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ABSTRACT

HILDETE PRISCO PINHEIRO: Modelling Variability in the HIV Genome. (Under
the direction of Dr. Francoise Seillier-Moiseiwitsch and Dr. Pranab Kumar

Sen.)

In modelling the mutational process in DNA sequences of the human immun-
odeficiency virus (HIV) one cannot assume independence among positions along the
sequences. Sites are analyzed, at the nucleotide or amino-acid level, by comparing
each sequence to the consensus sequence. The state at each site is regarded as a
binary event (i.e., there is a mutation or not). Two families of models are considered.
Each sequence can be thought of as a degenerate lattice, then autologistic models
are applicable. The probability of mutation at a specific site, given all others, has an
exponential form with, as predictor, a function of neighboring sites. Since there is
no closed form for the likelihood function, a Markov-chain Monte-Carlo procedure is
called upon. The second model is based on the Bahadur representation for the joint
distribution of dichotomous responses and assumes only pairwise dependence among
sites. Parameter estimation is performed via the maximum-likelihood method. An
extension to three categories is suggested to evaluate the type of mutation (transition
or transversion) or the absence of mutation. For the autologistic model, two dummy
variables represent the three categories. The estimates of the parameters can also be

obtained by Markov-chain Monte-Carlo methods.

It is also of interest to compare sequence variability between and within groups.
These groups can be HIV-infected individuals from different geographical regions, dif-
ferent high-risk groups or different subtypes of the virus. Two analyses of variance for
categorical data are proposed. One is based on an approach developed by Simpson
(1949). We consider the variability in the distribution of the categorical response.
Sequences are not considered on an individual basis. A test statistic is developed as-
suming independence among positions. The other is based on the Hamming distance,
which is the proportion of positions where there is a difference between two aligned
sequences. Sequences are considered on an individual basis. The interest is now in

estimating the variability between, within and across groups. U-statistics represent

il



average distances. The total sum of squares is decomposed into within-, between-
and across-group sums of squares. The latter term does not appear in the classical
decomposition of sum of squares. In order to find out the distributions of these sum
squares, wWe use generalized U-statistics theory. Test statistics are constructed to test

the hypothesis of homogeneity among the groups.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

A brief review of molecular biology and genetic variability is presented in Section

1.2

The primary interest is to model the mutation process exhibited in DNA se-
quences of the human immunodeficiency virus (HIV). The data set consists of se-
quences from different individuals, with n sites per sequence. We cannot assume
independence among sites. Each sequence is compared to the consensus sequence at

the nucleotide or amino-acid level.

Statistical methods to measure variability of DNA sequences, in general, are
available and are discussed in Section 1.3.1, but one needs to be careful when mod-
elling such data because of the known dependencies among neighboring nucleotide po-
sitions. An interesting question arises: how does one quantify the notion of neighbor?
Tavaré & Giddings (1989) determine the distance over which there is base-frequency
dependency by modelling the sequence as a Markov chain and estimating the order of
the chain. For a high-order chain, the number of parameters may be too large to be
reliably estimated with sequences of moderate length. Also, the dependency is located

on one side only and this may not be true in reality. Positions along a sequence are
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not ordered like time points. Raftery & Tavaré (1994) proposed an alternative model
to reduce the number of parameters, the mizture transition distribution model. They
apply it to repeated patterns in a DNA sequence. In these papers, the authors look
at a single long sequence and try to see if there is a stochastic pattern for base-pair
composition along the sequence. Dependencies on one side only are allowed. How-
ever, positions along a sequence cannot be regarded as a time-series: the sequence

codes for a three-dimensional structure.

In our case we want to look at several sequences and compare them with the
consensus one. We also would like to look at dependencies on both sides. Another
question of interest is where are the “hot spots” in the sequence. If we have an
estimate of the rate of mutation at each site along the sequences, we might be able

to answer that question.

Another interest is to compare sequence variability between and within groups.
Comparisons can be performed between and within individuals as well as between
and within groups. These groups can be HIV-infected individuals from different
geographical areas, different high-risk groups or different subtypes of the virus. Our

interest would be if the variability is similar in each group.

The analysis of variance for continuous variables is a well-established procedure
to compare a number of means. The experimental design guides its format (Cochran
& Cox, 1957). When the variables are categorical, but ordered, rank analysis of
variance can be used as a nonparametric method to test for mean differences (Daniel,
1978). In our case the variables are categorical and not ordered. Therefore, we need

to find other alternative methods.

Weir (1990a) describes an analysis of variance for the genetic variation in the
population, in particular for the amount of observed heterozygosity (Section 1.3.2).
The variance of the estimate of the average heterozygosity is broken down to show the
contribution of p;)pulations, loci and individuals by setting out the calculations in a
framework similar to that of an analysis of variance. Our situation is a little different
because we would like to construct a categorical analysis of variance based on Ham-
ming distances (Seillier-Moiseiwitsch et al., 1994 and references therein), assuming

that the sequences are independent, but the positions may not be. The Hamming



distance is the proportion of positions at which two aligned sequences differ.

In Section 1.4 the biological problems and solutions given in this manuscript

are discussed.

1.2 Biological Background

Nucleotides are the building blocks of genomes and each nucleotide has three
components: a sugar, a phosphate and a base. The sugar may be one of two kinds:
ribose or deozyribose. In any given nucleic acid macromolecule, all the sugars are
of the same kind. A nucleic acid with ribose is called Ribonucleic Acid or RNA,
one with deoxyribose, Deozyrinucleic Acid or DNA. DNA has four bases: Adenine
(A), Cytosine (C), Guanine (G) and Thymine (T), where Adenine fits together with
Thymine and Guanine with Cytosine. These are the so-called base pairs. A sequence
of base pairs may be thought of as a series of ”words” specifying the order of amino
acids (each coded by three nucleotides) in a protein. To transform the DNA ”words”
into amino acids, some sophisticated molecular machinery is needed. Now, RNA
comes into play. RNA also has four bases: A, C, G and Uracil (U) in place of T.
Adenine is now complementary to Uracil. Transcription is the process by which a
region of DNA is teased apart and a molecule of RNA is built along one strand by
an enzyme, the RNA Polymerase, to begin protein synthesis. Each base of RNA is
complementary to the corresponding base of DNA. The messenger RNA or mRNA
then carries the genetic information from the DNA to the protein factory (Gonick &
Wheelis, 1991).

A retrovirus has the ability to reverse the normal flow of genetic information
from genomic DNA to mRNA (Varmus & Brown, 1989). Its genomic RNA encodes an
enzyme that makes a DNA copy of its RNA and incorporates this DNA into the host
genome (Gonick & Wheelis, 1991). HIV belongs to this family. Retroviruses have
been subdivided into three subgroups on the basis of the in-vivo disease they produce
and, more recently, on the basis of sequence homology (Teich, 1984; Varmus & Brown,
1989): oncovirus, lentivirus and spumavirus. HIV is classified as a lentivirus. These

cause slow, chronic diseases (Cullen, 1991).



The human immunodeficiency virus evolves rapidly. HIV-1 and HIV-2 are two
strains of HIV, with HIV-1 being the most common in the world and in the U.S.
HIV-1 has nine genes (gag, pol, vif, vpr, vpu, tat, rev, env and nef), of which eight
are conserved among the other primate lentiviruses. Most of the internal part of
the genome is densely packed with protein-coding domains, such that some genes
overlap. The DNA form of the genome is bounded by a repeated sequence, the LTR.
The 5' copy of the LTR contains important transcription signals, while the 3’ copy
is used to encode part of the nef gene and the 3’ end-defining polyadenylation site in
the transcribed RNA (Seillier-Moiseiwitsch et al., 1994). The pattern of nucleotide
variation is not constant over the whole genome. For instance, the genes encoding
internal virion proteins, gag and pol, are more conserved than the gene coding for the
envelope of the virus, env. Also, the nucleotide differences in env change the encoded
amino acids more frequently, and therefore, the amino acid sequence exhibits more

variation in env than in gag and pol (Coffin, 1986).

The viral envelope is the only gene product in direct contact with the host
environment. It is thus not surprising that this gene has the most variable sequence
(Hahn et al., 1985; Coffin, 1986; Seillier-Moiseiwitsch et al., 1994). To illustrate
the diversity of HIV, env sequences were isolated at different times from each of a
number of individuals (Hahn et al., 1986) and the greatest variation is within the
so-called hypervariable regions V1-V5. The viruses from an individual differ from one
another, but not as much as viruses from different individuals. Such high variation
seems most likely due to a combination of two aspects. First, there may be a strong
selection by immunological pressure for variation in these regions and, second, a lack
of selection against variation may permit the presence of almost any sequence that

does not interrupt translation.

In different organisms most genes do not follow a pattern in the two first codon
positions, but in HIV there is a preference for A at the expense of C, in particular.
In the third codon position the shift towards A is even greater, while in most other
organisms A is rare in the third codon position. What is particular to HIV is that
purines (A and G) predominate over pyrimidines (C and T). The overrepresentation

of A is highest in pol and lowest in env, and may be related to the great genetic



variability of HIV. As A does not appear to be concentrated in the hypervariable
segments of env, there is so far no plausible explanation for this peculiar coding

strategy (Kypr & Mrazek, 1987).

The genetic variability of HIV-1 is relatively high compared to other retroviruses
(Mansky & Temin, 1995). Error rates of purified HIV-1 reverse transcriptase deter-
mined with a DNA template (of the lacZa peptide gene) range from 5 X 10~ to
6.7 x 10~* (Roberts et al., 1988). To test the hypothesis that the mutation rate for
HIV-1 is comparable to that of purified HIV-1 reverse transcriptase, Mansky & Temin
(1995) developed a system to measure forward mutation rates with an HIV-1 vector
containing the lacZa peptide gene as a reporter for mutations. They found that the
forward mutation rate of HIV-1 in a single cycle of replication is 3.4 X 107° mutations
per base pair per cycle. The in-vivo mutation rate of HIV-1 is therefore lower than
the error rate of purified reverse transcriptase by a factor of 20 (Mansky & Temin,
1995). Explanations for this difference are: the association of viral or nonviral acces-
sory proteins during reverse transcription, the influence of cellular mismatch repair
mechanisms, and/or differences between the reverse transcriptase produced in vivo

with that assayed in vitro.

Decomposing DNA sequences into tables of codon usage (i.e., frequency tables
of codons among organisms) loses a lot of information and their interpretation can
be misleading (Sharp, 1986). For example, looking at codon similarities between HIV
and other viruses, one can think that the moloney murine leukemia virus is the most
closely related to HIV, when in fact HIV codon usage is most similar to that of the
influenza virus and caulifiower mosaic virus. It is also important to note that, unlike
divergence in protein and DNA sequences, differentiation at the level of codon usage

is not linear in time.

Genomic comparisons of virus isolates have shown that HIV-1 variants in Africa
are both highly diverse and generally distinct from those in North America and Eu-
rope. Analysis based on gag or env indicate that African isolates are more hetero-
geneous than the North American/European group. For instance, McCutchan et al.
(1992) compare 22 HIV-1 isolates from Zambia and 16 from North America. The Zam-

bian isolates are most distant from a North American virus isolate, HIVyn: mean



difference from HIVjsn was 13.6%, with a range of 14.4-17.1%. Among the Zambian
isolates the mean pairwise difference was 7.1% with a range of 4.4-9.8%. PCR and
sequencing results indicate that HIV-1 isolates from Zambia are relatively homoge-
neous, but they are distinct from previously described HIV-1 isolates, clustering in

the separate branch of the phylogenetic tree.

Sequences can be compared at either the nucleotide or amino-acid level. Nu-
cleotide substitutions can be evaluated for mutations that cause changes in amino
acids (nonsynonymous) vs. mutations that do not (silent or synonymous). Further-
more, we can have substitutions between purines only (A G) or pyrimidines only
(C & T), termed transitions, or we can have mutations between a purine and a

pyrimidine (A < C, A ¢ T, G & C, or G & T), called transversions.

1.3 Standard Statistical Procedures

1.3.1 Markov Chain Models

Markov chain models have been used to analyze DNA sequences because of the

format of these data. Tavaré & Giddings (1989) estimate the order of the chain.

Let X = {X,, n = 1,2,...} be a stochastic process with m states. If these
states represent nucleotides, then mis 4 (A =1, C=2,G =3 and T =4). X is
called a Markov chain of order k if

PI‘{Xn+1 = 'l;,,+1 | Xn = ’in, ceey Xn—k+l = in—k+1 ceey X1 = ‘ll}

= Pr{Xn+l = in+1 l Xn = in, R Xn—k+1 = in—k+1}

for all n > k — 1 and for all choices of states iy, %3, ..., in—1 from {1,2,...,m}. In
other words, the distribution of the next base in the sequence is determined by the k

previous ones. When k = 0, the bases are independently distributed.

The transition probabilities are denoted by
(i1, 02, -« - k3 tk1) = Pr{Xiks1 = tka | Xe = tky ..., Xa =13, X1 =141} (1.3.1)
The goals are to estimate the order k of the Markov chain as well as the transition

6



probabilities, and to test various hypotheses about the DNA sequence(s). For a single
sequence, a typical hypothesis is that of independence among the bases, i.e., one tests

whether &k = 0.

Suppose the sequence of interest has length N. Let n(21,1%2,--.,%) be the num-
ber of transitions i; — %2 — ... — i, observed in the sequence and r = 1,2,...
Since we are dealing with a multinomial distribution, it is known that the maximum

likelihood estimator of p(i1,%2,. - ., %k} tk+1) 18
ﬁ(il, iz, e ,ik; ik+1) = n(il, ig, SN ,ik, ik+1) / N(il,iz, ey ik, +) (132)

where

n(il,ig, .. .,ik, +) = Zn(il,iz, e ,ik, ])

J
Note that for a k-th order Markov chain with m states, there are m*(m —1) indepen-
dent parameters to estimate. So, for a high-order chain, the number of parameters
may be too big and a very large data set is needed. In this situation, very long

sequences are required to get reliable estimates of the parameters.

To reduce the parameter space, Raftery (1985) suggests the following reparametriza-

tion for a k-th order Markov-chain model

k
P(i1, 92, -k tka1) = Y Aj 415, tkg1) (1.3.3)
J=1
where Q = {q(i,7), 1 < 1,5 < m} is a stochastic matrix,
q(i,j) >0and Y q(j,0)=1 j=1,...,m,
=1

and

MFd+...+ =1

The number of independent parameters is now reduced to m(m — 1) + k — 1.

The only disadvantage with this reduced model is the estimation procedure.
While in model (1.3.1) there is a simple expression for the maximum-likelihood
estimate of p(i,iz,.--,%k; tk+1), given by (1.3.2), in model (1.3.3), the maximum-

likelihood estimates of X’s and q(i, j)’s must be found by numerically maximizing the



log-likelihood

k
L= Z n(i17i27 ey Uky ik+1) 111{2 /\j Q(ij,ikﬂ)}
i=1
Raftery & Tavaré (1994) propose a computational algorithm for maximum-likelihood
estimation of the parameters in model (1.3.3) by reducing the large number of con-

straints.

1.3.2 Genetic Variability

Weir (1990a) introduces a simple measure of genetic variation in a population:
the observed heterozygosity. Let ni,, be the observed number of heterozygotes AyA,,
u # v, at a locus [ in a sample of size n. Then the sample heterozygote frequency at

locus [ is

}3'1-1 — Z Z Niuy

U uyFv n

If there are m loci, the average heterozygosity is

H=

Since Hj is the sum of heterozygote counts that are multinomially distributed, each

H; is binomially distributed with
3 2 1
E(H;))=H, and Var(H)= ;;H,(l — Hy)

where Hj is the proportion of heterozygotes at locus / in the population. H; can also

be written as

where

1 if individual is heterozygous at locus [
T =
0 otherwise

and for one population, we have

E(le) = H ’ E(CE?I) = H1 and E(mjl ;qu) = HI27



assuming that the individuals are independent within a sample.

~ 1 o
Let H = — E H, be the estimate of the average heterozygosity within a pop-
m
I

ulation. Then,

1
:EZ,:H’:

To compute the variance of H, we need to take into account the covariance

between heterozygosities at different loci, since they are not independent.

. 1 1
COV(H], Hp) = E (;Zxﬂ ;ijq/) - H[Hp
= (Z iz + Z >z 33,'1') — H;Hy

J J#5

= E—;[anl +n(n — 1)H Hy) — HiHyp

1
= ;(H"I — Hal)

and
Var(H) = ZVar (H) + 3" Cov( H, Hp)]
1 I
= —[Z H(1—H)+Y_ > (Hp - HiHy)
1 Ul

where the two-locus heterozygosity Hy = E(z; z 1) is the probability that a random

individual is heterozygous at loci ! and !'.

The sample variance of single-locus heterozygosities is
1 .
2
= —— _SY(H -

=t
1 3
Ly
m

1

——-—1) Z Z ﬁlﬁp

m(m — 1 1l

i

with

E(s}) = Z[H,+ ~Hi(1- H)

—W—]—-— ZZ [HIHI' + (Hll' = HIHI’)]

1 I'#

1
m

Note that E(H?) = H? + Var(H;) and E(H; Hy) = HiHy + Cov(H, Hy).

9



To get the variance between populations, we need to take into account the
dependence between members of the same population, caused by the founder effect.

Let
M; =E(zuzjn), j#J

where M is the probability that two individuals in the same population are heterozy-

gous. Then,
E(H) = H
Var(H)) = —E(Zx,,+22w,zxﬂ) — [B(H))?
3 J#d
1
= (M- H})+ —(Hi — M)

Averaging over all m loci

H=

.1
ZH1=—m‘ZXl:$ﬂ
2

1
m=

Denote by My the probability that two random individuals from the same population

are heterozygous, one at locus [ and the other at locus B
My = E(zjzjmn)

Then,

B(H) = %ZE(I?:)=;1;ZH:

Vel = B (ETA+TE Teans

J i'#3 1

+;;zww+zzyﬂzzwwd—2

I'#l 1 I'#l

= # S_I;(M, —H)+ 32D (M — HIH")}

1 VA

+ ! [Z(Hz — M+ (Hw - Mu')} (1.3.4)

2
mn 1 I#l

The four terms in expression (1.3.4) can be rearranged to show how populations,
loci, and individuals contribute to the variance of the average heterozygosity by setting

out the calculations in a framework similar to that used for an analysis of variance.

10



Now, an index i is added to the indicator variable to denote the population

being sampled, i.e.,

1 if individual j from population i is heterozygous at locus [
Tijl =
’ 0 otherwise
When m loci scored on n individuals taken from each of r populations, the indicator

variables can be represented by the linear model
Tiji =a,—+ﬁ,~j+71+(a’y),~1+(,3'y),-ﬂ, 1=1...,n, 13=1...,7 [=1,....m

where a; represents the population effect, 3;; the individual-within-population effect,
~ the locus effect, (ay)a the population-by-locus interaction and (07)i;i the "locus
by individual within population” interaction. 7 is a fixed effect, since the same loci
are repeatedly scored (the investigator is interested in these particular loci only) and

all the other effects are considered random.

E(e;) = 0, Var(e;) = o}
E(B;;) = 0, Var(8;;) = o,
(m) =H
((ay)a) =0, Var((e)a) = op,
((B7)izt) = 0, Var((By)i) = ofiyp

H o o

The analysis of variance format is shown in Table 1.1 and expectations of the

terms defined in this table are

E(e}) = o+l +7 +on+0ip

E(:cf] = mzaf, + mza?/p + (21: H1)2 + moﬁ, + maf,-/p

E(z?) = n’ol+ na?/p +n?HE + n?ol + na',z,-/p

E(z2) = n’m’cl+ nm’o}, + n2(z’: H))? + n*mo? + nmoy;,
E(z%) = r’sl+ rna?/p +rin?H} + rn2az, + rna;‘:-/p

E(z2) = r’m’cl+ ram’ol, + r2n2(; H)? + rn*mo? + ramot;,

and

E(SS1) = rnmol+ rma?/p + %(Z H)? +rnok + rojyy,
1

11



Table 1.1: Analysis of Variance for Heterozygosity

Source df. Sum of Squares  Expected Mean Square
Populations r—1 §8,-C ol It mcr?/p + ncr;‘;, + mncr;‘;
Individuals r(n—1) SSy— 881 o}, +mol,
within populations
Loci m—1 S83-C  op,+noy+L
Loci by (r—1)(m-1) 884-88 of,+ nof,
populations -S$S3+C
Loci by r(n—1)(m—-1) S8 —S55; a,zi/p
individuals -884+ 585
within populations
Total mnar — 1 SSs-C
581 = —Sa? $5, =LY 55 =—Y 4
nm 4 m S5 rm 4
55 =1, $5=YYYe,  O=——d
neEa T 5T mnr

Ti5. = z Tzl

1

I..| = Z Tijl
J

i1 = ) Tiji
J
.. = Z Z Z Tiji
L I |
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rn
E(5S;) = rnmo.+ rnmo, + E(Z H)? +rnol + RO p
]
E(S5S3) = nmo.+ mo;;, +rn ZI: H; + nmol + moy,,
E(SSs) = rnmaz + rma?/p +rn XI: H; + rnmo? ot rmah/p
E($§Ss) = rnmo’+ rnma,?/p +rn Y H + rnmoy + rRmo/,
1

E(C) = nmol+ mol), + %(Z H)? + no’ + ofyyp
1

These expressions lead to the expected mean squares in Table 1.1 and

1
= — H, — H)? 1
L m—lzl:( I ),m>

The four variance components are:

for the population effect,

1
0t = ————=> "> (M — HiHy),

m(m — 1) T i3

for the individual-within-population effect,
1
o}, = —— (Hwp — M),
"~ m(m—1) 2,: ;

for the population-by-locus interaction,

1
EI: m;z M”I - H]Hp

£l

1
m
and for the locus—by—individual—within—population interaction,

alt/p = Z HI — 1) ZZ H"' - M"')

For comparative studies of DNA sequences, statistical methods for estimating
the number of nucleotide substitutions are required as are models for the molecular

evolution of the sequences (Gojobori et al., 1990).

Denote by I(t) the probability that two nucleotide bases at corresponding (ho-

mologous) sites at time ¢ are identical to each other. First, let us assume that the

13



substitution rate is the same for all pairs of nucleotides and constant over time. The

substitution process is described by a single parameter, o say.

Consider the probability that two homologous nucleotide sites are identical to
each other at time ¢ and are also identical at time ¢ + 1. In this case, there are two
mutually exclusive events: one when both bases change into two other identical bases,
having probability 3a?, and the other when both nucleotide sites remain unchanged,

having probability (1 — 3a)?. Therefore,

two nucleotide bases remain identical at the site
r
at time ¢ + 1 when they are identical at time ¢

} = [(1 — 3a)? + 3a%]I(2)
(1.3.5)

Now, consider the case where the bases are different from each other at time ¢
and become identical at time ¢ + 1. There are also two mutually exclusive events in
this case. The first event is when a change occurs at one of the two corresponding
sites but the other site remains unchanged. This occurs with probability 2a(1 —
3a). The second is when both nucleotide bases change into two other identical bases

simultaneously. This occurs with probability 202. Therefore, -

two nucleotide sites become identical at time ¢ +1
when they are different from each other at time ¢

} = [2a(1-3a)+207[1—1(t)] )

(1.3.6)
Thus, from (1.3.5) and (1.3.6) we obtain

I+ 1) = (1 - 30)% + 3a)I(t) + (2a(1 — 3a) + 22°)(1 — I(1)) (1.3.7)
Satisfying the initial condition that I(0) =1, the solution of the above equation is
I(t) = %{1 +3(1 = 8a + 1602)'] (1.3.8)
Since a is generally very small, the terms in o® in (1.3.8) are negligible and we get
I(t) = %[1 +3(1 — 8a)!] (1.3.9) .

By solving a differential equation derived by substituting dI (t)/dt for I(t+1) — I(t)
in equation (1.3.7) (Nei, 1975) we get

I#)=1—->(1—e® (1.3.10)
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The mean number of nucleotide substitutions accumulated per site at timetis 2x3at.
The factor 2 comes from the fact that the divergence of two sequences involves two
evolutionary lines each having the time length t. Let K = 2 x 3ot be the evolutionary

distance in terms of accumulated changes (i.e., the number of nucleotide substitutions)

and Fp =1 — I(t). Then, from (1.3.10),

3 4
K = —Zln(l - §FD) (1.3.11)
The standard error of K is given by
%FD(I —_ FD)
K= 1R

where n is the total number of sites compared (Kimura & Ohta, 1972).

Gojobori et al. (1990) also construct two, three, four and six-parameter methods
for estimating the total number of nucleotide substitutions. A summary of the formu-
lae for K appears in Table 1.2 and the pattern of nucleotide substitutions according

to each model in Table 1.3.

Table 1.2: Formulae for the Number of Nucleotide Substitutions

Model Estimating Formula

One Parameter K = —3In(1 — Fp)

Two Parameters = —3ln{(1 - 2P - Q)\/(I——ZQ-)}

Three Parameters K = —1In{1 — 2P —2Q)(1 — 2P — 2R)(1 — 2Q — 2R)}
Four Parameters K = —%ln{(S”'Q‘)(52“_Qz)"[(P_R)/"’]2 [1 - M—] sw(l_w)_l}

w(l-w) 2w(l-w)
Six Parameters K = —pqln (%) — 2‘1%‘11‘.111 [%l:_q; (Flz - B+ :_3_%1)]
—2cteln [t (Pou = Bu o+ %5))

For the two-parameter model, a and (3 are the rates of transition and transver-
sion, respectively. Let P + Q = Fp, where

1 1 1 1 1
P = P(t) = Z —_ 56_4(a+'@)t + Ze—Sﬁt and Q = Q(t) = 5 - 56_&“.

P and Q represent, respectively, the fractions of nucleotide sites with transition and

transversion differences between the two sequences compared. Then k = a+20 is the
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Table 1.3: Pattern of Nucleotide Substitution

Substituted Nucleotide

Original Nucleotide A T C G
One-parameter model
A - a «a o
T a - «
C a a - o
G a a o -

Two-parameter model

A - B B a
T g - «a Jé)
C B o - B
G a B B -
Three-parameter model
A - B 7 a
T g - v
C vy o - ¢
G a v P -
Four-parameter model
A - v ba o
T vy - a fa
C 8 8 - 7
G B 66 ~v -
Six-parameter model
A - a o a
T 61 - « a
C B B - a3
G B B B -

16




number of nucleotide substitutions per site per year, and K = 2kt is the total number
of nucleotide substitutions per site between the two sequences which diverged from

the common ancestor  years ago.

For the three-parameter model (Kimura, 1981), P(t) is the fraction of sites (in
the two sequences being compared) having TC or AG nucleotide pairs at time {,
Q(t) the fraction of sites having TA or CG nucleotide pairs, and R(t) is the fraction
of sites having TG or CA nucleotide pairs:

P=Pt)=[1- e—4atB)t _ o=4(atMt | o~4B+N) /4

Q = Q(t) = [[1 — e~ HotP)t 4 emdladn)t _ =B+ /4,

R(t) = [1 + e—tatB)t _ g—d(atm)t _ e—4(ﬂ+~/)t]/4,

and K = 2(a + B + )t is the total number of nucleotide substitutions per site.

For the four-parameter model proposed by Takahata & Kimura (1981), w is the
fraction of A + T in the two DNA sequences compared. Si3 is the fraction of sites
having AA or TT nucleotide pairs. Sy4 represents the fraction of sites having CC or
GG nucleotide pairs. @, is the fraction of sites having AT pairs. @, is the fraction
of sites having GC pairs. P is the fraction of sites having CT or AG pairs, and @
is the fraction of sites having GT or AC pairs.

The six-parameter method is based on the model proposed by Kimura (1981)
and Gojobori et al. (1982) derived its exact formulation. g4, gr, gc, and ¢g stand,
respectively, for the contents of A, T, C and G in the DNA sequences compared.
Also,
p=4qa+ar, 4=49c+4c
B = pq — (zac + Tac + T1C + 276),

Er2 = (949 — Tac — £4c)(grq — Trc — 716),

Es4 = (gcp — ac — 10)(46P — T4 — TTG);

Fi2 = Taa + o717 — Tar — P° + 394971

and Fi4 = zcc + zee — Tee — ¢ + 3909,

where z;; represents the fraction of sites having the same base pairs 1, and 2z;; (1 # 7)

is the fraction of sites having different base pairs i and j (i, j = A, C, T, G).
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1.4 Specific Biological Problems and Synopsis of

the Solutions

In modelling the mutation process exhibited in DNA sequences of the human im-
munodeficiency virus (HIV) one cannot assume independency among sites. Suppose
the data set consists of a set of nucleotide (or amino-acid) sequences from different
individuals, with n sites per sequence. Each sequence is compared to the consensus
sequence at the nucleotide (or amino-acid) level. First, we consider the mutation

process at each site as a binary event (i.e., there is a mutation or not).

We formulate two models (Chapter 2). In the first model (Section 2.1), each
sequence is thought of as a degenerate lattice and we use results pertaining to spatial
theory to build up an autologistic model, where the probability of mutation at a
specific site, given all others, has an exponential form with as predictor a function of
neighboring sites. Also, since we have sequences from different individuals, we have
several independent lattices, not just one as is the case in image reconstruction where
this theory is used. Parameter estimation is problematic: there is no closed form for
the likelihood function to get maximum likelihood estimates. We therefore resort to
Markov-chain Monte-Carlo procedures to estimate the parameters. In particular, we
use the Metropolis algorithm, to generate random vectors, with the pseudolikelihood

estimates as initial values.

The second model (Section 2.2) is based on a Bahadur representation for the
joint distribution of the responses for the n dichotomous sites, assuming pairwise
dependence only among sites. The probability of mutation is no longer assumed to

have an exponential form. Parameter estimation is performed via the maximum-
likelihood method.

Then, we extend the model to three categories denoting the type of mutation
(transition or transversion) or the absence of mutation. We construct an extension
of the autologistic model (Section 2.3), keeping in mind that these categories are
not ordered. We define two dummy variables to represent the three categories. The
model is similar to the autologistic model used in the binary case, with vectors as the

response variable for each site. The estimates are again obtained via Monte-Carlo
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Markov-chain simulation.

The other problem of interest is the comparison of sequences. Comparisons can
be performed between and within individuals as well as between and within groups.
For example, we may be interested in comparing DNA sequences from different ge-
ographical areas to see whether the variability is similar in each. We develop two

approaches.

In Chapter 3 we propose a categorical analysis of variance extending the work of
Simpson (1949) and Light & Margolin (1971) to consider a number of sites (because
in the context of interest, a single position yields little information). The sequences
are not considered on an individual basis, i.e., at each position we count the number
of sequences in each category and the variability in the distribution of these counts is
considered. A test statistic is developed, assuming independence among positions, to
test the hypothesis that the probabilities of being at a certain category at a specific

position is the same for all groups.

The analysis of variance proposed in Chapter 4 is based on Hamming distances.
In comparing two aligned sequences, the Hamming distance is the proportion of po-
sitions where they differ. Our interest now is in estimating the variability between,
within and across groups. We make all possible pairwise sequence comparisons within
and across groups. Note that now sequences are considered on an individual basis.
We use U-statistics to represent the average distance between and within groups as
well as the overall distance. The total sum of squares is decomposed into within-,
between- and across-group sums of squares. The latter term is new: it does not ap-
pear in the usual decomposition. In order to find the distributions of these terms,
we use generalized U-statistics theory (Puri & Sen, 1971; Lee, 1990; Sen & Singer,
1993). We develop statistics to test the hypothesis of homogeneity among groups.

Numerical studies for the test statistics developed in Chapter 3 and data anal-
ysis, using the methodologies proposed in this dissertation, are shown in Chapter

5.

The conclusions and some directions for future research are discussed in Chapter
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Chapter 2

Modelling the Mutation Process

Our primary interest is in modelling whether there is a mutation or not at each
site. We compare each sequence to the consensus sequence and look for differences.
The response is thus binary and two alternative models are formulated: an autolo-
gistic model (Section 2.1), and a Bahadur representation for the joint distribution
of Bernoulli trials (Section 2.2). We assume only pairwise dependence among sites.

Parameter estimation is discussed in each case.

2.1 The Autologistic Model

The autologistic model was introduced by Besag (1972, 1974, 1975) and is
widely suited to spatial binary data (Cressie, 1993). This parametric family can
handle situations involving both spatial correlation and dependence on covariates.
Applications include modelling the distribution of plant species in terms of climate
variables like temperature and rainfall (Huffer & Wu, 1995a), the effect of soil variables
on disease incidence in plants (Gumpertz & Graham, 1995) and network autocorre-
lation data (Smith, Calloway & Morrisey, 1995). It is important to point out that in
these papers the whole data set consists of a single lattice, but in our case we have a

number of independent lattices (i.e., sequences).
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Let

y(i) =

0 if there is no mutation at site 2
1 if there is a mutation at site ¢

Construct 1 X n vectors, where n is the total number of sites along a sequence:
y=(y(1) ... y(n)) and 0=(00 ... 0).

The model formulation requires that we define the concept of neighborhood and in-

troduce the positivity condition.

Definition 2.1
A site j is a neighbor of site ¢ if the conditional distribution of Y(¢), given all other

site values, depends functionally on y(j), for j # i. Also define
N; = {j: j is a neighbor of i} (2.1.1)

to be the neighborhood of site . m

Positivity Condition

Let Y be a discrete variable associated with n sites. Define ¢ = {y : Pr(y) > 0} and
¢; = {y() : Pr(y(d)) > 0}, i = 1,...,n. Then the positivity condition is satisfied if
¢ = (1 X ... X (s For a continuous variable, the same definition applies except that
Pr(-) is replaced by f(-). ]

This condition states that the support of the joint distribution is the cartesian prod-
uct of the supports for the marginal distributions. It implies that considering the
elements {y(i) : i,...,n} jointly does not rule out combinations allowed in the set
{y(1)} x {y(2)} x ... x {y(n)}. For instance, this condition is invalidated for an
infectious disease model. Because of the one-way nature of infection, the following
situation is not allowed: y(i) = 1 when {y(j) =0, j € N;}, i.e., y(3) is affected when
all the neighbors of i are not affected.

Without loss of generality, assume that 0 can occur at each site. Let

Q(y) = log{Pr(y)/Pr(0)}, yE€, (2.1.2)
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where ¢ is the support of the distribution of Y. Then the knowledge of Q(.) is

equivalent to the knowledge of Pr(.), because

Pr(y) = exp(Q(y))/ yZCexp(Q(Y))

in the case of discrete y’s. A similar formula, with integrals replacing summations,

applies for continuous y’s.

Proposition 2.1 (Cressie, 1993)
The function @ satisfies the following two properties:
i‘ . . . .

Pr(y(d) | {y(s) : 5 #1}) _ Pr(y)

Pr(0G) | {y(G):J #:}) Prly;) exp(Q(y) — Q(y:)) (2.1.3)

where 0(7) denotes the event Y'(¢) = 0 and y; = (y(1),...,y(:—1),0, y(i+1),...,y(n))

ii. Q can be expanded uniquely on ¢ as

Qy) = X y@OGE)+ X y()y()Giuly(), y(4))

bX 08 Garlu), 10, v +
+y(1) ... y(n) Gra(¥(@), ..., y(n)), YEC. (2.1.4)

Note that although the expansion (2.1.4) is unique, the function {G;; .} are not
uniquely specified. By defining Gij...(y(?), ¥(J), - --) = 0 whenever one of the argu-

ments is 0, uniqueness is obtained.
Example (Liang, Zeger & Qagish, 1992)

The representation of Q(.) in (2.1.4) has been used to represent the probability

distribution for a vector x of binary responses in a saturated log-linear model:

n
Pr(x) = exp{uo+ D u;jTj+ D Uk T Tk + ...+ U12.nT1 -+ Tn} (2.1.5)
j=1 i<k
where there are 2" — 1 parameters u = (Uz, .., Un, Y11y Y12y -« -3 Un—1,n; - - -5 Y12.m) -

These have straightforward interpretations in terms of conditional probabilities. For
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example,

uj = logit{Pr(z; =1|zx =0,k #j)}, j=1...,n,
’u,ijIOgOR(:Cj,ZCk|.’E1=0,l;£j,k), j<k‘=1,...,n,

and

uig3 = log OR(z1, 22 | 23 =1, 21 =0, | > 3) — log OR(zy, z2 |23 =0,2;=0,1>3)
(2.1.6)

where

il
=

_ Pr(vzwzl)Pr(v=w )
OR(U’ w) - PI‘('U = ]-7 w= 0) Pl‘(’l) = 0’ w= 1)

The implication of properties (i) and (ii) is that the expansion (2.1.4) for Q(y)

is actually made up of conditional probabilities. For instance,

o) — Log [P 1H00) 5 # i)
o o) = g G

y(1) y(4) Gi; (y(9), y(4))
_ log{Pr(y(i) | y(G), {0(0) : T#4,5})  Pr(0(¢) | {0(0): L# i})}
Pr(0() | y(5), {0(0) : 1 #4,5} = Pr(y(s) | {0(}) : I #}

From (2.1.2), the joint probability distribution of y, Pr(y), is proportional to exp(Q(y))-
Finding the proportionality constant as a function of the parameters enables us to
write down the full likelihood and to obtain the maximum likelihood estimates of the
parameters. Unfortunately, this is not always possible. Further, there is a powerful
theorem regarding the form the function @ must take so that the conditional expres-
sions combine consistently into a proper joint distribution. We must first define a

cligque.

Definition 2.2
A clique is a set of sites that consists either of a single site or of sites that are all

neighbors of each other. m

Theorem 2.1 (Hammersley-Clifford, 1971)
Suppose that Y is distributed according to a Markov random field on ( that satisfies
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the positivity condition. Then, the negpotential function Q(-) given by (2.1.4) must
satisfy the property that if sites i,7,...,n do not form a clique, then Gi;..»(-) =0,
where cliques are defined by the neighborhood structure {N;:i=1,...,n}. [

Assuming only pairwise dependence between sites,

Q)= 3 v G+ X y(&)u() Gy, y(s)) (2.1.7)

1<i<n 1<i<j<n

Since y(i) is either 1 or 0, the only values for the functions G needed in (2.1.7) are
G,‘(l) = Oy and G,‘j(l,l) = Yij- ThuS,

Q) =S eui)+ T wvl)ul) =loglPr)/P@} (@219

1<i<j<n
where 7;; = 0 unless sites ¢ and j are neighbors. Then,
Q(y) — Q(y:) = i y(8) + 2 % y(1) y(4)
Jj=1

where 7;; = 7;i and, to maintain identifiability of the parameters, v;; = 0. Therefore,

from (2.1.3),

Pry() 1 {¥(G) T # 1) _ roe (i) + S s w0l
Pr(0G) [ {w():J #1}) p{oiy(z) + JZ::I%J y(2)y(5)}

Because y(i) =0 or 1,

Pr(0(i) | {y() : 7 # 1}) = 1 + exp(oy +1§_‘,’-‘_1 ¥i; ¥(3))

and

exp(e y(8) + Th1 75 ¥(3) y(5))
1+ exp(ai + X5y %5 ¥(9))

Py(i) [ {y() : 5 # D) = (2.1.9)

Even with just pairwise dependence this formulation may involve too many parame-
ters for data sets of moderate size and we need to reduce the number of parameters

by imposing some constraints. For instance,

e For the a’s,
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1. oy’s all different;
2. a; = a, Vi

3. a different o; for each specific amino acid (or nucleotide) in the consensus

sequence.
e For the 7’s,

1. ~’s all different;

2. ~i; = 0 if | i — j |> d, where d is some chosen threshold;

3. % =P

4. equal ~;; for each pair of specific amino acids (or nucleotide) in the con-

sensus sequence;

5 % =17 Vi, ]

2.1.1 Estimation Procedure

Suppose the data consist of m independent sequences with n sites. In fact, we

have yi(i), where i =1,...,nand k=1,...,m. Then, y(i) is a m x 1 vector.

We can get approximate estimates by using the pseudolikelihood function Lp
(Besag, 1975), i.e. the product of the conditional probabilities, which specifies the

model assuming independence among sites.
Lp(8;¥(1), .-, ¥(r)) = [IPr(y()) [ {¥(5) : 5 # }:6)
=1

where 8 = (a3,..., ;M2 -+ ,Vn_1n) is the parameter vector. Since the sequences

are independent, we can write

n

,fl LPr(u) | ) 3 # 3

Lp(6;¥(1),.--,¥(n)) =

n {exp[a,- ve(®) + 271 ik v () ye(5)] }

- 2.1.10
;=Hl 1+ exples + X0 i Ye(d)] ( )

The maximum pseudolikelihood estimate (MPLE) is the value of @ which maxi-
mizes Lp, i.e., (2.1.10). The MPLE is consistent and asymptotically normal (Comets,
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1992; Comets & Gidas, 1992). It has some disadvantages: its efficiency is unknown
and expected to be inferior to that of the maximum likelihood estimate (MLE). Also,

there is no direct way of obtaining standard errors for the estimates.

In order to calculate the MLE we need to proceed by Markov-chain Monte-
Carlo simulation as proposed by Geyer & Thompson (1992). We can write the joint
distribution of y = (y(1),...,¥(n)) as

Pr{y(1),...,¥(n); 8} = C(O)F(¥(1),..,¥(n); 6).

where F is an explicitly computable function and C(8) = Pr{0(1),... ,0(n); 0}. For

the autologistic model,

F=exp{iz";a,-yk(i>+i > 7.-,-yk(z'>yku)} (2.1.11)

k=1 i1=1 k=1 1<i<j3<n
Fix some specific value of @, 8o say. Suppose we can generate a random vector
(Y'(1),...,Y'(n)) from the distribution with 8 = 8. The random variable

F(Y'(1),...,Y'(n);6)
F(Yl(1)7 ..., Y'(n); 6o)

has mean

Fy(1),.-¥()i8) ooy piy),...,y(n): 8
Y'(1),..Y'(n) F()"(l),---,y’(n);Bo) ( ) (y( )’ ’yl( )a )

=C(6) Y FFQ1),...,¥(n)0)

y'(1),...Y'(n)
) since ! '(n); 0) =
- Sa e B COFW-¥(00) =1

Then, suppose we have a (not necessarily independent) set of random vectors (YD(1),
..., YD), r = 1,2,..., R, each drawn from the distribution C(60)F(.;8q) for
some fixed 8. Denote the observations by (Y(1),...,Y(n)). The function

1 E FYYQ),.., YO (n):8)  F(Y(1),-..,¥(n);60)
HO) = 3 2 FyO(D), ... X (n); 8) ~ F(Y(D),-., ¥();0)

(2.1.12)

is an unbiased estimator of the likelihood ratio of 6, to 8,

C(80) F(Y(1)...,¥Y(n);6o)
CO)F(Y(1),...,Y(n);0)
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since

1 F(Y(1),...,Y(n); °)§E F(Y"(1),...,YD(n); )
R F(Y(1),...,Y(n);0) = [F(Y(1),..., Y (n); 80)
C(80)F (Y (1), ., Y(n);

C(8)F(Y(1),...,Y(n);

To obtain the MLE of 8, use equation (2.1.12), based on a single simulated sequence,

and minimize it with respect to 8 (Geyer & Thompson, 1992).

Here

is a summary of the procedure:

Choose a model, as in equation (2.1.9).

Use the MPLE to generate an initial point estimate (8o) for the unknown pa-

rameter vector.

Use Gibbs sampling or the Metropolis algorithm to generate a simulated se-
quence of random vectors from the distribution with parameter vector 8¢. Dis-
card an initial warm-up sample, then generate random vectors YO Y®

Select R vectors (R should be at least 1000) by sampling every k (50, say)

because of the dependence between successive vectors.
Use equation (2.1.12) to define H(8), the simulated likelihood ratio of 6, to 6.

Using numerical optimization, maximize the function —log H(8) to obtain the
MLE @, and use the equivalent form of the observed information matrix to

evaluate standard errors for these estimates.

Alternatively in (3), instead of sampling every k, R samplers can be initiated at

different values, discarding an initial warm-up at each. =

The Gibbs Sampler algorithm (Geman & Geman, 1984; Gelfand & Smith, 1990)

and the Metropolis algorithm (Metropolis et al., 1953) are special cases of the Hastings
algorithm (Hastings, 1970; Peskun, 1973). An explanation of how these algorithms

work and of the differences between them follows.
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Hastings’ Algorithm

Suppose we want to generate a discrete or continuous random variable (scalar or
vector) Y which takes values in a space T with density 7(t). We assume that 7(.) is
completely specified up to a normalizing constant. We also select a Markov transition
kernel q(s,t), s, t € 7, which is used to generate trial values of Y. In the discrete
case, the interpretation is that if the current values of Y is s, the next trial value is ¢
with probability g(s,t). The choice of q(.,.) is almost arbitrary and the performance
of the algorithm may vary according to this choice. The algorithm follows.

Step 0: Take an arbitrary starting value Y = t; and set 2 = 0.
Step 1: Given Y = t; = s, choose a new trial value according to the probability
distribution g(s, 1), s, t € 7, where 7 = {0, 1} and

q(s,t) =Pr(Y1=t|Yo =10 = s)

is an arbitrary Markov kernel (generating an irreducible and aperiodic chain).

where m(t) is a distribution specified up to a normalizing constant. Here 7(.) =

F(.;8,), where F is given by (2.1.11).

Step 2: Calculate

Step 3: Generate a random variable

1 with probability a(s,t)

0 with probability 1 — a(s,t)
Step 4: f U =1, move to ¢, 1.e., ti}y = 1. Otherwise t;4; = t;.
Step 5: Set ¢ : =1+ 1. [
Metropolis’ Algorithm

q is taken to be a symmetric random walk, i.e., q(s,t) = g(t,s). Then, in step 2:

a(s,t) = min{:—g—)), 1}
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The Gibbs Sampler Algorithm

For the Gibbs Sampler, each of the updating steps corresponds to generating a new
value from a particular conditional distribution, i.e., we always accept the new value.
Then, in step 2: a(s,t) = 1. In our specific case, we are generating m independent
sequences of length n and the Gibbs sampler proceeds as follows:

Step 0: Take arbitrary starting values, say (y1,Y2,---,Yn). Define yﬁ-o) =y J =

1,...,n. Let : = 0.
Step 1: Given the current values of y£i), yéi), ...,y generate a new pseudo-random
value from the conditional distribution of Y; given Y; = y§~i), j=2,...,n, and call it

y?H). This probability distribution is given in equation (2.1.9), i.e.,

exp(ai y(2) + Xj=1 Vis y(¢) y(4))
1+ exp(es + Xi-; 15 ¥(5))

P(y() [{y() 5 #H) =

Step 2: Given the current values of y{"'H), y:(;i), ..., y%), generate a pseudo-random
value from the conditional distribution of Y3 given ¥; = y£i+1), Y;-(i), j=3,...,n,and
call it ygi+1).

Continue updating one component at a time until...
Step n: Given the current values of y%“’l), ygﬂ),_. ey y,(,ifll), generate a pseudo-
(i+1)

random value from the conditional distribution of Y given Y; =y; "/, y=1,...,n—
1, and call it y{Y.

Step n+1: Set i :=i + 1 and return to Step 1.

A single cycle through steps 1 to n+1 completes one iteration of the algorithm. We
will discard an initial warm-up sample, then generate R random vectors by sampling

the chain every k cycles. n

2.2 Model based on the Bahadur Representation

Let y, = (yx(1) ... yk(n)) be the 1 x n vector representing the binary responses
for the n sites along sequence k, i.e., whether there is a mutation or not at each site

along the sequence. Since each y(i) (¢ = 1,...,n) assumes the value 1 or 0, the
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random variable Yi(i) is a Bernoulli trial with parameter & = Pr{Y¥(i) = 1}. Then,
E[Yi ()] = & and Var[Yi(i)] = &(1 - &)

- Yi(i) = ¢

Zu(1) = _i:_'
) &(l - &)
and

ri; = BZ(i) Ze(5)], rist = ElZ6(3) Zu(5) Ze(D), -+ 712.m = BZ(1) Z&(2) - .- Zi(n)]

So, r;; are second-order correlations, r;;; third-order correlations, and so on.

Hence, there are ('2‘) + (g) +...+ (:) = 2" — n — 1 correlation parameters.

Denote by Py the joint distribution of yx(1)’s when they are independent, i.e.,
Pk (ye(1), - .- ve(n)) = H e (1 - g)tmud (2.2.1)
=1
Let P(y,) be the distribution of Yy, where Yz = (Vi(1) ... Yi(n)) is a 1 X n vector
denoting the response random vector for the k-th sequence.
Proposition (Bahadur, 1961)
For every y; = (yk(1)7 R yk(n))7

P(yi) = Puk(ye) fF(¥1), (2.2.2)

where
flye) =14 Er,, 2(D) ze(f) + ..+ 12 (1) 2(2) ... zk(n) (2.2.3)
[ ]

If we assume pairwise dependence only, the distribution of Yy is

P(y:) = Puw(ye) 1+ i zi(i) ze(5)]

i<y

H e (1 — &) O[1 + 3 rij 21(5) 26(5)]

=1 i<j

I e -6

1 ri ye(d) = & )] y
[ +Z (\/s. 1-¢) ) (\/Ej(l-éj) 224
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2.2.1 Estimation Procedure

Let 0 = (fl,...,fn,rlg,...,7'1,,,7"23,...,rgn,...,rn_l,,)'. An estimate of @ can be
obtained by maximum likelihood. The likelihood function for sequence k is given by

(2.2.4). For m independent sequences, the likelihood function is

L(a;yl,y27 e aym)
_ ﬁ 1'-'[ £ (1 _ g)1-ueld)
k=11=1

Tii ye(t) — & veld) — & 225
x[l-*—;j ij (\/g(l_&)) (\/5(1—53))] | |

2.3 Models for Three Categories

In this section, we extend the number of categories of interest, investigating not
only if there is a mutation, but also the type of mutation. The events can fall into
one of three categories: transitions (A ¢ G or C « T), transversions (A « C,
A & T, G & C,or G« T) or no mutation. An extension of the autologistic model

is proposed by creating dummy variables to represent the categories (Section 2.3.2).

2.3.1 Overview of the Literature

Little has been done to extend the classical autologistic model. Strauss (1977)
thought of a black-and-white picture as a binary lattice and generalized his analysis
for a multicolored representation. With a set of n sites, associate with site ¢ a random
variable y; determining its color. The ’color’ y; = 0 is available at each site. Therefore

Pr(0) > 0 and as in equation (2.1.2) we can define:

Q(y) = log{Pr(y)/Pz(0)}, (2.3.1)

where y = (y1,. . .,Yn). Following equation (2.1.4) he expands Q(y) as

Q)= Y uiGiw)+ Y %iviGiulysy)+. Ty Yn Gr.n(W1s -5 Yn)
1<i<n 1<i<j<n
(2.3.2)
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Consider now the special case where the sites are arranged in a regular lattice, and
each site has one of ¢ + 1 colors, denoted by y; = 0,1,...,¢c. Two assumptions are

needed to obtain a workable statistical model.

(a) Homogeneity
If S is a set of sites, then Pr{Y¥; = y;,Y; = Yjserr Ys = Ys (4,,...,5) € S} should
be the same for any set of sites derived from S by translation, rotation or reflexion.

This condition requires that all subscripts be dropped from the functions G.
(b) Pairwise dependence only

With assumptions (a) and (b), we have

Qy)= 3 wG)+ Y. i Glyivs)-

1<i<n 1<i<j<n
For the multicolored case, it is more convenient to write
u, = r G(r) and v,, = rsG(r,s).

Then

Qy) = XC: My + i Xc: TrsUrs | (2.3.3)

r=1 r=1s=1
where m, is the number of sites with color r and n,, is the number of pairs of

neighboring sites where one has color r and the other color s, and

Pr(y) o< exp{}_ metty + D_ D Nralrs}

r=1 r=1s=1

Equation (2.3.3) usually involves too many parameters, and in analyzing actual data

one hopes that the following assumption is valid.
(c) Color indifference

Suppose that for any pair of neighboring sites 7 and j

Q0,...,0,5:,0,.-,0,y5,0,...,0) = Q(0,..-,0,9;,0,...,0)

is independent of y;, for y; # yi. This means that the affinity between any two colors

is the same as that between any other two, which may be appropriate when the colors
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are unordered. It follows from (2.3.3) that vy, is constant for all r, s (r # s). Since

}: Nys + z n,, is fixed, for a given lattice, reparametrize and take v,; = 0 for r # s.

r#s r
Thus, with assumptions (a)-(c), the model becomes

Pr(y) « exp (Z mey + Y nsvs) , (2.3.4)
r=1 s=1

where the subscripts of the n’s and v’s have been dropped, and here n, represents
the number of pair of sites with the same color. It is possible to express (2.3.4) in a

conditional form: for any internal site yr,

exp(uj + v Njrs)
1+ 25y exp(ui + viTirs)
where njy, is the number of sites colored j with neighboring sites (r,s).

(2.3.5)

Pr(y,, = j | other sites) =

Because of limitations in the estimation procedure, the model is simplified even
further and reduces to a single parameter v or u. When conditioning on the observed
m,’s, the u,’s become nuisance parameters and v, is the focus of attention, where v,
measures the ”clustering tendency”. Then

c
Pr(y;v1,...,0c) X €Xp (E nw,) (2.3.6)
s=1
Assuming that the strength of attraction is the same for all colors; i.e., v; = v2 =

.. = v, = v, (2.3.6) becomes

Pr(y;v) « exp(vy), (2.3.7)

where y is the number of adjacencies of like color. When conditioning on the observed
n,’s, the v,’s become the nuisance parameters and u, is the ”"coloring tendency”.

Then,
Pr(y; u1,- .-, Uc) X €XP (Z m,u,) (2.3.8)

r=1

If we assume that the ”coloring tendency” is the same for all colors, i.e, u; = uz =

. = u, = u, (2.3.8) becomes
Pr(y;u) o exp(uy), (2.3.9)
where y is the number of adjacencies with the same color.

A x*-approximation to the distribution of Y is obtained after calculating the
first two cumulants of y. The MLE for v or u is calculated from this distribution.

The resulting models are so simplistic that they are of little practical use.
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2.3.2 An Alternative Extension of the Autologistic Model

Let y,(2) = (y1x(é) y2k(1))’, where

(i 1 if site 7 of sequence k is in category 1
Yield) =
0 otherwise

and
. 1 if site 7 of sequence k is in category 2
yar (1) =

0 otherwise
Note that if y1x(i) = 0 and ysx(:) = 0 there is no mutation at site ¢ of sequence k.
Thus, we have y,(i) = (0 0)' if there is no mutation at site 7 of sequence k, yi(1) =

(1 0)' if the substitution falls in category 1 and y, (i) = (0 1)’ if the mutation falls in
category 2.

Let Gi(y,(5) = (G (y1x(2)) G (yar(i)))-
Then,

n

Q) = Ly Giyi()+ X y1e(i) y1x(5) G (wie(5), y1x(9))

+11<§<n yar(?) y2i(J) G )KKK)'Eyak(i), Y2k (7))
+ 1<§5n y1x(8) vk () G52 (e (d), yar(3))
= 2n;[yuc(i) GO (y1x(0)) + yar() G2 (y2x(3)))]
:Kg("yuc D) () G (@), yix(4))
+zy ) yar(5) G )(yzk(z) yax(5))
A }: () y2u3) G (), k)

Assuming homogeneity, all subscripts can be dropped from the functions G, which
yields

0y) = S luseli) G (r(i)) + yar(i) G (yae(i))

i=1

+ Yy y(G) GMY (yir(d) k()

1<i<5<n
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+ Yy (i) GP (yar(d), yar(9))

1<i<j<n

+ Z Y1k(2) yar( J)G(’ (y1k(7) yar(7))

1<i<3<n
= Mk oy + Mok &2 + N11k Y11 + N22k Y22 + Ni12k Y12

where G = a; , G® = 0y, GY = 744, G2 =~y , G1? = 7y5. myx and my; are
the numbers of sites along sequence k in category 1 and category 2, respectively.

Ni1k, Nogk and nygx are the numbers of pairs of sites from sequence k with both in
category 1, with both in category 2, and with one in category 1 and the other in

category 2, respectively.

If we do not assume homogeneity among sites,

Qyr) — Qlyw) = ylk( ) a1 + yar(8) oz
+Z[y1k (¢) y1x(7) ’Y.J' Y 4 yo(3) yar(5) 'y,J’ D 4 yu(s) yar (g )7,(; 2)]

where G( ) = oy, G( ) = agi, G(l 1 = (;’1), G.('f”z) = '71(12 ) GE;,z) = '71(11 Y

Therefore,

Pr(y,(?) | {y:(§) : 5 # 1}
Pr(0k(¢) | {yx(4) : 5 #1})

= exp{Q(y) — Q(y:)}
= exp{y'(6) @ + Y (v () y1e(s)  y2r(8) y2r(§) y1e() k(7)) v}

=1

where o = (a1 aai), Yi(i) = k(i) v (D)), ¥ = (450 25D 452

and 0(z) = (0 0)'.
So,

exp(By,(1))
1 + exp(B:) + exp(B2)

Pr(y,(3) [ {yx(s) 15 #1H) = (2.3.10)

where y, (s) € {(00), (10), (01)'} and B = (B By)' with
Bl—“alz+zyl ’Y;(]ll)'i'}:y ’7’;(]12)
7=1
and
B, = Z 12) Z (1,2)
2 = ani + 3101 + 2w

ij=1 1=1
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Estimation Procedure

The estimation procedure in the three-category case is analogous to that of the
classical autologistic model (Section 2.2). Only now, we have to generate vectors on
the set {(0 0)', (1 0)’, (0 1)'}. Recall that the vector (0 0)' represents no mutation,
(1 0)' category 1 and (0 1)’ category 2. These vectors are generated from the con-
ditional distribution (2.3.10), with initial estimates obtained by maximization of the

pseudo-likelihood function.
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Chapter 3

Analyzing the Variability in DNA

Sequences

The focus here is the comparison of sets of sequences. For example, we are
interested in comparing DNA sequences from the human immunodeficiency virus
(HIV) from different geographical areas to see whether the variability is similar in
each. Similarly, when we study several individuals and obtain a set of sequences from
each individual at different time points, our interest lies in estimating the variability

between and within individuals.

Simpson (1949) proposed a measure of diversity for categorical data in terms of
frequencies for each category. On the basis of a similar measure of variation, Light &
Margolin (1971) developed an analysis of variance (CATANOVA), for one-way tables,
suitable for categorical variables. The properties of the components of variation are
investigated under a common multinomial model. This framework can be used to
compare the variability of the response variable at a single position between and
within groups. We consider a number of sites because, in the context of interest (the
analysis of HIV-1 sequences), a single position yields little information. Components
of variation are derived from the fact that the sum of squares of deviations from the
mean can be expressed as a function of the squares of the pairwise differences for all
possible pairs (Section 3.1). The sequences are not considered on an individual basis

but only as contributing to the overall variability in the distribution of the categorical
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response. We partition the measures of diversity according to the factors considered
(Section 3.2) assuming independence among positions (Section 3.3). We develop a
test statistic for the null hypothesis of homogeneity among groups (Sections 3.4 and

3.5) and assess its power (Section 3.6).

3.1 Variation in Categorical Data

For categorical data, the mean is an ill-defined concept. Therefore, measures
of variation, such as the variance, which are meaningful for continuous variables, no
longer apply. Gini (1912) found an alternative way of characteryzing variation and

developed a measure of variation for categorical data.

Let X1, Xo,...,Xn denote measurements of N independent experimental units.
The variance of X may be expressed as E¢(X1, X3), where ¢(a,b) = ;(a — b)? (Ho-

effding, 1948). In a similar fashion, the sum of squares is

N _ 1 N y‘
5SS = Z(X, - X)2 = — ) (X,' - Xj)2 (3.1.1)
i=1 2N i=1 j:;
Ly S d=t ¥ &
= — di' g d...
2N i=1j5=1 ’ N 1<i<N ’

where X = Ef\;l X./N and d,'j = X,' —Xj.

In the present context, each X; falls into one of C possible categories. Define

d(X,',Xj) = d.'j as

= { 1 if X; and X; belong to different categories (3.1.2)
0 if X; and X belong to the same category.
Definition 3.1
The variation for categorical responses Xi,..., Xn is
1 LN 1 M X
Dy = Eﬁ;;dij = ﬁf;;d&j (3.1.3)
where d;; is defined in (3.1.2). |
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As each response assumes one and only one of the C possible categories, the data
is summarized by the vector ® = (ni,.. .,nc) where n; 1is the number of responses

in the ith category (: = 1,...,C), so that ¥¢ n; = N. Then the variation in the

responses is defined as
1
"™

Dy = Zn,nJ [NZ Zn] 2
= %{1—22(%)2} . (3.1.4)

If py,...,pc stand for the probabilities of X belonging to these C categories, the

Lol )

_N
T2

Simpson’s Index of ecological diversity is defined as

C
Is(p)=1-pp=1->_7 (3.1.5)

=1

and its corresponding sample counterpart is

Is(p)—l—pp—l—an (3.1.6)
i=1
where p; = n;/N,1=1,...,C relate to the sample proportion. Therefore, we have
N .
Dy = —'2—IS(P)

The definitions (3.1.4) and (3.1.5) are motivated by two properties.

1. The variation of N categorical responses is minimized if and only if they all

belong to the same category, i.e., pi =1, Vi=1,...,C.

9. The variation of N responses is maximized when the responses are distributed
among the available categories as evenly as possible, i.e.,, pi = 1/C, Vi =

1,...,C.

3.2 Partitioning the Measures of Diversity

Let X¢ = (X%,X%,...,X%) be a random vector representing sequence i of

group g. Suppose i = 1,..., NV, k=1,...,Kand g =1,...,G. So, X3, represents

39



position k of sequence i of group g. X% is a categorical variable assuming C (un-
ordered) categories. For instance, if comparisons are made at the nucleotide level,

zd € {A, C, T, G} and there are 4 categories.

First, assume there is only one position for each sequence. We summarize the

data in Table 3.1.

Table 3.1: Summary of the Data (one position)

Group
Sequence | 1 2 3 ... G
N zh, Tk =X z$

Now d;; is defined as
1if X7 # X7
Y 0if X7 # XJ .
The total number of responses is
G C c G
NG = Zn.g = ch. = }_‘chg
g=1 c=1 c=1 g=1

where n, is the number of responses in category cfor groupgand N =n,4 = 0 | Neg
is the number of responses for group g, which here is simply the number of sequences

in each group. The Total Simpson Index (TSI) is

TSI=1- fj (13(:)2 (3.2.1)

c=1

The dispersion within group g (i.e., within 21, 2,... ,TY) is

1- zc: (%—i)z (3.2.2)

c=1

40



Therefore, the within-group Simpson Index (WSI) is found by averaging (3.2.2) over
all ¢g’s:

WSI:é—i{l—EC:(ZCQ)z}=1—GZG:2C:(]—7:%)2 (3.2.3)

g=1 c=1 9 g=1c=1

The between-group Simpson Index (BSI) is

G C e 2 C Ne. 2
BSI = TSI-wsI=¢Y > (5%) -3 (%) (3.2.4)
c=1

g=1lc=1

Now, assume there are K positions along each sequence. We have X! =
X9 X9 .. X% ) and X9 = (X{,X4,...,X})". The data are summarized in Table
117 <442y y MK 1 2 N
3.2

The total number of responses is
K c

G C G K
NGK =) ng = > ne. = Yona= S35 e
g=1 c=1 k=1 c=1g=1k=1

The interest is in assessing the homogeneity among groups: the null hypothesis
is that pegr = Pox Where peg is the population probability of belonging to category c
in group g at position k. One could argue that this is the classical Pearson’s x? test,

but note that the classical Pearson’s x? statistic for Table 3.2 1s

with K(G — 1)(C — 1) degrees of freedom. The limiting x*-distribution is a close
approximation only when the cell frequencies negk’s are all large (at least 5). In
analyzing amino-acid sequences, we know that these conditions are not met. The
distribution at a single position usually exhibits a few polymorphisms with very low
frequencies. Just as for Fisher’s exact test, the exact null distribution is difficult to
implement for small values of N, when G or K is not small. Moreover, if the number
of degrees of freedom of the x2-statistic is large but the noncentrality parameter is

not proportionally so, the resulting test is likely to have less power than some tests
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Table 3.2: Contingency Table (K positions)

Group Position 1 2 C Total
1 1 ni1 Man nen nini=N
1 2 N1z N212 ne12 naz=N
1 K nnK N2k noig | nak =N
TOt&l n11. nai1. nei. ng = NK
2 1 ni21  Na2l nea nog =N
2 2 n122 222 nca2 N2 = N
2 K N2k N22K ne2kK Naok = N
Tota.l Ny9. N92. nea. N.g. = NK
G 1 nig1  M2G1 ncg1 | nea=N
G 2 niGg2 N2G2 negz | nag2=N
G K niGK N2GK negg | nek =N
Total niG. naG. nee. ng. = NK
TOTAL n1.. na.. ne.. | n..= NGK
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directed towards specific alternatives. Note that the number of degrees of freedom
here is usually large: for instance, comparing two groups of sequences 100 nucleotide
long yields 300 degrees of freedom. For these reasons we use another approach to

assess homogeneity among groups.
The variation within the gth group at the kth position is
C 2 o 2
Ncgk Negk
() £ )
c§=:1 ( N.gk ) c::z:l N
since n.gx = N. The variation within the gth group is
c 2 c 2
n n
-3 (__9_> —1— (_1)
S \ng ; NK
since n.g. = NK. The measures of dispersions are

B S

=1 c=1

c

T§I=1-%. ( N”GK)2 : (3.2.6)

c=1

G C 2 C 2
ad BSI=TSI-WSI=GY Y (32) Z(NGK) . (327

g=lc=1 c=

3.3 The Probabilistic Model

Assuming that responses in different groups are independent, for each group and
each position, the responses (nigk, Nagk, - - - ,negk) follow a multinomial distribution:

N C
Pr{nlgka Nagks -+ ank} = (nl " ne k) H(pcgk)ncgk’
gk« -+ g

wherer=1pcgk=1,pcgk>O,c=1,...,C,k=1,...,Kandg=1,...,G

E(ncgk) Npcgk Va'r(ncgk) = Npcgk(]- - pcgk)

and Cov(nclylkl ’ nczgzkz) = _5Np6191k1 Peagaks ‘Where

{1 if g1 = g and k1 = ky

0 otherwise
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ncgr denotes number of responses in category ¢ at position k for group g and

Pegk the probability of being at category c at position k for group g.

If we assume that the positions are independent, the model is

K
H PI{(nuk, e Lk N12ky - - - 3 TVC2ky » -+ 2 TVIGKS « » anCGk)}
k=1

G K
= II TI Pr{(migr nagt, - - - - mogh)}

g=1k=1
G K c
_ N Negk
- 1011 ( ) e
g=1k=1 Nigk - - -NCgk/ c=1
Then V, = (nig1 - .. NCgi Nig2 - - NCg2 - - - Mgk -+ negk ) is a CK x 1 vector

and V=(V:V,... V) is a GCK x 1 vector.

E(V) = p= N[.l.o = N(pul ... pPci1 --- PIGK --- PCGK)/ (3.3.1)

A DO
Let @ denote the direct-sum operation, i.e., if C = AoB,C= ( B ) .
0

Then

Cov(V) =X NX°

= NEu®Znd® - 0Tk ®Xn O BTk ®- - & Zgk) (3.3.2)

where Xy isa C x C matrix of the form

gk = Dgr — l-"ogkl"logk (3.3.3)
with D, being a C x C diagonal matrix with elements pigk, . .., Pogk and

Bogk = (P1gk - -- Pogk)'-

3.4 Moments of Diversity Measures

Definition 3.2
Let A = (a;;) and B = (b;;) be m x n and p X g matrices, respectively. Then the

Kronecker product
ARB= (a;jB)
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is an mp x nq matrix expressible as a partitioned matrix with a;;B as the (z,7)th

partition, 7 =1,...,mand y =1,...,n.

Let

1 1 .

where Ukg is a KG x KG matrix of 1’s, Ic is the C x C identity matrix and
T° = (NGK)?T is a CKG x CKG matrix, having KG x KG partitions with each
partition being C x C identity matrix. Let M be a Gx G diagonal matrix with diagonal
elements Gn?, (= G(NK)? here), i.e., M = G(NK)*1g. Then M™! = G—(]—\—}A—,)TI(;.

W = [(M7®Ux) 8l

G 1 0
W = (—m[(IG ® UK) ® Ic] = WW (3.4.2)
Then
TSI = 1-V'TV (3.4.3)
WSI = 1-V'WV (3.4.4)
Therefore,
BSI = TSI-WSI=-VTV+VWV= V'(-T+ W)V
= V'BV (3.4.5)
where
B = —T+W——-L(U ®I)+——g——(l ® U I
= = (NGKY ke ® Ic (NGKY. G k) ® I¢)
G 1 1 R
Since

E(V'TV) = trace(TX) + p'Tp ,
E(TSI) = 1—trace(TE)— p'Tp
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1 c G K
= ! (NGK)? ZIZI;INP‘Qk(l — Pegk)
c=1g=1k=
C 1 i EK: 2
_ Np.
; (NGK)2 g=1k=1 ok
GK 1 c [& & ,
1~ NGKY * NGRY & [Z > P p]
1 1 c |G K \ \
- 1- + Degke — NPC
NGE T N(GRY & | 2 2P
EWwWSI) = 1- trace(WE) u'wW

K

c G
= NGK INCK\2 ZZ Npegk(1 — Pegk)

1g=1k=1

C G
- Npc k]
(NGK)2 ( =

c=1 g—l
1 (o] G\ K 5 1 cC G )
= 1= NGK2 t NGRE 1 2 P T G R L LPe

1 cC G K 2 )
= 1- NK NGK2 ZZ zpcyk - Npcg-]

=1 g=1 Lk=1

1 1 C G K 2 2
And E(BSI) = NE NGK+N(GK)2CZ_:1[§:_1,§:IP°"’° Npc.]
- NGK2;§—: X-:lp = VP 3"‘]
b SO S 1D SD DA
NGK N(GK)2 Slagt T
- NGK2 ;gz_: Z_:lpcgk Npcg]

Define the population variation within the gth group at the kth position as

Is(pg) =1 - chgk (3.4.7)
c=1
Ho : pegk = pek for all g implies that
Is(Pik) = Is(py) =+ = Is(Pgr) = Is(p:) >
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i.e., within-group variation at the kth position is the same over all the groups and

this implies that

| pax 1=l Pax 1=~ [ Pax Il (3.4.8)
where py, = (Pigk Pagk - - pogk) is a C x 1 vector representing the probabilities of
belonging to categories ¢ = 1,...,C in group g and position k.

If one is interested only in the hypothesis stated in (3.4.8), the hypothesis of
homogeneity among the groups (Pegk = Dex) is not necessarily true. Here, we consider
Hp : pegk = Pek-

1 1 c K
B(TSD) = 1-3eg * NGR: Y [GZpik = NG"’pZ'.]

c=1 =

1 K

= 2
= l-wext NGK2C§=:1 X_:lpck NGp,_.] (3.4.9)

1 C K
Eo((WSI) = 1l-w% NK2 Z [Zpk Np? ] (3.4.10)
k=

G-1 c
NGE N(GK)2 2 [

¢ Z [Z Pk C—lec]

NGK? = i
G-1

C K
-~ NGK NGKzZchk N Z§

c=1k=1

Eo(BSI)

G

B NGK[ - —Zzpck] (3.4.11)

c=1 k=1

Since V follows a multinomial distribution, from (3.3.1) and (3.3.2), asymptot-

ically,

% <4, N(VNp,, =°) (3.4.12)

where 3° = 5,8 3:0 - 036, Zg =20 D Tp® - OXgk, 9=1,...,G and X
is given by (3.3.3). Under H,, for any g = 1,...,G,

EQk = Zok and Eg = 23 = 201 & 202 @p--- &) ZOK (3413)
where Yok is a C x C matrix

EOk = Dk - ’l'ok""gk (3414)
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with Dy being a C x C diagonal matrix with elements pik, ..., Pck and pg =

(p1k --- Pck)'-
Therefore, under Hp,

T =NX°=NZ = N(Ig ® %)
Now,

i. Cov(BSI,WSI) = Cov(BSI,TSI—- BSI)

— Cov(BSI,TSI)— Var(BSI)
ii. Cov(TSI,WSI) = Cov(T'SI,TSI—- BSI)

= Var(TSI)— Cov(TSI, BSI)

3.5 The Test Statistic

Note that BSI can be written as

BSI=V'BV = ZZ

g=1lc=1

|

Let Ocgr = Negk — NPek = Tiegk — Eo(ncgk). Then

G K K
fo. =3 begk = ne. — NG D pok
g=

1 k=1 k=1

Also, under Hy, 8 = (6111 ... o1 --- 8cck ) is asymptotically

6
— ~ N(0,%3
ux ~ MOz
where X9 is as in (3.4.15). So,
BSI = V'BV
0.y + Npc (8. + NGPe) oo /=]
= - NKVG
ZZ [ NKVG | (NGER
Ocq. o... 1
NK =60'Bf = ————0'B°0
[NK\/(—}' (NGK)? ‘/_] G(NK)?

Hence, under Hy BSI is asymptotically

CGK

BSI~ Y X\ (Xf).-’

=1
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where (x3),’s are independent x’-random variables with 1 degree of freedom and

{Myi=1,..., CGK} is the set of characteristic roots of

1 1 N
NBES = ————B°5S [((IG ®Uk) - 5U KG) ® IC] (I ® =)

1
NGK? ~ NGK?
by (3.4.6) and (3.4.15).

Looking at Sk, it is easy to see that its rank is at most (C — 1), because of the
restriction that 5, pex = 1. In fact, the rank of each Tox is (C — 1), since any of
its (C — 1) columns are linearly independent. Therefore, the rank of XF is K(C —1).
Furth

' NGK?
premultiplied by some constants (G — 1 or —1).

B°YlisaGxG partition matrix with elements the Xox’s matrices

Note that for any k
(G-1) terms

(?— D + (G - ﬁﬁmc +...+ (G- 1)20,:—(G —~1)(G — 1)Zok
= (G - 1)220k - (G - 1)220k =0

and so
(G-1) terms

~

(G —1)(Uk ®16)%5 — [(Uk ©Ic)Z5 + ... + (Uk ® Ic)=4]
= (G — 1)(UK ® IC)L‘E — (G — 1)(UK ® IC)EE =0
In order to get the characteristic roots of -J%I?Z-B"Eg we need to solve the equation

1
NGK?

But CK of the characteristic roots are zero and the others are the characteristic roots
of G(Uxk ® Ic)Xj, with multiplicity (G —1). Thus,

1 KC )

=1

where {X; : 1,...,KC} is the set of characteristic roots of (Ux ® Ig)¥g. Since

B°YS — Moke

=0 (3.5.4)

{peck, c=1,... ,C} is unknown and need to be estimated, so are {Xig, 1 =1,..., C -
1}. Determining the characteristic roots of a multinomial covariance matrix is not
straightforward. Roy et al. (1960) studied this problem without actually presenting

the closed-form expression for the roots. The characteristic equation for each k is
C P2k c
{1 - (——— A)} II(pex — ) =0 (3.5.6)
c=1 Pck — c=1
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It is easy to see that A = 0 is a root, but identifying the other roots must proceed

numerically.

Now,
TSI = 1-V'TV

. P . . . . Ir . 2
Since NTX] is not idempotent, the distribution of V'TV is not x (cank(T), 1T 1)’ Under

Hgy, however,

v - L VTV = n?
M (NGK)2VTV NGK)2Z
1
= (NGEK) Z[O +NGpJ
1 c. ,
= ——3 (62 + (NG)*p’. + 26.. NGp..
(NGK)zz_:l( ' )

c C

_ 2 12 2
= (NGK)2 ZIOC + 75 2P ¥ Ngge 2P pe

- 0’T0+-F2pc +A'0

1

1 c
_ o } : 2 !
B (NGK)ZQ TO+ gz 2Pt A9 357)

where A = (A* A* ... A*) isa CGK x 1 vector and A*isa 1 X CK vector of the
form
N 2
AY = m(pl ... pc-pr --- PC- --- D ... pc.)

Lemma 3.1

0'T0 and A’6 are not independent.

Proof:
0'To = WO'T"O and A’6 would be independent if and only if
A,NESZW;K—PTO =0 (Searle, 1971).
— A'ZST?
N(GK)? 0
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1 . . )
- W(A A* .. A (I @ Zp)(Uke ® Ic)

G .
= W(A*EB(UK@Ic) ATHUg @ 1) ... A*S(Uk ® Ic))

Let a = (p. ... pc.)’- Recall Tr=%0®...0 Yok

(a'ZOI 8,202 e alzoK)(UK &® IC)

2
A'E(Ux @le) = Jegs

For each k, from (3.4.14)

c
a'Sox = [pre(p1. — Y Pe.Pek) P2k(P2. — Z Pepek) --- Pek(Pe. — Y PePek)]

c=1 c=1

and the first element of the vector A*X5(Uk ® Ic) is

9 c
——— | pu(pr. — D PePar) + pr2(p Pepe2) + -+ pik(p1 — pc.pcx)>
o 2 > >
plk D — pc-pck)>
- wor (z -3
e (7t - Eore L)
= ———|p}. = D_pc. 2 Puper | # 0
NGK2 ! c=1 k=1
Hence, 8'T6 and A’'6 are not independent. [
Now,
KCG
oTo~ 3 N(x}),, A6 ~N(0O,NA'ZGA)
i=1 :
and
KCG

VTV ~ 3 X (x3), + N(0, NA'S3A) + &

=1

where {\;, i = 1,...,CGK} is the set of characteristic roots of

° 1 o§10
NTZO = WT EO and
1 C
6 = Fsz = p/Tp under Hp (3.5.8)
c=1

Recall that T° = (Ukg ® Ic). Thus, the characteristic roots of T°X; are the char-
acteristic roots of (Ug ® I¢)X} with multiplicity G. Therefore,

1 _ 1 1o 1 il 2 °
V'TV = Wv TV ~ NGEF ; Xi (x5),+ N(O, NA'Z3A) + 61 (3.5.9)
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where {); i =1,..., KC} is the set of characteristic roots of (Ux ® Ic)Xg.

An alternative of the distribution of V'TV goes along the following lines. Let
R be a CGK x CGK matrix such that RER' = Icgr and

Y=RV=V=R'Y
Then,
Y ~ N(Ry, Icek)
and
VTV =Y R)YTR'Y =Y'CY
Let P be an orthogonal matrix such that (P CP! is a diagonal matrix and
Y*=PY=>Y=P'Y'=PY"
Then,

Y* ~ N(PRp, Icck)

V'TV = Y'CY = (Y*)PCP'Y* = (Y*)'C*Y*
where C* = P(R7!)'TR™'P".

Hence,
CGK
VTV = (Y)CY* ~ Y ¢ (x3(6:))  with & = ¢f(u})? (3.5.10)
=1
where ¢*’s are the diagonal elements of C* and pj is the ith row of the vector

p* =PRpu.

As for
WSI = 1-VWV ,

under Hy

! _ 1 U © —
VWV = ————G(NK)ZVWV NK)2ZZ ;. from (3.2.5)

g=1lc=1
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= NI{)Z ZZGCQ +Npc

g—l c=1

Z ch.

g=1c=1

g—l c=1
= O'WO+A'0+ —K—2 leZ.

= OWO+A'0+6  from (3.5.8) (3.5.11)

Again,
CGK

VWV = G(NK) ——_V'W°V ~ Z X (x2), + N(O, NA'S5A) + 6,

where {);, i = 1,...,CGK} is the set of characteristic roots of
(] 1 o) w14
NWX = NG sz 3.
Recall that W° = [(Ig ® Uk) ® I¢]. Hence, the characteristic roots of W°X; have

multiplicity G. Then,

VWV = —%—V’ WV ~ .

GV NGKZZ,\ (x%), + N(0, NA'SSA) + 6,

(3.5.12)

where {); : i =1,..., KC} is the set of characteristic roots of (Ux ® Ic)X5 and 4y
is given by (3.5.8).
Alternatively, similarly to the derivation of (3.5.10)
CGK
VWYV = (X)D*X* ~ 3 df (}3(6:)) with & = d5(1)? (3.5.13)
i=1
where d*’s are the diagonal elements of D* = P,(R;'YWR;'P; and v} is the ith
row of the vector ¥* = PyR,p. Note that

X* ~ N(V*, ICGK)

where R, is a CGK x CGK matrix such that R:XR), = Icgk and Py isan orthogonal
matrix such that (P;!)(R;')'WR;'P;" is a diagonal matrix.

As the above distributional results for the sums of squares do not readily yield

the first moments, we calculate them directly.
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Let

6, Eo(BSI) = ]C\;, R [ Zijock]

c—l k=1

— 1 L/ s 2

1
0, = WSI)=1-— N p?
3 ( S ) NK NK2 ; [I;pck pc]

from (3.4.11), (3.4.9) and (3.4.10). The variances are calculated using the following

theorem.

Theorem 3.1 (Searle, 1971)
When X is N(p, ), the rth cumulant of X'AX is

K, (X'AX) =27} (r - D)l[tr(AZ)" + rif A(SA)

|
Since —— ~ N(VNy,,X°) and b . N(0,%°)
\/N ©? \/N ? 9
Var(BSI) = Var(V'BV) = Var(6'B6) = 2trace(BNZ°)* (3.5.14)
Var(TSI) = Var(V'TV) = 2trace(TNE°)? + ANpu,TNEZ°TNp, (3.5.15)

Var(WSI) = Var(V'WV) = 2trace(WNE®)? + ANp WNEWNp,  (3.5.16)

and under Hp

oo 2 ° 2
Varo(BSI) = 2trace(NGK2B by ) ———(NGK2)2trace(B 20)* (3.5.17)
2
_ 0§10 4 ! mogormo
Varo(TSI) = 2trace(N(GK)2T EO) + = N(GK)" p, T T,
— ___2___ 0§ 0\2 o g0
= Nz(GK)4tra.ce(T o)t + (GK)4“°T 2T, (3.5.18)
2 Lo wlod 4 OgVO <
Va:co(WSI) mtrace(w 20)2 -+ G2K4 yOW 2 W He (3 5 19)

Let

TN,l EBSI—91, TN’25TSI—02, TN,3E.WSI—03
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Note that
KCG

QIPPEL (x%), = 0o(N7")
since {); :i=1,...,KC} is the set of characteristic roots of
iy (Uk ® 10)X5 and X = O(1).

(ii) A'0 = Op(N"'/2) since A'§ ~ N(0, NA'SGA) and A = O(N~!

(i) 6, = ch =
Then,
Ty, = TSI-6;=1 —V'TV — 0,
_ - 1 ¢
= 1- (0,,(N N+ 0N + 45 ;pﬁ)
1 1 &,
— (1 +O(N) - —I{—zgpc.)
= OP(N—IM)
Similarly,
Tnz = WSI-63=1 -~ VWYV - 063

= 1- (OP(N'I) + O (N"Y?) + Flz- CXZ;;%)
—(1+0 R Zm)

= OP(N_I/Z)
and
BSI=V'BV = 60'B8 = O,(N7')
Then
BSI BSI
FF, = N (——) =N
' wSI (TN,;, ¥ 03>
BSI Tns]™!
- (D5
5 )T 8
BSI _
- v (5, )+ 0,7
= N (B;I> + 0,(N7Y/?)
3
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since T s = Op(N71/2), 2 = 0,(N~Y?), N(BSI) = 0y(1) and

1 1 &K L,y 1 &,
R (R I R

c=1k=1 / c=1

1 &,
= —_— N_l
= 634+ 0(NY)
By (3.5.3), asymptotically
BSI 1Y
FF=N ~ = i X2 i 3.5.20
L= N~ g 2 X (), (3.5.20)
1
where {); : 1,..., KGC} is the set of characteristic roots of NGE? B°X3.

Under Hy, asymptotically

Eo(F1)

I

N [EO(BSI)] _ N,
03
_ (G-1 1&&E,
= oxe || KL
Varo(BSI)] _ N2?2trace(B°Xg)? _ 2trace(B°L})?
632 |~ NAGK®63)*  (GK?63)

Since p.t’s are unknown, one can only get estimates for the );’s, i.e., the charac-

Varg(F1) = Nz[

teristic roots of 3. To derive the distribution of Fj, estimate {pct}, then get the

characteristic roots of X based on those estimates.

Alternatively, since each of the elements on the R.H.S. of (3.5.20) are i.i.d. x3’s,

if _r_n;aa_c(_)\_.)_ —+ 0, we can apply the C.L.T. for CGK large,
s A
6
K? (F1 - Na—l) ~ N(0,0?) (3.5.21)
3
o102
where o2 = 2trace(B°XY)

(G63)?
Using a similar approach, Light & Margolin (1971) developed an analysis of
variance for categorical data (CATANOVA) and these two approaches are equivalent.
For a one-way table, the Total Sum of Squares (TSS) is

NG 1 &, NG
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: 1

¢ NG
—E—-mv§:§:n;———54VSI (3.5.24),

The between sum of squares (BSS) is

NG 1 &, GN 1 S 2
BSS = TSS-WSS§=—- 557 ;nc.——2—+2—ﬁ;;ncg
ML A I A B @o20)
c=1g=1

Extending these for several positions, the variation within the g-th group at the
k-th position is
N 18 2
Zn k= N K
T2 TN

since n.gx = N. The variation within the g-th group is

n.g. 1 &, NK 1 &,

2 o, =T T2 T 2NK 2 Mg

c=1

since n.,, = NK. The sum of squares are

G (NK _ 1 c _NGK _ 1 c
_ J_VEEWSI
2
NGK 1 &, NGK
TSS = — _2NGKC=ZIn° — TSI, (3.5.27)
d BSS = TSS- EREIR RPN N
an = WSS = 2NKg_1c=1ncg.— 2NGK§n°“
¢ NGK
= n? nt.| = ——BSI . (3528
g (CE S -5t (255)
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In this setup a test statistic could be
BSS/(G-1) _ BSI/(G-1) (NGK — G)

Ff = {rssiNGE = 0) - WSH(Nek-1) = ~N@ -1+ (%)
Let
NGK 1 L&
o = Eu(BSS)= T B Bsn = T 1- X YAk
2 Kc-lk-—l
NGK - 1 &[&
05 = Eo(TSS)= N GK Eo(TSI) = ——G——— 3 ph — NGpl
2 2 c=1 k—l
C [ K
o = mwss) = YKpwsn = XE=C 4 25 S - Va2
2 2K c=1 Lk=1
from (3.4.11), (3.4.9) and (3.4.10).
Under H,
2
Varo(BSS) = 2trace<§—EB°E°) =,)K2trace(B°E )2 (3.5.30)
N
. ogIoN2 | ! rpo Yoo
Var(TSS) = ———2(GK)2trace(T 3)" + (GK)2"°T =0T, (3.5.31)
1 A w14 ]\r (] w1-4 ©
Varg(WSS) = mtrace(w =02 + sz,oW YW, (3.5.32)
Let

S, =BSS—6%, Sny,=TSS—6;, Sns=WSS—6;

and

_ & 1 1 & &,
_ 03 1 1 &G(& ’ 1

o= (NGK—l)‘i'z %:1(21”") TOWT)
= ——2—152 .+ O(N (3.5.34)
= a4+ 0N
e 11 GE Y "

4 = (NGK—G)"z'_'zFC_1 (,;p“‘) +o(V)

1

= -2——2K2ch+0(N 1 . (3.5.35)
= a3+ O(N~ Y
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Now
NGK , ,
Snp _ TSs—g; 5 (1-VIV)-6
(NGK —-1)  (NGK-1) (NGK —1)
1 C
_ -1 -1/2 2
( JN1) + 0,(N >+2ch§pc.)

1

2
1

0

= o N—l/z)
Similarly,
NGK
Swa _ WSS—8n —5 (1-VWV)-
(NGK - G) (NGK -G) (NGK - G)
1 - -
= 5- (0,,(N )+ 0p(N7) 2K2Zp°)
1
- (E"WZ +OW ))
= Op(N 1/2)
Then
0y + S1
o= BSS/(G-1) _ (G-1) (G-1)
1 = WSS/(NGK - G) [ 4 SN3
(NGK -G) (NGK —-G)
_ ay + Sl/(G - 1)
a s + SN3
*T(NGK -G)
_at S$1/(G—-1) 14 SN !
- as a3(NG’K - G)
a1 S -1/2
= —+ —=—— + Op(N
BSS
— __Z¥Y 0 N—-I/Z
a3(G _ 1) + P( )
BSS
————— + Oy(N7'/?
a3(G - 1) ol )
since __SNs = 0,(N~'/?) a15n. = 0,(N"Y?) and a3 = a5+ O(N™).
(NGK - G) " d}(NGK - G) P
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By (3.5.3), asymptotically

BSS 1 CGK
F* = ~ )\i 2 X
V7 a3(G-1) a3(G-1 ; (Xl)i (3.5.36)
where {X\; 1 1,..., KGC} is the set of characteristic roots of 2KB°2*

Under Hy, asymptotically

. _ a_EBSS) __ 6
EO(Fl) - a2 B a;(G—— 1) - a;( _ 1)
- é—[ ——Zz:pck:\
c=1k=1
. ovo\2
Varo(F}) = Varg(BSS) _ _trace(B°%()

(a3(G-1))?  2(Ka3(G—1))?
Applying the C.L.T. for CGK large,

K (F* - —) ~ N(0,0?) (3.5.37)
a3
trace(B°Z )?
where 0, = ——F~—v13-
2(a ( -
* 0 . GK
Note that a3 = 503 and that for large N, we can say that F] = G- 1) ————F,. Therefore,
2
. 2 __ 2
it can be shown that o = G- 1)20
Note that, as N — oo, 2,3 and
as (12
a'_l _ 1- -]'];(— Z:cc=1 Ek:l pck

Fa— 2
% 1- % %, (S, par)
1- f Ec-l EkK=1 ka

2
¢, (=K, &)
1- E =1Pck — ﬁc 2 + I_’g
= S (kT ( ) +7%) . where B = Z Pek
1- c=1 pc
- 1_K £ Temi e (Pek — Pe)’?
1 - g:l ﬁg

. . 2
Note that Z—; is bounded by 0 and 1, since Y%, SK, p% > =&, ( LYK, Pck) .
Also, if there is homogeneity among positions within a group, pegt =Pz = ... = Pk =

_ a)
P and Eg:l.
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Note that

o 1 ey S TR A - N (S pa) |

“ 1+ T{—(]—V_GI_I—(_——I_) Zg=1 [Zi\,:l P4 — NG (Eﬁ:l Pck) 2]
e 50 [T - £ (2 par)’|
1+ T((_NEII—{——li E§=1 [Zf:l Py — NG (Zf:l Pck) 2]

N(G-1 C K —\2
(NK—I()(NG)K—I) EC=1 Zk:l (pck - Pc)

. A I
1+ rrver=s Toet Tkt (Pok — Pe)? = Lozt Pe

1+

Again, if there is homogeneity among positions within a group, pa = P2z = .-+ =

3.6 The Power of the Test

Let us consider an alternative hypothesis, i.e.,

1
Degk = '\/—N’chk + Dek

Thus, Yegr = 0 yields the null hypothesis Ho : pegk = Pck- The interest here is in the
case where yegk 7 0. Then,

1
acgk = Negk — N (_ﬁ'chk + pck)

Ocg. = Ncg. — \/_]V%g. — Np.. , Oc.=nc. — \/_]V'yc.. — NGbp..

and
G C . NKVG
BSI = VBV= Meg__ _ Dl
5.3 [veve~err
_ XG: 5 [ocg. + Np.. + VNyeg.  (Be. + NGpe + \/J_V%..)NK\/@] 2
g=1lc=1 NK\/E (NGK)2
I by 0eNG Ve VG 1
= Z Z - 2 T -
~ 4 |[NKVG NKG* KNG KG*/N

&8 by 8NEVG\
B ZZ(NK\/@— (NGK)2>
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N 24%20:( B 90..NK\/5) ( Yeg- | _ veNG )
SIS \NKVG (NGKY? ) \KVNG KGN
G ¢C 2
Yeg e NG )
+ gzﬂ; (K\/NG KG*/N
= 0'B0 + (A]_ - Az),o + N2(A1 - Ag)I(AI —_ Ag)

where B is as in (3.4.6), 8 = (61 ... 8og1 - Ocer)s A and A, are CGK x 1

vectors of the form

2 . . .
A1 = W(Au . AIG) with
A}, = (Mg -+ V0o Mg -+ VCg +o- Mg oo vcg) foreachg=1,...,G
2 . o
A = @W(AZ e A2) with

= (Vi ee YO N1 oo VO e Ve e Yc..)

0
Recall that — ~ N(0,%°) and 6'B8 ~ TCK X (x2);, with A;’s being the charac-

VN
teristic roots of NCR? ———B°Y°, where
¥° ==(211@21269"‘@211{@221@"'EBEGK) (3.6.1)

and X is as in (3.3.3). Now, let A= N3%A, and Aj = N3/2A,. Then

N(A; — Ay)'0 ~ N(0,(A] - A3)'Z°(A] - A3))

Lemma 3.2

6'B0 and A6 are not independent.

Proof:

0'BO and A0 are independent if and only if A/NY°B =0.

L4 1 -2 » 3
ANSB = Algogas B
2

\ 1
= fagNer Al - Aol ygre NGK2 [((IG ®Ux) - EUKG) ® IC]

2 . R 1
K3G2N5/2 (AL% - AleZe) _((IG ® Uk) — EUKG) ® IC]
Let aj, = (Mg - Ycg.) be a 1 x C vector. Then write Aj, = (a3, --- a’{g) and

A‘{ng can be written as
ALY, = (21421 A1g2g2 - - - a;,Ygk) foreachg=1,..., G
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Now,

algzlk = [plgk Mg — Z'ch chk -+- PCgk (709' - Z Yeg- pogk)]

foreach g=1,...,G and k = 1,..., K. The first element of A{NX°B is

' 2 (G S pslon - 2 1§ 5 puakCons — 32 % 2et)
Prie\ 711 — Yel- Pclk Digk ’71 Yeg- Pegk
K3G2N5/2 G = Gg_” ‘ g g e g+ Peg
2 1 G K C
- [ C - cq- Fc 0
K3G2N5/2 Zpuk T11. Z’Y 1. P 1k ng_lkg:lplgk Yig- — ;79 ng) #

Since 8'BO and A'# are not independent, 8'Bf and (A; — A,)'0 are also
not independent. So, the distribution of V'BV is not the convolution of a linear

combination of y2-random variables and a normal distribution.
Let A = A; — A, then
VBV = 6'BO+ A6+ N?A'A

. = (BY?0+ %B“”A)'(B"zo +

lB-1/2A)'(B1/2¢9 +
2

1 o-1/2
d A) —
ZB )

%B"”A) + lA'(4N21 —-BHA

%A'B-IA + N2A'A

= (B1/20 +

and let X = (B20 + 1B™'/?A), T' =
Then,

GNK2 (BO)I/ZEO[(BO)1/2] and pp = 1B1/2A

VNX ~N(VNpg, NT)

Let P be an orthogonal matrix (i.e., P'P = I) such that PI'P’ = A, where A

is a diagonal matrix, and
Y =PX=X=PY
Then,
Y ~ N(Pug,A)
and

G
X'X = YPP'Y = Y'Y ~ 3 X (x3(6)), (3.6.2)

i=1
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2

where );’s are the diagonal elements of A, &; = %’%, with a; being the 1th row of the

vector %PB'I/ 2A, which are linear combination of the Vegk S-

1
Let c be a constant ZA'(4NZI — B )A. Then,
/ -
Pr(Fy >u) = Pr (M}%Sj_fl > u)
3

= Pr(NX'X > 63u — Nc) (3.6.3)
Note that Nc = O(1) since B™! = O(N?) and A’A = O(N~%). As the noncentrality
parameter J; increases, the distribution of each of the noncentral x?-random variables

shifts to the right, therefore the probability in (3.6.3) goes to 1 and the power of the

test converges to 1.
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Chapter 4

Analysis of Variance based on the

Hamming Distance

The interest here still lies in the comparison of sequences. Now they are con-
sidered on an individual basis in that they are compared to each other: all possi-
ble pairwise comparisons within and across groups are performed. We develop an
analysis-of-variance framework for Hamming distances and estimate the variability
between, within and across groups. In the within sum of squares, we are estimating
the variability among individuals within a group around the average distance within
this group. In the across sum of squares, we are estimating the variability of individ-
uals across two groups with respect to the average distance between those groups. In
the between sum of squares, we estimate the variability in the group average distances

around the overall distance.

Weir (1990a) describes an analysis of variance for the genetic variation in the
population, in particular for the amount of observed heterozygosity. The variance of
the estimate of the average heterozygosity is broken down to show the contribution
of populations, loci and individuals by setting out the calculations in a framework
similar to that of an analysis of variance. Our situation is a little different because
we would like to construct a categorical analysis of variance based on Hamming
distances (Seillier-Moiseiwitsch et al., 1994 and references therein), assuming that the

sequences are independent, but the positions may not be. The Hamming distance is
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the proportion of positions at which two aligned sequences differ.

In this context U-statistics are utilized to represent the average distance be-
tween and within groups as well as the overall distance. The total sum of squares
is decomposed into within-, between- and across-group sums of squares. The latter
term is new: it does not appear in the classical set-up. Generalized-U-statistics theory
(Puri & Sen, 1971; Lee, 1990; Sen & Singer, 1993) is used to find the asymptotic dis-
tributions of each sum of squares. Test statistics are developed to assess homogeneity

among groups.

4.1 The Total Sum of Squares and its decomposi-

tion

Let X¢ = (X, X%,...,X%) be a random vector representing sequence i of group g.
Suppose 1 = 1,...,N, k= 1,....,Kand g=1,...,G. So, X% represents either the
amino acid or the nucleotide present at position k of sequence i in group g (e.g., at

the nucleotide level, 2% € {A, C, T, G}).

Consider X?' and X7.

Definition 4.1

The Hamming Distance D,(f‘g’) is a descriptive statistic for sequence comparison:

K
pEe = 3 I(XE # X%) (4.1.1)
k=1

ST

x (number of positions where X and X differ),

and when g, = g2 = ¢,
1 K
DY =23 (X% # X5%) -
K k=1

Definition 4.2
Let X1, Xs,... be independent observations with distribution F. They may be vec-
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tors, but for simplicity we confine our attention to the scalar case. Consider a pa-
rameter function 6 = (F') for which there is an unbiased estimator,i.e., §(F') may be

represented as

8(F) = Er{¢(X1, -, Xm)} =/.../qS(a:l,...,mm)dF(;cl)...dF(a:m), (4.1.2)

for some function ¢ = &(z1,...,Tm), called a kernel. Without loss of generality,

assume that ¢ is symmetric. For, if not, it may be replaced by the symmetric kernel

1
—Tmqu(xin"'amim)a (413)
B 4
where ¥, denotes the summation over the m! permutations (¢1,...,%m) of (1,..., m).
|

Definition 4.3
For any kernel ¢, the corresponding U-statistic for estimation of 6 on the basis of a
sample X, ..., X, of sizen 2 m is obtained by averaging the kernel ¢ symmetrically

over the observations:

Us =U(X1,..., Xn) = (%ZMX.-U---,X.-,"), (4.1.4)

m

where Y. denotes the summation over the (";) combinations of m distinct elements
{é1,...,im} from {1,...,n}. This U-statistic is said to be of degree m. Clearly, U, 1s

an unbiased estimate of 6.

Let 09 = P{X% # X%} and 8 = 2 T, 67 . Then,
K —_
E[D}] = —ZE[I X5 = Z o =67

Define the average distance within a group as

p-(3) 5 ooy=()) &, Z, nInA N

1<i<j<N 1<i<j<N k=1
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which is a U-statistic of degree 2. The average distance between two groups is

D(91192)—__ZZD(9192)— 1 & ,Vijx
N2K

1=1 j= 1=1j5=1k=1

which, as we will see later, 1s a two-sample U-statistics of degree (1,1). The overall

distance is

o = ()o@ (.22 2 A5

g=11<i<j<N 1<91<g2<G =1 7=1

-1 G
() (£ )
2 g=1 2 1<g1<02<G

which is a linear combination of U-statistics.

The Total Sum of Squares

G N N
rss=y ¥ (DG-Dy+ ¥ LSDF-D) (419)
g=11<i<j<N 1<g1 <g2<G i=1 j=1

can be decomposed as follows

G G
Y Y (Dy-D+y 3 (DY-
g=11<i<j<N =11<i<j<N
G
+2Y. Y (D%-D°)D?-D)
g=1 1<i<j<N
+ Z Z Z(D(gl .92) D.(91792))2 + Z z Z(D.(glyﬁ) — D.)2
1<g1<92<G i=1 j=1 1€61<92£G i=1 j=1
+92 Z ZE(Dg‘n 92) Dggl,gz))(bgsrx,gz) _ D.)_
1<g1<92<G =1 j=1
Since
G
Y ¥ (D%-D9)(D-D)=
g=1 1<i<j<N
and

N N

Z ZZ(D(gx 92) Dggx,gz))(l‘)ggl,gz) - D) =0,

1<g1 <g2<G i=1 j=1

TS5 = ZGZ > (D?,-—D.g)2+§ Y (D?-D.

g=11<i<j<N g=11<i<j<N
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+ Z Z E gl 92) _ (91 ,gz))2 1 Z Z Z 91 9g2) _ 2

1<g1 <g2<G =1 j=1 1<g1<92<G =1 j=1

= Within Sum of Squares (WSS) + Between Sum of Squares(BSS)
Across Within Sum of Squares (AW SS)
Across Between Sum of Squares (ABSS)

+ +

4.2 Connections Between Sums of Squares and U-

Statistics

The extension of U-statistics to the case of several samples is straightforward.

Definition 4.4

Consider k independent collections of independent observations {X; (1) , X3 (1) N
{ka), Xék), ...} taken from distributions FO . . F® respectively.

Let § = 6(FOM), ..., F®)) denote a parametric function for which there is an unbiased
estimator, i.e.,

6= E{p(X}",..., X3)

my?°

X3 XN,

where ¢ is assumed, without loss of generality, to be symmetric within each of its k

blocks of arguments. Corresponding to the kernel ¢ and assuming ny 2> my,...,n >
my, the k-sample U-statistic of degree (mi,mo,..., mg) for estimation of 6 is
Un = (n_,) E (X0, L xP s xW XD ) (4.2.1)
1_1
Here {i;i,...,1jm;} denotes a set of m; distinct elements of the set {1,2,...,n;},
1< j <k, and Y. denotes the summation over all such combinations. [

Since we have G groups of N sequences, we can disregard the group clustering and

think of the sequences as a random sample of size NG. Then

TSS = Y. (Di—D)
1Ki<j<NG
(NG(NG—I)_I) (Mﬁz‘i—l)l g Dy Diy
2 2 i<j, o' <y’ 2
i<il or j<i!
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2 S g g \2
NG(NG — 1) {Z [ 2 (DG= D)

=1 |1<i<j<j'<N
> (Dy-DLY+ % (D D)
1<i<i' <j<N 1<i<j<j' <N
> (D% — Di;)* + > (D - D )?
1<i<j<i' <5’ <N 1<i<i'<j<J' <N
>, (Dh- Di-’/j:)z}
1<i<i'<F'<GEN

s [ s = wp-oomy

1<g1<92<G L155<jSN 1<i'<5' <N

Z Z (D(gly92) _ D(,g.lly!h))2 + Z (D(gl,gz) _ D(y_’l,g2))2
1<g1<g2£G L1<i<i'5N 15.‘,#,7"5N ?
i#j
Z (D(.‘h 192) D,(;q: g2 )2 + Z “;11 ,g2) Dgfl ygz))2
1<i, i'<N 1<i<j<N
il
Z (D’(fl 192) — D(gl 192)) + Z (Dsfl 792) _ D'(f,l vg2))2
1<4, 4, J'<N 1<, 4, JI<N
Tigi#i Tigi#s
Z ( D,(fl ,92) D(!h 192) L E ( D(gl .92) Ds;?l,gz))Z
14, 5,¢/<N 1<i, if
A i#-"#:

(91.92) (91.92)
Z (Di;h g2 —D'-,g;,gz )2

1<i, 4, ¥, ' SN

i A5
Z Z (D'(;{Jl,gz) _ Dg'?;"’ga))z, + Z (Dgiglv92) _ Dg{,l yys))2

1<g1,02,98<G |1<i,j'<N 1<i, j'<N

g1#927#93 i#j! i#j!
N
Z( D'(;th 92) _ (91 ygs) 2 z ( DS_;h 92) _ D:(_?l 'gs))Z
=1 1<i, j<N

-#:
( D(yl 92) D(Ql ,ga) 24 D'(.{h 92) _ plar.es)y2

15%':0! 1<'ZJ<N ! 5)

i#J i#]

Z (Df;ql 92} _ Dg;qil ,ga))2 + E (DE‘?I 92) _ Dg‘?l ,gs))Z
1<, #'<N 1<i, j<N

i i#

Z (D‘(_ng 192) D(gl ,gs))z + Z (D(gx,gz) D'(;qil ,gs))2
1<i, j,i'<N 1<i,4,i'<N

i i

Z (D(gl 92) Dﬁ? ygs))Z + Z (D.(fl 92) _ ij} ,ys))2
1<i, 3,3’ SN 16, 5,j'<N

ii#i igidiT
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(g1.92) (91,93)\2 (g1.,92) (91,93)\2
1<i, §,i'<N 1<i, i/, SN
ifigi! ipil]

Z (91.92) (g1,98)\2
1<, §,i!,i'<N
i i #57

ARELARY (002) _ ylase) 2
ZZZZ(‘Di?hgz _Dilsl;.’,g«;)

1<g1 #92#93#94 <G |:1=1 j=14=13'=1
91<92, 93 <94

+ X [ Y (D% D@4 Y (D — D&y

N

1<01, 0256 |1<i<j<N 1<i<j<N
21792
a1 (91.92)\2 g1 (91,92)\2
+ Z (Dij — D7) + Z (Dij - Dj'j' )
1<6, 5, /<N 1<i,3,4'<N
itFigiil, i<i FiAiRI i<
g1 (91.92)\2 g1 (91,92)\2
+ Y (D% =D+ o (D - D)
1<i<GEN 1<i<G<N
g1 (91,92)\2 g1 (91.92)\2
+ X (DE-DF+ X (D -Dg™)
1<4,§,3'<N 1<i, 4, j'<N
igi#i, i<y igi#!, i<i

g1 (91.92)\2 g1 (91.92)\2

+ 3 (DB -DEe 4+ 3 (D - D)
10,3, i'<N 16, 5,4, /<N
igj#i, i< ifjAil#5, 1<)

+ 2 [ > %i(Df’}—DEf’}’“))z (4.2.2)

1<g #92#93 <G |1<i<i<N i'=1j5'=1
g2<893

Note that the total number of terms in (4.1.5) is

NG(NG-1) 1
( : ): SNG(NG - )[NG(NG —1) -2

N
- —SC—;[N?'GS _9N2G? — NG + 2]
Separating the different U-statistics and adding up the number of terms we get
N(N-1 _ 2 _ 2
al 2 +G(G 1)(N +G(G 1) (N
2 2 2 2 2

+G(G -1)(G-2) N+ G(G-1)(G-2)(G - 3)N4

sa0-o[ (3] 2042 ()

= —A;—G[N*”G"’ _2N?G? - NG +2]
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We now characterize each term in the above decompostion (4.2.2):

e one-sample U-statistics of degree 3:

N\ ! N\ !
U(ls,l = (3> Z (D?j - D?j')z ) Ugs; = (3) Z (D?j - Di']‘j)z and

i<j<y’ i<i'<

U's) — (N>_l Z (D% — D° )2
1,8 — 3 ¥ 33’

i<y’

e one-sample U-statistics of degree 4:

N\ N\
oi=(7)  oy-onr. vi=(5) T oy-onr

<<’ <g! i<’ <G<g’

vit=(}) © my-ony

i<i'<y'<y

e two-sample U-statistics of degree (2,2):

U@ =

()G

ZZ Dyl

1<y i<y’

D92

U(42,i2) — (‘2’) (1;[) E Z(D 91.92) D'(;Q;I.gz))2 and
| J i#d i#i’

i

ngéz) _ N\ (N Z Z(D’(;_]l g2) _ Dgg;l.m))2
’ L 2 2 - i#5 5#3 !

igd!

since

Z 2 D(ql 42) D(gl ,92) Z(D(gx 92) 91 '92))2 + Z (D(.fh 92) _ D(,g_llagz))Z
i#£d! j#5' ! i< 1<i, §!, i, <N !

e Y
+ Z (D(q1,yz) _ D(;q_xl,gz))2
1] i
u'#j?:'f’#j' ’
i<i

as (1;7) +N(N-1)(N-2)+ w = (];’) (]Z) terms and
E Z(D(gugz)

(91,92))2 Z(D‘(Jq1,gz) D(91»92) + E (D(‘?lv!h) _ Dg},gz))z

::3 J#J l<] g#]#]
+ Z (D'(f-l'gz) _ 1)'(,9]_1,,92))2
igigil#!
>
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N\(N-1\(N-3

has (]Z) + N(N = 1)(N —2) + =5 Ll = (];7) (]Z) terms.

o two-sample U-statistic of degree (1,2):

N\ (N
Ug{iz) _ [(1) (2>] Z Z D(]gl,gz) _ DEJQ-}’”))z

'=1 l<J J’<N
#j!

since
X ( ) ( )\2 (g1,92) {g1,92))2
g1.9 91,92 — 1,92 1.92
Z Z (D" = D) = >, (Di — D)
=1 1<), ' <N 1<i SN
i#5’ i#5! t#]
+ Z (D,(fl'gz) _ D‘(g’lygz))Z
i#IFET
N\(N-1\(N-2
N\ (N
has N(N —1) + glx—lz—lg—l—z = (1)(2) terms.

e two-sample U-statistics of degree (2,1):

_ N -1 N
o = [(F)(V)] Sz -y

o
- -1
ues = (N) (N)W S $(D% - DG and
L 2 1 J 1<i<j<N j'=

A . -
(21 N\ [(N\] 1 .
v - L<2)(1) > > (D] _ plaey?

1<i<j<N j'=1

since

N
Z Z(D,(;h,gz) _ D‘(;qjl ,gz))2 — Z(D'(;gn 92) _ Dt(;tl‘_ngz))z + Z (D(ghgz) Dg;ll;,gz))z

i i i i

has N(N —1) + Mi——?&u = (1;7) (T) terms,

N
Z Z(DiJJx _ D‘(ngl,gz))Z — Z(D?Jl _ D‘(;{h,gz))Z + E(D.:J]x _ D§g1:92))2

1<i<G<N j'=1 i<j i<
a _ ple1g2)y2
+> Y (Df - D)
i<s 3
il

has (]Z) + (]g) + (];f) (Nl_ 2) = (];,) (]Y) terms, and
S S(0f - DY) = L0 - D)

+ (0% - DI+ 3 3 (Df

i<j i<j 1<§'<N
#idi
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as (§) + () + () (") = (3) (7) terms

o two-sample U-statistics of degree (3,1):

(N (N1 N
usy = ( )( ) (D% _D‘(;tl}l,yz))z,
i \3/\1/] £<JZ<# J'Z=:1 ’ !
- -1 N
ven = [(M(Y 7 S 3(D% - DY) and
’ \3/\1/] <= ’ !
\. 3)\1/] idigii=
since
N
2 Z(D'g.; _ D‘(_g;,,yz))z — Z (D?; _ Dgg;l,gz))z + Z (D?; _ DE%}192))2
-';:Zi' 3'=1 -';l'_jz;j’ i;:_j(;;."
b (DB -DETR S (DG - DEY
i#izi! igjAil il
1<j 1<3
e (059 = ()07 + )07+ )07+ (CTIT) =3 )
terms, and

N N N
S 08 - D= 3 (0 - DT+ 3 3 (D5 — DT’

igig j'=1 i<j<it j'=1 i1<i<j 5'=1
1<J
3 (a1.02)
g1 91,92)\2 N\ (N
+ S Y (D% - Dii*)" has 3(3)(1) terms.
i<il<j j'=1

e three-sample U-statistics of degree (2,1,1):

i B .
@11 _ (N[N N\ e

1<ji'=13'=1

v = (NN (D)] £% et -o5r

= o =
e

2 _ [(NY (VY (M\]7 5= 3= S (poen) _ poyes
oz = (D)) ()] ST s - o8y

i£7 =1 §'=1
#J il

since

N N
Z Z Z(Dgl 92) _ DE;?,’QS))Z

i 521 =1
e
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— Z(D(.{Jhgz) _ D(-;q-l,’ga))2 + Z(D(glvg2) _ D(lsl_lyys))Z

i#£1! 1#d!
+ Z (D(leg2) _ D(Q},gs))2 + z (D(.{h,gz) _ D(gl,gs))z
1 i’y 7] )
i#i' #£g' ? i#i#i
i<i!
+ Z (D(gugz) _ D(9.1793))2 Z (D(.t_h,gz) _ D(ylygs))z
i i’ i i3
i whigi g !

has N(N — 1) + N(N — 1) + N(N — 1)(N —2) + ZE=SME2 4 N(V —1)(N - 2)
—~1)}(N- -
+N(N 1)( 5 AN-3) (]g) (N) (];7) terms, and

1

Z Z Z (D(91 ,92) fo’;,’ga))z

i#j i'=1 3'=1
igel

= Z(D:(_?hgz) _ D;.?l ,ya))Z + Z(Dl(;h g2) Dgl ,gs))z

1#£7 i#)
+ Z D(gl’92 D(g1,ga) 4+ Z D(ghgz) _D(;tl;,gs))2
T '3
i#£1#7 i#i#Y
+ Z (D‘(;h,gz) D(gl,gs) + Z (D(91792) D‘(,g;l,ya))2
i#j! i#j#i'#5
> i>i!

has N(N — 1)+ N(N —1) + N(N = 1)(N ~92)+ N(N-1)(N-2)+ N(N—12)(N—2)

+N(N—1)(J\27—2)(N—3) - (1;’) (];’) (I;’) terms.

e three-sample U-statistic of degree (1,1,1):

N (M (NM]TXLX 1 -
o =[N (D)] Szl o=, sinc

i=13=13'=1

N

N N
Z E (D‘(gl 92) D'(JQ} 793))2

i=1 j=1 j'=1

— Z(D(m 92) _ D(qugs))2 + f:(D(.fh 92) _ D(.ghgs))2
1 1 1] 1

i#£J
+ Z(Dgh,gz) _ D‘(;g’l,gs))z + Z(Dgl,gz) _ Dz(;{h,gs))z
i i#i
+ Z (D(.{h,gz) _ D(gl,gs))z
¥ 15’
i

has NN — 1)+ N+ NV - 1)+ NN =)+ NV - D)V -2 = (V) (V) (})

terms.
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o four-sample U-statistic of degree (1,1,1,1):

U(111,1,1,1) —4 Z Z Z Z D(yl 92) _ gjz g4))

i=1j=11¢=1j'=1

Further,

Wss=3 Y

g=1 ISI<]SN

can be shown to be a U-statistic.

For each g, we can write

WSS, = >, (DY — D9)?

1<i<j<N

B (N(Nz— 2 - )( ) it 2, = 2%')2
- T

i<i! or j<j’
N(N-1)
(M=) ( [ (D5, - D5
l<1<_1<|’<N

+ Y (DE-Di)t+ (DY — DY)

1<i<i’'<j<N 1<i< ]<Jl<N
g g D? g \2
+ S (DE-Di)+ Y. (DG —Dij)
1<i< <’ <j'<N 1<i<i’<ji<j' <N
+ 2
15-‘<i'<j'<j<1v
Therefore,

g=1 i<j,i'<y’

i<il or j<j!
_t sl oy 2
= = (DY, — D%,)

N(N - 1 g=1 2 1<i<j<j'<N ? !

+ > (D}- )2 >, (DY - ng')z
1<i<i'<j<N 1<i<j<j'<N

+ S ((DE-Di+ Y, (Df—Di)
1<i<i<i' <G'<N 1<i<i'<j<j' <N

+ > (DY, — D?’j')2:|
1<i<i'<j'<j<N

_ N(N Z [( )( U+ U8+ U) + (ID (Ul + Ul +U(4>)]
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Now,
N N
AWSS = Z Z(Dgh 92) _ plos ,92))2
l<gl<g2<G 1= l]:l

N N N N (91.92) _ plar.g2)y2
- yys oy BT
2 - 2

1<q1 <gz<G i= 1 7=1i'=1

i<i! or j<j!
— 1_3_2_ Z : l: Z (D(yl,gz) D'(Igill,gz))z
1<g1<g2<G © |i<i<i’<N
+ Z (D(gx,gz) D(91 ,92) 24 E (D(m 92) _ D(_;q.l ,92))2
1<i, j'<N 1<i, SN '
i#j! igi!
+ Z (D(gl 92) _ D(.Q1,92))2 + Z (D(g1 92) D(g} ,gz))2
1<i<iEN ’ ’ i#j#5’ ’ o
+ Z (D,(ng’gz) D(gx 92) 24 Z D(;n,gz) _ D'(Iy;,gz))z
i#5#s’ i#j#i
+ Z (D(QI»QZ) _ D(_9§,92))2 + Z (D(gl,yz) _ D(Q;,gz))z
11 1']’ i3 'I]I
igil#5 i#gFl £y
7o 2| () (3) (07
= = Ui + Ugs
N? 1£91<925G 2 2 ( )

(i)

4.3 Asymptotic Distributions

4.3.1 One sample U-statistics
Let U, be a U-statistic of degree m with kernel ¢(Xi, ..., Xm) and E(U,) = 6(F)=4.

U = UXy,..., X)=n™ S o(Xy,..., %)

1<iy £ Fim<n

(n)_l Y ¢(Xiye s Xin), nZm (4.3.1)

M/ 1<ii<-<im<n

il

where n~™ = (nf™)=! = {n...(n —m +1)}~'. From (4.1.2) we know that

8(F) = Er{d(X1, .., Xm)} =/.../qS(a:l,...,xm)dF(xl)...dF(zm),
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Definition 4.5  von Mises (1947)

Define a von Mises’ differentiable statistical function as
8(F,) = / / 31y Tm) AFa(21) - - - dFa(@m)
n_m2'°'Z¢Xin""Xim) ’I’LZl

=1 tm=1

where F,(z) is the empirical d.f.

1"
Fo(z)==Y_c(z—X;) z€R’, n2l

=1

3

with ¢(u) being 1 if all p coordinates of u are nonnegative and 0 otherwise.

Let

\I’c(wl,. . .,(L'c) = E{¢($1, .. .,IL‘C,XC_H, - .,Xm)}
1/)c($1, ‘e ,l’c) = E{¢(:L'1, v ,CI}C,XC+1, v ,Xm) —— 0},

£ = B{¥*(Xy,..., Xo)} = E{¥3(X1,...,X)} —¢* and £ =0.

Theorem 4.1

The function ¥, defined in (4.3.3) has the properties

() Oz, . - -5 Te) = E{Ta(z1,. .-, Ty Xet1 - - LXa)}forl1<ec<d<m,
(i) E{Tc(z1,. -2 Te)} = E{é¢(Xi,..., Xm)}-

The proof appears in Lee (1990, p. 11).

By (4.3.1) and (4.3.4),

Var(U,) = (;)_ZVM{ S (X Xin)}

1<H <<Lim<n

_ (;)'ziﬁcovw(x.-l, X)X X))

c=0

where 39 stands for summation over all subscripts such that
1<i1<i3< - <itm<n, 1<7 <Jp<-+<Iim<n,
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and exactly ¢ equations i = jj are satisfied. By (4.3.5), each term in (%) is equal

to £. The number of terms in 52 is

oot indet - ()60 ()

i = () S0 ()G
(w) £

Hoeffding (1948) obtained the following inequality:

Since & = 0,

Os&sga 1<c<d<m

which leads to

m2

™y < Var(Uy) € ~m
n n
Now, from (4.3.7) and (4.3.6)

Var(U,) = (Z)_l { T ;’;,((nn__";zl R fm}

m(m—1)...1
nin—1)...(n —m+1)

O

(m—1)!
min—m)(n—-m—-1)...(n —2m+1+1)

- nn—1)...(n—m+1) Shit
m(m—1)...1
+ n(n—l)...(n—m+1)£m
m? (n—m n—2m+2
- —r_z—(n—l)“.(n—m+l)§1+”'
m!
+ €m

nn—1)...(n—m+1)

(4.3.6)

(4.3.7)

(4.3.8)

...+€m}

Hence nVar(U,) is a decreasing function of n which tends to its lower bound m2¢; as

n increases, 1.e.,
lim nVar(U,) = m?
n—»o0 r( n) 61

79



or
Var(U,) = m’n7'&+0(n™?) (4.3.9)
Therefore, if E(¢?) < oo and & > 0,

n'/2(U, — 6) - N(0,m?;), (Hoeflding, 1948) (4.3.10)

In order to compute the covariance of two U-statistics, say U and U® (U-statistics
of degrees m(,) and ms) respectively), we need to take into account the common

elements in the two U-statistics. Let

E(U) = E{d) (X1, > Xmey)} = s
E(Ur(:s)) = E{¢(5)(X1, R 1Xm(5) )} = 0(6)7

@b(-y)c(ﬂh, L) = E{d’(v)("’la ey Ty Xep1y - ,an(‘r)) - 9(‘7)}
= E{dp)(@1,---»Te, Xet1s- -+ Xmiy)} — 0)

\Il(.,)c(:cl, esay .’L'c) = E{¢(7)(IL'1, ooy ey Xc+1, e 7Xm(.y) )}

and

é“(:"l,&) = E{"/)('y)c(Xh .o ,XC) 1/)(6)C(X1’ sy Xc)}
= E{\Il(v)c(Xla <. ,Xc) ¢(6)C(Xla cee 7-Xc)} - 9(‘7) 0(6)

wherec=1,...,m(y and 7,6 =1,...,4q.

If v = 6, we have

d-y) — §£'m) = E{¢37)C(X1, X))

which is the term needed for the variance of a U-statistic.

Let
(UM, UD) = E{(UL — 8)) (UL — 6(5))}

be the covariance of U and UY.
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If m(,) < me),

—1my
U(Ur(lv), U,S“)) _ ( n ) 2‘3 (m(a)> (n - m(é)) &»,,5)_ (4.3.11)

M(v) =1 \ € me —¢

From (4.3.11)
. ¥
lim no(UD, UD) = mymesé™ (4.3.12)

Therefore, by (4.3.12) it is sufficient to compute 59’6), i.e., it is enough to consider

only the case of one element in common between the kernels.

To obtain a decomposition of (F,) and Uy, for every 1 < h < m, let

Vop = /R,,. .. / Tn(z1,. .. ,xh)jgd[Fn(xj) ~F(s;)] ze€R™ (43.13)

with each z being a p dimensional vector and since there are h of them, the integral

is in RP*. Then,
Vo =n"" D _[9,(X;) — 6(F)]
=1
Writing dF,(z;) = dF (2;) + d[Fa(zi) — F(zi)], 1 =1,...,m, we

8(F,) = 8(F) + gj (’}’:) Van, n>1 (4.3.14)

Similarly, we may rewrite (4.3.1) as

m

U, =n~ml > / ---/(b(xl,...,xm) II d(c(z; — Xi;))
1<ii #oim<n T T =1
Writing de(z; — Xi;) = dF(z;) + dlc(z; — Xi;) — F(z;)], 1 < j < m, we obtain

U,=6(F)+ 3 (”':) Ush n>m (4.3.15)
h=1

where

h
Unp=nt 3 /Rph . / Th(z1, ..., 2n) 1:[ dle(z; — Xi;) — F(z;)]

1<iy #gin<n

for 1 < h < m. Further, if we write

h
Up(z1y.--,2n) = \Ilh(:cl,...,:ch)—E‘Ilh_l(:vl,...,a:j_l,mj+1,...,x;,)
Jj=1

4o+ (“DP(F), V(z1,...,Tn) € R, (4.3.16)
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for 1 < h < m, we obtain

-1
Unp = (Z) Z U ( Xipy-o s Xip)y 1<h<Sm
1<i) <-<ipn
So, the U, 5 are themselves U-statistics. Note that for h = 2, we have
E(Un2) = E(¥5(X1,X2)) = E(¥2(X1, X2)) — E(¥1(X1))
— E(¥,(X2)) + 6(F)
= 0(F)—0(F)—0(F)+9(F)=0
Let
\Il;,h_l(:cl, PN ,.'L'h_l) = E[‘I’Z(Xl, PN ,Xh—l,-Xh) | Xl, - ,Xh—l]
Then

5, (X1) = E[¥3(X,Xs) | Xi]

(4.3.17)

= E[¥y(X1,X2) | Xi1] — E[¥1(X1) | X1] = E[¥,(X2) | X1] + 6(F)

= (X)) - ¥i(Xa) — E(¥1(X)) + 6(F)
= 8(F)—6(F) =0

L =E (@5, (X1)]* - (E(Un,z))2 =0

and by (4.3.7),
Var(Uy,) = 4((2:1))61
— _61 +0( —2\

= O(n_z)

263
n(n —1)

Consequently, U, 2 = Op(n™").
For h = 3 we have

E(Uﬂ,3) = E(‘Il X17X27X3))
= E(‘IJ3 X17X2aX3)) - E(‘I’2(X1, Xz)) - E(\I’z(Xl,X3))

= 49(F
= 0

46(F)
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(

— E(¥2(X3, X3)) + E(T1(X1)) + E(¥1(Xz)) + E(¥1(X3)) — 6(F)
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U5, (X1) = E[U3(X1,Xn,X5) | Xi
= E[\I’3(X1,X2,X3) | Xh] — E[¥,(X1, X?) | Xi) - E[¥,(X1, X3) | X4]
— E[¥5(X2, Xs) | Xa] + E[0:(X1) | Xa] + E[¥(X2) | X1]
+ E[¥:(X3) | Xa] - 6(F)
= Uy (X)) — ¥ (Xy) - ¥ (Xy) - B(F) + Uy (Xy)+0(F)+6(F)— 6(F)
=0

U5, (X1,Xa)
= E[¥3(Xi, X2, X3) | X1, X]
= E[¥3(X;, X3, X3) | X1, Xa] — E[¥2(X1, Xa) | X1, Xo)
— E[¥5(X1, Xa) | X1, Xo]E[¥5(X2, X5) | X1, Xa] + E[¥1(X1) | X1, Xo]
+ E[¥1(X2) | X1, X2] + E[¥1(X5) | X1, Xa] — 6(F)
= Uy(Xy, Xa) — Ua(Xi, Xa) — Uy (Xh) — Tu(X2) + T (X1) + ¥1(X2)

+ 6(F) — 6(F)
=0
Then,
& = E[lu(X1)] - (E(Uns)* =0
fg = E[\I’32(X1,X2)]2 - (E(Uﬂ,3))2 =0
By (4.3.7),

et = g ()5 () ()]

= 11) gy 9 = 3)(n — )€ + 180 = )& +663)

= 0(n™?) (4.3.19)

From direct computation, E(U,4) =0, V1 < h < m and
Var(Unp) = E(U2,) = o(n™), hr=12..., m; (4.3.20)
Since Up1 = Va1, we can write

Un = 6(F) + = So[E(X) = B(F)] + Op(n™) (4.3.21)
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Theorem 4.2
Forc=1,2,...,h—1,and h=1,2,...,m, U (z1,...,2c) =0

Proof:  Lee (1990)

Using the integral representation

z(xl,...,xh)

— [+ [ $lunye s um) T dels = X)) = dF ()] ﬁ dF(u)  (4322)
=1 J=h+1
h-1 m
= [ [ $une s um) T dlets = X)) = dF ()] TT dF(u)
j=1 1=h+1
oo f v um) Tl X)) = 4P ) f[hdF(u,-)

= [ [ o) TT s — X)) = AP ﬁ dF (u;)
1=1 j=h-+1
_— \I’;_l(ml, e ,(Eh_l)

Integrating both sides with respect to uj with measure dF(up) yields

E(\Il;’,(xl,...,mh_l,Xh)) = \Ili_l(xl,...,m;,_l)—\Il‘,’,_l(:zl,...,:vh_l)
=0

and so \Il;’,,h_l(wl, o, zhoy) = E{¥s(z1,. .5 Th-1,Xn)} = 0 from (4.3.3).
It follows from Theorem 4.1 (i) that

VP (1. y%c) = E{¥} p1(z1,- o5 Tes Xesty--oy Xn-1)} =0

Theorem 4.3
(i) Let h < A’ and let 5, and S, be a h-subset of {1,2,...,n} and a h'-subset of
{1,2,...,n} respectively. Then

Cov(¥2(51),¥5(S2)) =0 and  Cov(Unp, Unw) =0
(ii) Let S; and S; be two distinct h-subsets of {1,2,...,n}. Then

Cov(¥}4(51), Ta(S2)) = 0
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Proof:  Lee (1990)
(i) Since E(Unp) = E(¥3(Xy, ..., Xn)) = 0, we only need to prove that

E(T5(51), ¥r(52)) = 0

Since h < k', there is an element in S, that is not in S}, therefore there is a r.v., Xn
say, that appears in ¥5,(S2) but not in ¥3(S1). Thus we can write
E{T5(5)T(52)} = E{B(T(S)¥3(5) | Xw)}
= E{T4(S1)E(Th(52) | Xw)}

since ¥§(S:) and Xp are independent. But E(9%(S;) | Xa) = S, (Xw) = 0 by
Theorem 4.2 and so E{¥3(5,)¥5(S2)} = 0, proving the first part.

Cov(Unp, Unpr) = (Z)_l (Z,)_l T S Cov(T5(S1), T(S2) =0

(n,h) (n,h'")
where the sum 3, ») 18 taken over all subsets 1 < iy < --- <ip <nof {1,2,...,n}.
(ii) If 51N Sz is empty, the result follows by independence. Otherwise, suppose that
Sy — Sy = {i1,--.,1c} with c < h. (If $; C S, then consider S; — S,). Then
E(T3(51)T5(S2) = E{E(TR(S1)TR(S) | Xirs-- -5 Xic)}
= E{¥}(5:1)E(T3(52) | Xy, -, Xi)}
=0
since W8 (z1,...,2:) = 0 by Theorem 4.2. |
For the one-sample U-statistics of degree 3,
A AN
0 = (3) > (D - DE), Ui} = (3) > (DY — D)
i<j<y’ i<i’<j
N\ !
and U = (3> 3 (Dg - D%),

i<j<y’

un = E(UY) = E(UY)) = E(UY)) = E(DY — DY)

2 K K
= K2 LZ:I 6 + k% Oik, — kZI P(X% # X5, Xk # Xn)
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— > P(X§, # X Xik, # Xin,)

ky £k

K K
Z + 3 6, = 08, 530,0) — 2 Rk (1,35, 5)

k1 #ko k=1 k1 #k2

where, for any g,

0(i.5) = 6 = P(X5, £ X5) = 3" A1 — KO, (4.3.23)

c=0
olgc;kg (Z’J) = ezlkz = ( ik # ]kl? tkg # ﬂcg)
Cc-1 Cc-1 C-1
= Z p‘Zlkz(Cl,Cz) Z Z pilk2(63,64) , (4324)
c1,c2=0 c:s:c‘il c‘:«;:coz
Cc-1
62(i, j:1,7') = P(X% # X%, X& # X% = 2 ph(9)ll - s ()], (4.3.25)
c=0
lekz(i7j§i,jl) = ( sk1 # X ,kl .k; # X ’kg)
= Z 7, (e e2)[1 — pf ()l — PR ()],  (4.3.26)
c1,c2=0
pr(c) = P(X%=c) and pi,, (e1,¢0) = P(X§, = 1, X, = ) (4.3.27)

If the null hypothesis of interest is that there is no between-group difference in Ham-

ming distances, i.e., Ho: f; =+ = 8¢ =0 and b, = -+ = 05, = Ok, then

P = M= Eek‘l' > Ok, — Zek 5,3:6,3) = 2 Ok (3,554, 5)

k=1 ky #k2 ky #k2

Note that ¢y1(X?, X%, X%) = (Df;— D{;;)* is not a symmetric kernel. Therefore,

we need to replace it by the symmetric kernel
1
¢1,(X{, X9, X)) = 3 [(D?j - D?j')2 + (D3 — D%)* + (D%, — D?’j)2] .
Since the sequences are i.i.d.,
El¢11(X{, X4, X5)] = El¢),(X{, X3, X3)] = par
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¢(1,1)1(X?) = E[¢11,1(X?’X?7X?')"ﬂgl]

9 K
- 3—1{—2{2;P<Xﬁ¢wé’k>+22 PUKS, # 55, X5, # 73)

k1#k2
K 2
— Y (P(XG #5%) — X P(Xh, # 28 X, # 7hy)
k=1 k1 #k2
K
- ZZP(X;]’C ’k? k:lé .k)
k=1
- 2 Z ( k1 #ka, sz #x,kz —2299
ky#k2
K
— 2% 8%, +3Y P(X& # Xi, Xik # X5u)
k1 #£k2 k=1

+ 3 ) P(X§, # XX #kaz)}

ki #k2

By (4.3.21),

U1(313 = pa t+ 57 Z (‘I’(l m(XY) - #91) +0,(N71) fork=12,3.

l—l

Note that E( ) =0 and Var(Uix) = ¥ (1) + Op(N7?)

Example: Two categories

Let, for any g,

p(0) = P(X% =0) , pi(1) = P(Xj =1)

plgclkg(]' 1) ( Jkl 1 X]’Cz = ) ? pilkz(o’ 1) = P(X_fkl = O XJk2 = 1)
pzlkz(]"O) = P(X] X]gk2 ) ’ pilkz (0’ 0) = P(ngkl = XJk2 = 0)'

Note that p2(0) + pL(1) = 1 and 7, (1, 1) + Py (0,1) + Py (1,0) + Pusy(0,0) =1

Therefore, there are 4 parameters for each group. -
Now,
¢(21,1)1(X‘?)
2 2
= 9K+ { (Z P( # m?k)) +4 ( Z P(X;]kl 7& zlgkl’ kaz # xtgkz))
k1 #ko
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K
3 (kz=:1 ki #£k2
+ 8 (é{: P( sk)) ( Z P( jk 74 x?kl’ ngz 76 ‘T?kz )>
k=1 k1 #£k2
K K 2
k=1 k=1

|
K
El
Ngle
"
e
*® ")
e
8
;‘_Q
N’
~—ee” S

( Ik # xlkl’ X 7'k2 # wtkz ))

|
oo
N
=
X
e
kol
S
ﬁ
&2

|
o0
Ed
u[\’]w
pac)
5 &
N
8
a-l
~— NS’

K
3 P # X X -#z?a)

x
1]
-

( ik # X5 X X,gkz # x?kg ))

—

(h
|

X5 # x?k)) -2 (Z:l o + Z algclkg)

k1 #ko

x

+

(N
AR
M=

hac]

P(X§ # X5, X5 # XIe) + S P(X%, # Tk Xi, # X ’kz))]
ky #k2

,;;

+
w
NN,
A Il
i =

[
K

*
X

P( Jk1 # .T?kl, sz # xlkz

>: %ww»)

.u;

m
— TN

L2l
K
S

Ll
N

P Jkl # xlk]’ ]k2 # xlkz Jkl # xtkl’ X 'k2 # x|k2 ))

Ll
Ky
H

o
»

’k? X;]k # x?k))

( Jkl 75 X5 ik sz 76 x?kg ))

P( Jkl # a’“tqkl ? kz # xlkz 2 (E_‘ ek E 0k1 kg)

OO

+
>
TN TN

2
K
+
Ll
(M

P Jkl # xth’ # xikg

X~
2
*

kad
LY

)
Iz
P(X5, # 2, X%, # th,) )
)
)

k1 #£k2

88

2
2
P(ngk :/lé X?’k? X;’]k 7é m:k ) ( Z P ]kl 'k,7 sz 7'é :L‘,kz))

P(X§ # X5, .‘qk?éXf'k)‘i'ZP( % F Xk ikg?éX'kg))] |

~



K
+ 3 (Z P(X§ # X%, Xi )+ Y. P(X{, #X Y Xk, 7 X 'k2)>]
k1 #k2

fo
ol
-

+
[\
—
gk

[y

k1 #k2

(P(X ) ( E P(X Jkl # m:klv X3 k2 # x?kz))
2)") (% POt # X0, X5 7 =)

+
S
N

M=

-
1
—

(PCxs:

V)

)

(P(xXE, # m-:-’k))"’)
V)|

4+
N
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a
Il
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k1 #k2

(B )

P(X§ # X, X # X)) + k% P(X%, # X X, # X ’kz))]
1 2

( (XJk # Tik)

|

N
N
Tf[v]:v

N Ll

( Z P( 3k # X?’kn ngkz # x?kg))

+
3%
TN

M=

x~
1l
-

K
+ 4 P(X3, # Thy» X, # Tik,) ) (Z P(X5% # X, X5k # 'T:k))
ky #k2 k=1

+ 4 ( P( ]k1 '_/é zlkl’ X 'kg 74 x'k2 ) ( Z P Jk] 'kl’ Jk2 # x"%))
k1 #k2

ky #k2

—2(2 P( k1 #mtklix'kz #xtkz) [ (Zeg_i_ Z 0k1k2)
k

15k 1 ki #k2

+ 3 (K P(Xi#X Jk’ Xf’k)“' Z P(Xigkl Jkl’ 'kz #X’kz))]

k=1 k1 #k2

+8 (i P(X% # Xin X5 # z?k)) ( S P(X3, # X, X e F z.kz))

k1 #k2

-4 (i P(X3, # Xjn X # 7) ) [ (Z i+ 2 oklkz)

ki #£k2

+ 3 (é{: P(X% # X5, X5 # Xju) + ST P(XG, # Xy, X, # X’kg))]

k=1 k1 #k2

-4 ( P( 7k1 # X3 7'k Jk2 75 mtkz) [ (Z 09 + Z gklkz)
k1#kz

ky #k2

k=1 ky #k2

+ 3(§:P(X?k7éxfk’x Xle) + > P(XE, # Xk :kg?éX’kg))]}

fgl) = E[’/’(21,1)1(X?)]
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For the 1-sample U-statistics of degree 4,

N AN
U‘;fi=() > (D - D&y, U(:,%=(4) > (D= Diy)’

4 1<g<i'<y! i<’ <5<y’

N -1
wmi = (}) ¥ @p-pnr

i<i/<j'<y

b = E(US)) = E(USY) = B(US) = BI(D% - Di;)"

9 K
= L0+ Y (B~ 922)} (4.3.28)

=1 ki #£k2

and under Hy,

Hg2 = H2 = K2 {Zak 1 - ek) + 2, (0k1k2 0k10k2)}

k1 3£ks

K K J(X% # X%)]°
. )t = [E I # Xp) 5 10Kk # X3 a]

b0.1(X9, X9, X, X)) = (DY — Df,;)* =
’ ! k=1 K k=1 K
Yam(xd) = Elga(xd,X§,XJ,X5) - g2
- {2 (1 — 269)P(X5, # a%,) + Zog (269 — 1)
k=1
+ Z P (kal # m?klvx_?kz # x?kg) + Z (2921 ekz - i;kg)
ky #k2 k1 #k2
- 2 ) 6, P(XG, #w?kl)} (4.3.29)
ky#ka
which becomes under Hp
K
'(,[)(2,1)1()(,') = Z 1 — 29k)P(XJk 75 l,k) + E Gk(20k — 1)
k=1
+ Z P(Xjkl 74 ‘Tiklankz # """ikz) + Z (20’01 9k2 - 0’61102)
Ky #k2 Ky #k2
- 2 Z ekzp(Xjkl 71: mikl)}
ky #k2

(2) = E["/’(z 1)1(X )]
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By (4.3.21),
(4) 4 & g -1
Usk = Bg2 + -]_V—Z (‘I’(‘z,k)l(xi) - ,ng) + O0,(N™Y) fork=1,2,3.
=1

Note that E(U#s) = g2 and Var(Upg) = ¢ + Op(N7?).

4.3.2 Multiple-Sample U-statistics

Let {X(j)' i > 1}, j = 1,...,¢(> 2) be independent sequences of independent

T 2}

random vectors, where X,(-j) has a distribution function FU)(x), x € RP, for j =
1,...,c. Let F = (FW,...,FO) and ¢(X5j), 1<i<my 1<j<c)bea Borel-
measurable kernel of degree m = (my, ..., m), where without loss of generality we
assume that ¢ is symmetric in the m;(> 1) arguments of the jthset,for 3 =1,...,c
Let mo = mq + -+ + m. and

8(F) = /Rmo .../¢(x§”, 1<i<m;, 1<j<o)[[IIdFP{) (4.3.30)

j=1li=1

Definition 4.6
For a set of samples of sizes n = (ny,ng,...,n) with n; > mj, 1 < j < ¢, the

generalized U-statistic for §(F) is

c N '

Um) =] (:;) S O(XY, a=ij,...r0m;H 1S5 <0), (4.3.31)
J=1 J (n)

where the summation 3y extendsover all 1 < ij; < ... < ijm; <n;, 1 <j<e

U(n) is an unbiased estimator of (F). The generalized von Mises’ functional is

G(F(’n)) = (Ii[ln]—mj) ﬁ {i ZJ ¢(x8), « =7:jla""ijmj, 1 SJ S C)}

j=1{ i1 ijmj

(4.3.32)
|
Now, forevery d; : 0<d; <mj, 1<j<cletd= (dy,...,d.) and

Ba 0 (P, D, 1< <) =B, x Xy X8, 15 < 0))
(4.3.33)

91



so that ¥g = §(F) and ¥, = ¢. Then
ta(F) = E(BXD,... XY, 1<j<e)) —#(F), 0<d<m (4334

so that £o(F) = 0. Then, for every n > m (Sen, 1981),

()] RS0 () em)

= Z nj'o}[1+0(ng)] (4.3.35)

Var [U(n)]

where ng = min(ni,...,n.) and
0‘3 = m? ééjx,---,ch(F) J = 1, vy C (4.3.36)

with 84 = 1 or 0 according to whether a = 3 or not.

For a two-sample U-statistic of degree (my,m2), the kernel is
X1, s Xmy3 Vi, ooy Yany)

and

-1
n n
U(nl, nz) == < 1) ( 2) Z d)(Xuly uml ’ Kgf?, szz)

my ma (n,m)

where 3(, m) extends over all 1 < ¢ < ... < ijm; < nj, § =1,2. U(ny,na) is an
unbiased estimator of §(F(), F(?),

Define

6( F F(2))

n ?

= _mln m2 % E Z E Z ¢(X1117 uml,Y;gla""Yizmg)

111=1 i1my=11i21=1 iomao=1
Then,
| Unsra — BED, FD) |= 05" mo=min(ny,na)  (43.37)

provided the variance of Uy, n, exists.

"pdldz(xl’ ceoy Ty Y1y - ydz)

= E{¢(z17"'7xdlixd1+1""7Xm1;yl,'",ydz’de+la'-'aYm2) - G(F(1)7F(2))} ’
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\I,dldz(xla- s Ty Y1, - ,ydz)

= E{¢(x17"'7wd17Xd1+17-'°aXm1;yl""7yd27}/dg+la"'3Ym2)} 3

aay, = E{da (X ., Xa, V1,0, Ya,)}
= B{¥% (X1, Xa, Vh,...,Ya)} = 2(FO, F®)  (4.3.38)

for dl =0,...,m1, d2 =0,...,m2. (60050) Then,

(Vg my) " (U (g, ng) — 8(F O, F®)) -4 N(0,1), (4.3.39)

77211 N2 = (mz) EIO + ( ) 601 (4340)

The decomposition for U/(n) can be developed similarly to the one-sample U-

where

statistic. For a two-sample U-statistic, let

° 3
\I’hlyhz(ml" <y ZThy Y15 - 7yh2)

. /¢(ul,...,uml;vl,...,vmz)fjl[d(c(uj—x.,.))—dFl(u]-)]

X H dF1 u] H[d c\v; — Y,-l))—sz(v;)] ﬁ sz(’UI)

j=hy+1 I=hs+1

then it follows as in the one-sample case that

¢(m1,...,xml;y1,...,ym2)

m; m2
= Z Z Z Z \Ilzl,hz(le" * ‘7xjh1;y117' . '3y1h2) (4.3.41)

hy =0 ha=0 m; ,h1 m2,hs

where Y., 4, is taken over all subsets 1 < j; <--+ < g <™y of {1,2,...,m1}.

Theorem 4.4 (Lee, 1990)

The two-sample U-statistic admits the representation

Ungny = Z Z ( )( )U,(,’l‘j,;:” (4.3.42)

h; =0 hy=0

where U,Si‘j,;:z) is the generalized U-statistic based on the kernel ¥3 , and is given by

-1 -1
1 I ALt n2 °
Utk = (hl) (h2) o O, X YY),

(n1,h1) (n2,h2)
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The functions ¥, ;. implicitly defined by (4.3.41) satisfy

(1) E{08, 5, (X1y. ooy Xny3 V1,000, Yoy )} = 0

(i1) Cov(\IJ;’,hhz(Sl,52),‘11‘,"1%(5'{,55)) = 0 for all integers hy, ho, A}, h} and sets Sj,
Sy, S}, S5 unless hy = hj, hy = Rl and S; = S} and 5, = 5. (]

The generalized U-statistics U,(,'l'f,;g‘z) are thus all uncorrelated. Their variances are

given by

-1 -1
n n
Var(U1h9) = (h1> (hZ) 82 n, (4.3.43)

where 82, = Var(¥} 5, (X1,..., Xb; Yy,..., Yh,))

From (4.3.42) we can write
U(ni1,n2) — 6(F) = Ur(n1) + Uz(n2) + U*(n1, 12)
where

Ul(nl)

<n1>_1 S0 oKy s Xiy ) — O(F);

m
1 (n1,m1)

-1
n
Usiny) = () S W (e Yin,) — 6(F);
(n2vm2)

my

m22 fm m
Urtram) = 35 55 () (o

hy=1 hp=1 1 2

= U(ny,ny) — 8(F) — Uy(ny1) — Uz(na),
and U*(n;,n2) is also a generalized U-statistic for which

Var(U*(n1,n2))
= E[U*(n1,ns))?
= E[U(n1,n2) — 8(F) — Us(n1) — Us(n2)]®
= Var(U(n1,n2)) + E(Uf(n1)) + E(U3 (n2))
— 2E[(U(n1,n2) — 8(F))U1(n1)] — 2E[(U(n1, n2) — 6(F))Uz(n3)]
+ 2E(U1(n1)Uz(n2))
= Var(U(n1,n2)) + E(Uf(n1)) + E(U5 (n2))
— 2E[U?(n1) + Ur(n1)U*(n1, n2)] — 2E([U2(n3) + Ua(na)U*(ny,n2)]
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=Var( nl,nz) E(Uf(m1)) — E(Uj (n2))

-EE0G )(ml-h)(ﬁ:z,j) () () e

= m2§11( F) + O(ng?)

nin2

since the generalized U-statistics U,gi‘j,;i:?) are all uncorrelated (Theorem 4.4).

If Var(U*(ny,n2)) = O(ng?), then U*(ny,n2) = Op(ng"). Also, U(n1) — 8(F)

and Us(n,) — 8(F) are one-sample U-statistics. Therefore, U(ny,n,) can be written

Ul = OF) + TS0 = 0(F)] + 72 3 {¥n(¥) ~ O(F)
+ Op(ng') (4.3.44)

where ng = min(ny,na).

The above expression can be generalized for multiple-sample U-statistics. For

instance, the decomposition for a three-sample and four-sample U-statistics are as

follows
U(ni,na,ns) = O(F)+ %i[\nm(x;) 6(F)] + —2—;[\1'010 Y;) — 6(F)]
4 —32[%‘“ — 8(F)] + O5(5") (4:3.45)
where ng = min(nl,nz,ng)';nd
U(ni,nz,n3,ng) = 6(F)+ —;[‘I’woo i) - 0(F)]+-—Z[‘I’owo (Y) — 6(F)]
+ 2 g;[%mo(zo —6(F)] + fé[%"‘”(w‘) — 6(F)]
+ Op(ng") (4.3.46)

where ng = min(ny,nz,ns, n4).

For the two-sample U-statistic of degree (2,2),

U(az,z)z(f;’)-l(g)_l Y Y (DB -DZY, (4.3.47)

1<i<j<N 1< <j'<N
E(D% — D%,)* = E [(D3)? + (Df)? — 2D% D&
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1 K 2
E(D?j)z = E [}\7 Z I(X5 # ka)]
k=1

= Tl;gE [ZI;:IIZ(XQ #ng)-l-zk;?I(Xﬁel?é S X5, # ]kg)}
L (X
= ﬁ{gp(xigk?éxgg’k)+2k§czp(xfk,#kau X #X )}
_ Ly Ly,
K? (o K? %

And, for any g, and gs,

E(Dgl Dg2 )

-5

oo o)

k=1

%l

K
=F{E ZI I(X Z I(X3 # J,Cl)I(X,k2 #X,kz)]}
k=1 ky #k2
K
=F ST P(XH # X5, X8 2)+ S P(XE # X&, X%, # Xh,)
k=1 k1 #k2
K
= _I{_ {Z P fi:)P(Xz + z P 'kl ]k;)P(X Tky 74 X Ikz)}
k=1 k1 #ka
—_ {2091092+ Z 091092}__{2 Zgylogz}
k1#k2 k1 =1ke=1
since the sequences in groups g; and g; are independent.
Therefore,
E(US?) = Hnale = 0(F“’ F®) = E(Df - Df)’
o9 + e 1 {E‘ o 2 69
— 1 2 4 2 2
Kz Z Kz klg;cz ki k2 + K2 ’f_al + K2 ké;cg krka
) K
- H(sews > ae
k=1 ky #k2

1 K
—K—z[E(ﬁi‘ + 07— 20007) + 3 (68, + 68, — 2006%)
k=1 ky#ko

(4.3.48)
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Under Hy: 0L =--- =0 =6 and b4, =~ = 05 v, = Ok,k, Then,

H(g1,92)3 = (
1/’(3)10("?1 )

= E{¢3(xfl ’ X?I 3 Xg’z ) ng) K ,92)3}

1 K 1 5 2
= E { [_I? Y I=h # X% - g_“, (X3 # X?f’k)] - M(glm)s}
k=1 =1

u[\/]><

1—0k + Z eklkz Oklakz)) (4.3.49)

ky #£k2

1 K
= F {E P(.’L":]i + 2 Z P |k1 ]kl 1k2 ]kz) + Z 092
k=1 ky <k2
K
+ 2 z aklk -2 Z azzp(xtgl:: -2 Z 9 tk; X]kl) — K(g:1.92)3
ky <ks k=1 k1¢k2
1 1S g1
= I > P(zh # M) +2 Y, P(zh, # Xk, th, # Xok,)
k=1 ki <kz
K K
—2;‘9221’(18‘32 # fi)—2k§:k o5, P2k, # ,kl)—kZ%‘
=1 1#k2 1

-2 3 %k, +22091992+2 3 091092}

ki <k k1 #k2

- {2091(2992—1)+2ZP e # Xk > 7l # Xk

ky <k

+ :;(1—2922)1’(90?% #X%) -2 Y OGPk, # XGi,)

ky #k2

+ S (e0f0p - Oiikz)}

k1 #k2

Under Hy,

¢(3)10(xi)
= E{¢s(xi,X;; Xir, Xj1) — pa}

1 K
= 75 {Z 0r (265 — 1) Z(29k — 1) P(zix # Xji)
k=1

4+2 5 Pk # Xiby > Tiky # Xijka) — 2 > O, P(zik, # Xiky)

k1 <k2 Ky #k2
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+ ) (26k, 6k, — eklkz)}

k1 #k2
Similarly,
1/’(3)01(7(‘?/2)
= E{¢a(X¥, X3, x7,X7) — hg1.00)3}

1 1 & K
) E{[EZ:I(X?I: # X5 - g L Aah Xffk)] —u(gl,ms)}
K
N {Zagl+2zak1k2+sz'k#xgk)

ky <k2
+ 2 Z P(.’L’ Ikl s :L'?,zkz 'k2 22 091 .'I: ’k X
ki <ko
- 2 Z (w 'kl # X 'kl)} _#(91192)3
ky#k2

= Kz{ZP(x # X%)+2 Y P(zfh, # X, i eh, # X%,)

ki <ko

-2 Z 091 :I) lk -2 Z 0 1' Ikl "?,2k1 Z 092

k1 #k2
2y 6, + 22991092 12 Y e }
ki <k2 ky #k2
1 K
= FZ- Z 022(2021 + 2 Z P :L‘ 'kl 'kl .T 'kg # X Ikz)
k=1 ky <kz
K
+ 2(1 —_ 2021)P($.g?k -2 Z 0 :B lkl X ’kl)
= k1 #k2

+ D (26067 - 9%?:@)}

ky #ko
Under H,, '/’(3)10(3(1') = ¢(3)01(Xi')- Then,
1/’(23)10("?1)

1 K 2 2
- m(Eaew-n) s T ren Ao oh 2]

k=1 k) <kz

K 2 :
+ % (2(1 — 26%)P(z% # X;;)) + T?'Z ( Y 0RPh, #X ))

k=1 k1 #ko
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2
(261, 0%, — 9Zik2))

k2

ok (2657 —1)> (Z P(z, # X5, =ik, #Xfé2)>

ki <ko

LIPS
N
=
*

x

||M>:

—_

691 (209 — ) (2(1 — 207)P(af # X ))

N
i M=

-

0 092

67 (262 — 1) (

P( :kl 7& ]kl 3 Ikl Jk2 ) (Z 092 1 7£ Xfl::))

M::

1k1 7£ X]kl ))

ky #kz

M=

a~
PI_I‘

a~
1]
-

gl 992 _ ekl kz))

k1 #ko

o = e Ale A Ae

P( 1k1 # X]kl; lk2 ?é Xjk2)) ( Z azzp( iky #X]kl))

k1 #ko

Col
2

A
kead

2

P( 1k1 # ]kl ; lk2 # ]k2 )) ( Z (209l 092 - 0k1k2))
k1 #k2

|.x>- lN|.J=-
-

N
s J— a-.A e,
A
K

x~

(1 —262)P(z}; ) (Z 00 P(z3, # Xj-’,tl))

k1 #k2

]

"

| H

(1 268)P(ath # X2 )) ( S (26762 — 62, ))

ky #k2

%
N

f
—

| -

202; 6% — of: kz)

o

ingle
bl

<ol
=
H

L
N

g2
0k2P 'kl Jk1 )

1(2992 - 1) ( Z P(x.kl k1 y T .kz # ,kz))

1
—_— 0
K4 k1 <ks
1 K
71 | (1 —260)P(h # X )
k=1
2 2
—4_ 022P(x1k1 # X]k] Z (2091 0g2 - oklkg ))
K* k1#k2 ky #k2
4 K
Kt Z o7 (267 — 1)) Z P(z%, # k1 T, F X )
k=1 ky <k
2
K*

N TN
[V]a

~
Il
-

o7 (oo - 1) (i(l—zozwﬁ(m?ﬁ )

k=1
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HI"P

K

"4 (Z z 2092 - ) ( Z 692 Ikl X 7k ))

k=1 k1 #k2
K

(oo -v) ( S (26808 - ezikz))

ky #ko2
4 2
-KT { E tkl ]k1 ; :kl 7é X]kz)(l - 2021)P( iky # X]kl)
<ko
Z P tkl Jkl ) tkl # )(1 )P(xzkg 74 Xf’::z)

ky <ko

2 P( 1k1 7& k1 3 xtkl # )(1 - 20 ( 1k3 # )

ky #ko#kg
ky <ka

Z P(x;kl fl::l 3 mflt:g # X]kg)gifp( :kz # Xﬂcz)

k) <ky

Z P tkl Jkl 3 x?ltz :Ié Xjk2)0 P( tkl # Xjkl)

ky <k2

Z P(z] .kl #X Jkl ) f“kz # Jk2)9 P(-"”.ka # ,k,)

ky#hoF kg
ky <k

Z P( Lik, # X,k, ) w?iz 74 X,k,)o P( Lk, 75 ngl)

ky#koa#kg
k) <ks

Z P( :kl # k1 ) xle % fltg) ( lks 7é ]ks)

k1 #£ko#kg
ky <ko

Z P( tkl 7£ Xkl ) xakg # X]k2)0 P( tkz #Xjkz)

ky Fka#kg
ky <k2
( Z P :kl Jk1 T tkz 7& ) ( 2.4 2021 ogz - ozikz))
k1<k2 k1=;’-'k2
4
F |:E (1 _2092)P( tkl # X]kl)e P( tkg 74' X]’C2)
k1 #k2
2(1_20 )P( ikl# _.;Jltl) i ( ak:lsé ]kl)
k1 #k2

Z (126 )P( .k1 #X )0 P("?.ks # ,k,)]

k1 #£k2#ks

1 K
& (S -op)pat 2 ) ( S (068 - 02, ))
k=1

ki #k;
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( Z Bizp ikl XJkl )) ( Z (zeii eﬁ - azikz)

k1 £k, k1 #ke2

Similarly,
Qb(s)m(x ’)

\ 2
o (262 1)> (E P(afi, # Xfio i ol # X "”))

ki <kz

K 2
v (Ta-res x5)
k=
4 1 Py ?
+ EZ ( oz;P(xffh # X 'k )) + K’Z ( Z (2021 0k1k2 ))
kl;ékz kl#k2
4 K
+ ﬁ (Z or (2991 ) Z P 'k1 g’z,kl ) ’kg 74 X ’kz)
k=1 ky <k2

+
IS
O

Mx

-~
I
NA

K
07 (267 — 1)) (Z(l — 207" )P (2 # X3k )
k=1

) (5 e )
)

092 (2991

N
?f[\/]w

—

ky #k2

— 1)
6% (269 — 1)

|

-
N

[V]w

Ed
Il
[

(z (2062 em))

k1 #k2

4
+ = ( P(.'L' 'kl Ikl ; x?fkl 1k2 ) (Z 1 - 2691)P($ # X ))
K k1<k2 k=1
8
— _-K'_( Pm,kl%X,kl,:IZ/,Q /k2)(20 P(:z,kl#X,kl))
ki <k2 k1 #£k2
4
T % ( P(zf, # Xih, s o, # X5, ) ( > (26568 aklkg))
ky <k2 ky #£k2
al

M=

x
It

1

(1-268)P(afh # X3 ) (k% 0%, P(alh, # X'k,))

_|_
3~
T~
M=

=
1]
—

(1—269)P(a% # X%) )(Z (260262 — ,q,cz))

k1 #k2

4
- = ( 0. P(c%, # X%, )) ( S (26267 - oz:kz)
k1 #k2 k1 #k2
1 (& 4 2
= ’7(20 (091__1) Zp(x’kl 'kl' 'kﬂékaz)
k=1 k1 <kz
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(1—269)P(z%, # X% ))

IS
TN
M=

=~
1l
-

2 2
4
% P(a%, # X%, )) + 2 ( S (28068 lek,))

ky £k

|.;>
N
’_.?r
1]
L =Y
k3

N

T~
ﬁt’]x

—

k1 <k2

0 (2021 - ) ( Z P((L‘ 'kl g'2k1 ) ot Ik2 7£ ]k2 ))

o~
WMN

[~

6% (26% — 1)) (f:(l — 269)P(a%, # X% ))

k=1

4 K
k=1 ky #k2

4 (¥ )

71 (Z 62 (267 — 1)) ( S (26767 — 6 kz))
k=1 ky #£k2

4

K4 Z P(afh, # Xih, 5 Tin, 7 X1 — 267 )P(aih, # X5%,)
ky <ko

Z P(:IJ 'kl 9,2k1 3 -T Ikl # X 'kz)(l - 20g1)P(.'E ik # X 'kz)

ki <ko

Z P(a%, # Xk, 20, # X T, (1 — 265, )P(zf, # XTik,)

ky #k2#kg
Ky <kg

[ Z P(-’E lkl ylzkl x 'k2 # X Ik2) P((L‘ i'ko # X Ik2)

k1 <kg

3 P(af, # X%, ; aih, # X3, )06 P(zli, # X5h,)

ky <k2

Z P(z 'kl#X/h; m,?éX'kz) ('ka#X/ks)

ey #ko#kg
ky <k2

Z P(zd, # X3 ik s 23, X 'kz)eﬂ, (=3, # X 'kl)

ky #koyFHkg

ky <kg
Z P(xlg’zkl % g'zkl ! .’L' 'k2 # X 'kz) ( 'ks # X ’ks)
TS

S P(af, # X% o5, # X5, )00 PGS, # X5,)

ky #ky#kg
ky <k
z P x 92 .77 7& X ) Z (2091 %2 — 992 )
’kl 'kl ’ 'kz 'kz ki1 Vko ki ks
ky <kz K1 #k2
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|: Z (1- ZGQI) (z) ik # X 'kl)oii (e ko # X 'kz)

K* ky #k2
+ Z 1—29 )P.’E #X’kl) (x;kliéX/kl)
ky #k2

n (1 — 268)P(a%h, # X%, )01 (x,ksaéx,ka)]
k1 #k2

#k
7 (3
_ ( >

ki #k2

1 —268)P(z%, # XF) )) (kz (2681632 — lekz))

17k2

0% P(z%, # X5 )) (Z (267 67 9k1k2)
k

1 Fk2

3)
10

I

E{To(X{")}
K 2
- %4 (kgzjl 60 (267 — 1))
+ %{ Z { Z (piikz(u’v)ypiikg(l -u,1l— v)]

ki <ke |u,v=0

+ 2 ) > Piikz(u’”)Pillks(“’t)Piikzks(l —ul-vl —t)]

ky <ko <ks Lu, vit=0

+ 2 Z Z I’liika(“at)Pi;ka(”at)ﬁikzks(l —u,1—-v,1— t)]

k1 <ka<ks {u, v t=0

+ 2 Z Z Piikz(%v)?i;ka(v’ t)piikzks(l -u,l —v,1- t)]

ki1 <ka<ks | u, v t=0

S [ S () (v, 2)

k #k2¢ka¢k4 u,v,t,2=0

et 1100
bR {Da-wr [Tkt )

u=0

+ 23 (1-268)(1 - 268 [Z (1 - (w) (1—pz;(v))pi1k2<u,v)]}

ky <kz u, v=0

+ 5l S [ 0-me) o)

ky #k2 u=0

SN G b> (1_pg;(u))(1_pz;(v))pk2k,<u,v)]

k=1 k1#ka#ks ,v=0
ky <kg
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z T e [Z (- sw) A (“‘)]

k1 #k2 ks u=0

ky <ko u, v=0

2 Z 092092 [i (1 '_pill (u)) (1 _pkz v)) pklkz(u U)]

K !
2y Y oepez| Y (1 ~ i (w) (1 — Pl (v)) Piika(u,v)]

k=1 ky #k2#ks L“ v=0

2 ) O Z (1—p2(w) (1 - pE(v)) pi;k4(u,v)}}

ky #ka#ks £ka [ 4, v=0

4 2
L= Comom-an,
(3 o)
%(2091(2092—1)> ( [Z Pillz u ”lekz( u,l—v)])
k1 <k2 v=0
2 Ql 92 g2 1
2 Erom ) (o[-
K
A (o -v) (3 [ga-w o w))
% (’ée (26 —1) ( T (26262 - ag;kz))
Ki{ (1 - 298 [Z e (0)(1 — 5 (1 — ), (1 — 1 = v)]
ky <k2 u, v=0
k}:k (1—26%) { Zzopiik,(u,v )1 =Pl (1 —v))Ph s, (1 —u, 1 — U)]

,, Z# (1 - 265 [ Z_opiik,(u,v) (1 = Pk (£)) Py (1 — 05 1 = v,t)]}

ky <ko

{Z 0% [Ep’,;kzuv)(l—piz(l—v))pilkz(l "1—”)]
ky <k u v=0
> [ z;opzik2(u,v) (-1 - ) (- w1~ v)]

Z 0% Z Phyky (4 ) (1= i, () ])Piikzk,(l‘“,l—”,t)]

ki #ko#kg Lu vt=0
ky <kg

Y e zpz;k2<u,v><1—pf;z<1-—u))pz:kz(l—u,l—v)]

ky #hoF#kg L@, v=0
ky <k
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+ 2 6 [ > Piikz(u,v)(l—Pii(t))lfiikzka(l—u,l—v,t)]

ky #ko#kg u,vit=0
k1 <ko

+ 2 6 [Z Piikz(u’v)(l—ﬁ;(l—U))pﬂkz(l—u,l—v)]}

ky#ka#kg ,v=0
ky <k2

ot (o) (5 [Emenan -]

k1#k2 ky<ky |u,v=0
b { S (1 - 260)8 [ S (- @) —pz;(v»pz:kz(u,v)}
ky #k2 u, v=0

b (- [}:(1 o (W) 8L (u >]

k1 ke u=0

+ > (1-268)68 [ Y (-p ()1 - pi;(v))piiks(u,v)]}

ky #ko #kg u, v=0

n %4_ ( 3 (26202 — 62, ) (; (1 - 26%) [Xl:(l — pi (w)Pt (U)D

ky #k2 u=0
4
- R‘;(Z (260267 - klkz) (Z o [Z 1 - (u ))piz(u)])
k1 #k; ky #£k2 u=0
Similarly,
¥ = E{LEP)}

1 (& 2
= i (Z 67 (267 — 1))
k=1
1

- %{ > [z: (pifk,(u,v))zpz:kz(l—u,l-v)}

k1 <kz |u,v=0
1

+ 2 Z Z Pifk,(u,”)Pifks(uat)l’iszks(l—U,l—v’l—t)]

ky <ks<ks |y, v =0

+ 2 Z Z pi:ks(uat)pi:ks(v’t) pifkgks(l - u, 1- v, 1- t)]

ky <ka<ks _u,ut=0
[ 1

+ 2 Z Z pi:kz(u’ U)piiks (U’t)piikzks(l - u, 1- v, 1- t):l

ky <ka<ks | vt=0

+ 2 3 S b (u, ) P, (v, 2)

kl #kz ¢k3 ¢k4 u,v,t, z=0

X pz:kzkalq(l - u’l - v,]- _t,l - Z)]}
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1

S a0 -]

k=1 u=0
2 Y, (1-268)(1—263) [ S (1- W) (1 -2 ) pz:kz(u,w]}
ky <kz u,v=0
}?—7 { > (%;)2 [i (1 ~ P (u ) L (u\'}
ky #ko =0
2 EK: Z olgci 2 [ i 1-— sz 1 - Piﬁ(v)) piik,(u,v)]

ko <kg

k=
K 1
> ¥ |3 (-me) s <u>]
k=1 k) #ka#ks w=0

2y 6non [zl: (1-p2w) (1-PEO) pz:kz(u,m}

k1 <k2 u, v=0

K 1
2y ¥ oezen | Y (1-pEw) (1—pi:(v))pifk,(u,v)]

k=1 ky #ko #k3 | u, v=0

2 ) 66 21: (1-pf2(w) (1 -9 (v)) piih(u,v)]}

ky #koF#kaF#ky | u, v=0

2
4
i ( > (26867 - 0sz2))

ki#k;

4 (YZ 692 (262 — 1 ) (Mn [uﬁvzopilk, U, V)Pak, (1 —u, 1 — v)D
> o (268 - 1)) (2(1 — 267') [}: (1 - pP ()Pt (u)])

=1

= (2
4 (i o (2601 — 1)) (;e L_o“ — B () (u)])
)

K
6% (268 — 1) ( (262 622 _aszz))
k1 %k,

ki <ko ,v=0

i { S (1-26) LZ P (1 0)(1 = P (1 — )y (1 — w1 v)]

> (1—267) [ Zl: Py iy (u,0)(1 = piy (1 — 0))pis, (1 — v, 1 = v)]
k1 <k

u,v=0

>, (1-268) [ i Pk, (4,0) (1 = PR (1) Py iy (1 — 1w, 1 — v,t)} }

ky #koH#kg ,vt=0
ky <ko
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8
K4

>, o

kl <k2

2

k1 ko #kg
ky <ko

>

ky#ka#ky
kj <ko

g1
Z 9k2
ky #kotkg
ky <k2

g1
Z aka
ky #ho#ks
k1 <kg

4

K4

ky <ks

g1
6%,

g1
67,

|

k1 #ko

S (1 —267)6%

ky#k2

S (1 -—208)68

ki #£ka2#ks
1

4

4
K1

UZ? (4.3.47) can be

U(82,2)

2

Z Pisz(ua”) (1- Pif(l - u))Pisz(l

1
u7

( > (26668 - 6iik,)
k72

> (1-267)6

( S (26268
k1#k2

(kgc (265, 0%; — Oix,)
1 Fk2

>

Z 1’ka2 u, ) 1“?%2(1 "U))Pﬁ@(l -

v=0
—u,l- v)]

u,l —

v=0

| u, vt=0

Z pisz(u, ’U) (1 - Pii(l - v))pszg(l - u71 - ’U)

M
[$>

1
[ Z pisz(uav)pisz
u, v=0

PO A )

[ > (1= (w) (1 = Py (v)) Piia, (us v)

v=0

- 62,) ) (30 -2 |0 st

) (5

decomposed as

= a3 TR Z[‘I’(s)lo (Xf) - K ,gz)s]
I—l
+ W Z[\I’(?»)Ol ) N 92)3] + Op(N~ 1)
/=1
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-

D AU ) AR v,t>}

3 plk (wv) (1= pf (1 — ) iy, (1 —u, 1 — )
Lu,u:O

Z Prak, (4, 0) (1 — Pl () Plokoks (1 — 4, 1 — 0, t)

)

(l—u,l—v)])

[ 20(1 — pha () (1 = i (v)) Py iy (5 v)}

)

o)

- u))pil(w])

(4.3.50)



The other two-sample U-statistics of degree (2,2) are

ugY = [(g) (";)] S 30 (De) — Do)y (4.3.51)

i i#5
i#

-1
Uftz,éz) - [(J;r) (g)] Z Z(D'(ngygz) _ D,('?;/'gz))z _ (4.3.52)

igi! j#i!
i#j j#i!

Let

Blgrga)t = E(D,(fl g2} Dt(.;q;l,yz))2 — E[(D,(;h ,gz)) (D(gl 92))2 2D'(ng yyz)D.(;tl;',gz)]

2 K
= 2 {Z 0£91,92) o(glygz)) + Z (01(::1,:12) 0}(51792)9’(51,92))}
k=1

k1 #k2
where
B = P(XE # XE) = 328 ()pfE(1 — )
u=0
and

eglk,fz) ( 'kl # ]kl’ tkz )_ Z pi;kz u ”)pilkg(l u,1 —v)

u,v=0

Under Ho: 8 = 62 = 6, and 6% = 01, = Orx,-

H(aro2)4 = P4 = 32 {Z 6r(1 — Ok) + Z (Okyk, — 0k19k2)} (4.3.53)
ky #k2
1/’(4)10(7(?1)
= E(¢4(xgl,xs;2,X?,1,X§?) - ljl(gl,gz)4)
1 X 1),
= ﬁ{za—zefg" 2)\P(X% #28)+ Y P(X%, # ok, XE, # o)
k=1 ki #k2
K
+ Z al(cylygz)(zal(ch 92) _ 1)+ Z (20’(:1 ,yz)egl.gz) _ al(gxkfz))
k=1 ks
) z 0£§1’92)P(X92 #xakl)}
ky#k2
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Under H,,

¢(4)10(X:‘)
= B(da(xi, Xj, Xir, Xj1) — pa)
1 K
= _IEE {Z(l — 29k)P(Xjk 7é IE,'k) + Z P(Xjk1 # Tiky s Xjkz 74 xikz)
k= ky #£ko
+ Z()k 20k —1 + Z 20k19k2 9k1k2)
k=1 ki #k2
- 2 Z 0k2P(Xjk1 #xikl)}
k1#k2
Yo (X7)

= E(¢4(Xih 3 ?2 3 Xg'l ) Xg'z) — U(g 192)4)

= kl—g{z(l—zeigl’”’)P(Xs:aéxzz)+ > P(XE, # 2%, X8, #2%,)

k1 #k2

+ 20(91,92) a(gugz) 1) + Z 20(91,92).9(91,92) 0)(:11’;292))

k=1 ki #k2
-9 Z 9(91,92) ng #mgkl)}
ky £k

Again, under Ho, Yayor(X5) = Payr0(xi) and
Y(l)) = c()‘i) = E[‘/’(24)10(Xi)]

The decomposition of ngkz), k=1,2,is then

U(2 2) = /‘l’(91192)4 + Z ‘11(4)10 X ) - :u’(91,92)4]
t-l
2 X .
+ j\f— Z[\P(4)01(X§2) — (a1 ,92)4] + Op(N_ ) (4-3-54)
J=1

For the two-sample U-statistic of degree (1,2),

a2 _ [(N) (N Y (g192) _ pylarghz
Ul s S Y (D) — D&y (4.3.55)

‘—-1 1<, J’<N
J

Let
Borg)s = E(ngl'gz) _ D'(g/l,gz))z — E[(D‘(?l ,92))2 + (D‘(;{Ix.gz))2 _ ZD,(-;"’”)D,(?,"”)]
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k=1 k1 #ko

2 | & K ‘
_I_{_2 {Z eiglygz) + Z Gl(csilkyfz) _ Z gl(cglvgzygl,gz)(i’j; i,j')
k=1

I O J,z,J)}

ky#k2
where

1
0£§1:921§1y92)(i’j; i,5') = P(X% # X%, X& # X)) = ¥ AOINES (w)]®

u=0

01(5:?1,;292;91 ’92)(i’j; i’j,) = P(Xlkl % X]k] thg # X 'kz)
1
= Z pk1k2 u,v) Pk1 2(u)][L - Pkf (v)]

u,v=0

and under Hy,

H(g1,g2)5 = M5

K
= {29k+ }: oklkz Eak(i’j;ivjl)_ Z Oklkz(ivj;i7j’)}

1 ky #k2 k=1 k1 #ko

Note that under Ho, py = us.
1/’(5)10("?1) = E[¢5("fl s xgz’ X?) — K@ y92)5]

2 | & x
= -KT2- {Z P(X.‘Igl: # xtgllc) + Z ( 3k1 # x:kl’ fzz # xlkg)
k=1

ky #k2

K
- EP(XJgﬁ )P(X # -"%k - Z ( ,k, # z:kl)P(X ko # -"J.kz)

ky #ke
+ Z P -’k’ X # X.?'zk) + 2 P(thl # XJkl ngklz # X lkz)
ky #k2
— kz_:l 0’(691,92) _ ol(c.(flk;yz)}
Yo (xy) = Elds(X{, x7, XT) — biq1 g)5)
1 K
=F{ZP( #.’E )+ZP( #xjkl?‘:h#x]kz)
k=1 k1 #k2

K
—2) P(X§} # 2%, X% #X%%) -2 S P(XE # 2%, X8, # X))

k=1 ki #k2
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K
+ Z ( # ]k? ;ql: # X_?’Z)k) + Z ( 1k1 7é ]kp
k=1

kys#ky

K
_ Zal(chygz) Z 0(91 92)}
k=1

k1 #k2

For the two-sample U-statistics of degree (2,1)

2,1 N N -1 N . -
v = [(3)(D)] & - v

j=1 1 "I
il #

E(UEY) = B(ULY) = tig a5

and the decompositions for Ugl,iz) and U(52,§1) are

1 N
U(1 2) P(g1.a2)5 T N Z[\IJ(5)10(X?1) — Ka ,92)5]
=1

2 N
+ NZ[\I’(E")OI(X' - “(91,92)5] + OP(N 1)

=t
uey = 2 SN (XE
= H(gi.92)5 + Z[ (5)10( i /*‘(91,92)5]

+ —[‘1’(5)01( 2) — pgr gyl + Op(N7Y)

The other two-sample U-statistics of degree (2,1) are

-1 N
v =[N (0)]  Z, Sen - ol ma

1<i<j<N j'=1
N\ /N1 N
U(2 1) _ [( ) ( )] (D;‘-“- _ D(q},gz))z
2 1 ISKZJ'SNE ! 7

Now

bonams = E(Df — D)) = B(DY — DG

1 (K
= —K—z{Z(Oi‘ +60 ) + Y (O, + :(fflkf’))

ki #k2
—2ZP(X X%, X% # X)) -2 3 P(X
ky #k2
1< (01.92)) glav.a)
— E’Z Z(am + 0 91,92 + Z k1k2 k.tzlkyfz)

ky #k2

ky #ko

X&, # X)

(4.3.56)

(4.3.57)

(4.3.58)

(4.3.59)

(4.3.60)

]k1 X 75 X ’kz)}

—9 Z o(glvglyglygz)(z §ii, 7 ) -9 Z 9(!&»291;91,92)(i’j;i’j1)}
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and under Hy,

H(g1,g2)6 = M6 = H1 = Hs

2 K. o
= 2 {Zew Z 0k1k2—20k(2,];l,]l)— Z Oklkz(z,];z,]')}

k1#k2 k=1 k1 #k2

Since the kernels
dor(X?, X%, X%) = (D% — D&Y and ¢ea(X?, X$,X%) = (Df — D))

are not symmetric, we need to work with the symmetric kernels

/ 1 192 1 1y,
b = 5 {(Df — DG + (DF = D)} and
Pey = %{(D—‘" D&y 4 (D% — D)2} with

'/)(6)10("?1) = El¢g, (x¥, Xgl Xg'?) "/‘(91,92)6]

1
- {2:;1 P(XE # x?,z)+2k§ P(XE, o, XB, # o8
= 1 2
K
+ ZP(Xffk )+ > P(X%, #h, X, # Thk,)
k=1 ks £k2
K
- ZZP(Xﬁ o, X # z) — 2 S P(X%, # zh X, #2h,)
k1 #k2
_221)( ‘tqklﬂ #X’k - Z P( #mikl Jk2 #X'kz)
k1 #k2
+4EP(X.' # X%, Xi # X7 ) +4 Y P(X§ # X4, X%, # X5,)
k= ks £ks

K
-~ S vl - 5 o+ o)
=1 1 £k2

and
1)Z"(G)Ol (x?’z) = E[¢,61 (X:gl y Xgl ) ngz ) — K(g ,92)6]

1 K
= EE{I;P(X?I: # %)+ > P(XE # 25, Xik, # <)

k1 #k2

K
_2ZP(X?’: # Xik» X, -2 Z P(Xi, # X3k ak27éxlk2)
k=1

k1 #k2
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K
+2ZP(X1' # X%, X %) + 2 Z P(X3 # X%, X i F Tih,)
k= ky #k2

K
‘ - Y- 3 e,‘izf”}
k=1 k1 #k2
Ugﬁ’{l), for k = 1,2, can be decomposed as

9 N
U(2 N = Ko 926 T 77 Z[\I’(G)IO(X?I) — Ka ,92)6]

+ ﬁz[‘l’(e)m %) — g anel + Op(n™") - (4.3.61)

J'=

For the two-sample U-statistics of degree (3,1)

(N (V] N
; 1<g<! §'=1

(N (N\]7! N

L 3 ] i'<f<j]"=1

[(N\ (N\]" al
i 1<i'<j 3'=1

; bagyr = B(DE — DE)Y?
1 K
= T(‘z{zwi‘(l—?e;‘f“gﬂ) +6EN 4+ 3 ( 0“1k,+9(“f‘k’f” 29%19551'92))}
k=1 k1¢k2

which becomes under Hy

H(g1g2)7 = H7 = M2 = 3 = H4

9 K
= —K—_—Z- {;[Gk(l - Gk) + Z (aklkz - 0k19k2)}

k1 #k2
Since the kernels

éry (X9, X%, X%, X%) = (DY — DY), i< j <,
bra( X9, X9, X%, X%) = (DI — DE))?2, ' < i < j and
bra(XP, X9, X%, X%) = (Df - DE2, i <i' < j

are not symmetric, we switch to the symmetric ones, ie.,
&y (X, X3, XT , X%)
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1
=3 {05 - Do) 4 (D% — D)) 4+ (D% — D)}, i< j <4
Pl (XE X9 X9 ng)
R Edal B abar U
1 . ..
— 5{(1}:1]1 _ D'(,y];,,gz))2 + (D% — Dg},gz)y + (D?:-' _ Dg’xygz)y}’ i <i<j and
o (XE, X2 XE, X5)
S B Ry B Rt Ul Rkt 4

1
— §{(D?; . D‘(;q;’,yz))2 + (D?,-’/ _ Dg.;},gz))Z + (DJj' _ (91 92)) } i<i <
with

¢(7)1o( = E[d’n(xgl Xgl X Xq'z)_#(gx,gz)'f]

1 K
= e {2(2 40(914]2))})(}(91 #zgl)‘*_z E P(X Jk1 + x:kla sz 4 l_'kz)
1 k1 #kz

_ E(a}cgl,gz) + 29%1 _ 6021 01(691,92)) _ Z (al(glkfz) + 2021 6091 0(91»92))

k=1 k1 k2
K

-4 ) (Ol(cghgz)P(Xgll #ah)+ D (1- 208 )P( X # i
k1 #k2 k=1

+ Z P(X 1 k1 ?é xtkl 'k2 |k2) -2 Z 0 Ik2 tgltg)
ki #ke ky ks

and

1/)(7)01(3(??) = E[¢7, (XY, Xgl X3 ,x 7) = e ,92)7]

1 K
= .ﬁ{z(l—zom)P( 2y+ Y P(XE, # ay, Xi, # 25,)
k) #k2
K

_9 S 6B P(XE, #3%,) - > 61— 267)

k1 #k2 k=1
+ k% (2091 0(91,92) oglk,fg))}

1#k2

Note that under Ho, ¥(7)10(Xi) = Y(nyor(x;) and f%l' = 5((,? E(¥%y10(Xs)). The decom-
(710
position of U%’:), for k=1,2,31s

N
31 3
Uy = #(glgz)7+ﬁE[‘I'(v)m(X?‘)—#(glgm]
=1
1 N

+ 7 2 ¥maX5) - Bargny] + Op(N7Y) (4.3.65)
=1
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The three-sample U-statistics of degree (2,1,1) is
N(MNN]T & & .
gt = [(2) (1) (J] Y3 (0% - D) (4.3.66)
i<j i'=1j'=1
with

H(g1929s)8 = _E(D?J1 — DE?J?I,ya))z

K
— T{l—z {Z(azl + al(cyzygs) 2091 0(92,93) + Z 0k1k2 + el(gz;cfa) N 2021 0}(;2,93))}
k=1 k1 #k2

which becomes under Hy

H(gigags)8 = M8 = H2 = H3 = 4 = 74

9 K
= {Z Ok 1—0k)+ Z 0k1k2 0k10k2)} .
k=1

ky #k2

Also,
¢(8)100(xg ) = E[¢8( x! Xgl Xe' ’ng) — Ko ,92,93)8]

= = {’;(1 — 20PN P(XE # 28)+ Y P(Xh, # ok X, # i)

ky#k2

ky k2 k=1 ki #k2

— 2 4EIP(XY #2h) - 20,{1( — 269y 1 5O (26865 — 6 2)}

"/’(8)010()"?'2) = E[¢8(Xfl ’ Xgl '2 ’ ng) — H(a ,92,93)8]

= {2(1—2091)P(X9k7£x + Y P(X%, # 2, Xi, # Tin,)

ky #k2

- 23 BPXE, # ,kz)—ZG‘”'“’ —268)+ 3 (26265 —egzkfs))}

ky #k2 k1 #k2
1/)(8)001(1"({?) = E[qu(X?‘ 7ng X7 » X 2 — H(gs ,92,93)8]

1
= K2 {Z(l —2991)P(X + Z P ’kl 'kl’ ,k2 # I ,k2)

ki #k2

— 9 Z elgci 'k2 41 'kz) _ Zg(gzyys)( 091) + Z (20919(92,93) el(csﬁ,fs))}

ky #£k2 =1 k1 #£k2
Under Hy, 1/’(28)100(":') = ¢(28)010(xi’) = '/’(28)001("1") and

gg}) = (()?) = (81 = E(¢(8)100( ))
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The decomposition for U(2 1) g

) N
U(8211’1) = H(g19293)8 + N Z[\IJ(S)IOO(X?I) - “(919293)8]
=1

1 1 .
+ 'NZ[‘P(S)OIO(X ?) — W(g1g205)8] + = N > 1P ()001(X5) — K(g19205)8]
i'=1 =1
+ Op(N7Y) | (4.3.67)

The other three-sample U-statistics of degree (2,1,1) are

N\ [N\ (N\] ' <« & & . ) 08
Usi™ = L(z) (1) (1) >3 S (D — plgedy? (4.3.68)
1 g = =
gl
oz =[(3) (1) ()] & Zowtr -y (439
] i#j ‘/_1 5'=1
i#i

with

H(g1g203)9 — E(D(gl’gz) D(ngs))z

1

- {2(0(91@2) +0(91r93) 20(91,92)0(9'1,93))_'_ Z (91,92)
K2 k1 #k2

+ gl(c.tlhk;gs) _ 20}:;71 ,gz)ol(czl ,93))}
which becomes under Hp

H(g1g20s)9 = K9 = M2 = H3 = [l4 = 7 = U8
2 -
= K2 {Z[Gk(l — 0k + z 0k1k2 0k10k2)}
ky #k2
Since
bor (X8, X%, X%, X%) = (D@9 — DE™)2, i £ i/, j #1' and
Goa(XP, X8, XE, XE) = (DY) — D™, i j, i #
are not symmetric, we consider the symmetric kernels
oL (X9, X9 ,ng,xf;,’) — 2[(D(91 192) D'(Igjl’,ys))z + (.D,(/’;-l g2) _ D'(]qll ,ys))z],
i#1i,7#7 and
P (X, X8, X2, X8) = §[(DI) — D)) 4 (DYf ™) — D)),
i # 7,1 # 1 with
"7[)(9)100()(?1) = E[¢;1(x?1 ’ ;gll ’ ng ng) K(a ,92793)9]
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1 | &
= {Z P(XR #£af)+ Y P(X% #%, X%, #2%,)
k=1

2
2K k1 #k2

K
—2Y 40 IP(XE #af) -2 3 6 P(XE, #2%,)

k=1 K1k
K
+ z P(X,]glsk ?é x'aql::) + Z ( Ikl -_;é x,kl, ,k2 # xikz)
k=1 ky#ks
K
-9 Z ol(ch,gz)P(XJg,sk #z8)—2 Z «9(‘“’92)P(X o 4 m‘kz)
k=1 k1#k2
K
+ 2(401(ch ,92)01(:]1 gs) el(cyx gs) el(cgl 792))
k=1
+ Z (401(51,92)01(;1,93) _ 291291'93) 20(91,92))}
ky #ka

1b(9)010(x'(’72) = E[d’;n(xgl X i’y X5 ,ng) H(g ,yz,ga)9]

= K2 {E(l e(gl,ga) (thl: 36 x?lzc) + E P(X;qlsl ?é ]k17 tkg ?é x;kz)

ki #k2

K
—9 z 0l(cil’g8)P( ;é kal) Z(al(cyx.gz) _ 29,(c91yy2)0£91,ys))

ky #k2 k=
_ Z (al(cylk,gz) 20(91 92) 0(91 ,gs)
T
1/’(9)001(7‘4'8) = E[¢§1(X?‘,X~ X? ) = Ko ,92,93)9]

= ;2 {Z(l 29(91y92))P(X # IL‘ )+ 2 P(X] ik # 1/ 'k2 #T 'kz)

ky#k2

_9 Z 0(91,92)P(X o £z ’k2) _ Z(gl(cyl,ys) _ 20’(:91,92)091,93))

ky #ko k=1
_ k; (ol(cslnk,fs) _ 20’2{1,92)0’(;1,93))}
1 2

Under Ho, $(9)100(X:i) = P(9)010(X;) = Pojoo1(X;7) and

ﬁ))Z) = 3?% = (()?J)l = E(lb(zg)loo(xi))

The decomposition for U(2 Y for k=1,2 s

2,1,1
U!(),k ) = “(919293)9+ Z[\Il(9)100 ) /"'(919293)9]

r—'l

117



1 X 1
+ ;\72[‘1’(9)010(3(?2) — Kool T 7 }_, (¥ 9)001(X$) = K(g10295)2]

Jj=1 3!

+ Op(N7Y) (4.3.70)

For the three-sample U-statistic of degree (1,1,1)

ulgtt = [("f) (Jf) (Im—lfjfj 3 (Do) — D@ since  (4.3.71)

=1 j=1j5'=1

H(g1g293)10 = E(D(gl’gz)—D(.g}'gs))2

1
- K {2(0‘9""2)+0(gl"’“))+ T (o) 1 4o
ki #ko

- 2ZP ng? #ng)

- 2> P(XE #X%, X #X'k,)}

ky #k2

= = {2(9(91,92)+9(gl,ys) +k§:k 9(5111,6,:12)4_0,(:111’;:3))
1 2

- 229(91,92,91,93) (i, 5; i,j') — 2 Z ogxfz,gx,ys)(z I ,j')}
k1 #k2

where

1
g en (i ji ) = P(XS # X%, X8 # X5) =2 it (wpP 1 — w1 - v)

u=0

b5 ) = PG, # X XB, # X5
= E Phik, (u ,o)pl (1 - u)pi, (1 —v)
u,v=0

then under H

H(g1g29s)10 = H10 = H1 = Us = pe

K
= 13 {Zow S bk, — 3 0k(6,555,5") — Y 0k1k2(i,j;i,j’)}
ky #k2 k=1 k1 #k2
Also,
Yaopoo(x!") = E[do(x{", XP,XT) — H4(g1 ,g2,g3)10]
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1l
MA

N|»—t
et e,
aﬂMN

P + Z (Xf;él # xzk17 Xflgg # xtkz)
ky#k2

+
M=

P(X;'J'sk o) + E P(XF i T T, X 'k2 # zi,)

ky#k2

P(X% # oh)P(Xfh #28) -2 3 P(XF, #

k1 #k2

-
Il
-

-2

M=

1k1)P(X Y ko # xtkg)

a~
1l
-

_|_
[\V]
M=

[

P(X% # X%, X3 #£23)+2 ) P(XR # X5, X0, # X&)
ky #k2

Mw

a~
1
A

(0(91792) + 0(91,93)) Z (0(91,92) + el(csln,j]s))}
ky #k2

Proyo1o(Xe?) = E[dro(XY, x7, XT) —

i 1 X5
1

K
= F{Z“—Gﬁg"“’)mxs: 4om)+ X P(XE, # %, XE, #4%,)
k=1

k1 #k2

l't(gl g2 793)10]

—2 ¥ P(X% # ,kl)e‘“’“’wZP( L X%, XS # X5
k1 #k2 k=1

+2 Y P(XG # X%, X5, #X%,) Zo(gl,gz) 5 0551,292)}

kl ¢k2 kl #kz
and

¢(10)001(x§?) = E[¢10(X?", ng,x?? — (e ,gz,gs)lo]
1

K
= Fz— {Z(l - 01(691192))P( 74 .’B )+ Z ( 'kl # (E 'kl’ lkz 75 T 'kz)
k=1

k1 #k2

—2 ¥ P(X§ # ,k1)0(91’92)+221> X% # X%, X8 £ X5,

ky #ke k=1
+ 2 Z P(X} Jk1 )(f’kl2 # X’kg) Zg}ch,ga) . Z efcﬂ’j’“)}
k1 #k2 = Nl
The decomposition for U(1 A1)
U(ﬁ)’l,l) = f(gigags)10 T 77 N Z ‘I’(m)mo(x ) — :u‘(glgz_qa)lo]
i=1
L < g2 1 X o
+ ﬁ Z[‘I’(IO)OIO(XJ' ) - “(919293)10] + ]—V" Z [\Il(IO)Ool(Xj/) _ “(919293)10]
Jj=1 =

+ OP(N'l)

(4.3.72)
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For the four-sample U-statistic of degree (1,1,1,1)

N N N N
U(l ,1,1,1) = N4 Z Z Z D(gl 92) _ 'ng 94))2 : (4.3.73)
i=1j=14i=15/=1
H = E(D(?“gl’) _ D(g§.gq))2
(91929s94)11 = b i
= .I_(_]‘E {Ii(e’(cylygz) + 01(693.94) _ 20,291.92)91(693,94))
=1
+ k; (Ol(c-‘lhkvfz) ’(Cgs}cyfq) n 201(51 ygz)aga,m))}
1#k2

and under Hy

Hgroagsga)ll = H11 = P2 = i3 = [i4 = [l = fig = [lg

2 | & -
= K {Z[ok(l —0)+ > (Bker, — 0k10k2)}
k=1 ky#k2

Now

’»[’(11)1000(" ) = E[¢11(xg1 ng x.' anf) ~ H(a ,gz,ys,su)ll]

K
= %{2(1—20&’“9”) (X% #28)+ Y P(X% # <%, X%, #25,)

k=1 ki #ka

K
-9 E 0£§8'94)P(Xg2 # x:kl + Z ol(cglygz)(zgl(cgaﬂ.m) _ 1)

Ky #ks k=1
+ k% (20§ch ,gz)ol(cgs,m) _ el(c.glkfz))}
1 #k2

"/)(11)0100(7‘9' ) E[(ﬁll()(g1 xgz x Xff) —/‘(91,92,93,94)11]

= Kz{zu P P(XG #e5)+ T PXE, # %, X, #2%)

ky #k2

K
-9 Z 0(93y94)P( X5 # z;kl Z aﬁghgz)(zal(cys,y‘:) —1)
ky #k2 k=1

+ Z (20(91,92)0(93194) el(c.tlhkyfz))}

k1 #£k2
1/’(11)0010(3(':!13) = E[¢11(X?1 ) ng, x?l8> X?’) — H(a ,92,93,94)11]
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K
=K2{Z 9192) VP(X% # %) + D P(X, # i, X, # 23,)

ky#k2

K
~2 Y 09I P(XE, # 2B) + D 609 (29019 1)

k1 #k2 k=1
+ Z (20£?1792)el(cisyg4) _ 01(‘:.?:;;:4))}
k1 £k

¢(11)0001(x?7’) = E[¢n(X?, X#, X7, x7) —

H(g1,92.9s ,94)11]

1 K
= K2 {Z(l - 201(cgl’gz))P(X Z P( X’k1 'k, ’k2 #z 'kz)
k=1 k1¢k2
_9 0(91’92)[" X8 % ) + X gl9s:94) 201(591,92) —1
k2 kz k

ky #k2 k=1
+ k; (2012‘?1,92)01(628,94) _ al(gak,f«:))}

1#k2

Under H,, 1/’(11)1000(7‘?1) = 1/’(11)0100("?) = ¢(11)0010(x§"') = 1,[’(11)0001(3(?7’) and

9)(132) = (()11(1)2) = ((xl).ﬂ) = ((1%)%))1 = E["»b(211)1000(xi)]

The decomposition for U(111,1,1,1) is then

1
U™ = pogse + N > [P a1y1000(XE") — (g1 90s90)11]
=1
1 N
+ N z[\I’(ll)OIOO(X?) - :”(91929394)11]
J=1
1 N
t ¥ Y [P(11)0010(X%) — L(gr1g2gs00)11]
/=1
1 N
+ N Z [\I’(ll)OOOI(X 1) — “(91929394)11] + Op(N~ ) (4.3.74)
j'=1

4.4 Combining the U-statistics

We know that

_ 2 NY 11(3) ®) Ly N\ 11(a) @ Ul
WSS = N(N—l)z[(3)(U + Ui, S|, )(Usi+Uzz2+ Uz

g=1
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N — 2
(N =2) S5 1u) 4 U + U

3 4
g Gl 2 Z[U %+ US)
with expected value
E(WSS) = fjl 21 + i 2)4(N_3)ugz
e prust
= f:l(N -2) {ﬂgl + gfﬂugz} -
o

Under H,, there is homogeneity among groups, i.e., for any g, 67 = 6; and

g —
gklk') = 0"71 ko thus

Eo(WSS) = G(N—2){u1+(N _3)u2}

4
where
M1 =77 [Z O + Z Oryk, — Zak 1,731,5") Z oklk,(i,j;i,j'))] (4.4.1)
ky#kz k1 £k;
and
2
K2 = K2 {Zek 1 - ek + Z 0k1k2 oklgkz)} (4.4.2)
k1 #k2
Note that
Cc-1
O = P(Xar # Xin) = D pr(e)[1 — pe(c)] (4.4.3)
c=0

Ok, = P(Xiy # Xjnys Xiro # Xiy)

C-1 C-1 C:}
= Z Pkik, (clv 02) Z }_4 pk1k2(037 C4) (444)
¢1,¢2=0 cg=0 ¢c4=0

cg#el cq#c

Decomposing WSS,

o\ G N
WSS = M Z 3{pq + 3 Z[‘I’(m(x?) — pg1] + Op(N71)}

+ V- ?éN 2; 3{#92 + = Zl W (2)1(XY) — g2]
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and under Hy,

WSS = G(N-2) (m + (N4— 3)u2)

N
+ (N — 2)%(} ;[\I’(I)I(X.') - Nl] + Op(l)

(N —2)(N - 3)

t N

N
G ;[‘I’un(xf) — p2] + Op(N) (4.4.6)

and the associated mean square expression is

WSS 2WSS

- (N]\:(;)(_Nl)—;) {,Uz + %;[\I’(Z)l(xi) - M]} +0p(N7Y) (44.7)
with
Eo(WMS) = (]\;J;sz,(]f;)g)uwo(fv'l)
"2—2 +O(N™)

Let Uy, = (UP), UP), UY), UY, UL, UY)Y and X, be the variance- covari-
ance matrix of Uy,,. In order to get the variance of WSS, we need to know the the el-
ements of X,,,,. Since X;,X,,..., Xy are i.i.d., Cov(U(laJ)(, ) and Cov(Ugil)‘, (4))
(for 1 < k < I < 3) are nothing but Var(U(ls,l)() and Va.r(Uzyk), respectively. To
illustrate this result, compute Cov(U(ﬂ, U(;%) From (4.3.29)

¢(2,1)1(x€) = E[¢2,1(x"1]ax5,X§7Xg)—Ng2]
1 (K K
= o D ompod £ ety + S et - )
=1 k=1
+ Z P 2k1 #xlkl ngz #xlkz + E 20 0lgclk2)
k1 #k2 k1 #ko
DI VTN
k1 #k2
and
’¢'(2,2)1(X!1]) = E[¢22( 1, X8, X3, X7) — g2l

K K
- {Z 1 - 209)P(XE, # %) + 3 60282 — 1)
k=1 k=1
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+ > P(X%, # 2, Xk, # Tik,) + > (267,67, — 6%1,)
ki #k2 k1 #k2

;2 Y 6 P(XE, aéxikl)}
k1#k2

Hence, ¢(2,1)1(x€) = 1/’(2,2)1("?) and 1/)(2,1)1(3‘51’)’»1’(2,2)1(3‘51’) = 7»/)(22,1)1()‘51')-

Now, let

QP(l)l(x ) = ¥q, 1)1( x?) = P 2(x x]) =14 13)1( x7),

Pen(x?) = () = bean(x) = bean(x)),
M) = B (X)), &7 = B@hu(X9) and &' = E@un(X)en(X))

Therefore, the variance-covariance matrix of

U = (US, UE), UE), US, UY, UMY is

og"  12¢f"”
Bow = | 02 0 | O
12609 166

where J3 is a 3 X 3 matrix of 1’s. So,

= 3 { O v + v+ v

N —2)}(N —3)?
(W= 2PV =3 Ve + 083 + UL

o (N —2)'(N —3)
36

= SO (o e 2 (3x "))

n (N - 2)2(N 3)2 (3 . 16 16 (2) 49 <3 o 0 16 (2))>

Cov[U) + U} + UY), UL + UL + UL, }

144 N*t N>
(N -2)*(N-3) 12 ,1,2)
+ 2 36 (9 X —§1 )}
il 2)2 ) {960 + (v — 3% + 6(V — 3)e*?)}
4
Var(WMS) = GINA(N _.l)zVar(WSS)
4(N — 2)%(N —3)2 ¢

—_ 51 -2
= ~Gemw_1E N~ TN
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For AWSS,

mss <k x [()3) s

1<g1<92<G

SR

= > [(LV_}}_)_ (U“ 2+ Ul 2))

1<91<92<G

N (N2 )(U(21)+U(12))]

(N —1)?
E(AWSS) = Z _2—/1'(91,g2)4 + (N - 1)/“(91,92)5
1<91<92<G
N -1
=(N-1) Y ((——2—)#@1,92)4+#(gl,gz)5)
1<g1<92<G
and under Hy,

G(G -1 N —1)?

Eo(AWSS) = ( 5 ) [( 5 ) ﬂ4+(N—1)y5]
G(G-1(N -1 N -1

. = ( 2)( ) (( 2 )#4+I~L5)

) where p4 = po is given by (4.4.2) and pus = p; is given by (4.4.1).
AW SS can be decomposed as

(N —1)? 2 X o
AWSS = Z ———2_— H(g1,g2)a T N Z(\I’(4)10(X:‘ ) = B ,92)4)
1<gl<gg<G i=1
+ Z \I’(“)Ul /"’(91192)4) + OP(N—I))
.7—1 )
N-1
+ ( 5 ) (2”(91,92)5 + Z ¥ (5)10( (X)) - H(g1.,92)5)
2 X 2 X
+ —]\7 Z(\P(5)01(X ) H(g 792)5) + N Z(\Il(5)10(X?l) — H(g ,92)5)
j=1 =1
. 1 N B
+ N < Z(\I’(E’)OI(X ) - /‘(91,92)5) + OP(N )

1

.
|

The associated mean-square expression is

AWSS 2AWSS

AWMS = (cz;)Nz = N2G(G__ 1)
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(N - 1)

2 I 1
N2G(G —1) E [“(91 g2)4 N ?::1(‘1’(4)10()(? ) — (g ,92)4)

1 1<g1<92<G

2 N
+ Nz(mm(xzﬂ — (gr.gn)1) | + Op(N7Y)
=1
2
Bo(AWMS) = e Bo(AWSS)
N-1 N -1
LY (LS I
_ (N - 1)
= -—-———-—2N Ha + O(N )
- % +O(NY)

Note that Eo( AW MS) = Eo(WMS) since under Hy, pg = po

N —1)? N —1)2

4 ico<mse 4
+ Var(U{P + UGY)

Var(AWSS) =

+ (N 1)Cov[U£212) + U£222), U(l 2 4 (2 1)]}

- (_].V_;_l_)_z 5 {(N_;l)z( ( Lew 5(4)))

1 <91 <g925G

1
+ _ds e 601 1)+ ds 2 —]\7 (()?2)

+ 2 (Nﬂ?’”’“’” + —ES?’I)'(S'Z))

2 4
+ (N-1) (2 X (N (.61 N&(g),(s,l))

4 2 :
o o (eigen s Zepea)) )

4

Var(AWMS) = N4G2(G_1)2VM(AWSS)
_W-1) (i (@
2N4G(G — 1) \N>1°

E“") +O(N™?)

For TSS,

TSS = —1___{5: [(N) (U8 + U9 +08)
NG(NG -1) 1,2

g=1
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. (N) (U9 + U + Ugj‘;)]Jr 3 [(g)

1<g1 <92 <G

B )0 s () i

1<g1<92<G
N
( | ) (U(Z ,1,1) | Ué:lz,l,l))]

* 2 () E) F)e () 6)

91792793

e () () ) ()

91<92,93<94

I (W WICEEEY

i (g) (N) (U + Uy + Uy ]

* e 2) ) G)] )
E(TSS) = NG(NlG L {N(N — 12)(N —2) éugl

L NV -1V -2V

3 Z Hg2

N*(N —1)?
- 4 Z [.“(91 02)3 T 28 (g, ,92)4]
1£9:1<92<G
+ Nz(N -1) Z H(g1,92)5 T N? E H(g1.92,93)10
1<91<92<G 1<g1,92.98 <G
g1#92#93
+ Na(N - 1) Z K(g1,92.98)8 T N* Z H(g1,92.95,94)11
1<91.92,93<G 1<91,92:98:94<G
91#927#03 N#g2#937F94
N2(N —1)(N —2)
+ NZ(N —-1) Z H(g1,92)6 T > Z H(g1.92)7
1<91.,925G 1<91,92<G
n#92 g1 #92
N3(N = 1)
—(T_ Z ”(91192193)8

1<91,92:93 <G
91#92%93

and under H,,

Eo(TSS) =

1 [(N=1)(N-2)  (N—=1)(N-2)N—3)
NG—I{ 2 pt g H2
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(G-1)
+ T8
(G

+ Dy -1+ €

N(N—1)2/,t3+ (G_l)

N(N— 1)2[14
- 1)(G-2)

N2#10

y G=DG=2) gy, (G- 1)(G8—2)(G—3)

2
+ (G- DN - e+ (6 - XD =D,

Na#u

;G- 1)(G—2)-]ﬂ\;—_—i)us}

TSS can be decomposed as

1 N(N-1)(N-2) &
TSs = NG(NG —1) { ) Z[ Bg1 + = lZ;(‘I’(l)l(x 7) = ba1)
+ Op(N7Y)]
N(N —=1)(N =2)(N -3) & 4 X -
- (=D 57 i+ 2 (0 (KD) ) + 0,V
g=1 i=1
N?*(N —1)? 2 X,
+ - 1 E ["(91 923 T N Z‘~‘I’(3)10(X?1) — K ,92)3)
1<g1 <92<G i=1
9 N
+ N 3 (¥(3)01(XF) — b(or.,92)3) + Op(N "‘)]
=1
N%(N —1)?
+ “(—2')— 2 [#(gl oty E T (a10(XP) = Higr.g24)
1<g1 <g2<G

2 N _
t NZI(‘I’M)M(X?)—u(gl,gz)4)+0p(N ‘)]
]=

+ N}(N-1) ) [u(glm)S‘*‘ Z‘[’(sl)m(x) I(g1.92)5)

1£01<925G 1—1

)

M=

9
(‘I’(s,l)m(x‘}) Hioe)s) + 37 Z‘I’(sz)w(x) H(g1.02)5)

r‘l

N
L
N

Mz i

(\11(5,2)01(ng) - “(91.92)5) + OP(JV'-l ):|

+ N [#(glgzg,)lﬁ Z(‘I’(lo)wo(x) (01 ,92,95)10)

1<g1.92,93 <G i=1
g1#g2#98

1 N
+ J_\f Z(‘I’(IO)OIO(X?) - H(a 192,93)10)
J=1
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N
N - Z(\Il(lo)om(x ) — Hgi,g2 gs)lo) +0 (N )}
N

9 N
SN=1) > |Hagams T+ ]—V"Z(‘I’(a)mo(x?’) — I(g1,92,9)9)
=1

1<g1.92.98<G

N #92#93
1 N
WZ(‘I’(s)mo(Xg ) — K(g ,92793)9)
=1
1 ad gs -1
N 'Z:l(\l’(9)001(xj') — K(g1.g2.95)9) T Op(NV )]
] =

1 N
N* > Ko grgsant T 3 D (¥ a1y1000(X?) — H(g1.,92,95.90)11)
1=1

1<91,92,93:94 <G
m#n#u#u

—Z \Il(ll)moo(x ) ﬂ(91,92,93,94)11)

1’=1

N Z(‘I’(ll)omﬂ(xga) — HK(g ,92,93,94)11)

N Z(\I’(II)OOOI ) Hig yzygs,ga;)ll) + 0 ( _1):|

i'=1

N¥(N-1) Y [u(gl,gz)s+ Z P 6)10(X{") — Kar.92)6)

1<91.92 G l—-l
91 #92

1 N g2 -1
¥ 2 (Y@o0(X3) = Hiargs) + Op(N7)

i'=1
N%(N —1)(N -2 3 XN

( 2)( ) > [M(gl @)t 3 S (Tm0(XP) — pg1.92)7)

1591:250 i=1
91792

2| -
™M=

1
A

!

(T ryor(XE) — Lig1.2)7) + Op(N™ )]
~1)

MW -1)

=2
o2

2 N
> [.U'(g: man)e t 3 > (¥(s)100(XF") — t(g1,92.05)8)
=1

1<g1.92,98 <G
91#92#93

1 X .
N > (F@)010(XF) = 1(g1,02,95)8)
i'=1
1 N
N Z(‘I’(S)OOI(X ) — /‘(91,92,93)8) + Op(N~ )
3'=1
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Define the Total Mean Square (T M S) as
TSS 2TSS

TMS = (%9 ~ NG(NG -1)

(N—1)(N=2)(N=3)  (G-1)N(N —1)?
ANG(NG -1 7T TING(NG — 1 *®
(G-DNW -1 (G=1(E-YN'(N-1)

OSNG(NG —1)2 " NG(NG — 1)z _ '*®
(G -1)(G-2)(G-3)N*  (G-1N(N—1)(N—2)
INGING—1¢ Mt T NGWNG—1F M

(G = 1)(G — 2)N*(N — 1)

T T aNewa -1z "

But, under Hy,

H2 = U3 = [4 = [7 = Hg = g = U1n1
2 K
= kzlok(1—9k)+ >~ (Bk,k, — Ok, 6k,)

ki #k2

Therefore,

Eo(TMS) =

= (N —1)(N — 2)(N — 3)

NG(NG—l)z'“2 [ 1

+ (G—' I)Z(N— 1)2 n (G— 1)N2(N_ 1)2

+ (G-1)(G-2)N* (N -1)+ (G-1)(@G —42)(G — 3)N?

(G —1)(G — 2)N?¥(N —1)
2

25 L+ (G =1)(7+(G - 2)(G+3))] + O(N ™)

+ (G=1)N(N -1)(N-2) +

Now

BSS = ——=—=5"(D?~D)?

where D; is the G x 1 vector

D,=(D'-D....D-D)Y
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Note that

K
E(D?)zK(N) Y E(DY) = z_j

1<i<<N

K
E(D.(gl ,gz)) == Z gl(cgl 92) __ glar.o2)

and

E(D.) = GN—G——I—)— S E(D?) + a—(TV%N—_l) 1<g§: E(D192))

<g1<9:£G

G

_ 2N _
Z 9 4 Z 9{91,92)
9=1 G(NG - 1) 1<g1<g2<G

- (N-1) &, 2N _
=E(DI-D)Y=0 — ———— g - (91.92)
n = E(D! ) = 6 60+ GING =) 15922560'
Let U = D9 and UV = Dl@92). Then,

K
P12(X7, X7) = Z (X5 # X

K
b1a(XP XF) = DY = 5 I(XE # XF)

k=1

Yoy (x{) = Ela(X7, X5) | X]] = = ZP X5 # 7)
‘I’(ls)lo( )= E[¢13(X?1,ng | X{] =+ ZP

1 K
T 13)01(x?) = E[¢h3(X¥, XP) | XF] = e > P(X3 #2%)
k=1
Under Hy,
‘I’(lz)l(Xi) = ‘I’(13)10(Xi) = ‘I’(13)01(Xj)

1 K
= 2 P(Xix # zix)
k=1
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since the sequences X;, X, ..., Xy are i.1.d. and P(Xjx # zix) = P(Xix # zjk)-

1/)(12)1()(,-) = ‘I'(12)1(Xi) — 0.

and under Hy
2 1 & ]
Yhon(x) = 7 2 P X # zar) + (8)" - -—9 ZP i # Tik)
k=1
+ %7 2 DX # oini X, # Ty
Example: Two categories

P(Xj # zik) = P(Xjx # 0)(zix = 0) + P(Xji # 1)I(zi = 1)
= pe(DI(za = 0) + (1 — pe(1)) I (zir = 1)

P(Xjk, # Tikys Xk 7 Tik)
= P(Xjk, #0,zik, # 0)I(zir, = 0,24k, = 0)
+ P(Xjk, # 0,zir, # 1) (zik, = 0,zix, = 1)
+ P(Xjk, # 1,zik, # 0)(zir, = 1, zix, = 0)
+ P( Xk, # 1,2k, # DI(zi, =1, zik, = 1)
= Pryky (1, 1) (i, =0, Zik, = 0) 4 Pk, (1,0)I(zik, = 0, Zip, = 1)
+ Pk, (0, 1)I(zix, = 1, Tk, = 0) + pry1, (0, 0) [ (ziry, = 1, zig, = 1)

K
Shn) = g0z 22 [(rP (X = 0) 4 (1 = )T (X = 1)
2 _ K
4 (8)" - 283 ()X = 0) + (1 = pe(D)(Xix = 1)
k=1
+ % > ek, (1, 1) I (X, = 0, Xy, = 0)
k1 #k2

+ Pklkg(l, O)I(-Xikl = O,Xikz = 1) +pk1k2(07 l)I(Xikl = 17X3'k2 = 0)
+ Piik, (070)I(Xik1 = 1?Xik2 = 1)]

and
512) = E[l/’(zlz)l(xi)]
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[(5e(1)81(0) + (1 = () ?pi(1)] + ()

M=

-
]
-

[Pk( )Pe(0) + (1 — pr(1))pr(1)]

N|,_. Nll\’ Nln—-

x~

—

M It

[pk1k2(1 1)pk1k2(0 O) +pk1k2(1 0)pk1k2(0 1)

2

)pkl k2 (17 O) + Pk ks (07 0)pk1 k2 (la 1)]

[ (0) + (1 - )P )] + (8)°

R=2.
x>

+ Pkik,

[Pk( )pe(0) + (1 — pre(1))px(1)]

™M M= 'TMN

[Pk1k2(]‘ l)pk1k2(0 0) +pk1k2(1 0)pk1k2(0 1)]

A Xl |-

kl

"

ko

Since D¢ is a U-statistic of degree 2,
Var(D9) = —]‘-f,—fil"” +O(N™?)
where ¢('2) = E[4f15)(X?)], and since D@1:92) is a two-sample U-statistic of degree
(1,1),
Var(Dlere)) = es? + 5(‘3’ O(N~?%) (4.4.11)
where d(l) E[¢(l3)10(xgl )] and § (13 = E[‘/’(213)01(X?2)}-

We are assuming that under Hj there is homogeneity across or within groups,

ie., 0 =02=-..=06C =6 and 89 = 69 = 6. Therefore, under Hy,

VN (D? - 8.) -5 N(0, 4" (4.4.12)
and

vis (Dere) —§) 4 N(0,1) (4.4.13)

where 72, = N§(13) + ¥ (13 = Nflm by (4.4.11) and (4.4.10).

If D. is a linear combination of normal variables, then D. also follows a normal

distribution.

(N 9 2N N (g1,92)
G(NG—l ZD+ cve—D .2 D

1<91<92<G

D.
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— __(_]_V__—_L EG: [gg + _2_ ﬁf:(@(m)l(xs) _ gg)] +0 (N—l)
G(NG -1) = CND ' : P
2N [_ 1 X _
4 — 9{91192) 4+ — (‘Il (X.:Jl) _ ggyxygz))
NG 1) g, 2o w &(Faso

1 & -
b ana(X2) - 6000 +0,(v)
i=1

Under Hy,
_ N-1§6.4+NG-1)6. -
m=Eo(D) =\ 2NG _(1) .
o2 = Var(D)
_ (N-1) ¢ g
- GANG-1) zzv‘“" (D7)
+ 4N?
G*(NG —1)?
x Z Vam(D(m ,gz)) +2 E JOVO(D'(QI ,gz), D.(gugs))
1<q1<925G 1 5991;,‘:;2 -;sg <G
N(N —1) o _
+ 2——=——LCov D9, D_(glv-‘"))
GZ(G - 1)2 ° (; 1591§2$G
. _WN-1F ( 4 (12))
G*(NG -1)2  \N™!
G?(NG —1)? 2 y o o
N G(G - 1)(G - 2) ( (13,1;13, 2))]
2 N 10
2N(N -1) & — o P10
+ =3 3" Covo(D®, D'er92))
G*(NG - 1) a1=1g2#q
. W=D 4 ap 2N i G [(_1_ 13) (13)))
T GING-12N' T GING-1) v
1 3,153, 2)] ( 1) 2 L(12,13)
o AC-2 +G2(NG—1)2 (G- )N !

where 5(13 1182 E{¢(13 1)10( Xy )¢(13,2)10(X§" )} and
Ps20(x?) = E[1z2(x?, X%) — §@95)]. Under Ho,
l/’(12)1(X:‘) = ¢(13)1o(xi) = ¢(13)01(Xj) "/)(131)10( ) = ¢(13 2)10(X) Therefore
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glz) (13) (g:il) _ (131132) 5(12 13) 4
2 (N—l) 4 (12) 2N2(G—- ) {(2 (12)) 1 (12)]
B S ST L —92)—
1 ( )2 G(NG _ 1)2 N§1 + 2(G )Né.l
2N(N - 1) 2 ,02)
G2(NG — 1)? 0@ - D76
‘ 2, N2 46"
= (V= 1)+ NG -0+ NV = )G - D G =T
2 46"
= [(N-1) +N(G’—1)(NG—1)]NG(NG_1)2 (4.4.14)
Hence, under Hy,
or' (D. - 8.) <L N(0,1)
Now
n=Ey(D-—D)=6.-6.=0 (4.4.15)
and
72 = Vare(D? - D))
. = Varg(D?) + Var(D.) — 2Cov0(1_)g D. )
= 4 (12) + 02 — 2Cov, | D? N1 XG:
N* ! "GING-1) &
— 2N _
— 2Covo | DY, ———— Dla1:92)
° ( G(NG - 1) 1591<292$G )
= 2w 2 _ M )9
= i + o} 2G(NG — 1)Va1‘o(D.)
4N
- Dgl D(gl ,92)
GING=1) 2 E Covol )
91#92
_ 5(12) o (N-1) 4.apy__ 4N i 2 12,13)
= oA 1y vl TR LY 1
G(NG —1) N G(NG -1) o N
g1%92
_ (N - 1) i (12) 2 4N(G - 1) < (12 13)
= [I“ZG(NG—U R ReTy TRy yrad (44.16)
where 5&12'13) = E{¢(12)1(x?1)¢(13)10(X?1)} = {12)7 since ¢(12)1( ) ¢(13)1o( )
under Hg.

135



Then,

(N—-14+N(G-1))| 4 a2

2 _ _—
n= 12 ewne-n | VY

+ [(N =12+ N(G - 1)(NG - 1)) NG(?\EIS)— O
= [(G=2)(NG —1)* + (N = 1)* + N(G = 1)(NG —1)] NG(‘fg)_ =
— {(N=12+4 (NG =1)[N(G 1)+ (NG - 1)(G — 2)]}NG(£;\£T§CIJ2)— N
(4.4.17)
So,
T1(D? — D.) -4 N(0,1)
Therefore, as in Chapter 3,
BSS = LN2"i)D;D1 ~ N(N_])Z,\ (x3),

where ),’s are the characteristic roots of Var(D,) = X¥;. Note that the diagonal

elements of 3, are 72 and the off-diagonal elements are

Cov(D% — D.,D — D.)
= Cov(D%,D%) — Cov(D*,D.) ~ Cov(D?,D.) + Var(D.)
= —2Cov(D?, D) + Var(D.)
(N-1) {__(12) 4N(G-1) 2

(12,13)
2 GNG-DON GG NSt
which becomes under Hy
Covo(D® — D.,D% — D.)
46"
= [-2(N -1+ N(G - 1))]NG(—NG-_—17
46(12)

+ [(N =124+ N(G - 1)(NG - 1)]NG(NG Y
[ o, (V=124 NG -1(NG=1) 4¢819
= [ 2ANG 1)+ (NG =) ] NGING 1)
B [(N—1)2 ~(NG—=1)(NG+ N -2) 4¢(9 .
= (NG—1) ] NGING —1) ©
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since (NG —1)(NG+ N —-2) > (N - 1)~

Now,
Eo(BSS) = L]\;_1—)trrsmce(§]‘1) = N(#l—)- Gt}
and
Varo(BSS) = wtrace(z )2
Let
BMS = Bg\% = (1;D’1D1
2
Then
Eo(BMS) —é—EO(BSS) =1}

and

Varo(BMS) = —Gl—Varo(BSS) L‘crace(El)2

For ABSS we have,

N N
ABSS= Y Y S (D@e) _ D)= N?D,D,

1<g1<g2<G i=1 j=1

where D = (D® — D., D03 — D,,..., D616 — DY is a LGN x 1 vector.

Let
D D) =8 N-1) &5 2N
=E Dlargz) _ D)= glar.gz) _ ( go_ 2V
=R )=¢ G(NG—l).,,Xz:1 T G(NG
Under H,,
v, =Eo(D@92) _D)=0.-6.=0
and

7-22 Var(D(gl 92) _ D)
= Va,r(D(-”1 92)) + Va,r( ) - 2COV(D(91 92) D )
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1 (N=-1) & -
— = (£03) (13) PDlerig2) g
N( + &0t )+01 2Cov( G(NG—I)QZ-:ID)
= 2N _
— 2Cov | Dlaves) __ — Dlar:g2)
( G(NG —1) 1<91§2<G

= l (13) (13) 2_11.!__) (91,.92) P
= N( + &5 )-+-a1 G(NG__“COV(D , D9

2(N -1) _
[k Sl Dla1:92) D92
Gve — 1) oV #)
4N _ _
— __—COV(DF91192), Dleraz))
G(NG - 1) 1591%2567
_ 1 a9 (13) 2 2(N —1) __2_ (12,13)
= y (67 +&”) +ol - G v
_ 2(N —-1) 3 (12,13)
G(NG-1)N
4N ~ G _ _
— m Var(Dggl,gz)+ Z COV(D.(glygz),D‘(QI.gs))
93;391=;92
G
+ Z COV(D§91,92)>D$92,93))
st
_ 1 (13) ol — 4N -1) 2 (12 13)
= N( +07) + ol - GING—1)N
_ G(NG [N(§(13) (13))+2( —9)— 5(131132)] (4.4.19)
Note that
1 K
‘1’(13,1)10(3(?1) = —ZP(X;’; # z)
Kk:l
1 K
‘I’(13,2)10(X?I) = —ZP(Xng #w?lt)
Kk:l
1 K
‘I’(ls)lo(xgl) = —EP(X_?’: # =i
Kk:l
1 K
‘I’(13)01(x?2) = EZP(X?I: #x‘]’i)

a~
i
—

and under Hj there is homogeneity among groups,
‘I’(13)10(Xi) = ‘I’(13)01(xj) = ‘I’(13,1)10(x1:) = ‘I’(13,2)10(Xi)
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since the sequences are 1.1.d.

Therefore, ¥(13,1)10(%:) ¥ (13,2)10(%:) = ¥f13)50(%:) and

oY = e = €Y = ' =

So, under Hy,

7 = % (9 4 (N =1)* 4+ N(G - 1)(NG —1)]

4&12)
NG(NG —1)?
4(N - 1) 2 (12) _ 4N 2 (12)

1

(G- I)N

4¢{"” 2(G — 4)¢™
NG(NG —1)? NG

G(NG-1)N G(NG —-1)

= [(N—-1)2+ N(G - 1)(NG - 1)]

26"
NG(NG — 1)
(4.4.20)

= {2(N-1)*+ (NG -1)[2N(G - 1)+ (NG - 1)(G - 4)]}

Asin BSS,
G(G-1)/2

ABSS~N* Y X ().
=1 !
where );’s are the characteristic roots of ¥ = Var(D;). The diagonal elements of X,
are 72 and, if all groups are different, the off-diagonal elements are
COV(Dggl %) _ P, Dlgs:9s) _ D)
= Cov(D® 92) D-(g“"g‘)) — Cov(D,(g1 92) D)

— Cov(D'994) D) + Var(D.)
= —2Cov(D@ ) D)+ Var(D.)
_ AN -1) 2 203 4N [l(g(la) + €19
T GING-L)N™  GING-1) LN T

1 .

+ 2(G - 2)_]_\[_ {53,1,13,2)] +o?
NN 2y AN o )2 oy
=eNG-)NY “ewe-pn ¢ Yyh

2 460

(N =17+ NG = )(NG - Dl e
o sg? L@ - 1)2 + N(G - 1)(NG - 1) 4¢
-~ NG (NG -1) NG(NG -1)

\ : 4692)

= (V=17 = (NG = 1)(NG + N = 2)| g5 <0
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and if g; = g, or g1 = g3 or g3 = g3,

COV(D,(gl g2) _ D_’ D.(yl,gs) _ D)
- Cov(ngl,gz) — D., Dlezss) _ D)

= COV(D(gl 192) D(gl ,ga)) - 2C0V(D'(gl ,92), D) + Var(D )

5(13 1513,2) 4N -1) 2_ (12,13) _ 4N [ (5(13) (13))
G(NG -1)N ™ G(NG —1) LN

1
(G 2)N (131132)]+0.f
1 4(N -1) 2 4N 2

(12) _(___) (az &V G_I)N 92)

=y& T GING-1)N*! G(NG—l)(
(12)
+{(V=1)"+ N(G - 1)(NG —1)] NG(‘;\?G —1)y

(12)
(-8
= (@-8%5

4€£12)

+ (V=1 + NG - YING - Vlgerye—Ty

= {4(N = 1) + (NG — 1)4N(G — 1) + (G — 8)(NG — 1 i

)]}NG(NG —-1)2
Now

F(G-1) ,

L

Eo(ABSS) = N*trace(Z;) = N*-

Varg(ABSS) = N*trace(,)?

The corresponding mean-square term is defined as

ABSS 2 ,
ABMS = (%) " GE-1) D;,D,

Then

Eo(ABMS) =

trace(2;) = 72

9
G(G-1)

Varg(ABMS) = trace(X,;)?

4
GG - 1)?
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4.5 Test Statistics

One alternative is to compare WMS with AWMS. Let Ty, = XM Under

AWMS®
H,,
wms SR s + A T (Ven(X) - p2)} + Op(N7)
AWMS ];,N; U2 {,“2]\/' Zz-‘ (‘IJ(2)1(X .“2)} + OP(N—l)
But, Aw‘fVAI{JSS — 1 as N — oo, i.e, asymptotically the distribution of A—V{,}MMS—'S; is degen-
erate.

Let 3, = X} and X3 = +X7. Under Hy,

N-1¢
Bss~ W5y (),
g=1
where A7,’s are the characteristic roots of X7.

Bus< B55 L & *(2)

G(G-1)/2
ABSS ~ N 2 x5 (x )

where A};’s are the characteristic roots of X7.

G(G~-
ABSS 2 Gne )

ABMS = Ni(@) ~ NGOG ; M (xd

Also, under Hy, by theoretical results pertaining to U-statistics

VN(WMS — pz/2) + N (0, 4 {2))

G
and
4 L
VN(AWMS — p3/2) -+ N (o, R )
Thus,

BMS =0,N"') and ABMS=0,(N™)
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while

WMS =0,(N"Y?) and AWMS = 0,(N~'/?)

Define
_ BMS _ ABMS
Tva=N (WMS) and  Iwa=N (AWMS)
Since, BM S and ABM S are the dominating terms in Ty and Ty 3, respectively, we
can write
BMS BMS (WMS — s /2)] -
Tna = N =N|——| |1+
e [WMS—#2/2+IL2/2} (Hz/fz) [ pi2/2
_ 2N(BMS) +0,,(N‘1/2)
H2
and
oo Nl ABMS ] B (ABME) [1+ (AWMS—pz/z)]_l
N3 = AWMS—,UQ/2+}12/2 - /1,2/2 ,U,g/2
_ 2N(ABMS) +0,,(N“1/2)
H2
Therefore,
2 & R
Tna ~ Cm ggl Mg (Xl)g
and

4 G(G-1)/2

Tns ~ GG -1m ; X5 (x4),

Because the elements of ¥ and X) are unknown, the characteristic roots of these
matrices are also unknown. Therefore, the above distributions do not have a closed
analytic form and we call upon resampling methods, such as the bootstrap, to generate

the reference distribution for the test statistic.

4.5.1 Power of the Tests

Lemma 4.1

Let T, be a vector of random variables that can be expressed as
1
N
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where R,, = 0,(n™!).
If Q(T) = T'AT is a quadratic form on T. Then,

Q(T) = TAT

1 , 1

2 ! 1 ’ -
= Q)+ T AU, + >Q(Un) + 20'AR, + Op(n 3/2y

If v = 0 then Q(T) = %Q(Un) +0,(n~3?).

In our case, T = D; and the quadratic form is Q(D;) = D{D,. Note that we

can write,
G _ G ~
DD, = Z(Df’ ~D)? = Z(D,g —D. —v+1)?
g=1 g=1
G _ G _
= S (DP—D.—n)+21 S (D! —D.— )+ GV}
g=1 g=1

Let Vy = D; — vy, where v, is a vector G x 1 with elements v;. Then, E(Vy) =0

1
and Var(Vy) =%, = —NE’I‘ = O(N™"). Therefore,
Q(D,) =D\D, = ViyVy + 20/ Vy + Vv,

Since VNVy ~ N(0,%3),

c

NVyVy~ 3% (),

g=1

where A} are the characteristic roots of 1. Also,

2V NV, Vy ~ N (0,4, Z}v,)

Now,
2N -
TN, = —GED,IDI + Op(N 1/2)
2N 4v/NV/! 2N
— VI V 1 /NV 2 —-1/2
Gua NYNE Gz ( N) * H2 ‘it OplN )
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g _ — )2 _ G
(TN,2—2NV12/N2) Nzg‘ (D? — D. —w) +\/NZ(D.9-—D-*V1)+01)(N_1)

4\/ NV]/(G#2) 2V 141
Note that
Nzg—l( D D - 1/1)2 1 . i — —
= 0,(N~1/?), NS (DY —D. —1y)t=0,(1
N o ), since ;;,1( : 1) p(1)
and
G _ _ G _ N
VN3 (D9 — D. — 1) = 0,(1), since > (D? — D. — 1) = Opn(N~'/?)
g=1 =1

So, for a fixed v, # 0, as N — oo,

Tn, — 2NV} /g _ & DI _D — -1/2
( 4V Nvi/(Gua) ) - \/NQ;(D’ P+ OV

Thus,

>—+1, as N — oo,

— 2N
P(TN,z > V1) =P (Z > G%

i.e., this test is consistent.

Now, consider a local alternative hypothesis. Let 1, = 71177{‘, where 4} is a

constant. Then,

2N 47 _ 1
T — Bl ¥4 1 Dg D — — *
S G I )

2, _
+ =)+ 0p(N7VE)
U2

(TN,2-2(7T)2 f) 5 (D2 - D~ goi)’
477/ (Gpa) 27y
+ \/_Z ( - D .~ —\7=71) + 0,(N?)
Note that
Nxg, (D2 -D.— i) _ & (5 _
o = 0,(1) and \/Ng):1 (D -D. - \/—_ ) = 0,(1)

Therefore, T 5 no longer follows a Normal distribution as N — co. It is a convolution

of a linear combination of chi-square random variables and a normal random variable:

2N 4+/N
T = —V,V
N,2 N + = G,Uq

*\! 2(71) -1
v O, (N~1/2
G (1) Vv + ——— o + Op( )
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2 G * 2 16 *\/ * 2(7;)2
Tnap~ ‘(’;‘u_ Zl Mg (Xl)g + N(O, _GTL’;L_% (71) 2’1("7’1) +—

2 g= H2

Now, let us find out whether Vi,V and (4%) Vn are independent. V'V and
(v*) Vn are independent if and only if (4})' X1 = 0 (Searle, 1971).

Recall that
T12 T12 T12
Y, = T12 T12 T12
Ti2 T12 .- T12
where
2 3 46
m={(N-1)*"+ (NG -1)[N(G-1)+ (NG — NG —2)]}NG(NG Yy
and
2 46"
19 = {(N — 1) —(NG—1)(NG+N—2)}NG(NG,_1)2
Then,
V) =9+ (G-Dmz ... 74+ (G =1)n
and

24+ (G—=1)r2=0

& G(N -1+ (NG -1)[N(G—-1)+ (NG -1)(G -2)
—(G-1)(NG+N-2)]=0

& G(N -1+ (NG-1)[(NG-1)(G-2)—- (NG -2)(G-1)]=0
& G(N-1P2+(NG-1)*(G-2)—(NG-1)(NG-2)(G-1)=0
& N2G 4 2NG — 2NG? —2N*G? + 3NG* + N*G* —-3NG =0
&N-14G-NG=0&N1-G)+G—-1=0
S N=1

So, ViV and (7})' Vi are independent if and only if N = 1, which is not the case

here.
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Now, write

2 1 *\/ 2 *\/ * *\! ok
G [NVNVN+2VN(“/1) VN] = Cm [(VNVN + ) (VNVN +97) = (717) ‘71]
and

2N
Ty, = : (BMS)—%EDD
2
2G(v)* | 2(n)* -
- VNVy + ) (VNVy + L 4+ 2 4 0, (N72
GM( N+M) (VNVy +77) - G L2 p( )

= 'G,E(\/J_\_IVN + ‘)’;),(\/NVN + 7;) + Op(N—l/z)
Note that VNV + % ~ N(97, Z}) and

D1 ~ N(Vl, 21) or \/NDl ~ N(“/;, EY)

The distribution of v/ND!,D, can also be derived the following way.

Let P be a G x G orthogonal matrix (i.e., P’P = I) such that PX]P’' = A, where A

is a diagonal matrix, and
Y = VNPD, = VND, =
Then,

Y ~N(P4;,A) and ND,D, =Y'PP'Y =Y'Y,

Hence,

e,

ND/D, = Y'Y ~ 3 X (x3(5)) (4.5.1)
=1
(v};)? . . . : .
where §; = )\" , Ai’s are the diagonal elements of the diagonal matrix A and v7; is
the ith row of the vector v} = Pv3i. By (4 5.1),
2N
Tva= G ~—D)D 2,\ (x3(8)),

Since we have a linear combination of non-central chi-square random variables,
*
TN

ﬁa

when vy =
P(Tny2>wn)—1 as N— oo
As the distribution of Tl 3 is similar to the distribution of Ty 2, the above results

about consistency and power of the test apply to Ty 3.
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Chapter 5

Numerical Studies and Data

Analysis

5.1 Modelling the Mutation Process

As an example, we consider a set of HIV-1 sequences from LaRosa et al. (1990)
and Myers et al. (1992) which span the V3 loop of the envelope gene. The data
consist of 87 sequences with 35 amino acids each. They are all from the B clade
(North America, Western Europe, Brazil and Thailand). Within the V3 loop are
found determinants for T-cell-adaptation and macrophage tropism (the wild-type
phenotype). These strains (T-cell adapted and macrophage tropic) are subject to
different selection pressures and therefore linkage patterns within the V3 loop are

most likely to differ as well.

5.1.1 The Autologistic Model

Recall from Chapter 2 that y(i) =0 or 1,
1

1+exp (a,. + D % y(j))

JEN;

Pr(0() [{y(s) : 5 € Ni}) =
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and

exp (aiy(i) + Z Yi5 y(2) y(J))
P(y(i) | {y(j) : j € N:}) = =

1+ exp (ai + > v y(j))

JEN;

(5.1.1)

where N; = {7 : j is a neighbor of i} is the neighborhood of site 1.

Since the data set is of moderate size and this model involves too many param-

eters, we reduce the number of parameters by imposing some restrictions.
Model 1

e The neighborhood is defined as the immediate positions, i.e, the neighborhood of
site 1is 2 — 1 and 7 + 1. At the two extremities of the sequences, the neighborhood
is only the next one for the left extremity and only the previous one for the right
extremity, i.e., the neighborhood of site 1 is site 2 and the neighborhood of site n is

n — 1.
so;=a, Vi
® Yi; =7, Vl,]

The model is then,

exp (a y(i) + > vy() y(j))
P(y(i) | {y(G): 0 <|i—j|<1}) = 2 (5.1.2)

1 +exr>(a + > *ry(j))

JEN;
The maximum pseudo-likelihood estimates (MPLE) and the simulated maxi-
mum likelihood estimates (SMLE) are shown in Table 5.2. We used the Metropolis
algorithm to obtain the MCMC maximum-likelihood estimates: 1000 samplers were

generated with different initial values, discarding an initial warm-up of 500 iterations

in each.

To verify if we reached convergence after a burn-in of 500, we considered the
first 100 samplers and compared at each of the 33 positions the empirical probabilities
with the probabilities under model (5.1.2).
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For each position we computed the statistic Z

Zi= PP 1., 33
Vil —pi)/m

where,
exp (& y(@) + Y Fy(2) y(j))

pi=Py() [ {y(j):0<li—jI<1}) = JEN:

1+ exp (& +> ’yy(j))

JEN;
& and 4 are the MPLE of a and v, respectively, and p; is the empirical distribution

computed from the first 100 samplers.

For each position we compute 4 probabilities:

P(y()=0|y(—-1)=0,y(i+1)=0) , P@E)=0|yt-1)=0yiE+1)=1)
P(y(3)=0|y(i—1)=1,y(i+1) =0) and P(y(s)=0|y(i-1)=1,y(i+1)=1)

For the empirical distribution we have,

P = (#y(1) =0,y —1) =0,y(s + 1) =0)
! (#y(:—1)=0,y(i +1) =0) )

(#y(2) = 0,y(z — H=0,yt+1)=1)
(#y(1) —1=0,y(t:+1) =1) ]

bis = (#y(@) =0y -1)=1LyGE+1)=0) _

? (#y(:—1)=1,y(: +1) =0)

(#y(i) =0,y —1)=1,y(t+1)=1)
(#yi—1) =1,y +1)=1)

We only looked at 33 positions, because the first and last positions remain constant.

Di2

Pi

So, we then have 4 x 33 statistics to compute and the results in Table 5.1 show that
only 6 out of 132 (4%) of those statistics have a significant result. Hence, if we adopt

a level of significance of 5%, a burn-in of 500 is satisfactory.
For this model,

Py()=1]y(i~1)=0,y(+1)=0 | _
1°g{1—P<y(i =1|y(z‘—1)=o,y<i+1)=0)}‘

Hence, a is the log-odds of mutation at a certain site when there is no mutation in

its neighborhood. If a is negative, the probability of mutation at site ¢ is less than
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Table 5.1: Convergence Results

Positions
Statistic 2 3 4 5 6 7 8 9 10 11 12
Z; 1.41 0.06 088 030 189 -144 005 098 -0.42 -1.15 1.65
Z; -0.36 -0.87 1.62 -1.29 0.82 -0.38 -1.65 1.25 0.59 -1.03 -0.27
Z; 0.65 -0.83 -0.62 -0.35 1.37 -1.19 0.03 -0.63 0.08 0.78 -0.82
Z; -0.80 -1.47 -0.55 2.62* 0.54 -0.88 0.07 -0.50 1.34 -0.78 0.77
Statistic { 13 14 15 16 17 18 19 20 21 22 23
Z; 0.65 -0.27 0.71 0.14 245~ -0.8% 0.83 -0.83 1.06 -0.43 0.55
Zia -0.89 044 -0.10 -1.59 1.03 -0.25 0.12 0.12 -0.32 0.09 -1.54
Z; 0.56 -1.77 0.61 -0.50 0.06 047 -1.13 083 0.47 -0.80 -0.33
Z; -0.95 -0.67 0.04 0.26 0.54 -2.34* 0.96 -0.64 -0.40 -1.57 -0.40
Statistic | 24 25 26 27 28 29 30 31 32 33 34
Z; 0.92 -2.01* -0.55 1.01 -0.17 0.89 0.10 -1.55 -0.17 -2.26* -0.69
Z; 1.52 -0.22 -0.57 132 0.09 -0.10 099 079 0.82 -1.72 (.88
Z; -0.74 021 047 037 0.07 085 020 027 -1.17 127 0.02
Z; -0.28 -0.76 -1.19 -0.24 -0.25 0.27 -1.02 -1.20 3.91* 1.22 -1.43
* | Z; |> 1.96 .
Table 5.2: Model 1
MPLE | SMLE
o | -1.7117 | -1.7117
~ | 0.7813 | 0.8204
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the probability of no mutation at that site, given no mutation at its neighborhood.
Since we are assuming that «; = a, the probability of no mutation is 5.53 (exp(1.71))
times higher than the probability of mutation given that there is no mutation in
the neighborhood. When there is mutation in the neighborhood of site i, the log
odds of mutation is a function of both a and 4. So, when there is mutation in the
neighborhood of site 7, if 7 is large and positive the log-odds of mutation at this site

increases, and if v is negative the log-odds of mutation at this site decreases.
Model 2
o The neighborhood is defined as in model 1.
ea;,=a, Vi
o %i; = vptil.
The model is then,

exp(ay(i) + Ty 7o' y (1) y(5))
1+ exp(a + X5, 70E-9y(5))

P(y(i) | {y(h):0<li—JjI<1}) = (5.1.3)

Table 5.3: Model 2

MPLE | SMLE
a | -0.0582 | -0.0582
~ | 1.5715 | 1.5715
p | 0.4679 | 0.4679

There is no difference between the pseudolikelihood estimates and the simulated
maximum-likelihood estimates, indicating that the dependency among neighboring
positions is weak. Again we are assuming that o; = a and the probability of no
mutation is 1.05 (exp(0.06)) times higher than the probability of mutation given that
there is no mutation in the neighborhood. When there is mutation in the neighbor-
hood of site ¢, the log odds of mutation is a function of a, v, p and the distance
between sites ¢ and j (since p has power |7 — j |). So, when there is mutation in the
neighborhood of site 7, the log-odds of mutation at this site increases, since v and p

are positive.
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5.1.2 Model based on the Bahadur Representation

From Section 2.3, y, = (yx(1),...,yx(n)) is a n x 1 vector representing the
binary responses for the n sites along sequence k, i.e, whether there is a mutation
from the consensus or not at each site along the sequence. Here, we consider k = 87
sequences and n = 35 sites.

Probabilistic model

n

P(ye) = J[&P0-¢&) =0

i=1

1 r yk(i)—f,-_)(yk(j)—fj)] 514
x[ +Z (\/5(1—&) Va1 =&) (514

The number of parameters to be estimated in the above model is too big (35 +

(325)) compared with the number of observations (87) in the data set. Therefore, we
cannot work with this general model. To get reliable estimates we need to reduce the
parameter space. First,let r;; = 0if | 1 —j |> 1 and & = ¢, Vi. Then, for illustration
purposes, let us discard all positions with less than 20% of mutation and still consider
r;; = 0if | i — 7 |> 1. In this case we have 12 positions and 23 (12+11) parameters.
The 12 positions we are now dealing with are: 9, 10, 11, 13, 14, 19, 20, 22, 23, 24, 25

and 32. The results are shown in Tables 5.4 and 5.5.

Table 5.4: Bahadur Representation Model (35 positions)

Parameter 13 1,2 T2,3 T34 T45 Ts.6 re,7 T7,.8 rs,9

MLE 024 0.57 047 075 048 065 032 040 -0.02

Parameter T9,10 Tio1 Ti1,12 T12,13 T13,14 Ti415 Ti5,16  Tie,17 Ti7,18

MLE 0.11 0.14 -0.11 -0.05 0.25 0.01 0.53 0.70 0.46

Parameter 18,19 Ti19,20 720,21 721,22 72223 T2324 T2425 T2526 726,27
MLE -0.07 036 -0.21 0.13 0.11 0.31 0.26 -0.20 0.22

Parameter T27,28 T2829 T2930 730,31 731,32 732,33 73334 73435
MLE -0.01 049 0.00 049 -0.11 -0.26 0.42 047

Comparing the results of Tables 5.4 and 5.5, we see that the assumption of

equal probability of mutation for all positions (model 1) is not tenable. For instance,
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Table 5.5: Bahadur Representation Model (12 positions)

Parameter & 10 €n €i3 €14 €19 €20 €22 €23
MLE 0.30 035 0.53 0.73 0.18 0.27 055 040 0.26

Parameter 524 525 532 9,10 Ti0,11 T11,13 713,14 T14,19 T19,20

MLE 058 0.73 030 -0.15 0.16 -0.16 0.77 049 0.30

Parameter T20,22 722,23 T2324 T24,25 72532

MLE -0.22 0.09 031 -0.27 0.14

in Table 5.5, the estimated probability of mutation at position 14 is 0.18 while at
position 13 it is 0.73, despite the fact that ry3,4 is 0.77, indicating high correlation
between these adjacent sites. A negative estimate of r;; means that the mutation rate

at position 2 is lower than at position j.

5.2 Analyzing the Variability in DNA Sequences

5.2.1 Simulations

In order to look at the behavior of the asymptotic distributions, we generated
N sequences, with K positions each, in G groups and computed the test statistic
FY (3.5.29) and the standardized F} (i.e., K <F1* - Z—%) /a*).v We performed 500
simulations (i.e., the above procedure was repeated 500 times). In Table 5.6 the data.
were generated using the same probability across all positions, i.e., px = p., while
for Table 5.7, different probabilities were used across positions. The tables show the

number below and above some quantiles of the standard normal distribution.

The number of groups seems to make a big difference on the asymptotic results.
When we increase the number of groups to 10, the results are much better (see the
lines for N = 100, K = 10, G = 10 and N = 200, K = 10, G = 10). The number
of sequences also plays an important role, but we need to keep in mind that the
ratio of the number of sequences (V) to the number of positions (K) should not be

small (ideally it should be at least 5). Therefore, for nucleotide sequences we need
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Table 5.6: Results of Simulations for Diversity Measures (pck = pc)

Percentiles of the Std. Normal Dist.

N K G|1 25 5 10 9 9 975 99

20 10 2 {0* 0™ O O™ 52 36 27 16™
20 10 5|0 1™ 2 20~ 48 30 21 16™
20 50 2 |0 0™ O O 59 49~ 38 27T
5 10 2 |0* O™~ 0> 0™ 67 43* 28> 19™
5 10 5 |0 0™ 4~ 33 51 34 23 13*
50 50 2 |0 0™ 0 0™ 59 41 327 27
100 10 2 |0 O™ 0™ 0™ 52 38 30 24™
100 10 5 |0 1* 5 26~ 63 38 26~ 11*
100 10 100 4 11* 40 42 30 14  10*
100 50 2 |0 O O O~ 49 36 21* 16
100 50 5 |0* O~ 3= 23~ 56 32 18 12*
200 10 5 |0 0™~ 9 30 48 32 247 18
200 10 101 3 14~ 40 52 31 17 7

* between 2SD and 3SD or —2SD and —3SD.

% greater than 3SD or smaller than —3SD.
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Table 5.7: Results of Simulations for Diversity Measures (pck # pc)

Percentiles of the Std. Normal Dist.
N K G|1 25 5 10 90 95 975 99
20 10 2|0 0™ 0>~ 0 59 36 23~ 16™
20 10 5 |0 O 4= 24 54 37 22 13*
20 50 2o o> O O™ 63 39 297~ 20
5 10 2 [0 0> O™~ 0~ 60 36 28 19*
5 10 5|0 1™ 6~ 43 51 33 17 10
50 50 2 [0 0™ o0~ 0~ 53 37 247 14*
100 10 2|0 0~ O™ 0™ 53 427 317 21
100 10 5 |0 1= 10 27 41 28 19 12%
100 10 101 3 13 49 53 30 18 7
100 50 2 |0 O 0= 0™ 46 28 22 17
100 50 5 |0* 1 9~ 28> 57 35+ 22 10*
200 10 5 |0 1* 8 34 54 30 18 12
200 10 10| 1 8 17 40 54 30 17 9

* between 2SD and 3SD or —2SD and —3SD.

s« greater than 3SD or smaller than —3SD.
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at least five times more sequences than the number of positions in order to apply the
asymptotic results. The scenario where the probabilities are different across positions

yields equaly good results.

5.2.2 Data Analysis

The data set consists of two groups (subtype B and not B) with 46 sequences
each. The nucleotide sequences are all from different individuals and span the pro-
tease region. There are therefore four categories. After aligning the sequences and

discarding the positions with no change, we end up with 155 positions.

Looking at the simulations results we see that our data set is not large enough
for the asymptotic results to apply. We therefore rely on resampling techniques, such

as the bootstrap. Here is a summmary of the procedure:

Ne Tic . .
lk;’—v, "% and compute the statistic Fj.

1. Estimate p. from the data, i.e., px =

2. Generate N = 46 sequences, with K = 155 positions each, in each of the G = 2

groups, using pck.
3. Recompute the test statistic F; from the generated data and store it.

4. Repeat steps 2 and 3 1,000 times.

#F|s > Fiobs
1000 '

The p-value is then

The results are

WSI =0.7005 TSI=0.7007 BSI =0.0002 and Fobs =0.011

The percentiles of the bootstrap distribution are given in Table 5.8 and the
observed p-value is less than 1/1001. This means that relative to the within-clade

variation, there is significant variability between the two clades.
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Table 5.8: Percentiles of the Bootstrap Dist. for Diversity Measures

90% 95% | 97.5% | 99% | 99.5% | 99.9%
0.0015 | 0.0020 | 0.0023 | 0.0027 | 0.0030 | 0.0040
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Chapter 6

Conclusion and Future Research

6.1 Concluding Summary

The autologistic model formulated in Section 2.1 is able to handle situations
involving spatial binary data and dependence on covariates. One problem is that the
estimation procedure is not straightforward and computer-intesnsive MCMC proce-
dures are needed. Also, the general model formulation involves too many parameters
and when applied to data sets of moderate size, we need to reduce the number of pa-
rameters by imposing restrictions. For the data set we use, the number of sequences is
small compared to the number of positions, and we end up with a very simple model
because of the restrictions we impose on the parameter space. For instance, we as-
sume equal mutation rate and equal correlation structure over all positions, which

may not be true in reality.

The model based on the Bahadur representation (Section 2.2) can also handle
dependent binary data, but the inclusion of dependent covariates is not as easy as in
the autologistic model. An advantage of this model is that the likelihood function has
a closed form and the parameter estimates are obtained by the maximum-likelihood
approach using numerical optimization methods, such as the Newton-Raphson pro-
cedure. Again, we have to reduce the parameter space when applying this model
to our data set, because the sample size (the number of independent sequences) is

small compared to the number of positions. Ideally, the ratio between the number
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of sequences and the number of positions should be at least 5. When we discard all
positions with frequency of mutation less than 20%, we see that the mutation rate
varies a lot from one position to the other, confirming the fact that the assumption
of equal mutation rate over all positions does not hold. For the extension of the
autologistic model to three categories (Section 2.3) we also need large data sets, since
the general formulation of this model involves even more parameters than the one for

a binary response.

When using the diversity measures (Chapter 3) to analyze the variability in
DNA sequences, we assume independence among positions and we only consider se-
quences from independent individuals. The power of the test developed in Chapter
3 is evaluated and we conclude that the test is consistent, i.e., as the sample size
increases, the power of the test goes to 1. Since we know that positions in DNA
sequences may not be independent, more work needs to be done relaxing this as-
sumption and this is discussed in Section 6.2.4. The simulations (Section 5.2.1) show
that the asymptotic test statistic (3.5.21), developed in Chapter 3, behaves better
when the number of groups is large (at least 10) and the number of sequences (V) is
large compared to the number of positions (K). The ratio between N and K should
be at least 10. Also, when the data are generated using different probabilities across
positions the asymptotic results are as good as those obtained when generated using
equal probabilities. For small sample sizes we can use resampling techniques, such as
the bootstrap, to generate the reference distribution and see where the observed test
statistic falls. The data set used for illustration consists of two groups (subtype B and
not B) with 46 sequences in each. Sequences are originated from different individuals
and the sequences span the protease region. After aligning the sequences, we discard
the positions with no change and we end up with 155 positions. The results show
that relative to the within-clade variation, there is significant variability between the

two clades.

The analysis of variance based on Hamming distances (Chapter 4) has the ad-
vantage of considering the sequences on an individual basis, since we make all pairwise
comparisons within and across groups. The sequences are assumed to be independent

in each group, but we should also think about developing tests when the sequences
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cannot be considered as independent. For instance, if the interest is in comparisons
of sequences within and between individuals, the sequences within the same indi-
vidual cannot be considered as independent. This is discussed in Section 6.2.6. We
decompose the total sum of squares into within-, between- and across-group sums of
squares, with the latter term being new: it does not appear in the usual decomposi-
tion. The assumption of independence among positions is relaxed and test statistics
are developed based on U-statistics theory. We found that these tests are consistent
and their power goes to 1 as the sample size increases. The distributions of these test
statistics do not have a closed analytical form, and therefore, we need to call upon

resampling techniques, such as the bootstrap, to perform the test.

6.2 Future Research

6.2.1 An Application of the Autologistié Model to sequences

from the nef gene

In the application of the autologistic model of Section 2.1 no covariates are
considered. Now, we would like to include covariates and define neighborhoods in
a biologically meaningful manner. In particular, the three-dimensional molecular
structure of the nef gene is known and it is possible to define neighborhoods according
to molecular distances. Having the spatial coordinates for each sequence position, we
can compute genetic distances. At the amino-acid level, possible covariates are size
(e.g., small or large) and group (hydrophobic or hydrophylic). The goal is to estimate
the probability of mutation taking into account the neighborhood of the site and the
most significant covariates. A mutation occurs when there is a change in amino acid

with respect to the consensus sequence.
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6.2.2 Extension of the Autologistic Model to more than Two

Categories

The theoretic aspects of an extension of the autologistic model for three cate-
gories are developed in Section 2.3, but no application is shown. Now, we will extend
this model for any C (C > 2) categories and apply it to some data. Markov-chain

Monte-Carlo procedures will estimate the model parameters.

6.2.3 An Alternative Null Hypothesis for the Analysis of Di-

versity Measures

The null hypothesis of interest in Chapter 3 is that there is homogeneity among
the groups, i.e., the category probability at a certain position is the same over all
groups. Now, we would like to test a less restrictive hypothesis. Recall from Chapter

3 that the population variation within the gth group at the kth position is

Is(pg) =1— chgk (6.2.1)

If the null hypothesis of interest is just

Ho : Is(py) = IS(sz) == IS(ka) ’

i.e., the within-group variation at the kth position is the same over all groups, it

implies that

I pax 1=l Pax [|= - || Par | (6.2.2)

where py = (Pigk Pagk --- Pogk)' is a C x 1 vector representing the probabilities
of belonging to categories ¢ = 1,...,C in group g and position k. Note that if this
hypothesis is true, the hypothesis of Chapter 3 (Hp : pegr = Pek) is not necessarily

true.

The distribution of the test statistic under this less restrictive null hypothesis
need to be derived and we need to be aware of the structure of the covariance matrix
in this situation. The latter is now a little more complicated since we cannot assume

that individual probabilities are the same over all groups.
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6.2.4 Diversity Measures for Sequences with Dependent Po-
sitions
The test statistic developed on Chapter 3 assumes independence among po-

sitions along the sequences. A simple scenario for dependence among positions is

depicted by a first-order Markov chain.
First, assume that there are only 2 categories, i.e., C = 2. For a first-order
Markov chain
Pe{X{y =l | Xi =ah, Xy =al, ..., X]k1 = ol 1}

= Pf{XfK = ?K | X?K—l = x?K—l}

Let

ACARY

=Pr{being in category 2 at position k for group g | at position k — 1 it is at category 1}

Then,

A1) =1-p(2]1) and p(1]2) =1-pi(2]2)

Let ngr = ngk(1) denote the number of responses in category 1 at position k for group
g, N the total number of responses at position k, N — ng = ng(2) the number of

responses in category 2 at position k for group g, nj(a | b) the number of responses

in category a at position k for group g given that at position k — 1 it is in category
b, with a, b=1,2.

The contingency table for two categories is shown in Table 6.1 and for C cate-

gories in Table 6.2.

For each group’s responses (ng1,ng2, . .., Ngk ),

Pr{(ng1,n§(1] 1),74(1 | 2),..,nk(1 | 1),nk(1 | 2)}
} (ffi)pmm — (L))

Ng1 (L)1 _ (ng1—ng(1]1))
(g0t ) DO a1 1)
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Table 6.1: Contingency Table for Two Categories (dependent positions)

Position k
Category
1 2 Total
Posit. | Category | 1 [ nf(1]1) ni(2]1) | ngx-1(1)
E-1 2| ng(112) n82]2) | nas(®)
Total ngk(l) ngx(2) | ng =

N — Ng1 g —n, —nd
112 nd(1)2) 1 — g 112 (N—ng —nZ(1[2)
<(Tacs A 1280 = a2

Lo X ;’gK—1 (1] 1)n§<(1|1)(1 —p%(1] 1))(%,{_1_”;{(1]1))
n%(1]1)
(N —NgK-1

nd (1] 2) )P?{(l | 2)n§((1|2)(1 - p3(1] 2))(N—ngK_1_nj9{(1|2))

Table 6.2: Contingency Table for C categories (dependent positions)

Position k
Category
1 2 C Total
L[ a1 wEID) . f(C11) | ngeal)
Position | Categ. | 2 | nd(1[2) ni(2]2) ... ni(C|2) | ng-1(2)
k-1 : : : : :
Cln110) W2I0) ... n(CIC)|ngs(C)
Total ngk(1) ngk(2) ... ng(C) | nga=N

Since the groups are independent, we can take the product over all groups. The

probabilistic model is

G
IT Pr{(ng1,n3(1 | 1),n3(1 1 2),...,n%k(1 | 1),n% (1] 2))}

g=1

-1 (¥ )ty - sy

g=1 Ng1
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ng g ng(1]1) g (ng1—-nf(11))
11)" 1—p5(1 (1))t
N— ngl g g - —nd
112\ (1]2) 1—109(11]2 (N-ng —nf(1)2))

NgK-1 g nd (1[1) g 1\ (ngK -1 -"gK(lll))
1 1 K 1 1 .I. 9
g(1 1))PK( | 1) (1-px(1]|1))

N — ng K-1 9 g
) 1 n?.(112) (1 _ V(N-ngp_1—n%-(112))
(s 1 | 2P = g2 | 2) :
Let

Vi=(n1i(1) n11(2) ... nei1(1) nei(K)) be a 2G x 1 vector,

Vi=mi(1 1) nk(2]1) ni(1]2) nk(212) ... nE(1]2)nf(2]2)), beadGx1
vector for k =2,...,K and V = (V; V2 ... Vi) be a 2G(2K — 1) x 1 vector.

py =E(V1)=(Npi(1) Npi(2) ... Np{(1) Npf(2)) (6.2.3)
e =E(Vi)=(nu-1(1)pp(111) - nix-a(2)pi(212) ... nee-1(2)pF (22)) (6.2.4)
fork=2,...,.K

p=E(V)=(p, py -.. pg) (6.2.5)
Y =Cov(V)

=(T1u0Xud.. 8T OT12nBT122®. . . OTa2n ® 22 ®. . . DBern ®Xak)z) (6.2.6)

where ¥ is a 2 X 2 matrix
5. =y [ AOC-AL) -AOAQ)
’ —HO)BQ) AL - Q)

and B, for ¢ = 1,2, is a 2 x 2 matrix

2gk|c = ngk_l(c) ( pi(l | C)(l —Pz(l l C)) _pi(l | C)pi(? I C) )

—ri(Llop2le)  m2|1-p(2]0)
Therefore, ¥ is a square matrix of dimension 2G(2K — 1).

Note that for C categories V is a CG(C(K — 1) + 1) x 1 vector. The probabilistic

model for C categories is
G
II Pr{(na:1(1),...,nu(C),...,n%(1| C),...,n%(C | C))}
g=1
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So, we need to find the distribution of the sums of squares under this model and

construct a test statistic.

More general dependency will be considered: e.g., kth order Markov chains and

autologistic models.

6.2.5 Inclusion of Covariates in the Analysis of Diversity

Measures

If we want to include covariates in the set up of the analysis of diversity measures
and these covariates are categorical, we can treat them as additional factors in the
analysis of variance. If the covariates are continuous, the appropriate model for this
situation would be a log-linear model, and it does not seem to be possible to extend
this model for the case of non-independent positions. However, most of the time the
variables of interest are categorical. Even in the cases of variables like viral load or

CD4 count, they are usually categorized.

6.2.6 Analysis of Variance based on the Hamming Distance

when Sequences are not Independent

The theory of generalized U-statistics for independent random vectors (i.e, se-
quences) was used to get the distribution of sums of squares and develop test statistics
in Chapter 4. In the case of dependence among sequences, the theory of U-statistics
for non-independent random vectors may be called upon to find the distribution of

sums of squares.
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6.2.7 Tests Based on Contrasts in the Analysis of Variance

for the Hamming Distances

If the test of homogeneity among groups turns out significant, we would like to
identify the most heterogeneous groups. So, we need to construct tests to compare

all possible pairs of groups and to order them according to their degree of variability.
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Appendix A

(£e) (3 000)-
) (z akl%) _

k1 #kz

=
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bk) =Y akb+ Y arbr,
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k1 #£k2

2

ky #Fko#kg
ka<ks .

>

k1 #ko#ks

S ckarbi, + Y

ky #ko#ks Ky #k>

Chy kb, + D Cky bry Ok,
k1 #k2

Z Ck, Gk, 0Ky + 2 Z Ck, Ok, Ok,
ky £k £ks k1 #ky

= D ke Ok Oy + Y, Gy iy CryChy
k1 #ks ky 2y kg

k2

k1 #k2

axbrck + Y @k by cr,
k1 #ko

= Z aklbklck2 + Z Ak,

ky <kz ka<ky

ky#ka#ks
ko <kg

<kg

bigCky, + D Gk, bkyChy

k1 #ha kg
k2 <kg

= > (arbe,)* +2 Y anbrar by

ag, bk1 Ok, bk1 +2 Z ag, bk2 ag, bk1
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ky ko Fks #ky
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Z g, bkz z Ck1Cky | — Z Ak, bkzckl Ck, + Z Qf, bk'z Ck, Cks

k1 #ko k1 <k2 k1 #ko k1 #ka #ks
+ z ag, bk2 Ck,Chks T Z ag, bk2 Cky Cky
k1 #ka#ks ky#hy#kg#ky
kg <kg4

(A.9)

Z ak, b, Z Ctidiy | = D @k, bryCiydiy + Z ak, bk, Ciy dicg

ky #ko #k
ky <k2 k1 <kz k1 <kz ks ékz »2k1 <“’k3
+ Z akl bk2 ck3 dkl + Z a’kl bkz ck2 dka
ky #ko#kg k1 <kz <ks
ky <kg, kg <ki
+ > agbickd, + Y anbrokd,

ky #ko#ks ky #hoy#kg#ky
ky <kg, kg <kg ky <kz, kg <kq
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2 ag, Gk, Z CrCr, | = Z Qk, Gk, Ck, Ck, + Z Ay Ok, Cky Chy

ky #ho#k
k1 <ko ky <kg k1 <kz *y ékzyzkl <3k3
+ Z Gk, Gk, Chs Cky T Z Gky Gk, Cky Cks
k1 #ka#kg ky <k2<ks
ky <k, k3 <ky
+ Y G GkCR Gkt DL Gk GkyCiyCh,

ky #hy ks ky iy kg kg
ky <kg, ko <kg ky <kp, kg <kq

Z ag, bk2 = E (a,k1 bkz)z + 2 E Ak, bk241k1 bka + 2 Z a

k1 <kz k1 <k k1 <kz<ks k) <ko<ks
+ Z ak, bk2 ak, bk; +2 Z ag, bk3 ag, bk4
ky <kz <ks ky #hy#kg#ky

ky <kg, kg <kj
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Appendix B

Example: Two categories
Let, for any g,
pi(0) = P(X} =0) , p(l) = P(Xj =1)
pzlkz(l 1) — (X_1gk1 —1 ngk2 ) ? pilkg( 7 ) P(X]gkl - 0 Xjkz - 1)

pilkz(l 0) ( k1 T =1 X]gk2 ) ’ pzlkz(o’ ) P( Iky T 0 Xjkz O)

Note that p{(0) + pf(1) =1 and pf ;,(1,1) + p§ 1,(0,1) + pi, £, (1,0) + P, 4,(0,0) = 1
Also, let

= PO, # X2) = 3 ()1 — (W) | (B.1)

u=0

1
0ilk2 P(Xngh # X]gkl’ thkg # ]k2 Z p'iqclkg (u7 v)pilkz(l - U, 1 - 'U) (B'2)

u, v=0

P(X§ # X5 Xie # X Zl’i )1 = pi(w)]? (B.3)

u=0

(ngkl # X Jkla .k, # ng,) = Z Pilk2 u,v) Pil (w1 —piz(v)] (B.4)

P(XY, # 2%) = ;0[1—1)1; wI(zf, = u) (B.5)
(P(x5 #2%))" = St~ AW (e = w) (B.6)
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1

( ik # XJ 3k Jgk # ] T3) sz )1 —Pi )]I(a’?k = u) (B.7)

u=0

P(ka # x:k)P(ka # X; 3k X]gk Z[l - Pk ( )I(x?k = u) (B.8)

u=0

P( # wlkl? X ’k-_) % xtkz)

= 3 (= o, W)t -, (), = w28, = ) (B.9)

u, v=0

( ( k1 # x.kl)) P(X} ik # x:kp X3 i'ks # zikg)
= (P( ik F “”a‘kl)) P(X} Y F T, X j'k1 # 'x?kl)

S 1 -, (WP — g, (o)} (e, = w28, = v) (B.10)

u,v=0

P(Xf # X7 ) qul # x?k,)P(kaz # x.gkg, Xfrka # x?k,)
= E_ PR (W1 = i, (W[ = pi, (VI - PR, (D) (2, = v, 2, = v, 2%, = 2)

(B.11)

( k1 75 X'kl’ Jkl 74 (I?,kl) ( gk :lé xzkl? Xg'kg #ﬁ xlkz)
= ( 7é X’kl’ jk1 # zikl) ( jks # x.kz X'k, # x?kl)

= Z i, (w1 — g, (W[l = B, ()1 (eh, = u, 2%, =v) (B.12)

u,v=0

( 7k # x?’cl’ ’k2 # mlkz)P( 7k1 # x?’cl’ X]g’ks # x?ks)
1
> [ —pf ()1 = pi, (0] — PR, ()M (e, = u, 7, = v, 2, = 2)
u,v,2=0

(B.13)

( k1 # ‘Ttkl Jk2 # xak:) - Z p{ukz(u v ( =1- u7$?k2 =1- ’U) (B14)

u, v=0

P(X%, # X3 'k sz # Tk, ) Z i, (1 U)Pilkz(u v)I(zh, =1-v) (B.15)

u,v=0
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( 7k # zzkﬂ sz # x?kz) (X3 7kt # xzklv X5 ko # zzk-_))
Z Ph (1 — 4,1 = 0)[1 = pf (W[l - pi, (V)1 (2, = u, 2, = v)

u,v=0

(B.16)

( ]kl # xikl’ Jgka # xtgkg) ( ]kl # mtkl’ f’kz # "E‘lqu)

= Z p?clka(l - u’ 1 - 'U)[l - pil (u)][]‘ - piz(z)]I(xgkl = u? x‘:]kz z? xlk3 'U)
u,v,2=0
(B.17)

( ( k1 # X 'k sz # xlkz )2 = Z [p?cl(l - u)]2[pilk2 (u’v)]zI(m?’Q =1- ’U)

u,v=0

+ > (1= w)pf, (Wpf g, (4, 0)Phys, (1 — w,0)I(2h, = 1 —v) (B.18)

u,v=0

( 3k # m;kl X3 kg # m?k,) ( ik # X} ko ]kz # w.k,)

= 2_0[1 — pi (W)][1 — pi, (V)Ipk, (1 — 2)pryy (2,1 — ) (2, = u, 2, =)
h (B.19)

P(X3 Jk, # xckl’ X3 7'ks # m.ks) (X3 7k # X7, 7'k sz # x:kz)

= ZI_ [1 — pf, (W1 — pf, (V)]pF, (1 = 2)prika (2,1 — DIy, =u, 2, =1, T, =v)
. (B.20)

( k2 # $,k2, X 3'ks # xtka)P( k1 # X 3'kyo .?k2 ?é m?kz)

= Z_o[l — pf, (W[l — pf, ()P, (1 — 2)pryka (2,1 — w)I (2, = u, 2, =)
h (B.21)

P( 76 x.ks, X'k., # m?k.;) ( 7k, #X'kl, sz # 1'3?}:2)

= ZI_ [1 = pf, (w)][1 — P}, ()]PE, (1 = 2)Priks (2,1 = DI (zh, =1, 28, =u, z, =)
o (B.22)
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( ]kl # X 'kl b ]kl # xtkl) ( k2 ?é X 7'ks chs # xiks)

E pi, (W)[L = pi, (WIPK, (1 = 2)pi,, (2, 0)I (2, = u,2f, =1 -v) (B.23)

u,v,2=0

( 1k1 # X 7'k jkl # xtkl) ( ]kl # X 7'k _;qkz :1# x?kz))

Z i, (WL = i, (W]pk, (1 = 2)pf 4, (2, 0) I (2, = w, 2%, =1~ v) (B.24)

u,v,z=0

P( ,kl?éX'kla Jk17é$.k1) ( ,kz#X'kz’ Jkl ?é”?.kl)

Z Pk, ( )]piz( U)Pilkz(l - “,U)I(f”?kl = u) (B.25)
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" (B.28)
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u,v=0
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( k1 # w:kl) ( ko # x:k-_ﬂ X7 3'ks # xzks)

Z 1- k1 pzzka (v, z)I(alcf-’,cl = u,xsz =1~ v,xfka =1-2z) (B.31)

u,v,2=0

( ]kl # xtkl ? ]k-_) # xtkz) ( /kl # xlkl ‘;q’ka # xigks)

= Z pk1k2 (u’ v)pzlkx (u7z)I(x?k1 = 1 - u?‘rigkz = ]‘ - v’z?ka = 1 - Z) (B’32)

u,v,2=0

( ik # ‘Tukla sz # x:kz) ( Jg'kl # ‘T?klv X;']'kz # ‘T?kz)

= Z [Pklkz(“,v)]zf(f”?k, =1- uax?kg =1-v) (B~33)

u,v=0

P(X_?kl # w?kl, sz # x:kg) ( 3'ks # x:kgv _?’Iq # ngk.,)

1
= Z pilkz(u v)piakq(z l) ( k _1 igk2=1 —v,$?k3=1—2,$?k4=1 _l)

u,v,2,l=0
(B.34)
( (X5 Jkl # xtkl)) (X;]’kg # Tiky X;'J’ks # Ti,)
= Z_O[l — P (W)*pir, (v, 2) (2%, = u, 2%, =1 —v,zh =1-2) (B.35)
(P(X3, #12%,)) P(X, # 28, X, # 25,)
Z [1 -5, (1 = w)Pph i, (w,0) (2, = 1 —u,2h, =1 —0) (B.36)

(P(XS, #2%)) P(XZ, # o) = 30— (PI(el, = ) (B.37)

1

( (X, # 2> X, # mikz)) = (pilkz(u,v))zl(;cf.’klzl —u,zh =1—v)

o (B.38)
P(nglk # z.k) 0.¢ Jok # X ]ska fzk # z3)
= > Pl — sl ()]’ I(zh = v) (B.39)

u=0
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u,v=0
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E i, (1 —u)[l = pi, (1 — w)]pi g, (w, 0) I (25, = 1 —w, 23, =1 —v)
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(B.41)
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(B.42)
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K 2
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= kX_: ; 208)° [1 - pf ()P 1 (2 = w)
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ki <k u,v=0

Z 0 ]kl ;qltl )

k1 #£k2
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k) #ko#ks
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