piling

up in the queue, allocate fewer processors for better system throughput (and consequently

better average response time). This intuition is backed up by queuing theory and has been

adopted in adaptive partitioning algorithms for parallel job scheduling [66]. In this work, we

select the MAP algorithm [67], which improves upon the above work, as our base algorithm.

With MAP, both the waiting jobs and the jobs currently running are considered

in determining the system load. It chooses large partitions when the load is light and small

ones otherwise. More specifically, for each parallel job to be scheduled, a target partition

size is calculated as

target size = Max(1, ⌈
n

q + 1 + f ∗ s
⌉),

where n is the total number of processors, q is the waiting job queue length, s is the number

of jobs currently running in the system, and f (0 ≤ f ≤ 1) is an adjustable parameter that

controls the relative weight of q and s. In our experiments, we set the f value as 0.75, as

recommended in the original MAP paper [67]. Once the target partition size is selected, the

front-end node waits until these many processors become available to dispatch the query.

One may notice that in Figure 5.3 the nt curve does not monotonically decrease.

Instead it peaks at 8 processors, with a super-linear speedup at that point. This is due

to that the nt database cannot fit into the aggregate memory of 4 or fewer processors on

our test platform. As BLAST makes multiple scans and random accesses to the sequence

database, out-of-core processing causes disk thrashing and significantly limits the search

performance. The nr database is much smaller and can be accommodated in a single

compute node’s memory, therefore does not show the same behavior.

This motivates us to propose Restricted MAP (RMAP), which augments the base

MAP algorithm with a database-dependent and machine-dependent memory constraint. For

a given database supported by a given cluster server, we select Pmin and Pmax, which define

the range of partition sizes (in terms of the number of processors) allowed to schedule queries

against this database. Pmin is the smallest number of processors whose aggregate memory

is large enough to hold the database. Pmax is determined by looking up the saturation

72

point in the speedup chart: it is the largest number of processors before the absolute search

performance declines. In other words, after this point deploying more processors will not

produce any performance gain. An initial benchmarking is needed to set Pmax for each

database, which is feasible considering the total number of different databases supported

by a web server is often moderate2.

For each query scheduled, when there are more idle processors available than p, the

desired partition size calculated, RMAP adopts a simple node selection strategy called FA

(First Available), where the first p idle processors by the processor rank will be assigned to

work on the query. Database fragments will be assigned to these processors in a round-robin

manner.

5.3.3 Combining PLARD and RMAP

We integrated PLARD and RMAP in our two-level query scheduler implementa-

tion for the parallel BLAST server prototype.

As shown in Algorithm 2, when dispatching a query from the global queue to

a particular DB queue, the RMAP algorithm is first used to calculate a recommended

partition size based on the global system state. More specifically, the queue length(q) is

calculated by summing up all queries in the global queue and local DB queues, and the

number of queries in the system(s) is the sum of queries being searched at all DB pools.

If the number of idle processors in the processor pool of the target DB is smaller than the

recommend partition size, the scheduling algorithm seeks to assign more processors to this

pool by acquiring idle processors from the system idle processor pool and/or other relatively

lightly-loaded DB pools.

When a partition with the recommended size can be provided, the query is moved

into the local DB queue. There the RMAP algorithm will be called again to determine a

proper partition size in local scheduling. At this point, each local RMAP scheduler uses the

local system state, namely the local DB queue length as q and the number of queries being

serviced in the local processor pool as s.

With this two-level scheduling approach, we adapt simultaneously to the intensive-

ness and the database access pattern of the dynamic query workload by leveraging strengths

2The number of all sequence databases offered by the NCBI web search is 21 at the time this paper is
written.

73

of both RMAP and PLARD. The two algorithms complement each other nicely under the

new scheduling framework.

5.4 Performance Results

5.4.1 Experiment Configuration

Table 5.1: Database characteristics. Note the Pmin values are multiples of 2, this is because
our experiments are performed on a two-way SMP cluster, and we found using a compute
node (2 processors) as the smallest scheduling unit yields better performance than does
using an individual processor, as the former choice has better data locality.

Name Type Raw Size Formatted Size Pmin Pmax

env nr P 1.7GB 2.5GB 2 32

nr P 2.6GB 3.0GB 4 32

est mouse N 2.8GB 2.0GB 2 16

nt N 21GB 6.5GB 8 32

gss N 16GB 9.1GB 8 32

In our experiments, we use five genomic sequence databases downloaded from the

NCBI public sequence repository. Table 5.1 summarizes several basic attributes of these

databases. Among them, the first two are protein sequence databases (type “P”) and the

other three are nucleotide sequence databases (type “N”). The two types of the databases

are searched using the blastp and blastn algorithms respectively. The size of each database

shrinks after the database is formatted for search using the standard formatdb tool. For

each of the databases, we also give the Pmin and Pmax pair, which defines the processor

partition size range. As discussed in Section 5.3.2, Pmin is determined by the memory

constraint and Pmax is determined by benchmarking the parallel execution scalability of

the individual database search workload.

The parallel BLAST software we used is the popular mpiBLAST tool [55, 8],

available at http://mpiblast.org/. For queries, we sampled 1000 unique sequences from

the five databases, with the number of samples from each database proportional to the

formatted database size. Since sequence databases are constantly appended with newly

discovered sequences, we hope this sampling method resembles the composition of real

BLAST search workloads, which are driven by sequence discoveries. We compose online

query traces by drawing queries randomly from this pool of unique sequences, setting the

74

arrival interval with the Poisson distribution.

To create traces with the desired arrival rates, we benchmark the maximum

throughput of the whole system. This maximum throughput is calculated in an aggres-

sive manner: we measure the maximum throughput of each database’ search workload by

executing the corresponding subset from the 1000-query pool on the whole cluster using

the smallest partition size (Pmin). This way the system achieves best efficiency and data

locality with the single-database workload and small partition size. We then derive the

multi-database maximum throughput by taking a weighted average of the single-database

peak throughput, according to the number of queries going to each database.

Unless noted otherwise, the experiments are performed using query traces that

contain 600 query sequences sampled from the 1000-query pool above. Note that many of

the charts use log2 scale on the y axis, due to the large distribution of performance numbers

under different system load levels.

5.4.2 Test Platform

Our experiments were performed on the Orbitty Linux cluster located at North

Carolina State University. Orbitty consists of 20 compute nodes, each equipped with dual

Intel Xeon 2.40GHz processors sharing 2GB of memory. Due to its target workload, this

cluster has 400GB per-node local storage space, which is large enough to host the entire

collection of NCBI sequence databases. The interconnection is Gigabit Ethernet and a

shared storage space of over 10TB is accessed through a Lustre server.

5.4.3 Data-Oriented Scheduling Results

First, we examine the effectiveness of improving data locality in query processing,

by showing the impact of PLARD on three versions of fixed partitioning strategies. With

fixed partitioning, the number of processors allocated to queries against the same database

is fixed throughout the run. For each database, we choose three fixed partition sizes within

its partition size range [Pmin, Pmax]: small (FIX-S), medium (FIX-M), and large (FIX-L).

Experiments are carried out using different levels of system load by adjusting

the query arrival rate. A system load of 1 means the query arrival rate is equal to the

maximum query throughput. All these strategies also use the default FA policy in selecting

75

idle processors to schedule.

 0

 0.5

 1

 1.5

 2

 0.2 0.4 0.6 0.8 1

System Load

Page Faults: 765
Service Time: 22

FIX-S (# Page Faults)
FIX-S-PLARD (# Page Faults)

FIX-S (Service Time)
FIX-S-PLARD (Service Time)

(a) Small partition size

 0

 0.5

 1

 1.5

 2

 0.2 0.4 0.6 0.8 1

System Load

Page Faults: 132
Service Time: 9.5

FIX-M (# Page Faults)
FIX-M-PLARD (# Page Faults)

FIX-M (Sevice Time)
FIX-M-PLARD (Service Time)

(b) Medium partition size

 0

 0.5

 1

 1.5

 2

 0.2 0.4 0.6 0.8 1

System Load

Page Faults: 0.5
Service Time: 4.6

FIX-L (# Page Faults)
FIX-L-PLARD (# Page Faults)

FIX-L (Sevice Time)
FIX-L-PLARD (Service Time)

(c) Large partition size

Figure 5.4: Normalized average number of page faults and normalized average service time.

Figure 5.4 portraits the impact of PLARD on the fixed partition size algorithms’

file caching performance. Since BLAST uses memory mapped files, the number of page

faults is a good indication of the amount of file I/O performed to retrieve the database

fragments. For each of the fixed algorithms, we plot the average number of page faults

per node (dashed lines) and the average query service time (solid lines), with and without

PLARD. All the page fault numbers are normalized against the page fault number of the

original algorithm (without PLARD) with the system load of 1. The same applies to the

service times. The absolute values of these two pivot numbers are marked in the charts.

As expected, the PLARD algorithm does have a significant impact on the number

of page faults. In particular, for FIX-S, the original page fault numbers of over 750 are

reduced at least by half, and almost eliminated with the lightest and heaviest system loads.

On average, the number of page faults is reduced by 79.87%. The original FIX-S page fault

slightly declines as the system load intensifies since more processors will be actively used,

and the chance of having cache hits increases due to the enlarged aggregate memory size,

although there is no intentional, locality-aware query placement. With PLARD, however,

the peak of page fault numbers appear in the medium load (0.6), where with the small

partition size, the per-database processor pools are the most dynamic: processors are shifted

between pools relatively more frequently, reducing the chances of cache hits within each

database pool.

With FIX-M, the page fault reducing of PLARD is smaller but still considerable,

with an average of 43.37% decrease. Here the peaks of the page fault numbers, both with

and without PLARD, are different from those with FIX-S due to the larger partition sizes.

76

For example, the lightest load achieves the best data locality since the query load is rather

concentrated on a group of processors, facilitating in-memory data reuse, while the size of

the group is large enough to spread the databases out and reduce the data access working

set per node.

With FIX-L, the databases are so spread out so that all the fragments needed by a

processor are almost always in the memory. Although the normalized curves look dramatic,

the absolute numbers are very small. Even without PLARD, the cache misses are negligible,

with an average page fault count of 0.37.

The improvement of service times using PLARD is a direct result of the improved

data locality, as PLARD does not affect the computation efficiency of each query’s pro-

cessing with the fixed-partitioning algorithms. The degree of the improvement, however,

declines as the partition size selected increases. This is because the number of page faults

goes down faster than the service time does when larger partitions are used. Therefore the

impact of page fault reduction plays a smaller and smaller role.

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

N
um

be
r

of
 S

ea
rc

he
d

Q
ue

rie
s

Processor ID

Load 0.2
Load 0.4
Load 0.6
Load 0.8
Load 1.0

(a) FIX-M

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

N
um

be
r

of
 S

ea
rc

he
d

Q
ue

rie
s

Processor ID

Load 0.2
Load 0.4
Load 0.6
Load 0.8
Load 1.0

(b) FIX-M-PLARD

Figure 5.5: Query load distribution among processors with the medium partition size.

Figure 5.5 provides additional information about the effect of PLARD, from its

load balancing aspect. We illustrate this using FIX-M, the algorithm using the medium

partition size. As discussed above, with the FA policy for processor assignment, the query

processing workload distribution is skewed at the load level of 0.2. Most queries are assigned

to the first 16 processors, with an additional 100+ queries assigned to the first 8 (please recall

77

that the “medium partition size” varies from database to database). Heavier system loads

force the queries to become more evenly distributed. With PLARD, the query processing

assignments are well balanced among processors for all system load levels.

Now we take a look at the overall impact of PLARD, by comparing the average

query response time before and after. Because long waiting time with heavy system loads

caused a wide distribution of response time, we show the numbers in log scale, with the

speedup factor brought by PLARD labeled at the top of each pair of bars.

 0

 2

 4

 6

 8

 10

1.00.80.60.40.2A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(lo
g2

 s
ec

s)

System Load

1.37 1.19 1.17

8.06
4.10FIX-S

FIX-S-PLARD

(a) Small partition size

 0

 2

 4

 6

 8

 10

1.00.80.60.40.2A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(lo
g2

 s
ec

s)

System Load

1.08 1.02 1.01

1.83
1.25FIX-M

FIX-M-PLARD

(b) Medium partition size

 0

 2

 4

 6

 8

 10

1.00.80.60.40.2A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(lo
g2

 s
ec

s)

System Load

1.0 1.03

1.12

0.98
1.04FIX-L

FIX-L-PLARD

(c) Large partition size

Figure 5.6: Impact of PLARD on the average query response time. Note that the y axis
uses the log2 scale, and the speedup factor brought by PLARD is shown at the top of each
pair of bars.

Figure 5.6 shows the comparison, again for each of the FIX algorithms using

multiple system loads. As expected, the largest improvements are found with FIX-S, where

the average response time is reduced by up to 4.1 times. As we have seen from Figure 5.4,

the largest enhancement to data locality and the average query service time occurs with

the small partition size. The changes in service time, in turn, has a varying impact on the

query response time. With heavier loads, the reduced service time has a rather dramatic

effect on decreasing the queue length and average query wait time. With light loads, the

enhanced service time does not affect the per-query wait time much. For FIX-M, the best

improvement is observed at the load of 0.8, with a speedup factor of 1.83. Not surprisingly,

PLARD does not bring significant improvement to FIX-L.

5.4.4 Efficiency-Oriented Scheduling Results

Now we examine the impact of RMAP by enabling PLARD for all tests and

compare the three FIX algorithms with RMAP.

78

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(lo
g2

 s
ec

s)

System Load

FIX-S-PLARD
FIX-M-PLARD
FIX-L-PLARD

RMAP-PLARD

Figure 5.7: Performance of combined
RMAP and PLARD with fixed arrival rates
(y axis uses log2 scale.

 0

 20

 40

 60

 80

 100

TR2: 0.2-0.8-0.4-1.0TR1: 0.2-0.4-0.6-0.8

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

s)

Mixed Load Traces

FIX-S-LARD
FIX-M-PLARD
FIX-L-PLARD

RMAP-PLARD

Figure 5.8: Performance of combining
RMAP and PLARD on two 800-sequence
traces with mixed arrival rates.

Figure 5.7 portraits the results. As expected, no single fixed partitioning strategy

performs consistently well. When the system load is light, the large partition size works best

by using a large number of processors to reduce each query’s response time. As the load

increases, first the medium, then the small partition size becomes the winner. With heavier

loads, smaller partition sizes help achieving better overall resource utilization by improving

the parallel execution efficiency. The performance difference is significant: across the x

axis, the difference between the best and worst average response time among the fixed

partitioning strategies varies between 3.5 and 8 times. RMAP, on the other hand, closely

matches the best performance from the three fixed partitioning strategies by automatically

adapting to the system load.

The only point where the RMAP performance is visibly lower than the best fixed

partition size algorithm is with the medium system load (0.6). Because the trace we used

is not even-paced, the medium load is an unstable case for RMAP, where the scheduler

adjusts the partition size (in both directions) most frequently. With frequent partition size

changes, cache contents cannot be well utilized and more cold misses are introduced.

To verify this, we take a closer look at the behavior of FIX-M-PLARD and RAMP-

PLARD. Table 5.2 summarizes a group of measurements taken from the experiments using

the two algorithms, at the system load level 0.6 and 0.8. Because the partition sizes are

power-of-two numbers, we calculate the average partition size by taking the arithmetic

average after performing the log2 operation. The “total service time” is calculated as the

79

Table 5.2: FIX-M-PLARD and RMAP-PLARD statistics at system load 0.6 and 0.8.
System Load 0.6 0.8

Policy FIX-M-PLARD RMAP-PLARD FIX-M-PLARD RMAP-PLARD

Average # Page Faults 93.00 132.74 63.64 224.88

Average Service Time (s) 8.81 9.53 8.76 15.47

Average Waiting Time (s) 2.50 2.95 128.25 12.51

Average Response Time (s) 11.31 12.48 137.02 27.98

Total Service Time (s) 69936 78700 69657 63977

Average Partition Size (log2) 3.71 3.88 3.71 2.78

total computation resource usage in an experiment. For each query, we calculate its resource

usage as the product of its service time and the number of processors it used. We sum up

the resource usage of all queries in a trace as the total service time.

From the page fault counts, we see that RMAP does hurt the data locality at load

level 0.6. Consequently, RMAP adopts a slightly larger partition size than FIX-M does, but

has a 8% higher average service time. The service time increase causes a similar increase in

the waiting time and average response time.

Interestingly, RMAP caused a much larger increase in the number of page faults

at the load of 0.8, yet the average response time of RMAP is 5 times better than that

of FIX-M. This is caused by that RMAP has better parallel computation efficiency there,

which can be seen from the total service time: RMAP increased the total service time

at 0.6 and decreased it at 0.8. Although the individual query’s service time is longer

than FIX-M, RMAP increases the whole-system throughput by automatically adopting

a considerably smaller average partition size. With such a heavy system load, this had

a dramatic effect on shortening the average query waiting time, and the average query

response time consequently.

Finally, we evaluate the overall adaptivity of the combined RMAP-PLARD al-

gorithm. Figure 5.8 shows two sets of experiments, each using a mixed load level trace

containing 800 queries. In each trace, the average load level is adjusted several times, e.g.,

from 0.2 to 0.4, 0.6, and finally 0.8, for four equal-length intervals (in terms of the number

of queries). Trace 1 adopts such an monotonically rising system load as in the above ex-

ample, while trace 2 has a repeated up-down pattern. Again, for such mixed load traces,

none of the fixed partition size algorithms consistently win, and each of them may suffer

trace intervals where the selected partition size is undesirable. RMAP, on the other hand,

successfully adapts to the varying query intensiveness and significantly outperforms all the

80

fixed partition size algorithms, bringing an improvement factor of 1.63 and 1.26 in average

response time over the best performing fixed algorithm for trace 1 and 2, respectively.

81

Chapter 6

Related Work

6.1 Genomic Sequence-Search Parallelization

As sequence database-search is computationally intensive, many parallel approaches

have been investigated to cope with the rapid growth of sequence databases. Hardware-

based solutions [68, 69, 70] parallelize the computation of comparing a single query sequence

to a single database sequence. These solutions are highly efficient but require custom hard-

ware such as Field-Programmable Gate Array (FPGA). The optimization techniques pre-

sented in Chapter 3 focus on software-based parallel solutions. Nonetheless, these techniques

can be generalized to efficiently glue many hardware processing units together to provide

even higher search throughput.

Early parallel sequence-search software adopted the query segmentation approach [71,

72, 73]. With this approach, each compute node is assigned the entire sequence database

and a subset of query sequence. As the search computation of individual query sequences

is completely independent, such an embarrassingly parallel approach can achieve very high

parallel efficiency when the sequence database is relatively small. However, for sequence

databases that are larger than the main memory of a computer node, query segmenta-

tion will incur high I/O overhead caused by the repeated scanning of the database when

searching multiple query sequences. In addition, on platforms without virtual memory sup-

port, such as the IBM Blue Gene supercomputers, query segmentation is not applicable

when the node memory is not sufficient to host the sequence database as well as the search

intermediate results.

82

The limitations of query segmentation motivated the database segmentation [74,

55, 75, 8] approach. With database segmentation, the sequence database is segmented and

distributed across computer nodes. Each node searches all query sequences against its own

portion of the sequence database. By fitting large databases into the aggregate memory

of multiple nodes, database segmentation eliminates the paging issue and allows timely

sequence analysis to keep up with fast growing database sizes. However, this approach

introduces computation dependency between individual nodes because the distributed re-

sults generated at different nodes need to be merged to produce final output. The parallel

overhead caused by results merging will increase as the system size grows, consequently

limiting the program’s scalability on large-scale deployments. In Section 3.3.3, we intro-

duced a light-weighted results merging design that can significantly improve the efficiency

of merging a large amount of results data.

Recent efforts in designing large-scale sequence-search applications achieved high

scalability by adopting a combination of both segmentation approaches. Rangwala et.

al. developed a parallel BLAST implementation optimized for IBM Blue Gene/L [56].

In this work, all processors in the system are organized into different equal-sized groups.

Each group searches a subset of query sequences against the sequence database with the

efficient database segmentation approach introduced in pioBLAST [8]. This work adopts

a static load balancing approach, where the query sequences assigned to each group will

have approximately the same total length. To improve the data input performance on large

system scales, a group of processors are dedicated as the I/O group. Processors in the

I/O group first read the fragmented sequence database into their memory in parallel, then

broadcast their own portion of sequence data to the corresponding processors in all other

groups. All the searched results are buffered in processors’ memory and written to the file

system at the end with collective MPI I/O functions.

Oehmen et. al. reported ScalaBLAST [76], a highly efficient parallel BLAST built

on top of the Global Array [77] toolkit. ScalaBLAST follows a similar design to combine the

query segmentation and database segmentation approaches. However, instead of replicating

the sequence database to all processor groups, ScalaBLAST have all processors share a single

copy of the sequence database stored in a global array. ScalaBLAST adopts a slightly

different static load-balancing approach, where each group is assigned a subset of query

sequences containing the same amount of “work units”. The work units of a query batch is

83

calculated based on a “trial-and-error” approach. Specifically, the work units of a batch of

query sequences are calculated as the sum of the number of characters in all sequences, with

an addition value of 225 per sequence. In ScalaBLAST, each processor will switch to output

processing after searching every 20 query sequences. During the output processing, each

processor in a group fetches the intermediate alignment results from the other processors

in the group and converts them into the final output. ScalaBLAST maintains an individual

output file for each process.

The above two massively parallel sequence search-tools both adopt static load-

balancing approaches, assuming the execution time of a sequence-search task is predictable

from the total sizes and/or the numbers of the input queries. Such a static load-balancing

design scales well by avoiding scheduling dependency between different processor groups.

However, our recent study discovered that for certain types of DNA sequence matching,

there is no clear correlation between the mount of input data and the execution time of a

sequence-search task [38]. In addition, tasks processing a same amount of input can have

execution time differing by orders of magnitude. In fact, because of the heuristic nature

of popular sequence alignment algorithms, we argue that it is hard to know a priori the

execution time of a sequence search task. Consequently, mpiBLAST-PIO adopts dynamic

load-balancing approaches and focuses on effectively reducing the associated scheduling

overhead.

6.2 Noncontiguous I/O Optimizations

In many parallel scientific applications, processes need to access data files in a non-

contiguous manner [78, 79, 80, 81, 82]. People have been investigating various optimizations

to noncontiguous I/O accesses in both user level libraries and parallel file systems.

6.2.1 User Level Optimizations

There are two techniques widely used to optimize noncontiguous I/O performance

used in popular parallel I/O libraries such as ROMIO [50]: data sieving and collective I/O.

84

Data Sieving

Data sieving was introduced in the PASSION I/O library [83]. It targets noncon-

tiguous I/O requests issued from one process. Data sieving groups small noncontiguous I/O

requests into large ones with the cost of redundant I/O. By doing so, it reduces the number

of I/O requests sent to the file system and consequently improves the I/O performance.

For a read operation, data sieving fetches a large chunk of data that covers several

pieces of closely located noncontiguous data and put it into a memory buffer. The actual

needed data is then supplied to the applications from the memory buffer. Data sieving

handles a write operation with a read-modify-write approach: 1) a large chunk of data that

covers the range of multiple noncontiguous I/O requests is read into a memory buffer, 2)

the application only modifies corresponding write regions in the data sieving buffer, and 3)

the whole trunk of data in the data sieving buffer is written back to the file system. To

avoid data corruption caused by concurrent accesses, the file region manipulated by data

sieving needs to be locked during the read-modify-write procedure.

Data sieving aims at trading extra I/O data for large, sequential I/O requests.

It works well when the noncontiguous requests issued in an I/O operation are relatively

dense. However, when the noncontiguous requests are sparse, the cost of redundant I/O

can surpass the benefit of requests aggregation and result in unsatisfactory I/O performance.

In addition, for write operations, data sieving could suffer lock contentions when the I/O

requests from multiple processes are highly interleaved. Data sieving is not suitable for

parallel sequence-search applications because of their irregular I/O data distributions.

Collective I/O

Collective I/O was designed to improve parallel noncontiguous I/O performance.

It takes advantages of an application’s collaborative I/O access information to aggregate

small I/O requests into large ones. Collective I/O is typically implemented with two-phase

I/O [49] in parallel I/O libraries, but it can also be implemented at the disk level [84] or

the server level [85].

Two-phase I/O services I/O requests from multiple processes with a communi-

cation phase and an actual I/O phase. For a collective read, the portion of the file that

will be accessed by the collaborative requests is first split evenly into different file domains

85

and assigned to the involved processes. Each process first reads its assigned file domain,

which is a large, contiguous chunk of data, into a memory buffer. In the second phase, each

process sends the data in its file domain to other processes requesting for the corresponding

data. For a collective write, the communication phase happens first. The involved processes

perform in-memory data exchange so that each process will store a large block of write data

in a memory buffer. The buffered data will be written to the file system in the I/O phase.

The I/O data buffered on a process can be noncontiguous as well, in which case data sieving

will be used in the I/O phase in parallel I/O libraries such as ROMIO [50].

Two-phase I/O can effectively improve I/O performance by aggregating small,

noncontiguous in to large, contiguous ones. However, the I/O data needs to be transfered

twice over the network. This extra network communication cost is usually worthy given that

the memory access and the network transfer are much faster than the random disk I/O. In

particular, the network communication is highly optimized on modern supercomputers.

The disadvantage of collective I/O is that it incurs implicit synchronization be-

tween processes. This is not an issue for applications with inherent synchronization in their

compute kernels. As discussed in Section 3.3.4, the synchronization will incur considerable

overhead in parallel sequence search as the search time of a query can be highly imbalanced

between processes. One could argue that split collective I/O defined in the MPI-IO stan-

dard does allow applications to overlap computation with collective I/O operations without

forcing synchronizations. The split collective I/O, however, is not available in popular par-

allel I/O libraries. In addition, the output data distribution varies from query to query

in parallel sequence search, thus involved processes need to construct file views for every

collective write operation. The function call (i.e. MPI File set view) to construct the file

view is synchronized by definition in the MPI standard.

6.2.2 File System Level Optimizations

There have been studies in optimizing noncontiguous I/O at the parallel file system

level. Ching et. al. proposed a technique called list I/O [52] and implemented it in the

PVFS [86] parallel file system. List I/O strives to reduce the number of I/O requests sent to

the file server by adding native noncontiguous I/O supports the file system. Specifically, it

defines a general programming interface that allows specifying an arbitrary noncontiguous

I/O operation. The programming interface for a read operation is shown as follows:

86

pvfs read list (int mem list count, char mem offsets[], char mem lengths[],

int file list count, int file offsets[], int file lengths[])

Such an I/O interface is flexible in specifying noncontiguous layouts for data in both memory

and files, allowing the actual I/O data and the file access information to be sent to the file

server as a whole. Unlike data sieving, list I/O reduces the number of I/O requests without

incurring redundant I/O data. Also, for a write operation, the read-modify-write approach

in data sieving requires the I/O data to be transfered twice over the network. With list

I/O, the I/O data is only transfered once for a write operation.

View I/O is another optimization technique implemented at the file system level [54].

With view I/O, a file view is first declare to make the noncontiguous file regions correspond-

ing to the I/O requests visible to the application. Subsequent I/O accesses through the file

view will then be mapped to those file regions accordingly. View I/O is similar to list I/O

in a sense that the noncontiguous file access information is directly handled by the file sys-

tem. On unique feature of view I/O is that it leverages the physical layout of file regions

in servicing I/O requests, which can yield further performance improvements by reducing

the indirect data exchanges. Also, unlike with list I/O, where the file access information

needs to be transferred for every I/O operation, with view I/O, a file view can be reused

for repeated I/O operations to save network communication costs.

Our study in Chapter 3 focuses on user-level I/O optimizations for the porta-

bility consideration. Nonetheless, our performance results in Section 3.4 shown that our

asynchronous-two phase I/O approach can deliver considerable performance improvements

to independent I/O enhanced with list I/O on the PVFS file system.

6.3 Remote I/O in Distributed Environments

Several efforts have been made to provide efficient remote file accesses for scientific

applications through parallel I/O interfaces. RIO [87] introduced a proof-of-concept library

that allows an application to access remote files with MPI-IO functions. RIO adopts a

client-server architecture and it leverages the features of the ADIO [88] interface to achieve

good portability across various file systems. RIO requires provisioning extra “forwarder

nodes” dedicated for network communications to improve data transfer efficiency. RFS [89]

is another client-server based remote I/O library. It addressed several limitations of RIO.

87

For instance, it removes the requirement of “forwarder nodes” and supports more updated

communication protocols. RFS also reduces the visible remote I/O cost with the active

buffering technique, which optimizes the overlap between application I/O and computa-

tion. Other approaches of translating remote I/O requests into operations of general data

transferring protocols such as Grid FTP [90] and Logistic Network [91] have also been in-

vestigated. ParaMEDIC, on the other hand, focuses on aggressively reducing the amount

of I/O data that needs to be shipped across the wide area network with efficient utilization

of applications’ semantics.

6.4 Semantic-based Data Transformation

Semantic-based data transformation is not new. Several semantic compression

algorithms have been investigated in compressing relational databases [92, 93]. These algo-

rithms first build a descriptive model based on the table semantics. With the descriptive

model, the data in the database is categorized into the base data and the data that can be

derived from the model. The compression can then be done by stripping out the derivable

data. In the multimedia field, context-based coding techniques (similar to semantics-based

approaches) have been widely used in various video compression standards [94, 95, 96].

With aid of context modeling, these techniques efficiently identify redundant information

in the media. Although sharing the same goal of reducing data to store or transfer with

ParaMEDIC, these data compression studies do not address the remote I/O issue.

6.5 Web Sever Scheduling

There have been numerous studies on scalable distributed web-server systems,

most of which were focused on efficient request routing and assignment for content serving,

as surveyed by Cardellini et al. [97]. One closely related project to our BLAST server

scheduling work is the LARD scheduling algorithm [65]. LARD targets the scheduling

problem on a clustered content-serving web server, with the main goal to achieve both

good load balance and high locality. To take advantage of data locality, LARD maintains a

map between the requested objects and the backend cluster nodes, and it strives to direct

the requests to a same object to a same set of backend nodes. For skewed object access

88

patterns, locality-aware decision alone may result in an imbalance situation where some

backend nodes are overloaded while others are underutilized. To handle this situation,

LARD monitors the load (in terms of the number of active connections) on each backend

node and dynamically adds or removes nodes from the node set mapped to a given object.

The LARD algorithm is not directly applicable to our BLAST server scheduling

for two reasons. First, LARD assumes the backend cluster nodes are time-shared by the

requests and the resource requirement is roughly the same for individual requests. With

LARD, a request can be serviced immediately on a backend node chosen by the scheduling

algorithm. In our target scenario, time-sharing the backend nodes is both difficult and ineffi-

cient given the closely-coupled message passing model and the intense resource requirement

of servicing a BLAST request. Consequently, our PLARD algorithm in Chapter 5 adopts

a space-sharing design by adding global and per-database queues to hold the unserviced

queries. Second, in content-serving web services, a request can be easily handled by a single

node. In a BLAST server, a request needs to be processed on multiple nodes because a

BLAST search is both data- and computation- intensive. The co-scheduling requirement of

compute and data resources adds extra complexity to the scheduling design.

6.6 Space-sharing Parallel Job Scheduling

Regarding space-sharing of parallel computers, a wealth of job scheduling algo-

rithms have been proposed and evaluated, as summarized by Feitelson [98]. Space-sharing

job scheduling focuses on how to partition the processors in a system and assign them to par-

allel jobs. There are generally four categories of partitioning approaches: fixed partitioning,

viable partitioning, adaptive partitioning and dynamic partitioning.

With fixed partitioning, the system is configured into partitions according to pre-

defined sizes. The processors in a partition are assigned to a job in an all-or-nothing manner.

Fixed partitioning is easy to implement but may suffer internal fragmentation. With vi-

able partitioning, the system allocates a partition of processors to a job according to its

request. Viable partitioning avoids internal fragmentation if the architecture does not have

restrictions on the partition size, but is subject to external fragmentation when the left idle

processors are not enough to satisfy any job in the queue. Adaptive partitioning gives the

system flexibility to choose a partition size at launching a job based on the system load

89

and the queue status. An example adaptive scheduling approach is equipartition, which

strives to assign an equal number of idle processors to all the jobs in the queue. Adaptive

partitioning can improve the overall system throughput but require the jobs to be moldable,

meaning that the jobs can run on a flexible number of processors. Dynamic partitioning

gives the system more flexibility by allowing the partition size allocated to a job to be

changed during the runtime. However, it requires jobs to be malleable. A malleable job

can detect the partition change and make the necessary self adjustments to continue the

computation.

In practice, with the prevailing use of message passing programming interfaces

such as MPI [99] and contemporary batch parallel job execution environments, adaptive

or dynamic allocation of resources is rarely used on parallel computers. Instead, jobs are

given the exact number of processors as requested, using strategies such as FCFS plus

backfilling [100]. Our work reveals a type of real-world moldable jobs where adaptive parti-

tioning can be applied to. In Chapter 5, we extend existing adaptive parallel job scheduling

algorithms [66, 67] to the high-performance BLAST web service context.

6.7 Online Scientific Data Processing

There have been studies on hosting scientific online data processing on parallel

and distributed computing resources. Wang and Mu described a distributed BLAST online

service system [101], where the incoming query is assigned to the least-loaded SMP node

and each node searches one entire target database. Wang et. al. introduced a service-

oriented BLAST system built on peer-to-peer overlay networks [102]. This work assumes a

heterogeneous environment with high communication cost. NCBI hosts a publicly accessible

BLAST server on a farm of LINUX workstations [63, 64]. In the NCBI BLAST server, for

a given query, the system statically splits the search into 10-20 subtasks, each searching a

different piece of the database. The subtasks are scheduled independently to the machines

that have just searched the same piece of data when possible. A central machine tracks

and merges results from subtasks for all queries. Due to the lack of design/implementation

details about the NCBI BLAST server in the literature, we were not be able to do a direct

comparison. However, we argue that the NCBI server is not able to factor in the parallel

efficiency by using only static task partitioning. Our scheduling approach for clustered

90

BLAST servers systematically optimizes scientific web services by taking into account both

parallel efficiency and data locality.

91

Chapter 7

Conclusion

Our thesis research addressed several unique challenges in parallel and distributed

genomic sequence search raised by the rapid growth of sequence data.

In Chapter 3, we considered large-scale genomic sequence search as a class of par-

allel applications that possesses highly irregular runtime behaviors in both computation and

I/O. We found that for this type of applications, the incoordination between the I/O opti-

mizations and the computation scheduling could result in serious performance degradations.

Consequently, we proposed an integrated scheduling approach that gracefully coordinates

dynamic computation load-balancing and parallel non-contiguous I/O to achieve optimized

search throughput on massively parallel computers. We realized our optimizations on mpi-

BLAST and developed a research prototype named mpiBLAST-PIO. The experiment results

on multiple platforms demonstrated that our integrated scheduling approach allows large-

scale sequence search to efficiently scale on general parallel computers. In a case study on

the IBM Blue Gene/P supercomputers, mpiBLAST-PIO achieved 93% parallel efficiency

across 32,768 cores in solving a real-world sequence-search problem.

In Chapter 4, we presented a novel framework called “Para-MEDIC: Parallel

Metadata Environment for Distributed I/O and Computing” that enables distributed se-

quence searching across multiple supercomputing sites connected with wide area networks.

ParaMEDIC leverages application-specific semantic information to convert results data into

orders-of-magnitude smaller metadata on the computing site, transfers meta data over the

network and regenerates the original output on the storage site from the metadata. In other

words, ParaMEDIC trades a small amount of additional computation (in the form of data

92

post-processing) for a potentially significant reduction in data that needs to be transferred in

distributed environments. We presented the detailed design of the framework and presented

experimental evaluations on different experimental as well as real distributed systems. Our

results shown an order-of-magnitude improvement in performance for distributed parallel

sequence search with ParaMEDIC in some cases.

In Chapter 5, we identified the scheduling requirements of increasingly popular

parallel sequence-search web services. For our target workload, we extended and designed

several adaptive scheduling strategies, namely PLARD for locality-enhancing resource par-

titioning, and RMAP for dynamic parallelism adjustments. These strategies automatically

react to the query workload, both in terms of the request intensiveness and the data ac-

cess pattern. We performed extensive performance evaluation on our scheduling algorithms

on a real cluster, and our results demonstrated that PLARD can significantly reduce the

amount of file I/O. Meanwhile, RMAP outperforms its static counterparts across various

query workloads. Combined together, our proposed strategies can automatically configure

the system for optimized query response time in various scenarios.

93

Bibliography

[1] G. Heffelfinger et al. Genomes to Life project proposal.

http://www.genomes2life.org/SNL-ORNL-GTL-Proposal.doc.

[2] M. Marra, S. Jones, C. Astell, R. Holt, A. Brooks-Wilson, Y. Butterfield, J. Khattra,

J. Asano, S. Barber, S. Chan, A. Cloutier, S. Coughlin, D. Freeman, N. Girn, O. Grif-

fith, S. Leach, M. Mayo, H. McDonald, S. Montgomery, P. Pandoh, A. Petrescu,

G. Robertson, J. Schein, A. Siddiqui, D. Smailus, J. Stott, G. Yang, F. Plummer,

A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. Booth, D. Bowness, M. Drebot,

L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann,

A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. Tipples, S. Tyler, R. Vo-

grig, D. Ward, B. Watson, R. Brunham, M. Krajden, M. Petric, D. Skowronski,

C. Upton, and R. Roper. The genome sequence of the sars-associated coronavirus.

Science, 2003.

[3] J. Ostell. Databases of discovery. ACM Queue, 3(3), 2005.

[4] D. Benson, M. Boguski, D. Lipman, J. Ostell, B. Ouellette, B. Rapp, and D. Wheeler.

GenBank. Nucleic Acids Res., 2002.

[5] National Center for Biotechnology Information. Genbank overview.

http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html.

[6] Kevin Davies. Pacific biosciences preparing the 15-minute genome by 2013.

http://www.bio-itworld.com/BioIT Content.aspx?id=71746, February 2008.

[7] Ian Foster. Service-oriented science. Science, 308(5723), May 2005.

94

[8] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova. Efficient data ac-

cess for parallel BLAST. In Proceedings of the 19th IEEE International Parallel and

Distributed Processing Symposium (IPDPS’05), Washington, DC, USA, 2005. IEEE

Computer Society.

[9] A. Ching, W. Feng, H. Lin, X. Ma, and A. Choudhary. Exploring I/O strategies for

parallel sequence database search tools with S3aSim. In Proceedings of the Interna-

tional Symposium on High Performance Distributed Computing, June 2006.

[10] O. Thorsen, K. Jian, A. Peters, B. Smith, H. Lin, and C. P. Sosa W. Feng. Paral-

lel genomic sequence-search on a massively parallel system. In ACM International

Conference on Computing Frontiers, 2007.

[11] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng. Massively parallel genomic

sequence search on the blue gene/p architecture. In Proceedings of the ACM/IEEE

SC2008 Conference on High Performance Networking and Computing, 2008.

[12] P. Balaji, W. Feng, and H. Lin. Semantic-based distributed i/o with the paramedic

framework. In HPDC ’08: Proceedings of the 17th international symposium on High

performance distributed computing, New York, NY, USA, 2008. ACM.

[13] P. Balaji, W. Feng, H. Lin, J. Archuleta, S. Matsuoka, A. Warren, J. Setubal, E. Lusk,

R. Thakur, I. Foster, D. Katz, S. Jha, K. Shinpaugh, S. Coghlan, and D. Reed.

Distributed i/o with paramedic: Experiences with a worldwide supercomputer. In

International Supercomputing Conference (ISC), 2008.

[14] H. Lin, X. Ma, J. Li, T. Yu, and N. Samatova. Adaptive request scheduling for parallel

scientific web services. In Bertram Ludäscher and Nikos Mamoulis, editors, SSDBM,

volume 5069 of Lecture Notes in Computer Science. Springer, 2008.

[15] H. Lin, X. Ma, J. Li, Y. T, and N. Samatova. Processor and data scheduling for online

parallel sequence database servers. In Technical Report TR-2007-23. North Carolina

State Univeristy, 2007.

[16] D. Benson, M. Boguski, D. Lipman, J. Ostell, B. Ouellette, B. Rapp, and D. Wheeler.

GenBank. Nucleic Acids Res., 1999.

95

[17] NCBI. National center for biotechnology information. http://www.ncbi.nlm.nih.gov/.

[18] DDBJ. Dna data bank of japan. http://www.ddbj.nig.ac.jp/.

[19] EMBL. European molecular biology laboratory. http://www.embl.org/.

[20] EMI. European bioinformatics institute. http://www.ebi.ac.uk/.

[21] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence data bank and its

supplement TrEMBL. Nucleic Acids Res., 1997.

[22] SIB. Swiss institute of bioinformatics. http://www.isb-sib.ch/.

[23] EBI. http://www.ebi.ac.uk/. http://www.ebi.ac.uk/.

[24] F. Bernstein, T. Koetzle, G.J. Williams, E.F. Meyer Jr, M.D. Brice, J.R. Rodgers,

O. Kennard, T. Shimanouchi, and M Tasumi. The Protein Data Bank. A computer-

based archival file for macromolecular structures. European Journal of Biochemistry,

1977.

[25] S. B. Needleman and Wunsch. A general method applicable to the search for similar-

ities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453, 1970.

[26] T.F. Smith and Waterman. Identification of common molecular subsequences. J. Mol.

Biol.s, 147:195–197, 1981.

[27] Pearson WR Lipman DJ. Improved tools for biological sequence comparison. Proc

Natl Acad Sci, 85(8):2444–2448, 1988.

[28] S. Altschula, W. Gisha, W. Millerb, E. Meyersc, and D. Lipmana. Basic local align-

ment search tool. Journal of Molecular Biology, 215(3), 1990.

[29] S. Altschula, T. Madden, A. Schffer, J. Zhang, Z. Zhang, W. Miller, and D. Lip-

man. Gapped BLAST and PSI-BLAST: A new generation of protein database search

programs. Nucleic Acids Research, 25(17), 1997.

[30] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for aligning

DNA sequences. Journal of Computational Biology, 7(1-2), 2000.

96

[31] States DJ. Gish W. Identification of protein coding regions by database similarity

search. Nat Genet., 3(3):266–272, 1993.

[32] Gish W. States DJ. Combined use of sequence similarity and codon bias for coding

region identification. Comput Biol., 1(1):39–50, 1994.

[33] W. Feng. mpiblast on the greengene distributed supercomputer. Presentation at

SC05.

[34] W. Kent. BLAT - the BLAST-like alignment tool. Genome Research, 12(4), 2002.

[35] Mullikin JC Ning Z, Cox AJ. SSAHA: A Fast Search Method for Large DNA

Databases. Genome Res., 11(10):1725–1729, 2001.

[36] Li M Ma B, Tromp J. PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18(3):440–445, 2002.

[37] S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison, D. Haussler, and

W. Miller. Human-mouse alignments with blastz. Genome Res., 13, 2003.

[38] M. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma. Parallel genomic sequence-

searching on an ad-hoc grid: Experiences, lessons learned, and implications. In Pro-

ceedings of the ACM/IEEE SC2006 Conference on High Performance Networking and

Computing, 2006.

[39] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Pat-

terson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The landscape of parallel

computing research: A view from berkeley. Technical Report UCB/EECS-2006-183,

EECS Department, University of California, Berkeley, Dec 2006.

[40] M. Warren and J. Salmon. A parallel hashed oct-tree n-body algorithm. In Super-

computing ’93: Proceedings of the 1993 ACM/IEEE conference on Supercomputing,

New York, NY, USA, 1993. ACM.

[41] J. Chen and V. E. Taylor. Mesh partitioning for distributed systems: Exploring

optimal number of partitions with local and remote communication. In PPSC, 1999.

97

[42] K. Schloegel, G. Karypis, and V. Kumar. Dynamic repartitioning of adaptively refined

meshes. In Supercomputing ’98: Proceedings of the 1998 ACM/IEEE conference on

Supercomputing (CDROM), Washington, DC, USA, 1998. IEEE Computer Society.

[43] A. Sohn and H. Simon. S-HARP: A scalable parallel dynamic partitioner for adaptive

mesh-based computations. In Proceedings of Supercomputing 98, Orlando, Florida,

1998.

[44] S. Hummel, E. Schonberg, and L. Flynn. Factoring: a method for scheduling parallel

loops. Commun. ACM, 35(8), 1992.

[45] S., J. Schmidt, R. Uma, and J. Wein. Load-sharing in heterogeneous systems via

weighted factoring. In SPAA ’96: Proceedings of the eighth annual ACM symposium

on Parallel algorithms and architectures, New York, NY, USA, 1996. ACM.

[46] I. Banicescu and S. Hummel. Balancing processor loads and exploiting data locality

in n-body simulations. In Supercomputing ’95: Proceedings of the 1995 ACM/IEEE

conference on Supercomputing (CDROM), page 43, New York, NY, USA, 1995. ACM.

[47] I. Banicescu and V. Velusamy. Load balancing highly irregular computations with

the adaptive factoring. In IPDPS ’02: Proceedings of the 16th International Parallel

and Distributed Processing Symposium, page 195, Washington, DC, USA, 2002. IEEE

Computer Society.

[48] I. Banicescu, V. Velusamy, and J. Devaprasad. On the scalability of dynamic schedul-

ing scientific applications with adaptive weighted factoring. Cluster Computing, 6(3),

2003.

[49] R. Thakur and A. Choudhary. An extended two-phase method for accessing sections

of out-of-core arrays. Scientific Programming, 5(4), 1996.

[50] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably and with high

performance. In Proceedings of the Sixth Workshop on I/O in Parallel and Distributed

Systems, May 1999.

[51] R. Thakur, W. Gropp, and E. Lusk. Optimizing noncontiguous accesses in MPI-IO.

Parallel Computing, 28(1), January 2002.

98

[52] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp. Noncontiguous i/o through

pvfs. In CLUSTER ’02: Proceedings of the IEEE International Conference on Cluster

Computing, Washington, DC, USA, 2002. IEEE Computer Society.

[53] A. Ching, A. Choudhary, K. Coloma, W. Liao, R. Ross, and W. Gropp. Noncontiguous

i/o accesses through mpi-io. In CCGRID ’03: Proceedings of the 3st International

Symposium on Cluster Computing and the Grid, Washington, DC, USA, 2003. IEEE

Computer Society.

[54] F. Isaila and W. Tichy. View i/o: improving the performance of non-contiguous i/o.

Cluster Computing, 2003. Proceedings. 2003 IEEE International Conference on, pages

336–343, Dec. 2003.

[55] A. Darling, L. Carey, and W. Feng. The design, implementation, and evaluation of

mpiBLAST. In Proceedings of the ClusterWorld Conference and Expo, in conjunction

with the 4th International Conference on Linux Clusters: The HPC Revolution, 2003.

[56] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, , and B. Wallenfelt.

Massively Parallel BLAST for the Blue Gene/L. In High Availability and Performance

Workshop, 2005.

[57] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Stan-

dard, July 1997.

[58] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in ROMIO. In

Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computation,

February 1999.

[59] F. Schmuck and R. Haskin. GPFS: a shared-disk file system for large computing

clusters. In Proceedings of the First Conference on File and Storage Technologies,

2002.

[60] Zfs at opensolaris.org. http://www.opensolaris.org/os/community/zfs/.

[61] D. Quintero and M. Hennecke. GPFS Multicluster with the IBM System Blue Gene

Solution and eHPS Clusters. IBM Redpaper, REDP-4168-00, October 24, 2006,

http://www.redbooks.ibm.com/abstracts/redp4168.html?Open.

99

[62] C. Sosa and G. Lakner. IBM System Blue Gene Solution: Blue Gene/P Application

Development . IBM RedBook, SG24-7287, ISBN 0738488674, Rochester, Minnesoat,

2008. http://www.redbooks.ibm.com/abstracts/sg247287.html?Open.

[63] Kevin Bealer, George Coulouris, Ilya Dondoshansky, Thomas L. Madden, Yuri

Merezhuk, and Yan Raytselis. A fault-tolerant parallel scheduler for blast. In Pro-

ceedings of the Int IEEE/ACM Super Computing Conference, 2004.

[64] S. McGinnis and T. Madden. BLAST: at the core of a powerful and diverse set of

sequence analysis tools. Nucleic Acids Res., 2004.

[65] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, and E. Nahum.

Locality-aware request distribution in cluster-based network servers. In ASPLOS-

VIII: Proceedings of the 8th international conference on Architectural support for pro-

gramming languages and operating systems, 1998.

[66] E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust partitioning

policies of multiprocessor systems. Perform. Eval., 19(2-3):141–165, 1994.

[67] S. Dandamudi and H. Yu. Performance of adaptive space sharing processor allocation

policies for distributed-memory multicomputers. J. Parallel Distrib. Comput., 58(1),

1999.

[68] R. Luthy and C. Hoover. Hardware and software systems for accelerating common

bioinformatics sequence analysis algorithms. Biosilico, 2(1), 2004.

[69] C. Thomas White, Raj K. Singh, Peter B. Reintjes, Jordan Lampe, Bruce W. Er-

ickson, Wayne D. Dettloff, Vernon L. Chi, and Stephen F. Altschul. BioSCAN: A

VLSI-Based System for Biosequence Analysis. In ICCD ’91: Proceedings of the 1991

IEEE International Conference on Computer Design on VLSI in Computer & Pro-

cessors, Washington, DC, USA, 1991. IEEE Computer Society.

[70] Compugen Ltd. Bioccerator. http://eta.embl-heidelberg.de:8000/, 1994.

[71] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and C. Roberts. Paral-

lelization of local BLAST service on workstation clusters. Future Generation Com-

puter Systems, 17(6), 2001.

100

[72] N. Camp, H. Cofer, and R. Gomperts. High-throughput BLAST.

http://www.sgi.com/industries/sciences/chembio/

resources/papers/HTBlast/HT Whitepaper.html.

[73] E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl. Efficiency of shared-memory

multiprocessors for a genetic sequence similarity search algorithm. Technical Report

TR97-005, University of Minnesota, Computer Science Department, 1997.

[74] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing. TurboBLAST(r):

A parallel implementation of BLAST built on the TurboHub. In Proceedings of the

International Parallel and Distributed Processing Symposium, 2002.

[75] D. Mathog. Parallel BLAST on split databases. Bioinformatics, 19(14), 2003.

[76] C. Oehmen and J. Nieplocha. Scalablast: A scalable implementation of blast for high-

performance data-intensive bioinformatics analysis. IEEE Trans. Parallel Distrib.

Syst., 17(8), 2006.

[77] J. Nieplocha, R. Harrison, and R. Littlefield. Global arrays: A nonuniform memory

access programming model for high-performance computers. The Journal of Super-

computing, 10(2), 1996.

[78] P. Crandall, R. Aydt, A. Chien, and D. Reed. Input/output characteristics of scalable

parallel applications. In Proceedings of Supercomputing ’95, 1995.

[79] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and Michael L. Best. File-

access characteristics of parallel scientific workloads. IEEE Trans. Parallel Distrib.

Syst., 7(10), 1996.

[80] E. Smirni, R. Aydt, A. Chien, and D. Reed. I/O requirements of scientific applications:

An evolutionary view. In Proceedings of the 5th IEEE International Symposium on

High Performance Distributed Computing, 1996.

[81] E. Smirni and D. A. Reed. Lessons from characterizating the input/output behavior

of parallel scientific applications. Perform. Eval., 33(1), 1998.

101

[82] R. Thakur, W. Gropp, and E. L. Lusk. An experimental evaluation of the parallel i/o

systems of the ibm sp and intel paragon using a production application. In Proceed-

ings of the Third International ACPC Conference with Special Emphasis on Parallel

Databases and Parallel I/O, London, UK, 1996. Springer-Verlag.

[83] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kuditipudi. Passion:

Optimized I/O for parallel applications. IEEE Computer, 29(6):70–78, June 1996.

[84] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM Transactions on Com-

puter Systems, 15(1):41–74, February 1997.

[85] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed

collective I/O in Panda. In Proceedings of Supercomputing ’95, 1995.

[86] P. Carns, W. Ligon III, R. Ross, and R. Thakur. PVFS: A Parallel File System For

Linux Clusters. In Proceedings of the 4th Annual Linux Showcase and Conference,

2000.

[87] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast access to distant

storage. In Proceedings of the Fifth Workshop on I/O in Parallel and Distributed

Systems, pages 14–25, San Jose, CA, November 1997.

[88] R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface for implementing

portable parallel-i/o interfaces. In FRONTIERS ’96: Proceedings of the 6th Sympo-

sium on the Frontiers of Massively Parallel Computation, page 180, Washington, DC,

USA, 1996. IEEE Computer Society.

[89] J. Lee, X. Ma, R. Ross, R. Thakur, and M. Winslett. RFS: Efficient and flexible

remote file access for MPI-IO. In Proceedings of the IEEE International Conference

on Cluster Computing, 2004.

[90] T. Baer and P. Wyckoff. A parallel i/o mechanism for distributed systems. In Pro-

ceedings of the International Conference on Cluster Computing, 2004.

[91] J. Lee, R. Ross, S. Atchley, M. Beck, and R. Thakur. MPI-IO/L: efficient remote i/o

for mpi-io via logistical networking. In Parallel and Distributed Processing Symposium,

2006. IPDPS 2006, 2006.

102

[92] B. Shivnath, M. Garofalakis, and R. Rastogi. Spartan: A model-based semantic com-

pression system for massive data tables. In International Conference on Management

of Data (SIGMOD 2001), May 2001.

[93] H. V. Jagadish, J. Madar, and Raymond T. Ng. Semantic compression and pattern

extraction with fascicles. In VLDB ’99: Proceedings of the 25th International Confer-

ence on Very Large Data Bases, San Francisco, CA, USA, 1999. Morgan Kaufmann

Publishers Inc.

[94] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arithmetic

coding in the h.264/avc video compression standard. Circuits and Systems for Video

Technology, IEEE Transactions on, 13(7), July 2003.

[95] Coding of Audio-Visual Objects - Part 2: Visual. ISO/IEC JTC1, ISO/IEC 14 496-2

(MPEG-4 Visual version 1), Apr. 1999; Amendment1 (version 2), Feb. 2000; Amend-

ment 4 (streaming profile), Jan. 2001.

[96] T. Wiegand D. Marpe, H. Schwarz. Context-based adaptive binary arithmetic cod-

ing in the h.264/avc video compression standard. Circuits and Systems for Video

Technology, IEEE Transactions on, 13(7), 2003.

[97] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu. The state of the art in locally

distributed web-server systems. ACM Computing Surveys, 34(2), 2002.

[98] D. Feitelson. A survey of scheduling in multiprogrammed parallel systems. Technical

Report IBM/RC 19790(87657), 1994.

[99] Message Passing Interface Forum. MPI: Message-Passing Interface Standard, June

1995.

[100] A. Mu’alem and D. Feitelson. Utilization, predictability, workloads, and user runtime

estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions on Parallel

and Distributed Systems, 12, 2001.

[101] J. Wang and Q. Mu. Soap-HT-BLAST: high throughput BLAST based on Web

services. BIOINFORMATICS -OXFORD-, 2003.

103

[102] C. Wang, B. Alqaralleh, B. Zhou, M. Till, and A. Zomaya. A BLAST service built

on data indexed overlay network. e-science, 2005.

