ABSTRACT

FENG, YUHAO. Numerical Simulation and Analysis @fircular Reinforced Concrete
Bridge Columnsfor Investigatingthe Effect ofSeismic Load History ohongitudinal Bar
Buckling. (Under the direction of Dr. Mervyn Kowalsky).

This dissertation dis@ses research work conducted to investigate the seismic load
history effect on performance limit states of reinforced concrete bridge columns, and to
achievea design approach to identify strain ligfior bar buckling Thisdissertatiorpresents
the numercal portion of an associatedesearchprojectat North Carolira State University
(NCSU). The experimental work consists of 30 large scale tests on reinforced concrete

circular columnsvhich are not conducted by the author

In well-detailed reinforced camete $ructures reinforcing bar buckling and subsequent
bar rupture serve as common failure mechasignder extreme seismic evenEngineers
often use a strain limit state which is associated with bar buckling as the ultimate limit state
but the relaionship between the strain demand and resultant bar bucklimgptisvell
understood. Pagesearchhasindicated large impact of the cyclic loading history on the
strain demand tachievereinforcing bar buckling. On the other hand, sealanalysis is
widely implemented by engineers to relate strain to displacement. However, the cyclic load
history also has potential impact on the relationship between strain limits and displacement
limits. As a result, it is important to study the seismic load histdgcebn the strain limit
state of reinforcing bar buckling and on the relationship betwasai strain and structural
displacement. In addition, PerformariBased Earthquake Engineering (PBEE) strongly
depends on an accurate strain limit definiti@o, a design methodology needs to be
developed to identify the strain limit for reinforcing bar buckling including the seismic load

history effect.

Two independent finite element methods were utilized to accomplish the goal of this
research workFirst, fiber-based analysiwas utilizedwhich employed th®©pen System for
Earthquake Engineering Simulation (OpenSedd)e fber-based method was selected
because of itaccuracyin predicting strains and its computatioefficiencyin performing
nonlineartime history analysis (NTHA).The uniaxial material models in fibbasedsections
were calibrated with data from material tedts addition, strain data and fordeformation



response from large scale testing assists selection of element types and integrati@s sch
to ensureaccuracy. The advanced beanlumn elements and material maglel OpenSees
resulted ina very accurate prediction strain at local sectiaas well as global dynamic
response of structures. A number ranlinear time history analysesith 40 earthquake
ground motions were conducted to investigate the effect of seismic load history on
relationship between structural displacement and strain of extreme fiber llaescatical

section.

The second finite element modets established with §d elements topredict bar
buckling The model included a segment of reinforcing bar and its surroumedingents
such as spiraturns and concrete. This model sepasattself from previousar buckling
research by utilizingactual sectional detailing cundary conditions angblastic material
modek instead ofthe simplified barspring model The strain history is considered as the
demand on this model. A seriekstrain historesfrom the experimental tesédfiber-based
analyss wereappliedto the fnite element modeb studytheirimpact on the strain limifor

reinforcing bar buckling.

Initial analytical investigations have shown significant impact of load history on the
strain demand to lead to reinforcing bar buckling in the plastic hingereghis is also
confirmed in the experimental observation which only included a limited number of load
histoiies The parametric study extended the range of load history types and also studied the
effect of reinforementdetailing on bar buckling. On thether handanalygs with fiber
based models showed thie load history rarely impagcthe relationship betweelocal
strain and structural displacement.design approach was developed to incltide load
history effecton the strain limit state of bauckling.
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Chapter 1introduction

Chapter 1: Introduction

1.1 Backgroundi Reinforced Concrete Bridges

Reinforced concret€RC) bridges arecommonly usedn the highway construction
industry. Although steel pishave their place in the history of highway bridge construction,
reinforced concrete columns always serve as the first choice of a bridge engineer with its
obvious benefits, including low cost and ease of jooristruction compa&dto a steel pier
bridge. Circular section columns are often chosen by bridge engineers in design due to its
uniform reaction under any lateral loading directidrhe state of Alaska has a large
inventory of existing reinforced concrebeidgesthroughoutthe entire statdn general, the
state of Alaska is a high seismic region, and the state freq@sibyinters structural damage
problems during seismic eventslighway bridges bear the brunflthough RC bridge
columns areftenwell detailed in seismic regi@) damage istill consistently observed after
earthquakeanostly in terms ofeinforcing bar bucklingind concrete crushin@uriosity on
the mechanisnmeklding to bar buckling has motivated engineers to investig&eniimber 6
researches haveconductedstudiesin order toidentify theseismic effect on reinforcing bar

buckling.

Presented in this dissertatigs the research workiming to evaluate the seismic load
history effect on performance limit states of RC concretegbricblumnsespecially the limit
state related to bar bucklin§ingle columrcantileves with circular sectiorare considered
primarily. Shownin Figurel.1 is the typical highway bridge constructed with single column
piers in Alaska.Figure 1.2 displays a doubleolumn pier bridge. Ira seismic event, dth
bridge columns would be subjected &bending moment gradient with the maximum
moment at the base of the column. Therefore, a plastic hinge isgeftenated at the base of
the column. Extensive damage ocur the plastic hinge region, including cover concrete
spalling, core concrete crushing, reinforcing bar buckling and rupture. Longitudinal
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reinforcement bucklings a commonform of damage mecha&m in modern weldetailed

sectiors. Previous researchRéstrepePosadaet al. (1994) hasdemonstrated that the buckling
of reinforcement led to early rupture of th#fectedreinforcing bas. Therefore engineers
often utilize the steektrain limit for bar buckling as the damage limit statkich, however,
have minimal experimental basis. To addréssseproblems, thisdissertationattempts to
relate the strain limit states to the common damage mechénrsmforcing bar buckling.

Furthermore, the s&inic load history effect on the limit state is investigated.

Figure 1.1 Construction of RC Bridge Columns (Compliments AKDOT)
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Figure 1.2 Existing RC Bridge
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1.2 The Need for Research

The goal ofPerformanceBasedEarthquakeEngineering(PBEE)is to design a structure
to achieve a prescribed performance level under a prescribed seismic eVéieat.
performance limit states aresually defined on the basis aftructural damage levels,
including reinforcement yielding, cover concrete spalling, reinforcement buckling and
rupture, as well as collapseGiven the variability in ground motion characteristitdse
loading history demand on a structural is not predhiet and would contain drastically
different characteristics from earthquake to earthqu&kgure 1.3 andFigure 1.4 show two
load historiesfor a reinforced concrete column. The Chichi Load History adsnited
number of cya@sand a unique onsided response. The Japan earthquake (2011) is a large
subduction event which, therefore, generated a load history with significant number of
reversing cycleslt is observedthat the characteristics of seisnlmading demand vary
significantly. In addition,ecent researc{El-Bahy et al. 1999a, EBahy et al. 1999b, Moyer
and Kowalsky 2003, Ingham et &001, Ingham et al. 20Qhas illustrated the significant
impact of load history on the major performaniceitl states. Therefore, there is a pressing
need to investigate the effect of load history on the limit states veneturrently used by

engineers.

The research presented in thlissertationis the analytical portion of the load history
research prog funded bythe Alaska Department of Transportation and Public Facilities and
the Alaska University Transportation Center. The experimental portion of the project
(Goodnight et al. 2012) Bashownthat load history ha large impact on the strain limit
related to reinforcing bar buckling. Therefore, finite element metloelsitilizedto specify
different mechanisms of bar buckling under a variety of load histartes.details of finite
element models are shown in Chapter 3 anld @ddition, the impactfdoad history on the

relationship between strain and displacenagatnvestigated.
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1.3 Research Goals and Scope

The scope of the research in this dissertasdn study the seismic load history effent
the strain limit, particularly thetrain limit at the onset a&inforcing bar buckling, as well as
the relationship betweethe strain andhe displacementThis research assusthat the RC
section in a flexural member falby reinforcing bar buckhg which is observed in lots of
damaged concrete bridgedter seismic everst Previous research (Moyer and Kowalsky
(2003) has illustrated that the load history hadsignificant impact on the displacement
demand and the strain demand as weth geneate reinforcing bar bucklingVioyer and
Kowalsky (2003)explairedthat the bar buckling is likely to occur duritige reversal from a
large tensile strain which is a function of load history. However, engineers often utilize strain
limits associated witheinforcing bar buckling without considering the load history effect.
There is an apparent need to quantify the load history effect on the straiatlthetonset of
bar buckling. On the other hand, engineers utilize monotonic sectional analysis to relate
displacement to strain whicilsodoes notinclude the load history effe@ither To ensure
the accuracy of a design procedure, it is necessary to study the impact of load history on the

relationship betweethe strain andhe displacement.

An extensiorof the this research is to investigate the effect of structural variables on the
reinforcing bar buckling, which include transverse steel detailing, longitudinal steel detailing,
aspect ratipand axial load ratio of the RC column. In current design ploes the
utilization of strain limis associated with bar buckling Veminimal experimental basis. The
PBEE requires engineer to prescribe a target performance level which is indicated by a strain
limit considering bar bucklingTo accurately identify # performance level with different
structural detailing, it is of importance #&sostudy the impact of structural variables on the
strain limit related to bar buckling.
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In order to quantify the load history effect on the strain limits and the relagonsh

between strain and displacement, the numerical method implemented should be able to
capture the global nelnear behavior of a reinforced concrete bridge column as well as the
local damage such as reinforcing bar buckling. In the case of investigiagingad history

effect on the relationship between strain and displacement, a finite element method with
fiber-based elemestvas utilized because of its capabilityproviding strain information. In
addition, as a simplified method comedto a finiteelement model with solid elementbge
fiber-based model significantly reduces the computational cateafonlinear time history
analysis NTHA). This will allow a large number of NTHAs to lm®nductedwith a variety

of earthquake ground motions and BR&umns.However, for the purpose of capturing local
nortlinear damage, especially reinforcing bar buckling, a portion of the plastic hinge region
is model with solid elements. Ndmear material behavior is determined by material tests

and assigned to bofinite element models.

1.4 Layout of Dissertation

It is worth noting that this dissertation is prepared in a special layout. The chapter 2 after
this chapter is the typical literature review. However, acaiitained journal paper serves as
the chapter 3 hich introduces the development of fidesed modelAs a consequencd)e
language inthe chapter 3 considers it as an independent paper instead of a chapter in this
di ssertation. The word Athis paper ochaptprpear s
3 itself. Subsequently, the chapter 4 is a regular chapter but not a paper as the chapter 3.
Therefore, the language in the chapter 4 considers it as a part of this dissertation. Again, the
chapter 5 and 6 are two independent journal papers tasggcSimilar to the chapter 3, the
language in these chapters considers each chapteratgelfcontained paper instead of the
portion of this dissertatiorSome of the content in the chapter 3, 5, and 6 may repeat the
other parts of this dissertatitiecause they are salbntained papersn the end, the chapter
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7 goes back to a normal conclusion chapter in the dissertation rather than an independent

paper.
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Chapter 2: Literature Review

2.1 General Discussion

The literature review consists of a discussion expeimental investigation of load
history effectand nonlinear bar buckling, as well aasnother independent discussion on
numerical simulation of RC membef-Bahy et al(1999 andingham et al(2001)studied
the effect of load history or load path orethonlinear behavior of RC colunsn Little
research work directly relates the load history effect to localized damage, especially
reinforcing bar bucklingGiven the difficultyin obtaining plastic strain of the reinforcement
in a RC member, aeries of br buckling models were established with experimental sesult
from untaxial rebar tests. A more reliable method to predict bar buckling in RC mgmber
was generated by Berry andbéthard (2005) whiclstatistically summarizedesults from a

large number oRC column tests.

As mentioned previouslythis chapter will also review the numerical methods to
simulate RC members and to capture the nonlinedalor. In the case djlobal force
deformation response of a concrete structure, a frame element isitftead to model the
RC memberFrame elements are defined on the basis of moment of inertia (bending and
torsion), elastic modulus, and cross sectional area, amongp&tanetersin the case of
nonlinear analysis, section hysteretic rules, such asltiified Takeda Degrading Stiffness
model (Otani (1974)) are defined to address nbnearity. However, iflocal behavior or
damage issought a finite element method with solid or shell elements is utilized. Frame
elemens have apparent advantage on cpuatational cost compad to a finite element
modebk and it is significantly implemented inonlinear time history analysidsNTHA).
Nevertheless, engineers and reseasclofien acquire strain information in a NTHA to
evaluate the damage under a seisminevEiberbased elementodelsthen fulfill this

requirement and also ensure reliable dynamic behavior as shown by Petrini et al. (2008).
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2.2 Relevant Articles on Experimental Investigations

2.2.1 Studies of Load History Effect on RC Structures

Little research habad been conductddcusedon the cyclic load history effect on the
damage of a typical reinforced concrete colutdonnathand ElBahy (1997) studied the
cumulative damage from various load histories, including arbitrary cyclic load history and
earthquakéoad history as shown ifrigure2.1. Damage wasonsidered on the basis of lew
cycle fatigue and was quantified with a proposed damage index related to stiffness
degradation. Presented in the conclusion was an assessment toethatliate the damage

of designed concrete column.

The most valuable aspect of this researchesexperimental observatiofiem the tests.
Though none of the local strain data wasalyzed Kunnath and EBahy (1997) still
expressed a series of impamt findingson the force deformation response and direct
observation of damageOne of theimportantfindings is thatload histores with a large
numberof load cycles(>100 at low ductility level (around ductility 2) fail to generate severe
damage or eterioration in a reinforced concrete column, such as reinforcing bar buckling or
core concrete crushing. In contrast, while the load history containssatafluctility leves
larger than 3 or 4, the likelihood of severe damage is profoundly increbsdae more
specific, test A2in Figure 2.1 imposed 150 load cycles of ductility 1.4 on the specimen
which only produced spalling of cover concrete. However, while cycling the specimen at
ductility level of 5, severe damages inchuglibar buckling and spiral necking was obsdrve
after 3 cycle of loading. As shown Trable2.1, the required number of load cycle to cause
bar buckling and spiral damageassignificantlyreducedwith a larger displacementuctility

levelin load histories with cycle at constant deformation levels

Another important findingby Kunnath and EBahy (1997)was that the typical

earthquake imposea limit number of inelastic load cyclesand the energy demand is

10
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significantly differert from the demand imposed by standard cyclic testing which oféels le

to fatiguefailure of longitudinal barsnstead. Astandard cyclic testnposes a large number

of loading cycleson a structural component which is likely to generate low cycle fatigue
damage in longitudinal reinforcement. However, based on numerous analytical simulations,
it was observed that few large amplitude cgadle a typical earthquake load history often
resulted in confinement failurafter reinforcing bar buckling, rathénanlow cycle fatigue
damage in reinforcementiowever,it is soméow contradictorythat Kunnath and EBahy

(1997) still develop a Performance Based Design method based on the proposed fatigue
damage modehstead of the bar buckling which is the actual daenagchanism under real
earthquake load history.

There is not a specific limit state considered by Kunnath asigaBl (1997). Instead, a
damage indexvas introduced to quantify the damage level in the RC member. Scaling from
0 to 1, the index represemts damage to failurewhich includescracking, concrete spalling,
reinforcing bar buckling or rupture, and fracturettod spiral. Kunnath and HBahy (1997)
proposed a method to relate the load history dematigetesultant damage index, as shown
in Eq. 21 In Eg 22, each drift ratio had aequired number of cycle® reach complete
failure corresponding to damage indek 1.This relationship was derived from a fatigue
based strain cycle number relationshag shown in Eq. 2.3 whe¥g, ¥:G and2N; represent
the plastic strain amplitude, a material constant to be determined from fatigue testing, and
number of complete cycles to failynespectively While converting the strain to drift ratio,
Kunnath and EBahy (1997) oversimplify the sectional response by considering a
symmetric strain distribution with the neutral axis lechat the center of section. It is
apparently more accurate to use sectional analysis to accomplish the sarSeigoadry of
all damagendexesby each indiwdual cyclein an earthquake represents the damage level the
structure reaches afteretlearthquakeKunnath and EBahy (1997) only investigated the
load history effect on the general damage of a RC column without specitioatyderingo

reinforcing kar bucklingor any other limit states.

11
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Table 2.1. Summary of Damage at Tests from Kunnath and EBahy (1997)(only

showing tests with constant deformation amplitude)

Specimen No. Dﬁgsgtly LoangycIe Damage Observed
Al 8.2 Monotonic 20-30% Strength Lost
A2 4 (Rampup) 30 Bar buckling, spiral rupture
A3 1.4 150 Cover concrete spalling
A4 2.9 26 Bar buckling, spiral rupture
A5 3.9 9 Bar buckling, spiral necking
A6 5 3 Bar buckling, spiral necking
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13



Chapter 21 iterature Review
2.2.2 Studies ofLoad History Effect on Reinforcing Bar Buckling

Moyer and Kowalsky (2003) conducted a series of experimental tests to directly
investigate the impact of load history on the strammtlito generate bar buckling. Arbitrary
load histories wereppliedto a series of identical RC columns for the purpose of exposing

the impact of load histgron reinforcing bar buckling
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Figure 2.2 Load Historiesfrom Test 1 to 4of Moyer and Kowalsky (2003)
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Presented ifrigure2.2 are the load histories implemented in the experimental tests. The

standard gycle-set load history shown iRigure 2.2(a) had three complete cyclesestch
displacement ductility levelvhich ramps up untihe desired damage achievddgure2.2(b)
displays an asymmetric-8ycle-set load history where only the displacem@&nbne direction
ramped up while the deformatiom the other diretton remained at yield. This load history

will cause significantly different strain demand on each side of the specimen which could
potentially achieve different damage lexétigure2.2 (c) and (d) represent the simplest one
cyde load history at different target displacement lsvél is also worth noting that the

resultantstrainhistorieson thetwo sides of the columraredifferent.

The onset of bar buckling was specifically monitored in all thes t&isice itmay occur
som upon reversal from a tensile stralitspecially in Tes3 and 4, with the one large load
cycle, the tests were paused to observe damage at each incremental displacement level to
preciselymonitor buckling. Figure 2.3 showsthe force-deformation responsesith onset of
bar buckling denotedTable 2.2 summarize the displacement demand to generate bar
buckling under various load histes Two important observations from the test resulére
offered as bllow. First, the buckling of reinforcing bais directly related tahe tension
strain. Thetensionbased bucklingnechanism recogniszdhat the bais the sole source of
compression zone stability upon revergatause of the formation of large concretacks
during the tensile cycle. In other wortigtbars ar@roneto buckling prior to crack closure
SecondJoadingcycles at low levels of response accumul@asile strainn the bar which

could lead to buckling eventually.

Moyer and Kowalsky (2003describedthe tensionbased buckling mechanism which
explained the observations regardihg impact of load history obar buckling.Figure2.4
(a) displaysan idealized reinforced concrete cantilever and location of its etfier bars.
The bar on the left side of the column will be subjected to tensile demand under a load

toward the right. In contrast, the bar on the right side of the column will experience a

15
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compressive demand. Bars on both swighe column have maximudemand athe base of

the column where the momentasnaximum. The uniaxial demand in reinforcing bar alters

their direction upomeversalbof the lateral loading.

Figure2.4 (b) represents the foraeformation relationship & complete loading cycle.
As shown inFigure2.4 (c), bar 2 is undetensionwhen the column is loaded from origin to
state A. Upon the loading from state A to statéd&t,2 is now in compression, while bar 1 is
in tension Large flexural cracking on the tensile side of the column will ocdar 2
represents the only source for compression stability at Staten® kar buckling was

observed undgheseconditions
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Table 2.2. Test Observation Regarding Bar Buckling in Moyer and Kowalsky (2003)

Test unit

One

L oad history

Maximum displacement
prior to buckling

Full cyclic in both directions.

59in. (150 mm) (ua = 4)

Two

Full cyclic in one direction.

Cveclic to vield in other direction.

103 in (262 mm) (U, =7)

Three

Cyclic at a constant
displacement of 10.29 in.
(262 mm)

103 in. (262 mm) (U, =7)
Two half-cycles at this level
prior to buckling.

Four

Cyclic at a constant
displacement of 13.23 in.

{336 mimn)

1323 in. (336 mm) (uy =9)
Two half-cycles at this level
prior to buckling.
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Figure 2.4 Parameters of TensiorBased Buckling Mechanism from Moyer and
Kowalsky (2003)

Syntzirma et al. (2008) also studied tbad history effect on the deformation capacity
of flexural members which is limited by reinforcing bar buckling. Tlas a compleely
theoretical study. In order to utilize Eul6s cr i ti cal bucklckimg | oad

criteria, Syntzima et al. (2008) assudchthat bar buckling occoed between two consecutive
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ties. Therefore, the wnpportedength ofthe bar is the spacingf the transverse steel. The

buckling stress was converted to the strain considering the hysteretic model of reinforcing
steel. The load history effect was then captured in terms of the cyclic strain history on the
rebar. The relationship between straird atisplacement was established with the plastic
hinge method proposed by Priestley et al. (1996). The load history considered in this research
only contained one major cycle which impds tensile strainn the bar and a subsequent
compressive strain whicproduced bar buckling In the conclusion, Syntzirma et al. (2008)
guantified the impact of negative displacement demand, which imp&ssionin the bar, on

therequiredcompressivestrainto initiate bar buckling.

2.3 Relevant Articles on Numerical Simuldion
2.3.1 Fiber-Based Modeling of Reinforced Concrete Members

This research work implemesfiber-based modelinglementdo simulate the RC bridge
columns.The fiberbased element@reable to provide the strain information in a RC section
which serves as andicator ofthe damage limit state, such as longitudinal bar bucklirg.
investigate the seismic load history effect, it is convenient to utilize thelfdsesd model for
conducting NTHA and evaluating thaructural performance with the strain informeti.
This researclappliesthe Open System for Earthquake Engineering Simulation (OpenSees)

conduct analysis with fibdsased models.

Conventional frame elements utilizeilerBernoulli beam theory to distribute the lateral
and axial displacement based oubic Hermitian polynomials and linear Lagrangian shap
functions respectively. The beam theory represéimésexact solution for a deformed
member with linear distribution of curvature and constant axial strastructual membes
with higher ordercurvature and axial strain distributions, such as nonlinear RC members, the
theory will fail to capture the actual structural behavior. Weil&9(0) and Neuenhofer

(1993) stated that this limitation can be overcome with higheéer displacement
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interpoltion functions in connection with internal element nodes. As a result, multiple

displacemenbased elements are required to model a nonlinear RC member.

Spacone et al. (1996), amteuehofer and Filippou (1997) developed a new nonlinear
frame finiteelemat based on force interpolation functions as opgdsethe displacement
fields or shape functions in traditional finite elements. The external force or moment
distributions on a beam or column are often known in the typical engineering problem, such
as tle linear moment distribution under lateral loading in RC bridge columns. The actual
distribution of force can be implemented as the force interpolation function directly without
anyfurtherassumptioa As a result, the solution from the flexibilifforce)-based element is
exactfor this force distributionSince the flexibilitybased elements are based on exact force
interpolation functions, the solution involves limited numerical integration error even with a
small number of elements integration poird By contrast, the displacement interpolation
functions deviate from the exact solution, so that a finer mesh with a large number of
displacemenbased elements is required to compen&atéhe assumption on displacement
field.

Neuehofer and Filippou §B8) proposed the curvatdbased displacement interpolation
(CBDI) to enhance the functionality dfe force-based elemenihis modification takefull
advantage of the force interpolation field. Since the force distribution of a structural member
is often known in actual engineering problems, only one foased element with the exact
force interpolation function is required. The CBDI allows locating multiple integration points
within a forcebased element to assess the high oddformation shape. Itead of multipé
force-based elements, one elemaith multiple integration point allows the model to be
more efficient. The curvatwieased interpolation procedure permits the consistent

linearization of the governing compatibility equations for felbeeed elements.

The localization of response in reinforced concrete members modeled by continuum

finite elements wastudied by de Borst et al. (1994) and Bazant and Planas (1998). Similar to
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their findings, the displacemehtised element approaalsocau®s localization of response

over a single element while the forbased element suffers from the localization of
deformation at a single integration point. Scott and Fenves (2006) found that the strain
softening behavior of concrete could cause a softesgaton in fibetbased element. In this

case, the localization of deformationtire force-based element is significant. To address this
issue in the forckased element, Scott and Fenves (2006) developed abfased element

with adjustable integratioweight at the ends of the element. The integration weighbe
selectehased upotthe length of plastic hinges for the purpose of spreading the plasticity. A
modified Gaus$Radau plastic hinge integration metheds implemented in this fordeased
element to allow the control of theintegration weight. The proposed element was
recommended for the nonlinear analysis of frame structures when softening and degradation

of the members is expected.

The approactof usingone integration point to represent thiastic zone was adopted
and improved by Lee and Filippou (2009). A new febesed element was developed to
capture the development tie plastic zone depending on the moment gradient along the
element.Figure 2.5 showes the indastic zone lengthwhich depends on a portion ahe
moment diagram where the moment magnitude excsedplastic moment capacity of the
section. This method is able to capture ¢inewth of the inelastic zone under incremental
loading at the strain haeding section. Howeveg, strainsoftening sectiomuring post peak
behavior may not reach the plastic moment capacity of the sectiomalyuttill result in the
spread of plasticity. Therefore, the approach using moment magnitude to definestih@fext
plasticity is not applicable with the strain softening section. Lee and Filippou (2009) then
assumed the inelastic zone is fixed and time independent which is identical to Scott and
Fenvesd (2006) assumpti on.

As discussed, several methods have been dms@ldo overcome the response

localization inthe forcebased element with a strain softening section. However, these
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approaches fail toonvergen the case of strain hardening response. In order todsingle

element type which accurately predicts bsttain hardening and softening behavior, Scott
and Hamutcuoglu (2008) applied a numerically consistent regularization on thé s
elements. The forebased element was regularized by utilizing interpolatory quadrature with
two integration points oprescribed characteristic lengths at the element ésishownin

Figure 2.6, a standard quadrature rule (Gauss Lobatto) is modified with two additional
integration points within the plastic hinges at each end. Scott and Haglutc{2008)
showed that this regularization ensured the accuracy for strain softening sections and

maintaireda convergent solution for the spread of plastigitgerstrainhardening behavior.

Alemdar and White (2005) studied the difference between displantbased and
flexibility -based elemeat A mixed beanrcolumn finite element formulation was also
proposed for distributed plasticity analysis. Both the force field and displacement field were
applied to the mixed beagolumn element whose algorithm e@nts all residual
displacements at the section and element levels to residual forces amcnisérshem to
the global level.
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2.3.2 Finite Element Method for Reinforcing Bar Buckling

It is difficult to numerically simulate a RC structural member including the inelastic
buckling of reinforcing bax Modeling localized nonlinear behavior and the complicated
boundary caditions as well as its interaction with the reinforcing bar requires extensive
computationaleffort. Convergencefailure often occursduring the analysis. However, the
localized behavior must be simulated appropriately to study the effect of loadimy kistb
sectional detailing on bar buckling. Numerous modeling approaches have been developed to
capture bar buckling ipreviousstudies Mau and EIMabsout (1989) developed a beam
column element to carry out inelastic analysis of reinforcing bars toajertee stresstrain
behavior of buckled bars. Dhakal and Maekawa (2002) utilizefiibebased technique in
the finite element method to establish theeragestressstrain relationship including post
buckling behavior. Masukawa et al. (1999) presenkedbar buckling model in which a
beamcolumn element simulated the band springs modeled the boundary condition at the
hoops.The stressstrain behavior including bar buckling was implemented in a 3D finite
element column model where the reinforcemantl concrete were simulated with shell
elementsZong and Kunnath (2008) compared the stetssn behavior of reinforcing bars
in both a full column finite element model and an independenwlihrsprings model. Bar
buckling over multiple spiral gaug®gs considered in this study. However, the full column
finite element analysis assumed the concrete to be elastic wtials i capture the plastic
elongation of core concrete under compressigailadine (1972) and Bae et al. (2005) both
studied thempact of imperfections on inelastic bucking of longitudinal bArsanalysis of
local bar buckling was conducted by Urmson and Mander (2012) to precisely predict the
average stress and strain relationship after buckling. The ratio of hoop spacing and bar
diameter was found to affect the crippling strength of a buckled bar which was governed by
the compressive plastic ultimate strength of the bar section and the eccentricity of the bar

respectively.
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In most cases, the goals of these studies are to inatestige effect of reinforcing bar

buckling on stresstrain behavior, or the foredeformation response of the structural
member. Independent bar buckling models were developed to include thleupklsig
behavior on the stressrain relationship. The pycal modeling approach simulated the bar
with one or multiple bearsolumn elements with fixed ends and converted the hoops or
spirals to springs to restrain eoft-plane deformation. The beaoolumn elements behaved
uniaxially until the buckling loadvasreached. The otdf-plane deformation activates the
restraining spring. Therefore, the buckled bar retains load carrying capacity because of the
presence of the lateral restraint. These models provided a general idea of the post buckling
behavior and a cose prediction of buckling load in some cases, but the simplified boundary
conditions do not consider the dilation of the concrete core and its effect on bar buckling. In
addition, the effect of cyclic load history and reinforcement detailing, such amgpHc

hoops and bar diameter, has not bgeantified

2.4 Chapter Summery

Past research has shown that the bar buckling is a common dareelganism in RC
bridge columns and the load history has obvious impact on the deformation limit state for bar
buckling However, the effect of seismic load history on the strain limit for bar buckling and
the relationship between strain and displacement has not been quantified. As a result, the
research discussed in this dissertation focuses on defining the impact s#fidhec load
history on the relationship between strain and displacement as well as the bar buckling strain
limit itself. Fiberbased and finite element models are developed and utilized to conducted

analysis.
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Chapter 3: Fiber-Based Modeling of
Circular Reinforced Concrete Bridge
Columns

Please note that this chapter is a setintained paper submitted to Journal of
Earthquake Engineering. It describes the development ofliiéeed model for the purpose
of studying the seismic load history effect on the relatipndietween strain and

displacement.

3.1 Abstract

Presented in this paper is the application of fin@sed analysis to predict the nonlinear
response of reinforced concrete bridge columns. Specifically considered are predictions of
overall forcedeformation lgsteretic response and strain gradients in plastic hinge regions.
The paper discusses the relative merits of ftwased and displacememaised fiber elements,
and proposes a technique for prediction of nonlinear strain distribution based on the modified
compression field theory. The models are compared with static and dynamic test data and
recommendations are made for filllersed modeling of RC bridge columns. Results suggest
that a combination of forebased fiber elements, strain penetration elements, past
processing with the modified compression field theory can accurately predict the strain

gradient in the plastic hinge region of RC column members

3.2 INTRODUCTION AND BACKGROUND

The ability to predict the nelinear response of reinforced concrete dties is
essential to meet the objective of performabased seismic design. As a result, several
methods have been used for the nonlinear analysis of reinforced concrete bridge columns,

ranging from simple hand calculations, to frame element analybisrbiased element
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analysis, and solid/shell based finite element analysis. In the case ddded analysis, the

primary advantage is the local strain information that it provides at relatively low
computational cost. Such information is important farfermanceBased Earthquake
Engineering where the objective is to control structural performance (usually defined on the
basis of strain) under prescribed seismic events. However, in order to implemebt&bdr
analysis, several modeling choices musttfbe made, and the implications of each fully

understood.

Discussed in this paper is a brief primer on fibased modeling theory followed by a
discussion of force and displaceméased elements. A method is then proposed for
predicting the strain gdient in plastic hinge regions using the modified compression field
theory. The subsequent section then discusses the importance of including strain penetration
in the analysis model. The last section of the paper demonstrates the accuracy of combining
force-based elements, strain penetration elements, and the proposed strain gradient prediction
method for accurate assessment of strain profiles in the plastic hinge region of bridge
columns. The accuracy of the model to predict overall fdefermation respnse is also
presented. All fibebased analysis results in this paper were conducted using the Open

System for Earthquake Engineering Simulation (OpenSees).

Some of the experimental data referenced later in this paper was obtained from physical
column tets conducted at North Carolina State University (Goodnight et al., 2012) as part of
a large research program on the impact of load history on the behavior of reinforced concrete
bridge columns. Through the implementation of an optical 3D measurement system
(Optotrak), it was possible to obtain the engineering strain in the longitudinal reinforcement
in the tests well into the nonlinear range. A series of LED markers were attached to the
exposed reinforcement and the sensors (Optotrak cameras) capturedviéraemt of the
LED markers in 3D space. The elongation between two LED markers was utilized to

calculate the average strain in each gauge length. This technique provides strain histories
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along the longitudinal direction of the bar. However, there are &g lassumptions in the

strain calculation with Optotrak data: (1) the longitudinal reinforcement behaves uniaxially

and (2)significant localization of strain does not occur inside one gauge length. Therefore,
the strain calculated from Optotrak data mo¢ considered to be valid after bar buckling or

necking occurs. The Optotrak system and its operating mechanism are displ&ygadren
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Figure 3.1. The dual camera Optotraksystem, coordinate system, and LED markers on
the reinforcement

3.3 THEORY OF FIBER -BASED MODELING

Fiberbased analysis is well established for modeling structural members undergoing
primarily flexural deformation. The difference between fibased elementand frame

elements lies in the method to define the global structural behavior. Frame elements are
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defined on the basis of moment of inertia (bending and torsion), elastic modulus, and cross

sectional area, among other properties. In the case of nondinabssis, section hysteretic
rules, such as the Modified Takeda Degrading Stiffness model (Otani, S. (1974)) shown in
Figure 3.2, are defined to address nbnearity. In the case of a fibdrased element, the
cross section is digled into a series of fibers that follow prescribed constitutive relationships.
As a result, the global foredeformation behavior of a fibdrased element depends on the
individual material responses. A key advantage of filzeed elements is that stragtress,

and curvature can be directly obtained whereas they may only be inferred with frame

analysis.

rko

Figure 3.2. Modified Takeda Degrading Stiffness (Otani (1974)) Forec®eformation
Response for RC Beam and Columns (drawing from Carr (2007))

For the convenience of users, OpenSees provides a number of community developed
constitutive models. A few parameters, such as steel yield strength and concrete compressive
strength, are usually required to deflmeh monotonic and cyclic stressrain behavior. For

this research, the steel model developed by Filippou, et al. (1983) and the concrete model
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developed by Yassin (1994) were selected for analysis. The steel material allows the user to

control the cyclidoehavior by defining a pair of hardening ratios in addition to an adjustable
yield strength and elastic modulus. The concrete constitutive model has an inherent cyclic

behavior which depends on user defined strength parameters.

Fiber sections are assuméd remain plane throughout the analysis. For reinforced
concrete, sections are divided into a number of concrete and steel segments as shown in
Figure 3.3. Strain compatibility between reinforcement and the surrounding concrete is
assumed. The sectional deformations consist of a moment and axial load resultant from the
sectional deformations, including axial strain at the center of the section and the curvature. A

unigue solution of this deformation combination will be obtaine@das a cyclic sectional
analysis.

Stress

Strain
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Figure 3.3. Material Fibers in a Section
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To establish a fibebased element, a number of filErsed sections are spread along the

length of the element with each seatitocated at an integration point. A predefined
interpolation function of the force or the displacement is required to convert the global
demand to sectional demands, which will be in terms of sectional moment or curvature
demands. The sectional responsdsbe calculated, and then integrated to obtain the global
response which will be either deformation or the reaction force. Therefore, the accuracy of
the fiberbased element depends on 1) the force or displacement interpolation function 2) and
the orderof exact integration of the integration scheme which relates to the number and

location of integration points.

The integration scheme determines the locations of integration points where fiber
sections are placed. In addition, the integration schemdiredtto obtain either the global
stiffness or flexibility matrix along with the interpolation function based on the displacement
or force field. The type of integration scheme and the number of integration points determine
the degree of polynomials up which the numerical integration is exact. Various integration
schemes are available in elements, including the Ganlsstto, Gaussegendre, Gauss
Radau integration (Hildebrand (1974)).

Fiberbased elements are separated into two categories depemdthg oterpolation
functions used. The force(flexibiliyhased element utilizes the force interpolation function
to distribute the nodal concentrated force to each section where a moment and axial force are
assigned. The sectional response is then addaim terms of a combination of axial strain
and curvature. Subsequently, the curvature and axial strain are integrated to obtain the lateral
displacement and axial elongation. In an engineering problem, the distribution of the force
and moment are oftemnkwn. For the case of seismic forces in bridges, the distribution of
bending moment is triangular with a point load at the center of the superstructure (usually,
inertia weight of the columns is either ignored or a portion of it is combined with the

supergructure weight). The forebased element utilizes this linear load distribution to obtain
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the loading demand at each section. Therefore, there is no assumption on the force

interpolation function and equilibrium is satisfied at each section and end@odkee other

hand, the displacemebtsed element applies a displacement shape function to distribute the
nodal deformation to each section. As a result, each section will be forced to accommodate
the tributary deformation. Each section will react withitiement and axial load. The global
force will be obtained by extrapolating the sectional force to the node. A shortcoming of
displacemenbased elements is that the displacement shape function may not reflect the real
deflected shape of a structural comgon As a result, a finer mesh is often required with
multiple displacemenrbased elements to increase the accuracy of the deformation shape.
Moreover, equilibrium is only satisfied at the nodes and the distribution of moment along the

column element is ne@nsured to be linear as it is in a bridge column.

The displacemerbased element utilizes a displacement interpolation function to
distribute the nodal deformation along the element length. The nodal force is related to
sectional behavior by integratirtge sectional stress along with the interpolation function.
Equilibrium is satisfied by a weighted integral sense as expressed 811Hgm Alemdar
and White (2005).

r”aLN(x)TDdx— Q B 3.1

N(X) is constructed with the displacement interpolationctions. MatrixD, Q, and L
are the stresgesultant section force, the external force at the nodes, and the length of the
element respectively. Neuenhofer and Filippou (1998) proposed thebiased element
where a prescribed force field is assignestead of the displacement interpolation function.
The element adapted a governing compatibility equation derived from the principle of virtual
work as shown in E@.2 Alemdar and White (2005).

ﬁj N, (x)"ddx- q © 32
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Ng(X) represents the forcaterpolation functions, the sectional strain is represented by

d, and the matrixq is referred to as the nodal displacement. CurvaBased Displacement
Interpolation (CBDI) was used to account for geometric nonlinear effects. At a coarse mesh
level, theCBDI method ensures that the distribution of deformation has a relatively high

order of accuracy.

The forcebased element satisfies equilibrium on a sedbipsection basis. The foree
based element, however, suffers from localization of deformation widEnRsoftening
behavior which results in the response changes as a function of the number of integration
points. The reinforced concrete section in fibased element tends to exhibit localization of
deformation because of the pg&tak softening of camete and low postield hardening of
steel. The force field in the element causes the maximum moment to always be located at the
same section. In the extreme load case, the critical section may deform to pass the peak
capacity point while other sectioneesstill approaching the peak. This will cause continuous
softening of the critical section and will prevent other sections from reaching their peak
capacity. Consequently, the deformation will concentrate at the integration point associated
with the critcal section. The computed response is determined by the spread of the
deformation implied by the integration weight. As discussed, a unigue solution does not exist
and is mesh dependent. In general, the foased element sacrifices the irsectional
compatibility to enforce the intesectional equilibrium. There is no compatibility restriction

on the deformation gradient between two adjacent sections.

Alemdar and White (2005) stated that the displacerhaséd element satisfies
equilibrium in a weighte integral sense at element nodes only. The imposed linear curvature
field in the element is an assumption which may not capture the real behavior in structural
components. To compensate for this potential shortcoming, a fine mesh with multiple
elements isusually required for the displacemédsed element thus increasing the

computational cost. However, localization of deformation could also occur in the case of
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modeling one structural member with multiple displacertbased elements. The nodal

displacemats at each element satisfy compatibility and continuity while a displacement field
is also imposed within a single element. However, there is noalgerent restriction on
sectional deformation. Therefore, the curvature could also concentrate in & singl
displacemenbased element while the sections have strain softening responses. As a result,
this requires special awareness on the number of displacéamsed elements and number of

integration points of a forekased element while modeling a reinforcedicrete member.

To evaluate the accuracy of both force and displacebused elements, the analytical
results are compared to test data. The experiments include a series of cyclic column tests
subjected to controlled reversed cyclic loading as weleakaarthquake time histories. The
reinforced concrete columns were 8 ft (2.44m) in height and 2 ft (0.61m) in diameter. The
reinforcement consisted of 16 0.75 in (19mm) diameter bars and a 0.375 in (9.5mm) spiral at
2 in (51mm) pitch. As shown iRigure 3.4, the forcebased element, denoted FB, generates a
better prediction of the foregeformation relationship for a cyclic test result. It is also
observed that the displacemdratsed element, denoted DBFRigure 3.4, overestimates the
strength of the specimen. Though a finer mesh with multiple displacérasetl elements
can improve the accuracy, an oveeshed model can also lead to localization of the

deformation at a single element.

The forcebased aedment was selected because of its accuracy in predicting the force
deformation response of the specimen. However, there are multiple variations dideece
el ement s. One such el ement (termed O6ébeam w
Fenves (2006)) o overcome the 06l oss of objectived p
utilizes a plastic hinge integration method which defines the integration weight of the critical
section with a plastic hinge length. The element involves a modified Radkssu mtegration
rule where the weight of the end integration point is adjustable, as shown in Scott and Fenves

(2006). A numerically consistent regularization is placed on the-tmased element by Scott
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and Hamutcuoglu (2008) to resolve the dichotomy of dhations from strain hardening and

strain softening problems. This method will increase the accuracy when modeling a structural
member with unknown sectional behavior or different gisiding sectional behavior from

one member end to the other end. Led &ilippou (2009) proposed an element which has
variable inelastic end zones. Similar to t|
member ends is represented by the characteristic length of the end integration point, which

will vary dependingn the magnitude of moment distribution.
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Figure 3.4. Comparison between model predictions and test data

3.4 Proposed methods for simulatingRC bridge columns
3.4.1 Experimental Observation

It is usually not suggésd to place multiple integration points in the plastic hinge region
for a forcebased element due to potential stradfitening behavior of the concrete section.
Localization of deformation in RC members modeled by the finite element method was
discussedy Borst et al. (1994) and Bazant and Planas (1998). Scott et al. (2004) stated that
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three to five Gauskobatto integration points along the element would accurately represent

the material nonlinear behavior, which results in using one integration paiepitesent the

behavior of the plastic hinge. However, the distribution of strain in the plastic hinge region is

not available without multiple integration point€onsidering the case with a strain
hardening section, such as a circular RC section, nmesskobatto integration points were

placed along the element. In addition, a strain penetration model serves as an extra

60i ntegration pointé at the end of the el emen
this paper. A posprocessing methodf the strain information was proposed to include the
Atension shift ef fect 0, Fduwess, ron theedistribiteoh af w  an d
strain and its application on pgstocessing strain data from a fidesised mode

The strain profile in the reinforcement within the plastic hinge region was obtained with
the Optotrack 3D position measurement position measurement systpme 3.6 displays
typical strain profiles at different displacemehictility levels where the compressive strain
is usually lumped at the bottom of the column, but the tension strain fans out and extends to a
section higher up in the column. This type of strain distribution occurred consistently during
all column tests.tlis believed that the tension shift effect causes the strain on the tension side

of a flexural member to spread to higher levels without influencing the compressive strain.
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Figure 3.6. Strain Profiles of Longitudinal Reinforcement in Plastic Hinge Region

Figure 3.7 shows the propagation of the inclined flexsteear cracks for increasing

levels of displacement ductility. A free body diagram is established along an inclined
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flexuralshear crack irFigure 3.5. The moment is linear and shear is uniform along the

length of the column. The inclined flexwsthear crack mailts in a cracked inclined section
where the tensile zone is higher than the compressive zone. To maintain moment equilibrium
of the free body, the tensile force from the reinforcement is related to the moment at the
height of the compressive zone whielers to M1 instead of M2 iRigure3.5. This causes a
concentration of the compressive strain at the lower level of the column while the tensile

strain propagated further up the column as shoviigare 3.6.

U =—-079") (U2 =-119) (u3* =-159)

(ug* = —4.80"

Figure 3.7. Crack Propagation from Experimental Tests Conducted at NCSU
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In the forcebased element the predefined force interpolation function governs the

moment and the axial load at each intagrafpoint. Sectional analysis provides resultant
deformations due to this moment and axial load distribution. As showrigure 3.5,
assuming an integration point IPO is located at the same level of the compressive zone of the
inclined section, sectional analysis will provide strain at the extreme tension fiber bar
according to the magnitude of M1. However, the predicted strain represents the behavior of
the longitudinal rebar at a higher level than the location of IPO. Theréfersection at IPO

provides compressive strain at its level and tensile strain at a higher column level.

It is well established that the cracking angle is required to quantify the tension shift
effect. It has been observed that for a flexural membecr#ok angle varies from the tensile
side of the column to the compressive side of the column. At any specific point of the crack,
the direction of the principal tensile strain depends on the combination of the longitudinal
strain component from flexurakbavior and the shear strain component. A simple example
is the horizontal crack at the extreme tensile fiber which is caused only by the large uniaxial
strain from flexure. However, as the crack propagates into thesesitbn, shear stress
increases whd the tensile strain decreases. Therefore, cracks become steeper at the center of

a column, as shown Figure3.7.

3.4.2 Proposed Method to Predict Strain Gradient

Crack angles vary due to the unique strain condition at each locdtiba section. The
Modified Compression Field Theory (MCFT) developed by Vecchio and Collins (1986) is
utilized to compute the crack angle distribution along the section. Vecchio and Collins (1988)
utilized layup analysis to calculate the shear strermftta shear member. The MCFT is
utilized in this paper since it accounts for impact of the longitudinal and transverse
reinforcement on the cracking angle of concrete. Sectional analysis is conducted to obtain a

strain distribution along the section. A ahatress distribution will be assumed based on the
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flexural behavior. A combination of the strain distribution and the shear stress distribution

will be applied to the section, as shownFigure 3.8. A unique solution of the cc& angle
distribution can be obtained which will be integrated to derive the tension shift height in an

inclined section. To apply this method, the following assumptions are made.
1. The influence of flexurashear interaction on sectional analysis is negtect
2. Cracks propagate from extreme tensile fiber to the neutral axis of a flexural section.
3. No bond slip between the conteand the reinforcement occyfcom MCFT).

4. Both longitudinal and transverse reinforcing bars are uniformly distributed over the
elenment (from MCFT)

Several modifications were made to the method from Vecchio and Collins (1988) to
increase the accuracy of the crack angle prediction. First, the longitudinal strain is used as the
demand inkead of reinforcing bar stres€racking of conarte occurs when the principal
strain exceeds the cracking strain. As a section deforms into nonlinear range, stress in the
reinforcement may not vary significantly while the strain will keep increasing with the
deformation. Therefore, it is more reliabtedtilize the strain for the crack angle calculation.
Second, the three point Gadssgendre integration scheme is utilized to reduce the
computational effort. Crack angles of the section in three locations from the extreme tensile
fiber to the neutral agi are derived. Locations and weights of integration points are
determined by the Gaus®gendre rule. The complete procedure to calculate the tension

shift height is shown ifigure3.9.
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Figure 3.9. Method of Predicting Tension Shift Height

The purpose of obtaining the tension shift height is to #tlem the prediction of tensile
strain gradient in the plastic hinge region. Fibased models provide longitudinal strain
information at each section. The strain and the assumed shear stress at the three sectional
integration points are extracted. A unggcombination of shear stress and longitudinal strain

at each point will results in a unique crack angle under MGHT.r ee cr ayjc katidang |l e s
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ds;, are derived for each fibérased section. The tension shift height can be calculated

utilizing Eq. 3.3 and 3.4where w, w,, and w are the integration weights of the angles
respectively. K, D¢, and C represent tensishift height, column diameter and neutral axis
depth of a section respectively. For the convenience of calculating the tension shift height,

this paper uses the angle between crack and longitudinal direction, as shogure3.9.

A deformation gradient can be established with multiple element integration points
placed in the plastic hinge region. Sections along the 4omsed element directly provide
multiple points on the distribution of compressive strain. The tensilen slistribution can
then be obtained by considering the tension shift effect. The implementation of this method
will be shown later.

-C
tadd x , = ,w,cot d, +v 3.3

He =1

D.-C =w, +w, +w, 3.4

3.4.3 Method to Include Strain Penetration

Cracking was observeddhe footing surface during experimental tests as expected and
shown inFigure3.10. When the column was subjected to large flexural deformation, a crack
initiated near the tensile side of the column. This is due to the stragtrgigon of the
longitudinal reinforcement into the footing. Because the longitudinal reinforcement has large
tensile strains in the plastic hinge region, a strain gradient will exist inside the footing to
allow the reinforcement strain to maintain straompatibility. Globally, the reinforcement
will slip from the footing by a certain amount of displacement which depends on the strain
gradient level in the footing. A small portion of the footing surface concrete, which is bonded

to the reinforcement, cclis to accommodate this bond slip displacement.
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In experimental tests, the bond slip displacement of reinforcement can be obtained by

monitoring the vertical movement of the LED markdfgure 3.11 portrays the bond slip

hysteréic response at the lowest LED marker level on the reinforcement. Since the
monitored marker is located about 1.0 in (2%wh) above the footing surface, the bond slip

displacement may include a portion of plastic elongation of the reinforcement.

Figure 3.10. Crack on the footing near the tension side
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Figure 3.11. Bond slip hysteretic response
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In the fiberbased analysis, a zero length section elemeluceted at the base of the

column element to include the bond slip behavior, as presentEdjune 3.12. The zero

length element serves as a nonlinear rotational spring which accounts for the additional
rotation at the base cahn section due to bond slip. The behavior of the zero length element
depends on the associated fiber section. The fiber section consists of regular concrete fibers
and special reinforcement fibers which are represented by a bond slip material. Zhao and
Sritharan (2007) developed the bond slip material which implemented a-dipess
relationship to account for strain penetration. Both monotonic and cyclic -shggss
relationships were developed on the basis of experimental tests results. The bond slip is
represented by the slip displacement in the material which depends on the stress in the
reinforcement, as shown Figure3.13 Zhao and Sritharan (2007) had shown the bond slip

mat eri al 6 s hi g hingtheaeabendingdehaviorofrreinforcesnent. ¢ t

Beam/Column Node 3 (0, L)

Element

Node 2 (0,0) e

Zero Length Fiber Section
Section Element Node 1 (0, 0)

Figure 3.12. Model Lay-out with the zero section element
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>
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Figure 3.13. Stressslip relationship from Zhao and Sritharan (2007)

3.4.4 Benchmark Method to Capture Nonlinearity in RC Member with Fiber-
Based Model

A common approach to capture nonlinearity in reinforced concrete members is to use the
plastic hinge integration methods, as developed by Scott and Fends. (Z8e plastic
hinge integration methods lumps the plasticity at a single integration point which is often at
the end of the elemenas shown irFigure 3.14. This method is very reliable for obtaining
force-deformation responsend maximum strain since it avoids the localization of plasticity
I a common problem in simulation of RC members. A typical plastic hinge integration
methodi 6 beam with hingesé el ement is selected
computationallyefficient and dynamically robust, as shown later in this paper. The model
with nine integration point forebased element is evaluated by comparing its performance to
this benchmark method. To reduce the computational cost, an elastic region is defieed at
interior portion of the O6beam with hingesbé

modulus, cross sectional area and moment of inertia, are required within the interior region.
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It has been observed in the experimental tests that crackedsegiver most of a reinforced

concrete column. As a result, a cracked section moment of inertia was used to model the

elastic portion of the element.

Plastic hinge Plastic hinge
Y Elastic Region, EI
! Lo o J
/3/ L
It b
L

Figure 3.14. Beam with Hinges Element from (M. Scott and~. Fenves (2006))

3.5 Calibration and Application of the Fiber Model

Two independent fibelbased models were established both of which combine a force
based column element and a zero length section element for the strain penetration. One of the
models utilzed a nine integration point fortr®sed element for the purpose of obtaining
di stributed plasticity in the plastic hinge,
hi ngesd el ement. The materi al constiframut i ve
material tests. Predictions of largeale static column tests, and shake table tests were
conducted. The model combining the Obeam w
simulation is the solution with high computational efficiency in predicting force
deformation response, maximum strain at the critical section, and dynamic response. Its
performance was assessed with test data. However, to produce the strain distribution in the

plastic hinge region, the reinforced concrete column is simulai#dthe nine integration
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point forcebased element (Gautsbatto integration). The strain data was then -post

processed to provide the strain gradient within the plastic hinge.

3.5.1 Calibration on Material Constitutive Models

A number of bar cyclic tests weerconducted to ensure proper steel material behavior
modeling. The steel constitutive material model from Filippou et al. (1983) was defined with
the yield strength of 68 ksi (469 MPa) from monotonic material test result. The tensile and
compressive harderg ratio in the steel model is adjusted to ensure the prediction matched
the cyclic bar test result, as illustratedHigure3.15. The concrete compression strength was
obtained from cylinder tests. The monotonic behavior oficed concrete was derived with
the stresstrain model proposed by Mander et al. (1988). The concrete cyclic behavior was
simulated using the constitutive model developed by Yassin (1994), as presehRigdrén

3.16. The tensile strength of concrete was neglected.
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Figure 3.15. Comparison of steelMaterial behavior in fiber model and tests
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Figure 3.16. Cyclic behavior of unconfined concrete

3.5.2 Prediction on Force and Strain from Static Tests

Both models were utilized to predict test data from the eighteen column tests where the
strain information is available up to reinforcement buckling. Definition of bond slipriaht
in the zero length element ensures appropriate moment capacity compared to the column
section. With the bond slip material, the zero length section element allows the correct
amount of deformation to propagate into the element and avoids localinfti@iormation
at the strain penetration model. In the case of a strain penetration model with underestimated
strength, most of the deformation will migrate into the zero length section element.
Therefore, the fibebased model could underestimate curkaaand the resultant strain at the

plastic hinge of the column element.

The plastic hinge |l ength controls the ext
element. The plastic hinge length can be specified by an empirical relationship proposed by
Priestey et al. (2007), as shown in E3j5t0 3.7
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Le»=0.022f d, 3.5

k—02élfu 1('~)'€DOE 3.6
5

Lp =klLc #g 2Lg 3.7

wherelLsp, Lp andL¢ are the strain penetration length, the plastic hinge length, and the

f

column Iength,fy , v and di are yield strength in MPa, ultimate stress in MPa and

diameter of longitudinal reinforcement in mm respectively.

Shown inFigure 3.17is the comparison & force-deformation responses of the fiber
based model using the Obeam with hingesoé el
from a 3-cycle-set load history and three earthquakeg$

Table 3.1). Information on the experimentalsts is listed in Table 1. The sectibg
sectionbased equilibrium in the fordeased element ensured an accurate prediction of
response. The bond slip model contributes to the proper unloading and reloading stiffness of
the model. However, the cycle toaty strength degradation in thec$cle-set is not captured
because of the absence of the cumulative damage in conEigtee 3.18 shows the
predictions from the proposed model which has a fbased element with nine integuati

point as well as a zero section element. This model also has robust nonlinear behavior.
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Table 3.1. Test Information

Test  Load History D LD [2y3® Y { {LANFE 5SS

(mm)
9 3-CycleSet 610 4 16 #6 bars (1.6%) #3 at 2" (1%)
10 Chichi 1999 610 4 16 #6 bars (1.6%) #3 at 2" (1%)
11 Kobe 1995 610 4 16 #6 bars (1.6%) #3 at 2" (1%)
12 Japan 2011 610 4 16 #6 bars (1.6%) #3 at 2" (1%)

#6 and #3 bars have 19 mm and 9.5 mm diameter resplgcti
"= longitudinal reinforcement ratio
"s= volumetric ratio of transverse reinforcement
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Figure 3.17. Comparison of forcedeformation responses from the fiber model and
test data
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Figure 3.18. Comparison of strain hysteretic response from the fiber model and test
data

The forcebased element with nine integration points is combined with strain penetration
simulation to predict the strain gradien the plastic hinge region. Implementation of the
proposed method allows the tension shift height to be calculated. The shear stress is assumed
to have a parabolic distribution across the section.

The tensile strain profile is plotted including thesiem shift. As shown ifrigure 3.19,
the predicted strain gradient is plotted against the strain profile from Test 9 tol12. Tensile
strain gradients (four on left) included the tension shift effect. The solid lines are the strain

gradients at each significant peak displacement from experiments. Predictions are plotted in a
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