GMRES AND INTEGRAL OPERATORS ~

C. T. KELLEY'AND Z. Q. XUE!

Abstract. In this paper we show how the properties of integral operators and their approxi-
mations are reflected in the performance of the GMRES iteration and how these properties can be
used to smooth the GMRES iterates, thereby strengthening the norm in which convergence takes
place. The smoothed iteration has very similar properties to Broyden’s method and we present some
comparisons of the two methods with the standard (unsmoothed) implementation of GMRES.
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1. Introduction. In this paper we consider the performance of the GMRES [15]
iteration for linear equations of the form

(1.1) Au=u—-Ku=f

with K a compact operator on a separable Hilbert space H. An example of such an
operator is an integral operator on H = L2[0, 1] of the form

1
(1.2) Ku(z) = /Ok(a:, Y)u(y) dy
where k is continuous.

Our setting is that of [7] where issues similar to those raised in this paper were
considered in the context of Broyden’s method [1] for linear and nonlinear equations.
Broyden’s method has also been considered as a linear equation solver in [2], [5], [6],
and [10]. Let H be a separable real Hilbert space and let X C H be a Banach space
such that the inner product (-,-) in H is continuous from X x X — R. This implies
that there is C'x such that

(1.3) luller < Cxllullx

for all w € X. Let K € COM(H, X) the space of compact operators from H to X.
Of course, we may also regard K as an element of COM(H) the space of compact
operators on H. In the context of the integral operator (1.2) with continuous k,
H = 1%0,1], X =C[0,1], and Cx = 1.

Algorithms such as GMRES and Broyden’s method, which depend upon notions
of orthogonality could use the Hilbert space inner product of H to solve equations
in which the right hand side f € X. However, a convergence theory based entirely
on a Hilbert space formulation would show that the resulting sequence is convergent
in the topology of H but not necessarily in that of the Banach space X in which
the problem may have been originally posed. Hence, we face an apparent conflict
between the topology in which the problem was posed and the inner product (and
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hence Hilbert space) nature of the algorithm. This issue was resolved in [7] in the
context of Broyden’s method. For the linear equations context of this paper the
result of [7] is that the Broyden iterations converge g-superlinearly in the topology
of X provided K € COM(H,X) and f € X. The purpose of this paper is to show
how GMRES can be modified by an implicit Nystrom interpolation [14] to have a
similar property at a very small cost in both computational effort and algorithmic
complexity.

Throughout this paper we assume that A is a nonsingular linear operator on H
and on X. We consider convergence rate estimates of the form

(1.4) Wreller < mellroll &

where the sequence of real numbers {74} converges to zero and is independent of the
right hand side f of (1.1).

Rates of convergence of the form (1.4) can be derived from resolvent integration
[11], [12] for any K such that I — K has bounded inverse and 1 is in the unbounded
component of the resolvent of K. If K is compact more precise information can be
obtained, in fact the GMRES iterates converge r-superlinearly to the solution in a
way that is independent of the right hand side. This means that the sequence {7y}
converges g-superlinearly to zero ¢ e.

lim 2+ —
k—oo Tp

In the case of normal or diagonalizable (similar to normal) compact operators a
g-superlinearly convergent sequence {7} can be directly related to spectral properties
of K in a very simple way. In [9] orthogonal polynomials and assumptions on the rate
of decay of the spectrum were used for this. In order to illustrate how the smoothing
properties of K might influence the convergence rate, we present a slight extension of
the result in [9] below. While this result follows from the general theory in [12], we
believe that its direct and brief proof is worth inclusion.

THEOREM 1.1. Let H be a separable Hilbert space, K € COM(H), A=1-K
be nonsingular and let S be a nonsingular bounded operator on H such that

L=SKs™
is normal. Let {\;} be the eigenvalues of A ordered so thal
(1.5) |Ai =1 > [Aigr =1 fori>1
then for allk > 1

k
(1.6) [Irel] < w(S)lIrol|2° TT 11 = AT
i=1
Proof. For k=1, ... define

(1.7) pr(z) = H(1 — A1),

Since pi(0) = 1 for all k& we have [15]

(1.8) Ireller < &(S)[7oll sup [pr(Am)]-
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For k fixed, pi(Am) =0 for 1 <m < k. For m > k
peo)| < TTzy 1= A7 0] =TT, AT A = A
< TTZ INTHA = 1+ 1= M) < TTE, ITH2IN = 1
=25 [T 1= A1

This completes the proof. O
Since A; — 1, the sequence

k
=281 = A7
i=1

is q-superlinearly convergent. If, say, K is normal (so S = I) and the eigenfunctions of
K are smooth, then the rate of convergence of A; to one reflects both the smoothness
of the kernel &k and the convergence rate of the sequence {r1}.

2. Convergence in a Stronger Norm. In this section we show how, given a
rate estimate like (1.4) for the sequence of residuals, the GMRES iteration can be
modified to produce a sequence that converges with the same rate in the norm of X.

PROPOSITION 2.1. Let {ug} be the sequence of GMRES iterates. Assume that
(1.4) holds for some sequence {1, }. Let i = up + 1. Then

(2.1 lar — w*[lx < |[Kllemx)mm(A)Telluo — o[ x .

Proof. First note that (1.4) implies that
(2.2) lur, — w*||g < Term(A)||uo — w5
Since
ur = ug +ry = f + Kug,

continuity of K as a map from H to X implies that

lur = wllx = 1K (ur — w)l|x < K leea,xllue — o[-
This completes the proof. O
Note that ug 1s as easy to compute as ug upon exit from the main loop in GMRES.
An algorithmic description of GMRES is:
ALGORITHM 2.1. Algorithm gmres(u, f, A, ¢)
Lr=f—-Au, vy =70/||"llg, p=|Irllz, B=p, k=1
2. While p > €||b||g do
(a) viy1 = Avg
forj =1 ..k
ik = (Vr4, )
. V41 = V41 — h]'kvj
(b) hry1k = |lve+1lla
(¢) vir1 = vis1/l|vetrll o
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(d) ex = (1,0,...,0)T € R+
Minimize ||Be; — Hyy||ge+r to obtain y € R*.
(¢) p=18e1 — Hiyllmesn
3. up = ug+ Viy.
We can use the fact that

vy = f— Aup = Vigp1(Ber + Hry) = ro + Vi1 Hry

to recover up with no additional operator-vector products involving A. In fact if
2z = Hpy and we define a vector

w = (wl, Wa, . . .,wk+1)T € RFF!
by w; = z; + y; for 1 < <k and wi41 = zp41, we have
(23) U = g + Viq1w

which can simply replace the computation of uj in step 3 of gmres. We will refer
to the resulting algorithm as smoothed GMRES. Note that smoothed GMRES differs
from GMRES only in the final output, where (2.3) is used to compute the final result.
As an algorithm for solution of linear compact fixed point problems, smoothed
GMRES shares two properties with Broyden’s method. Both converge superlinearly to
the solution in the topologies of both H and X and both require storage of the iteration
history. Standard implementations of Broyden’s method require storage of two vectors
for each iteration, [4], [13], [3]. A recent paper [8] reduces that requirement to a single
vector, making the two algorithms competitive. In § 3 we present some numerical
experiments comparing smoothed GMRES, GMRES, and Broyden’s method.
The algorithm in [8] is directed at nonlinear problems. We close this section with
an algorithmic description of an implementation targeted at linear equations.
ALGORITHM 2.2. Algorithm broyden lin(z, A,b,¢)
1L s=r=f—Au, w_y =s/||s|lg, Co1 =1, p=||7|lm
2. Fork=0,...
(a) u=u+s
(b) Evaluate r = f — Au, p = ||r||lx
if p < €||b|| terminate
(¢) wi = —r/l|s||a
(d) for j=0,...,k—1
Wp = W — Cj_le(wj_l, wk)
(¢) we = wnlsllar /(1 + (5 01))
(1) 5 = —lsllarwe
(9) Cr = =1/[|wi||m

3. Example. We consider the integral operator on H = L?[0, 1] given by

Ku(z) = / ke, y)u(y) dy

where

l‘+5y 3/2
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With this choice of K, X = C?[0,1] and H = L?[0,1]. We discretize K by the
composite midpoint rule. Hence, if we take m subintervals I™ = ((i — 1)/m,i/m)
for 1 < i < m then the quadrature nodes are " = (i — .5)/m and the weights are
h=1/m.

We performed three sets of computations, one for each m = 100, 200,400. We
constructed f so that the solution u* agreed with cos(10x) at the nodal points. We
used the initial iterate vy = 0 and solved the equation with GMRES, smoothed
GMRES, and Broyden’s method. We terminated the iteration when the discrete L?
residual had been reduced by a factor of 7 = 10/m?.

For m = 100 (Figure 3.1), m = 200 (Figure 3.2), and m = 400 (Figure 3.3), we
plot relative residual norms as functions of the iteration number in both the discrete
C?-norm (solid line) and the discrete L?-norm (dashed line). In each figure there are
plots of residual histories for both GMRES and smoothed GMRES, in those plots the
dashed line is the residual curve for GMRES and is the same in both plots. The solid
line is the residual norm in C?, which we computed directly in GMRES by explicitly
computing the residual and its C? norm or by using (2.3). We also plot the errors for
the final result as functions of # € [0, 1] for smoothed (dashed line) and unsmoothed
(solid line) GMRES.

The computations illustrate how the smoothed GMRES iteration gives better
performance in the C? norm. The curves for the various values of m are quite similar,
indicating that the infinite dimensional analysis can be observed numerically. The
plots of the errors also demonstrate the smoothing effects fo (2.3). Note also that the
C? and L7 relative residuals for the Broyden iteration, which requires more work that
GMRES, are very close, in line with the theory in [7].

The tables were created with MATLAB version 4.0a on a Sun SPARC 14+ work-
station running SUN OS 4.1.
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