H T BANKS and N J LYBECK
A nonlinear Lax-Milgram lemma arising in

the modeling of elastomers

1. Introduction

Elastomers have been used by engineers since the mid 1800s in a variety of roles includ-
ing bearings, springs, and shock absorbers. For example, rubber composites filled with
inactive particles such as carbon black and silica are routinely used as passive vibra-
tion suppression devices. The advent of smart materials technology has sparked great
interest in the development of rubber composites filled with active elements (piezoelec-
tric, magnetic or conductive particles) for use as active vibration suppression devices.
The dynamic mechanical behavior of even the inactively filled rubbers is complex, in-
cluding nonlinear constitutive laws, large deformations even under small loads, loss of
kinetic energy (damping), loss of potential energy (hysteresis), dependence on fillers
and environment (e.g., temperature).

Many current modeling efforts focus on phenomenological formulations involving
strain energy function (SEF) theories (see [8], [10], [11]). The other predominant
phenomenological approach is based on Rivlin’s finite strain theories [9], [11]. Both
classes of models rely on use of the principal extension ratios (deformed length of
unit vectors parallel to the (principal) axes of zero shear strain), and are (as currently
employed in the industrial community) static in nature. While these theories can be
used in estimating stress—strain curves, they ignore hysteresis and damping. Moreover,
if one attempts to extend either approach to dynamic models, the use of the principal
axes system leads to additional conceptual difficulties due to a moving coordinate
system.

In this note we outline the preliminary theoretical foundations for a computational
methodology to treat estimation and control of elastomers. For a motivating example,
we consider a slender rod under simple extension so that the zero shear axis (i.e.,
the principal axis) is in the direction of extension. Consider then the simple example
of an isotropic, incompressible rubber-like rod with unstressed length [ under simple
elongation with a finite applied stress in the = direction. The finite stress theory
and the SEF formulation for a neo-Hookean material (see [9], [10], [11]) lead to an
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B e () ey
Ueng—3 +8x_ +8:1;

where w is the deformation in the x direction and £ is a generalized modulus of
elasticity. This can be used in the (force balance) Timoshenko theory for longitudinal
vibrations of a bar to obtain the following nonlinear model for the dynamic longitudinal

displacement of a neo-Hookean rod in extension:

0*w 0 (FA._ ([ow

where g(£) =1+ & — (1 +£)72, A, is the cross-sectional area of the rod, and p is the

mass density of the material.

It is convenient in arguments for well-posedness and approximation to break the
stress-strain law into the sum of a linear term and a nonlinear term. We thus define
g(&) = g(&) — &, which for a neo-Hookean material is given by ¢(§) =1 — (1 + &)
Then the model (1.1) can be rewritten

0*w 0 (FEA.Ow 0 (FA. [Jw B
PACW—a—x(s a—x)—a—x(sg(a—x))—f- (1.2)

Because the neo-Hookean ¢ is not adequate for modeling most elastomers, we will

instead consider a more general nonlinearity ¢ which must be estimated using experi-
mental data.

In general, one does not expect (1.2) to have classical (smooth) solutions. If, for
instance, one clamps the top of the rod and applies a periodic sinusoidal force to the
bottom of the rod, then classical solutions do not exist due to incompatible boundary

and initial conditions. It is thus useful to write (1.2) in a more generalized sense,
wy + Aw 4+ N*gNw)=f inV* (1.3)

where A = A+ N*g(N+) is an operator (nonlinear) from a space V of test functions
to its dual (or conjugate dual) V*, N = 88—1,, and w(t) = w(t,-) . For the system (1.2)
of our motivating example one can choose V. = H}(0,1) = {¢ € H'(0,1)|¢(0) = 0}
and treat the boundary condition w(t,0) = 0 as an essential boundary condition. Here
H'(0,1) is the usual Sobolev space of Ly(0,!) functions with derivatives in Ly(0,1). If

we take as pivot space H = L5(0,[) in the Gelfand triple setting V — H < V*, then
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it is readily shown that the operator A ~ 88_1’ (Efcf] (8—7“;)) has the form

(Aw) () = —(Zy (aw) ion

3 7\ ox
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= —( 3 a—xv¢/>L2(0J)_<

as a mapping from V to V* and reduces to the usual (and well-known) linear operator
in L(V,V*) in the case that ¢ =0 (and thus §(§) = £).
Motivated by these considerations and specific examples, we discuss below some

observations regarding theoretical foundations for such systems.

2. Well-posedness: a nonlinear Lax-Milgram lemma
In the previous section we were lead to abstract systems of the form
Wi + .Aw = f in V* (2.1)

where A is a nonlinear mapping from V to V* and V — H ~ H* — V* is the usual
Gelfand triple. We shall denote the H norm by |- |, the V norm by |- |y and the
usual duality product by (-, )y« where H is the pivot space. As we indicated in the
previous section, we are interested in the special case where the nonlinear mapping A

has the form

A=A+ N"g(N") (2.2)

where A € L(V,V*), N € L(V,H), g: H— H. In this section we address the static

case, that is, we wish to solve
Aw + N*g(Nw) = f (2.3)

for w € V. Here A is associated in the usual way with a sesquilinear form o : V xV —
C in that

o(¢, ) = (Ap,L)vsy o, p €V .

We assume that o satisfies the following assumptions.

(A1) The form o is Hermitian (symmetric) on V x V.



(A2) The form o is V—continuous, i.e., for some ¢; > 0

o(6,0)] < el dlv]vlv
for all ¢, ¢ € V.

(A3) The form o is strictly V—elliptic, i.e., for some k; > 0

a(¢,0) > kol
for all p € V.
The linear operator A/ in the nonlinear term is assumed to satisfy

(N1) N € L(V, H) with |[N6|y < VE|¢|v for ¢ € V.

The nonlinear mapping ¢ satisfies

(N2) ¢g: H — H is continuous and |g(¢)| < Ci|¢| + C; for ¢ € H where (1, Cy are

nonnegative constants;

(N3) ¢(0) =0 and for some € < 1 we have for all ¢,¢» € H

(9(0) = g(¥), & — ) = —ekih™ o — [ .

The conditions (Al) — (A3) are quite standard in the theory of linear systems
while the conditions (N1) — (N3) are readily shown to hold for classes of the elastomer
models discussed in Section 1. Under these assumptions, one can prove existence of
unique solutions to (2.3) which can be viewed as a nonlinear version of the generalized
Lax-Milgram lemma ([12] and [5]).

Lemma 2.1. Under (Al) - (A3), (N1) — (N3), we have for each f € V*, equation
(2.3) has a unique solution w in V.

Proof. We sketch the constructive arguments since they can also be used to
guarantee convergence of certain classes of Galerkin approximations for (2.3). Let
{£;132, be a total set in V' and let

VM — span{&, &, .. 6nt M =1,2,... .
Since (2.3) is equivalent to

o(w, ) + (g(Nw), N¢) = (f, d)v-v (2.4)



for all ¢ € V, we may define a sequence {w™} of approximates by w”™ € V¥ and

satisfies
U(wNv ¢) + <g(NwN)7N¢> = <f7 ¢>V*,V (25)

for all ¢ € V¥V,
Noting that VM C V¥ for N > M, we observe that

U(wNv ¢) + <g(NwN)7N¢> = <f7 ¢>V*,V (26)

for all $ € VM and for all N > M.

If we choose ¢ = w” in (2.5) we obtain
o(w™, wh) + (g(Nw™), Nw™) = (f,w")
and using (A3) with (N3) we find

kw3 — ek kNN P < | flvsw™ |y .

V*
After an application of (N1) we have the uniform a priori estimates

(1 =)k |y <|f

Ve (2.7)
From (N1) and (N2) we also find

Vg < VE[™|y < |flveVE/(1 = )k = C|f

Ve (2.8)

and

lgNw)lr < CLIN WY [ + C2 < CLO|f

ve +Ca . (2.9)

Using these estimates and taking the usual subsequences we find there exist a subse-

quence (again denoted by w™), w € V and h € H such that

w” — w weakly in V

g(Nw"™) — h weakly in H
NwY — Nw weakly in H .

Fixing M and taking the limit in (2.6) as N — oo for the subsequences we obtain

o(w,¢) + (h, N¢) = (f, d)v+v (2.10)
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for all ¢ € VM. Since U VM is dense in V, we find that (2.10) actually holds for all
M=1
¢ € V. Thus for existence it remains only to argue that

(h,N¢) = (g(Nw),N¢) forall g€V .
Returning to (N3), we see that this along with the inequality in (N1) implies
(9(N9) = g(N), N — Np) + ki|¢ = ¥[3 > 0
for all ¢, € V. In light of (A3), we thus find for all ¢,¢ € V
(9(NG) = gNP), Np = N9) + (¢ — .6 — 1) > 0. (2.11)

In particular, since VM C V we may choose v € VM for M fixed and ¢ = w" for
N > M in (2.11), obtaining

o(w™ — W — )+ (gNw™) — g(N), N — Nep) >0 . (2.12)

Returning to (2.5) we also have upon choosing ¢ = w" — v with 1 arbitrary in V¥,
N>M

o(w™, W =) + (gNw"), N = NY) = (f,0 = )yey .
Subtracting this from (2.12) and letting N — oo, we obtain (for M fixed)
—o(¥,w—v) = {gNY), Nw = N) + (f,w0 = )y v =0 (2.13)

for all ©» € VM. Again by density of U VM we obtain that this inequality actually
M=1
holds for all ¢» € V.

If we choose ¢ = w in (2.10) we obtain
o(w,w) + (h, Nw) — (f,w)yey =0 (2.14)
while a choice of ¢ = —b, ¢ arbitrary in V, in (2.10) yields
—o(w, ) = (b, No) + (f, )y =0 . (2.15)
Adding (2.13), (2.14) and (2.15) we obtain

o(w—1,w—1)+ (h — gN),Nw — N) >0 (2.16)



for all v € V.
For arbitrary ¢ € V and A > 0, choose v in (2.16) as ©» = w — A¢p. We obtain

No(d, )+ AMh — gNw — AN @), N¢) >0 . (2.17)

Dividing by A > 0 and then letting A — 0, we obtain (we use here the continuity of ¢
from (N2))
(h = g(Nw),N¢) 20

for arbitrary ¢ € V7 this, of course, implies that equality must hold for all ¢ € V.
Thus (2.10) can be written

o(w, ) + (g(Nw), N¢) = (f, d)v-v (2.18)

for arbitrary ¢ € V. Thus w is a solution to (2.3).
Turning to uniqueness, suppose wy, wq are two solutions of (2.3) corresponding to

a siven [ € V*. Then we have immediately that
o(wi — wy, ¢) + (g(Nw1) — g(Nwz), N'g) = 0
for all ¢ € V. Choosing ¢ = 10 — 1wy, we find
(w1 — wa, wy — wz) + (g(Nwr) — g(Nws), Nwy — Nws) =0 .
Using (A3) and (N3), we obtain
ki|wy — wal? — eky k™ Nwy — Nawg|? <0,

which with (N1) implies
kl(l — 6)|w1 — w2|%/ S 0.

Since ¢ < 1, we must have |w; — wsyly = 0.

It is appropriate at this point to make several remarks about the above lemma
and its proof. The inequality in (N3) can be recognized immediately as a type of
monotonicity condition on the nonlinearity g. Conditions of this type and their use in
arguments such as those involving (2.11)—(2.17) can be readily found in the literature
on monotone operators and variational inequalities and are sometimes referred to as
“Minty-Browder” type conditions and arguments (e.g., see [6], pp. 83-87). Indeed,
the results above can be considered as a special case (or a corollary) of earlier results

due to Minty [7] and Browder [4]. Specifically, if we consider Corollary 1.8, p. 87 of
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[6], we see that if A : X — X* is a monotone, coercive nonlinear operator that is
continuous on finite dimensional subspaces of X, then we are guaranteed existence of

w € X such that
(Aw — fv—w)x-x >0

for all v € X. Choosing v = w + t¢ for t arbitrary, ¢ € X arbitrary, we obtain
<Aw - f7t¢>X*,X Z 0.

This implies
<"4w - f7 ¢>X*,X =0

for all ¢ € X or w € X is a solution to Aw = f in X*. One could thus take an
alternative approach to establish Lemma 2.1 by arguing that A = A + N*(g(NV")) of
(2.2), under certain conditions on A, NV, and g, satisfies the monotonicity, coercivity
and continuity conditions of Corollary 1.8 of [6]. As we have already noted, we chose
the constructive arguments outlined above since we can use them to obtain readily
convergence of certain families of Galerkin approximations. This will be discussed in

the next section.

3. Approximation and convergence

The arguments given in the previous section can be used almost immediately to es-
tablish convergence of certain types of Galerkin approximations that can readily be
employed in computations. To see this, suppose we have a family HY, N =1,2,...,

of finite dimensional approximation subspaces satisfying:

(C1) HN C V and for each v € V, there exists {on}, oy € HY such that

v — on|y — 0 as N — oo
(C2) HN c HN*Y N =1,2,....

The condition (C1) is a standard one from the theory of finite elements and is
satisfied by many families for a given V (which, of course, is dictated by o and H
in specific examples of (2.3) or (2.4)). The condition (C2) is somewhat more unusual
but is also satisfied by a number of schemes (piecewise linear splines, spectral families,

etc.) as we shall see below. For the moment, assume (C2) holds. Then without loss of

8



generality (i.e., by possibly reindexing the elements — see the example below) we may

assume that each HY can be written as

HY = span{ey, ... by}
for some family of elements {1;}72,. Because of (C1), we have that {¢,;}32; is total in

N

V. We may now define the Galerkin approximations by w™ = Z wjyg/)j where the wé\f
7=1

are defined by the nonlinear algebraic system (see (2.5))

U(wNv ¢) + <g(NwN)7N¢> = <f7 ¢>V*,V (31)

for all ¢ € HY. The arguments for existence and uniqueness of Section 2 guarantee
that there is some subsequence {w™*} of these Galerkin approximations such that
w¥* — 1w weakly in V., where w is the unique solution to (2.3) or equivalently (2.18).
But solutions of (2.3) are unique and we see furthermore (from the arguments of
Section 2) that any subsequence of the Galerkin sequence {w™} possesses, in turn, a
subsequence which must converge to the unique solution w. Thus the original Galerkin
sequence {w"} itself must converge weakly in V to the solution w of (2.3). If the
embedding V — H is also compact (a condition that holds in many problems), we see
that the Galerkin sequence converges strongly in H. Under reasonable assumptions,
one can make additional arguments to obtain convergence of w” — w strongly in V.
But these results do not follow directly from the arguments in Section 2. Thus we
have

Lemma 3.1. Under (C1), (C2) we have that the Galerkin approximations {w"}
defined via (3.1) converge weakly in V' to the unique solution of (2.3). If in addition
V < H is compact, the convergence is strong in H.

To indicate briefly an example which satisfies all of the conditions for the above
lemma, consider the example for simple elongation of a rubber—like prismatic rod as
outlined in Section 1. Then H = L5(0,1), V = H}(0,1) and for approximation elements
we choose piecewise linear splines. That is, let ;/)]I‘ be the piecewise linear elements
corresponding to discretization increments Ax; = [/ K. Hence for y =1,2,... K, ;/)]I‘
is piecewise linear, has value one at :1;5‘ = jl/K, and value zero outside (:1;5‘;1, 51/'?4-1)

Define

75 = span {F, . R}
and HY = 7", Then conditions (Cl) and (C2) above are readily established, as is
the compact embedding of V into H.



The computations (as reported in [3], [2]) mentioned below were carried out using
exactly the piecewise linear scheme described here.

We return briefly to consider strong V' convergence of the Galerkin approximations
without (C2) or the compact embedding requirement on V. We need an additional

assumption on ¢ for the arguments we give here.

(N4) For any ¢ € H the Frechet derivative ¢'(¢) exists and satisfies ¢'(¢) € L(H)
with [¢'(¢)|zcr) < Cs for some constant C's independent of ¢.

Lemma 3.2. Under (A1) — (A3), (N1) — (N4) and (C1), the Galerkin approximations
{w™} defined via (3.1) converge strongly in V' to the unique solution w of (2.3).

Proof. Let wy be chosen such that wy — w in V as guaranteed by (C1). Since
W —wly < W™ — x|y + [on —wly

it suffices to argue that AN = w"™ —wx — 0 in V. From (2.18) and (3.1) we have for
any ¢ € HY
o(w" —w, ¢) + {(gNw") — g(Nw), N'g) =0 .

Choosing ¢ = AN = w" — iy, we may write
o(AYN +in — w0, AN) + (g(Nw™) — g(Nw), VAY) =0
or

oAV, AN) 4 o(iy — w0, AY) + (g(Nw™) — g(Naw), NAV)
+ (g(Niy) — g(Nw), NAN) =0 .

From (A2), (A3) and (N3) we find
B AV < exlioy — wly [Ny + cki k™ VAN 4 [g(A i) — g(Aw) [ AAY]
Thus, using (N1) we conclude
(1= ki ANy < erliy — wly + VElgW i) — g(Nw)l - (3.2)

But a standard calculation yields

o Nin) = g wlln = | [ (0N + (1= N w)W by — Nldo

H

< Cs|Niy — Nw|g < VECs|iny — wly .
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Thus from (3.2) we obtain
(1 — )k |AN [y < (1 + kC3) |0 — wly

which by (C1) gives the desired convergence.

4. Static inverse problems

Using static testing, one may estimate the nonlinearity ¢ for a given sample. To
eliminate the need to estimate F, consider instead § = %f] Under a static tensile load

fi, with resulting end displacement A;, the sample satisfies the steady state equation

2

A —wz’(hfl)

(4.1)

over some class of admissible functions § € G, where {A;, fi}¥_, are data from a series
of “static pull” experiments.

In general, problems such as those involving (4.1) are infinite dimensional in both
state and parameter space and hence for computational purposes, finite dimensional
approximations must be made. For state approximation, one typically uses Galerkin
techniques such as those discussed above. For parameter space (i.e., approximation of
§), one may use a finite dimensional parameterization or representation. For example,

one may approximate ¢ using M approximating elements (e.g., linear splines)
M
gu(x) = e () .
i=1

The minimization problem is then to find & € R minimizing

1@ =3 |a-wial




We have used our methods (with a linear spline parameterization of ¢) to fit the
data from static tensile strain experiments performed at Lord Corporation. The re-
sults, which we only summarize here, can be found in detail in [2]. Briefly, one of the
standard industrial techniques is to estimate a cubic Mooney—Rivlin SEF (see [10],
[11]). Tt is not difficult to generate the stress—strain relationship which arises from the
estimated SEF. Viewed in the stress—strain plane, the results from our method are
nearly identical to the results from the SEF method. Mooney plots, which are in the
reduced stress plane (see [10], pp. 95-99, [11], pp. 51-52), can also be generated from
both methods. The reduced stress curve generated from our method approximates
the curve generated from the data more closely than does the curve resulting from
the SEF method. Thus the approach proposed in this note offers the possibility of

improvement on existing industrial methods.

5. Concluding Remarks

The monotonicity arguments underlying the theory for static systems (2.3) given in
Section 2 are also useful in establishing well-posedness for the dynamical analogues
(1.3). While these analogous results are technically much more tedious to establish,
the arguments are very much in the same spirit (e.g., a priori bounds and monotonic-
ity conditions such as (N3)). Since damping is also an important issue in dynamical
responses, this must be added to models such as (1.3). Under appropriate assump-
tions on the damping sesquilinear form and the additional assumption that ¢ is of
gradient type (i.e., there exists G : H — R' with the Frechet derivative of G given by
G'(¢) = Re (g(9),v) for v € H), one can use (A1)-(A3) and (N1)-(N4) to establish
existence, uniqueness and certain regularity for solutions of (1.3). Details are given in
[1]. Computational aspects of these problems for these dynamical systems are given
in [3] and [2]. We are currently using the associated computational methods in design
and analysis of dynamic tensile experiments.
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