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1. Introduction

In earller papers [1]-[3], various aspects of analysis of possibly incom-
plete random samples have been discussed. These analyses all apply to data
from a single random sample only. The present paper describes some extensions
of these methods when sets of samples are available.

When more than one sample is available, the field of hypotheses, alter-

-nate to that of having complete samples, becomes much richer. Some of the
more intéresting possible situations are discussed, though no exhaustive general
theory is developed.

‘ A secondary aim of this paper is to lay foundations for later extension

- of the methods to cases when the analytiéal forms of the distribution(s) of
observed random variable(s) are not completely known. In such cases it is
almost essential to have a number of samples; useful results can hardly be

~ expected from a single sample (even if it is quite large). Techniques for
such problems are not developed in the present paper, but knowledge of methods

appropriate when population distribution is known is an essential preliminary

to development of such techniques.

2. Notation and Preliminary Formulae

As in the earlier papers, it will be supposed that observed values of
independent continuous random variables with a cémmon_(population) density
function £(t) are being used. The i-th sample (i=1,2,...,m) comprises

. X ordered values xilsxizs"'sxiri' Such censoring as may have occurred is
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supposed limited to censoring of extreme values, in which the 550 least and

. ’1:1 greatest values of an original, complete sample of size o, =T, + 840

+ siri have been omitted, leaving the r, observed values.

The (ordered) probability integral transforms

(1) Yij - [ £(t)de

-y

have the joint density function
| m | (48, 48, )1 & $ir
ir
i do 3 4 10 (1-y._) 1 (0sy,,s...5y,_ <1)
il ir 11 ir
i=} 8, ol LT ! i i

- i |

(2)

The joint density of the m least valuss Yll' Yn....,le and the nm

greatest values er .Y2 r ....,‘lm r is

1 2 m
@ ~ryts gts, 1) ! 8.0 r -2 *1r]
(3 Yy gy Vyy) (1-y,. )
i=1 __‘10' airil(ri-Z)l 1 i -

(OSyilsyitiSI)

The symbols ¢(x) will dencte the digamma function of argument x,
d d
w(x) - i (log I'(x)) (= i log(x-1)1)

Successive further derivatives "(1) (x), W(Z) (x),+.. are the trigamma,

tetragamma. ... functions.

3. Estimation of Sampnle S{ize

In [1], problems of estimation of total size of a random sample, given
the r least (or greatest) values observed in the sample, were discussed.

. Here these results are extendsd to the case when it 18 known that m samples



all have the same original size, 1, but only the least ri,rz,...,rm values
are recorded in the first, second,... m~th samples respectively. 1In the

notation of Section 2, this means that 50 "™ 0; 8, = O-r,.

i
From the joint likelihoed function of the ordered X's

' n |” al n-r; Ty -
(4) £(X|n) = “"11""”‘mrm|“’ - H‘ (AN (1-Yir1) H £(Xy,)

we seek to obtain a maximum likelihood estimator of n.
Regarding n as continuously variable, we obtain the equation
: m m
() mY(htl) - ] plh-r +1) = log[ T ] Q-Y,_ )]
T ; i ir
i=] im=] i
for the maximum likelihood estimator fi. An approximate value of @ can be

obtained by making

Lxla+D - Lgla-d

which gives
m Lo-1 ™
(6) TTi-r @+ TT Gy, )
¢ i=] i=l i
‘Provided no Yir equals 1 (whizh has probability zerxro) equztion (6) has a

i
unique root greater than max(rl,...,rm) - %; The appropriate integer value

for 2 41is that between (R =~ %) and (& + %).' (If these are integers, either
can be used.)

1f I =Ty = e =, then (5) becomes

) W+ -eE-c+l) et eal TT Q- %)
j-
, -1 -1 -1 m
i.e. _ X (f -~ 3) =n " log ['T_T a- Yir)]’

320 3=1



In this case, (6) becomes

. (6) s

- m
& [l - H Qa - yir)l/“‘]"l - 3.

which, for m= 1, gives

" s @ -1 - _];
The Cramér-Rao lower bound for the variance of an unbiased estimator of
n 1s
T oD (1) -1
) [ Xl ¥ G +1) - ' (ak1) ]
i
For .rl = r2 - L, = rm = r, this is
r~1
" N A SYE (RN CO PR L Xo(n-J)'zl"l
jl:

Unfortunately, if (7) (or (7)') is used to approximate var(fl), it gives

‘ (at least for m=l) unduly optimistic ({i.e. swall) values. We have (since

Y
iri
(8.1)

and

(8.2)

(9.1)

and

(9.2)

has a beta distribution with parameters Ty n-r£+1)

1

E(Y
Yy

; ] = n(ri-l)-l
-1 -2 -1
var(Y 11_;L) - n(n—ri-f-l) (ri-l) (ri-2) .
From (6)" we see that, for m = 1
E[d] ¢ r(r-l)-ln -1

2

var(8) & r?(r~1)"%(r-2)"1 n(a~r+1)



From (9.1) we see that there is a bias of about (r-l)"l n -A% . (Note
that the true value of E[f] cannot differ from (9.1) by more than 1).
Table 1 contains approximate values of the variance and mean square
error of & as given by (6)", and also values of the Cramér-Rao lower bound
(from (7) with m=1).

Table 1: Apgroximate Variance and Mean Square Error
of n, and Cramer-Rao Lower Bounds

m=1 (Cramér-Rao Lower Efficiency (%) of
(Approximate) Bound) X m N(m~1,...,m"1)
r n Var(f) M.S.E. (#)
4 4 3.56 4.25 0.7024 a3
6 16.00 18.25 4,1427 46.
8 35.56 40.25 9.6329 48
10° 62.22 70.25 17.1295 49
12 96.00 108.25 26.6279 50
15 160.00 180.25 44.6267 50
6 6 2.16 2.65 0.6705 © 45
8 8.64 9.85 3.6046 60
10 18.00 20.25 7.9267 63
12 30.24 33.85 13.5892 65
15 54.00 60.25 24,5866 65
8 8 1.74 2,15 0.6547 49
10 6.67 7.53 3.3359 67
12 13.06 15.53 - 7.0739 71
15 26.12 28.82 14,5893 73
10 10 1.54 1.91 0.6453 . 52
12 © 5.5 6.25 3.1748 71
15 13.89 15.25 8.5595 76
12 12 1.43 1.78 0.6390 . : S3
15 7.14 7.89 4,.5594 76
15 15 1.32 1.65 0.6327 55

In view of the above results it seems worthwhile to seek some alternative

estimator for n.



From (8.1), .(ri-l)‘l;i is an unbaised estimator of =n with variance
i

-1 n
n(n—ri+1)(ri-2) . So if 151 a; = 1
m -1
(10) N(ajseeera) = 121 ai(ri~1)Yir1

is an unbiased esﬁimator of n. The variance of N{+*) is minimized by taking
a, proportional to (ti*2) (n—ri-‘l-l)-l. As n is not known, it is not possible
to calculate this value of a,. qu a first approximation it is feasonable to
take a, proportional to ri-z, or éven just to take a =8, ™ .. "a = n~1
(which is, of course, optimal if .rl -y, = ... = tm).

Table 2 gives some numerical comparisons between

(11) var(iGseera) = 03 § (z,-2)1 1 ¥ (r,-1) (e, -2) 1 e -5)1'2
1 n LI ! A
~ o -1
where ai.'- (r,~2) [gl(ri-Z)]
and
-1 -1 -2 T -1
(12) var(N(m “,ece,m ")) = nm Z (n-ri+1) (ri—Z)

i=]

n
- ngn-z-lz Z (ri-Z)-l - %
m i=1
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Table 2: Variances of (a) N(EI.....EE)
(b) N ,....;)

2 T3
4 -
4 -
6 -
6 -
8 -
8 -
6 -
8 -
10 -
5 4
4 4
7 6
6 6
10 8
8 8
8 6
6 &
8 8
10 10
5 4
A
7 7
6 6
10 10
8 8
10 8
8 8
8 6
6 6
8 8
10 10

swmmmomma\mb&

(a)

0.20%-0.72n
0.1622-0.73n
0.1a%-0.6173n
0.1n%-0.62n
0.07690%-0.5799n

(b

0.2083n2

0.1875n%
0.1125q%
0.10416n

)

~0.7083n
-0.6875n
-0.6125n
2_0.60416n

0.07740%-0.5774n

0.0714n%-0.5816a  0.0729n2-0.5729n

0.125n° - 0.625n

0.0830% - 0.583n

0.06250% - 0.5625n
0.125n%-0.4687°n  0.1296n%<0. 4630n
0.142802-0.4898n  0.1482n2-0.4815n
0.0714n%-0.4082a  0.0722n%-0.4056n
0.0769n%-0.4142n  0.0778n%-0.4111n
0.0455n%-0.3843n  0.0463n2-0.3796n
0.050002-0.3900n  0.0509n2-0. 3843n
0.05560%-0.4136n  0.0602n%-0. 39350
— 0.0833n° =~ 0.4167n

0.0556n> - 0.383%n

0.C4170% ~ 0.3750n
0.0909n%-0.3471a  0.0937°n2-0.3437°n
0.0111n%-0.3703n  0.1146n2-0.3646n
0.0526n%-0.3047a  0.0561n2-0.3031n
0.058802-0.3114n  0.0594n2~0. 3094n
0.0333n2-0.2867a  0.0339n2-0.2839n
0.0385n%-0.2929n  0.0391n2-0.2891n
0.03850%-0.3047n  0.0375n2-0.2875n
0.04170%-0.3056n  0.0443n%-0.2943n

04550%-0.3182n _  0.0495n2-0.2995n ,

0.0625n° - 0.3125n

0.06170% - 0.2917n

0.0312%2 - 0.2812%,



It can be seen that little is lost by using N(m-l,....mﬁl), at any rate
for the amount of variation in values of r shown in the table., The last
column of Table 1 gives the efficiency of N(mnl....,m.l), relative to the

Cramér-Rao lower bound, in cases when )= ¥ = ..=r =T

m

We note that in the case of symmetrical censoring with Ty =Ty ™ e =

r,=r n= r+28 (so =8 = 8), the maximum likelihood estimator of n

satisfies the equation n

YE@-1)+1) - p(a+l) = 2ot T 1ogly,, (1-Y, )] .
2 2 1=1 i1 ir

The statistic

-1 n
m " (r-2) Z Y

-1
s 1c7¥59)

is an unbiased estimator of n. It has variance

a1 (z-3)"1(a-r+2).

3. Tests of Sample Size

If we wish to test the hypothesis that the available data represent the
vhole of the original samples, and still to confine ourselves to situations
where the original sample sizes are all the same (nl-nz-...-nm-n), then we
need consider only cases for which Ty mTy™es e ™L . For if some r's are
smaller than others then (under the condition n, *n,®...*n = n) the
corresponding samples must be incomplete and there is no need for a test.

It is gshown in [2] that, for a single sample, a test with critical region

. of form
Y (-Y) > c
1 r (-1

is uniformly most powerful with reepect to all alternatives to the hypothesis
8, =8, '~ 0, for which solar = 8., If the number of availabla obgervations
is the same for all samples (rl-rz-...-rm-r) and the complete sample size

(n - r+¢d+sr) is also the same then



m

0
H (Y, 1-¥, 01> ¢,

is uniformly most powerful with respect to all alternatives for which solsr = 0.
As particular cases we have (i) censoring from below, for which 8.=0 and

the critical reglon is of form

m
H Y Car

and (11) symmetriocal oensoring, for which 8y = 8., and the eritical region

is of form |

m
H [v,,-v, )1 > c,.

Of course censoring from above (8,=0) can be treated by similar methods
to those appropriate to ceasoring from below.

The values of Cu have to be chosen to give the required significance
level, in each case.

In the subsequent discussion we will consider a rather more general
situation in which the hypothesis tested is that the complete sample size is
no(z max(rl...rﬁ)) against alternatives that it exceeds n,ye We will however
usually restrict ourselves to the case T ™L)™. . o= =T, thoug? this 18 no

longer the ohly case of interest. The hypothesis of ''complateness" corresponds

to taking n, equal to r.

3.1 Censoring from Below

From (2), putting 8,0 = v-r and s, = 0 ' we see that the likelihood
4 y

ratio of n =n' against n = n, 1is
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——“L-—t(Y a’) = conmstant. X (T—Tyil) %

L(X|n,) i=1
So a test with critical region

(13) TT Y, >

is uniformly most powerful with respect to the set of alternatives hypotheses‘
B > n,, given this kind of cenéoring. This is so even if the ri'a are not
- 811 equal(provided of course n, 2 max(tl.....r')).

Each Y, han a beta distribution with parameters nrr+1, r. The dig-
tribution of IullY 11 is complicated, but a useful approximation may be
constructed by considering the distribution of € = -2 log (I-I'Yi) -

-2 X lo The cumulant generating function of ~log X, 1s
i=l-

. -t log Yi _ -t
(14) log‘ Efe ] = loge E[Y1 ]
- loger(n-r+1~t) - loger(n+1-1)

-loger(n~r+l) + loger(n+1),

Hence the s~th cumulant of '--loge Yi is

(15) K, (-108¥,) = (-1) w“ D @ert1) - 4D @41y
= (s-1)1 z (=377
§=0
r-1 .
80 -2 logeYi is distributed as JZo(n-j) lw vhere “10""’“1.r-1 "are

independent xi variables, and
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(16) G = =2 { log Y, 1s distributed as

i=1 1
® -l -1, r=1
! I Gp =] (@t W,
1=l j=0 4=0

where Hj are independent xgm variables.

So, to test the hypothesis n = n, (against alternatives n > no) we
use the critical region
-2 Z log ¥, < C,
1=l
where

(17) | Pr{ Z (n -j) W <Cl=a
=0

(Note that it is the lower tail of the G-distribution which gives significance.)
It 1s possible to give explicit formulae for the probability in (17) (see

Appendix I). since each W3 is distributed as a x2 with an even number of

degrees of freedom, but except for unrealistically emall values of r and u,

these would not be useful for purposes of calculation. Useful approximhtions
‘ r~1

(at least for m22) can be achieved by regarding jto (n -3)" Wj as

approximately equivalent to cxv » Wwith ¢ and v chosen to give the correct

first and second moments, i.e.

(18.1) c= [ X (a,=1) 211 Z (my=» 1172
3=0
-1 r-1 -
(18.2) v =2l | @)1 ] (g7t
3=0 =0

Approximate values of the power can be obtained by replacing n, by n.
For m =1, exact values are easily calculated, as shown in [3]. The approxi-

mation would be eipccted to improve as =m increases (in that the W,'s, and

3
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also the approximation, both become more nearly normal). Better approximation
would also be expected, for given r and m, as n increascs, because the
coefficients (n--j)m1 are in ratios closer to 1. Investigations summarized

in Appendix II confirm these expectations.

3.2 Symmetrical Censoring

The first part of discussion follows exactly similar lines to that in
Section 3.1, and is therefore condensed. The critical region
m

(19) . I—I‘[Yil(l-yir)] > ca

with ca chogen so that

m
(20) Pr{ H [¥,,(~¥, )1 > C [n=njl =@

gives a test of the hypothesis n = n, which is uniformly most powerful with
respect to alternatives n > Ny given that censoring is symmetrical. This

also is true even if tha r_'s are not all equal, provided n, 2 max(rl,...,rm).

i
1 .
From (3), with Ty=% 8,8, = i(n-r). we obtain the cumulant

generating function of -loga[Yil(l-Yir)] as

(21) 2[log I (%5 +1~1)~log T (1‘-;-?— +1) 1-[log I (at1-21)~log I (at1) ].
m

Hence, if G = -2 1§1 log, [¥,,(1-¥, )]

@) x @ =022V EE 4 - 25D )

Since -%(n-r) must be an integer

¥(otr)-1
(571 EE 41 = 3 (1) +(-1)(s-1) 1 ZO (=)~
ja

and (22) can be written
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%(ntr)-1
(22)" (@) = w2 (1)1 § e (D2 Ly D 1y
3=0

Although we do not have a simple representation, as in section 3.1, it

seems reasonable to approximate the distribution of G by that of cxs with

(23) e =3 %@ @17 v =20 @12k, @17

3.3 General Purpose Tests

If the value of e(nso/sr) is not known, we do not have a uniformly most

powerful test of sample size. In [2] a test of completeness with critical region
Yl + (l-Yr) >C,

wvith Ica(Z,r-l) = 1-a, has been proposed, for the single sample case. This

test was derived on heuristic arguments, but has been shown {2 ] to have pro-

perties rendering it a useful “general purpose' test when 6 1s not known.

Put

Vi - Yil + (1"‘Yir) (i. - 1,2,....!1).

The density function of Vi ias

[B(2+n-r,r—l)]'l vl:z'-r”'l(1--»'1)t-2 (© < v, < 1)

and so w2 have the likelihood ratio

.L(Vl,...,len') ) }312+n0-r,r-if n v n'-n,
l(vl,...,vmlno) !§ﬁ2+n'-r,r-xl| 1w 1

So a uniformly most powerful test of the hypothesis n = o, (if only vl""'vm

are to be used) against the set of alternatives n > Ny is obtained by using

the critical region
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(24) rr v,

i=]1

with Pr| T—T'V > C lnol - qa.
i=]

Again this is so even when there are different numbers TisTpsecerly of
observations available in the different samples, and we now give some formulae
appropriate to this more general case.

The value of Ca depends on Ry m, 1,...,r . In order to develop use-

ful approximations we use the criterion G=-2 Z log Vv, .
: i=1

The cumulant generating function of -loge vV, is

i

B(2+n-ri-t,ri-1):}
_§(2+n—r1,r1~1)

logeE[V;t] - loge

Hence the s~th cumulant of G is

m m ri-2
(25) I 2%¢0® 0V raer) - v D @aie 201§ § @ep™
1=1 1=1 =0

The distribution of G 1s that of

r,~2
m i
(26) JF -pt
el §u0

where the W's are independent xg varigbles.
(26) can also be expressed as

' R-2
(26)" J (a-3)7% Z‘” Z (a-1)"2 W,
' 3=0 3=0

wvhere R = max(rl,rz.....:a); and I(J) denotes summation over all 1 for
i

vhich r, 2 j+2. The Wj's are independent xim variables, with mj -
‘ 3

number of ri's greater than or equal to (j+2).

1f rl-rz-...-r =y, then (26)' becomes

(27) ): (n~3) 1w
j=0
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2
with WO’ wl,...,wr_z independent Xom variables. (Compare (16).)
. As in section 3.1, the distribution of G may be approximated by that

of cx2 with, in this case
: \M

=2 r=2 - -
(28.1) ce=[] @] @p?
3=0 3=0
=2 -2
(28.2) ve2l ] NP ] @nTit.
=0 1=0

Variation in accuracy with m and n will be exactly similar to that in

Section 3.1.

.4. Some Numerical Comparisons

Table 3 gives some values of -2 log CO. 05 for each of the three tests
(13), (19) and (24). Values in parentheses were calculated from approximations
by (4) using cx3 approximation and (i{i) making an ad hoo correction based
: . on comparison between exact and approximate values in cases when the former
was calculated. The (exact) values for m = 1 (case (b)) are taken from [3].

Table 3: Critical limits for (a) one-sided sz symmetrical and

(c)_general purpose tests (Values of =2 log, €, 05)

) 0,05 -

r m (a) (b) (c)
4 1 1.281  4.435 0.572
2 3.821 (10.66) 1.839
3 6.734 (17.40) 3.318
4 (9.65) (24.40) (4.90)
10 1 2.703  7.115 1.862
2 (6.85) (16.50) (4.72)
3 (11.45) (25.55) - (7.79)
4 (16.15) (36.80) (11.00)

Table 4 gives powers of these tests, with a = 0.05, with respect to

: ‘ alternative hypotheses n = r+2, r+6, r+10, Values in parentheses were
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obtained by using cx3 approximation, with the Ca values corresponding to
‘ Table 3. (In Appendix II there is some evidence indicating that as n
increases, the cxi approximation rapidly increases in accuracy.) For the
"one-sided" and “symmetrical" tests the "best" forms of alternatives are
" assumed, i.e., 5y = o, s, = a-r for "one-sided", sp =8, = ¥(n-r) for
"symmetrical”. For the "general purpose" tests, power depends only on

(so+sr)(-nf:).

Table 4 Power of tests (a), (b) and (c) (5% Significance Level)

Power of (a)

x n me 1 2 3 4

4 6 . 294 557 (.749) (.872)
10 . 780 .989 (*) (%)
14 . .955 ® (*) (*)

10 12 « 364 (.636) {.829) (.923)
16 +907 *) (*) (*)
20 .988 (*) (*) (*)

Power of (b)

T n m = 1l 2 3 4
4 6 .206 (.364) (.522) (.658)
10 ©.594 (.933) (.996) (*)
14 841 (%) (*) *)
10 12 (.269) (.442) (.664) (.795)
16 (.798) (.992) () (*)
20 (.982) (%) ") (*)

Power of (c)

r n me b 2 3 4

4 6 .167 <296 (. 420) (.530)
10 <470 .827 (.958) (.991)
14 .716 .978 (.999) (*)

10 12 o238 (.419)  (.547) (.677)
16 .732  (.969)  (.996) (*
20 $949 (%) (*) (*)

. (* denotes "‘over .9995")
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The figures in Table 4 exhibit the rapid increase in power with m, the
number of samples in the sequence.

Such powers will nc: be a:c;i;able if the population density function
£(t) 4is not known. Héwever. they do indicate the possibility that with a
sequence of moderate length, good power may be obtained even when f£(t) is
not completely knowmn- for example when the form of f(t) is known, but some

parameters have to be estimated.
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Appendix I

The results obtained below are not original, but the derivations are given
to assist comprehension. The symbols {w;h)} will denote independent random
. . 2
variables distributed as Xoe The symbols {aj} denote positive constants.:

The characteristic function of

k (1)

Y, = jglaj W

is
k 1 ¥ -l

¢Yl(:) - H (1-2a,16) ™" = 321 b, (1-2a,ic)
where

K K

le by M (1-2a it) = 1

Putting ¢ = (Za_'i.)"l gives
k -1
(A.1) by = TT (1-a,/a,)

provided no two aj'a are equal. Note that, putting ¢t = 0, we obtain the
k
identity j§1 bj = 1. It follows that Y, is distributed as a formal mixture

of k variables distributed as a xg with weights b, (j=1,...,k). (Some

3 3

of the bj's must be negative (1f k > 1).)

Hence, for y > 0

k
(A.2) RrlYy) = ] bjcl-e""y/aj)
=1
¥ /
-1-J b P2y
ju1 3
yhere b, is given by (A.1).

3
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We next cousider

® k
(2)
a, W
ngljj
which may be regarded as the sum of two independent random variables, each

distributed as Yl' From the mixture representation (A.2) we see that the

distribution of Y2 is also a formal mixture, as set out in the following

table:
Distribution Weight
2) ,.. .2 2
a, Wj (-ajxa) bj
{1) (1) .
ay w.1 +aj,Wj, 2bj bj. (3 <319
(1) (1)
Again using (A. 2). the distribution of (aj Wj + aj ) 1is a formal
‘ mixture of '
. " a x2 -with weight (1-a,,/a )'-1
- { 3 %2 N
aj,x2 with weight (l-aj/aj.)
Hence, for y > 0
--v’i)f/a:l --3.5}'/&1.j
(A.4) Pr(Y <y] - Z b2 (L~-e -(%y/aj)e )
. =1 3
- ~%yl/a - ~%y/a .
+27)7 b [1 (1-a,,/a.) te 3_(1-a,/a ') 1, J
j<jl J j j j
k -%y/a -
=1- Je I b2 (1+4y/a,)+2b ) (1-a ,/a,) L.

Ve now briefly consider

"l' 2 a w<3)

=1
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which has the formal mixture distribution set out below:

note

3N,. .2 3
ajwj (-aj>‘6) bj
(2) (1) 2 P
ajwj + aj,wj, 3 bjbj. (G 43"
(1) (L (1 . ' "
ajwj +aj'wj' +aj"wj" 6 bjbj 'bj" (G <3' <3M.

To obtain a representation of the distribution of (a w(2)+a ,w(l)) we

that

IS I R B

2) @ _ . (0 w o)
ajwj + aj,w ' ajwjl + (ajwj2 + aj.wj, ).

The distribution of (a W . a ,W(l) ) can be obtained from (A.3). We find

that (a w(2) + a

(A.5)

(A.6)

3

RS PR M b
w(})) is distributed as a mixture of

jl.

(a8 y2 - -1
8% with weight (1 aj./aj)
{ a xz with weight (l-a_,/a )-1(1~a /a )'-1
3%2 '3 h M N
2 -2
| aj.x2 with weight (1—aj/aj.)

After some manipulation we find that for y > 0O

k 3 2 "EY/aj
PriY. <yl = 1 - ] by {1+(ky/a Y+k(ky/a,) 1e
4 ~%y/a
- 2 - T _ -1 4
311 b0 ayi/a Sty /ay+(1a a0 v
k - -¥y/a
-3) b {J b,(l-a,/a) e 3

Similar formulae can be obtained for any

k
- (m)
Y jZJ. a Jw s



The length of the formula increases quite rapidly with m.
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In the particular case (16), which can be written, in our present notation

(A.7D

(A.B)

Z (n-§+1) "2 ;m)

i=1
we obtain from (A.1), putting k = r and aj = (n—j+1)-1,
xr
b= TT @ -ty TT(“"‘*1
3 t# n-t+1 t44

- -0MOG =

For m = 1(and y>0), from (A.2)

(A.9)

(3'1,2,...,1')

Pr(Y>y) = Pr[Y 1yl = ( ) E (-1 3FLE) L__ Fn-i+l)y

T y=1

For m = 2, ifrom (A.4)

(A.10)

Some particular cases (used in calculating Tables 3 and 4) are set out below.

r ~¥(o~j+l)y

J° n-j+l

Priv,oyl = D] e (¥t ®ars-rry

ey j+1

+ 2(-1)3( Yia=j+1) " Z (-1)J
3%

o)j (j"j )

(Note thkat G 4n (27) is obtained from (16) by changing r to (r-1).)

10

14

10
14

Pr[Y > vy]

8y~ 12867 236 (y-1)e Tea(arrare™ Y 2oyl

200 (3y-2) e~ /242025 (2y-3) e~ Y4648 (5y+12) e~ Y /24100 (3y+23)e~ Y

~13y/2

(4 628

2102x{(gy ligg)e y/2 +(9y %?,e-4y+( 160) -9y/2 (g &52)
2 8 _ 1888, -1ly/2 -6y, , 72 2016
1701 x[( -Egg)e +(6y~11l)e +( 169)

36(y~5)e y+32(3y+2)e 39129 2g413)e™ Y

225(2y-11) e~ Y+288(5y+2) >/ 24 +100(3y+19)e™ Y

207)e 279 5y]

120% xicigy 4x+(2y+—0e 9y/2 +(55y+165

-6y ~13y/2, 9 . ., 387
30 Ggr- Ty + 30 MGy + {3

387y .77y

7 147

4

7]
—7y]
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For m = 3,

3 k ~F(a=-j+l)y
(A.12) PriYpyl = (157 ] e (=03 el Yasste-sr1ry
1=1

3
Ursn-3Dy) - 3D -,;-31;; j;jf“l’j";" T

3¢ry A ~dery A
+ 36D {3§j-( D) 1)

+ - Dy1) + 30 k)’ ] 03¢y
13

In particular, for r =4, n = 4

Pr(¥,pyl=(8y? ~144y+22832) W4 108y 24432y-3456) € T (712524 528y 4294806 " /2
+ (-2y%-46y- Bt

And for r = 3, n=4

PrlY,>y] = 64[c§%y2 ~27y+135)e Y- 9y +12y+220) ™ /24 21 Ay,

( +19y+
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Appendix II

Using Fhe notation of Appendix I, if ay=a,=...=a =a then Y = g le§m)
is distributed exactly as a x%m. For general values of ‘{aj} we mighg hope
to obtain a useful approximation by supposing Ym to be distributed as ¢ xi.
with ¢ and v chosen to make first and éecond moments agree. That is

k k

cv = E[Y l=2n§ a 2¢2y = var(Y ) =4m ) a?
i=1 j J=1 3

or, equivalently

Approximations of.this kind have been used quite widely with satisfactory
. results ([4 ][ 5] ete.).

In order to check how suitable the approximation is in our particular case
some numerical comparisons are presented here.

For sums of the form Ymr Jgi(n—j*l)-1W§m), with n an integer at least
equal to k the least accurate approximation would be expected when n = k.
As n increases, so that the ratios n: (n-1):...: (n-k+l) approach 1, the
distribution should become closer toa c¢ xi distribution. Table A.l contains
exact and approximate values of Pr[Ym>y] for k=5 with wmw=1,2 and n=5,8,10
‘to exemplify this point.

The exact formulae are

a=5 Prl¥pyl=1- (1-e~Y/%y5

700

Pri¥y] = By~ 422724100y~ 289 e Y+ (150y+100) ™ /2

57
2)e

+ (50y+37 lglée—sy/z

o Gy



n o= 8: Pr(Yy] = 7062 ~224e™/2 4 28007 - 160"/ 4 35,74

Pr(Y,>y] = 562[0%5 ll75)e 24 40y é%3>e'5y/2+(75y+25)e“3y

2575, -4y
o ]

+ @, 15200, ~7y/2

25
79 * Ty e TR AN

n o= 10: Pr(Yooy] = 220e”Y « 7206772 4 94574 - 560e”9Y/2 4 12667

25-

-3y, (200, _ 12800, ~Ty/2, 225 _ 225, -dy

Pr(Y,>y] = 252° 65 147 %7 " 16

_ 50
- 3e

200 . 6400, -9y/2 .5 . 32, -5y
+(—-‘y+ 81) Gy + 3)e ]

For m= 3, and n = 5,

Peltpoy] = (125 2 zsgs ;4 98220 ye™_ (5005 - 4000y + 68g00 ye
+ (112552 + 1500y + 34750372~ (250y%+2750y +-5ﬁ§32 ye Y
252 , 645, 6881 , -5y/2 .
O Y T e

For calculations of approximate values (based on ¢ xs distributions)

the following values were used:

¢ v
ne=35 0.6410 7.124n
8 0.1880 9.41Cm
10 0.1332  9.692m



Table A.1:

5

Pr[ }

j=

n =3
me= 1 y Exact Apﬁrox.

0.5 . 9995 .998
1 991,982
1.5 .959 943
2 . 899 .882
3 <717 712
4 .517 .526
5 .348 .363
6 .225 .238
7 . 142 . 149

me= 2 1 - -
2 .9997 + 9990
3 .995 991
4 .973 964
6 .828 .821
8 .580 .587
10 . 344 . 356
12 182 . 188
14 .088 .089

4 6
.9998 .992

w3 Exact
n=35 Approx.

. 942

n=3§

Exact  Approx.

.983
. 836
575
.333
.080
.015
.002
.0004

.9992
.933
.648
. 309
.031
.0016

10 12
.811 .620

.9994 .988 .934 .809 .626 .431 .267

(=g 5 3

.982
834
.576

.336

.080
.014
.002
.0003

.9950
.932
. 649
.311
.030
.0014

14

421

Comparison of Exact and Approximate Values of

The improvement in accuracy with n 1is marked, but with m,

This suggests that is might be worthwhile devoting special efforts

26

n = 10
Exact Approx.
.951 .950
+649 .650
.312 . 312
.118 .118
.011 .011
.0008 .0007
.993 .993
« 743 .743
279 .279

.058 - .057
.0009 .0008
18 20
147 .079
.151 .078

less so.
to obtaining

exact values for significence limits, while relying on approximations for

evaluation of power. .



