
H T BANKS and N J LYBECKA nonlinear Lax-Milgram lemma arising inthe modeling of elastomers1: IntroductionElastomers have been used by engineers since the mid 1800s in a variety of roles includ-ing bearings, springs, and shock absorbers. For example, rubber composites �lled withinactive particles such as carbon black and silica are routinely used as passive vibra-tion suppression devices. The advent of smart materials technology has sparked greatinterest in the development of rubber composites �lled with active elements (piezoelec-tric, magnetic or conductive particles) for use as active vibration suppression devices.The dynamic mechanical behavior of even the inactively �lled rubbers is complex, in-cluding nonlinear constitutive laws, large deformations even under small loads, loss ofkinetic energy (damping), loss of potential energy (hysteresis), dependence on �llersand environment (e.g., temperature).Many current modeling e�orts focus on phenomenological formulations involvingstrain energy function (SEF) theories (see [8], [10], [11]). The other predominantphenomenological approach is based on Rivlin's �nite strain theories [9], [11]. Bothclasses of models rely on use of the principal extension ratios (deformed length ofunit vectors parallel to the (principal) axes of zero shear strain), and are (as currentlyemployed in the industrial community) static in nature. While these theories can beused in estimating stress{strain curves, they ignore hysteresis and damping. Moreover,if one attempts to extend either approach to dynamic models, the use of the principalaxes system leads to additional conceptual di�culties due to a moving coordinatesystem.In this note we outline the preliminary theoretical foundations for a computationalmethodology to treat estimation and control of elastomers. For a motivating example,we consider a slender rod under simple extension so that the zero shear axis (i.e.,the principal axis) is in the direction of extension. Consider then the simple exampleof an isotropic, incompressible rubber{like rod with unstressed length l under simpleelongation with a �nite applied stress in the x direction. The �nite stress theoryand the SEF formulation for a neo{Hookean material (see [9], [10], [11]) lead to an1



engineering stress �eng = E3 0@1 + @w@x �  1 + @w@x!�21Awhere w is the deformation in the x direction and E is a generalized modulus ofelasticity. This can be used in the (force balance) Timoshenko theory for longitudinalvibrations of a bar to obtain the following nonlinear model for the dynamic longitudinaldisplacement of a neo{Hookean rod in extension:�Ac@2w@t2 � @@x  EAc3 ~g  @w@x!! = f ; (1.1)where ~g(�) = 1 + � � (1 + �)�2, Ac is the cross-sectional area of the rod, and � is themass density of the material.It is convenient in arguments for well-posedness and approximation to break thestress-strain law into the sum of a linear term and a nonlinear term. We thus de�neg(�) = ~g(�) � �, which for a neo{Hookean material is given by g(�) = 1 � (1 + �)�2.Then the model (1.1) can be rewritten�Ac@2w@t2 � @@x  EAc3 @w@x!� @@x  EAc3 g  @w@x!! = f : (1.2)Because the neo{Hookean g is not adequate for modeling most elastomers, we willinstead consider a more general nonlinearity g which must be estimated using experi-mental data.In general, one does not expect (1.2) to have classical (smooth) solutions. If, forinstance, one clamps the top of the rod and applies a periodic sinusoidal force to thebottom of the rod, then classical solutions do not exist due to incompatible boundaryand initial conditions. It is thus useful to write (1.2) in a more generalized sense,wtt +Aw +N �g(Nw) = f in V � (1.3)where A = A+N �g(N�) is an operator (nonlinear) from a space V of test functionsto its dual (or conjugate dual) V �, N = @@x, and w(t) � w(t; �) . For the system (1.2)of our motivating example one can choose V = H1L(0; l) � f� 2 H1(0; l)j�(0) = 0gand treat the boundary condition w(t; 0) = 0 as an essential boundary condition. HereH1(0; l) is the usual Sobolev space of L2(0; l) functions with derivatives in L2(0; l). Ifwe take as pivot space H = L2(0; l) in the Gelfand triple setting V ,! H ,! V �, then2



it is readily shown that the operator A � @@x �EAc3 ~g �@w@x�� has the form(Aw) (�) = �hEAc3 ~g  @w@x! ; �0iL2(0;l)= �hEAc3 @w@x ; �0iL2(0;l) � hEAc3 g  @w@x! ; �0iL2(0;l)as a mapping from V to V � and reduces to the usual (and well-known) linear operatorin L(V; V �) in the case that g � 0 (and thus ~g(�) = �).Motivated by these considerations and speci�c examples, we discuss below someobservations regarding theoretical foundations for such systems.2: Well-posedness: a nonlinear Lax-Milgram lemmaIn the previous section we were lead to abstract systems of the formwtt +Aw = f in V � (2.1)where A is a nonlinear mapping from V to V � and V ,! H ' H� ,! V � is the usualGelfand triple. We shall denote the H norm by j � j, the V norm by j � jV and theusual duality product by h�; �iV �;V where H is the pivot space. As we indicated in theprevious section, we are interested in the special case where the nonlinear mapping Ahas the form A = A+N �g(N�) (2.2)where A 2 L(V; V �), N 2 L(V;H), g : H ! H. In this section we address the staticcase, that is, we wish to solve Aw +N �g(Nw) = f (2.3)for w 2 V . Here A is associated in the usual way with a sesquilinear form � : V �V !C in that �(�; ) = hA�; iV �;V �; 2 V :We assume that � satis�es the following assumptions.(A1) The form � is Hermitian (symmetric) on V � V . 3



(A2) The form � is V {continuous, i.e., for some c1 > 0j�(�; )j � c1j�jV j jVfor all �,  2 V .(A3) The form � is strictly V {elliptic, i.e., for some k1 > 0�(�; �) � k1j�j2Vfor all � 2 V .The linear operator N in the nonlinear term is assumed to satisfy(N1) N 2 L(V;H) with jN�jH � pkj�jV for � 2 V .The nonlinear mapping g satis�es(N2) g : H ! H is continuous and jg(�)j � C1j�j + C2 for � 2 H where C1; C2 arenonnegative constants;(N3) g(0) = 0 and for some � < 1 we have for all �; 2 Hhg(�)� g( ); ��  i � ��k1k�1j��  j2 :The conditions (A1) { (A3) are quite standard in the theory of linear systemswhile the conditions (N1) { (N3) are readily shown to hold for classes of the elastomermodels discussed in Section 1. Under these assumptions, one can prove existence ofunique solutions to (2.3) which can be viewed as a nonlinear version of the generalizedLax-Milgram lemma ([12] and [5]).Lemma 2.1. Under (A1) { (A3), (N1) { (N3), we have for each f 2 V �, equation(2.3) has a unique solution w in V .Proof. We sketch the constructive arguments since they can also be used toguarantee convergence of certain classes of Galerkin approximations for (2.3). Letf�jg1j=1 be a total set in V and letV M = spanf�1; �2; : : : ; �Mg M = 1; 2; : : : :Since (2.3) is equivalent to�(w;�) + hg(Nw);N�i = hf; �iV �;V (2.4)4



for all � 2 V , we may de�ne a sequence fwNg of approximates by wN 2 V N andsatis�es �(wN ; �) + hg(NwN );N�i = hf; �iV �;V (2.5)for all � 2 V N .Noting that V M � V N for N �M , we observe that�(wN ; �) + hg(NwN );N�i = hf; �iV �;V (2.6)for all � 2 V M and for all N �M .If we choose � = wN in (2.5) we obtain�(wN ; wN) + hg(NwN );NwN i = hf;wNiand using (A3) with (N3) we �ndk1jwN j2V � �k1k�1jNwN j2 � jf jV �jwN jV :After an application of (N1) we have the uniform a priori estimates(1 � �)k1jwN jV � jf jV � : (2.7)From (N1) and (N2) we also �ndjNwN jH � pkjwN jV � jf jV �pk=(1 � �)k1 � Cjf jV � (2.8)and jg(NwN )jH � C1jNwN jH + C2 � C1Cjf jV � + C2 : (2.9)Using these estimates and taking the usual subsequences we �nd there exist a subse-quence (again denoted by wN ), w 2 V and h 2 H such thatwN ! w weakly in Vg(NwN )! h weakly in HNwN ! Nw weakly in H :Fixing M and taking the limit in (2.6) as N !1 for the subsequences we obtain�(w;�) + hh;N�i = hf; �iV �;V (2.10)5



for all � 2 V M . Since 1[M=1V M is dense in V , we �nd that (2.10) actually holds for all� 2 V . Thus for existence it remains only to argue thathh;N�i = hg(Nw);N�i for all � 2 V :Returning to (N3), we see that this along with the inequality in (N1) implieshg(N�) � g(N );N��N i+ k1j��  j2V � 0for all �; 2 V . In light of (A3), we thus �nd for all �; 2 Vhg(N�)� g(N );N��N i+ �(��  ; ��  ) � 0 : (2.11)In particular, since V M � V we may choose  2 V M for M �xed and � = wN forN �M in (2.11), obtaining�(wN �  ;wN �  ) + hg(NwN )� g(N );NwN �N i � 0 : (2.12)Returning to (2.5) we also have upon choosing � = wN �  with  arbitrary in V M ,N �M �(wN ; wN �  ) + hg(NwN );NwN �N i = hf;wN �  iV �;V :Subtracting this from (2.12) and letting N !1, we obtain (for M �xed)� �( ;w �  )� hg(N );Nw �N i+ hf;w �  iV �;V � 0 (2.13)for all  2 V M . Again by density of 1[M=1V M , we obtain that this inequality actuallyholds for all  2 V .If we choose � = w in (2.10) we obtain�(w;w) + hh;Nwi � hf;wiV �;V = 0 (2.14)while a choice of � = � ,  arbitrary in V , in (2.10) yields� �(w; )� hh;N i+ hf;  iV �;V = 0 : (2.15)Adding (2.13), (2.14) and (2.15) we obtain�(w�  ;w �  ) + hh � g(N );Nw �N i � 0 (2.16)6



for all  2 V .For arbitrary � 2 V and � > 0, choose  in (2.16) as  = w � ��. We obtain�2�(�; �) + �hh � g(Nw � �N�);N�i � 0 : (2.17)Dividing by � > 0 and then letting �! 0, we obtain (we use here the continuity of gfrom (N2)) hh� g(Nw);N�i � 0for arbitrary � 2 V ; this, of course, implies that equality must hold for all � 2 V .Thus (2.10) can be written�(w;�) + hg(Nw);N�i = hf; �iV �;V (2.18)for arbitrary � 2 V . Thus w is a solution to (2.3).Turning to uniqueness, suppose w1, w2 are two solutions of (2.3) corresponding toa given f 2 V �. Then we have immediately that�(w1 � w2; �) + hg(Nw1)� g(Nw2);N�i = 0for all � 2 V . Choosing � = w1 � w2, we �nd�(w1 �w2; w1 �w2) + hg(Nw1)� g(Nw2);Nw1 �Nw2i = 0 :Using (A3) and (N3), we obtaink1jw1 � w2j2V � �k1k�1jNw1 �Nw2j2 � 0 ;which with (N1) implies k1(1� �)jw1 � w2j2V � 0 :Since � < 1, we must have jw1 � w2jV = 0.It is appropriate at this point to make several remarks about the above lemmaand its proof. The inequality in (N3) can be recognized immediately as a type ofmonotonicity condition on the nonlinearity g. Conditions of this type and their use inarguments such as those involving (2.11){(2.17) can be readily found in the literatureon monotone operators and variational inequalities and are sometimes referred to as\Minty-Browder" type conditions and arguments (e.g., see [6], pp. 83{87). Indeed,the results above can be considered as a special case (or a corollary) of earlier resultsdue to Minty [7] and Browder [4]. Speci�cally, if we consider Corollary 1.8, p. 87 of7



[6], we see that if A : X ! X� is a monotone, coercive nonlinear operator that iscontinuous on �nite dimensional subspaces of X, then we are guaranteed existence ofw 2 X such that hAw � f; v � wiX�;X � 0for all v 2 X. Choosing v = w + t� for t arbitrary, � 2 X arbitrary, we obtainhAw � f; t�iX�;X � 0 :This implies hAw � f; �iX�;X = 0for all � 2 X or w 2 X is a solution to Aw = f in X�. One could thus take analternative approach to establish Lemma 2.1 by arguing that A = A+N �(g(N�)) of(2.2), under certain conditions on A, N , and g, satis�es the monotonicity, coercivityand continuity conditions of Corollary 1.8 of [6]. As we have already noted, we chosethe constructive arguments outlined above since we can use them to obtain readilyconvergence of certain families of Galerkin approximations. This will be discussed inthe next section.3: Approximation and convergenceThe arguments given in the previous section can be used almost immediately to es-tablish convergence of certain types of Galerkin approximations that can readily beemployed in computations. To see this, suppose we have a family HN , N = 1; 2; : : :,of �nite dimensional approximation subspaces satisfying:(C1) HN � V and for each v 2 V , there exists f~vNg, ~vN 2 HN such thatjv � ~vN jV ! 0 as N !1;(C2) HN � HN+1, N = 1; 2; : : : .The condition (C1) is a standard one from the theory of �nite elements and issatis�ed by many families for a given V (which, of course, is dictated by � and Hin speci�c examples of (2.3) or (2.4)). The condition (C2) is somewhat more unusualbut is also satis�ed by a number of schemes (piecewise linear splines, spectral families,etc.) as we shall see below. For the moment, assume (C2) holds. Then without loss of8



generality (i.e., by possibly reindexing the elements { see the example below) we mayassume that each HN can be written asHN = spanf 1; : : : ;  Ngfor some family of elements f ig1i=1. Because of (C1), we have that f ig1i=1 is total inV . We may now de�ne the Galerkin approximations by wN = NXj=1wNj  j where the wNjare de�ned by the nonlinear algebraic system (see (2.5))�(wN ; �) + hg(NwN );N�i = hf; �iV �;V (3.1)for all � 2 HN . The arguments for existence and uniqueness of Section 2 guaranteethat there is some subsequence fwNkg of these Galerkin approximations such thatwNk ! w weakly in V , where w is the unique solution to (2.3) or equivalently (2.18).But solutions of (2.3) are unique and we see furthermore (from the arguments ofSection 2) that any subsequence of the Galerkin sequence fwNg possesses, in turn, asubsequence which must converge to the unique solution w. Thus the original Galerkinsequence fwNg itself must converge weakly in V to the solution w of (2.3). If theembedding V ,! H is also compact (a condition that holds in many problems), we seethat the Galerkin sequence converges strongly in H. Under reasonable assumptions,one can make additional arguments to obtain convergence of wN ! w strongly in V .But these results do not follow directly from the arguments in Section 2. Thus wehaveLemma 3.1. Under (C1), (C2) we have that the Galerkin approximations fwNgde�ned via (3.1) converge weakly in V to the unique solution of (2.3). If in additionV ,! H is compact, the convergence is strong in H.To indicate briey an example which satis�es all of the conditions for the abovelemma, consider the example for simple elongation of a rubber{like prismatic rod asoutlined in Section 1. ThenH = L2(0; l), V = H1L(0; l) and for approximation elementswe choose piecewise linear splines. That is, let  Kj be the piecewise linear elementscorresponding to discretization increments �xj = l=K. Hence for j = 1; 2; : : : ;K,  Kjis piecewise linear, has value one at xKj = jl=K, and value zero outside (xKj�1; xKj+1).De�ne ZK = span f K1 ; : : : ;  KKgand HN = Z2N . Then conditions (C1) and (C2) above are readily established, as isthe compact embedding of V into H. 9



The computations (as reported in [3], [2]) mentioned below were carried out usingexactly the piecewise linear scheme described here.We return briey to consider strong V convergence of the Galerkin approximationswithout (C2) or the compact embedding requirement on V . We need an additionalassumption on g for the arguments we give here.(N4) For any � 2 H the Frechet derivative g0(�) exists and satis�es g0(�) 2 L(H)with jg0(�)jL(H) � C3 for some constant C3 independent of �.Lemma 3.2. Under (A1) { (A3), (N1) { (N4) and (C1), the Galerkin approximationsfwNg de�ned via (3.1) converge strongly in V to the unique solution w of (2.3).Proof. Let ~wN be chosen such that ~wN ! w in V as guaranteed by (C1). SincejwN �wjV � jwN � ~wN jV + j ~wN � wjV ;it su�ces to argue that �N � wN � ~wN ! 0 in V . From (2.18) and (3.1) we have forany � 2 HN �(wN � w;�) + hg(NwN )� g(Nw);N�i = 0 :Choosing � = �N = wN � ~wN , we may write�(�N + ~wN � w;�N) + hg(NwN )� g(Nw);N�N i = 0or �(�N ;�N) + �( ~wN � w;�N ) + hg(NwN )� g(N ~wN );N�Ni+ hg(N ~wN )� g(Nw);N�Ni = 0 :From (A2), (A3) and (N3) we �ndk1j�N j2V � c1j ~wN �wjV j�N jV + �k1k�1jN�N j2H + jg(N ~wN )� g(Nw)jH jN�N jH :Thus, using (N1) we conclude(1 � �)k1j�N jV � c1j ~wN � wjV +pkjg(N ~wN )� g(Nw)jH : (3.2)But a standard calculation yieldsjg(N ~wN )� g(Nw)jH = ���� Z 10 g0(�N ~wN + (1 � �)Nw)[N ~wN �Nw]d�����H� C3jN ~wN �NwjH � pkC3j ~wN � wjV :10



Thus from (3.2) we obtain(1� �)k1j�N jV � (c1 + kC3)j ~wN � wjVwhich by (C1) gives the desired convergence.4: Static inverse problemsUsing static testing, one may estimate the nonlinearity g for a given sample. Toeliminate the need to estimate E, consider instead ĝ = E3 ~g. Under a static tensile loadfi, with resulting end displacement �i, the sample satis�es the steady state equation@@x  Acĝ  @wi@x !! = 0 0 < x < lAcĝ  @wi@x ! (l) = fiwi(0) = 0wi(l) = �iwhere the nonlinearity ĝ is unknown. We seek to �nd ĝ minimizingJ(ĝ) = kXi=1 �����i �wi(l; ĝ)����2 (4.1)over some class of admissible functions ĝ 2 G, where f�i; figki=1 are data from a seriesof \static pull" experiments.In general, problems such as those involving (4.1) are in�nite dimensional in bothstate and parameter space and hence for computational purposes, �nite dimensionalapproximations must be made. For state approximation, one typically uses Galerkintechniques such as those discussed above. For parameter space (i.e., approximation ofĝ), one may use a �nite dimensional parameterization or representation. For example,one may approximate ĝ using M approximating elements (e.g., linear splines)ĝM(x) = MXj=1 cj�j(x) :The minimization problem is then to �nd ~c 2 RM minimizingJ(~c) = kXi=1 �����i � wNi (l;~c)����2 : (4.2)11



We have used our methods (with a linear spline parameterization of ĝ) to �t thedata from static tensile strain experiments performed at Lord Corporation. The re-sults, which we only summarize here, can be found in detail in [2]. Briey, one of thestandard industrial techniques is to estimate a cubic Mooney{Rivlin SEF (see [10],[11]). It is not di�cult to generate the stress{strain relationship which arises from theestimated SEF. Viewed in the stress{strain plane, the results from our method arenearly identical to the results from the SEF method. Mooney plots, which are in thereduced stress plane (see [10], pp. 95{99, [11], pp. 51{52), can also be generated fromboth methods. The reduced stress curve generated from our method approximatesthe curve generated from the data more closely than does the curve resulting fromthe SEF method. Thus the approach proposed in this note o�ers the possibility ofimprovement on existing industrial methods.5: Concluding RemarksThe monotonicity arguments underlying the theory for static systems (2.3) given inSection 2 are also useful in establishing well{posedness for the dynamical analogues(1.3). While these analogous results are technically much more tedious to establish,the arguments are very much in the same spirit (e.g., a priori bounds and monotonic-ity conditions such as (N3)). Since damping is also an important issue in dynamicalresponses, this must be added to models such as (1.3). Under appropriate assump-tions on the damping sesquilinear form and the additional assumption that g is ofgradient type (i.e., there exists G : H ! R1 with the Frechet derivative of G given byG0(�) = Re hg(�);  i for  2 H), one can use (A1){(A3) and (N1){(N4) to establishexistence, uniqueness and certain regularity for solutions of (1.3). Details are given in[1]. Computational aspects of these problems for these dynamical systems are givenin [3] and [2]. We are currently using the associated computational methods in designand analysis of dynamic tensile experiments.Acknowledgments. The authors are grateful to B. Mu~noz, L. Yanyo, and M.Gaitens of the Thomas Lord Research Center, Lord Corporation, for many helpfuldiscussions and collaborations on the problems and models introduced in Section 1.The authors also gratefully acknowledge that this research was carried out with sup-port in part by the U. S. Air Force O�ce of Scienti�c Research under grants AFOSRF49620-93-1-0198 and AFOSR F49620-95-1-0236, and the National Science Founda-tion under grant NSF DMS-9508617 (with matching funds for N.J.L. from the Lord12
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