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1. INTRODUCTION

Let {(Xi’ Yi), i 21} be a sequence of independent and identically
distributed random vectors (i.i.d.r.v.) with a (bivariate) distribution
function (d.f.) F, defined on the Euclidean plan Ez, Let G(x) =F(x, «)
and H(y) =F(», y) be the two marginal d.f.’s and we assume that both G
and 'H are nondegenerate and, in addition, H is continuous almost
everywhere (a.e.). In the context of nonparametric tests for regression
with stochastic predictors, Ghosh and Sen (1971) have considered some
mixed rank statistics which may be defined as follows. For a sample of
size n(z1), let Rni(=2?=lu(Yi —Yj) where u(t) 51 or 0 according as
£ is 2 or < 0) be the rank of Yi among Yi""’Yn (1 <i<n); ties
among the Yi are neglected, in probability, because of the assumed

continuity of H. Then, a mixed rank statistic Mn is defined by

n
Moo=l b(X)e R L), (1.1)

where {an(l),...,am(n); n 21} is a triangular array of scores (to be
defined formally later on) and b(*) is some given function. Asymptotic
normality of such a mixed rank statistic [under HO: F=GH as well as
local (contiguous) alternatives] has been studied by Ghosh and Sen (1971,
Sections 3 and 4) under appropriate regularity conditons. There is a
renewed interest in Mn because of its affinity to induced (or con-
comitants of) order statistics [c.f., Bhattacharya (1974), David and

Galambos (1974)], though this affinity has apparently not been noticed.

’ <...<Y v i R §
Let Yn,l Yn,n be the ordered r.v.’s corresponding to Yl’ ’En
z :‘( i = .= =

and let Xn:i Xy if Yn,i Yk feor i=1,...,n, k=1,...,n. Then,
the X .. are termed the induced order statistics. Consider now a
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linear combination of a function of induced order statistics defined by

n .
R ERTNLICY 1.2)

where the ¢, are (non-stochastic) constants. Note that, by
definition (prior to (1.1)), Yi =Yn R . 1 <i €n, so that
’ni

X_. =X., for i=1,...,n. Thus, we may rewrite {1.2) as

. n
S, "zi=1°anib(xi)’ (1.3)

and hence, its affinity to Mn is readily identified by letting
c . =a (i), for i=1,...,n.
ni n :

Let m(y) =E{b(Xi)|Yi =y}, yeE and let

% _tn
Sn *zi=lcni{b(xn:i) _m(Yn,k)} 1.4)

Bhattacharya (1974, 1976) and Sen (1976) have considered some invariance
principles for {S;} under suitable regularity conditions. Their

results are based on the basic fact that given the order statistics,

the induced order statistics are conditionally independent (but, not

necessarily identically distributed). If, we let

n -
L =2i=1cnim(y ) (1.5)

n,i
then, Ln is a limnear combination of a function of order statistics,
and by (1.2), (1.4) and (1.5),
S =1L +8* . (1.6)
n n n
Thus, intuitively, the existing invariance principles for {Sg} and
{Ln} [viz., Sen (1978)] suggest that parallel results should hold for
{Sn} (or {Mn}]. Note that where as S; and Lh are uncorrelated, they
need not be independent and this may cause certain difficulties in

adapting the above approach. A representation of Mn {or Sn) as a

functional of the empirical distributions along with existing invariance

principles for these empirical processes gives us a convenient way of
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deriving the desired results.

Along with the preliminary notions, the basic theorems are
presented in Section 2, while their proofs are deferred to Sections 3
and 4. The concluding section deals with some general remarks and some
applications of the main theorems in certain problems of statistical

inference.

2. INVARIANCE PRINCIPLES FOR {S_}

We shall consider here both weak and strong invariance principles
and in this context, the regularity conditions vary with the depth of
the results as well as with the extent of stochastic dependence of
X and Y.

In the conventional way, we define the scores by letting

an(i) =E¢(Uni), 1<isn (nz1) (2
where U <~-<Unn are the ordered r.v.s. of a sample of size n

nl

from the uniform (0, 1) distribution and
¢(u) =¢; () -¢,(u), 0<uc<l, (2
where both ¢1 and ¢2 are nondecreasing and square integrable inside
(0, 1). Let then
— -lZn

a =n
n i=l"n

. 2 _ -1l¢n .y = 12
a (1): An -(n —1) z]..:l [an(l) °a‘n] 3 (2
¢ = f1¢(u)du and  A° =f1¢2(u)du —52 . (2
0 0
Note that, by definition,
5; =$£ s Ai <in/(n -1)]A2, ¥ n, and Ai-+A2 as n - (2
Also, let
2 2 2
£ =Eb(X) = b(x)dG(u) and ¢“ = b (x)dG(x) -£°. (2
E E

We assume that 0 <z <,

For every mn(zl), we define a stochastic process

.1)

.2)

.3)

4)

.5)

.6)
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wﬁl) ={W£1)(t), t €{0, 1]} Dby letting

Wﬁl)(t) =(/EA§)‘1{M - [nt]&s}, te 1= 1[0,1], (2.7)

[nt]

where [s] denotes the largest integer <s. Also, let
W={W(t), t eI} be a standard Wiener process on I. Then, we have

the following

Theorem 2.1. Under Hy: F =CGH and the regularity conditions stated

above, Wﬁl) 2+ W, in the Skorokhod Jl—topology on DIO, 17. (2.8)

Let us now express F as

F(x, y)= GEOH() [1 +Q(G(), HY)], (x, y) e E2, (2.9)

where [c.f., Sibuya (1959)] @ may be regarded as a dependence

function. Q=0 a.e. if H; holds. Consider now a sequence {Kn} of

alternative hypotheses, where
Kn: (2.9) holds for Q = Q(n)’

and {Q, .} 1is a sequence of functions on Ez, such that 1im Q _, = 0.
(n) N Y

Let Pn and Qn be the joint distributions of {(Xi, Yi)’ 1 <i <n}

(2.10)

under HO and Kn’ respectively. We assume for the next theorem that
{Q} s contiguous to {Pn} , (2.11)
where for an elaborate discussion of contiguity, we refer to Hijek

and $iddk (1967, Chapter VI).

Theorem 2.2. Under (2.10}, (2.11) and the same regularity conditions
on  b() and ¢(°) as in Theorem 2.1, there exists a sequence {wn}
(where W, ={wn(t), tel}l) of D[O0, 1] wvalued functions (non-stochastic),

such that

\
ey

NREEICR E+ W, in the Jl—topology on DO, 17. (2.12)

For the weak invariance principle considered above, it appears

that for the null hypothesis as well as local (contiguous)} zltermatives,
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. the regularity conditions on b(¢) and ¢(+) are minimal. In this
context, a martingale property of {Mn} plays an important role and
this will be considered in Section 3. This martingale property along
with the strong invariance principle for martingales [c.f., Strassen

(1967)] enables us to formulate the following

Theorem 2.3. If, in addition to (2.1), (2.2) and (2.6}, for some

r>2, [l¢]" <o or [|b|TdG <w, then under H,: FEGH, (in the

0
Skorokhod-Strassen Sense),
1 vy 5-1
KZ{Mn -ng&) =W(n) +0(n* ") a.s., as n-w , (2.13)

where n >0 and {W(t), t >0} <s a standard Wiener process on

[0, ©). Hence, with probability 1,

— L
lim sup(M —n€¢)/(2A2§210g logn)“?=+1, (2.14)
N> n
- 1
lim inf(Mn —nE¢)/(2A2§210g logn)?=-1 . (2.15)
o s
The proofs of these theorems are deferred to Section 3.
Next, we consider the case where (2.10) - (2.11) may not hold.
Some extra regularity conditions are needed in this context . Let us
define
w=ulb, ) =], [bIGHHIAF(x, ¥) . (2.16)
E
(Under Hy: F =GH, =¢8). Also, let
1 .
v, =b (eI + [, e e ey Y SHWIARE, v, iz,
E (2.17)

(1) (1)

where we assume that ¢ exists (a.e.) and both ¢ and F are

continuous. Let then

T
02 =Var(vl), ¢(r)(u) =11;-¢(u), r=0,1,2. (2.18)
du

We need either of the two assumptions (depending on the nature of the

invariance principle).
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(A) b{x) 1is continuous in x a.e. and for some s >2,

v =] )76 ) =E[b(0) |7 <= . (2.19)
E

Also, there exist positive constants K and 6(>s_1), such that

-3+ 6-1

16T (W) | <K[u -w] , for t=0,1, ue(0,1). (2.20)

(B) The d.f.F admits of a continuous and bounded (a.e.) density
function £, (2.20) holds for r =0, 1,2 and

T, , -1
|‘i—l"ﬁ—r_(—t)—| <kt -0)1°T, for r=0,1; te(0,1), (2.21)
dt

where &(>s 1) and K are defined in (2.20).

. 2 .
Let us now introduce a sequence {Wﬁ )} of stochastic processes

Wéz) ={W§2)(t), t €I} by letting

82 ey =ML - ntlul/ (V) tert. (2.22)

[nt]

Then, we have the following

Theorem 2.4, Under assumption (A) and for o >0,

wﬁz) 2+-W, in the J,-topology on D0, 1]. (2.23)

Theorem 2.5, Under the hypothesis of Theorem 2.4, (2.14) and {(2.15)

hold with OE being replaced by \.

In the final theorem, we consider an almost sure (a.s.} representation

for {Mn} which extends Theorem 2.3 to the general case.

Theorem 2.6. Under (B}, there exists an n >0, such that

v =T * - _ -n )
Mn ‘)i=lvi +€n> n Ign! =0(n ') a.s., as D >o; (2.24)
0—1{2171:1“}1 -ny) = W(n) +o(vn) a.s., as n-e (2.25)

where W={W(t), tel0, ]} <Zs a standard Wiener process on BT =10, ).

Proofs of the last three theorems are presented in Section 4. .



So long, we have assumed that the scores are defined by (2.1)}.
It is possible to replace the scores by some arbitrary scores {a;(i)}
provided the an(i) are aﬁ(i) are sufficiently close to each other.
Suppose that

¢

I fa () -at1% is (@ o) or ) 0™), as noe, (2

where n' >0. Also, let M; =2?=1b(xi)a;(Rni)’ Then
-1 % 2 -1vn 2 n . iy 2
T - <7 T b)) (T T () -ax(01%) ¢

where by the Kintchine law of large numbers, as n e

n137 Y 0) 235 EbP (X)) <o, by (2.19). @.
Moreover, by (2.19),
k 2
max . b (X.)I/n =0 (1), as n o, (2.
lsksn‘il'l 1 P

Hence, by (2.26) -(2.29), under (a) in (2.26)},

P
max |M, -M*|/vh — 0, as n e, (2
1<k<n Mk k
sup]Mk —Mﬁi/ﬁ?—>0 a.s., as n-o>o (2
k>n

while, under (b) in (2.26),
* — 1/2-71'
]Mn —Mnl = 0(n ) a.s., as n > , (2

Hence, Theorems 2.1 through 2.6 also hold for {Mn} being replaced by
{M;}, Now, (2.26) holds under fairly general conditions [see, for

example, Appendix of Puri and Sen (1971)]. In particular, if

.26)

.27)

28)

29)

.30)

.31)

.32)

an(i) =E¢(Vni) and az(i) =¢p(i/(n +1), then, (2.26) holds under (2.20).

Hence, in the sequel, we may use a;(i) =¢(i/(n +1)) instead of an(i),

whenever this leads to some simplification in the proofs to follow.

3. PROOFS OF THEOREMS 2.1, 2.2 AND 2.3

2
Let Fﬁl) be the o-field generated by (Xl,...,X }, Fé“) be the

n

o-field generated by (Rnl

s+.«,R ) and F° be the o-field generated
nn n
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A ® - = p o 3
by (Kl,...,Xn, Rnl""’Rnn) when HO. F ZGH holds. Then, Fn is
nondecreasing in n.
Lemma 3.1. Under HO: F=GH and (2.1), {Mn -noE, Fﬁ; nx1} 4s a

martingale whenever b( ) el, and ¢ CLl'

1
Proof. Note that by (1.1), for every n 21,

n

- v _ .
he1 My Tli- b(x )[an+1 n+1i) an(l)]
¥ b(Xn+l)an+l(Rnl+1n+1)" (3.1)
Now, under HO’ given Fg, Xn+1 and Rn+1n+1 are (conditionally)
independent where R can assume the values 1, ...,n+l with the
: n+in+l

common probability (n wv-l)-1 and E{b(Xn+1)|F§} =E{b(Xn+l)]F£1)} =
Eb(xn+1) =£. Thus,

(R

. o
E{b(Xn+1)a n+1n+1)an}

n+1

E(b(X_ )|F(1)}E{an+l

(2)
R, 10,00 P20

n+ln+l
(3.2)

LD EPHLINOR

£ , by (2.5).

On the other hand, given Fél), the b(Xi), i <n are fixed, while as

in Sen and Ghosh (1974), for every 1 <i <n,

£(2) N
E{an_4-l(R11+11)I b= n+ 1 an+1(R 1o+
n+l +R,ni
_— =z ) .3
n+l an+1(Rni) qn(Rni}’ (3.3

where the last step follows from the recursive relation of expected
order statistics, granted by the definition (2.1). Hence,

E{Z b(X )[an+1 n+1i
From, (3.1}, (3.2} and (3.4), we have

) -a (R DI{F0}=0 . (3.4)

93]
(N

N 0 .
E{I\/ln+1an} =M, +0E, ¥ n=1, (3.

and (3.5) insures the lemma.
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Let then

MO =17 BOSEM)), n >l (.6)

Then, we note that E{Mﬁan} =M, n=zl and

-1 0.2 -1 0 _a2 2
n Eoﬂ%-d%) =7 {V@%)~VO%)}—A -%1+0 as n - (3.7)

where EO stands for the expectation under HO: F =ZGH. (3.7) insures

that for every (fixed) m(2l1) and t

1""’tm (eI), as n->w, (under

HO)

_%I 0

max n M[ntj] -M[nt

e j]| Poo. (3.8)
On the other hand, {Mi, k 21} involves a sum of i.i.d.r.v. with mean
$¢ and variance QZAZ and the Donsker theorem applies to {Mﬁ -koE}.
Hence, (3.8) insures the convergence of finite-dimensional distributions
(f.d.d.) of {Wﬁl)} to those of W when HO holds. By our Lemma 3.1
and Lemma 4 of Brown (1971), the tightness of {Wil)} is insured by

the convergence of f.d.d.’s, and hence, the proof of Theorem 2.1 is
complete.

Note that the contiguity in (2.11) along with (3.8) implies that

L
max n °|M -M | 250, under {K } as well, (3.9)
1<j<m [ntj] [ntj] n

while by an appeal to the central limit theorem for a triangular array

-1
of independent r.v.s., the asymptotic multinormality of {n 2(M?nt 1°

Eﬁ[ntj]), 1<j <m} follows directly (where uh(t) =n_%{EM?nt] - [nt]¢&},

t €I) and this insures the convergence of f.d.d.’s of {Wél) —u%} to

those of W. Further, as in the proof of Theorem 3.1 [viz., (3.8)

thorugh (3.12)] of Sen (1977), tightness under H, and contiguity

0

insure the tightness under {Kn} as well. Hence, the proof of Theoren

2.2 is complete.
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- 0]
Let Z =M . -M -¢&. Then, by Lemma 3.1, E(Zn+1|Fn) =0

¥ nz0, and by (3.11), we have

|F} =E {[b(X ,a R ) - $g]2]Fg}+

O n +] n+l " n+ln+l
2,0
B l(IL P (e R 0 -a R IDPFO) + 0
2.2
=CA_ . *Q, say, 3
where proceeding as in Lemma 3.2 of Sen and Ghosh (1974), it follows
that Q;-+O a.s. as n-o, Hence, by (2.5) and {(3.10)
(EkOOkllF})/(ACJ+1as as e, (3
so that
Zk 0 0 k llF } o a.s., as n-w , (3
Note that under (2.1), (2.2) and for f|¢]r <o, T 22,
max ]an(i)l =o(n1/r), (3
1<is<n
and, similarly, under jlb]rdG <o for some T 22,
maxlb(X )|—o(n/ ) a.s., as n-ow (3
l<i<n
Note that by (3.1), for every n 21,
Izn+1‘ SIb(xn+1 EHan+1 r1+1n+1)l +l£g lan+1(Rn+1m+1) -9
+lszntb(x )lz ‘ n+1(Rn+li) “an(Rni)l’ @.
where by (2.1}, (2.2) and (3.13), we have
n B Yr, . .
Lioplon Ruupsd -2, R D1 =007, as - (3.

T a1 3 ?( { Y <a ( H
[Actually, take first ¢ / and note that an+1(Rnij _an+1‘Rn}11’

< an+1(Rni +1), ¥ 1 <i <n, and then use (3.13). For {2.2), use the

same technique for each component of ¢.] Thus, by (3.13) through (3.15)

we conclude that

! n+l

| ~0(n r) a.s., as n->® (3.

.10)

.11}

.12)

.13)

.14)

Js
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when either [|¢]|* <o or [|b|'dG < for some T >2. Thus, if Y(n)

is any f in n, for which

‘P(n)/nz/r 4+ as n>o, (3.18)
then by virtue of (3.12), (3.17) and (3.18), on denoting by
2 n- 1
s = 21 -0%o 1+1|F } , we have
1 2 2 o
Ins1 — 7 BolZp 1,y >V D F } <= aus. (3.19)
b(s )

By virtue of (3.12), (3.18), (3.19) and Lemma 3.1, (2.13) follows from
Theorem 4.4 of Strassen (1967). (2.14) and (2.15) follows directly by
using the law of iterated logarithm for the Wiener process W. This

completes the proof of Theorem 2.3.

4. PROCF OF THEOREMS 2.4, 2.5 AND 2.6
R Sy ¢ __-1en
Let Gn(x) =n 21=1u(x -X;), xeE, Hn(y) =n Zizlu(y -Yi),
_ i _ . -1In 2
y ¢E and Fn(x, y)=n Zi=1u(x —Xi)u(y -Yi), (x, y) €E°, be
respectively, the empirical d.f.’s corresponding to G, H and F. Also,
since (2.25) holds under (2.20), in the case of the scores defined by

¢(i/(n +1)), 1 <i <n, we shall work with these in the sequel. Then,

we may write

n'M LN LR LNCI (4.1)

By expanding ¢( Hn) around ¢(H) and Fn around F, we obtain

n +1

from (4.1) that

n"tu_ = [ 2 BEOHmIE, (x, ) +

() [H () -H 16 HIar e, y)3+ n7len (say)

e A (4.2)

i= 1 i

where the Vi are defined by (2.17) and 5; consists of the remainder

terms.
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Now, under (2.19) and (2.20), EVi =y and Var(Vi] =02 <o, Thus, .
the Donsker theorem applies to the sequence {Vi} of i.i.d.r.v., and
hence, to prove Theorem 2.4, all we need to show is that

1
%

n_ ° max lﬁil P, 0, (4.3)
i<kszn

while to prove Theorem 2.5, by virtue of the law of iterated logarithm

for the X?zl(vi -y}, it suffices to show that

1
-4

]g;|(2nlog logn) * -0, a.s., as n > , 4.4)
Finally, to prove Theorem 2.6, we need to verify (2.24). For this
reason, in the remaining of this section, we consider explicitly the
remainder terms {E;} and verify (4.3), (4.4) and (2.24) under

appropriate regularity conditions.

Note that by (4.2},

n
n+1

e - J 2 PO GET ) - BHEDIEE, &, )

e m o -H; 16 menar, »)

E
=], IO E ) -HO 16N HONALE_(x, ¥) - Fix, 1]

E
e OO [0 G2y H ) -0 - 0 -0 36 monier_ &, »)
=Cn1 +Cn2’ say. (4.5)

In this context, the following result due to Csaki (1977 will be

repeatedly used. Let {Ui, i 21} be a sequence of i.i.d.r.v. having

. ~lcom . :
the uniform {0, 1} d4.f. and let In(t) =7n Z;zluat -di), tel, n=zl.

Then, for every € >0, n o,

1
-5

1, -
n*{log logn) “sup{t(l -t)}

[P

i
1) -t] =0y aus., (4.6)

Further, Csorgo and Révész (1975} have the following result

/AL (8 -t _
P{Iim sup =y2 =1, {4.73 .
ne g <t<l-g_ /2t {1 ~t)log logn
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where

e = (log . (4.8)

Also, by virtue of Theorem 3.1 of Braun (1976), for every ¢ >0,

kllk(t) -t
max sup T ¢
1<ks<n tel /n{t(1 -t)}?

= Op(l) . (4.9

Now, by (2.20) and (4.6), for every e >0, as n >,

sup| [ () -H) 10 EONHE L -H) Y €] =0(n " (log 1ogm ) a.s.,
veE
(4.10)
while by (2.20) and (4.7), as n >,
sup_ &) -H 16D @oN He 11 -Hm 1Y
H—l(én)stsH~l(1-en)
= 0(n~%(log 1ogn)%) a.s. (4.11)
and by (2.20) and (4.8),
max sup —— |{H, (y) -H P @ON W 11 -Hp 1T =0,
ksn yeE vn p
(4.12)

where in (4.10), (4.11) and (4.12), & >s7t (by (2.19) -(2.20)), so
that on setting e =%(§ »s-l), we have
(1 -8§+e)s/(s~1)=1-v, where v >0, (4.13)

By {2.19), for every n >0, there exists a Kn(<m), such that

[ e |%d6) < n (4.14)
|x | >K
n
Let
Egl) ={x: Ix] = KW}, Eéz) ={y: n <H(y) <1 -n}, En =E£1) XEgz), E; =E2\En.
(4.15)

Then, by (4.5) and (4.15), we have

| <c_. +c3) 42 (4.16)

IC nll nl2 ni2

nl
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where
Chi1 :IIE fb(X)[Hn(y) -H(y)]¢(1)(H(y))d[Fn(x, y) - F(x, v)]| (4.17)
n
1 1
ﬁli =|J£cfb(x)[Hn(y) -1 16" )(H(y))an(x, )| (4.18)
n
éf% ] fb(x)[H () H(Y)]¢( )(H(y))dF(x . (4.19)
EC
N

Now, by the HGlder inequality

Vs 5 _S.i
oz <00 100 70,601 [ 1,00 -y 1o a3 °
E\E 2
" $ s-1
s, Y8 (1) s (5T s
1 peolde Gat ] [ 00 -HO) e M) [P (1)
|x | =K E 4.20)

Now, f ]b(x)! dG (x) (being a reverse martingale) converges a.s. to

j [b(x)l dG(x) [<», by (2.19)] and, similarly, {
2K

[ px|® dG_(x) <n. Also, by (4.10),
|x|>K
n s

n?(log logn)~ f U, -ule M an 13 Tan -0t ] e[ ~HO 1Y a0,

where y >0 and the last integral is also a reverse martingale, and

hence, a.s. converges to fl[u(l —u)]-1+Ydu <ew, Similarly,

s
i -i . -

n*(log iogn) f |{Hn -H}¢(1)(H)}ls ldHn-+O a.s., as n -, Hence,
(1) % ‘s )

C =o{(n” 100 lo } a.s., as mn-c, A similar treatment holds for
n/2 gn
(2) -
ni2 ° Thus, as n +,

NS INe)

- e -1 1/2 fA 273
a1z T80 =o({n “log logn) 7). (4.21)

Moreover, by using (4.12) instead of (4.10) in the above manipulations,
we have on parallel lines

max{n~ Zk[C(M Ctz)]} = o0 (1), as n-wo . (4.22)
k<n i2 k12 P




. 2
Let A_ ={x, y).arl <X %a ,, C <Yy $cr2} be a block (eE7).

Then
sup b [H () -H 16 1) -bla_ DI (e ) -Hee_ P16 tiee_ 01|
A
T
< s b -ba )] sy | o) -HO e mon |
a_;s<xs<a_, c. Sy=c,

e b ] s | 0 -H) 0P mon - a1

Crlsyscrz
+ ot 6P me )] swp [ () -HOT - [H_(c,;) -H(c )]
rl’ rl P n n*rl rl :
c_<ysc
rl r2
Also, F 1is assumed to be continuous everywhere, and hence,

{ Jd[Fn(x, y) - F(x, ¥y)]>0 a.s., as n-»o , (4.24)
A
T

Further using Theorem F of Csorgo and Révesz (1975) along with the

compactness of the Kiefer process, we have for small H(crz) ~H(cr1),

L

n*  sup [[Hn(Y) -H(y)] - [H (e ) -H(Crl)]l
Cr1V=Cr2

1

=0((log logn)™® a.s., as n-ow , (4.25)
Now En is a compact subspace of Ez, b(x) 1is continuous inside E(l)
¢(1)(H(y)) is bounded and continuous inside Eéz) and (4.10) holds.

Thus, for every ¢' > 0, one can choose a set {Ar’ r=1,...,m}

{(where m =m€n) of non-overlapping and exhaustive blocks, such that
= _ ' - v /3
En UA_, sup  |b(x) b(arl)i <g'/3 and H(crz) H(crl) <g'/3
aLrléxsarz

Then, by using (4.23), (4.24) and (4.25), we obtain from (4.17) that
as n >o»,
-1 Y
Cnll =o(n "log logn) ‘) a.s., as n->wo . (4.26)
Also, we note that by the tightness part of Theorem 3.1 of Braun (1976),

for small H(Crz) —H(Crl),
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-1
max sup n 2k![Hk(y) ~H(y)] - H (c_;) -H(crl)]] =0 (1), (4.27)
k=<n crlsySCrz p

and hence by (4.9), (4.12), (4.17), (4.23), (4.24) and (4.27),

i
max n {kC. . .} E»»o, as noe (4.28)

k<n kil

Thus, by (4.16}, (4.21}, (4.22), (4.26) and (4.28), as n -,

o_(1). {4.29)

~ I 4 -1 1/2 _1/2 _
l“nll =o((n “log logn)® a.s., max n klckli =2,

k<n

For the treatment of an in (4.5), we have by the HGlder

inequality,
] s -1
b (1)r S—l 3
H) -0 -[H -Hlo /@) |7 "rant

{

c by | %a6 m}l/s{f |6 (=2

n2! n+1

{4.30)

whers, as in after (4.20), | ]b(x)lsdcn(x}-ﬁLifE!b(X}ls <o, by {2.19)
. ‘

Hence, it suffices to show that as n o,

S S

rd

floc2ou) o -1 -Hlo™ a0 |5 ldn =0t iog togm 2T D) als.,

where s >2 and (2.19) -(2.20) hold. Here also, we define R

= . e . , - . ~ L. T
(4.153}. Then, by the first order Taylor’s expansion of b0 g )
F A 1L
g e e o) (2D, o e o
along with the continuity of ¢ {H} (inside nq J, by using {4.11
obtain that
s

“ P N ¢ P
"},u(z)m ST HY - oW - [ -HIeY (D) |5 an

IS L
=c{{n " "ilog logn) %) a.s., as ©n »o, (4.32)

For the complementary part, we have

1 {s-1
E\R )
n s
sce{ | JoGrayH) ¢(H)IS/(S’1)qu + f e —H)@il}{H}@smlde}
I's H 1
E\Eéz) E\Eé?)
@, @ \

p I v - i T3
n21 a7 SaYs where C*(<x) depends oniv on s. (4,323

.
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By using (4.10) and proceeding as in after (4.20), it readily follows

( ) 5/2(5-1)) a.s.

~o((n log logn) , as n-~>o, Similarly, by

-1
using (4.12) we have max n 2k|C(2)| =0_(1). The treatment of C(z)
ko k22!~ °p n21

deserves extra care. Note that by (2.20) (4=0),

max |¢( 1)] = O(nl/2 ) (4.34)
I<isx

Also the H(Yi) are i.i.d.r.v. having the uniform (0, 1) 4.f. Hence,
by some standard arguments, we have under (2.20) (r=0),

max |¢(H(Y ))l-—O(n (1og n)%) a.s., as n ->owo , (4.35)
1<i<n

Let now {an} be defined by H(an) =n—1+€, where ¢ =%(6 -s_l) >0, by

(2.19). Then, using the fact that by (4.7), Hn(an) =n_l+E{1 +O(n-€/2/10g logn)}

a.s., as n->», we obtain that, with probability 1,
a,

f |¢(

- 0o

< [0S Togmyys/ (5-1) H_(a )

n+1 Hnw ¢(H)IS/(S_1)dHn

=S . [O (n%-dm]S/ (S-—l) . [0 (n-1+€)] (4'36)
- {0(n—5/2(s—1))][0(n-6(5+1)/(s-1)(10g n)s/2(5_1))]

—5/2(5-1))

= o{n as e >0.
On the other hand, by (4.7) sup ]Hn(y)/H(y) -1} +0 a.s., as
a 3ysH"1(n)
- (D (1) e
n +», and hence, on writing ¢(n T Hn) - (H) —(ﬁfri-ﬂn -H)¢ (Hn) where
HY =6(— E_ +(1-0)H (for 0<8<1) and bounding IH;/H -1| by an

arbitrary number less than 1, we have for large n,
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-1
B0 n s/ (s-1)
[ [0 H ) -6 (H) | aH_
an
-1,
H () _ _ <
< x*f =T H YO D oy 3208/ G Yar oy (2.20)
an
1 1 - H () _
5 10((n % (log togn)D ¥ ) f [H(1 -H)] I*den (by (4.7))
an
<

-1
[0((n " 1og Togn)/2(s- 1y H (Mg )] Yan_

o(n "log 1ogn)s/2(s_1)) a.s., (4.37)

as n{>0) is arbitrary and by arguments following (4.20)

.H_ &) 1 -
] {H -H}}_‘+YdHn a3 fn[u(l -u)] 1+Ydu3 which can be made
-0 - 0

arbitrarily small. A similar treatment applies to the upper tail
=1 ; . . . . ;
{H "(1 -n) sy <w}. Instead of using (4.4), (4.7}, (4.10) and (4.11),

if we use (4.9) and (4.12), then by very similar arguments, we obtain

1
_/Zi“ N

kiC, .| ~Ea-09 as n->o, Thus, we conclude that (4.3
k2

that max n
k<n
and (4.4) hold under assumption (A} in (2.1$)-(2.20) and the proofs of

Theorems 2.4 and 2.5 are complete.
For the proof of (2.24) [under the stronger assumptior (B)], for

oo . s
—] Hﬁ} around ¢{H) by a
+1

ang we use {4.30). Here, we expand ¢
second order Taylor’s expansion, permissible under {(2.20) (for = =2).
. . r 5 Y *%"ﬂ\
This will make (4.32) as well as (4.37) 0O(n ) a.s. for some 1 >0,
while (4.36) does not need any adjustment. For the treatment of C
in (4.5}, we make use of the Bzhadur (1966) result {(extended to the
- s - 3 2
bivariate case) that for every {xog yOJ eE",
{ 5 ;
supin “|[F_(x - F{x 1- [F (x - Fx MR
p{n | [F (x, 70 - 06 y) 1= [F (xg, vg) - Flxg, )1
| . E 1 . "1/2~
[[BGx, =) - Flxg, =)11+ |[F{®, y) - B, y)1]< n %iog n}
- 0t (1og m)? @
=0(n "(logn)”) a.s., as n > | {4.38)

This is a stronger result than (4.24)-(4.25). On the other hand, fo



