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It is somebimes required to compare two simple regression lines
without assuming that the variances of the two sets of error tqrms
are necessarily equal: one may wish to (A) test whether two paral-
lel regression lines are identical, or (B) test whether two regres-
sion lines are parallel. In this paper, a t-test for each of these
probleq& is explained and illustrated numerically. These t-tests
bear a CGertain resemblance to Scheffé's test for the Behrens-Fisher
problém, but (unlike the latter) are not randomized tests. This

. paper is on a practical rather than a theoretical level; the more
technical aspects of the tests are covered in a separate paper
(Mimeo Series No. 37h).
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ILIUSTRATIONS OF SOME SCHEFFE-TYPE

TESTS FOR SOME BEHRENS-FISHER-TYPE REGRESSION PROBLEMS

by

Richard F. Potthoff™

University of North Carolina

1. Introduction. In educational and psychological applications, it i1s some-

times necessary to make certain comparisons between two regression lines when the
two variances are different. Such problems arise particularly in connection with
experiments comparing two curriculums or two teaching methods (which often have
different variances), as is explained more fully in [1] and [2]. The two prin-
cipal types of problems are (A) testing whether two parallel regression lines are
the same, and (B) testing whether two regression lines are parallel. These will
be referred to as Problem A and Problem B respectively.

By generalizing an idea which Scheffé [4) used to devise a test for the
Behrens-Fisher problem, another paper [3] gives a theoretical development of
Scheffé;type tests for Problems A and B. The purpose of the present paper is
to provide numerical illustrations of some of the techniques presented in rs1.
The illustrations of this paper are all for the case of simple regression, even
though Scheffé-type tests are available in [3] both for simple regression and
for the more involved case of multiple regression. Scheffé's test itself is a

randomized test, but the tests in [3] include both randomized and non-randomized

1This research was supported in part by Educational Testing Service; it was
supported in part by the Air Force Office of Scientific Research; and it was
supported in part by a grant from the NATO Research Grants Programme under a
Joint arrangement between the Institut de Statlstique of the University of
Paris, the Istituto di Calcolo delle Probabilitd of the University of Rome, and
the Department of Statistics of the University of North Carolina.
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tests, The tests illustrated in this paper, however, are all non-randomized
(under the provision that the independent variates all have distinct values),
for it is suggested in [3] that, for the case of simple regression, the non-
randomized tests would ordinarily be used in preference to the randomized tests.

An entirely different test for Problem A is described in [2], and for
Problem B in [1]; other possible tests for Problem B vhich are in the
literature are mentioned in [3]. All these tests, however, are inexact (i.e.,
the actual level of significance is only approximately equal to the stated level
of significance) and tend to be less exact the smaller the sample. The Scheffé-
type tests, on the other hand, are exact tests based on the t-distribution. Thus
these Scheffé-type t-tests are particularly useful for small sample sizes.

The mathematical models for Problems A and B may be expressed respective-
ly as follows:

Problem A. We suppose that we have one group consisting of M pairs
(Yl, Xl), (Ye, Xe), coy (XM, X,), and another group consisting of N pairs
(Zl, Wl), (Zg, W2), . (ZN’ WN)e For each 1, the observed value Y, follows

the relation

(1.1a) Y, = a + BX o+ e 3
and for each J, the observed value Zj follows the relation
(2.25) 3 = % YR

The «Q's and P are unknown parameters (regression coefficients), the Xi's and
Wj's are specified constants, and the ei’s and fj’s are error terms which are

independent and normal with mean O and unknown variances cg and c? respec=

tively.
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The hypothesis to be tested is that aY = 02, i.e., that the two parallel
regression lines associated with (1.la) and (1.1b) are identical. We will also
be able to obtain confidence bounds on (ab - aY). Standard regression methods
cannot 3e used for this problem,'df course, since two different variances 02
and ag' are involved.

Problem B. The model is the same as for Problem A, except that in place

of (1.1) we have

(1.22) Y, = oy + By X; + &
and
(1.2b) zJ = o + By wj + fj .

The hypothesis to be tested is that BY = BZ, i.e., that the two regression
lines associated with V(l.ea) and (1,2b) are parallel. Confidence bounds on
(ﬁz - BY) can also be obtained. |

For definiteness, we will always assume (with no loss of generality) that
M < N.

The reader should refer to [1] and [2] for a further discussion of the
relation of Problems A and B to the éxperimental situation of comparing two

curriculums or two teaching methods.

o, The test for Problem A. This section tells how to calculate the test

statistic for Problem A, and then Section 3 will present a numerical example.
Since this test, like that of Scheffé [U4] for the Behrens-Fisher problem,

is based on pairing of the two samples, it is first necessary to effect this

pairing. To start, let the first group be arranged in order of increasing X and

the second group in order of increasing W, seo that Xl < X2 < 4ea < XM and
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Wl < W2 < .eee < WN' (In case there are tied values of the X's or of the W's,

. it will be 'nécessary to break the tie in some way, either by randomizing or else
by some other objective but less arbitrary method. An alternative to randomizing,
e.8., would be to break the tie on the basis of some second variable similar to
X and W which otherwise would not even be utilized at all.)
Paired to each of the M members of the first group will be a member of the

second group. Thus M of the W.'s will be paired, but the remaining (NhM)

J

1) denote that Wj (of the second group) which is

paired to Xi‘ The pairing is to be done according to the formula

will be unpaired. Let w(

(2.2) Wei) = Vpeies v 1sis oy

Ve 1ot , vl<i<M ,

where the integer v 1is determined in & way which will be described shortly.
. Note, however, that in the special case M=N, no v 1s necessary, and the pairing
(2.1) simply reduces to metching the X's and W's in opposite order,
| The optimal way to choose v (for the general case) 1is to set it equal to

the smallest integer v such that

Mey=1 N
Z W,+ Z W
(e2) 5 - Myt ey | gm ) gea 3V o
* v 2 M-1 -1 v+l

is < 0. [The function 5v (2.2) decreases as vy increases, and will turn
from positive to negative somewhere between v =0 and v =M = 1.]
Actually, any objective method of choosing v may be used and the probability
of Type I. error will be unaltered; however, the power of the test will be
affected, If the experimenter prefers: not to use the optimal method for choosing

v because he feels it may be too lengthy computationally, the following simple
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but somewhat sub-optimal method is recommended instead: choose v = M/2 if
M is even, and choose v = (M=1)/2 [or (M+1)/2] if M is odd.

After completing the pairing, we proceed as follows. Let

M M N N
(2.3) X=1%4 zx,?=§,—izyi, W=Nl- z:w.,Z=1-1\f>:zJ ,
=1 i=1 3=1 9 3=1
M M
=0 1 =0 1
W = ﬁ z W(i) ’ and Z = ﬁ iﬁl Z(i) F}

where Z(i) denotes that Z which is associated with W( i)' Thus Wo and

J
7Z° are the means of the paired W j's and 2 j's respectively. Now we calculate
Z-3) - —‘T"_ (W - X)
(2.4) t = ’

where
R Mo, M M 02
(2.5) utu = (?1}{ -MX)-2 (zxw(i)-wa)+ —(ﬁlw(i) ),
M
(2.6) u't, = (z:lxy - MXY) - r(zx z(i)-M'}'cZ")
M ¥ = =0 M M =0 =0
-/.ﬁ (iilyi Wegy =M TW) + 5 (iilw(i)z(i)-mw Z°),
and

(2.7) s° = (izy -MY)-Q[(Z Yiz(i)-M?2'°)

1
2
M 2 (u'r,)
M =0 A
+ﬁ(z Z(i)-MZ )----—--,—--—uu .

i=1
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The statistic t (2.4) is used to test the null hypothesis Qy = . Tt
follows the t-distribution with (M-2) degress of freedom if the null hypothesis

is true.

3, Numerical example of the test for Problem A. Suppose there are M=k

observations in the first group,
Y 19.1 5¢3 22.8 20.7
X 7 0 9 8 ’

and N=6 observations in the second group,

2 13.7 6.9 8.7 17.2 2.5 5.5
W 6 3 L 8 1 2 .

Arranging the first group in order of increasing X and the second group in

order of increasing W, we have

Yl=5.3 Y2=l9.l Y3=20¢7 Y’-&=22'8
Xl=0 X2=‘7 %-‘-—'8 Xh=9
and
Z, = 2.5 Zy = 5.5 23 = 6.9 Zy = 8.7 Z5 = 13.7 Zg = 17.2
Wl=l W2=2 W5=3 W’-I-=)+ W5=6 W6=8 .

The next step is to find v. We do not have to calculate 6v for all
values of v, but rather we need only find the place where 5v goes from positive
to negative. Let us start with an intermediate value of v: we evaluate sv

for v = 2, Using (2.2), and noting that X = 6, we get



.. W)+ W, (wl) + (w5 + w6) /&% _
2 - 2 )} 3 3

6 . 1B Y& gL .1
° 2 = (8- 6) = 5 (6+1/6) < o .

Hence the first negative 6v could occur at v =2 orat v <2, We next cal-

culate

6+ 3 (1+ 2) 8 2
sy = Sp2 - g - B 1-9)

(5 - 4y/6) < o :

Now, evaluating 5v for the next lower value of v, we find

& -"—‘h-'i'%- > 0] »

&)

which establishes that 51 is the first 6v which is < 0. Hence we set

v =1 in (2.1), and (2.1) then gives us

n

z(l) =Zg = 17.2 Z(e) = z3 = 6.9 z<3) =%, = 5.5 z(&) =2, =25

3 W(3) = W2 2 W(u) =W, =1

M/2, then v would be 2, not 1.]

w(l) = w6 = 8 W(e) = w3

[Note: If we had simply chosen v

With respect to the quantities in (2.3), we may write

MT =24, MY = 67.9, NW =2k, N =545, MAC =1k, MZ° =32.1.

Hence Z - Y = =7.89 and W - X = -2. In order to get t (2.4), we must obtain

(2.5 -« 2.7), for which we must first calculate



) 2 2 e
LY = 13403, DX =194 3 Z(y) = 379:%,  Z(jy = T,

i
= XiYi = 504.5, z YiZ(i) = 393,80, z Yiw(i) = 163.9 5
z XiZ(i) = 114.8, = xiw(i) = 46 s z W(i)z(i) = 171.8 .

Now we use (2.5 - 2.7) to write

2 2
u'n = (194 - -2-3- ) - 2/% (46 - 35—’;}—1—1") + -"5(78 -iﬁ—) = 131.387
w'T, = 97.1 - (-63.52L4) - (-60.217) + 39.633 = 260.k7h ,
and
2 (260.478)%
5, = 516.935 31357 = 0.547 .
Finally, (2.4) becomes
26047k
£ - 18 - mime (B =3.93_ . _14.19
= p— = 5+ = .19 .
/rl N (-2)° v/.5&7
Y T 7 131,387 )

The number of degrees of freedom for t 1s M-2=2. Hence, for a two=-sided
test at the « = .05 level, the critical region is [t| > L.30. Since [-14.19]
is > 4,30, we reject the null hypothesis Oy =, .4

Confidence bounds on (QQ -VaY} are eaéily obtained. For example, a 950/0

confidence interval for (Qi - a&) is given by

-3.95 + k.30 (.217) )
i.e., we state that

2.7k < (q -ay) < -5.12

with 95°/0 confidence.
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bk, The test for Problem B. This section tells how to calculate the test

statistic for Problem 3B, and then Section 5 will present two numerical examples.
As before, the first thing to do is to pair the two samples. We start again

by assuming X, <X, < ... < XM and W, <W, < ,ee <W.. Let v Dbe the smallest

1 2 1 2 N
integer such that
Mwy=l N

1, 1
_.é(wN_v+w ) - = (= W, + S W)

(’-l-.l) Y
Mev® = M=l tsy 9 jaNevtl

\Y

is < 0. [This function (4.1), like & (2.2), decreases as v increases.]
Yy v

Now define the two pairings

+
« = < -
(k.2a) w(i) W, , 1<1<M=-v
= Wy M=vtl < 1< M
and
i =
(k.2p) "‘(i) Ve 1md s 1<1<v

L wl<1<M .

[As in the case of the previous test, it is permissible to choose v by an objec-
tive method different from the one just recommended. No v 1is needed if M=N.]
Only one of the two pairings (k.2) will be used. To find out which one it
is to be, we compute the correlation coefficients between the Xi's and W?i)’s
and between the Xi‘s and wzi)’s. We select whichever pairing leads to the
correlation coefficient with larger absolute value. (Note that the two correla=-
tion coefficients have the same denominator.) We use W(i) to denote the
pairing which is chosen (i.e., either Wzi) or WEi)’ whichever it turns out to

be), and the correlation coefficient is then



M
£ X w(i) ~MXIW°
()-l-.5> p = i=1

i M ' 2
5 XQ-MXQ We. - MA®
=1 1—1 (i)

[In this section, we define all means the same as in (2.3).]

Some future formulas will contain (+) and (+) signs. The upper sign is
to be chosen in all places if pairing (4.2a) was selected, and the lower sign

if pairing (4.2b) was selected.

We define
M
(k.2) Moy = I X - NF ,
i
1=1
N
Nu:% = I WaNT° ,
j=1 9
and
M 5 2
NO’ = Z VJ. -MW K}
e o1 (1)
and calculate
Oy N G%
(k.5) R = - = —3 .
wo No o

At this stage, we specify two cases: Case I. if [p| < 1/R, and Case II. if

el > 1/7 .
Case I.: |p| < 1/R. We calculate
8, - 8
(4.6) 4 e ;

ok / SE
y/;(R:P)f

where
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2 — 2 2
(1) ymp) - LR EzeR (R, (R ;
1-p 2(1 % p) 2(1 + p)
A (uf 7.) + p R(u! T.)
()4-.8) 6Y - uY B - Z "B ,
1-p :
2
A + p R(ul T) + R7(uw! T,)
(b.9) B, = b A A B ,
1-p ,
M M
(4.10) §° = 12 (= Yf-M'iE) T —2 (= Yiz(.)-M'i'z.'°)
€ Moy i=1 o2 /7a2 =1 1
» v % VY %
1 Mo, —o? A A
t—5— (X 20y ~UZ") - Byluy Tp) - B,(uy Tp) ,
Nog o i=l
(h21) ! L (z YT (M X Z°)
11 T = £ XY -MXE)F —=—— (T X 2,y -HXE"),
. i
B Mot g=1 TR Ju EVNUW 11 3 (1)
and
' - 1 M = =0 M
(b.12)  w} Ty =% —m—— (z YiW(i)-MYW)+ (z:w(i) (i)-sz)

B e "

Case II. |p| > 1/R. We calculate

' B, -8
(4.13) £ = 5% X ,
1 [ 8°
e
ol /3

where
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(h.10) by - o' TB)l " ;uz o ,
- p

A () v (1/6%)(ug T)

(Ll"l5) BZ = ) 2
1-»p
M M
(L.16) g2 =1 (Z‘.Y-MYE)-—--—-—-—-—(ZY - M ¥ 7%
€ Mcr}zc i=1 M2 fno2 1=t A1)
%% g 0
. W
o2 M 2
2 07y A A
v = (iglz()-Mz ) - Byluf Tp) - By(u) ) ’
“W°
M M
‘ 1 - 0
(b.27) uf Tp =-__..2_(zxy -MXY) - o (= xiz(i)-sz),

i1
M Ox i=1 /M O'X\/N 0_2 i=1

and

2 M
=( = W R(s)” MAZ°).
Mo /e il N o 1=l

)/ XY %0 W

Note also that (4.14) and (4.15) imply the formula

M
(4.18) uz’,TB=-—-—--‘-’--—--(z: YWy - MITO)

A A '
(h.19) B, -8B, = (1/6%) (ul 1) :
To test the hypothesis 6Y = BZ’ the statistic + (4.6 or 4.13) is referred

to tables of the t-distribution with (M-3) degrees of freedom.

5. DNumerical examples of the test for Problem B. We present two examples,

one for Case I, and the other for Case II., For thé first example, suppose the

first group contains the M=6 observations



zl='562 2. =5.0 Z. =

W1=O W2 3 =

]

bt

=
\

Using (4.1), we find that

b -

Yo

and

2.5

Y3

\N:>< \Nl-<
fl
-p- L]
>

=
|
[e)N
e

3.8 > 0

-)'l'n)"'< 0

L]
=
n
<

[0)Y

]
=
A\ |

1l
G
tal

(o)}

1]
o]
=3

2

so that v = 3 is the proper v-value to use in (4.2). Thus we obtain

Wy =0 Wy =1 Wizy=2 Wy =5 W =T

and

Wiey =9

M1y =9 W=7 "zy=5 Wuy=2 Ws=1 V=0

from (4.2).

As for the means (2.3),

MX =4z, MY =161, NW
Now we find

+ = =0
zxiw(i) - MXW

and

>l
=l

ZXiW(i) - M

we will need the values

=927, MW =24 MTZ°=178.5

116

H
o
o3}
=
]
&
Co
i

= 59 - 168 = -109

Since [116] > [-109], we take Wiy = w’('i) , so that
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z(l) = 3.2 Z(e) = 5.0 2(5) = 8.5 Z(h) =15.7 2Z(gy = 20.6 Z(6) = 25.5
D R O I ¢ ) Bl ¢ I ) B (9 R
The sums of squares and cross-products which we will need are

| _ 2 2 2
z Yf = 53.5L , IX{ =51k, Z 23y = 1428.59 , I Wiy = 160

T XY, =157.9 ,Z YiZ(i)= 269.34, = Yiw(i) = 88.1L ,

by xiz(i) = 8%39.5, = xiw(i) L 284, z w(i)z(i) = 47k,2 s

¥oo
and W, = 169 .
3=1 ¢
Thus we obtain
M a§ = 220 , N a% = 64.857 N qio = 6 ;
116 .
= = «/-955532 = 977590 H
Y 220 x oh
and T
R =.V/g%;§21 = /T0T353595 = 1.00667h
from (4.4), (4.3), and (4.5). Since Rfp| = .98411k < 1, this example falls

within Case I.
Wherever there are two signs in (4.7 - 4.12), we choose the upper sign
(since the upper signs are for W-E 1) and the lower signs for W'('i)). Thus

(4.11 - 4.12) become

1

1
P = = (U45,2) (290.0) = =-2.222317
t7 T 20 /20 % OF.857
and
ul Ty =- i (23.7) + gy (160.2) = 2.271636

J220 x 85.857
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and so (4.8 - 4.10) are

A (-2.222317) + .98411k (2.271636)
By = T - 955682 29856 ’
AN L0841k (-2,200317) + 1.013393 (2.271636)
By = 1-.955682 = 2.99
and
sg - ‘2'%6 (10.3083) - 2 (58.6983)
V220 x 64.857

+ sy (LOL.54G3) - 29856 (-2.222317)-2.5959 (2.271636)

= .021884 .
Finally, (L4.7) is
__ (.00667k)2 (2.oo§67h)2 _
¥Rop) = B(1-.9759) T Aw.9re) - Ot ’
and thus the test statistic (4.6) is
2.5959 = .2986 _ 2,297 _ 6.6
&= e S o -~ B '
/1 0191 }.»'-‘-——6-:—3--

This t has M-3=3 degrees of freedom. Hence the critical region for a
two-sided test at the o = .05 level is [t] > 3.18. Since [26.64] > 3.18,
we reject the null hypothesis BY = BZ. A 950/0 confidence interval on
(BZ - BY) is given by

2.30 3.18 (.0862) R

I+

i.e.,
2.03 < (B, - By) < 2.57 .
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For our second example, we will use exactly the same figures as for
the first example, except that we will suppose that X,+ = 9 instead of 6.
Since the Wj's are the same as before, v will also be the same as before,
and therefore the W'Zi)’s and W'(-i )'s will likewise be as before. The means
| will stay the same except that M X = 45. We find

119

+ = =0
zxiw(i)-wa 299 - 180
and

65 - 180 -115 .

- < 70
ZXiW(i)-MXW

Thus we tese Wy = w’zi) (since }119] > |-115]); this means that the Wegy's
and Z(i)'s are exactly as before.

The sums' of squares and cross=products will be the same as before except for

2
Z X =559 L XY, = 165.1, Z xiz(i) = 886.6, = xiw(i) =299 .

Hence M 0'}2{ = 221.5 now, but N 02, N 0'20 » and R are unaltered. We obtain

W
(119
p = = /998952 = 999471 .
V2215 x Ok
This time, R|p] = 1.006141 > 1, vhich means that we are thrown into Case II.

It remains to calculate (4.17 - %.18), (4.14% - 4.16), and (4.13). We find

Lo (uh35) - —2TL  (597,85) = -2.300067 ,

eel.> /2515 % 6k

e
o3

DML (a5.7) 4 2902 (165.0) - 2.301528 ,

5/221.5 X 6%

(-2.300067) + (2.301528)
1 - 908042

oft
o3

1.3809 )

W >
2]

(-2.300067) + (1/.998942) (2.301528)
T - 998942 = 3.6853

[.\'l.CD>
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1 2 x ,999471
g = == (10,3083) - S—tZZXZ_lc (58 .6983)
2215 ¢ 551.5 % :

+ :22%%53 (401.5483) - 1.3809 (-2.300067) - 3.6853(2.301528)

= .022953
and finally ,
3.6853 - 1.3809 _ 2,304 _
t = = o8 = 2633 ‘

1 1. 022953
99057 Y T 6-3

Since [26.33] » 3.18, we reject the null hypothesis By = By. A 95°/0 con=

fidence interval for (BZ - BY) is given by

2.30 3,18 (.0875) ’

I+

i.eey
2,05 < (B, - By) < 2.58 .
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