
GMRES AND INTEGRAL OPERATORS �C. T. KELLEYyAND Z. Q. XUEyAbstract. In this paper we show how the properties of integral operators and their approxi-mations are re
ected in the performance of the GMRES iteration and how these properties can beused to smooth the GMRES iterates, thereby strengthening the norm in which convergence takesplace. The smoothed iteration has very similar properties to Broyden's method and we present somecomparisons of the two methods with the standard (unsmoothed) implementation of GMRES.Key words. Key words. Integral Equations, GMRES iteration, Broyden's MethodAMS(MOS) subject classi�cations. 65F10, 65J10, 65R20,1. Introduction. In this paper we consider the performance of the GMRES [15]iteration for linear equations of the formAu = u�Ku = f(1.1)with K a compact operator on a separable Hilbert space H. An example of such anoperator is an integral operator on H = L2[0; 1] of the formKu(x) = Z 10k(x; y)u(y) dy(1.2)where k is continuous.Our setting is that of [7] where issues similar to those raised in this paper wereconsidered in the context of Broyden's method [1] for linear and nonlinear equations.Broyden's method has also been considered as a linear equation solver in [2], [5], [6],and [10]. Let H be a separable real Hilbert space and let X � H be a Banach spacesuch that the inner product (�; �) in H is continuous from X �X ! R. This impliesthat there is CX such that kukH � CXkukX(1.3)for all u 2 X. Let K 2 COM(H;X) the space of compact operators from H to X.Of course, we may also regard K as an element of COM(H) the space of compactoperators on H. In the context of the integral operator (1.2) with continuous k,H = L2[0; 1], X = C[0; 1], and CX = 1.Algorithms such as GMRES and Broyden's method, which depend upon notionsof orthogonality could use the Hilbert space inner product of H to solve equationsin which the right hand side f 2 X. However, a convergence theory based entirelyon a Hilbert space formulation would show that the resulting sequence is convergentin the topology of H but not necessarily in that of the Banach space X in whichthe problem may have been originally posed. Hence, we face an apparent con
ictbetween the topology in which the problem was posed and the inner product (and� This document was printed on April 29, 1994.y North Carolina State University, Center for Research in Scienti�c Computation and De-partment of Mathematics, Box 8205, Raleigh, N. C. 27695-8205, USA (Tim Kelley@ncsu.edu,xue@math.ncsu.edu). This research was supported by National Science Foundation grants #DMS-9024622 and #DMS-9321938. Computing activity was also partially supported by an allocation oftime from the North Carolina Supercomputing Center.1



GMRES AND INTEGRAL OPERATORS 2hence Hilbert space) nature of the algorithm. This issue was resolved in [7] in thecontext of Broyden's method. For the linear equations context of this paper theresult of [7] is that the Broyden iterations converge q-superlinearly in the topologyof X provided K 2 COM(H;X) and f 2 X. The purpose of this paper is to showhow GMRES can be modi�ed by an implicit Nystr�om interpolation [14] to have asimilar property at a very small cost in both computational e�ort and algorithmiccomplexity.Throughout this paper we assume that A is a nonsingular linear operator on Hand on X. We consider convergence rate estimates of the formkrkkH � �kkr0kH(1.4)where the sequence of real numbers f�kg converges to zero and is independent of theright hand side f of (1.1).Rates of convergence of the form (1.4) can be derived from resolvent integration[11], [12] for any K such that I �K has bounded inverse and 1 is in the unboundedcomponent of the resolvent of K. If K is compact more precise information can beobtained, in fact the GMRES iterates converge r-superlinearly to the solution in away that is independent of the right hand side. This means that the sequence f�kgconverges q-superlinearly to zero i. e.limk!1 �k+1�k = 0:In the case of normal or diagonalizable (similar to normal) compact operators aq-superlinearly convergent sequence f�kg can be directly related to spectral propertiesof K in a very simple way. In [9] orthogonal polynomials and assumptions on the rateof decay of the spectrum were used for this. In order to illustrate how the smoothingproperties of K might in
uence the convergence rate, we present a slight extension ofthe result in [9] below. While this result follows from the general theory in [12], webelieve that its direct and brief proof is worth inclusion.Theorem 1.1. Let H be a separable Hilbert space, K 2 COM(H), A = I �Kbe nonsingular and let S be a nonsingular bounded operator on H such thatL = SKS�1is normal. Let f�ig be the eigenvalues of A ordered so thatj�i � 1j � j�i+1 � 1j for i � 1(1.5)then for all k � 1 krkk � �(S)kr0k2k kYi=1 j1� ��1i j:(1.6)Proof. For k = 1; . . . de�nepk(z) = kYi=1(1� ��1i z):(1.7)Since pk(0) = 1 for all k we have [15]krkkH � �(S)kr0kH supm jpk(�m)j:(1.8)



GMRES AND INTEGRAL OPERATORS 3For k �xed, pk(�m) = 0 for 1 � m � k. For m > kjpk(�m)j � Qki=1 j1� ��1i �mj =Qki=1 j��1i jj�i � �mj� Qki=1 j��1i j (j�i � 1j+ j1� �mj) � Qki=1 j��1i j2j�i � 1j= 2kQki=1 j1� ��1i j:This completes the proof.Since �i ! 1, the sequence �k = 2k kYi=1 j1� ��1i jis q-superlinearly convergent. If, say,K is normal (so S = I) and the eigenfunctions ofK are smooth, then the rate of convergence of �i to one re
ects both the smoothnessof the kernel k and the convergence rate of the sequence f�kg.2. Convergence in a Stronger Norm. In this section we show how, given arate estimate like (1.4) for the sequence of residuals, the GMRES iteration can bemodi�ed to produce a sequence that converges with the same rate in the norm of X.Proposition 2.1. Let fukg be the sequence of GMRES iterates. Assume that(1.4) holds for some sequence f�kg. Let �uk = uk + rk. Thenk�uk � u�kX � kKkL(H;X)�H(A)�kku0 � u�kX :(2.1)Proof. First note that (1.4) implies thatkuk � u�kH � �k�H (A)ku0 � u�kH :(2.2)Since �uk = uk + rk = f +Kuk;continuity of K as a map from H to X implies thatk�uk � u�kX = kK(uk � u�)kX � kKkL(H;X)kuk � u�kH :This completes the proof.Note that �uk is as easy to compute as uk upon exit from the main loop in GMRES.An algorithmic description of GMRES is:Algorithm 2.1. Algorithm gmres(u; f; A; �)1. r = f � Au, v1 = r=krkH , � = krkH , � = �, k = 12. While � > �kbkH do(a) vk+1 = Avkfor j = 1; . . .ki. hjk = (vk+1; vj)ii. vk+1 = vk+1 � hjkvj(b) hk+1;k = kvk+1kH(c) vk+1 = vk+1=kvk+1kH



GMRES AND INTEGRAL OPERATORS 4(d) e1 = (1; 0; . . . ; 0)T 2 Rk+1Minimize k�e1 �HkykRk+1 to obtain y 2 Rk.(e) � = k�e1 �HkykRk+1 .3. uk = u0 + Vky.We can use the fact thatrk = f � Auk = Vk+1(�e1 +Hky) = r0 + Vk+1Hkyto recover �uk with no additional operator-vector products involving A. In fact ifz = Hky and we de�ne a vectorw = (w1; w2; . . . ; wk+1)T 2 Rk+1by wi = zi + yi for 1 � i � k and wk+1 = zk+1, we have�uk = �u0 + Vk+1w(2.3)which can simply replace the computation of uk in step 3 of gmres. We will referto the resulting algorithm as smoothed GMRES. Note that smoothed GMRES di�ersfrom GMRES only in the �nal output, where (2.3) is used to compute the �nal result.As an algorithm for solution of linear compact �xed point problems, smoothedGMRES shares two properties with Broyden's method. Both converge superlinearly tothe solution in the topologies of bothH andX and both require storage of the iterationhistory. Standard implementations of Broyden's method require storage of two vectorsfor each iteration, [4], [13], [3]. A recent paper [8] reduces that requirement to a singlevector, making the two algorithms competitive. In x 3 we present some numericalexperiments comparing smoothed GMRES, GMRES, and Broyden's method.The algorithm in [8] is directed at nonlinear problems. We close this section withan algorithmic description of an implementation targeted at linear equations.Algorithm 2.2. Algorithm broyden lin(x;A; b; �)1. s = r = f � Au, w�1 = s=kskH , C�1 = 1, � = krkH2. For k = 0; . . .(a) u = u+ s(b) Evaluate r = f �Au, � = krkHif � � �kbk terminate(c) wk = �r=kskH(d) for j = 0; . . . ; k � 1wk = wk � Cj�1wj(wj�1; wk)(e) wk = wkkskH=(1 + (s; wk))(f) s = �kskHwk(g) Ck = �1=kwkkH3. Example. We consider the integral operator on H = L2[0; 1] given byKu(x) = Z 10 k(x; y)u(y) dywhere k(x; y) = 100� x+ 5y2 + y � x�3=2py:



GMRES AND INTEGRAL OPERATORS 5With this choice of K, X = C2[0; 1] and H = L2[0; 1]. We discretize K by thecomposite midpoint rule. Hence, if we take m subintervals Imi = ((i � 1)=m; i=m)for 1 � i � m then the quadrature nodes are xmi = (i � :5)=m and the weights areh = 1=m.We performed three sets of computations, one for each m = 100; 200; 400. Weconstructed f so that the solution u� agreed with cos(10x) at the nodal points. Weused the initial iterate u0 = 0 and solved the equation with GMRES, smoothedGMRES, and Broyden's method. We terminated the iteration when the discrete L2residual had been reduced by a factor of � = 10=m2.For m = 100 (Figure 3.1), m = 200 (Figure 3.2), and m = 400 (Figure 3.3), weplot relative residual norms as functions of the iteration number in both the discreteC2-norm (solid line) and the discrete L2-norm (dashed line). In each �gure there areplots of residual histories for both GMRES and smoothed GMRES, in those plots thedashed line is the residual curve for GMRES and is the same in both plots. The solidline is the residual norm in C2, which we computed directly in GMRES by explicitlycomputing the residual and its C2 norm or by using (2.3). We also plot the errors forthe �nal result as functions of x 2 [0; 1] for smoothed (dashed line) and unsmoothed(solid line) GMRES.The computations illustrate how the smoothed GMRES iteration gives betterperformance in the C2 norm. The curves for the various values of m are quite similar,indicating that the in�nite dimensional analysis can be observed numerically. Theplots of the errors also demonstrate the smoothing e�ects fo (2.3). Note also that theC2 and L2 relative residuals for the Broyden iteration, which requires more work thatGMRES, are very close, in line with the theory in [7].The tables were created with MATLAB version 4.0a on a Sun SPARC 1+ work-station running SUN OS 4.1.
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Fig. 3.1. m = 100
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Fig. 3.2. m = 200
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Fig. 3.3. m = 400
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